xref: /linux/kernel/smpboot.c (revision 80d443e8876602be2c130f79c4de81e12e2a700d)
1 /*
2  * Common SMP CPU bringup/teardown functions
3  */
4 #include <linux/cpu.h>
5 #include <linux/err.h>
6 #include <linux/smp.h>
7 #include <linux/delay.h>
8 #include <linux/init.h>
9 #include <linux/list.h>
10 #include <linux/slab.h>
11 #include <linux/sched.h>
12 #include <linux/export.h>
13 #include <linux/percpu.h>
14 #include <linux/kthread.h>
15 #include <linux/smpboot.h>
16 
17 #include "smpboot.h"
18 
19 #ifdef CONFIG_SMP
20 
21 #ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
22 /*
23  * For the hotplug case we keep the task structs around and reuse
24  * them.
25  */
26 static DEFINE_PER_CPU(struct task_struct *, idle_threads);
27 
28 struct task_struct *idle_thread_get(unsigned int cpu)
29 {
30 	struct task_struct *tsk = per_cpu(idle_threads, cpu);
31 
32 	if (!tsk)
33 		return ERR_PTR(-ENOMEM);
34 	init_idle(tsk, cpu);
35 	return tsk;
36 }
37 
38 void __init idle_thread_set_boot_cpu(void)
39 {
40 	per_cpu(idle_threads, smp_processor_id()) = current;
41 }
42 
43 /**
44  * idle_init - Initialize the idle thread for a cpu
45  * @cpu:	The cpu for which the idle thread should be initialized
46  *
47  * Creates the thread if it does not exist.
48  */
49 static inline void idle_init(unsigned int cpu)
50 {
51 	struct task_struct *tsk = per_cpu(idle_threads, cpu);
52 
53 	if (!tsk) {
54 		tsk = fork_idle(cpu);
55 		if (IS_ERR(tsk))
56 			pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
57 		else
58 			per_cpu(idle_threads, cpu) = tsk;
59 	}
60 }
61 
62 /**
63  * idle_threads_init - Initialize idle threads for all cpus
64  */
65 void __init idle_threads_init(void)
66 {
67 	unsigned int cpu, boot_cpu;
68 
69 	boot_cpu = smp_processor_id();
70 
71 	for_each_possible_cpu(cpu) {
72 		if (cpu != boot_cpu)
73 			idle_init(cpu);
74 	}
75 }
76 #endif
77 
78 #endif /* #ifdef CONFIG_SMP */
79 
80 static LIST_HEAD(hotplug_threads);
81 static DEFINE_MUTEX(smpboot_threads_lock);
82 
83 struct smpboot_thread_data {
84 	unsigned int			cpu;
85 	unsigned int			status;
86 	struct smp_hotplug_thread	*ht;
87 };
88 
89 enum {
90 	HP_THREAD_NONE = 0,
91 	HP_THREAD_ACTIVE,
92 	HP_THREAD_PARKED,
93 };
94 
95 /**
96  * smpboot_thread_fn - percpu hotplug thread loop function
97  * @data:	thread data pointer
98  *
99  * Checks for thread stop and park conditions. Calls the necessary
100  * setup, cleanup, park and unpark functions for the registered
101  * thread.
102  *
103  * Returns 1 when the thread should exit, 0 otherwise.
104  */
105 static int smpboot_thread_fn(void *data)
106 {
107 	struct smpboot_thread_data *td = data;
108 	struct smp_hotplug_thread *ht = td->ht;
109 
110 	while (1) {
111 		set_current_state(TASK_INTERRUPTIBLE);
112 		preempt_disable();
113 		if (kthread_should_stop()) {
114 			__set_current_state(TASK_RUNNING);
115 			preempt_enable();
116 			/* cleanup must mirror setup */
117 			if (ht->cleanup && td->status != HP_THREAD_NONE)
118 				ht->cleanup(td->cpu, cpu_online(td->cpu));
119 			kfree(td);
120 			return 0;
121 		}
122 
123 		if (kthread_should_park()) {
124 			__set_current_state(TASK_RUNNING);
125 			preempt_enable();
126 			if (ht->park && td->status == HP_THREAD_ACTIVE) {
127 				BUG_ON(td->cpu != smp_processor_id());
128 				ht->park(td->cpu);
129 				td->status = HP_THREAD_PARKED;
130 			}
131 			kthread_parkme();
132 			/* We might have been woken for stop */
133 			continue;
134 		}
135 
136 		BUG_ON(td->cpu != smp_processor_id());
137 
138 		/* Check for state change setup */
139 		switch (td->status) {
140 		case HP_THREAD_NONE:
141 			__set_current_state(TASK_RUNNING);
142 			preempt_enable();
143 			if (ht->setup)
144 				ht->setup(td->cpu);
145 			td->status = HP_THREAD_ACTIVE;
146 			continue;
147 
148 		case HP_THREAD_PARKED:
149 			__set_current_state(TASK_RUNNING);
150 			preempt_enable();
151 			if (ht->unpark)
152 				ht->unpark(td->cpu);
153 			td->status = HP_THREAD_ACTIVE;
154 			continue;
155 		}
156 
157 		if (!ht->thread_should_run(td->cpu)) {
158 			preempt_enable_no_resched();
159 			schedule();
160 		} else {
161 			__set_current_state(TASK_RUNNING);
162 			preempt_enable();
163 			ht->thread_fn(td->cpu);
164 		}
165 	}
166 }
167 
168 static int
169 __smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
170 {
171 	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
172 	struct smpboot_thread_data *td;
173 
174 	if (tsk)
175 		return 0;
176 
177 	td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
178 	if (!td)
179 		return -ENOMEM;
180 	td->cpu = cpu;
181 	td->ht = ht;
182 
183 	tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
184 				    ht->thread_comm);
185 	if (IS_ERR(tsk)) {
186 		kfree(td);
187 		return PTR_ERR(tsk);
188 	}
189 	/*
190 	 * Park the thread so that it could start right on the CPU
191 	 * when it is available.
192 	 */
193 	kthread_park(tsk);
194 	get_task_struct(tsk);
195 	*per_cpu_ptr(ht->store, cpu) = tsk;
196 	if (ht->create) {
197 		/*
198 		 * Make sure that the task has actually scheduled out
199 		 * into park position, before calling the create
200 		 * callback. At least the migration thread callback
201 		 * requires that the task is off the runqueue.
202 		 */
203 		if (!wait_task_inactive(tsk, TASK_PARKED))
204 			WARN_ON(1);
205 		else
206 			ht->create(cpu);
207 	}
208 	return 0;
209 }
210 
211 int smpboot_create_threads(unsigned int cpu)
212 {
213 	struct smp_hotplug_thread *cur;
214 	int ret = 0;
215 
216 	mutex_lock(&smpboot_threads_lock);
217 	list_for_each_entry(cur, &hotplug_threads, list) {
218 		ret = __smpboot_create_thread(cur, cpu);
219 		if (ret)
220 			break;
221 	}
222 	mutex_unlock(&smpboot_threads_lock);
223 	return ret;
224 }
225 
226 static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
227 {
228 	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
229 
230 	if (!ht->selfparking)
231 		kthread_unpark(tsk);
232 }
233 
234 int smpboot_unpark_threads(unsigned int cpu)
235 {
236 	struct smp_hotplug_thread *cur;
237 
238 	mutex_lock(&smpboot_threads_lock);
239 	list_for_each_entry(cur, &hotplug_threads, list)
240 		if (cpumask_test_cpu(cpu, cur->cpumask))
241 			smpboot_unpark_thread(cur, cpu);
242 	mutex_unlock(&smpboot_threads_lock);
243 	return 0;
244 }
245 
246 static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
247 {
248 	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
249 
250 	if (tsk && !ht->selfparking)
251 		kthread_park(tsk);
252 }
253 
254 int smpboot_park_threads(unsigned int cpu)
255 {
256 	struct smp_hotplug_thread *cur;
257 
258 	mutex_lock(&smpboot_threads_lock);
259 	list_for_each_entry_reverse(cur, &hotplug_threads, list)
260 		smpboot_park_thread(cur, cpu);
261 	mutex_unlock(&smpboot_threads_lock);
262 	return 0;
263 }
264 
265 static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
266 {
267 	unsigned int cpu;
268 
269 	/* We need to destroy also the parked threads of offline cpus */
270 	for_each_possible_cpu(cpu) {
271 		struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
272 
273 		if (tsk) {
274 			kthread_stop(tsk);
275 			put_task_struct(tsk);
276 			*per_cpu_ptr(ht->store, cpu) = NULL;
277 		}
278 	}
279 }
280 
281 /**
282  * smpboot_register_percpu_thread_cpumask - Register a per_cpu thread related
283  * 					    to hotplug
284  * @plug_thread:	Hotplug thread descriptor
285  * @cpumask:		The cpumask where threads run
286  *
287  * Creates and starts the threads on all online cpus.
288  */
289 int smpboot_register_percpu_thread_cpumask(struct smp_hotplug_thread *plug_thread,
290 					   const struct cpumask *cpumask)
291 {
292 	unsigned int cpu;
293 	int ret = 0;
294 
295 	if (!alloc_cpumask_var(&plug_thread->cpumask, GFP_KERNEL))
296 		return -ENOMEM;
297 	cpumask_copy(plug_thread->cpumask, cpumask);
298 
299 	get_online_cpus();
300 	mutex_lock(&smpboot_threads_lock);
301 	for_each_online_cpu(cpu) {
302 		ret = __smpboot_create_thread(plug_thread, cpu);
303 		if (ret) {
304 			smpboot_destroy_threads(plug_thread);
305 			free_cpumask_var(plug_thread->cpumask);
306 			goto out;
307 		}
308 		if (cpumask_test_cpu(cpu, cpumask))
309 			smpboot_unpark_thread(plug_thread, cpu);
310 	}
311 	list_add(&plug_thread->list, &hotplug_threads);
312 out:
313 	mutex_unlock(&smpboot_threads_lock);
314 	put_online_cpus();
315 	return ret;
316 }
317 EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread_cpumask);
318 
319 /**
320  * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
321  * @plug_thread:	Hotplug thread descriptor
322  *
323  * Stops all threads on all possible cpus.
324  */
325 void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
326 {
327 	get_online_cpus();
328 	mutex_lock(&smpboot_threads_lock);
329 	list_del(&plug_thread->list);
330 	smpboot_destroy_threads(plug_thread);
331 	mutex_unlock(&smpboot_threads_lock);
332 	put_online_cpus();
333 	free_cpumask_var(plug_thread->cpumask);
334 }
335 EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
336 
337 /**
338  * smpboot_update_cpumask_percpu_thread - Adjust which per_cpu hotplug threads stay parked
339  * @plug_thread:	Hotplug thread descriptor
340  * @new:		Revised mask to use
341  *
342  * The cpumask field in the smp_hotplug_thread must not be updated directly
343  * by the client, but only by calling this function.
344  * This function can only be called on a registered smp_hotplug_thread.
345  */
346 int smpboot_update_cpumask_percpu_thread(struct smp_hotplug_thread *plug_thread,
347 					 const struct cpumask *new)
348 {
349 	struct cpumask *old = plug_thread->cpumask;
350 	cpumask_var_t tmp;
351 	unsigned int cpu;
352 
353 	if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
354 		return -ENOMEM;
355 
356 	get_online_cpus();
357 	mutex_lock(&smpboot_threads_lock);
358 
359 	/* Park threads that were exclusively enabled on the old mask. */
360 	cpumask_andnot(tmp, old, new);
361 	for_each_cpu_and(cpu, tmp, cpu_online_mask)
362 		smpboot_park_thread(plug_thread, cpu);
363 
364 	/* Unpark threads that are exclusively enabled on the new mask. */
365 	cpumask_andnot(tmp, new, old);
366 	for_each_cpu_and(cpu, tmp, cpu_online_mask)
367 		smpboot_unpark_thread(plug_thread, cpu);
368 
369 	cpumask_copy(old, new);
370 
371 	mutex_unlock(&smpboot_threads_lock);
372 	put_online_cpus();
373 
374 	free_cpumask_var(tmp);
375 
376 	return 0;
377 }
378 EXPORT_SYMBOL_GPL(smpboot_update_cpumask_percpu_thread);
379 
380 static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD);
381 
382 /*
383  * Called to poll specified CPU's state, for example, when waiting for
384  * a CPU to come online.
385  */
386 int cpu_report_state(int cpu)
387 {
388 	return atomic_read(&per_cpu(cpu_hotplug_state, cpu));
389 }
390 
391 /*
392  * If CPU has died properly, set its state to CPU_UP_PREPARE and
393  * return success.  Otherwise, return -EBUSY if the CPU died after
394  * cpu_wait_death() timed out.  And yet otherwise again, return -EAGAIN
395  * if cpu_wait_death() timed out and the CPU still hasn't gotten around
396  * to dying.  In the latter two cases, the CPU might not be set up
397  * properly, but it is up to the arch-specific code to decide.
398  * Finally, -EIO indicates an unanticipated problem.
399  *
400  * Note that it is permissible to omit this call entirely, as is
401  * done in architectures that do no CPU-hotplug error checking.
402  */
403 int cpu_check_up_prepare(int cpu)
404 {
405 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
406 		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
407 		return 0;
408 	}
409 
410 	switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) {
411 
412 	case CPU_POST_DEAD:
413 
414 		/* The CPU died properly, so just start it up again. */
415 		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
416 		return 0;
417 
418 	case CPU_DEAD_FROZEN:
419 
420 		/*
421 		 * Timeout during CPU death, so let caller know.
422 		 * The outgoing CPU completed its processing, but after
423 		 * cpu_wait_death() timed out and reported the error. The
424 		 * caller is free to proceed, in which case the state
425 		 * will be reset properly by cpu_set_state_online().
426 		 * Proceeding despite this -EBUSY return makes sense
427 		 * for systems where the outgoing CPUs take themselves
428 		 * offline, with no post-death manipulation required from
429 		 * a surviving CPU.
430 		 */
431 		return -EBUSY;
432 
433 	case CPU_BROKEN:
434 
435 		/*
436 		 * The most likely reason we got here is that there was
437 		 * a timeout during CPU death, and the outgoing CPU never
438 		 * did complete its processing.  This could happen on
439 		 * a virtualized system if the outgoing VCPU gets preempted
440 		 * for more than five seconds, and the user attempts to
441 		 * immediately online that same CPU.  Trying again later
442 		 * might return -EBUSY above, hence -EAGAIN.
443 		 */
444 		return -EAGAIN;
445 
446 	default:
447 
448 		/* Should not happen.  Famous last words. */
449 		return -EIO;
450 	}
451 }
452 
453 /*
454  * Mark the specified CPU online.
455  *
456  * Note that it is permissible to omit this call entirely, as is
457  * done in architectures that do no CPU-hotplug error checking.
458  */
459 void cpu_set_state_online(int cpu)
460 {
461 	(void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE);
462 }
463 
464 #ifdef CONFIG_HOTPLUG_CPU
465 
466 /*
467  * Wait for the specified CPU to exit the idle loop and die.
468  */
469 bool cpu_wait_death(unsigned int cpu, int seconds)
470 {
471 	int jf_left = seconds * HZ;
472 	int oldstate;
473 	bool ret = true;
474 	int sleep_jf = 1;
475 
476 	might_sleep();
477 
478 	/* The outgoing CPU will normally get done quite quickly. */
479 	if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD)
480 		goto update_state;
481 	udelay(5);
482 
483 	/* But if the outgoing CPU dawdles, wait increasingly long times. */
484 	while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) {
485 		schedule_timeout_uninterruptible(sleep_jf);
486 		jf_left -= sleep_jf;
487 		if (jf_left <= 0)
488 			break;
489 		sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10);
490 	}
491 update_state:
492 	oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
493 	if (oldstate == CPU_DEAD) {
494 		/* Outgoing CPU died normally, update state. */
495 		smp_mb(); /* atomic_read() before update. */
496 		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD);
497 	} else {
498 		/* Outgoing CPU still hasn't died, set state accordingly. */
499 		if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
500 				   oldstate, CPU_BROKEN) != oldstate)
501 			goto update_state;
502 		ret = false;
503 	}
504 	return ret;
505 }
506 
507 /*
508  * Called by the outgoing CPU to report its successful death.  Return
509  * false if this report follows the surviving CPU's timing out.
510  *
511  * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU
512  * timed out.  This approach allows architectures to omit calls to
513  * cpu_check_up_prepare() and cpu_set_state_online() without defeating
514  * the next cpu_wait_death()'s polling loop.
515  */
516 bool cpu_report_death(void)
517 {
518 	int oldstate;
519 	int newstate;
520 	int cpu = smp_processor_id();
521 
522 	do {
523 		oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
524 		if (oldstate != CPU_BROKEN)
525 			newstate = CPU_DEAD;
526 		else
527 			newstate = CPU_DEAD_FROZEN;
528 	} while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
529 				oldstate, newstate) != oldstate);
530 	return newstate == CPU_DEAD;
531 }
532 
533 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
534