1 /* 2 * kernel/stop_machine.c 3 * 4 * Copyright (C) 2008, 2005 IBM Corporation. 5 * Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au 6 * Copyright (C) 2010 SUSE Linux Products GmbH 7 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 8 * 9 * This file is released under the GPLv2 and any later version. 10 */ 11 #include <linux/completion.h> 12 #include <linux/cpu.h> 13 #include <linux/init.h> 14 #include <linux/kthread.h> 15 #include <linux/export.h> 16 #include <linux/percpu.h> 17 #include <linux/sched.h> 18 #include <linux/stop_machine.h> 19 #include <linux/interrupt.h> 20 #include <linux/kallsyms.h> 21 #include <linux/smpboot.h> 22 #include <linux/atomic.h> 23 #include <linux/lglock.h> 24 25 /* 26 * Structure to determine completion condition and record errors. May 27 * be shared by works on different cpus. 28 */ 29 struct cpu_stop_done { 30 atomic_t nr_todo; /* nr left to execute */ 31 int ret; /* collected return value */ 32 struct completion completion; /* fired if nr_todo reaches 0 */ 33 }; 34 35 /* the actual stopper, one per every possible cpu, enabled on online cpus */ 36 struct cpu_stopper { 37 struct task_struct *thread; 38 39 spinlock_t lock; 40 bool enabled; /* is this stopper enabled? */ 41 struct list_head works; /* list of pending works */ 42 43 struct cpu_stop_work stop_work; /* for stop_cpus */ 44 }; 45 46 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper); 47 static bool stop_machine_initialized = false; 48 49 /* 50 * Avoids a race between stop_two_cpus and global stop_cpus, where 51 * the stoppers could get queued up in reverse order, leading to 52 * system deadlock. Using an lglock means stop_two_cpus remains 53 * relatively cheap. 54 */ 55 DEFINE_STATIC_LGLOCK(stop_cpus_lock); 56 57 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo) 58 { 59 memset(done, 0, sizeof(*done)); 60 atomic_set(&done->nr_todo, nr_todo); 61 init_completion(&done->completion); 62 } 63 64 /* signal completion unless @done is NULL */ 65 static void cpu_stop_signal_done(struct cpu_stop_done *done) 66 { 67 if (atomic_dec_and_test(&done->nr_todo)) 68 complete(&done->completion); 69 } 70 71 static void __cpu_stop_queue_work(struct cpu_stopper *stopper, 72 struct cpu_stop_work *work) 73 { 74 list_add_tail(&work->list, &stopper->works); 75 wake_up_process(stopper->thread); 76 } 77 78 /* queue @work to @stopper. if offline, @work is completed immediately */ 79 static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work) 80 { 81 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 82 unsigned long flags; 83 bool enabled; 84 85 spin_lock_irqsave(&stopper->lock, flags); 86 enabled = stopper->enabled; 87 if (enabled) 88 __cpu_stop_queue_work(stopper, work); 89 else if (work->done) 90 cpu_stop_signal_done(work->done); 91 spin_unlock_irqrestore(&stopper->lock, flags); 92 93 return enabled; 94 } 95 96 /** 97 * stop_one_cpu - stop a cpu 98 * @cpu: cpu to stop 99 * @fn: function to execute 100 * @arg: argument to @fn 101 * 102 * Execute @fn(@arg) on @cpu. @fn is run in a process context with 103 * the highest priority preempting any task on the cpu and 104 * monopolizing it. This function returns after the execution is 105 * complete. 106 * 107 * This function doesn't guarantee @cpu stays online till @fn 108 * completes. If @cpu goes down in the middle, execution may happen 109 * partially or fully on different cpus. @fn should either be ready 110 * for that or the caller should ensure that @cpu stays online until 111 * this function completes. 112 * 113 * CONTEXT: 114 * Might sleep. 115 * 116 * RETURNS: 117 * -ENOENT if @fn(@arg) was not executed because @cpu was offline; 118 * otherwise, the return value of @fn. 119 */ 120 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg) 121 { 122 struct cpu_stop_done done; 123 struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done }; 124 125 cpu_stop_init_done(&done, 1); 126 if (!cpu_stop_queue_work(cpu, &work)) 127 return -ENOENT; 128 wait_for_completion(&done.completion); 129 return done.ret; 130 } 131 132 /* This controls the threads on each CPU. */ 133 enum multi_stop_state { 134 /* Dummy starting state for thread. */ 135 MULTI_STOP_NONE, 136 /* Awaiting everyone to be scheduled. */ 137 MULTI_STOP_PREPARE, 138 /* Disable interrupts. */ 139 MULTI_STOP_DISABLE_IRQ, 140 /* Run the function */ 141 MULTI_STOP_RUN, 142 /* Exit */ 143 MULTI_STOP_EXIT, 144 }; 145 146 struct multi_stop_data { 147 cpu_stop_fn_t fn; 148 void *data; 149 /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */ 150 unsigned int num_threads; 151 const struct cpumask *active_cpus; 152 153 enum multi_stop_state state; 154 atomic_t thread_ack; 155 }; 156 157 static void set_state(struct multi_stop_data *msdata, 158 enum multi_stop_state newstate) 159 { 160 /* Reset ack counter. */ 161 atomic_set(&msdata->thread_ack, msdata->num_threads); 162 smp_wmb(); 163 msdata->state = newstate; 164 } 165 166 /* Last one to ack a state moves to the next state. */ 167 static void ack_state(struct multi_stop_data *msdata) 168 { 169 if (atomic_dec_and_test(&msdata->thread_ack)) 170 set_state(msdata, msdata->state + 1); 171 } 172 173 /* This is the cpu_stop function which stops the CPU. */ 174 static int multi_cpu_stop(void *data) 175 { 176 struct multi_stop_data *msdata = data; 177 enum multi_stop_state curstate = MULTI_STOP_NONE; 178 int cpu = smp_processor_id(), err = 0; 179 unsigned long flags; 180 bool is_active; 181 182 /* 183 * When called from stop_machine_from_inactive_cpu(), irq might 184 * already be disabled. Save the state and restore it on exit. 185 */ 186 local_save_flags(flags); 187 188 if (!msdata->active_cpus) 189 is_active = cpu == cpumask_first(cpu_online_mask); 190 else 191 is_active = cpumask_test_cpu(cpu, msdata->active_cpus); 192 193 /* Simple state machine */ 194 do { 195 /* Chill out and ensure we re-read multi_stop_state. */ 196 cpu_relax(); 197 if (msdata->state != curstate) { 198 curstate = msdata->state; 199 switch (curstate) { 200 case MULTI_STOP_DISABLE_IRQ: 201 local_irq_disable(); 202 hard_irq_disable(); 203 break; 204 case MULTI_STOP_RUN: 205 if (is_active) 206 err = msdata->fn(msdata->data); 207 break; 208 default: 209 break; 210 } 211 ack_state(msdata); 212 } 213 } while (curstate != MULTI_STOP_EXIT); 214 215 local_irq_restore(flags); 216 return err; 217 } 218 219 static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1, 220 int cpu2, struct cpu_stop_work *work2) 221 { 222 struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1); 223 struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2); 224 int err; 225 226 lg_double_lock(&stop_cpus_lock, cpu1, cpu2); 227 spin_lock_irq(&stopper1->lock); 228 spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING); 229 230 err = -ENOENT; 231 if (!stopper1->enabled || !stopper2->enabled) 232 goto unlock; 233 234 err = 0; 235 __cpu_stop_queue_work(stopper1, work1); 236 __cpu_stop_queue_work(stopper2, work2); 237 unlock: 238 spin_unlock(&stopper2->lock); 239 spin_unlock_irq(&stopper1->lock); 240 lg_double_unlock(&stop_cpus_lock, cpu1, cpu2); 241 242 return err; 243 } 244 /** 245 * stop_two_cpus - stops two cpus 246 * @cpu1: the cpu to stop 247 * @cpu2: the other cpu to stop 248 * @fn: function to execute 249 * @arg: argument to @fn 250 * 251 * Stops both the current and specified CPU and runs @fn on one of them. 252 * 253 * returns when both are completed. 254 */ 255 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg) 256 { 257 struct cpu_stop_done done; 258 struct cpu_stop_work work1, work2; 259 struct multi_stop_data msdata; 260 261 msdata = (struct multi_stop_data){ 262 .fn = fn, 263 .data = arg, 264 .num_threads = 2, 265 .active_cpus = cpumask_of(cpu1), 266 }; 267 268 work1 = work2 = (struct cpu_stop_work){ 269 .fn = multi_cpu_stop, 270 .arg = &msdata, 271 .done = &done 272 }; 273 274 cpu_stop_init_done(&done, 2); 275 set_state(&msdata, MULTI_STOP_PREPARE); 276 277 if (cpu1 > cpu2) 278 swap(cpu1, cpu2); 279 if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2)) 280 return -ENOENT; 281 282 wait_for_completion(&done.completion); 283 return done.ret; 284 } 285 286 /** 287 * stop_one_cpu_nowait - stop a cpu but don't wait for completion 288 * @cpu: cpu to stop 289 * @fn: function to execute 290 * @arg: argument to @fn 291 * @work_buf: pointer to cpu_stop_work structure 292 * 293 * Similar to stop_one_cpu() but doesn't wait for completion. The 294 * caller is responsible for ensuring @work_buf is currently unused 295 * and will remain untouched until stopper starts executing @fn. 296 * 297 * CONTEXT: 298 * Don't care. 299 * 300 * RETURNS: 301 * true if cpu_stop_work was queued successfully and @fn will be called, 302 * false otherwise. 303 */ 304 bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg, 305 struct cpu_stop_work *work_buf) 306 { 307 *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, }; 308 return cpu_stop_queue_work(cpu, work_buf); 309 } 310 311 /* static data for stop_cpus */ 312 static DEFINE_MUTEX(stop_cpus_mutex); 313 314 static bool queue_stop_cpus_work(const struct cpumask *cpumask, 315 cpu_stop_fn_t fn, void *arg, 316 struct cpu_stop_done *done) 317 { 318 struct cpu_stop_work *work; 319 unsigned int cpu; 320 bool queued = false; 321 322 /* 323 * Disable preemption while queueing to avoid getting 324 * preempted by a stopper which might wait for other stoppers 325 * to enter @fn which can lead to deadlock. 326 */ 327 lg_global_lock(&stop_cpus_lock); 328 for_each_cpu(cpu, cpumask) { 329 work = &per_cpu(cpu_stopper.stop_work, cpu); 330 work->fn = fn; 331 work->arg = arg; 332 work->done = done; 333 if (cpu_stop_queue_work(cpu, work)) 334 queued = true; 335 } 336 lg_global_unlock(&stop_cpus_lock); 337 338 return queued; 339 } 340 341 static int __stop_cpus(const struct cpumask *cpumask, 342 cpu_stop_fn_t fn, void *arg) 343 { 344 struct cpu_stop_done done; 345 346 cpu_stop_init_done(&done, cpumask_weight(cpumask)); 347 if (!queue_stop_cpus_work(cpumask, fn, arg, &done)) 348 return -ENOENT; 349 wait_for_completion(&done.completion); 350 return done.ret; 351 } 352 353 /** 354 * stop_cpus - stop multiple cpus 355 * @cpumask: cpus to stop 356 * @fn: function to execute 357 * @arg: argument to @fn 358 * 359 * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu, 360 * @fn is run in a process context with the highest priority 361 * preempting any task on the cpu and monopolizing it. This function 362 * returns after all executions are complete. 363 * 364 * This function doesn't guarantee the cpus in @cpumask stay online 365 * till @fn completes. If some cpus go down in the middle, execution 366 * on the cpu may happen partially or fully on different cpus. @fn 367 * should either be ready for that or the caller should ensure that 368 * the cpus stay online until this function completes. 369 * 370 * All stop_cpus() calls are serialized making it safe for @fn to wait 371 * for all cpus to start executing it. 372 * 373 * CONTEXT: 374 * Might sleep. 375 * 376 * RETURNS: 377 * -ENOENT if @fn(@arg) was not executed at all because all cpus in 378 * @cpumask were offline; otherwise, 0 if all executions of @fn 379 * returned 0, any non zero return value if any returned non zero. 380 */ 381 int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) 382 { 383 int ret; 384 385 /* static works are used, process one request at a time */ 386 mutex_lock(&stop_cpus_mutex); 387 ret = __stop_cpus(cpumask, fn, arg); 388 mutex_unlock(&stop_cpus_mutex); 389 return ret; 390 } 391 392 /** 393 * try_stop_cpus - try to stop multiple cpus 394 * @cpumask: cpus to stop 395 * @fn: function to execute 396 * @arg: argument to @fn 397 * 398 * Identical to stop_cpus() except that it fails with -EAGAIN if 399 * someone else is already using the facility. 400 * 401 * CONTEXT: 402 * Might sleep. 403 * 404 * RETURNS: 405 * -EAGAIN if someone else is already stopping cpus, -ENOENT if 406 * @fn(@arg) was not executed at all because all cpus in @cpumask were 407 * offline; otherwise, 0 if all executions of @fn returned 0, any non 408 * zero return value if any returned non zero. 409 */ 410 int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) 411 { 412 int ret; 413 414 /* static works are used, process one request at a time */ 415 if (!mutex_trylock(&stop_cpus_mutex)) 416 return -EAGAIN; 417 ret = __stop_cpus(cpumask, fn, arg); 418 mutex_unlock(&stop_cpus_mutex); 419 return ret; 420 } 421 422 static int cpu_stop_should_run(unsigned int cpu) 423 { 424 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 425 unsigned long flags; 426 int run; 427 428 spin_lock_irqsave(&stopper->lock, flags); 429 run = !list_empty(&stopper->works); 430 spin_unlock_irqrestore(&stopper->lock, flags); 431 return run; 432 } 433 434 static void cpu_stopper_thread(unsigned int cpu) 435 { 436 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 437 struct cpu_stop_work *work; 438 439 repeat: 440 work = NULL; 441 spin_lock_irq(&stopper->lock); 442 if (!list_empty(&stopper->works)) { 443 work = list_first_entry(&stopper->works, 444 struct cpu_stop_work, list); 445 list_del_init(&work->list); 446 } 447 spin_unlock_irq(&stopper->lock); 448 449 if (work) { 450 cpu_stop_fn_t fn = work->fn; 451 void *arg = work->arg; 452 struct cpu_stop_done *done = work->done; 453 int ret; 454 455 /* cpu stop callbacks must not sleep, make in_atomic() == T */ 456 preempt_count_inc(); 457 ret = fn(arg); 458 if (done) { 459 if (ret) 460 done->ret = ret; 461 cpu_stop_signal_done(done); 462 } 463 preempt_count_dec(); 464 WARN_ONCE(preempt_count(), 465 "cpu_stop: %pf(%p) leaked preempt count\n", fn, arg); 466 goto repeat; 467 } 468 } 469 470 void stop_machine_park(int cpu) 471 { 472 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 473 /* 474 * Lockless. cpu_stopper_thread() will take stopper->lock and flush 475 * the pending works before it parks, until then it is fine to queue 476 * the new works. 477 */ 478 stopper->enabled = false; 479 kthread_park(stopper->thread); 480 } 481 482 extern void sched_set_stop_task(int cpu, struct task_struct *stop); 483 484 static void cpu_stop_create(unsigned int cpu) 485 { 486 sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu)); 487 } 488 489 static void cpu_stop_park(unsigned int cpu) 490 { 491 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 492 493 WARN_ON(!list_empty(&stopper->works)); 494 } 495 496 void stop_machine_unpark(int cpu) 497 { 498 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 499 500 stopper->enabled = true; 501 kthread_unpark(stopper->thread); 502 } 503 504 static struct smp_hotplug_thread cpu_stop_threads = { 505 .store = &cpu_stopper.thread, 506 .thread_should_run = cpu_stop_should_run, 507 .thread_fn = cpu_stopper_thread, 508 .thread_comm = "migration/%u", 509 .create = cpu_stop_create, 510 .park = cpu_stop_park, 511 .selfparking = true, 512 }; 513 514 static int __init cpu_stop_init(void) 515 { 516 unsigned int cpu; 517 518 for_each_possible_cpu(cpu) { 519 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 520 521 spin_lock_init(&stopper->lock); 522 INIT_LIST_HEAD(&stopper->works); 523 } 524 525 BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads)); 526 stop_machine_unpark(raw_smp_processor_id()); 527 stop_machine_initialized = true; 528 return 0; 529 } 530 early_initcall(cpu_stop_init); 531 532 static int __stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus) 533 { 534 struct multi_stop_data msdata = { 535 .fn = fn, 536 .data = data, 537 .num_threads = num_online_cpus(), 538 .active_cpus = cpus, 539 }; 540 541 if (!stop_machine_initialized) { 542 /* 543 * Handle the case where stop_machine() is called 544 * early in boot before stop_machine() has been 545 * initialized. 546 */ 547 unsigned long flags; 548 int ret; 549 550 WARN_ON_ONCE(msdata.num_threads != 1); 551 552 local_irq_save(flags); 553 hard_irq_disable(); 554 ret = (*fn)(data); 555 local_irq_restore(flags); 556 557 return ret; 558 } 559 560 /* Set the initial state and stop all online cpus. */ 561 set_state(&msdata, MULTI_STOP_PREPARE); 562 return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata); 563 } 564 565 int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus) 566 { 567 int ret; 568 569 /* No CPUs can come up or down during this. */ 570 get_online_cpus(); 571 ret = __stop_machine(fn, data, cpus); 572 put_online_cpus(); 573 return ret; 574 } 575 EXPORT_SYMBOL_GPL(stop_machine); 576 577 /** 578 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU 579 * @fn: the function to run 580 * @data: the data ptr for the @fn() 581 * @cpus: the cpus to run the @fn() on (NULL = any online cpu) 582 * 583 * This is identical to stop_machine() but can be called from a CPU which 584 * is not active. The local CPU is in the process of hotplug (so no other 585 * CPU hotplug can start) and not marked active and doesn't have enough 586 * context to sleep. 587 * 588 * This function provides stop_machine() functionality for such state by 589 * using busy-wait for synchronization and executing @fn directly for local 590 * CPU. 591 * 592 * CONTEXT: 593 * Local CPU is inactive. Temporarily stops all active CPUs. 594 * 595 * RETURNS: 596 * 0 if all executions of @fn returned 0, any non zero return value if any 597 * returned non zero. 598 */ 599 int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data, 600 const struct cpumask *cpus) 601 { 602 struct multi_stop_data msdata = { .fn = fn, .data = data, 603 .active_cpus = cpus }; 604 struct cpu_stop_done done; 605 int ret; 606 607 /* Local CPU must be inactive and CPU hotplug in progress. */ 608 BUG_ON(cpu_active(raw_smp_processor_id())); 609 msdata.num_threads = num_active_cpus() + 1; /* +1 for local */ 610 611 /* No proper task established and can't sleep - busy wait for lock. */ 612 while (!mutex_trylock(&stop_cpus_mutex)) 613 cpu_relax(); 614 615 /* Schedule work on other CPUs and execute directly for local CPU */ 616 set_state(&msdata, MULTI_STOP_PREPARE); 617 cpu_stop_init_done(&done, num_active_cpus()); 618 queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata, 619 &done); 620 ret = multi_cpu_stop(&msdata); 621 622 /* Busy wait for completion. */ 623 while (!completion_done(&done.completion)) 624 cpu_relax(); 625 626 mutex_unlock(&stop_cpus_mutex); 627 return ret ?: done.ret; 628 } 629