1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic helpers for smp ipi calls 4 * 5 * (C) Jens Axboe <jens.axboe@oracle.com> 2008 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/irq_work.h> 11 #include <linux/rcupdate.h> 12 #include <linux/rculist.h> 13 #include <linux/kernel.h> 14 #include <linux/export.h> 15 #include <linux/percpu.h> 16 #include <linux/init.h> 17 #include <linux/interrupt.h> 18 #include <linux/gfp.h> 19 #include <linux/smp.h> 20 #include <linux/cpu.h> 21 #include <linux/sched.h> 22 #include <linux/sched/idle.h> 23 #include <linux/hypervisor.h> 24 #include <linux/sched/clock.h> 25 #include <linux/nmi.h> 26 #include <linux/sched/debug.h> 27 #include <linux/jump_label.h> 28 29 #include <trace/events/ipi.h> 30 #define CREATE_TRACE_POINTS 31 #include <trace/events/csd.h> 32 #undef CREATE_TRACE_POINTS 33 34 #include "smpboot.h" 35 #include "sched/smp.h" 36 37 #define CSD_TYPE(_csd) ((_csd)->node.u_flags & CSD_FLAG_TYPE_MASK) 38 39 struct call_function_data { 40 call_single_data_t __percpu *csd; 41 cpumask_var_t cpumask; 42 cpumask_var_t cpumask_ipi; 43 }; 44 45 static DEFINE_PER_CPU_ALIGNED(struct call_function_data, cfd_data); 46 47 static DEFINE_PER_CPU_SHARED_ALIGNED(struct llist_head, call_single_queue); 48 49 static DEFINE_PER_CPU(atomic_t, trigger_backtrace) = ATOMIC_INIT(1); 50 51 static void __flush_smp_call_function_queue(bool warn_cpu_offline); 52 53 int smpcfd_prepare_cpu(unsigned int cpu) 54 { 55 struct call_function_data *cfd = &per_cpu(cfd_data, cpu); 56 57 if (!zalloc_cpumask_var_node(&cfd->cpumask, GFP_KERNEL, 58 cpu_to_node(cpu))) 59 return -ENOMEM; 60 if (!zalloc_cpumask_var_node(&cfd->cpumask_ipi, GFP_KERNEL, 61 cpu_to_node(cpu))) { 62 free_cpumask_var(cfd->cpumask); 63 return -ENOMEM; 64 } 65 cfd->csd = alloc_percpu(call_single_data_t); 66 if (!cfd->csd) { 67 free_cpumask_var(cfd->cpumask); 68 free_cpumask_var(cfd->cpumask_ipi); 69 return -ENOMEM; 70 } 71 72 return 0; 73 } 74 75 int smpcfd_dead_cpu(unsigned int cpu) 76 { 77 struct call_function_data *cfd = &per_cpu(cfd_data, cpu); 78 79 free_cpumask_var(cfd->cpumask); 80 free_cpumask_var(cfd->cpumask_ipi); 81 free_percpu(cfd->csd); 82 return 0; 83 } 84 85 int smpcfd_dying_cpu(unsigned int cpu) 86 { 87 /* 88 * The IPIs for the smp-call-function callbacks queued by other 89 * CPUs might arrive late, either due to hardware latencies or 90 * because this CPU disabled interrupts (inside stop-machine) 91 * before the IPIs were sent. So flush out any pending callbacks 92 * explicitly (without waiting for the IPIs to arrive), to 93 * ensure that the outgoing CPU doesn't go offline with work 94 * still pending. 95 */ 96 __flush_smp_call_function_queue(false); 97 irq_work_run(); 98 return 0; 99 } 100 101 void __init call_function_init(void) 102 { 103 int i; 104 105 for_each_possible_cpu(i) 106 init_llist_head(&per_cpu(call_single_queue, i)); 107 108 smpcfd_prepare_cpu(smp_processor_id()); 109 } 110 111 static __always_inline void 112 send_call_function_single_ipi(int cpu) 113 { 114 if (call_function_single_prep_ipi(cpu)) { 115 trace_ipi_send_cpu(cpu, _RET_IP_, 116 generic_smp_call_function_single_interrupt); 117 arch_send_call_function_single_ipi(cpu); 118 } 119 } 120 121 static __always_inline void 122 send_call_function_ipi_mask(struct cpumask *mask) 123 { 124 trace_ipi_send_cpumask(mask, _RET_IP_, 125 generic_smp_call_function_single_interrupt); 126 arch_send_call_function_ipi_mask(mask); 127 } 128 129 static __always_inline void 130 csd_do_func(smp_call_func_t func, void *info, struct __call_single_data *csd) 131 { 132 trace_csd_function_entry(func, csd); 133 func(info); 134 trace_csd_function_exit(func, csd); 135 } 136 137 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG 138 139 static DEFINE_STATIC_KEY_MAYBE(CONFIG_CSD_LOCK_WAIT_DEBUG_DEFAULT, csdlock_debug_enabled); 140 141 /* 142 * Parse the csdlock_debug= kernel boot parameter. 143 * 144 * If you need to restore the old "ext" value that once provided 145 * additional debugging information, reapply the following commits: 146 * 147 * de7b09ef658d ("locking/csd_lock: Prepare more CSD lock debugging") 148 * a5aabace5fb8 ("locking/csd_lock: Add more data to CSD lock debugging") 149 */ 150 static int __init csdlock_debug(char *str) 151 { 152 int ret; 153 unsigned int val = 0; 154 155 ret = get_option(&str, &val); 156 if (ret) { 157 if (val) 158 static_branch_enable(&csdlock_debug_enabled); 159 else 160 static_branch_disable(&csdlock_debug_enabled); 161 } 162 163 return 1; 164 } 165 __setup("csdlock_debug=", csdlock_debug); 166 167 static DEFINE_PER_CPU(call_single_data_t *, cur_csd); 168 static DEFINE_PER_CPU(smp_call_func_t, cur_csd_func); 169 static DEFINE_PER_CPU(void *, cur_csd_info); 170 171 static ulong csd_lock_timeout = 5000; /* CSD lock timeout in milliseconds. */ 172 module_param(csd_lock_timeout, ulong, 0444); 173 174 static atomic_t csd_bug_count = ATOMIC_INIT(0); 175 176 /* Record current CSD work for current CPU, NULL to erase. */ 177 static void __csd_lock_record(struct __call_single_data *csd) 178 { 179 if (!csd) { 180 smp_mb(); /* NULL cur_csd after unlock. */ 181 __this_cpu_write(cur_csd, NULL); 182 return; 183 } 184 __this_cpu_write(cur_csd_func, csd->func); 185 __this_cpu_write(cur_csd_info, csd->info); 186 smp_wmb(); /* func and info before csd. */ 187 __this_cpu_write(cur_csd, csd); 188 smp_mb(); /* Update cur_csd before function call. */ 189 /* Or before unlock, as the case may be. */ 190 } 191 192 static __always_inline void csd_lock_record(struct __call_single_data *csd) 193 { 194 if (static_branch_unlikely(&csdlock_debug_enabled)) 195 __csd_lock_record(csd); 196 } 197 198 static int csd_lock_wait_getcpu(struct __call_single_data *csd) 199 { 200 unsigned int csd_type; 201 202 csd_type = CSD_TYPE(csd); 203 if (csd_type == CSD_TYPE_ASYNC || csd_type == CSD_TYPE_SYNC) 204 return csd->node.dst; /* Other CSD_TYPE_ values might not have ->dst. */ 205 return -1; 206 } 207 208 /* 209 * Complain if too much time spent waiting. Note that only 210 * the CSD_TYPE_SYNC/ASYNC types provide the destination CPU, 211 * so waiting on other types gets much less information. 212 */ 213 static bool csd_lock_wait_toolong(struct __call_single_data *csd, u64 ts0, u64 *ts1, int *bug_id) 214 { 215 int cpu = -1; 216 int cpux; 217 bool firsttime; 218 u64 ts2, ts_delta; 219 call_single_data_t *cpu_cur_csd; 220 unsigned int flags = READ_ONCE(csd->node.u_flags); 221 unsigned long long csd_lock_timeout_ns = csd_lock_timeout * NSEC_PER_MSEC; 222 223 if (!(flags & CSD_FLAG_LOCK)) { 224 if (!unlikely(*bug_id)) 225 return true; 226 cpu = csd_lock_wait_getcpu(csd); 227 pr_alert("csd: CSD lock (#%d) got unstuck on CPU#%02d, CPU#%02d released the lock.\n", 228 *bug_id, raw_smp_processor_id(), cpu); 229 return true; 230 } 231 232 ts2 = sched_clock(); 233 ts_delta = ts2 - *ts1; 234 if (likely(ts_delta <= csd_lock_timeout_ns || csd_lock_timeout_ns == 0)) 235 return false; 236 237 firsttime = !*bug_id; 238 if (firsttime) 239 *bug_id = atomic_inc_return(&csd_bug_count); 240 cpu = csd_lock_wait_getcpu(csd); 241 if (WARN_ONCE(cpu < 0 || cpu >= nr_cpu_ids, "%s: cpu = %d\n", __func__, cpu)) 242 cpux = 0; 243 else 244 cpux = cpu; 245 cpu_cur_csd = smp_load_acquire(&per_cpu(cur_csd, cpux)); /* Before func and info. */ 246 pr_alert("csd: %s non-responsive CSD lock (#%d) on CPU#%d, waiting %llu ns for CPU#%02d %pS(%ps).\n", 247 firsttime ? "Detected" : "Continued", *bug_id, raw_smp_processor_id(), ts2 - ts0, 248 cpu, csd->func, csd->info); 249 if (cpu_cur_csd && csd != cpu_cur_csd) { 250 pr_alert("\tcsd: CSD lock (#%d) handling prior %pS(%ps) request.\n", 251 *bug_id, READ_ONCE(per_cpu(cur_csd_func, cpux)), 252 READ_ONCE(per_cpu(cur_csd_info, cpux))); 253 } else { 254 pr_alert("\tcsd: CSD lock (#%d) %s.\n", 255 *bug_id, !cpu_cur_csd ? "unresponsive" : "handling this request"); 256 } 257 if (cpu >= 0) { 258 if (atomic_cmpxchg_acquire(&per_cpu(trigger_backtrace, cpu), 1, 0)) 259 dump_cpu_task(cpu); 260 if (!cpu_cur_csd) { 261 pr_alert("csd: Re-sending CSD lock (#%d) IPI from CPU#%02d to CPU#%02d\n", *bug_id, raw_smp_processor_id(), cpu); 262 arch_send_call_function_single_ipi(cpu); 263 } 264 } 265 if (firsttime) 266 dump_stack(); 267 *ts1 = ts2; 268 269 return false; 270 } 271 272 /* 273 * csd_lock/csd_unlock used to serialize access to per-cpu csd resources 274 * 275 * For non-synchronous ipi calls the csd can still be in use by the 276 * previous function call. For multi-cpu calls its even more interesting 277 * as we'll have to ensure no other cpu is observing our csd. 278 */ 279 static void __csd_lock_wait(struct __call_single_data *csd) 280 { 281 int bug_id = 0; 282 u64 ts0, ts1; 283 284 ts1 = ts0 = sched_clock(); 285 for (;;) { 286 if (csd_lock_wait_toolong(csd, ts0, &ts1, &bug_id)) 287 break; 288 cpu_relax(); 289 } 290 smp_acquire__after_ctrl_dep(); 291 } 292 293 static __always_inline void csd_lock_wait(struct __call_single_data *csd) 294 { 295 if (static_branch_unlikely(&csdlock_debug_enabled)) { 296 __csd_lock_wait(csd); 297 return; 298 } 299 300 smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK)); 301 } 302 #else 303 static void csd_lock_record(struct __call_single_data *csd) 304 { 305 } 306 307 static __always_inline void csd_lock_wait(struct __call_single_data *csd) 308 { 309 smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK)); 310 } 311 #endif 312 313 static __always_inline void csd_lock(struct __call_single_data *csd) 314 { 315 csd_lock_wait(csd); 316 csd->node.u_flags |= CSD_FLAG_LOCK; 317 318 /* 319 * prevent CPU from reordering the above assignment 320 * to ->flags with any subsequent assignments to other 321 * fields of the specified call_single_data_t structure: 322 */ 323 smp_wmb(); 324 } 325 326 static __always_inline void csd_unlock(struct __call_single_data *csd) 327 { 328 WARN_ON(!(csd->node.u_flags & CSD_FLAG_LOCK)); 329 330 /* 331 * ensure we're all done before releasing data: 332 */ 333 smp_store_release(&csd->node.u_flags, 0); 334 } 335 336 static DEFINE_PER_CPU_SHARED_ALIGNED(call_single_data_t, csd_data); 337 338 void __smp_call_single_queue(int cpu, struct llist_node *node) 339 { 340 /* 341 * We have to check the type of the CSD before queueing it, because 342 * once queued it can have its flags cleared by 343 * flush_smp_call_function_queue() 344 * even if we haven't sent the smp_call IPI yet (e.g. the stopper 345 * executes migration_cpu_stop() on the remote CPU). 346 */ 347 if (trace_csd_queue_cpu_enabled()) { 348 call_single_data_t *csd; 349 smp_call_func_t func; 350 351 csd = container_of(node, call_single_data_t, node.llist); 352 func = CSD_TYPE(csd) == CSD_TYPE_TTWU ? 353 sched_ttwu_pending : csd->func; 354 355 trace_csd_queue_cpu(cpu, _RET_IP_, func, csd); 356 } 357 358 /* 359 * The list addition should be visible to the target CPU when it pops 360 * the head of the list to pull the entry off it in the IPI handler 361 * because of normal cache coherency rules implied by the underlying 362 * llist ops. 363 * 364 * If IPIs can go out of order to the cache coherency protocol 365 * in an architecture, sufficient synchronisation should be added 366 * to arch code to make it appear to obey cache coherency WRT 367 * locking and barrier primitives. Generic code isn't really 368 * equipped to do the right thing... 369 */ 370 if (llist_add(node, &per_cpu(call_single_queue, cpu))) 371 send_call_function_single_ipi(cpu); 372 } 373 374 /* 375 * Insert a previously allocated call_single_data_t element 376 * for execution on the given CPU. data must already have 377 * ->func, ->info, and ->flags set. 378 */ 379 static int generic_exec_single(int cpu, struct __call_single_data *csd) 380 { 381 if (cpu == smp_processor_id()) { 382 smp_call_func_t func = csd->func; 383 void *info = csd->info; 384 unsigned long flags; 385 386 /* 387 * We can unlock early even for the synchronous on-stack case, 388 * since we're doing this from the same CPU.. 389 */ 390 csd_lock_record(csd); 391 csd_unlock(csd); 392 local_irq_save(flags); 393 csd_do_func(func, info, NULL); 394 csd_lock_record(NULL); 395 local_irq_restore(flags); 396 return 0; 397 } 398 399 if ((unsigned)cpu >= nr_cpu_ids || !cpu_online(cpu)) { 400 csd_unlock(csd); 401 return -ENXIO; 402 } 403 404 __smp_call_single_queue(cpu, &csd->node.llist); 405 406 return 0; 407 } 408 409 /** 410 * generic_smp_call_function_single_interrupt - Execute SMP IPI callbacks 411 * 412 * Invoked by arch to handle an IPI for call function single. 413 * Must be called with interrupts disabled. 414 */ 415 void generic_smp_call_function_single_interrupt(void) 416 { 417 __flush_smp_call_function_queue(true); 418 } 419 420 /** 421 * __flush_smp_call_function_queue - Flush pending smp-call-function callbacks 422 * 423 * @warn_cpu_offline: If set to 'true', warn if callbacks were queued on an 424 * offline CPU. Skip this check if set to 'false'. 425 * 426 * Flush any pending smp-call-function callbacks queued on this CPU. This is 427 * invoked by the generic IPI handler, as well as by a CPU about to go offline, 428 * to ensure that all pending IPI callbacks are run before it goes completely 429 * offline. 430 * 431 * Loop through the call_single_queue and run all the queued callbacks. 432 * Must be called with interrupts disabled. 433 */ 434 static void __flush_smp_call_function_queue(bool warn_cpu_offline) 435 { 436 call_single_data_t *csd, *csd_next; 437 struct llist_node *entry, *prev; 438 struct llist_head *head; 439 static bool warned; 440 atomic_t *tbt; 441 442 lockdep_assert_irqs_disabled(); 443 444 /* Allow waiters to send backtrace NMI from here onwards */ 445 tbt = this_cpu_ptr(&trigger_backtrace); 446 atomic_set_release(tbt, 1); 447 448 head = this_cpu_ptr(&call_single_queue); 449 entry = llist_del_all(head); 450 entry = llist_reverse_order(entry); 451 452 /* There shouldn't be any pending callbacks on an offline CPU. */ 453 if (unlikely(warn_cpu_offline && !cpu_online(smp_processor_id()) && 454 !warned && entry != NULL)) { 455 warned = true; 456 WARN(1, "IPI on offline CPU %d\n", smp_processor_id()); 457 458 /* 459 * We don't have to use the _safe() variant here 460 * because we are not invoking the IPI handlers yet. 461 */ 462 llist_for_each_entry(csd, entry, node.llist) { 463 switch (CSD_TYPE(csd)) { 464 case CSD_TYPE_ASYNC: 465 case CSD_TYPE_SYNC: 466 case CSD_TYPE_IRQ_WORK: 467 pr_warn("IPI callback %pS sent to offline CPU\n", 468 csd->func); 469 break; 470 471 case CSD_TYPE_TTWU: 472 pr_warn("IPI task-wakeup sent to offline CPU\n"); 473 break; 474 475 default: 476 pr_warn("IPI callback, unknown type %d, sent to offline CPU\n", 477 CSD_TYPE(csd)); 478 break; 479 } 480 } 481 } 482 483 /* 484 * First; run all SYNC callbacks, people are waiting for us. 485 */ 486 prev = NULL; 487 llist_for_each_entry_safe(csd, csd_next, entry, node.llist) { 488 /* Do we wait until *after* callback? */ 489 if (CSD_TYPE(csd) == CSD_TYPE_SYNC) { 490 smp_call_func_t func = csd->func; 491 void *info = csd->info; 492 493 if (prev) { 494 prev->next = &csd_next->node.llist; 495 } else { 496 entry = &csd_next->node.llist; 497 } 498 499 csd_lock_record(csd); 500 csd_do_func(func, info, csd); 501 csd_unlock(csd); 502 csd_lock_record(NULL); 503 } else { 504 prev = &csd->node.llist; 505 } 506 } 507 508 if (!entry) 509 return; 510 511 /* 512 * Second; run all !SYNC callbacks. 513 */ 514 prev = NULL; 515 llist_for_each_entry_safe(csd, csd_next, entry, node.llist) { 516 int type = CSD_TYPE(csd); 517 518 if (type != CSD_TYPE_TTWU) { 519 if (prev) { 520 prev->next = &csd_next->node.llist; 521 } else { 522 entry = &csd_next->node.llist; 523 } 524 525 if (type == CSD_TYPE_ASYNC) { 526 smp_call_func_t func = csd->func; 527 void *info = csd->info; 528 529 csd_lock_record(csd); 530 csd_unlock(csd); 531 csd_do_func(func, info, csd); 532 csd_lock_record(NULL); 533 } else if (type == CSD_TYPE_IRQ_WORK) { 534 irq_work_single(csd); 535 } 536 537 } else { 538 prev = &csd->node.llist; 539 } 540 } 541 542 /* 543 * Third; only CSD_TYPE_TTWU is left, issue those. 544 */ 545 if (entry) { 546 csd = llist_entry(entry, typeof(*csd), node.llist); 547 csd_do_func(sched_ttwu_pending, entry, csd); 548 } 549 } 550 551 552 /** 553 * flush_smp_call_function_queue - Flush pending smp-call-function callbacks 554 * from task context (idle, migration thread) 555 * 556 * When TIF_POLLING_NRFLAG is supported and a CPU is in idle and has it 557 * set, then remote CPUs can avoid sending IPIs and wake the idle CPU by 558 * setting TIF_NEED_RESCHED. The idle task on the woken up CPU has to 559 * handle queued SMP function calls before scheduling. 560 * 561 * The migration thread has to ensure that an eventually pending wakeup has 562 * been handled before it migrates a task. 563 */ 564 void flush_smp_call_function_queue(void) 565 { 566 unsigned int was_pending; 567 unsigned long flags; 568 569 if (llist_empty(this_cpu_ptr(&call_single_queue))) 570 return; 571 572 local_irq_save(flags); 573 /* Get the already pending soft interrupts for RT enabled kernels */ 574 was_pending = local_softirq_pending(); 575 __flush_smp_call_function_queue(true); 576 if (local_softirq_pending()) 577 do_softirq_post_smp_call_flush(was_pending); 578 579 local_irq_restore(flags); 580 } 581 582 /* 583 * smp_call_function_single - Run a function on a specific CPU 584 * @func: The function to run. This must be fast and non-blocking. 585 * @info: An arbitrary pointer to pass to the function. 586 * @wait: If true, wait until function has completed on other CPUs. 587 * 588 * Returns 0 on success, else a negative status code. 589 */ 590 int smp_call_function_single(int cpu, smp_call_func_t func, void *info, 591 int wait) 592 { 593 call_single_data_t *csd; 594 call_single_data_t csd_stack = { 595 .node = { .u_flags = CSD_FLAG_LOCK | CSD_TYPE_SYNC, }, 596 }; 597 int this_cpu; 598 int err; 599 600 /* 601 * prevent preemption and reschedule on another processor, 602 * as well as CPU removal 603 */ 604 this_cpu = get_cpu(); 605 606 /* 607 * Can deadlock when called with interrupts disabled. 608 * We allow cpu's that are not yet online though, as no one else can 609 * send smp call function interrupt to this cpu and as such deadlocks 610 * can't happen. 611 */ 612 WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled() 613 && !oops_in_progress); 614 615 /* 616 * When @wait we can deadlock when we interrupt between llist_add() and 617 * arch_send_call_function_ipi*(); when !@wait we can deadlock due to 618 * csd_lock() on because the interrupt context uses the same csd 619 * storage. 620 */ 621 WARN_ON_ONCE(!in_task()); 622 623 csd = &csd_stack; 624 if (!wait) { 625 csd = this_cpu_ptr(&csd_data); 626 csd_lock(csd); 627 } 628 629 csd->func = func; 630 csd->info = info; 631 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG 632 csd->node.src = smp_processor_id(); 633 csd->node.dst = cpu; 634 #endif 635 636 err = generic_exec_single(cpu, csd); 637 638 if (wait) 639 csd_lock_wait(csd); 640 641 put_cpu(); 642 643 return err; 644 } 645 EXPORT_SYMBOL(smp_call_function_single); 646 647 /** 648 * smp_call_function_single_async() - Run an asynchronous function on a 649 * specific CPU. 650 * @cpu: The CPU to run on. 651 * @csd: Pre-allocated and setup data structure 652 * 653 * Like smp_call_function_single(), but the call is asynchonous and 654 * can thus be done from contexts with disabled interrupts. 655 * 656 * The caller passes his own pre-allocated data structure 657 * (ie: embedded in an object) and is responsible for synchronizing it 658 * such that the IPIs performed on the @csd are strictly serialized. 659 * 660 * If the function is called with one csd which has not yet been 661 * processed by previous call to smp_call_function_single_async(), the 662 * function will return immediately with -EBUSY showing that the csd 663 * object is still in progress. 664 * 665 * NOTE: Be careful, there is unfortunately no current debugging facility to 666 * validate the correctness of this serialization. 667 * 668 * Return: %0 on success or negative errno value on error 669 */ 670 int smp_call_function_single_async(int cpu, struct __call_single_data *csd) 671 { 672 int err = 0; 673 674 preempt_disable(); 675 676 if (csd->node.u_flags & CSD_FLAG_LOCK) { 677 err = -EBUSY; 678 goto out; 679 } 680 681 csd->node.u_flags = CSD_FLAG_LOCK; 682 smp_wmb(); 683 684 err = generic_exec_single(cpu, csd); 685 686 out: 687 preempt_enable(); 688 689 return err; 690 } 691 EXPORT_SYMBOL_GPL(smp_call_function_single_async); 692 693 /* 694 * smp_call_function_any - Run a function on any of the given cpus 695 * @mask: The mask of cpus it can run on. 696 * @func: The function to run. This must be fast and non-blocking. 697 * @info: An arbitrary pointer to pass to the function. 698 * @wait: If true, wait until function has completed. 699 * 700 * Returns 0 on success, else a negative status code (if no cpus were online). 701 * 702 * Selection preference: 703 * 1) current cpu if in @mask 704 * 2) any cpu of current node if in @mask 705 * 3) any other online cpu in @mask 706 */ 707 int smp_call_function_any(const struct cpumask *mask, 708 smp_call_func_t func, void *info, int wait) 709 { 710 unsigned int cpu; 711 const struct cpumask *nodemask; 712 int ret; 713 714 /* Try for same CPU (cheapest) */ 715 cpu = get_cpu(); 716 if (cpumask_test_cpu(cpu, mask)) 717 goto call; 718 719 /* Try for same node. */ 720 nodemask = cpumask_of_node(cpu_to_node(cpu)); 721 for (cpu = cpumask_first_and(nodemask, mask); cpu < nr_cpu_ids; 722 cpu = cpumask_next_and(cpu, nodemask, mask)) { 723 if (cpu_online(cpu)) 724 goto call; 725 } 726 727 /* Any online will do: smp_call_function_single handles nr_cpu_ids. */ 728 cpu = cpumask_any_and(mask, cpu_online_mask); 729 call: 730 ret = smp_call_function_single(cpu, func, info, wait); 731 put_cpu(); 732 return ret; 733 } 734 EXPORT_SYMBOL_GPL(smp_call_function_any); 735 736 /* 737 * Flags to be used as scf_flags argument of smp_call_function_many_cond(). 738 * 739 * %SCF_WAIT: Wait until function execution is completed 740 * %SCF_RUN_LOCAL: Run also locally if local cpu is set in cpumask 741 */ 742 #define SCF_WAIT (1U << 0) 743 #define SCF_RUN_LOCAL (1U << 1) 744 745 static void smp_call_function_many_cond(const struct cpumask *mask, 746 smp_call_func_t func, void *info, 747 unsigned int scf_flags, 748 smp_cond_func_t cond_func) 749 { 750 int cpu, last_cpu, this_cpu = smp_processor_id(); 751 struct call_function_data *cfd; 752 bool wait = scf_flags & SCF_WAIT; 753 int nr_cpus = 0; 754 bool run_remote = false; 755 bool run_local = false; 756 757 lockdep_assert_preemption_disabled(); 758 759 /* 760 * Can deadlock when called with interrupts disabled. 761 * We allow cpu's that are not yet online though, as no one else can 762 * send smp call function interrupt to this cpu and as such deadlocks 763 * can't happen. 764 */ 765 if (cpu_online(this_cpu) && !oops_in_progress && 766 !early_boot_irqs_disabled) 767 lockdep_assert_irqs_enabled(); 768 769 /* 770 * When @wait we can deadlock when we interrupt between llist_add() and 771 * arch_send_call_function_ipi*(); when !@wait we can deadlock due to 772 * csd_lock() on because the interrupt context uses the same csd 773 * storage. 774 */ 775 WARN_ON_ONCE(!in_task()); 776 777 /* Check if we need local execution. */ 778 if ((scf_flags & SCF_RUN_LOCAL) && cpumask_test_cpu(this_cpu, mask)) 779 run_local = true; 780 781 /* Check if we need remote execution, i.e., any CPU excluding this one. */ 782 cpu = cpumask_first_and(mask, cpu_online_mask); 783 if (cpu == this_cpu) 784 cpu = cpumask_next_and(cpu, mask, cpu_online_mask); 785 if (cpu < nr_cpu_ids) 786 run_remote = true; 787 788 if (run_remote) { 789 cfd = this_cpu_ptr(&cfd_data); 790 cpumask_and(cfd->cpumask, mask, cpu_online_mask); 791 __cpumask_clear_cpu(this_cpu, cfd->cpumask); 792 793 cpumask_clear(cfd->cpumask_ipi); 794 for_each_cpu(cpu, cfd->cpumask) { 795 call_single_data_t *csd = per_cpu_ptr(cfd->csd, cpu); 796 797 if (cond_func && !cond_func(cpu, info)) { 798 __cpumask_clear_cpu(cpu, cfd->cpumask); 799 continue; 800 } 801 802 csd_lock(csd); 803 if (wait) 804 csd->node.u_flags |= CSD_TYPE_SYNC; 805 csd->func = func; 806 csd->info = info; 807 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG 808 csd->node.src = smp_processor_id(); 809 csd->node.dst = cpu; 810 #endif 811 trace_csd_queue_cpu(cpu, _RET_IP_, func, csd); 812 813 if (llist_add(&csd->node.llist, &per_cpu(call_single_queue, cpu))) { 814 __cpumask_set_cpu(cpu, cfd->cpumask_ipi); 815 nr_cpus++; 816 last_cpu = cpu; 817 } 818 } 819 820 /* 821 * Choose the most efficient way to send an IPI. Note that the 822 * number of CPUs might be zero due to concurrent changes to the 823 * provided mask. 824 */ 825 if (nr_cpus == 1) 826 send_call_function_single_ipi(last_cpu); 827 else if (likely(nr_cpus > 1)) 828 send_call_function_ipi_mask(cfd->cpumask_ipi); 829 } 830 831 if (run_local && (!cond_func || cond_func(this_cpu, info))) { 832 unsigned long flags; 833 834 local_irq_save(flags); 835 csd_do_func(func, info, NULL); 836 local_irq_restore(flags); 837 } 838 839 if (run_remote && wait) { 840 for_each_cpu(cpu, cfd->cpumask) { 841 call_single_data_t *csd; 842 843 csd = per_cpu_ptr(cfd->csd, cpu); 844 csd_lock_wait(csd); 845 } 846 } 847 } 848 849 /** 850 * smp_call_function_many(): Run a function on a set of CPUs. 851 * @mask: The set of cpus to run on (only runs on online subset). 852 * @func: The function to run. This must be fast and non-blocking. 853 * @info: An arbitrary pointer to pass to the function. 854 * @wait: Bitmask that controls the operation. If %SCF_WAIT is set, wait 855 * (atomically) until function has completed on other CPUs. If 856 * %SCF_RUN_LOCAL is set, the function will also be run locally 857 * if the local CPU is set in the @cpumask. 858 * 859 * If @wait is true, then returns once @func has returned. 860 * 861 * You must not call this function with disabled interrupts or from a 862 * hardware interrupt handler or from a bottom half handler. Preemption 863 * must be disabled when calling this function. 864 */ 865 void smp_call_function_many(const struct cpumask *mask, 866 smp_call_func_t func, void *info, bool wait) 867 { 868 smp_call_function_many_cond(mask, func, info, wait * SCF_WAIT, NULL); 869 } 870 EXPORT_SYMBOL(smp_call_function_many); 871 872 /** 873 * smp_call_function(): Run a function on all other CPUs. 874 * @func: The function to run. This must be fast and non-blocking. 875 * @info: An arbitrary pointer to pass to the function. 876 * @wait: If true, wait (atomically) until function has completed 877 * on other CPUs. 878 * 879 * Returns 0. 880 * 881 * If @wait is true, then returns once @func has returned; otherwise 882 * it returns just before the target cpu calls @func. 883 * 884 * You must not call this function with disabled interrupts or from a 885 * hardware interrupt handler or from a bottom half handler. 886 */ 887 void smp_call_function(smp_call_func_t func, void *info, int wait) 888 { 889 preempt_disable(); 890 smp_call_function_many(cpu_online_mask, func, info, wait); 891 preempt_enable(); 892 } 893 EXPORT_SYMBOL(smp_call_function); 894 895 /* Setup configured maximum number of CPUs to activate */ 896 unsigned int setup_max_cpus = NR_CPUS; 897 EXPORT_SYMBOL(setup_max_cpus); 898 899 900 /* 901 * Setup routine for controlling SMP activation 902 * 903 * Command-line option of "nosmp" or "maxcpus=0" will disable SMP 904 * activation entirely (the MPS table probe still happens, though). 905 * 906 * Command-line option of "maxcpus=<NUM>", where <NUM> is an integer 907 * greater than 0, limits the maximum number of CPUs activated in 908 * SMP mode to <NUM>. 909 */ 910 911 void __weak __init arch_disable_smp_support(void) { } 912 913 static int __init nosmp(char *str) 914 { 915 setup_max_cpus = 0; 916 arch_disable_smp_support(); 917 918 return 0; 919 } 920 921 early_param("nosmp", nosmp); 922 923 /* this is hard limit */ 924 static int __init nrcpus(char *str) 925 { 926 int nr_cpus; 927 928 if (get_option(&str, &nr_cpus) && nr_cpus > 0 && nr_cpus < nr_cpu_ids) 929 set_nr_cpu_ids(nr_cpus); 930 931 return 0; 932 } 933 934 early_param("nr_cpus", nrcpus); 935 936 static int __init maxcpus(char *str) 937 { 938 get_option(&str, &setup_max_cpus); 939 if (setup_max_cpus == 0) 940 arch_disable_smp_support(); 941 942 return 0; 943 } 944 945 early_param("maxcpus", maxcpus); 946 947 #if (NR_CPUS > 1) && !defined(CONFIG_FORCE_NR_CPUS) 948 /* Setup number of possible processor ids */ 949 unsigned int nr_cpu_ids __read_mostly = NR_CPUS; 950 EXPORT_SYMBOL(nr_cpu_ids); 951 #endif 952 953 /* An arch may set nr_cpu_ids earlier if needed, so this would be redundant */ 954 void __init setup_nr_cpu_ids(void) 955 { 956 set_nr_cpu_ids(find_last_bit(cpumask_bits(cpu_possible_mask), NR_CPUS) + 1); 957 } 958 959 /* Called by boot processor to activate the rest. */ 960 void __init smp_init(void) 961 { 962 int num_nodes, num_cpus; 963 964 idle_threads_init(); 965 cpuhp_threads_init(); 966 967 pr_info("Bringing up secondary CPUs ...\n"); 968 969 bringup_nonboot_cpus(setup_max_cpus); 970 971 num_nodes = num_online_nodes(); 972 num_cpus = num_online_cpus(); 973 pr_info("Brought up %d node%s, %d CPU%s\n", 974 num_nodes, (num_nodes > 1 ? "s" : ""), 975 num_cpus, (num_cpus > 1 ? "s" : "")); 976 977 /* Any cleanup work */ 978 smp_cpus_done(setup_max_cpus); 979 } 980 981 /* 982 * on_each_cpu_cond(): Call a function on each processor for which 983 * the supplied function cond_func returns true, optionally waiting 984 * for all the required CPUs to finish. This may include the local 985 * processor. 986 * @cond_func: A callback function that is passed a cpu id and 987 * the info parameter. The function is called 988 * with preemption disabled. The function should 989 * return a blooean value indicating whether to IPI 990 * the specified CPU. 991 * @func: The function to run on all applicable CPUs. 992 * This must be fast and non-blocking. 993 * @info: An arbitrary pointer to pass to both functions. 994 * @wait: If true, wait (atomically) until function has 995 * completed on other CPUs. 996 * 997 * Preemption is disabled to protect against CPUs going offline but not online. 998 * CPUs going online during the call will not be seen or sent an IPI. 999 * 1000 * You must not call this function with disabled interrupts or 1001 * from a hardware interrupt handler or from a bottom half handler. 1002 */ 1003 void on_each_cpu_cond_mask(smp_cond_func_t cond_func, smp_call_func_t func, 1004 void *info, bool wait, const struct cpumask *mask) 1005 { 1006 unsigned int scf_flags = SCF_RUN_LOCAL; 1007 1008 if (wait) 1009 scf_flags |= SCF_WAIT; 1010 1011 preempt_disable(); 1012 smp_call_function_many_cond(mask, func, info, scf_flags, cond_func); 1013 preempt_enable(); 1014 } 1015 EXPORT_SYMBOL(on_each_cpu_cond_mask); 1016 1017 static void do_nothing(void *unused) 1018 { 1019 } 1020 1021 /** 1022 * kick_all_cpus_sync - Force all cpus out of idle 1023 * 1024 * Used to synchronize the update of pm_idle function pointer. It's 1025 * called after the pointer is updated and returns after the dummy 1026 * callback function has been executed on all cpus. The execution of 1027 * the function can only happen on the remote cpus after they have 1028 * left the idle function which had been called via pm_idle function 1029 * pointer. So it's guaranteed that nothing uses the previous pointer 1030 * anymore. 1031 */ 1032 void kick_all_cpus_sync(void) 1033 { 1034 /* Make sure the change is visible before we kick the cpus */ 1035 smp_mb(); 1036 smp_call_function(do_nothing, NULL, 1); 1037 } 1038 EXPORT_SYMBOL_GPL(kick_all_cpus_sync); 1039 1040 /** 1041 * wake_up_all_idle_cpus - break all cpus out of idle 1042 * wake_up_all_idle_cpus try to break all cpus which is in idle state even 1043 * including idle polling cpus, for non-idle cpus, we will do nothing 1044 * for them. 1045 */ 1046 void wake_up_all_idle_cpus(void) 1047 { 1048 int cpu; 1049 1050 for_each_possible_cpu(cpu) { 1051 preempt_disable(); 1052 if (cpu != smp_processor_id() && cpu_online(cpu)) 1053 wake_up_if_idle(cpu); 1054 preempt_enable(); 1055 } 1056 } 1057 EXPORT_SYMBOL_GPL(wake_up_all_idle_cpus); 1058 1059 /** 1060 * struct smp_call_on_cpu_struct - Call a function on a specific CPU 1061 * @work: &work_struct 1062 * @done: &completion to signal 1063 * @func: function to call 1064 * @data: function's data argument 1065 * @ret: return value from @func 1066 * @cpu: target CPU (%-1 for any CPU) 1067 * 1068 * Used to call a function on a specific cpu and wait for it to return. 1069 * Optionally make sure the call is done on a specified physical cpu via vcpu 1070 * pinning in order to support virtualized environments. 1071 */ 1072 struct smp_call_on_cpu_struct { 1073 struct work_struct work; 1074 struct completion done; 1075 int (*func)(void *); 1076 void *data; 1077 int ret; 1078 int cpu; 1079 }; 1080 1081 static void smp_call_on_cpu_callback(struct work_struct *work) 1082 { 1083 struct smp_call_on_cpu_struct *sscs; 1084 1085 sscs = container_of(work, struct smp_call_on_cpu_struct, work); 1086 if (sscs->cpu >= 0) 1087 hypervisor_pin_vcpu(sscs->cpu); 1088 sscs->ret = sscs->func(sscs->data); 1089 if (sscs->cpu >= 0) 1090 hypervisor_pin_vcpu(-1); 1091 1092 complete(&sscs->done); 1093 } 1094 1095 int smp_call_on_cpu(unsigned int cpu, int (*func)(void *), void *par, bool phys) 1096 { 1097 struct smp_call_on_cpu_struct sscs = { 1098 .done = COMPLETION_INITIALIZER_ONSTACK(sscs.done), 1099 .func = func, 1100 .data = par, 1101 .cpu = phys ? cpu : -1, 1102 }; 1103 1104 INIT_WORK_ONSTACK(&sscs.work, smp_call_on_cpu_callback); 1105 1106 if (cpu >= nr_cpu_ids || !cpu_online(cpu)) 1107 return -ENXIO; 1108 1109 queue_work_on(cpu, system_wq, &sscs.work); 1110 wait_for_completion(&sscs.done); 1111 1112 return sscs.ret; 1113 } 1114 EXPORT_SYMBOL_GPL(smp_call_on_cpu); 1115