xref: /linux/kernel/smp.c (revision 1746db26f85e4f4b3dd11d7b55f4eff4b0423884)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Generic helpers for smp ipi calls
4   *
5   * (C) Jens Axboe <jens.axboe@oracle.com> 2008
6   */
7  
8  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9  
10  #include <linux/irq_work.h>
11  #include <linux/rcupdate.h>
12  #include <linux/rculist.h>
13  #include <linux/kernel.h>
14  #include <linux/export.h>
15  #include <linux/percpu.h>
16  #include <linux/init.h>
17  #include <linux/interrupt.h>
18  #include <linux/gfp.h>
19  #include <linux/smp.h>
20  #include <linux/cpu.h>
21  #include <linux/sched.h>
22  #include <linux/sched/idle.h>
23  #include <linux/hypervisor.h>
24  #include <linux/sched/clock.h>
25  #include <linux/nmi.h>
26  #include <linux/sched/debug.h>
27  #include <linux/jump_label.h>
28  #include <linux/string_choices.h>
29  
30  #include <trace/events/ipi.h>
31  #define CREATE_TRACE_POINTS
32  #include <trace/events/csd.h>
33  #undef CREATE_TRACE_POINTS
34  
35  #include "smpboot.h"
36  #include "sched/smp.h"
37  
38  #define CSD_TYPE(_csd)	((_csd)->node.u_flags & CSD_FLAG_TYPE_MASK)
39  
40  struct call_function_data {
41  	call_single_data_t	__percpu *csd;
42  	cpumask_var_t		cpumask;
43  	cpumask_var_t		cpumask_ipi;
44  };
45  
46  static DEFINE_PER_CPU_ALIGNED(struct call_function_data, cfd_data);
47  
48  static DEFINE_PER_CPU_SHARED_ALIGNED(struct llist_head, call_single_queue);
49  
50  static DEFINE_PER_CPU(atomic_t, trigger_backtrace) = ATOMIC_INIT(1);
51  
52  static void __flush_smp_call_function_queue(bool warn_cpu_offline);
53  
54  int smpcfd_prepare_cpu(unsigned int cpu)
55  {
56  	struct call_function_data *cfd = &per_cpu(cfd_data, cpu);
57  
58  	if (!zalloc_cpumask_var_node(&cfd->cpumask, GFP_KERNEL,
59  				     cpu_to_node(cpu)))
60  		return -ENOMEM;
61  	if (!zalloc_cpumask_var_node(&cfd->cpumask_ipi, GFP_KERNEL,
62  				     cpu_to_node(cpu))) {
63  		free_cpumask_var(cfd->cpumask);
64  		return -ENOMEM;
65  	}
66  	cfd->csd = alloc_percpu(call_single_data_t);
67  	if (!cfd->csd) {
68  		free_cpumask_var(cfd->cpumask);
69  		free_cpumask_var(cfd->cpumask_ipi);
70  		return -ENOMEM;
71  	}
72  
73  	return 0;
74  }
75  
76  int smpcfd_dead_cpu(unsigned int cpu)
77  {
78  	struct call_function_data *cfd = &per_cpu(cfd_data, cpu);
79  
80  	free_cpumask_var(cfd->cpumask);
81  	free_cpumask_var(cfd->cpumask_ipi);
82  	free_percpu(cfd->csd);
83  	return 0;
84  }
85  
86  int smpcfd_dying_cpu(unsigned int cpu)
87  {
88  	/*
89  	 * The IPIs for the smp-call-function callbacks queued by other
90  	 * CPUs might arrive late, either due to hardware latencies or
91  	 * because this CPU disabled interrupts (inside stop-machine)
92  	 * before the IPIs were sent. So flush out any pending callbacks
93  	 * explicitly (without waiting for the IPIs to arrive), to
94  	 * ensure that the outgoing CPU doesn't go offline with work
95  	 * still pending.
96  	 */
97  	__flush_smp_call_function_queue(false);
98  	irq_work_run();
99  	return 0;
100  }
101  
102  void __init call_function_init(void)
103  {
104  	int i;
105  
106  	for_each_possible_cpu(i)
107  		init_llist_head(&per_cpu(call_single_queue, i));
108  
109  	smpcfd_prepare_cpu(smp_processor_id());
110  }
111  
112  static __always_inline void
113  send_call_function_single_ipi(int cpu)
114  {
115  	if (call_function_single_prep_ipi(cpu)) {
116  		trace_ipi_send_cpu(cpu, _RET_IP_,
117  				   generic_smp_call_function_single_interrupt);
118  		arch_send_call_function_single_ipi(cpu);
119  	}
120  }
121  
122  static __always_inline void
123  send_call_function_ipi_mask(struct cpumask *mask)
124  {
125  	trace_ipi_send_cpumask(mask, _RET_IP_,
126  			       generic_smp_call_function_single_interrupt);
127  	arch_send_call_function_ipi_mask(mask);
128  }
129  
130  static __always_inline void
131  csd_do_func(smp_call_func_t func, void *info, call_single_data_t *csd)
132  {
133  	trace_csd_function_entry(func, csd);
134  	func(info);
135  	trace_csd_function_exit(func, csd);
136  }
137  
138  #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
139  
140  static DEFINE_STATIC_KEY_MAYBE(CONFIG_CSD_LOCK_WAIT_DEBUG_DEFAULT, csdlock_debug_enabled);
141  
142  /*
143   * Parse the csdlock_debug= kernel boot parameter.
144   *
145   * If you need to restore the old "ext" value that once provided
146   * additional debugging information, reapply the following commits:
147   *
148   * de7b09ef658d ("locking/csd_lock: Prepare more CSD lock debugging")
149   * a5aabace5fb8 ("locking/csd_lock: Add more data to CSD lock debugging")
150   */
151  static int __init csdlock_debug(char *str)
152  {
153  	int ret;
154  	unsigned int val = 0;
155  
156  	ret = get_option(&str, &val);
157  	if (ret) {
158  		if (val)
159  			static_branch_enable(&csdlock_debug_enabled);
160  		else
161  			static_branch_disable(&csdlock_debug_enabled);
162  	}
163  
164  	return 1;
165  }
166  __setup("csdlock_debug=", csdlock_debug);
167  
168  static DEFINE_PER_CPU(call_single_data_t *, cur_csd);
169  static DEFINE_PER_CPU(smp_call_func_t, cur_csd_func);
170  static DEFINE_PER_CPU(void *, cur_csd_info);
171  
172  static ulong csd_lock_timeout = 5000;  /* CSD lock timeout in milliseconds. */
173  module_param(csd_lock_timeout, ulong, 0444);
174  static int panic_on_ipistall;  /* CSD panic timeout in milliseconds, 300000 for five minutes. */
175  module_param(panic_on_ipistall, int, 0444);
176  
177  static atomic_t csd_bug_count = ATOMIC_INIT(0);
178  
179  /* Record current CSD work for current CPU, NULL to erase. */
180  static void __csd_lock_record(call_single_data_t *csd)
181  {
182  	if (!csd) {
183  		smp_mb(); /* NULL cur_csd after unlock. */
184  		__this_cpu_write(cur_csd, NULL);
185  		return;
186  	}
187  	__this_cpu_write(cur_csd_func, csd->func);
188  	__this_cpu_write(cur_csd_info, csd->info);
189  	smp_wmb(); /* func and info before csd. */
190  	__this_cpu_write(cur_csd, csd);
191  	smp_mb(); /* Update cur_csd before function call. */
192  		  /* Or before unlock, as the case may be. */
193  }
194  
195  static __always_inline void csd_lock_record(call_single_data_t *csd)
196  {
197  	if (static_branch_unlikely(&csdlock_debug_enabled))
198  		__csd_lock_record(csd);
199  }
200  
201  static int csd_lock_wait_getcpu(call_single_data_t *csd)
202  {
203  	unsigned int csd_type;
204  
205  	csd_type = CSD_TYPE(csd);
206  	if (csd_type == CSD_TYPE_ASYNC || csd_type == CSD_TYPE_SYNC)
207  		return csd->node.dst; /* Other CSD_TYPE_ values might not have ->dst. */
208  	return -1;
209  }
210  
211  static atomic_t n_csd_lock_stuck;
212  
213  /**
214   * csd_lock_is_stuck - Has a CSD-lock acquisition been stuck too long?
215   *
216   * Returns @true if a CSD-lock acquisition is stuck and has been stuck
217   * long enough for a "non-responsive CSD lock" message to be printed.
218   */
219  bool csd_lock_is_stuck(void)
220  {
221  	return !!atomic_read(&n_csd_lock_stuck);
222  }
223  
224  /*
225   * Complain if too much time spent waiting.  Note that only
226   * the CSD_TYPE_SYNC/ASYNC types provide the destination CPU,
227   * so waiting on other types gets much less information.
228   */
229  static bool csd_lock_wait_toolong(call_single_data_t *csd, u64 ts0, u64 *ts1, int *bug_id, unsigned long *nmessages)
230  {
231  	int cpu = -1;
232  	int cpux;
233  	bool firsttime;
234  	u64 ts2, ts_delta;
235  	call_single_data_t *cpu_cur_csd;
236  	unsigned int flags = READ_ONCE(csd->node.u_flags);
237  	unsigned long long csd_lock_timeout_ns = csd_lock_timeout * NSEC_PER_MSEC;
238  
239  	if (!(flags & CSD_FLAG_LOCK)) {
240  		if (!unlikely(*bug_id))
241  			return true;
242  		cpu = csd_lock_wait_getcpu(csd);
243  		pr_alert("csd: CSD lock (#%d) got unstuck on CPU#%02d, CPU#%02d released the lock.\n",
244  			 *bug_id, raw_smp_processor_id(), cpu);
245  		atomic_dec(&n_csd_lock_stuck);
246  		return true;
247  	}
248  
249  	ts2 = ktime_get_mono_fast_ns();
250  	/* How long since we last checked for a stuck CSD lock.*/
251  	ts_delta = ts2 - *ts1;
252  	if (likely(ts_delta <= csd_lock_timeout_ns * (*nmessages + 1) *
253  			       (!*nmessages ? 1 : (ilog2(num_online_cpus()) / 2 + 1)) ||
254  		   csd_lock_timeout_ns == 0))
255  		return false;
256  
257  	if (ts0 > ts2) {
258  		/* Our own sched_clock went backward; don't blame another CPU. */
259  		ts_delta = ts0 - ts2;
260  		pr_alert("sched_clock on CPU %d went backward by %llu ns\n", raw_smp_processor_id(), ts_delta);
261  		*ts1 = ts2;
262  		return false;
263  	}
264  
265  	firsttime = !*bug_id;
266  	if (firsttime)
267  		*bug_id = atomic_inc_return(&csd_bug_count);
268  	cpu = csd_lock_wait_getcpu(csd);
269  	if (WARN_ONCE(cpu < 0 || cpu >= nr_cpu_ids, "%s: cpu = %d\n", __func__, cpu))
270  		cpux = 0;
271  	else
272  		cpux = cpu;
273  	cpu_cur_csd = smp_load_acquire(&per_cpu(cur_csd, cpux)); /* Before func and info. */
274  	/* How long since this CSD lock was stuck. */
275  	ts_delta = ts2 - ts0;
276  	pr_alert("csd: %s non-responsive CSD lock (#%d) on CPU#%d, waiting %lld ns for CPU#%02d %pS(%ps).\n",
277  		 firsttime ? "Detected" : "Continued", *bug_id, raw_smp_processor_id(), (s64)ts_delta,
278  		 cpu, csd->func, csd->info);
279  	(*nmessages)++;
280  	if (firsttime)
281  		atomic_inc(&n_csd_lock_stuck);
282  	/*
283  	 * If the CSD lock is still stuck after 5 minutes, it is unlikely
284  	 * to become unstuck. Use a signed comparison to avoid triggering
285  	 * on underflows when the TSC is out of sync between sockets.
286  	 */
287  	BUG_ON(panic_on_ipistall > 0 && (s64)ts_delta > ((s64)panic_on_ipistall * NSEC_PER_MSEC));
288  	if (cpu_cur_csd && csd != cpu_cur_csd) {
289  		pr_alert("\tcsd: CSD lock (#%d) handling prior %pS(%ps) request.\n",
290  			 *bug_id, READ_ONCE(per_cpu(cur_csd_func, cpux)),
291  			 READ_ONCE(per_cpu(cur_csd_info, cpux)));
292  	} else {
293  		pr_alert("\tcsd: CSD lock (#%d) %s.\n",
294  			 *bug_id, !cpu_cur_csd ? "unresponsive" : "handling this request");
295  	}
296  	if (cpu >= 0) {
297  		if (atomic_cmpxchg_acquire(&per_cpu(trigger_backtrace, cpu), 1, 0))
298  			dump_cpu_task(cpu);
299  		if (!cpu_cur_csd) {
300  			pr_alert("csd: Re-sending CSD lock (#%d) IPI from CPU#%02d to CPU#%02d\n", *bug_id, raw_smp_processor_id(), cpu);
301  			arch_send_call_function_single_ipi(cpu);
302  		}
303  	}
304  	if (firsttime)
305  		dump_stack();
306  	*ts1 = ts2;
307  
308  	return false;
309  }
310  
311  /*
312   * csd_lock/csd_unlock used to serialize access to per-cpu csd resources
313   *
314   * For non-synchronous ipi calls the csd can still be in use by the
315   * previous function call. For multi-cpu calls its even more interesting
316   * as we'll have to ensure no other cpu is observing our csd.
317   */
318  static void __csd_lock_wait(call_single_data_t *csd)
319  {
320  	unsigned long nmessages = 0;
321  	int bug_id = 0;
322  	u64 ts0, ts1;
323  
324  	ts1 = ts0 = ktime_get_mono_fast_ns();
325  	for (;;) {
326  		if (csd_lock_wait_toolong(csd, ts0, &ts1, &bug_id, &nmessages))
327  			break;
328  		cpu_relax();
329  	}
330  	smp_acquire__after_ctrl_dep();
331  }
332  
333  static __always_inline void csd_lock_wait(call_single_data_t *csd)
334  {
335  	if (static_branch_unlikely(&csdlock_debug_enabled)) {
336  		__csd_lock_wait(csd);
337  		return;
338  	}
339  
340  	smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK));
341  }
342  #else
343  static void csd_lock_record(call_single_data_t *csd)
344  {
345  }
346  
347  static __always_inline void csd_lock_wait(call_single_data_t *csd)
348  {
349  	smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK));
350  }
351  #endif
352  
353  static __always_inline void csd_lock(call_single_data_t *csd)
354  {
355  	csd_lock_wait(csd);
356  	csd->node.u_flags |= CSD_FLAG_LOCK;
357  
358  	/*
359  	 * prevent CPU from reordering the above assignment
360  	 * to ->flags with any subsequent assignments to other
361  	 * fields of the specified call_single_data_t structure:
362  	 */
363  	smp_wmb();
364  }
365  
366  static __always_inline void csd_unlock(call_single_data_t *csd)
367  {
368  	WARN_ON(!(csd->node.u_flags & CSD_FLAG_LOCK));
369  
370  	/*
371  	 * ensure we're all done before releasing data:
372  	 */
373  	smp_store_release(&csd->node.u_flags, 0);
374  }
375  
376  static DEFINE_PER_CPU_SHARED_ALIGNED(call_single_data_t, csd_data);
377  
378  void __smp_call_single_queue(int cpu, struct llist_node *node)
379  {
380  	/*
381  	 * We have to check the type of the CSD before queueing it, because
382  	 * once queued it can have its flags cleared by
383  	 *   flush_smp_call_function_queue()
384  	 * even if we haven't sent the smp_call IPI yet (e.g. the stopper
385  	 * executes migration_cpu_stop() on the remote CPU).
386  	 */
387  	if (trace_csd_queue_cpu_enabled()) {
388  		call_single_data_t *csd;
389  		smp_call_func_t func;
390  
391  		csd = container_of(node, call_single_data_t, node.llist);
392  		func = CSD_TYPE(csd) == CSD_TYPE_TTWU ?
393  			sched_ttwu_pending : csd->func;
394  
395  		trace_csd_queue_cpu(cpu, _RET_IP_, func, csd);
396  	}
397  
398  	/*
399  	 * The list addition should be visible to the target CPU when it pops
400  	 * the head of the list to pull the entry off it in the IPI handler
401  	 * because of normal cache coherency rules implied by the underlying
402  	 * llist ops.
403  	 *
404  	 * If IPIs can go out of order to the cache coherency protocol
405  	 * in an architecture, sufficient synchronisation should be added
406  	 * to arch code to make it appear to obey cache coherency WRT
407  	 * locking and barrier primitives. Generic code isn't really
408  	 * equipped to do the right thing...
409  	 */
410  	if (llist_add(node, &per_cpu(call_single_queue, cpu)))
411  		send_call_function_single_ipi(cpu);
412  }
413  
414  /*
415   * Insert a previously allocated call_single_data_t element
416   * for execution on the given CPU. data must already have
417   * ->func, ->info, and ->flags set.
418   */
419  static int generic_exec_single(int cpu, call_single_data_t *csd)
420  {
421  	if (cpu == smp_processor_id()) {
422  		smp_call_func_t func = csd->func;
423  		void *info = csd->info;
424  		unsigned long flags;
425  
426  		/*
427  		 * We can unlock early even for the synchronous on-stack case,
428  		 * since we're doing this from the same CPU..
429  		 */
430  		csd_lock_record(csd);
431  		csd_unlock(csd);
432  		local_irq_save(flags);
433  		csd_do_func(func, info, NULL);
434  		csd_lock_record(NULL);
435  		local_irq_restore(flags);
436  		return 0;
437  	}
438  
439  	if ((unsigned)cpu >= nr_cpu_ids || !cpu_online(cpu)) {
440  		csd_unlock(csd);
441  		return -ENXIO;
442  	}
443  
444  	__smp_call_single_queue(cpu, &csd->node.llist);
445  
446  	return 0;
447  }
448  
449  /**
450   * generic_smp_call_function_single_interrupt - Execute SMP IPI callbacks
451   *
452   * Invoked by arch to handle an IPI for call function single.
453   * Must be called with interrupts disabled.
454   */
455  void generic_smp_call_function_single_interrupt(void)
456  {
457  	__flush_smp_call_function_queue(true);
458  }
459  
460  /**
461   * __flush_smp_call_function_queue - Flush pending smp-call-function callbacks
462   *
463   * @warn_cpu_offline: If set to 'true', warn if callbacks were queued on an
464   *		      offline CPU. Skip this check if set to 'false'.
465   *
466   * Flush any pending smp-call-function callbacks queued on this CPU. This is
467   * invoked by the generic IPI handler, as well as by a CPU about to go offline,
468   * to ensure that all pending IPI callbacks are run before it goes completely
469   * offline.
470   *
471   * Loop through the call_single_queue and run all the queued callbacks.
472   * Must be called with interrupts disabled.
473   */
474  static void __flush_smp_call_function_queue(bool warn_cpu_offline)
475  {
476  	call_single_data_t *csd, *csd_next;
477  	struct llist_node *entry, *prev;
478  	struct llist_head *head;
479  	static bool warned;
480  	atomic_t *tbt;
481  
482  	lockdep_assert_irqs_disabled();
483  
484  	/* Allow waiters to send backtrace NMI from here onwards */
485  	tbt = this_cpu_ptr(&trigger_backtrace);
486  	atomic_set_release(tbt, 1);
487  
488  	head = this_cpu_ptr(&call_single_queue);
489  	entry = llist_del_all(head);
490  	entry = llist_reverse_order(entry);
491  
492  	/* There shouldn't be any pending callbacks on an offline CPU. */
493  	if (unlikely(warn_cpu_offline && !cpu_online(smp_processor_id()) &&
494  		     !warned && entry != NULL)) {
495  		warned = true;
496  		WARN(1, "IPI on offline CPU %d\n", smp_processor_id());
497  
498  		/*
499  		 * We don't have to use the _safe() variant here
500  		 * because we are not invoking the IPI handlers yet.
501  		 */
502  		llist_for_each_entry(csd, entry, node.llist) {
503  			switch (CSD_TYPE(csd)) {
504  			case CSD_TYPE_ASYNC:
505  			case CSD_TYPE_SYNC:
506  			case CSD_TYPE_IRQ_WORK:
507  				pr_warn("IPI callback %pS sent to offline CPU\n",
508  					csd->func);
509  				break;
510  
511  			case CSD_TYPE_TTWU:
512  				pr_warn("IPI task-wakeup sent to offline CPU\n");
513  				break;
514  
515  			default:
516  				pr_warn("IPI callback, unknown type %d, sent to offline CPU\n",
517  					CSD_TYPE(csd));
518  				break;
519  			}
520  		}
521  	}
522  
523  	/*
524  	 * First; run all SYNC callbacks, people are waiting for us.
525  	 */
526  	prev = NULL;
527  	llist_for_each_entry_safe(csd, csd_next, entry, node.llist) {
528  		/* Do we wait until *after* callback? */
529  		if (CSD_TYPE(csd) == CSD_TYPE_SYNC) {
530  			smp_call_func_t func = csd->func;
531  			void *info = csd->info;
532  
533  			if (prev) {
534  				prev->next = &csd_next->node.llist;
535  			} else {
536  				entry = &csd_next->node.llist;
537  			}
538  
539  			csd_lock_record(csd);
540  			csd_do_func(func, info, csd);
541  			csd_unlock(csd);
542  			csd_lock_record(NULL);
543  		} else {
544  			prev = &csd->node.llist;
545  		}
546  	}
547  
548  	if (!entry)
549  		return;
550  
551  	/*
552  	 * Second; run all !SYNC callbacks.
553  	 */
554  	prev = NULL;
555  	llist_for_each_entry_safe(csd, csd_next, entry, node.llist) {
556  		int type = CSD_TYPE(csd);
557  
558  		if (type != CSD_TYPE_TTWU) {
559  			if (prev) {
560  				prev->next = &csd_next->node.llist;
561  			} else {
562  				entry = &csd_next->node.llist;
563  			}
564  
565  			if (type == CSD_TYPE_ASYNC) {
566  				smp_call_func_t func = csd->func;
567  				void *info = csd->info;
568  
569  				csd_lock_record(csd);
570  				csd_unlock(csd);
571  				csd_do_func(func, info, csd);
572  				csd_lock_record(NULL);
573  			} else if (type == CSD_TYPE_IRQ_WORK) {
574  				irq_work_single(csd);
575  			}
576  
577  		} else {
578  			prev = &csd->node.llist;
579  		}
580  	}
581  
582  	/*
583  	 * Third; only CSD_TYPE_TTWU is left, issue those.
584  	 */
585  	if (entry) {
586  		csd = llist_entry(entry, typeof(*csd), node.llist);
587  		csd_do_func(sched_ttwu_pending, entry, csd);
588  	}
589  }
590  
591  
592  /**
593   * flush_smp_call_function_queue - Flush pending smp-call-function callbacks
594   *				   from task context (idle, migration thread)
595   *
596   * When TIF_POLLING_NRFLAG is supported and a CPU is in idle and has it
597   * set, then remote CPUs can avoid sending IPIs and wake the idle CPU by
598   * setting TIF_NEED_RESCHED. The idle task on the woken up CPU has to
599   * handle queued SMP function calls before scheduling.
600   *
601   * The migration thread has to ensure that an eventually pending wakeup has
602   * been handled before it migrates a task.
603   */
604  void flush_smp_call_function_queue(void)
605  {
606  	unsigned int was_pending;
607  	unsigned long flags;
608  
609  	if (llist_empty(this_cpu_ptr(&call_single_queue)))
610  		return;
611  
612  	local_irq_save(flags);
613  	/* Get the already pending soft interrupts for RT enabled kernels */
614  	was_pending = local_softirq_pending();
615  	__flush_smp_call_function_queue(true);
616  	if (local_softirq_pending())
617  		do_softirq_post_smp_call_flush(was_pending);
618  
619  	local_irq_restore(flags);
620  }
621  
622  /*
623   * smp_call_function_single - Run a function on a specific CPU
624   * @func: The function to run. This must be fast and non-blocking.
625   * @info: An arbitrary pointer to pass to the function.
626   * @wait: If true, wait until function has completed on other CPUs.
627   *
628   * Returns 0 on success, else a negative status code.
629   */
630  int smp_call_function_single(int cpu, smp_call_func_t func, void *info,
631  			     int wait)
632  {
633  	call_single_data_t *csd;
634  	call_single_data_t csd_stack = {
635  		.node = { .u_flags = CSD_FLAG_LOCK | CSD_TYPE_SYNC, },
636  	};
637  	int this_cpu;
638  	int err;
639  
640  	/*
641  	 * prevent preemption and reschedule on another processor,
642  	 * as well as CPU removal
643  	 */
644  	this_cpu = get_cpu();
645  
646  	/*
647  	 * Can deadlock when called with interrupts disabled.
648  	 * We allow cpu's that are not yet online though, as no one else can
649  	 * send smp call function interrupt to this cpu and as such deadlocks
650  	 * can't happen.
651  	 */
652  	WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled()
653  		     && !oops_in_progress);
654  
655  	/*
656  	 * When @wait we can deadlock when we interrupt between llist_add() and
657  	 * arch_send_call_function_ipi*(); when !@wait we can deadlock due to
658  	 * csd_lock() on because the interrupt context uses the same csd
659  	 * storage.
660  	 */
661  	WARN_ON_ONCE(!in_task());
662  
663  	csd = &csd_stack;
664  	if (!wait) {
665  		csd = this_cpu_ptr(&csd_data);
666  		csd_lock(csd);
667  	}
668  
669  	csd->func = func;
670  	csd->info = info;
671  #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
672  	csd->node.src = smp_processor_id();
673  	csd->node.dst = cpu;
674  #endif
675  
676  	err = generic_exec_single(cpu, csd);
677  
678  	if (wait)
679  		csd_lock_wait(csd);
680  
681  	put_cpu();
682  
683  	return err;
684  }
685  EXPORT_SYMBOL(smp_call_function_single);
686  
687  /**
688   * smp_call_function_single_async() - Run an asynchronous function on a
689   * 			         specific CPU.
690   * @cpu: The CPU to run on.
691   * @csd: Pre-allocated and setup data structure
692   *
693   * Like smp_call_function_single(), but the call is asynchonous and
694   * can thus be done from contexts with disabled interrupts.
695   *
696   * The caller passes his own pre-allocated data structure
697   * (ie: embedded in an object) and is responsible for synchronizing it
698   * such that the IPIs performed on the @csd are strictly serialized.
699   *
700   * If the function is called with one csd which has not yet been
701   * processed by previous call to smp_call_function_single_async(), the
702   * function will return immediately with -EBUSY showing that the csd
703   * object is still in progress.
704   *
705   * NOTE: Be careful, there is unfortunately no current debugging facility to
706   * validate the correctness of this serialization.
707   *
708   * Return: %0 on success or negative errno value on error
709   */
710  int smp_call_function_single_async(int cpu, call_single_data_t *csd)
711  {
712  	int err = 0;
713  
714  	preempt_disable();
715  
716  	if (csd->node.u_flags & CSD_FLAG_LOCK) {
717  		err = -EBUSY;
718  		goto out;
719  	}
720  
721  	csd->node.u_flags = CSD_FLAG_LOCK;
722  	smp_wmb();
723  
724  	err = generic_exec_single(cpu, csd);
725  
726  out:
727  	preempt_enable();
728  
729  	return err;
730  }
731  EXPORT_SYMBOL_GPL(smp_call_function_single_async);
732  
733  /*
734   * smp_call_function_any - Run a function on any of the given cpus
735   * @mask: The mask of cpus it can run on.
736   * @func: The function to run. This must be fast and non-blocking.
737   * @info: An arbitrary pointer to pass to the function.
738   * @wait: If true, wait until function has completed.
739   *
740   * Returns 0 on success, else a negative status code (if no cpus were online).
741   *
742   * Selection preference:
743   *	1) current cpu if in @mask
744   *	2) any cpu of current node if in @mask
745   *	3) any other online cpu in @mask
746   */
747  int smp_call_function_any(const struct cpumask *mask,
748  			  smp_call_func_t func, void *info, int wait)
749  {
750  	unsigned int cpu;
751  	const struct cpumask *nodemask;
752  	int ret;
753  
754  	/* Try for same CPU (cheapest) */
755  	cpu = get_cpu();
756  	if (cpumask_test_cpu(cpu, mask))
757  		goto call;
758  
759  	/* Try for same node. */
760  	nodemask = cpumask_of_node(cpu_to_node(cpu));
761  	for (cpu = cpumask_first_and(nodemask, mask); cpu < nr_cpu_ids;
762  	     cpu = cpumask_next_and(cpu, nodemask, mask)) {
763  		if (cpu_online(cpu))
764  			goto call;
765  	}
766  
767  	/* Any online will do: smp_call_function_single handles nr_cpu_ids. */
768  	cpu = cpumask_any_and(mask, cpu_online_mask);
769  call:
770  	ret = smp_call_function_single(cpu, func, info, wait);
771  	put_cpu();
772  	return ret;
773  }
774  EXPORT_SYMBOL_GPL(smp_call_function_any);
775  
776  /*
777   * Flags to be used as scf_flags argument of smp_call_function_many_cond().
778   *
779   * %SCF_WAIT:		Wait until function execution is completed
780   * %SCF_RUN_LOCAL:	Run also locally if local cpu is set in cpumask
781   */
782  #define SCF_WAIT	(1U << 0)
783  #define SCF_RUN_LOCAL	(1U << 1)
784  
785  static void smp_call_function_many_cond(const struct cpumask *mask,
786  					smp_call_func_t func, void *info,
787  					unsigned int scf_flags,
788  					smp_cond_func_t cond_func)
789  {
790  	int cpu, last_cpu, this_cpu = smp_processor_id();
791  	struct call_function_data *cfd;
792  	bool wait = scf_flags & SCF_WAIT;
793  	int nr_cpus = 0;
794  	bool run_remote = false;
795  	bool run_local = false;
796  
797  	lockdep_assert_preemption_disabled();
798  
799  	/*
800  	 * Can deadlock when called with interrupts disabled.
801  	 * We allow cpu's that are not yet online though, as no one else can
802  	 * send smp call function interrupt to this cpu and as such deadlocks
803  	 * can't happen.
804  	 */
805  	if (cpu_online(this_cpu) && !oops_in_progress &&
806  	    !early_boot_irqs_disabled)
807  		lockdep_assert_irqs_enabled();
808  
809  	/*
810  	 * When @wait we can deadlock when we interrupt between llist_add() and
811  	 * arch_send_call_function_ipi*(); when !@wait we can deadlock due to
812  	 * csd_lock() on because the interrupt context uses the same csd
813  	 * storage.
814  	 */
815  	WARN_ON_ONCE(!in_task());
816  
817  	/* Check if we need local execution. */
818  	if ((scf_flags & SCF_RUN_LOCAL) && cpumask_test_cpu(this_cpu, mask))
819  		run_local = true;
820  
821  	/* Check if we need remote execution, i.e., any CPU excluding this one. */
822  	cpu = cpumask_first_and(mask, cpu_online_mask);
823  	if (cpu == this_cpu)
824  		cpu = cpumask_next_and(cpu, mask, cpu_online_mask);
825  	if (cpu < nr_cpu_ids)
826  		run_remote = true;
827  
828  	if (run_remote) {
829  		cfd = this_cpu_ptr(&cfd_data);
830  		cpumask_and(cfd->cpumask, mask, cpu_online_mask);
831  		__cpumask_clear_cpu(this_cpu, cfd->cpumask);
832  
833  		cpumask_clear(cfd->cpumask_ipi);
834  		for_each_cpu(cpu, cfd->cpumask) {
835  			call_single_data_t *csd = per_cpu_ptr(cfd->csd, cpu);
836  
837  			if (cond_func && !cond_func(cpu, info)) {
838  				__cpumask_clear_cpu(cpu, cfd->cpumask);
839  				continue;
840  			}
841  
842  			csd_lock(csd);
843  			if (wait)
844  				csd->node.u_flags |= CSD_TYPE_SYNC;
845  			csd->func = func;
846  			csd->info = info;
847  #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
848  			csd->node.src = smp_processor_id();
849  			csd->node.dst = cpu;
850  #endif
851  			trace_csd_queue_cpu(cpu, _RET_IP_, func, csd);
852  
853  			if (llist_add(&csd->node.llist, &per_cpu(call_single_queue, cpu))) {
854  				__cpumask_set_cpu(cpu, cfd->cpumask_ipi);
855  				nr_cpus++;
856  				last_cpu = cpu;
857  			}
858  		}
859  
860  		/*
861  		 * Choose the most efficient way to send an IPI. Note that the
862  		 * number of CPUs might be zero due to concurrent changes to the
863  		 * provided mask.
864  		 */
865  		if (nr_cpus == 1)
866  			send_call_function_single_ipi(last_cpu);
867  		else if (likely(nr_cpus > 1))
868  			send_call_function_ipi_mask(cfd->cpumask_ipi);
869  	}
870  
871  	if (run_local && (!cond_func || cond_func(this_cpu, info))) {
872  		unsigned long flags;
873  
874  		local_irq_save(flags);
875  		csd_do_func(func, info, NULL);
876  		local_irq_restore(flags);
877  	}
878  
879  	if (run_remote && wait) {
880  		for_each_cpu(cpu, cfd->cpumask) {
881  			call_single_data_t *csd;
882  
883  			csd = per_cpu_ptr(cfd->csd, cpu);
884  			csd_lock_wait(csd);
885  		}
886  	}
887  }
888  
889  /**
890   * smp_call_function_many(): Run a function on a set of CPUs.
891   * @mask: The set of cpus to run on (only runs on online subset).
892   * @func: The function to run. This must be fast and non-blocking.
893   * @info: An arbitrary pointer to pass to the function.
894   * @wait: Bitmask that controls the operation. If %SCF_WAIT is set, wait
895   *        (atomically) until function has completed on other CPUs. If
896   *        %SCF_RUN_LOCAL is set, the function will also be run locally
897   *        if the local CPU is set in the @cpumask.
898   *
899   * If @wait is true, then returns once @func has returned.
900   *
901   * You must not call this function with disabled interrupts or from a
902   * hardware interrupt handler or from a bottom half handler. Preemption
903   * must be disabled when calling this function.
904   */
905  void smp_call_function_many(const struct cpumask *mask,
906  			    smp_call_func_t func, void *info, bool wait)
907  {
908  	smp_call_function_many_cond(mask, func, info, wait * SCF_WAIT, NULL);
909  }
910  EXPORT_SYMBOL(smp_call_function_many);
911  
912  /**
913   * smp_call_function(): Run a function on all other CPUs.
914   * @func: The function to run. This must be fast and non-blocking.
915   * @info: An arbitrary pointer to pass to the function.
916   * @wait: If true, wait (atomically) until function has completed
917   *        on other CPUs.
918   *
919   * Returns 0.
920   *
921   * If @wait is true, then returns once @func has returned; otherwise
922   * it returns just before the target cpu calls @func.
923   *
924   * You must not call this function with disabled interrupts or from a
925   * hardware interrupt handler or from a bottom half handler.
926   */
927  void smp_call_function(smp_call_func_t func, void *info, int wait)
928  {
929  	preempt_disable();
930  	smp_call_function_many(cpu_online_mask, func, info, wait);
931  	preempt_enable();
932  }
933  EXPORT_SYMBOL(smp_call_function);
934  
935  /* Setup configured maximum number of CPUs to activate */
936  unsigned int setup_max_cpus = NR_CPUS;
937  EXPORT_SYMBOL(setup_max_cpus);
938  
939  
940  /*
941   * Setup routine for controlling SMP activation
942   *
943   * Command-line option of "nosmp" or "maxcpus=0" will disable SMP
944   * activation entirely (the MPS table probe still happens, though).
945   *
946   * Command-line option of "maxcpus=<NUM>", where <NUM> is an integer
947   * greater than 0, limits the maximum number of CPUs activated in
948   * SMP mode to <NUM>.
949   */
950  
951  void __weak __init arch_disable_smp_support(void) { }
952  
953  static int __init nosmp(char *str)
954  {
955  	setup_max_cpus = 0;
956  	arch_disable_smp_support();
957  
958  	return 0;
959  }
960  
961  early_param("nosmp", nosmp);
962  
963  /* this is hard limit */
964  static int __init nrcpus(char *str)
965  {
966  	int nr_cpus;
967  
968  	if (get_option(&str, &nr_cpus) && nr_cpus > 0 && nr_cpus < nr_cpu_ids)
969  		set_nr_cpu_ids(nr_cpus);
970  
971  	return 0;
972  }
973  
974  early_param("nr_cpus", nrcpus);
975  
976  static int __init maxcpus(char *str)
977  {
978  	get_option(&str, &setup_max_cpus);
979  	if (setup_max_cpus == 0)
980  		arch_disable_smp_support();
981  
982  	return 0;
983  }
984  
985  early_param("maxcpus", maxcpus);
986  
987  #if (NR_CPUS > 1) && !defined(CONFIG_FORCE_NR_CPUS)
988  /* Setup number of possible processor ids */
989  unsigned int nr_cpu_ids __read_mostly = NR_CPUS;
990  EXPORT_SYMBOL(nr_cpu_ids);
991  #endif
992  
993  /* An arch may set nr_cpu_ids earlier if needed, so this would be redundant */
994  void __init setup_nr_cpu_ids(void)
995  {
996  	set_nr_cpu_ids(find_last_bit(cpumask_bits(cpu_possible_mask), NR_CPUS) + 1);
997  }
998  
999  /* Called by boot processor to activate the rest. */
1000  void __init smp_init(void)
1001  {
1002  	int num_nodes, num_cpus;
1003  
1004  	idle_threads_init();
1005  	cpuhp_threads_init();
1006  
1007  	pr_info("Bringing up secondary CPUs ...\n");
1008  
1009  	bringup_nonboot_cpus(setup_max_cpus);
1010  
1011  	num_nodes = num_online_nodes();
1012  	num_cpus  = num_online_cpus();
1013  	pr_info("Brought up %d node%s, %d CPU%s\n",
1014  		num_nodes, str_plural(num_nodes), num_cpus, str_plural(num_cpus));
1015  
1016  	/* Any cleanup work */
1017  	smp_cpus_done(setup_max_cpus);
1018  }
1019  
1020  /*
1021   * on_each_cpu_cond(): Call a function on each processor for which
1022   * the supplied function cond_func returns true, optionally waiting
1023   * for all the required CPUs to finish. This may include the local
1024   * processor.
1025   * @cond_func:	A callback function that is passed a cpu id and
1026   *		the info parameter. The function is called
1027   *		with preemption disabled. The function should
1028   *		return a blooean value indicating whether to IPI
1029   *		the specified CPU.
1030   * @func:	The function to run on all applicable CPUs.
1031   *		This must be fast and non-blocking.
1032   * @info:	An arbitrary pointer to pass to both functions.
1033   * @wait:	If true, wait (atomically) until function has
1034   *		completed on other CPUs.
1035   *
1036   * Preemption is disabled to protect against CPUs going offline but not online.
1037   * CPUs going online during the call will not be seen or sent an IPI.
1038   *
1039   * You must not call this function with disabled interrupts or
1040   * from a hardware interrupt handler or from a bottom half handler.
1041   */
1042  void on_each_cpu_cond_mask(smp_cond_func_t cond_func, smp_call_func_t func,
1043  			   void *info, bool wait, const struct cpumask *mask)
1044  {
1045  	unsigned int scf_flags = SCF_RUN_LOCAL;
1046  
1047  	if (wait)
1048  		scf_flags |= SCF_WAIT;
1049  
1050  	preempt_disable();
1051  	smp_call_function_many_cond(mask, func, info, scf_flags, cond_func);
1052  	preempt_enable();
1053  }
1054  EXPORT_SYMBOL(on_each_cpu_cond_mask);
1055  
1056  static void do_nothing(void *unused)
1057  {
1058  }
1059  
1060  /**
1061   * kick_all_cpus_sync - Force all cpus out of idle
1062   *
1063   * Used to synchronize the update of pm_idle function pointer. It's
1064   * called after the pointer is updated and returns after the dummy
1065   * callback function has been executed on all cpus. The execution of
1066   * the function can only happen on the remote cpus after they have
1067   * left the idle function which had been called via pm_idle function
1068   * pointer. So it's guaranteed that nothing uses the previous pointer
1069   * anymore.
1070   */
1071  void kick_all_cpus_sync(void)
1072  {
1073  	/* Make sure the change is visible before we kick the cpus */
1074  	smp_mb();
1075  	smp_call_function(do_nothing, NULL, 1);
1076  }
1077  EXPORT_SYMBOL_GPL(kick_all_cpus_sync);
1078  
1079  /**
1080   * wake_up_all_idle_cpus - break all cpus out of idle
1081   * wake_up_all_idle_cpus try to break all cpus which is in idle state even
1082   * including idle polling cpus, for non-idle cpus, we will do nothing
1083   * for them.
1084   */
1085  void wake_up_all_idle_cpus(void)
1086  {
1087  	int cpu;
1088  
1089  	for_each_possible_cpu(cpu) {
1090  		preempt_disable();
1091  		if (cpu != smp_processor_id() && cpu_online(cpu))
1092  			wake_up_if_idle(cpu);
1093  		preempt_enable();
1094  	}
1095  }
1096  EXPORT_SYMBOL_GPL(wake_up_all_idle_cpus);
1097  
1098  /**
1099   * struct smp_call_on_cpu_struct - Call a function on a specific CPU
1100   * @work: &work_struct
1101   * @done: &completion to signal
1102   * @func: function to call
1103   * @data: function's data argument
1104   * @ret: return value from @func
1105   * @cpu: target CPU (%-1 for any CPU)
1106   *
1107   * Used to call a function on a specific cpu and wait for it to return.
1108   * Optionally make sure the call is done on a specified physical cpu via vcpu
1109   * pinning in order to support virtualized environments.
1110   */
1111  struct smp_call_on_cpu_struct {
1112  	struct work_struct	work;
1113  	struct completion	done;
1114  	int			(*func)(void *);
1115  	void			*data;
1116  	int			ret;
1117  	int			cpu;
1118  };
1119  
1120  static void smp_call_on_cpu_callback(struct work_struct *work)
1121  {
1122  	struct smp_call_on_cpu_struct *sscs;
1123  
1124  	sscs = container_of(work, struct smp_call_on_cpu_struct, work);
1125  	if (sscs->cpu >= 0)
1126  		hypervisor_pin_vcpu(sscs->cpu);
1127  	sscs->ret = sscs->func(sscs->data);
1128  	if (sscs->cpu >= 0)
1129  		hypervisor_pin_vcpu(-1);
1130  
1131  	complete(&sscs->done);
1132  }
1133  
1134  int smp_call_on_cpu(unsigned int cpu, int (*func)(void *), void *par, bool phys)
1135  {
1136  	struct smp_call_on_cpu_struct sscs = {
1137  		.done = COMPLETION_INITIALIZER_ONSTACK(sscs.done),
1138  		.func = func,
1139  		.data = par,
1140  		.cpu  = phys ? cpu : -1,
1141  	};
1142  
1143  	INIT_WORK_ONSTACK(&sscs.work, smp_call_on_cpu_callback);
1144  
1145  	if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1146  		return -ENXIO;
1147  
1148  	queue_work_on(cpu, system_wq, &sscs.work);
1149  	wait_for_completion(&sscs.done);
1150  	destroy_work_on_stack(&sscs.work);
1151  
1152  	return sscs.ret;
1153  }
1154  EXPORT_SYMBOL_GPL(smp_call_on_cpu);
1155