xref: /linux/kernel/stop_machine.c (revision 2d6ffcca623a9a16df6cdfbe8250b7a5904a5f5e)
1 /* Copyright 2005 Rusty Russell rusty@rustcorp.com.au IBM Corporation.
2  * GPL v2 and any later version.
3  */
4 #include <linux/cpu.h>
5 #include <linux/err.h>
6 #include <linux/kthread.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/stop_machine.h>
10 #include <linux/syscalls.h>
11 #include <linux/interrupt.h>
12 
13 #include <asm/atomic.h>
14 #include <asm/uaccess.h>
15 
16 /* Since we effect priority and affinity (both of which are visible
17  * to, and settable by outside processes) we do indirection via a
18  * kthread. */
19 
20 /* Thread to stop each CPU in user context. */
21 enum stopmachine_state {
22 	STOPMACHINE_WAIT,
23 	STOPMACHINE_PREPARE,
24 	STOPMACHINE_DISABLE_IRQ,
25 	STOPMACHINE_EXIT,
26 };
27 
28 static enum stopmachine_state stopmachine_state;
29 static unsigned int stopmachine_num_threads;
30 static atomic_t stopmachine_thread_ack;
31 
32 static int stopmachine(void *cpu)
33 {
34 	int irqs_disabled = 0;
35 	int prepared = 0;
36 	cpumask_of_cpu_ptr(cpumask, (int)(long)cpu);
37 
38 	set_cpus_allowed_ptr(current, cpumask);
39 
40 	/* Ack: we are alive */
41 	smp_mb(); /* Theoretically the ack = 0 might not be on this CPU yet. */
42 	atomic_inc(&stopmachine_thread_ack);
43 
44 	/* Simple state machine */
45 	while (stopmachine_state != STOPMACHINE_EXIT) {
46 		if (stopmachine_state == STOPMACHINE_DISABLE_IRQ
47 		    && !irqs_disabled) {
48 			local_irq_disable();
49 			hard_irq_disable();
50 			irqs_disabled = 1;
51 			/* Ack: irqs disabled. */
52 			smp_mb(); /* Must read state first. */
53 			atomic_inc(&stopmachine_thread_ack);
54 		} else if (stopmachine_state == STOPMACHINE_PREPARE
55 			   && !prepared) {
56 			/* Everyone is in place, hold CPU. */
57 			preempt_disable();
58 			prepared = 1;
59 			smp_mb(); /* Must read state first. */
60 			atomic_inc(&stopmachine_thread_ack);
61 		}
62 		/* Yield in first stage: migration threads need to
63 		 * help our sisters onto their CPUs. */
64 		if (!prepared && !irqs_disabled)
65 			yield();
66 		cpu_relax();
67 	}
68 
69 	/* Ack: we are exiting. */
70 	smp_mb(); /* Must read state first. */
71 	atomic_inc(&stopmachine_thread_ack);
72 
73 	if (irqs_disabled)
74 		local_irq_enable();
75 	if (prepared)
76 		preempt_enable();
77 
78 	return 0;
79 }
80 
81 /* Change the thread state */
82 static void stopmachine_set_state(enum stopmachine_state state)
83 {
84 	atomic_set(&stopmachine_thread_ack, 0);
85 	smp_wmb();
86 	stopmachine_state = state;
87 	while (atomic_read(&stopmachine_thread_ack) != stopmachine_num_threads)
88 		cpu_relax();
89 }
90 
91 static int stop_machine(void)
92 {
93 	int i, ret = 0;
94 
95 	atomic_set(&stopmachine_thread_ack, 0);
96 	stopmachine_num_threads = 0;
97 	stopmachine_state = STOPMACHINE_WAIT;
98 
99 	for_each_online_cpu(i) {
100 		if (i == raw_smp_processor_id())
101 			continue;
102 		ret = kernel_thread(stopmachine, (void *)(long)i,CLONE_KERNEL);
103 		if (ret < 0)
104 			break;
105 		stopmachine_num_threads++;
106 	}
107 
108 	/* Wait for them all to come to life. */
109 	while (atomic_read(&stopmachine_thread_ack) != stopmachine_num_threads) {
110 		yield();
111 		cpu_relax();
112 	}
113 
114 	/* If some failed, kill them all. */
115 	if (ret < 0) {
116 		stopmachine_set_state(STOPMACHINE_EXIT);
117 		return ret;
118 	}
119 
120 	/* Now they are all started, make them hold the CPUs, ready. */
121 	preempt_disable();
122 	stopmachine_set_state(STOPMACHINE_PREPARE);
123 
124 	/* Make them disable irqs. */
125 	local_irq_disable();
126 	hard_irq_disable();
127 	stopmachine_set_state(STOPMACHINE_DISABLE_IRQ);
128 
129 	return 0;
130 }
131 
132 static void restart_machine(void)
133 {
134 	stopmachine_set_state(STOPMACHINE_EXIT);
135 	local_irq_enable();
136 	preempt_enable_no_resched();
137 }
138 
139 struct stop_machine_data {
140 	int (*fn)(void *);
141 	void *data;
142 	struct completion done;
143 };
144 
145 static int do_stop(void *_smdata)
146 {
147 	struct stop_machine_data *smdata = _smdata;
148 	int ret;
149 
150 	ret = stop_machine();
151 	if (ret == 0) {
152 		ret = smdata->fn(smdata->data);
153 		restart_machine();
154 	}
155 
156 	/* We're done: you can kthread_stop us now */
157 	complete(&smdata->done);
158 
159 	/* Wait for kthread_stop */
160 	set_current_state(TASK_INTERRUPTIBLE);
161 	while (!kthread_should_stop()) {
162 		schedule();
163 		set_current_state(TASK_INTERRUPTIBLE);
164 	}
165 	__set_current_state(TASK_RUNNING);
166 	return ret;
167 }
168 
169 struct task_struct *__stop_machine_run(int (*fn)(void *), void *data,
170 				       unsigned int cpu)
171 {
172 	static DEFINE_MUTEX(stopmachine_mutex);
173 	struct stop_machine_data smdata;
174 	struct task_struct *p;
175 
176 	smdata.fn = fn;
177 	smdata.data = data;
178 	init_completion(&smdata.done);
179 
180 	mutex_lock(&stopmachine_mutex);
181 
182 	/* If they don't care which CPU fn runs on, bind to any online one. */
183 	if (cpu == NR_CPUS)
184 		cpu = raw_smp_processor_id();
185 
186 	p = kthread_create(do_stop, &smdata, "kstopmachine");
187 	if (!IS_ERR(p)) {
188 		struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
189 
190 		/* One high-prio thread per cpu.  We'll do this one. */
191 		sched_setscheduler_nocheck(p, SCHED_FIFO, &param);
192 		kthread_bind(p, cpu);
193 		wake_up_process(p);
194 		wait_for_completion(&smdata.done);
195 	}
196 	mutex_unlock(&stopmachine_mutex);
197 	return p;
198 }
199 
200 int stop_machine_run(int (*fn)(void *), void *data, unsigned int cpu)
201 {
202 	struct task_struct *p;
203 	int ret;
204 
205 	/* No CPUs can come up or down during this. */
206 	get_online_cpus();
207 	p = __stop_machine_run(fn, data, cpu);
208 	if (!IS_ERR(p))
209 		ret = kthread_stop(p);
210 	else
211 		ret = PTR_ERR(p);
212 	put_online_cpus();
213 
214 	return ret;
215 }
216 EXPORT_SYMBOL_GPL(stop_machine_run);
217