1 /* 2 * Common SMP CPU bringup/teardown functions 3 */ 4 #include <linux/cpu.h> 5 #include <linux/err.h> 6 #include <linux/smp.h> 7 #include <linux/delay.h> 8 #include <linux/init.h> 9 #include <linux/list.h> 10 #include <linux/slab.h> 11 #include <linux/sched.h> 12 #include <linux/sched/task.h> 13 #include <linux/export.h> 14 #include <linux/percpu.h> 15 #include <linux/kthread.h> 16 #include <linux/smpboot.h> 17 18 #include "smpboot.h" 19 20 #ifdef CONFIG_SMP 21 22 #ifdef CONFIG_GENERIC_SMP_IDLE_THREAD 23 /* 24 * For the hotplug case we keep the task structs around and reuse 25 * them. 26 */ 27 static DEFINE_PER_CPU(struct task_struct *, idle_threads); 28 29 struct task_struct *idle_thread_get(unsigned int cpu) 30 { 31 struct task_struct *tsk = per_cpu(idle_threads, cpu); 32 33 if (!tsk) 34 return ERR_PTR(-ENOMEM); 35 init_idle(tsk, cpu); 36 return tsk; 37 } 38 39 void __init idle_thread_set_boot_cpu(void) 40 { 41 per_cpu(idle_threads, smp_processor_id()) = current; 42 } 43 44 /** 45 * idle_init - Initialize the idle thread for a cpu 46 * @cpu: The cpu for which the idle thread should be initialized 47 * 48 * Creates the thread if it does not exist. 49 */ 50 static inline void idle_init(unsigned int cpu) 51 { 52 struct task_struct *tsk = per_cpu(idle_threads, cpu); 53 54 if (!tsk) { 55 tsk = fork_idle(cpu); 56 if (IS_ERR(tsk)) 57 pr_err("SMP: fork_idle() failed for CPU %u\n", cpu); 58 else 59 per_cpu(idle_threads, cpu) = tsk; 60 } 61 } 62 63 /** 64 * idle_threads_init - Initialize idle threads for all cpus 65 */ 66 void __init idle_threads_init(void) 67 { 68 unsigned int cpu, boot_cpu; 69 70 boot_cpu = smp_processor_id(); 71 72 for_each_possible_cpu(cpu) { 73 if (cpu != boot_cpu) 74 idle_init(cpu); 75 } 76 } 77 #endif 78 79 #endif /* #ifdef CONFIG_SMP */ 80 81 static LIST_HEAD(hotplug_threads); 82 static DEFINE_MUTEX(smpboot_threads_lock); 83 84 struct smpboot_thread_data { 85 unsigned int cpu; 86 unsigned int status; 87 struct smp_hotplug_thread *ht; 88 }; 89 90 enum { 91 HP_THREAD_NONE = 0, 92 HP_THREAD_ACTIVE, 93 HP_THREAD_PARKED, 94 }; 95 96 /** 97 * smpboot_thread_fn - percpu hotplug thread loop function 98 * @data: thread data pointer 99 * 100 * Checks for thread stop and park conditions. Calls the necessary 101 * setup, cleanup, park and unpark functions for the registered 102 * thread. 103 * 104 * Returns 1 when the thread should exit, 0 otherwise. 105 */ 106 static int smpboot_thread_fn(void *data) 107 { 108 struct smpboot_thread_data *td = data; 109 struct smp_hotplug_thread *ht = td->ht; 110 111 while (1) { 112 set_current_state(TASK_INTERRUPTIBLE); 113 preempt_disable(); 114 if (kthread_should_stop()) { 115 __set_current_state(TASK_RUNNING); 116 preempt_enable(); 117 /* cleanup must mirror setup */ 118 if (ht->cleanup && td->status != HP_THREAD_NONE) 119 ht->cleanup(td->cpu, cpu_online(td->cpu)); 120 kfree(td); 121 return 0; 122 } 123 124 if (kthread_should_park()) { 125 __set_current_state(TASK_RUNNING); 126 preempt_enable(); 127 if (ht->park && td->status == HP_THREAD_ACTIVE) { 128 BUG_ON(td->cpu != smp_processor_id()); 129 ht->park(td->cpu); 130 td->status = HP_THREAD_PARKED; 131 } 132 kthread_parkme(); 133 /* We might have been woken for stop */ 134 continue; 135 } 136 137 BUG_ON(td->cpu != smp_processor_id()); 138 139 /* Check for state change setup */ 140 switch (td->status) { 141 case HP_THREAD_NONE: 142 __set_current_state(TASK_RUNNING); 143 preempt_enable(); 144 if (ht->setup) 145 ht->setup(td->cpu); 146 td->status = HP_THREAD_ACTIVE; 147 continue; 148 149 case HP_THREAD_PARKED: 150 __set_current_state(TASK_RUNNING); 151 preempt_enable(); 152 if (ht->unpark) 153 ht->unpark(td->cpu); 154 td->status = HP_THREAD_ACTIVE; 155 continue; 156 } 157 158 if (!ht->thread_should_run(td->cpu)) { 159 preempt_enable_no_resched(); 160 schedule(); 161 } else { 162 __set_current_state(TASK_RUNNING); 163 preempt_enable(); 164 ht->thread_fn(td->cpu); 165 } 166 } 167 } 168 169 static int 170 __smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu) 171 { 172 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu); 173 struct smpboot_thread_data *td; 174 175 if (tsk) 176 return 0; 177 178 td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu)); 179 if (!td) 180 return -ENOMEM; 181 td->cpu = cpu; 182 td->ht = ht; 183 184 tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu, 185 ht->thread_comm); 186 if (IS_ERR(tsk)) { 187 kfree(td); 188 return PTR_ERR(tsk); 189 } 190 /* 191 * Park the thread so that it could start right on the CPU 192 * when it is available. 193 */ 194 kthread_park(tsk); 195 get_task_struct(tsk); 196 *per_cpu_ptr(ht->store, cpu) = tsk; 197 if (ht->create) { 198 /* 199 * Make sure that the task has actually scheduled out 200 * into park position, before calling the create 201 * callback. At least the migration thread callback 202 * requires that the task is off the runqueue. 203 */ 204 if (!wait_task_inactive(tsk, TASK_PARKED)) 205 WARN_ON(1); 206 else 207 ht->create(cpu); 208 } 209 return 0; 210 } 211 212 int smpboot_create_threads(unsigned int cpu) 213 { 214 struct smp_hotplug_thread *cur; 215 int ret = 0; 216 217 mutex_lock(&smpboot_threads_lock); 218 list_for_each_entry(cur, &hotplug_threads, list) { 219 ret = __smpboot_create_thread(cur, cpu); 220 if (ret) 221 break; 222 } 223 mutex_unlock(&smpboot_threads_lock); 224 return ret; 225 } 226 227 static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu) 228 { 229 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu); 230 231 if (!ht->selfparking) 232 kthread_unpark(tsk); 233 } 234 235 int smpboot_unpark_threads(unsigned int cpu) 236 { 237 struct smp_hotplug_thread *cur; 238 239 mutex_lock(&smpboot_threads_lock); 240 list_for_each_entry(cur, &hotplug_threads, list) 241 if (cpumask_test_cpu(cpu, cur->cpumask)) 242 smpboot_unpark_thread(cur, cpu); 243 mutex_unlock(&smpboot_threads_lock); 244 return 0; 245 } 246 247 static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu) 248 { 249 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu); 250 251 if (tsk && !ht->selfparking) 252 kthread_park(tsk); 253 } 254 255 int smpboot_park_threads(unsigned int cpu) 256 { 257 struct smp_hotplug_thread *cur; 258 259 mutex_lock(&smpboot_threads_lock); 260 list_for_each_entry_reverse(cur, &hotplug_threads, list) 261 smpboot_park_thread(cur, cpu); 262 mutex_unlock(&smpboot_threads_lock); 263 return 0; 264 } 265 266 static void smpboot_destroy_threads(struct smp_hotplug_thread *ht) 267 { 268 unsigned int cpu; 269 270 /* We need to destroy also the parked threads of offline cpus */ 271 for_each_possible_cpu(cpu) { 272 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu); 273 274 if (tsk) { 275 kthread_stop(tsk); 276 put_task_struct(tsk); 277 *per_cpu_ptr(ht->store, cpu) = NULL; 278 } 279 } 280 } 281 282 /** 283 * smpboot_register_percpu_thread_cpumask - Register a per_cpu thread related 284 * to hotplug 285 * @plug_thread: Hotplug thread descriptor 286 * @cpumask: The cpumask where threads run 287 * 288 * Creates and starts the threads on all online cpus. 289 */ 290 int smpboot_register_percpu_thread_cpumask(struct smp_hotplug_thread *plug_thread, 291 const struct cpumask *cpumask) 292 { 293 unsigned int cpu; 294 int ret = 0; 295 296 if (!alloc_cpumask_var(&plug_thread->cpumask, GFP_KERNEL)) 297 return -ENOMEM; 298 cpumask_copy(plug_thread->cpumask, cpumask); 299 300 get_online_cpus(); 301 mutex_lock(&smpboot_threads_lock); 302 for_each_online_cpu(cpu) { 303 ret = __smpboot_create_thread(plug_thread, cpu); 304 if (ret) { 305 smpboot_destroy_threads(plug_thread); 306 free_cpumask_var(plug_thread->cpumask); 307 goto out; 308 } 309 if (cpumask_test_cpu(cpu, cpumask)) 310 smpboot_unpark_thread(plug_thread, cpu); 311 } 312 list_add(&plug_thread->list, &hotplug_threads); 313 out: 314 mutex_unlock(&smpboot_threads_lock); 315 put_online_cpus(); 316 return ret; 317 } 318 EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread_cpumask); 319 320 /** 321 * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug 322 * @plug_thread: Hotplug thread descriptor 323 * 324 * Stops all threads on all possible cpus. 325 */ 326 void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread) 327 { 328 get_online_cpus(); 329 mutex_lock(&smpboot_threads_lock); 330 list_del(&plug_thread->list); 331 smpboot_destroy_threads(plug_thread); 332 mutex_unlock(&smpboot_threads_lock); 333 put_online_cpus(); 334 free_cpumask_var(plug_thread->cpumask); 335 } 336 EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread); 337 338 /** 339 * smpboot_update_cpumask_percpu_thread - Adjust which per_cpu hotplug threads stay parked 340 * @plug_thread: Hotplug thread descriptor 341 * @new: Revised mask to use 342 * 343 * The cpumask field in the smp_hotplug_thread must not be updated directly 344 * by the client, but only by calling this function. 345 * This function can only be called on a registered smp_hotplug_thread. 346 */ 347 void smpboot_update_cpumask_percpu_thread(struct smp_hotplug_thread *plug_thread, 348 const struct cpumask *new) 349 { 350 struct cpumask *old = plug_thread->cpumask; 351 static struct cpumask tmp; 352 unsigned int cpu; 353 354 lockdep_assert_cpus_held(); 355 mutex_lock(&smpboot_threads_lock); 356 357 /* Park threads that were exclusively enabled on the old mask. */ 358 cpumask_andnot(&tmp, old, new); 359 for_each_cpu_and(cpu, &tmp, cpu_online_mask) 360 smpboot_park_thread(plug_thread, cpu); 361 362 /* Unpark threads that are exclusively enabled on the new mask. */ 363 cpumask_andnot(&tmp, new, old); 364 for_each_cpu_and(cpu, &tmp, cpu_online_mask) 365 smpboot_unpark_thread(plug_thread, cpu); 366 367 cpumask_copy(old, new); 368 369 mutex_unlock(&smpboot_threads_lock); 370 } 371 372 static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD); 373 374 /* 375 * Called to poll specified CPU's state, for example, when waiting for 376 * a CPU to come online. 377 */ 378 int cpu_report_state(int cpu) 379 { 380 return atomic_read(&per_cpu(cpu_hotplug_state, cpu)); 381 } 382 383 /* 384 * If CPU has died properly, set its state to CPU_UP_PREPARE and 385 * return success. Otherwise, return -EBUSY if the CPU died after 386 * cpu_wait_death() timed out. And yet otherwise again, return -EAGAIN 387 * if cpu_wait_death() timed out and the CPU still hasn't gotten around 388 * to dying. In the latter two cases, the CPU might not be set up 389 * properly, but it is up to the arch-specific code to decide. 390 * Finally, -EIO indicates an unanticipated problem. 391 * 392 * Note that it is permissible to omit this call entirely, as is 393 * done in architectures that do no CPU-hotplug error checking. 394 */ 395 int cpu_check_up_prepare(int cpu) 396 { 397 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) { 398 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE); 399 return 0; 400 } 401 402 switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) { 403 404 case CPU_POST_DEAD: 405 406 /* The CPU died properly, so just start it up again. */ 407 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE); 408 return 0; 409 410 case CPU_DEAD_FROZEN: 411 412 /* 413 * Timeout during CPU death, so let caller know. 414 * The outgoing CPU completed its processing, but after 415 * cpu_wait_death() timed out and reported the error. The 416 * caller is free to proceed, in which case the state 417 * will be reset properly by cpu_set_state_online(). 418 * Proceeding despite this -EBUSY return makes sense 419 * for systems where the outgoing CPUs take themselves 420 * offline, with no post-death manipulation required from 421 * a surviving CPU. 422 */ 423 return -EBUSY; 424 425 case CPU_BROKEN: 426 427 /* 428 * The most likely reason we got here is that there was 429 * a timeout during CPU death, and the outgoing CPU never 430 * did complete its processing. This could happen on 431 * a virtualized system if the outgoing VCPU gets preempted 432 * for more than five seconds, and the user attempts to 433 * immediately online that same CPU. Trying again later 434 * might return -EBUSY above, hence -EAGAIN. 435 */ 436 return -EAGAIN; 437 438 default: 439 440 /* Should not happen. Famous last words. */ 441 return -EIO; 442 } 443 } 444 445 /* 446 * Mark the specified CPU online. 447 * 448 * Note that it is permissible to omit this call entirely, as is 449 * done in architectures that do no CPU-hotplug error checking. 450 */ 451 void cpu_set_state_online(int cpu) 452 { 453 (void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE); 454 } 455 456 #ifdef CONFIG_HOTPLUG_CPU 457 458 /* 459 * Wait for the specified CPU to exit the idle loop and die. 460 */ 461 bool cpu_wait_death(unsigned int cpu, int seconds) 462 { 463 int jf_left = seconds * HZ; 464 int oldstate; 465 bool ret = true; 466 int sleep_jf = 1; 467 468 might_sleep(); 469 470 /* The outgoing CPU will normally get done quite quickly. */ 471 if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD) 472 goto update_state; 473 udelay(5); 474 475 /* But if the outgoing CPU dawdles, wait increasingly long times. */ 476 while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) { 477 schedule_timeout_uninterruptible(sleep_jf); 478 jf_left -= sleep_jf; 479 if (jf_left <= 0) 480 break; 481 sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10); 482 } 483 update_state: 484 oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu)); 485 if (oldstate == CPU_DEAD) { 486 /* Outgoing CPU died normally, update state. */ 487 smp_mb(); /* atomic_read() before update. */ 488 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD); 489 } else { 490 /* Outgoing CPU still hasn't died, set state accordingly. */ 491 if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu), 492 oldstate, CPU_BROKEN) != oldstate) 493 goto update_state; 494 ret = false; 495 } 496 return ret; 497 } 498 499 /* 500 * Called by the outgoing CPU to report its successful death. Return 501 * false if this report follows the surviving CPU's timing out. 502 * 503 * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU 504 * timed out. This approach allows architectures to omit calls to 505 * cpu_check_up_prepare() and cpu_set_state_online() without defeating 506 * the next cpu_wait_death()'s polling loop. 507 */ 508 bool cpu_report_death(void) 509 { 510 int oldstate; 511 int newstate; 512 int cpu = smp_processor_id(); 513 514 do { 515 oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu)); 516 if (oldstate != CPU_BROKEN) 517 newstate = CPU_DEAD; 518 else 519 newstate = CPU_DEAD_FROZEN; 520 } while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu), 521 oldstate, newstate) != oldstate); 522 return newstate == CPU_DEAD; 523 } 524 525 #endif /* #ifdef CONFIG_HOTPLUG_CPU */ 526