xref: /linux/kernel/smpboot.c (revision 6c363eafc4d637ac4bd83d4a7dd06dd3cfbe7c5f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Common SMP CPU bringup/teardown functions
4  */
5 #include <linux/cpu.h>
6 #include <linux/err.h>
7 #include <linux/smp.h>
8 #include <linux/delay.h>
9 #include <linux/init.h>
10 #include <linux/list.h>
11 #include <linux/slab.h>
12 #include <linux/sched.h>
13 #include <linux/sched/task.h>
14 #include <linux/export.h>
15 #include <linux/percpu.h>
16 #include <linux/kthread.h>
17 #include <linux/smpboot.h>
18 
19 #include "smpboot.h"
20 
21 #ifdef CONFIG_SMP
22 
23 #ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
24 /*
25  * For the hotplug case we keep the task structs around and reuse
26  * them.
27  */
28 static DEFINE_PER_CPU(struct task_struct *, idle_threads);
29 
30 struct task_struct *idle_thread_get(unsigned int cpu)
31 {
32 	struct task_struct *tsk = per_cpu(idle_threads, cpu);
33 
34 	if (!tsk)
35 		return ERR_PTR(-ENOMEM);
36 	init_idle(tsk, cpu);
37 	return tsk;
38 }
39 
40 void __init idle_thread_set_boot_cpu(void)
41 {
42 	per_cpu(idle_threads, smp_processor_id()) = current;
43 }
44 
45 /**
46  * idle_init - Initialize the idle thread for a cpu
47  * @cpu:	The cpu for which the idle thread should be initialized
48  *
49  * Creates the thread if it does not exist.
50  */
51 static inline void idle_init(unsigned int cpu)
52 {
53 	struct task_struct *tsk = per_cpu(idle_threads, cpu);
54 
55 	if (!tsk) {
56 		tsk = fork_idle(cpu);
57 		if (IS_ERR(tsk))
58 			pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
59 		else
60 			per_cpu(idle_threads, cpu) = tsk;
61 	}
62 }
63 
64 /**
65  * idle_threads_init - Initialize idle threads for all cpus
66  */
67 void __init idle_threads_init(void)
68 {
69 	unsigned int cpu, boot_cpu;
70 
71 	boot_cpu = smp_processor_id();
72 
73 	for_each_possible_cpu(cpu) {
74 		if (cpu != boot_cpu)
75 			idle_init(cpu);
76 	}
77 }
78 #endif
79 
80 #endif /* #ifdef CONFIG_SMP */
81 
82 static LIST_HEAD(hotplug_threads);
83 static DEFINE_MUTEX(smpboot_threads_lock);
84 
85 struct smpboot_thread_data {
86 	unsigned int			cpu;
87 	unsigned int			status;
88 	struct smp_hotplug_thread	*ht;
89 };
90 
91 enum {
92 	HP_THREAD_NONE = 0,
93 	HP_THREAD_ACTIVE,
94 	HP_THREAD_PARKED,
95 };
96 
97 /**
98  * smpboot_thread_fn - percpu hotplug thread loop function
99  * @data:	thread data pointer
100  *
101  * Checks for thread stop and park conditions. Calls the necessary
102  * setup, cleanup, park and unpark functions for the registered
103  * thread.
104  *
105  * Returns 1 when the thread should exit, 0 otherwise.
106  */
107 static int smpboot_thread_fn(void *data)
108 {
109 	struct smpboot_thread_data *td = data;
110 	struct smp_hotplug_thread *ht = td->ht;
111 
112 	while (1) {
113 		set_current_state(TASK_INTERRUPTIBLE);
114 		preempt_disable();
115 		if (kthread_should_stop()) {
116 			__set_current_state(TASK_RUNNING);
117 			preempt_enable();
118 			/* cleanup must mirror setup */
119 			if (ht->cleanup && td->status != HP_THREAD_NONE)
120 				ht->cleanup(td->cpu, cpu_online(td->cpu));
121 			kfree(td);
122 			return 0;
123 		}
124 
125 		if (kthread_should_park()) {
126 			__set_current_state(TASK_RUNNING);
127 			preempt_enable();
128 			if (ht->park && td->status == HP_THREAD_ACTIVE) {
129 				BUG_ON(td->cpu != smp_processor_id());
130 				ht->park(td->cpu);
131 				td->status = HP_THREAD_PARKED;
132 			}
133 			kthread_parkme();
134 			/* We might have been woken for stop */
135 			continue;
136 		}
137 
138 		BUG_ON(td->cpu != smp_processor_id());
139 
140 		/* Check for state change setup */
141 		switch (td->status) {
142 		case HP_THREAD_NONE:
143 			__set_current_state(TASK_RUNNING);
144 			preempt_enable();
145 			if (ht->setup)
146 				ht->setup(td->cpu);
147 			td->status = HP_THREAD_ACTIVE;
148 			continue;
149 
150 		case HP_THREAD_PARKED:
151 			__set_current_state(TASK_RUNNING);
152 			preempt_enable();
153 			if (ht->unpark)
154 				ht->unpark(td->cpu);
155 			td->status = HP_THREAD_ACTIVE;
156 			continue;
157 		}
158 
159 		if (!ht->thread_should_run(td->cpu)) {
160 			preempt_enable_no_resched();
161 			schedule();
162 		} else {
163 			__set_current_state(TASK_RUNNING);
164 			preempt_enable();
165 			ht->thread_fn(td->cpu);
166 		}
167 	}
168 }
169 
170 static int
171 __smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
172 {
173 	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
174 	struct smpboot_thread_data *td;
175 
176 	if (tsk)
177 		return 0;
178 
179 	td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
180 	if (!td)
181 		return -ENOMEM;
182 	td->cpu = cpu;
183 	td->ht = ht;
184 
185 	tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
186 				    ht->thread_comm);
187 	if (IS_ERR(tsk)) {
188 		kfree(td);
189 		return PTR_ERR(tsk);
190 	}
191 	kthread_set_per_cpu(tsk, cpu);
192 	/*
193 	 * Park the thread so that it could start right on the CPU
194 	 * when it is available.
195 	 */
196 	kthread_park(tsk);
197 	get_task_struct(tsk);
198 	*per_cpu_ptr(ht->store, cpu) = tsk;
199 	if (ht->create) {
200 		/*
201 		 * Make sure that the task has actually scheduled out
202 		 * into park position, before calling the create
203 		 * callback. At least the migration thread callback
204 		 * requires that the task is off the runqueue.
205 		 */
206 		if (!wait_task_inactive(tsk, TASK_PARKED))
207 			WARN_ON(1);
208 		else
209 			ht->create(cpu);
210 	}
211 	return 0;
212 }
213 
214 int smpboot_create_threads(unsigned int cpu)
215 {
216 	struct smp_hotplug_thread *cur;
217 	int ret = 0;
218 
219 	mutex_lock(&smpboot_threads_lock);
220 	list_for_each_entry(cur, &hotplug_threads, list) {
221 		ret = __smpboot_create_thread(cur, cpu);
222 		if (ret)
223 			break;
224 	}
225 	mutex_unlock(&smpboot_threads_lock);
226 	return ret;
227 }
228 
229 static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
230 {
231 	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
232 
233 	if (!ht->selfparking)
234 		kthread_unpark(tsk);
235 }
236 
237 int smpboot_unpark_threads(unsigned int cpu)
238 {
239 	struct smp_hotplug_thread *cur;
240 
241 	mutex_lock(&smpboot_threads_lock);
242 	list_for_each_entry(cur, &hotplug_threads, list)
243 		smpboot_unpark_thread(cur, cpu);
244 	mutex_unlock(&smpboot_threads_lock);
245 	return 0;
246 }
247 
248 static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
249 {
250 	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
251 
252 	if (tsk && !ht->selfparking)
253 		kthread_park(tsk);
254 }
255 
256 int smpboot_park_threads(unsigned int cpu)
257 {
258 	struct smp_hotplug_thread *cur;
259 
260 	mutex_lock(&smpboot_threads_lock);
261 	list_for_each_entry_reverse(cur, &hotplug_threads, list)
262 		smpboot_park_thread(cur, cpu);
263 	mutex_unlock(&smpboot_threads_lock);
264 	return 0;
265 }
266 
267 static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
268 {
269 	unsigned int cpu;
270 
271 	/* We need to destroy also the parked threads of offline cpus */
272 	for_each_possible_cpu(cpu) {
273 		struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
274 
275 		if (tsk) {
276 			kthread_stop(tsk);
277 			put_task_struct(tsk);
278 			*per_cpu_ptr(ht->store, cpu) = NULL;
279 		}
280 	}
281 }
282 
283 /**
284  * smpboot_register_percpu_thread - Register a per_cpu thread related
285  * 					    to hotplug
286  * @plug_thread:	Hotplug thread descriptor
287  *
288  * Creates and starts the threads on all online cpus.
289  */
290 int smpboot_register_percpu_thread(struct smp_hotplug_thread *plug_thread)
291 {
292 	unsigned int cpu;
293 	int ret = 0;
294 
295 	get_online_cpus();
296 	mutex_lock(&smpboot_threads_lock);
297 	for_each_online_cpu(cpu) {
298 		ret = __smpboot_create_thread(plug_thread, cpu);
299 		if (ret) {
300 			smpboot_destroy_threads(plug_thread);
301 			goto out;
302 		}
303 		smpboot_unpark_thread(plug_thread, cpu);
304 	}
305 	list_add(&plug_thread->list, &hotplug_threads);
306 out:
307 	mutex_unlock(&smpboot_threads_lock);
308 	put_online_cpus();
309 	return ret;
310 }
311 EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread);
312 
313 /**
314  * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
315  * @plug_thread:	Hotplug thread descriptor
316  *
317  * Stops all threads on all possible cpus.
318  */
319 void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
320 {
321 	get_online_cpus();
322 	mutex_lock(&smpboot_threads_lock);
323 	list_del(&plug_thread->list);
324 	smpboot_destroy_threads(plug_thread);
325 	mutex_unlock(&smpboot_threads_lock);
326 	put_online_cpus();
327 }
328 EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
329 
330 static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD);
331 
332 /*
333  * Called to poll specified CPU's state, for example, when waiting for
334  * a CPU to come online.
335  */
336 int cpu_report_state(int cpu)
337 {
338 	return atomic_read(&per_cpu(cpu_hotplug_state, cpu));
339 }
340 
341 /*
342  * If CPU has died properly, set its state to CPU_UP_PREPARE and
343  * return success.  Otherwise, return -EBUSY if the CPU died after
344  * cpu_wait_death() timed out.  And yet otherwise again, return -EAGAIN
345  * if cpu_wait_death() timed out and the CPU still hasn't gotten around
346  * to dying.  In the latter two cases, the CPU might not be set up
347  * properly, but it is up to the arch-specific code to decide.
348  * Finally, -EIO indicates an unanticipated problem.
349  *
350  * Note that it is permissible to omit this call entirely, as is
351  * done in architectures that do no CPU-hotplug error checking.
352  */
353 int cpu_check_up_prepare(int cpu)
354 {
355 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
356 		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
357 		return 0;
358 	}
359 
360 	switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) {
361 
362 	case CPU_POST_DEAD:
363 
364 		/* The CPU died properly, so just start it up again. */
365 		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
366 		return 0;
367 
368 	case CPU_DEAD_FROZEN:
369 
370 		/*
371 		 * Timeout during CPU death, so let caller know.
372 		 * The outgoing CPU completed its processing, but after
373 		 * cpu_wait_death() timed out and reported the error. The
374 		 * caller is free to proceed, in which case the state
375 		 * will be reset properly by cpu_set_state_online().
376 		 * Proceeding despite this -EBUSY return makes sense
377 		 * for systems where the outgoing CPUs take themselves
378 		 * offline, with no post-death manipulation required from
379 		 * a surviving CPU.
380 		 */
381 		return -EBUSY;
382 
383 	case CPU_BROKEN:
384 
385 		/*
386 		 * The most likely reason we got here is that there was
387 		 * a timeout during CPU death, and the outgoing CPU never
388 		 * did complete its processing.  This could happen on
389 		 * a virtualized system if the outgoing VCPU gets preempted
390 		 * for more than five seconds, and the user attempts to
391 		 * immediately online that same CPU.  Trying again later
392 		 * might return -EBUSY above, hence -EAGAIN.
393 		 */
394 		return -EAGAIN;
395 
396 	default:
397 
398 		/* Should not happen.  Famous last words. */
399 		return -EIO;
400 	}
401 }
402 
403 /*
404  * Mark the specified CPU online.
405  *
406  * Note that it is permissible to omit this call entirely, as is
407  * done in architectures that do no CPU-hotplug error checking.
408  */
409 void cpu_set_state_online(int cpu)
410 {
411 	(void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE);
412 }
413 
414 #ifdef CONFIG_HOTPLUG_CPU
415 
416 /*
417  * Wait for the specified CPU to exit the idle loop and die.
418  */
419 bool cpu_wait_death(unsigned int cpu, int seconds)
420 {
421 	int jf_left = seconds * HZ;
422 	int oldstate;
423 	bool ret = true;
424 	int sleep_jf = 1;
425 
426 	might_sleep();
427 
428 	/* The outgoing CPU will normally get done quite quickly. */
429 	if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD)
430 		goto update_state;
431 	udelay(5);
432 
433 	/* But if the outgoing CPU dawdles, wait increasingly long times. */
434 	while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) {
435 		schedule_timeout_uninterruptible(sleep_jf);
436 		jf_left -= sleep_jf;
437 		if (jf_left <= 0)
438 			break;
439 		sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10);
440 	}
441 update_state:
442 	oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
443 	if (oldstate == CPU_DEAD) {
444 		/* Outgoing CPU died normally, update state. */
445 		smp_mb(); /* atomic_read() before update. */
446 		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD);
447 	} else {
448 		/* Outgoing CPU still hasn't died, set state accordingly. */
449 		if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
450 				   oldstate, CPU_BROKEN) != oldstate)
451 			goto update_state;
452 		ret = false;
453 	}
454 	return ret;
455 }
456 
457 /*
458  * Called by the outgoing CPU to report its successful death.  Return
459  * false if this report follows the surviving CPU's timing out.
460  *
461  * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU
462  * timed out.  This approach allows architectures to omit calls to
463  * cpu_check_up_prepare() and cpu_set_state_online() without defeating
464  * the next cpu_wait_death()'s polling loop.
465  */
466 bool cpu_report_death(void)
467 {
468 	int oldstate;
469 	int newstate;
470 	int cpu = smp_processor_id();
471 
472 	do {
473 		oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
474 		if (oldstate != CPU_BROKEN)
475 			newstate = CPU_DEAD;
476 		else
477 			newstate = CPU_DEAD_FROZEN;
478 	} while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
479 				oldstate, newstate) != oldstate);
480 	return newstate == CPU_DEAD;
481 }
482 
483 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
484