1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/signal.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 8 * 9 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 10 * Changes to use preallocated sigqueue structures 11 * to allow signals to be sent reliably. 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/user.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/sched/cputime.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/mm.h> 26 #include <linux/proc_fs.h> 27 #include <linux/tty.h> 28 #include <linux/binfmts.h> 29 #include <linux/coredump.h> 30 #include <linux/security.h> 31 #include <linux/syscalls.h> 32 #include <linux/ptrace.h> 33 #include <linux/signal.h> 34 #include <linux/signalfd.h> 35 #include <linux/ratelimit.h> 36 #include <linux/task_work.h> 37 #include <linux/capability.h> 38 #include <linux/freezer.h> 39 #include <linux/pid_namespace.h> 40 #include <linux/nsproxy.h> 41 #include <linux/user_namespace.h> 42 #include <linux/uprobes.h> 43 #include <linux/compat.h> 44 #include <linux/cn_proc.h> 45 #include <linux/compiler.h> 46 #include <linux/posix-timers.h> 47 #include <linux/cgroup.h> 48 #include <linux/audit.h> 49 #include <linux/sysctl.h> 50 #include <uapi/linux/pidfd.h> 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/signal.h> 54 55 #include <asm/param.h> 56 #include <linux/uaccess.h> 57 #include <asm/unistd.h> 58 #include <asm/siginfo.h> 59 #include <asm/cacheflush.h> 60 #include <asm/syscall.h> /* for syscall_get_* */ 61 62 #include "time/posix-timers.h" 63 64 /* 65 * SLAB caches for signal bits. 66 */ 67 68 static struct kmem_cache *sigqueue_cachep; 69 70 int print_fatal_signals __read_mostly; 71 72 static void __user *sig_handler(struct task_struct *t, int sig) 73 { 74 return t->sighand->action[sig - 1].sa.sa_handler; 75 } 76 77 static inline bool sig_handler_ignored(void __user *handler, int sig) 78 { 79 /* Is it explicitly or implicitly ignored? */ 80 return handler == SIG_IGN || 81 (handler == SIG_DFL && sig_kernel_ignore(sig)); 82 } 83 84 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 85 { 86 void __user *handler; 87 88 handler = sig_handler(t, sig); 89 90 /* SIGKILL and SIGSTOP may not be sent to the global init */ 91 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 92 return true; 93 94 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 95 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 96 return true; 97 98 /* Only allow kernel generated signals to this kthread */ 99 if (unlikely((t->flags & PF_KTHREAD) && 100 (handler == SIG_KTHREAD_KERNEL) && !force)) 101 return true; 102 103 return sig_handler_ignored(handler, sig); 104 } 105 106 static bool sig_ignored(struct task_struct *t, int sig, bool force) 107 { 108 /* 109 * Blocked signals are never ignored, since the 110 * signal handler may change by the time it is 111 * unblocked. 112 */ 113 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 114 return false; 115 116 /* 117 * Tracers may want to know about even ignored signal unless it 118 * is SIGKILL which can't be reported anyway but can be ignored 119 * by SIGNAL_UNKILLABLE task. 120 */ 121 if (t->ptrace && sig != SIGKILL) 122 return false; 123 124 return sig_task_ignored(t, sig, force); 125 } 126 127 /* 128 * Re-calculate pending state from the set of locally pending 129 * signals, globally pending signals, and blocked signals. 130 */ 131 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 132 { 133 unsigned long ready; 134 long i; 135 136 switch (_NSIG_WORDS) { 137 default: 138 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 139 ready |= signal->sig[i] &~ blocked->sig[i]; 140 break; 141 142 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 143 ready |= signal->sig[2] &~ blocked->sig[2]; 144 ready |= signal->sig[1] &~ blocked->sig[1]; 145 ready |= signal->sig[0] &~ blocked->sig[0]; 146 break; 147 148 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 149 ready |= signal->sig[0] &~ blocked->sig[0]; 150 break; 151 152 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 153 } 154 return ready != 0; 155 } 156 157 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 158 159 static bool recalc_sigpending_tsk(struct task_struct *t) 160 { 161 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || 162 PENDING(&t->pending, &t->blocked) || 163 PENDING(&t->signal->shared_pending, &t->blocked) || 164 cgroup_task_frozen(t)) { 165 set_tsk_thread_flag(t, TIF_SIGPENDING); 166 return true; 167 } 168 169 /* 170 * We must never clear the flag in another thread, or in current 171 * when it's possible the current syscall is returning -ERESTART*. 172 * So we don't clear it here, and only callers who know they should do. 173 */ 174 return false; 175 } 176 177 void recalc_sigpending(void) 178 { 179 if (!recalc_sigpending_tsk(current) && !freezing(current)) 180 clear_thread_flag(TIF_SIGPENDING); 181 182 } 183 EXPORT_SYMBOL(recalc_sigpending); 184 185 void calculate_sigpending(void) 186 { 187 /* Have any signals or users of TIF_SIGPENDING been delayed 188 * until after fork? 189 */ 190 spin_lock_irq(¤t->sighand->siglock); 191 set_tsk_thread_flag(current, TIF_SIGPENDING); 192 recalc_sigpending(); 193 spin_unlock_irq(¤t->sighand->siglock); 194 } 195 196 /* Given the mask, find the first available signal that should be serviced. */ 197 198 #define SYNCHRONOUS_MASK \ 199 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 200 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 201 202 int next_signal(struct sigpending *pending, sigset_t *mask) 203 { 204 unsigned long i, *s, *m, x; 205 int sig = 0; 206 207 s = pending->signal.sig; 208 m = mask->sig; 209 210 /* 211 * Handle the first word specially: it contains the 212 * synchronous signals that need to be dequeued first. 213 */ 214 x = *s &~ *m; 215 if (x) { 216 if (x & SYNCHRONOUS_MASK) 217 x &= SYNCHRONOUS_MASK; 218 sig = ffz(~x) + 1; 219 return sig; 220 } 221 222 switch (_NSIG_WORDS) { 223 default: 224 for (i = 1; i < _NSIG_WORDS; ++i) { 225 x = *++s &~ *++m; 226 if (!x) 227 continue; 228 sig = ffz(~x) + i*_NSIG_BPW + 1; 229 break; 230 } 231 break; 232 233 case 2: 234 x = s[1] &~ m[1]; 235 if (!x) 236 break; 237 sig = ffz(~x) + _NSIG_BPW + 1; 238 break; 239 240 case 1: 241 /* Nothing to do */ 242 break; 243 } 244 245 return sig; 246 } 247 248 static inline void print_dropped_signal(int sig) 249 { 250 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 251 252 if (!print_fatal_signals) 253 return; 254 255 if (!__ratelimit(&ratelimit_state)) 256 return; 257 258 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 259 current->comm, current->pid, sig); 260 } 261 262 /** 263 * task_set_jobctl_pending - set jobctl pending bits 264 * @task: target task 265 * @mask: pending bits to set 266 * 267 * Clear @mask from @task->jobctl. @mask must be subset of 268 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 269 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 270 * cleared. If @task is already being killed or exiting, this function 271 * becomes noop. 272 * 273 * CONTEXT: 274 * Must be called with @task->sighand->siglock held. 275 * 276 * RETURNS: 277 * %true if @mask is set, %false if made noop because @task was dying. 278 */ 279 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 280 { 281 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 282 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 283 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 284 285 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 286 return false; 287 288 if (mask & JOBCTL_STOP_SIGMASK) 289 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 290 291 task->jobctl |= mask; 292 return true; 293 } 294 295 /** 296 * task_clear_jobctl_trapping - clear jobctl trapping bit 297 * @task: target task 298 * 299 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 300 * Clear it and wake up the ptracer. Note that we don't need any further 301 * locking. @task->siglock guarantees that @task->parent points to the 302 * ptracer. 303 * 304 * CONTEXT: 305 * Must be called with @task->sighand->siglock held. 306 */ 307 void task_clear_jobctl_trapping(struct task_struct *task) 308 { 309 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 310 task->jobctl &= ~JOBCTL_TRAPPING; 311 smp_mb(); /* advised by wake_up_bit() */ 312 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 313 } 314 } 315 316 /** 317 * task_clear_jobctl_pending - clear jobctl pending bits 318 * @task: target task 319 * @mask: pending bits to clear 320 * 321 * Clear @mask from @task->jobctl. @mask must be subset of 322 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 323 * STOP bits are cleared together. 324 * 325 * If clearing of @mask leaves no stop or trap pending, this function calls 326 * task_clear_jobctl_trapping(). 327 * 328 * CONTEXT: 329 * Must be called with @task->sighand->siglock held. 330 */ 331 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 332 { 333 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 334 335 if (mask & JOBCTL_STOP_PENDING) 336 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 337 338 task->jobctl &= ~mask; 339 340 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 341 task_clear_jobctl_trapping(task); 342 } 343 344 /** 345 * task_participate_group_stop - participate in a group stop 346 * @task: task participating in a group stop 347 * 348 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 349 * Group stop states are cleared and the group stop count is consumed if 350 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 351 * stop, the appropriate `SIGNAL_*` flags are set. 352 * 353 * CONTEXT: 354 * Must be called with @task->sighand->siglock held. 355 * 356 * RETURNS: 357 * %true if group stop completion should be notified to the parent, %false 358 * otherwise. 359 */ 360 static bool task_participate_group_stop(struct task_struct *task) 361 { 362 struct signal_struct *sig = task->signal; 363 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 364 365 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 366 367 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 368 369 if (!consume) 370 return false; 371 372 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 373 sig->group_stop_count--; 374 375 /* 376 * Tell the caller to notify completion iff we are entering into a 377 * fresh group stop. Read comment in do_signal_stop() for details. 378 */ 379 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 380 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 381 return true; 382 } 383 return false; 384 } 385 386 void task_join_group_stop(struct task_struct *task) 387 { 388 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK; 389 struct signal_struct *sig = current->signal; 390 391 if (sig->group_stop_count) { 392 sig->group_stop_count++; 393 mask |= JOBCTL_STOP_CONSUME; 394 } else if (!(sig->flags & SIGNAL_STOP_STOPPED)) 395 return; 396 397 /* Have the new thread join an on-going signal group stop */ 398 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING); 399 } 400 401 static struct ucounts *sig_get_ucounts(struct task_struct *t, int sig, 402 int override_rlimit) 403 { 404 struct ucounts *ucounts; 405 long sigpending; 406 407 /* 408 * Protect access to @t credentials. This can go away when all 409 * callers hold rcu read lock. 410 * 411 * NOTE! A pending signal will hold on to the user refcount, 412 * and we get/put the refcount only when the sigpending count 413 * changes from/to zero. 414 */ 415 rcu_read_lock(); 416 ucounts = task_ucounts(t); 417 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING, 418 override_rlimit); 419 rcu_read_unlock(); 420 if (!sigpending) 421 return NULL; 422 423 if (unlikely(!override_rlimit && sigpending > task_rlimit(t, RLIMIT_SIGPENDING))) { 424 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 425 print_dropped_signal(sig); 426 return NULL; 427 } 428 429 return ucounts; 430 } 431 432 static void __sigqueue_init(struct sigqueue *q, struct ucounts *ucounts, 433 const unsigned int sigqueue_flags) 434 { 435 INIT_LIST_HEAD(&q->list); 436 q->flags = sigqueue_flags; 437 q->ucounts = ucounts; 438 } 439 440 /* 441 * allocate a new signal queue record 442 * - this may be called without locks if and only if t == current, otherwise an 443 * appropriate lock must be held to stop the target task from exiting 444 */ 445 static struct sigqueue *sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags, 446 int override_rlimit) 447 { 448 struct ucounts *ucounts = sig_get_ucounts(t, sig, override_rlimit); 449 struct sigqueue *q; 450 451 if (!ucounts) 452 return NULL; 453 454 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags); 455 if (!q) { 456 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 457 return NULL; 458 } 459 460 __sigqueue_init(q, ucounts, 0); 461 return q; 462 } 463 464 static void __sigqueue_free(struct sigqueue *q) 465 { 466 if (q->flags & SIGQUEUE_PREALLOC) { 467 posixtimer_sigqueue_putref(q); 468 return; 469 } 470 if (q->ucounts) { 471 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING); 472 q->ucounts = NULL; 473 } 474 kmem_cache_free(sigqueue_cachep, q); 475 } 476 477 void flush_sigqueue(struct sigpending *queue) 478 { 479 struct sigqueue *q; 480 481 sigemptyset(&queue->signal); 482 while (!list_empty(&queue->list)) { 483 q = list_entry(queue->list.next, struct sigqueue , list); 484 list_del_init(&q->list); 485 __sigqueue_free(q); 486 } 487 } 488 489 /* 490 * Flush all pending signals for this kthread. 491 */ 492 void flush_signals(struct task_struct *t) 493 { 494 unsigned long flags; 495 496 spin_lock_irqsave(&t->sighand->siglock, flags); 497 clear_tsk_thread_flag(t, TIF_SIGPENDING); 498 flush_sigqueue(&t->pending); 499 flush_sigqueue(&t->signal->shared_pending); 500 spin_unlock_irqrestore(&t->sighand->siglock, flags); 501 } 502 EXPORT_SYMBOL(flush_signals); 503 504 void ignore_signals(struct task_struct *t) 505 { 506 int i; 507 508 for (i = 0; i < _NSIG; ++i) 509 t->sighand->action[i].sa.sa_handler = SIG_IGN; 510 511 flush_signals(t); 512 } 513 514 /* 515 * Flush all handlers for a task. 516 */ 517 518 void 519 flush_signal_handlers(struct task_struct *t, int force_default) 520 { 521 int i; 522 struct k_sigaction *ka = &t->sighand->action[0]; 523 for (i = _NSIG ; i != 0 ; i--) { 524 if (force_default || ka->sa.sa_handler != SIG_IGN) 525 ka->sa.sa_handler = SIG_DFL; 526 ka->sa.sa_flags = 0; 527 #ifdef __ARCH_HAS_SA_RESTORER 528 ka->sa.sa_restorer = NULL; 529 #endif 530 sigemptyset(&ka->sa.sa_mask); 531 ka++; 532 } 533 } 534 535 bool unhandled_signal(struct task_struct *tsk, int sig) 536 { 537 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 538 if (is_global_init(tsk)) 539 return true; 540 541 if (handler != SIG_IGN && handler != SIG_DFL) 542 return false; 543 544 /* If dying, we handle all new signals by ignoring them */ 545 if (fatal_signal_pending(tsk)) 546 return false; 547 548 /* if ptraced, let the tracer determine */ 549 return !tsk->ptrace; 550 } 551 552 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 553 struct sigqueue **timer_sigq) 554 { 555 struct sigqueue *q, *first = NULL; 556 557 /* 558 * Collect the siginfo appropriate to this signal. Check if 559 * there is another siginfo for the same signal. 560 */ 561 list_for_each_entry(q, &list->list, list) { 562 if (q->info.si_signo == sig) { 563 if (first) 564 goto still_pending; 565 first = q; 566 } 567 } 568 569 sigdelset(&list->signal, sig); 570 571 if (first) { 572 still_pending: 573 list_del_init(&first->list); 574 copy_siginfo(info, &first->info); 575 576 /* 577 * posix-timer signals are preallocated and freed when the last 578 * reference count is dropped in posixtimer_deliver_signal() or 579 * immediately on timer deletion when the signal is not pending. 580 * Spare the extra round through __sigqueue_free() which is 581 * ignoring preallocated signals. 582 */ 583 if (unlikely((first->flags & SIGQUEUE_PREALLOC) && (info->si_code == SI_TIMER))) 584 *timer_sigq = first; 585 else 586 __sigqueue_free(first); 587 } else { 588 /* 589 * Ok, it wasn't in the queue. This must be 590 * a fast-pathed signal or we must have been 591 * out of queue space. So zero out the info. 592 */ 593 clear_siginfo(info); 594 info->si_signo = sig; 595 info->si_errno = 0; 596 info->si_code = SI_USER; 597 info->si_pid = 0; 598 info->si_uid = 0; 599 } 600 } 601 602 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 603 kernel_siginfo_t *info, struct sigqueue **timer_sigq) 604 { 605 int sig = next_signal(pending, mask); 606 607 if (sig) 608 collect_signal(sig, pending, info, timer_sigq); 609 return sig; 610 } 611 612 /* 613 * Try to dequeue a signal. If a deliverable signal is found fill in the 614 * caller provided siginfo and return the signal number. Otherwise return 615 * 0. 616 */ 617 int dequeue_signal(sigset_t *mask, kernel_siginfo_t *info, enum pid_type *type) 618 { 619 struct task_struct *tsk = current; 620 struct sigqueue *timer_sigq; 621 int signr; 622 623 lockdep_assert_held(&tsk->sighand->siglock); 624 625 again: 626 *type = PIDTYPE_PID; 627 timer_sigq = NULL; 628 signr = __dequeue_signal(&tsk->pending, mask, info, &timer_sigq); 629 if (!signr) { 630 *type = PIDTYPE_TGID; 631 signr = __dequeue_signal(&tsk->signal->shared_pending, 632 mask, info, &timer_sigq); 633 634 if (unlikely(signr == SIGALRM)) 635 posixtimer_rearm_itimer(tsk); 636 } 637 638 recalc_sigpending(); 639 if (!signr) 640 return 0; 641 642 if (unlikely(sig_kernel_stop(signr))) { 643 /* 644 * Set a marker that we have dequeued a stop signal. Our 645 * caller might release the siglock and then the pending 646 * stop signal it is about to process is no longer in the 647 * pending bitmasks, but must still be cleared by a SIGCONT 648 * (and overruled by a SIGKILL). So those cases clear this 649 * shared flag after we've set it. Note that this flag may 650 * remain set after the signal we return is ignored or 651 * handled. That doesn't matter because its only purpose 652 * is to alert stop-signal processing code when another 653 * processor has come along and cleared the flag. 654 */ 655 current->jobctl |= JOBCTL_STOP_DEQUEUED; 656 } 657 658 if (IS_ENABLED(CONFIG_POSIX_TIMERS) && unlikely(timer_sigq)) { 659 if (!posixtimer_deliver_signal(info, timer_sigq)) 660 goto again; 661 } 662 663 return signr; 664 } 665 EXPORT_SYMBOL_GPL(dequeue_signal); 666 667 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 668 { 669 struct task_struct *tsk = current; 670 struct sigpending *pending = &tsk->pending; 671 struct sigqueue *q, *sync = NULL; 672 673 /* 674 * Might a synchronous signal be in the queue? 675 */ 676 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 677 return 0; 678 679 /* 680 * Return the first synchronous signal in the queue. 681 */ 682 list_for_each_entry(q, &pending->list, list) { 683 /* Synchronous signals have a positive si_code */ 684 if ((q->info.si_code > SI_USER) && 685 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 686 sync = q; 687 goto next; 688 } 689 } 690 return 0; 691 next: 692 /* 693 * Check if there is another siginfo for the same signal. 694 */ 695 list_for_each_entry_continue(q, &pending->list, list) { 696 if (q->info.si_signo == sync->info.si_signo) 697 goto still_pending; 698 } 699 700 sigdelset(&pending->signal, sync->info.si_signo); 701 recalc_sigpending(); 702 still_pending: 703 list_del_init(&sync->list); 704 copy_siginfo(info, &sync->info); 705 __sigqueue_free(sync); 706 return info->si_signo; 707 } 708 709 /* 710 * Tell a process that it has a new active signal.. 711 * 712 * NOTE! we rely on the previous spin_lock to 713 * lock interrupts for us! We can only be called with 714 * "siglock" held, and the local interrupt must 715 * have been disabled when that got acquired! 716 * 717 * No need to set need_resched since signal event passing 718 * goes through ->blocked 719 */ 720 void signal_wake_up_state(struct task_struct *t, unsigned int state) 721 { 722 lockdep_assert_held(&t->sighand->siglock); 723 724 set_tsk_thread_flag(t, TIF_SIGPENDING); 725 726 /* 727 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 728 * case. We don't check t->state here because there is a race with it 729 * executing another processor and just now entering stopped state. 730 * By using wake_up_state, we ensure the process will wake up and 731 * handle its death signal. 732 */ 733 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 734 kick_process(t); 735 } 736 737 static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q); 738 739 static void sigqueue_free_ignored(struct task_struct *tsk, struct sigqueue *q) 740 { 741 if (likely(!(q->flags & SIGQUEUE_PREALLOC) || q->info.si_code != SI_TIMER)) 742 __sigqueue_free(q); 743 else 744 posixtimer_sig_ignore(tsk, q); 745 } 746 747 /* Remove signals in mask from the pending set and queue. */ 748 static void flush_sigqueue_mask(struct task_struct *p, sigset_t *mask, struct sigpending *s) 749 { 750 struct sigqueue *q, *n; 751 sigset_t m; 752 753 lockdep_assert_held(&p->sighand->siglock); 754 755 sigandsets(&m, mask, &s->signal); 756 if (sigisemptyset(&m)) 757 return; 758 759 sigandnsets(&s->signal, &s->signal, mask); 760 list_for_each_entry_safe(q, n, &s->list, list) { 761 if (sigismember(mask, q->info.si_signo)) { 762 list_del_init(&q->list); 763 sigqueue_free_ignored(p, q); 764 } 765 } 766 } 767 768 static inline int is_si_special(const struct kernel_siginfo *info) 769 { 770 return info <= SEND_SIG_PRIV; 771 } 772 773 static inline bool si_fromuser(const struct kernel_siginfo *info) 774 { 775 return info == SEND_SIG_NOINFO || 776 (!is_si_special(info) && SI_FROMUSER(info)); 777 } 778 779 /* 780 * called with RCU read lock from check_kill_permission() 781 */ 782 static bool kill_ok_by_cred(struct task_struct *t) 783 { 784 const struct cred *cred = current_cred(); 785 const struct cred *tcred = __task_cred(t); 786 787 return uid_eq(cred->euid, tcred->suid) || 788 uid_eq(cred->euid, tcred->uid) || 789 uid_eq(cred->uid, tcred->suid) || 790 uid_eq(cred->uid, tcred->uid) || 791 ns_capable(tcred->user_ns, CAP_KILL); 792 } 793 794 /* 795 * Bad permissions for sending the signal 796 * - the caller must hold the RCU read lock 797 */ 798 static int check_kill_permission(int sig, struct kernel_siginfo *info, 799 struct task_struct *t) 800 { 801 struct pid *sid; 802 int error; 803 804 if (!valid_signal(sig)) 805 return -EINVAL; 806 807 if (!si_fromuser(info)) 808 return 0; 809 810 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 811 if (error) 812 return error; 813 814 if (!same_thread_group(current, t) && 815 !kill_ok_by_cred(t)) { 816 switch (sig) { 817 case SIGCONT: 818 sid = task_session(t); 819 /* 820 * We don't return the error if sid == NULL. The 821 * task was unhashed, the caller must notice this. 822 */ 823 if (!sid || sid == task_session(current)) 824 break; 825 fallthrough; 826 default: 827 return -EPERM; 828 } 829 } 830 831 return security_task_kill(t, info, sig, NULL); 832 } 833 834 /** 835 * ptrace_trap_notify - schedule trap to notify ptracer 836 * @t: tracee wanting to notify tracer 837 * 838 * This function schedules sticky ptrace trap which is cleared on the next 839 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 840 * ptracer. 841 * 842 * If @t is running, STOP trap will be taken. If trapped for STOP and 843 * ptracer is listening for events, tracee is woken up so that it can 844 * re-trap for the new event. If trapped otherwise, STOP trap will be 845 * eventually taken without returning to userland after the existing traps 846 * are finished by PTRACE_CONT. 847 * 848 * CONTEXT: 849 * Must be called with @task->sighand->siglock held. 850 */ 851 static void ptrace_trap_notify(struct task_struct *t) 852 { 853 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 854 lockdep_assert_held(&t->sighand->siglock); 855 856 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 857 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 858 } 859 860 /* 861 * Handle magic process-wide effects of stop/continue signals. Unlike 862 * the signal actions, these happen immediately at signal-generation 863 * time regardless of blocking, ignoring, or handling. This does the 864 * actual continuing for SIGCONT, but not the actual stopping for stop 865 * signals. The process stop is done as a signal action for SIG_DFL. 866 * 867 * Returns true if the signal should be actually delivered, otherwise 868 * it should be dropped. 869 */ 870 static bool prepare_signal(int sig, struct task_struct *p, bool force) 871 { 872 struct signal_struct *signal = p->signal; 873 struct task_struct *t; 874 sigset_t flush; 875 876 if (signal->flags & SIGNAL_GROUP_EXIT) { 877 if (signal->core_state) 878 return sig == SIGKILL; 879 /* 880 * The process is in the middle of dying, drop the signal. 881 */ 882 return false; 883 } else if (sig_kernel_stop(sig)) { 884 /* 885 * This is a stop signal. Remove SIGCONT from all queues. 886 */ 887 siginitset(&flush, sigmask(SIGCONT)); 888 flush_sigqueue_mask(p, &flush, &signal->shared_pending); 889 for_each_thread(p, t) 890 flush_sigqueue_mask(p, &flush, &t->pending); 891 } else if (sig == SIGCONT) { 892 unsigned int why; 893 /* 894 * Remove all stop signals from all queues, wake all threads. 895 */ 896 siginitset(&flush, SIG_KERNEL_STOP_MASK); 897 flush_sigqueue_mask(p, &flush, &signal->shared_pending); 898 for_each_thread(p, t) { 899 flush_sigqueue_mask(p, &flush, &t->pending); 900 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 901 if (likely(!(t->ptrace & PT_SEIZED))) { 902 t->jobctl &= ~JOBCTL_STOPPED; 903 wake_up_state(t, __TASK_STOPPED); 904 } else 905 ptrace_trap_notify(t); 906 } 907 908 /* 909 * Notify the parent with CLD_CONTINUED if we were stopped. 910 * 911 * If we were in the middle of a group stop, we pretend it 912 * was already finished, and then continued. Since SIGCHLD 913 * doesn't queue we report only CLD_STOPPED, as if the next 914 * CLD_CONTINUED was dropped. 915 */ 916 why = 0; 917 if (signal->flags & SIGNAL_STOP_STOPPED) 918 why |= SIGNAL_CLD_CONTINUED; 919 else if (signal->group_stop_count) 920 why |= SIGNAL_CLD_STOPPED; 921 922 if (why) { 923 /* 924 * The first thread which returns from do_signal_stop() 925 * will take ->siglock, notice SIGNAL_CLD_MASK, and 926 * notify its parent. See get_signal(). 927 */ 928 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 929 signal->group_stop_count = 0; 930 signal->group_exit_code = 0; 931 } 932 } 933 934 return !sig_ignored(p, sig, force); 935 } 936 937 /* 938 * Test if P wants to take SIG. After we've checked all threads with this, 939 * it's equivalent to finding no threads not blocking SIG. Any threads not 940 * blocking SIG were ruled out because they are not running and already 941 * have pending signals. Such threads will dequeue from the shared queue 942 * as soon as they're available, so putting the signal on the shared queue 943 * will be equivalent to sending it to one such thread. 944 */ 945 static inline bool wants_signal(int sig, struct task_struct *p) 946 { 947 if (sigismember(&p->blocked, sig)) 948 return false; 949 950 if (p->flags & PF_EXITING) 951 return false; 952 953 if (sig == SIGKILL) 954 return true; 955 956 if (task_is_stopped_or_traced(p)) 957 return false; 958 959 return task_curr(p) || !task_sigpending(p); 960 } 961 962 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 963 { 964 struct signal_struct *signal = p->signal; 965 struct task_struct *t; 966 967 /* 968 * Now find a thread we can wake up to take the signal off the queue. 969 * 970 * Try the suggested task first (may or may not be the main thread). 971 */ 972 if (wants_signal(sig, p)) 973 t = p; 974 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 975 /* 976 * There is just one thread and it does not need to be woken. 977 * It will dequeue unblocked signals before it runs again. 978 */ 979 return; 980 else { 981 /* 982 * Otherwise try to find a suitable thread. 983 */ 984 t = signal->curr_target; 985 while (!wants_signal(sig, t)) { 986 t = next_thread(t); 987 if (t == signal->curr_target) 988 /* 989 * No thread needs to be woken. 990 * Any eligible threads will see 991 * the signal in the queue soon. 992 */ 993 return; 994 } 995 signal->curr_target = t; 996 } 997 998 /* 999 * Found a killable thread. If the signal will be fatal, 1000 * then start taking the whole group down immediately. 1001 */ 1002 if (sig_fatal(p, sig) && 1003 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) && 1004 !sigismember(&t->real_blocked, sig) && 1005 (sig == SIGKILL || !p->ptrace)) { 1006 /* 1007 * This signal will be fatal to the whole group. 1008 */ 1009 if (!sig_kernel_coredump(sig)) { 1010 /* 1011 * Start a group exit and wake everybody up. 1012 * This way we don't have other threads 1013 * running and doing things after a slower 1014 * thread has the fatal signal pending. 1015 */ 1016 signal->flags = SIGNAL_GROUP_EXIT; 1017 signal->group_exit_code = sig; 1018 signal->group_stop_count = 0; 1019 __for_each_thread(signal, t) { 1020 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1021 sigaddset(&t->pending.signal, SIGKILL); 1022 signal_wake_up(t, 1); 1023 } 1024 return; 1025 } 1026 } 1027 1028 /* 1029 * The signal is already in the shared-pending queue. 1030 * Tell the chosen thread to wake up and dequeue it. 1031 */ 1032 signal_wake_up(t, sig == SIGKILL); 1033 return; 1034 } 1035 1036 static inline bool legacy_queue(struct sigpending *signals, int sig) 1037 { 1038 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1039 } 1040 1041 static int __send_signal_locked(int sig, struct kernel_siginfo *info, 1042 struct task_struct *t, enum pid_type type, bool force) 1043 { 1044 struct sigpending *pending; 1045 struct sigqueue *q; 1046 int override_rlimit; 1047 int ret = 0, result; 1048 1049 lockdep_assert_held(&t->sighand->siglock); 1050 1051 result = TRACE_SIGNAL_IGNORED; 1052 if (!prepare_signal(sig, t, force)) 1053 goto ret; 1054 1055 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1056 /* 1057 * Short-circuit ignored signals and support queuing 1058 * exactly one non-rt signal, so that we can get more 1059 * detailed information about the cause of the signal. 1060 */ 1061 result = TRACE_SIGNAL_ALREADY_PENDING; 1062 if (legacy_queue(pending, sig)) 1063 goto ret; 1064 1065 result = TRACE_SIGNAL_DELIVERED; 1066 /* 1067 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1068 */ 1069 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1070 goto out_set; 1071 1072 /* 1073 * Real-time signals must be queued if sent by sigqueue, or 1074 * some other real-time mechanism. It is implementation 1075 * defined whether kill() does so. We attempt to do so, on 1076 * the principle of least surprise, but since kill is not 1077 * allowed to fail with EAGAIN when low on memory we just 1078 * make sure at least one signal gets delivered and don't 1079 * pass on the info struct. 1080 */ 1081 if (sig < SIGRTMIN) 1082 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1083 else 1084 override_rlimit = 0; 1085 1086 q = sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit); 1087 1088 if (q) { 1089 list_add_tail(&q->list, &pending->list); 1090 switch ((unsigned long) info) { 1091 case (unsigned long) SEND_SIG_NOINFO: 1092 clear_siginfo(&q->info); 1093 q->info.si_signo = sig; 1094 q->info.si_errno = 0; 1095 q->info.si_code = SI_USER; 1096 q->info.si_pid = task_tgid_nr_ns(current, 1097 task_active_pid_ns(t)); 1098 rcu_read_lock(); 1099 q->info.si_uid = 1100 from_kuid_munged(task_cred_xxx(t, user_ns), 1101 current_uid()); 1102 rcu_read_unlock(); 1103 break; 1104 case (unsigned long) SEND_SIG_PRIV: 1105 clear_siginfo(&q->info); 1106 q->info.si_signo = sig; 1107 q->info.si_errno = 0; 1108 q->info.si_code = SI_KERNEL; 1109 q->info.si_pid = 0; 1110 q->info.si_uid = 0; 1111 break; 1112 default: 1113 copy_siginfo(&q->info, info); 1114 break; 1115 } 1116 } else if (!is_si_special(info) && 1117 sig >= SIGRTMIN && info->si_code != SI_USER) { 1118 /* 1119 * Queue overflow, abort. We may abort if the 1120 * signal was rt and sent by user using something 1121 * other than kill(). 1122 */ 1123 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1124 ret = -EAGAIN; 1125 goto ret; 1126 } else { 1127 /* 1128 * This is a silent loss of information. We still 1129 * send the signal, but the *info bits are lost. 1130 */ 1131 result = TRACE_SIGNAL_LOSE_INFO; 1132 } 1133 1134 out_set: 1135 signalfd_notify(t, sig); 1136 sigaddset(&pending->signal, sig); 1137 1138 /* Let multiprocess signals appear after on-going forks */ 1139 if (type > PIDTYPE_TGID) { 1140 struct multiprocess_signals *delayed; 1141 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1142 sigset_t *signal = &delayed->signal; 1143 /* Can't queue both a stop and a continue signal */ 1144 if (sig == SIGCONT) 1145 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1146 else if (sig_kernel_stop(sig)) 1147 sigdelset(signal, SIGCONT); 1148 sigaddset(signal, sig); 1149 } 1150 } 1151 1152 complete_signal(sig, t, type); 1153 ret: 1154 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1155 return ret; 1156 } 1157 1158 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) 1159 { 1160 bool ret = false; 1161 switch (siginfo_layout(info->si_signo, info->si_code)) { 1162 case SIL_KILL: 1163 case SIL_CHLD: 1164 case SIL_RT: 1165 ret = true; 1166 break; 1167 case SIL_TIMER: 1168 case SIL_POLL: 1169 case SIL_FAULT: 1170 case SIL_FAULT_TRAPNO: 1171 case SIL_FAULT_MCEERR: 1172 case SIL_FAULT_BNDERR: 1173 case SIL_FAULT_PKUERR: 1174 case SIL_FAULT_PERF_EVENT: 1175 case SIL_SYS: 1176 ret = false; 1177 break; 1178 } 1179 return ret; 1180 } 1181 1182 int send_signal_locked(int sig, struct kernel_siginfo *info, 1183 struct task_struct *t, enum pid_type type) 1184 { 1185 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ 1186 bool force = false; 1187 1188 if (info == SEND_SIG_NOINFO) { 1189 /* Force if sent from an ancestor pid namespace */ 1190 force = !task_pid_nr_ns(current, task_active_pid_ns(t)); 1191 } else if (info == SEND_SIG_PRIV) { 1192 /* Don't ignore kernel generated signals */ 1193 force = true; 1194 } else if (has_si_pid_and_uid(info)) { 1195 /* SIGKILL and SIGSTOP is special or has ids */ 1196 struct user_namespace *t_user_ns; 1197 1198 rcu_read_lock(); 1199 t_user_ns = task_cred_xxx(t, user_ns); 1200 if (current_user_ns() != t_user_ns) { 1201 kuid_t uid = make_kuid(current_user_ns(), info->si_uid); 1202 info->si_uid = from_kuid_munged(t_user_ns, uid); 1203 } 1204 rcu_read_unlock(); 1205 1206 /* A kernel generated signal? */ 1207 force = (info->si_code == SI_KERNEL); 1208 1209 /* From an ancestor pid namespace? */ 1210 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { 1211 info->si_pid = 0; 1212 force = true; 1213 } 1214 } 1215 return __send_signal_locked(sig, info, t, type, force); 1216 } 1217 1218 static void print_fatal_signal(int signr) 1219 { 1220 struct pt_regs *regs = task_pt_regs(current); 1221 struct file *exe_file; 1222 1223 exe_file = get_task_exe_file(current); 1224 if (exe_file) { 1225 pr_info("%pD: %s: potentially unexpected fatal signal %d.\n", 1226 exe_file, current->comm, signr); 1227 fput(exe_file); 1228 } else { 1229 pr_info("%s: potentially unexpected fatal signal %d.\n", 1230 current->comm, signr); 1231 } 1232 1233 #if defined(__i386__) && !defined(__arch_um__) 1234 pr_info("code at %08lx: ", regs->ip); 1235 { 1236 int i; 1237 for (i = 0; i < 16; i++) { 1238 unsigned char insn; 1239 1240 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1241 break; 1242 pr_cont("%02x ", insn); 1243 } 1244 } 1245 pr_cont("\n"); 1246 #endif 1247 preempt_disable(); 1248 show_regs(regs); 1249 preempt_enable(); 1250 } 1251 1252 static int __init setup_print_fatal_signals(char *str) 1253 { 1254 get_option (&str, &print_fatal_signals); 1255 1256 return 1; 1257 } 1258 1259 __setup("print-fatal-signals=", setup_print_fatal_signals); 1260 1261 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1262 enum pid_type type) 1263 { 1264 unsigned long flags; 1265 int ret = -ESRCH; 1266 1267 if (lock_task_sighand(p, &flags)) { 1268 ret = send_signal_locked(sig, info, p, type); 1269 unlock_task_sighand(p, &flags); 1270 } 1271 1272 return ret; 1273 } 1274 1275 enum sig_handler { 1276 HANDLER_CURRENT, /* If reachable use the current handler */ 1277 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */ 1278 HANDLER_EXIT, /* Only visible as the process exit code */ 1279 }; 1280 1281 /* 1282 * Force a signal that the process can't ignore: if necessary 1283 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1284 * 1285 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1286 * since we do not want to have a signal handler that was blocked 1287 * be invoked when user space had explicitly blocked it. 1288 * 1289 * We don't want to have recursive SIGSEGV's etc, for example, 1290 * that is why we also clear SIGNAL_UNKILLABLE. 1291 */ 1292 static int 1293 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t, 1294 enum sig_handler handler) 1295 { 1296 unsigned long int flags; 1297 int ret, blocked, ignored; 1298 struct k_sigaction *action; 1299 int sig = info->si_signo; 1300 1301 spin_lock_irqsave(&t->sighand->siglock, flags); 1302 action = &t->sighand->action[sig-1]; 1303 ignored = action->sa.sa_handler == SIG_IGN; 1304 blocked = sigismember(&t->blocked, sig); 1305 if (blocked || ignored || (handler != HANDLER_CURRENT)) { 1306 action->sa.sa_handler = SIG_DFL; 1307 if (handler == HANDLER_EXIT) 1308 action->sa.sa_flags |= SA_IMMUTABLE; 1309 if (blocked) 1310 sigdelset(&t->blocked, sig); 1311 } 1312 /* 1313 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1314 * debugging to leave init killable. But HANDLER_EXIT is always fatal. 1315 */ 1316 if (action->sa.sa_handler == SIG_DFL && 1317 (!t->ptrace || (handler == HANDLER_EXIT))) 1318 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1319 ret = send_signal_locked(sig, info, t, PIDTYPE_PID); 1320 /* This can happen if the signal was already pending and blocked */ 1321 if (!task_sigpending(t)) 1322 signal_wake_up(t, 0); 1323 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1324 1325 return ret; 1326 } 1327 1328 int force_sig_info(struct kernel_siginfo *info) 1329 { 1330 return force_sig_info_to_task(info, current, HANDLER_CURRENT); 1331 } 1332 1333 /* 1334 * Nuke all other threads in the group. 1335 */ 1336 int zap_other_threads(struct task_struct *p) 1337 { 1338 struct task_struct *t; 1339 int count = 0; 1340 1341 p->signal->group_stop_count = 0; 1342 1343 for_other_threads(p, t) { 1344 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1345 count++; 1346 1347 /* Don't bother with already dead threads */ 1348 if (t->exit_state) 1349 continue; 1350 sigaddset(&t->pending.signal, SIGKILL); 1351 signal_wake_up(t, 1); 1352 } 1353 1354 return count; 1355 } 1356 1357 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1358 unsigned long *flags) 1359 { 1360 struct sighand_struct *sighand; 1361 1362 rcu_read_lock(); 1363 for (;;) { 1364 sighand = rcu_dereference(tsk->sighand); 1365 if (unlikely(sighand == NULL)) 1366 break; 1367 1368 /* 1369 * This sighand can be already freed and even reused, but 1370 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1371 * initializes ->siglock: this slab can't go away, it has 1372 * the same object type, ->siglock can't be reinitialized. 1373 * 1374 * We need to ensure that tsk->sighand is still the same 1375 * after we take the lock, we can race with de_thread() or 1376 * __exit_signal(). In the latter case the next iteration 1377 * must see ->sighand == NULL. 1378 */ 1379 spin_lock_irqsave(&sighand->siglock, *flags); 1380 if (likely(sighand == rcu_access_pointer(tsk->sighand))) 1381 break; 1382 spin_unlock_irqrestore(&sighand->siglock, *flags); 1383 } 1384 rcu_read_unlock(); 1385 1386 return sighand; 1387 } 1388 1389 #ifdef CONFIG_LOCKDEP 1390 void lockdep_assert_task_sighand_held(struct task_struct *task) 1391 { 1392 struct sighand_struct *sighand; 1393 1394 rcu_read_lock(); 1395 sighand = rcu_dereference(task->sighand); 1396 if (sighand) 1397 lockdep_assert_held(&sighand->siglock); 1398 else 1399 WARN_ON_ONCE(1); 1400 rcu_read_unlock(); 1401 } 1402 #endif 1403 1404 /* 1405 * send signal info to all the members of a thread group or to the 1406 * individual thread if type == PIDTYPE_PID. 1407 */ 1408 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1409 struct task_struct *p, enum pid_type type) 1410 { 1411 int ret; 1412 1413 rcu_read_lock(); 1414 ret = check_kill_permission(sig, info, p); 1415 rcu_read_unlock(); 1416 1417 if (!ret && sig) 1418 ret = do_send_sig_info(sig, info, p, type); 1419 1420 return ret; 1421 } 1422 1423 /* 1424 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1425 * control characters do (^C, ^Z etc) 1426 * - the caller must hold at least a readlock on tasklist_lock 1427 */ 1428 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1429 { 1430 struct task_struct *p = NULL; 1431 int ret = -ESRCH; 1432 1433 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1434 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1435 /* 1436 * If group_send_sig_info() succeeds at least once ret 1437 * becomes 0 and after that the code below has no effect. 1438 * Otherwise we return the last err or -ESRCH if this 1439 * process group is empty. 1440 */ 1441 if (ret) 1442 ret = err; 1443 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1444 1445 return ret; 1446 } 1447 1448 static int kill_pid_info_type(int sig, struct kernel_siginfo *info, 1449 struct pid *pid, enum pid_type type) 1450 { 1451 int error = -ESRCH; 1452 struct task_struct *p; 1453 1454 for (;;) { 1455 rcu_read_lock(); 1456 p = pid_task(pid, PIDTYPE_PID); 1457 if (p) 1458 error = group_send_sig_info(sig, info, p, type); 1459 rcu_read_unlock(); 1460 if (likely(!p || error != -ESRCH)) 1461 return error; 1462 /* 1463 * The task was unhashed in between, try again. If it 1464 * is dead, pid_task() will return NULL, if we race with 1465 * de_thread() it will find the new leader. 1466 */ 1467 } 1468 } 1469 1470 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1471 { 1472 return kill_pid_info_type(sig, info, pid, PIDTYPE_TGID); 1473 } 1474 1475 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1476 { 1477 int error; 1478 rcu_read_lock(); 1479 error = kill_pid_info(sig, info, find_vpid(pid)); 1480 rcu_read_unlock(); 1481 return error; 1482 } 1483 1484 static inline bool kill_as_cred_perm(const struct cred *cred, 1485 struct task_struct *target) 1486 { 1487 const struct cred *pcred = __task_cred(target); 1488 1489 return uid_eq(cred->euid, pcred->suid) || 1490 uid_eq(cred->euid, pcred->uid) || 1491 uid_eq(cred->uid, pcred->suid) || 1492 uid_eq(cred->uid, pcred->uid); 1493 } 1494 1495 /* 1496 * The usb asyncio usage of siginfo is wrong. The glibc support 1497 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. 1498 * AKA after the generic fields: 1499 * kernel_pid_t si_pid; 1500 * kernel_uid32_t si_uid; 1501 * sigval_t si_value; 1502 * 1503 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout 1504 * after the generic fields is: 1505 * void __user *si_addr; 1506 * 1507 * This is a practical problem when there is a 64bit big endian kernel 1508 * and a 32bit userspace. As the 32bit address will encoded in the low 1509 * 32bits of the pointer. Those low 32bits will be stored at higher 1510 * address than appear in a 32 bit pointer. So userspace will not 1511 * see the address it was expecting for it's completions. 1512 * 1513 * There is nothing in the encoding that can allow 1514 * copy_siginfo_to_user32 to detect this confusion of formats, so 1515 * handle this by requiring the caller of kill_pid_usb_asyncio to 1516 * notice when this situration takes place and to store the 32bit 1517 * pointer in sival_int, instead of sival_addr of the sigval_t addr 1518 * parameter. 1519 */ 1520 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, 1521 struct pid *pid, const struct cred *cred) 1522 { 1523 struct kernel_siginfo info; 1524 struct task_struct *p; 1525 unsigned long flags; 1526 int ret = -EINVAL; 1527 1528 if (!valid_signal(sig)) 1529 return ret; 1530 1531 clear_siginfo(&info); 1532 info.si_signo = sig; 1533 info.si_errno = errno; 1534 info.si_code = SI_ASYNCIO; 1535 *((sigval_t *)&info.si_pid) = addr; 1536 1537 rcu_read_lock(); 1538 p = pid_task(pid, PIDTYPE_PID); 1539 if (!p) { 1540 ret = -ESRCH; 1541 goto out_unlock; 1542 } 1543 if (!kill_as_cred_perm(cred, p)) { 1544 ret = -EPERM; 1545 goto out_unlock; 1546 } 1547 ret = security_task_kill(p, &info, sig, cred); 1548 if (ret) 1549 goto out_unlock; 1550 1551 if (sig) { 1552 if (lock_task_sighand(p, &flags)) { 1553 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false); 1554 unlock_task_sighand(p, &flags); 1555 } else 1556 ret = -ESRCH; 1557 } 1558 out_unlock: 1559 rcu_read_unlock(); 1560 return ret; 1561 } 1562 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); 1563 1564 /* 1565 * kill_something_info() interprets pid in interesting ways just like kill(2). 1566 * 1567 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1568 * is probably wrong. Should make it like BSD or SYSV. 1569 */ 1570 1571 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1572 { 1573 int ret; 1574 1575 if (pid > 0) 1576 return kill_proc_info(sig, info, pid); 1577 1578 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1579 if (pid == INT_MIN) 1580 return -ESRCH; 1581 1582 read_lock(&tasklist_lock); 1583 if (pid != -1) { 1584 ret = __kill_pgrp_info(sig, info, 1585 pid ? find_vpid(-pid) : task_pgrp(current)); 1586 } else { 1587 int retval = 0, count = 0; 1588 struct task_struct * p; 1589 1590 for_each_process(p) { 1591 if (task_pid_vnr(p) > 1 && 1592 !same_thread_group(p, current)) { 1593 int err = group_send_sig_info(sig, info, p, 1594 PIDTYPE_MAX); 1595 ++count; 1596 if (err != -EPERM) 1597 retval = err; 1598 } 1599 } 1600 ret = count ? retval : -ESRCH; 1601 } 1602 read_unlock(&tasklist_lock); 1603 1604 return ret; 1605 } 1606 1607 /* 1608 * These are for backward compatibility with the rest of the kernel source. 1609 */ 1610 1611 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1612 { 1613 /* 1614 * Make sure legacy kernel users don't send in bad values 1615 * (normal paths check this in check_kill_permission). 1616 */ 1617 if (!valid_signal(sig)) 1618 return -EINVAL; 1619 1620 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1621 } 1622 EXPORT_SYMBOL(send_sig_info); 1623 1624 #define __si_special(priv) \ 1625 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1626 1627 int 1628 send_sig(int sig, struct task_struct *p, int priv) 1629 { 1630 return send_sig_info(sig, __si_special(priv), p); 1631 } 1632 EXPORT_SYMBOL(send_sig); 1633 1634 void force_sig(int sig) 1635 { 1636 struct kernel_siginfo info; 1637 1638 clear_siginfo(&info); 1639 info.si_signo = sig; 1640 info.si_errno = 0; 1641 info.si_code = SI_KERNEL; 1642 info.si_pid = 0; 1643 info.si_uid = 0; 1644 force_sig_info(&info); 1645 } 1646 EXPORT_SYMBOL(force_sig); 1647 1648 void force_fatal_sig(int sig) 1649 { 1650 struct kernel_siginfo info; 1651 1652 clear_siginfo(&info); 1653 info.si_signo = sig; 1654 info.si_errno = 0; 1655 info.si_code = SI_KERNEL; 1656 info.si_pid = 0; 1657 info.si_uid = 0; 1658 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL); 1659 } 1660 1661 void force_exit_sig(int sig) 1662 { 1663 struct kernel_siginfo info; 1664 1665 clear_siginfo(&info); 1666 info.si_signo = sig; 1667 info.si_errno = 0; 1668 info.si_code = SI_KERNEL; 1669 info.si_pid = 0; 1670 info.si_uid = 0; 1671 force_sig_info_to_task(&info, current, HANDLER_EXIT); 1672 } 1673 1674 /* 1675 * When things go south during signal handling, we 1676 * will force a SIGSEGV. And if the signal that caused 1677 * the problem was already a SIGSEGV, we'll want to 1678 * make sure we don't even try to deliver the signal.. 1679 */ 1680 void force_sigsegv(int sig) 1681 { 1682 if (sig == SIGSEGV) 1683 force_fatal_sig(SIGSEGV); 1684 else 1685 force_sig(SIGSEGV); 1686 } 1687 1688 int force_sig_fault_to_task(int sig, int code, void __user *addr, 1689 struct task_struct *t) 1690 { 1691 struct kernel_siginfo info; 1692 1693 clear_siginfo(&info); 1694 info.si_signo = sig; 1695 info.si_errno = 0; 1696 info.si_code = code; 1697 info.si_addr = addr; 1698 return force_sig_info_to_task(&info, t, HANDLER_CURRENT); 1699 } 1700 1701 int force_sig_fault(int sig, int code, void __user *addr) 1702 { 1703 return force_sig_fault_to_task(sig, code, addr, current); 1704 } 1705 1706 int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t) 1707 { 1708 struct kernel_siginfo info; 1709 1710 clear_siginfo(&info); 1711 info.si_signo = sig; 1712 info.si_errno = 0; 1713 info.si_code = code; 1714 info.si_addr = addr; 1715 return send_sig_info(info.si_signo, &info, t); 1716 } 1717 1718 int force_sig_mceerr(int code, void __user *addr, short lsb) 1719 { 1720 struct kernel_siginfo info; 1721 1722 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1723 clear_siginfo(&info); 1724 info.si_signo = SIGBUS; 1725 info.si_errno = 0; 1726 info.si_code = code; 1727 info.si_addr = addr; 1728 info.si_addr_lsb = lsb; 1729 return force_sig_info(&info); 1730 } 1731 1732 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1733 { 1734 struct kernel_siginfo info; 1735 1736 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1737 clear_siginfo(&info); 1738 info.si_signo = SIGBUS; 1739 info.si_errno = 0; 1740 info.si_code = code; 1741 info.si_addr = addr; 1742 info.si_addr_lsb = lsb; 1743 return send_sig_info(info.si_signo, &info, t); 1744 } 1745 EXPORT_SYMBOL(send_sig_mceerr); 1746 1747 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1748 { 1749 struct kernel_siginfo info; 1750 1751 clear_siginfo(&info); 1752 info.si_signo = SIGSEGV; 1753 info.si_errno = 0; 1754 info.si_code = SEGV_BNDERR; 1755 info.si_addr = addr; 1756 info.si_lower = lower; 1757 info.si_upper = upper; 1758 return force_sig_info(&info); 1759 } 1760 1761 #ifdef SEGV_PKUERR 1762 int force_sig_pkuerr(void __user *addr, u32 pkey) 1763 { 1764 struct kernel_siginfo info; 1765 1766 clear_siginfo(&info); 1767 info.si_signo = SIGSEGV; 1768 info.si_errno = 0; 1769 info.si_code = SEGV_PKUERR; 1770 info.si_addr = addr; 1771 info.si_pkey = pkey; 1772 return force_sig_info(&info); 1773 } 1774 #endif 1775 1776 int send_sig_perf(void __user *addr, u32 type, u64 sig_data) 1777 { 1778 struct kernel_siginfo info; 1779 1780 clear_siginfo(&info); 1781 info.si_signo = SIGTRAP; 1782 info.si_errno = 0; 1783 info.si_code = TRAP_PERF; 1784 info.si_addr = addr; 1785 info.si_perf_data = sig_data; 1786 info.si_perf_type = type; 1787 1788 /* 1789 * Signals generated by perf events should not terminate the whole 1790 * process if SIGTRAP is blocked, however, delivering the signal 1791 * asynchronously is better than not delivering at all. But tell user 1792 * space if the signal was asynchronous, so it can clearly be 1793 * distinguished from normal synchronous ones. 1794 */ 1795 info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ? 1796 TRAP_PERF_FLAG_ASYNC : 1797 0; 1798 1799 return send_sig_info(info.si_signo, &info, current); 1800 } 1801 1802 /** 1803 * force_sig_seccomp - signals the task to allow in-process syscall emulation 1804 * @syscall: syscall number to send to userland 1805 * @reason: filter-supplied reason code to send to userland (via si_errno) 1806 * @force_coredump: true to trigger a coredump 1807 * 1808 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. 1809 */ 1810 int force_sig_seccomp(int syscall, int reason, bool force_coredump) 1811 { 1812 struct kernel_siginfo info; 1813 1814 clear_siginfo(&info); 1815 info.si_signo = SIGSYS; 1816 info.si_code = SYS_SECCOMP; 1817 info.si_call_addr = (void __user *)KSTK_EIP(current); 1818 info.si_errno = reason; 1819 info.si_arch = syscall_get_arch(current); 1820 info.si_syscall = syscall; 1821 return force_sig_info_to_task(&info, current, 1822 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT); 1823 } 1824 1825 /* For the crazy architectures that include trap information in 1826 * the errno field, instead of an actual errno value. 1827 */ 1828 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1829 { 1830 struct kernel_siginfo info; 1831 1832 clear_siginfo(&info); 1833 info.si_signo = SIGTRAP; 1834 info.si_errno = errno; 1835 info.si_code = TRAP_HWBKPT; 1836 info.si_addr = addr; 1837 return force_sig_info(&info); 1838 } 1839 1840 /* For the rare architectures that include trap information using 1841 * si_trapno. 1842 */ 1843 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno) 1844 { 1845 struct kernel_siginfo info; 1846 1847 clear_siginfo(&info); 1848 info.si_signo = sig; 1849 info.si_errno = 0; 1850 info.si_code = code; 1851 info.si_addr = addr; 1852 info.si_trapno = trapno; 1853 return force_sig_info(&info); 1854 } 1855 1856 /* For the rare architectures that include trap information using 1857 * si_trapno. 1858 */ 1859 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, 1860 struct task_struct *t) 1861 { 1862 struct kernel_siginfo info; 1863 1864 clear_siginfo(&info); 1865 info.si_signo = sig; 1866 info.si_errno = 0; 1867 info.si_code = code; 1868 info.si_addr = addr; 1869 info.si_trapno = trapno; 1870 return send_sig_info(info.si_signo, &info, t); 1871 } 1872 1873 static int kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1874 { 1875 int ret; 1876 read_lock(&tasklist_lock); 1877 ret = __kill_pgrp_info(sig, info, pgrp); 1878 read_unlock(&tasklist_lock); 1879 return ret; 1880 } 1881 1882 int kill_pgrp(struct pid *pid, int sig, int priv) 1883 { 1884 return kill_pgrp_info(sig, __si_special(priv), pid); 1885 } 1886 EXPORT_SYMBOL(kill_pgrp); 1887 1888 int kill_pid(struct pid *pid, int sig, int priv) 1889 { 1890 return kill_pid_info(sig, __si_special(priv), pid); 1891 } 1892 EXPORT_SYMBOL(kill_pid); 1893 1894 #ifdef CONFIG_POSIX_TIMERS 1895 /* 1896 * These functions handle POSIX timer signals. POSIX timers use 1897 * preallocated sigqueue structs for sending signals. 1898 */ 1899 static void __flush_itimer_signals(struct sigpending *pending) 1900 { 1901 sigset_t signal, retain; 1902 struct sigqueue *q, *n; 1903 1904 signal = pending->signal; 1905 sigemptyset(&retain); 1906 1907 list_for_each_entry_safe(q, n, &pending->list, list) { 1908 int sig = q->info.si_signo; 1909 1910 if (likely(q->info.si_code != SI_TIMER)) { 1911 sigaddset(&retain, sig); 1912 } else { 1913 sigdelset(&signal, sig); 1914 list_del_init(&q->list); 1915 __sigqueue_free(q); 1916 } 1917 } 1918 1919 sigorsets(&pending->signal, &signal, &retain); 1920 } 1921 1922 void flush_itimer_signals(void) 1923 { 1924 struct task_struct *tsk = current; 1925 1926 guard(spinlock_irqsave)(&tsk->sighand->siglock); 1927 __flush_itimer_signals(&tsk->pending); 1928 __flush_itimer_signals(&tsk->signal->shared_pending); 1929 } 1930 1931 bool posixtimer_init_sigqueue(struct sigqueue *q) 1932 { 1933 struct ucounts *ucounts = sig_get_ucounts(current, -1, 0); 1934 1935 if (!ucounts) 1936 return false; 1937 clear_siginfo(&q->info); 1938 __sigqueue_init(q, ucounts, SIGQUEUE_PREALLOC); 1939 return true; 1940 } 1941 1942 static void posixtimer_queue_sigqueue(struct sigqueue *q, struct task_struct *t, enum pid_type type) 1943 { 1944 struct sigpending *pending; 1945 int sig = q->info.si_signo; 1946 1947 signalfd_notify(t, sig); 1948 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1949 list_add_tail(&q->list, &pending->list); 1950 sigaddset(&pending->signal, sig); 1951 complete_signal(sig, t, type); 1952 } 1953 1954 /* 1955 * This function is used by POSIX timers to deliver a timer signal. 1956 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID 1957 * set), the signal must be delivered to the specific thread (queues 1958 * into t->pending). 1959 * 1960 * Where type is not PIDTYPE_PID, signals must be delivered to the 1961 * process. In this case, prefer to deliver to current if it is in 1962 * the same thread group as the target process, which avoids 1963 * unnecessarily waking up a potentially idle task. 1964 */ 1965 static inline struct task_struct *posixtimer_get_target(struct k_itimer *tmr) 1966 { 1967 struct task_struct *t = pid_task(tmr->it_pid, tmr->it_pid_type); 1968 1969 if (t && tmr->it_pid_type != PIDTYPE_PID && same_thread_group(t, current)) 1970 t = current; 1971 return t; 1972 } 1973 1974 void posixtimer_send_sigqueue(struct k_itimer *tmr) 1975 { 1976 struct sigqueue *q = &tmr->sigq; 1977 int sig = q->info.si_signo; 1978 struct task_struct *t; 1979 unsigned long flags; 1980 int result; 1981 1982 guard(rcu)(); 1983 1984 t = posixtimer_get_target(tmr); 1985 if (!t) 1986 return; 1987 1988 if (!likely(lock_task_sighand(t, &flags))) 1989 return; 1990 1991 /* 1992 * Update @tmr::sigqueue_seq for posix timer signals with sighand 1993 * locked to prevent a race against dequeue_signal(). 1994 */ 1995 tmr->it_sigqueue_seq = tmr->it_signal_seq; 1996 1997 /* 1998 * Set the signal delivery status under sighand lock, so that the 1999 * ignored signal handling can distinguish between a periodic and a 2000 * non-periodic timer. 2001 */ 2002 tmr->it_sig_periodic = tmr->it_status == POSIX_TIMER_REQUEUE_PENDING; 2003 2004 if (!prepare_signal(sig, t, false)) { 2005 result = TRACE_SIGNAL_IGNORED; 2006 2007 if (!list_empty(&q->list)) { 2008 /* 2009 * If task group is exiting with the signal already pending, 2010 * wait for __exit_signal() to do its job. Otherwise if 2011 * ignored, it's not supposed to be queued. Try to survive. 2012 */ 2013 WARN_ON_ONCE(!(t->signal->flags & SIGNAL_GROUP_EXIT)); 2014 goto out; 2015 } 2016 2017 /* Periodic timers with SIG_IGN are queued on the ignored list */ 2018 if (tmr->it_sig_periodic) { 2019 /* 2020 * Already queued means the timer was rearmed after 2021 * the previous expiry got it on the ignore list. 2022 * Nothing to do for that case. 2023 */ 2024 if (hlist_unhashed(&tmr->ignored_list)) { 2025 /* 2026 * Take a signal reference and queue it on 2027 * the ignored list. 2028 */ 2029 posixtimer_sigqueue_getref(q); 2030 posixtimer_sig_ignore(t, q); 2031 } 2032 } else if (!hlist_unhashed(&tmr->ignored_list)) { 2033 /* 2034 * Covers the case where a timer was periodic and 2035 * then the signal was ignored. Later it was rearmed 2036 * as oneshot timer. The previous signal is invalid 2037 * now, and this oneshot signal has to be dropped. 2038 * Remove it from the ignored list and drop the 2039 * reference count as the signal is not longer 2040 * queued. 2041 */ 2042 hlist_del_init(&tmr->ignored_list); 2043 posixtimer_putref(tmr); 2044 } 2045 goto out; 2046 } 2047 2048 /* This should never happen and leaks a reference count */ 2049 if (WARN_ON_ONCE(!hlist_unhashed(&tmr->ignored_list))) 2050 hlist_del_init(&tmr->ignored_list); 2051 2052 if (unlikely(!list_empty(&q->list))) { 2053 /* This holds a reference count already */ 2054 result = TRACE_SIGNAL_ALREADY_PENDING; 2055 goto out; 2056 } 2057 2058 posixtimer_sigqueue_getref(q); 2059 posixtimer_queue_sigqueue(q, t, tmr->it_pid_type); 2060 result = TRACE_SIGNAL_DELIVERED; 2061 out: 2062 trace_signal_generate(sig, &q->info, t, tmr->it_pid_type != PIDTYPE_PID, result); 2063 unlock_task_sighand(t, &flags); 2064 } 2065 2066 static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q) 2067 { 2068 struct k_itimer *tmr = container_of(q, struct k_itimer, sigq); 2069 2070 /* 2071 * If the timer is marked deleted already or the signal originates 2072 * from a non-periodic timer, then just drop the reference 2073 * count. Otherwise queue it on the ignored list. 2074 */ 2075 if (tmr->it_signal && tmr->it_sig_periodic) 2076 hlist_add_head(&tmr->ignored_list, &tsk->signal->ignored_posix_timers); 2077 else 2078 posixtimer_putref(tmr); 2079 } 2080 2081 static void posixtimer_sig_unignore(struct task_struct *tsk, int sig) 2082 { 2083 struct hlist_head *head = &tsk->signal->ignored_posix_timers; 2084 struct hlist_node *tmp; 2085 struct k_itimer *tmr; 2086 2087 if (likely(hlist_empty(head))) 2088 return; 2089 2090 /* 2091 * Rearming a timer with sighand lock held is not possible due to 2092 * lock ordering vs. tmr::it_lock. Just stick the sigqueue back and 2093 * let the signal delivery path deal with it whether it needs to be 2094 * rearmed or not. This cannot be decided here w/o dropping sighand 2095 * lock and creating a loop retry horror show. 2096 */ 2097 hlist_for_each_entry_safe(tmr, tmp , head, ignored_list) { 2098 struct task_struct *target; 2099 2100 /* 2101 * tmr::sigq.info.si_signo is immutable, so accessing it 2102 * without holding tmr::it_lock is safe. 2103 */ 2104 if (tmr->sigq.info.si_signo != sig) 2105 continue; 2106 2107 hlist_del_init(&tmr->ignored_list); 2108 2109 /* This should never happen and leaks a reference count */ 2110 if (WARN_ON_ONCE(!list_empty(&tmr->sigq.list))) 2111 continue; 2112 2113 /* 2114 * Get the target for the signal. If target is a thread and 2115 * has exited by now, drop the reference count. 2116 */ 2117 guard(rcu)(); 2118 target = posixtimer_get_target(tmr); 2119 if (target) 2120 posixtimer_queue_sigqueue(&tmr->sigq, target, tmr->it_pid_type); 2121 else 2122 posixtimer_putref(tmr); 2123 } 2124 } 2125 #else /* CONFIG_POSIX_TIMERS */ 2126 static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q) { } 2127 static inline void posixtimer_sig_unignore(struct task_struct *tsk, int sig) { } 2128 #endif /* !CONFIG_POSIX_TIMERS */ 2129 2130 void do_notify_pidfd(struct task_struct *task) 2131 { 2132 struct pid *pid = task_pid(task); 2133 2134 WARN_ON(task->exit_state == 0); 2135 2136 __wake_up(&pid->wait_pidfd, TASK_NORMAL, 0, 2137 poll_to_key(EPOLLIN | EPOLLRDNORM)); 2138 } 2139 2140 /* 2141 * Let a parent know about the death of a child. 2142 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 2143 * 2144 * Returns true if our parent ignored us and so we've switched to 2145 * self-reaping. 2146 */ 2147 bool do_notify_parent(struct task_struct *tsk, int sig) 2148 { 2149 struct kernel_siginfo info; 2150 unsigned long flags; 2151 struct sighand_struct *psig; 2152 bool autoreap = false; 2153 u64 utime, stime; 2154 2155 WARN_ON_ONCE(sig == -1); 2156 2157 /* do_notify_parent_cldstop should have been called instead. */ 2158 WARN_ON_ONCE(task_is_stopped_or_traced(tsk)); 2159 2160 WARN_ON_ONCE(!tsk->ptrace && 2161 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 2162 /* 2163 * tsk is a group leader and has no threads, wake up the 2164 * non-PIDFD_THREAD waiters. 2165 */ 2166 if (thread_group_empty(tsk)) 2167 do_notify_pidfd(tsk); 2168 2169 if (sig != SIGCHLD) { 2170 /* 2171 * This is only possible if parent == real_parent. 2172 * Check if it has changed security domain. 2173 */ 2174 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) 2175 sig = SIGCHLD; 2176 } 2177 2178 clear_siginfo(&info); 2179 info.si_signo = sig; 2180 info.si_errno = 0; 2181 /* 2182 * We are under tasklist_lock here so our parent is tied to 2183 * us and cannot change. 2184 * 2185 * task_active_pid_ns will always return the same pid namespace 2186 * until a task passes through release_task. 2187 * 2188 * write_lock() currently calls preempt_disable() which is the 2189 * same as rcu_read_lock(), but according to Oleg, this is not 2190 * correct to rely on this 2191 */ 2192 rcu_read_lock(); 2193 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 2194 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 2195 task_uid(tsk)); 2196 rcu_read_unlock(); 2197 2198 task_cputime(tsk, &utime, &stime); 2199 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 2200 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 2201 2202 info.si_status = tsk->exit_code & 0x7f; 2203 if (tsk->exit_code & 0x80) 2204 info.si_code = CLD_DUMPED; 2205 else if (tsk->exit_code & 0x7f) 2206 info.si_code = CLD_KILLED; 2207 else { 2208 info.si_code = CLD_EXITED; 2209 info.si_status = tsk->exit_code >> 8; 2210 } 2211 2212 psig = tsk->parent->sighand; 2213 spin_lock_irqsave(&psig->siglock, flags); 2214 if (!tsk->ptrace && sig == SIGCHLD && 2215 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 2216 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 2217 /* 2218 * We are exiting and our parent doesn't care. POSIX.1 2219 * defines special semantics for setting SIGCHLD to SIG_IGN 2220 * or setting the SA_NOCLDWAIT flag: we should be reaped 2221 * automatically and not left for our parent's wait4 call. 2222 * Rather than having the parent do it as a magic kind of 2223 * signal handler, we just set this to tell do_exit that we 2224 * can be cleaned up without becoming a zombie. Note that 2225 * we still call __wake_up_parent in this case, because a 2226 * blocked sys_wait4 might now return -ECHILD. 2227 * 2228 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 2229 * is implementation-defined: we do (if you don't want 2230 * it, just use SIG_IGN instead). 2231 */ 2232 autoreap = true; 2233 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 2234 sig = 0; 2235 } 2236 /* 2237 * Send with __send_signal as si_pid and si_uid are in the 2238 * parent's namespaces. 2239 */ 2240 if (valid_signal(sig) && sig) 2241 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false); 2242 __wake_up_parent(tsk, tsk->parent); 2243 spin_unlock_irqrestore(&psig->siglock, flags); 2244 2245 return autoreap; 2246 } 2247 2248 /** 2249 * do_notify_parent_cldstop - notify parent of stopped/continued state change 2250 * @tsk: task reporting the state change 2251 * @for_ptracer: the notification is for ptracer 2252 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 2253 * 2254 * Notify @tsk's parent that the stopped/continued state has changed. If 2255 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 2256 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 2257 * 2258 * CONTEXT: 2259 * Must be called with tasklist_lock at least read locked. 2260 */ 2261 static void do_notify_parent_cldstop(struct task_struct *tsk, 2262 bool for_ptracer, int why) 2263 { 2264 struct kernel_siginfo info; 2265 unsigned long flags; 2266 struct task_struct *parent; 2267 struct sighand_struct *sighand; 2268 u64 utime, stime; 2269 2270 if (for_ptracer) { 2271 parent = tsk->parent; 2272 } else { 2273 tsk = tsk->group_leader; 2274 parent = tsk->real_parent; 2275 } 2276 2277 clear_siginfo(&info); 2278 info.si_signo = SIGCHLD; 2279 info.si_errno = 0; 2280 /* 2281 * see comment in do_notify_parent() about the following 4 lines 2282 */ 2283 rcu_read_lock(); 2284 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 2285 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 2286 rcu_read_unlock(); 2287 2288 task_cputime(tsk, &utime, &stime); 2289 info.si_utime = nsec_to_clock_t(utime); 2290 info.si_stime = nsec_to_clock_t(stime); 2291 2292 info.si_code = why; 2293 switch (why) { 2294 case CLD_CONTINUED: 2295 info.si_status = SIGCONT; 2296 break; 2297 case CLD_STOPPED: 2298 info.si_status = tsk->signal->group_exit_code & 0x7f; 2299 break; 2300 case CLD_TRAPPED: 2301 info.si_status = tsk->exit_code & 0x7f; 2302 break; 2303 default: 2304 BUG(); 2305 } 2306 2307 sighand = parent->sighand; 2308 spin_lock_irqsave(&sighand->siglock, flags); 2309 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 2310 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 2311 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID); 2312 /* 2313 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 2314 */ 2315 __wake_up_parent(tsk, parent); 2316 spin_unlock_irqrestore(&sighand->siglock, flags); 2317 } 2318 2319 /* 2320 * This must be called with current->sighand->siglock held. 2321 * 2322 * This should be the path for all ptrace stops. 2323 * We always set current->last_siginfo while stopped here. 2324 * That makes it a way to test a stopped process for 2325 * being ptrace-stopped vs being job-control-stopped. 2326 * 2327 * Returns the signal the ptracer requested the code resume 2328 * with. If the code did not stop because the tracer is gone, 2329 * the stop signal remains unchanged unless clear_code. 2330 */ 2331 static int ptrace_stop(int exit_code, int why, unsigned long message, 2332 kernel_siginfo_t *info) 2333 __releases(¤t->sighand->siglock) 2334 __acquires(¤t->sighand->siglock) 2335 { 2336 bool gstop_done = false; 2337 2338 if (arch_ptrace_stop_needed()) { 2339 /* 2340 * The arch code has something special to do before a 2341 * ptrace stop. This is allowed to block, e.g. for faults 2342 * on user stack pages. We can't keep the siglock while 2343 * calling arch_ptrace_stop, so we must release it now. 2344 * To preserve proper semantics, we must do this before 2345 * any signal bookkeeping like checking group_stop_count. 2346 */ 2347 spin_unlock_irq(¤t->sighand->siglock); 2348 arch_ptrace_stop(); 2349 spin_lock_irq(¤t->sighand->siglock); 2350 } 2351 2352 /* 2353 * After this point ptrace_signal_wake_up or signal_wake_up 2354 * will clear TASK_TRACED if ptrace_unlink happens or a fatal 2355 * signal comes in. Handle previous ptrace_unlinks and fatal 2356 * signals here to prevent ptrace_stop sleeping in schedule. 2357 */ 2358 if (!current->ptrace || __fatal_signal_pending(current)) 2359 return exit_code; 2360 2361 set_special_state(TASK_TRACED); 2362 current->jobctl |= JOBCTL_TRACED; 2363 2364 /* 2365 * We're committing to trapping. TRACED should be visible before 2366 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2367 * Also, transition to TRACED and updates to ->jobctl should be 2368 * atomic with respect to siglock and should be done after the arch 2369 * hook as siglock is released and regrabbed across it. 2370 * 2371 * TRACER TRACEE 2372 * 2373 * ptrace_attach() 2374 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2375 * do_wait() 2376 * set_current_state() smp_wmb(); 2377 * ptrace_do_wait() 2378 * wait_task_stopped() 2379 * task_stopped_code() 2380 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2381 */ 2382 smp_wmb(); 2383 2384 current->ptrace_message = message; 2385 current->last_siginfo = info; 2386 current->exit_code = exit_code; 2387 2388 /* 2389 * If @why is CLD_STOPPED, we're trapping to participate in a group 2390 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2391 * across siglock relocks since INTERRUPT was scheduled, PENDING 2392 * could be clear now. We act as if SIGCONT is received after 2393 * TASK_TRACED is entered - ignore it. 2394 */ 2395 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2396 gstop_done = task_participate_group_stop(current); 2397 2398 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2399 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2400 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2401 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2402 2403 /* entering a trap, clear TRAPPING */ 2404 task_clear_jobctl_trapping(current); 2405 2406 spin_unlock_irq(¤t->sighand->siglock); 2407 read_lock(&tasklist_lock); 2408 /* 2409 * Notify parents of the stop. 2410 * 2411 * While ptraced, there are two parents - the ptracer and 2412 * the real_parent of the group_leader. The ptracer should 2413 * know about every stop while the real parent is only 2414 * interested in the completion of group stop. The states 2415 * for the two don't interact with each other. Notify 2416 * separately unless they're gonna be duplicates. 2417 */ 2418 if (current->ptrace) 2419 do_notify_parent_cldstop(current, true, why); 2420 if (gstop_done && (!current->ptrace || ptrace_reparented(current))) 2421 do_notify_parent_cldstop(current, false, why); 2422 2423 /* 2424 * The previous do_notify_parent_cldstop() invocation woke ptracer. 2425 * One a PREEMPTION kernel this can result in preemption requirement 2426 * which will be fulfilled after read_unlock() and the ptracer will be 2427 * put on the CPU. 2428 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for 2429 * this task wait in schedule(). If this task gets preempted then it 2430 * remains enqueued on the runqueue. The ptracer will observe this and 2431 * then sleep for a delay of one HZ tick. In the meantime this task 2432 * gets scheduled, enters schedule() and will wait for the ptracer. 2433 * 2434 * This preemption point is not bad from a correctness point of 2435 * view but extends the runtime by one HZ tick time due to the 2436 * ptracer's sleep. The preempt-disable section ensures that there 2437 * will be no preemption between unlock and schedule() and so 2438 * improving the performance since the ptracer will observe that 2439 * the tracee is scheduled out once it gets on the CPU. 2440 * 2441 * On PREEMPT_RT locking tasklist_lock does not disable preemption. 2442 * Therefore the task can be preempted after do_notify_parent_cldstop() 2443 * before unlocking tasklist_lock so there is no benefit in doing this. 2444 * 2445 * In fact disabling preemption is harmful on PREEMPT_RT because 2446 * the spinlock_t in cgroup_enter_frozen() must not be acquired 2447 * with preemption disabled due to the 'sleeping' spinlock 2448 * substitution of RT. 2449 */ 2450 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 2451 preempt_disable(); 2452 read_unlock(&tasklist_lock); 2453 cgroup_enter_frozen(); 2454 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 2455 preempt_enable_no_resched(); 2456 schedule(); 2457 cgroup_leave_frozen(true); 2458 2459 /* 2460 * We are back. Now reacquire the siglock before touching 2461 * last_siginfo, so that we are sure to have synchronized with 2462 * any signal-sending on another CPU that wants to examine it. 2463 */ 2464 spin_lock_irq(¤t->sighand->siglock); 2465 exit_code = current->exit_code; 2466 current->last_siginfo = NULL; 2467 current->ptrace_message = 0; 2468 current->exit_code = 0; 2469 2470 /* LISTENING can be set only during STOP traps, clear it */ 2471 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN); 2472 2473 /* 2474 * Queued signals ignored us while we were stopped for tracing. 2475 * So check for any that we should take before resuming user mode. 2476 * This sets TIF_SIGPENDING, but never clears it. 2477 */ 2478 recalc_sigpending_tsk(current); 2479 return exit_code; 2480 } 2481 2482 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message) 2483 { 2484 kernel_siginfo_t info; 2485 2486 clear_siginfo(&info); 2487 info.si_signo = signr; 2488 info.si_code = exit_code; 2489 info.si_pid = task_pid_vnr(current); 2490 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2491 2492 /* Let the debugger run. */ 2493 return ptrace_stop(exit_code, why, message, &info); 2494 } 2495 2496 int ptrace_notify(int exit_code, unsigned long message) 2497 { 2498 int signr; 2499 2500 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2501 if (unlikely(task_work_pending(current))) 2502 task_work_run(); 2503 2504 spin_lock_irq(¤t->sighand->siglock); 2505 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message); 2506 spin_unlock_irq(¤t->sighand->siglock); 2507 return signr; 2508 } 2509 2510 /** 2511 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2512 * @signr: signr causing group stop if initiating 2513 * 2514 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2515 * and participate in it. If already set, participate in the existing 2516 * group stop. If participated in a group stop (and thus slept), %true is 2517 * returned with siglock released. 2518 * 2519 * If ptraced, this function doesn't handle stop itself. Instead, 2520 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2521 * untouched. The caller must ensure that INTERRUPT trap handling takes 2522 * places afterwards. 2523 * 2524 * CONTEXT: 2525 * Must be called with @current->sighand->siglock held, which is released 2526 * on %true return. 2527 * 2528 * RETURNS: 2529 * %false if group stop is already cancelled or ptrace trap is scheduled. 2530 * %true if participated in group stop. 2531 */ 2532 static bool do_signal_stop(int signr) 2533 __releases(¤t->sighand->siglock) 2534 { 2535 struct signal_struct *sig = current->signal; 2536 2537 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2538 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2539 struct task_struct *t; 2540 2541 /* signr will be recorded in task->jobctl for retries */ 2542 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2543 2544 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2545 unlikely(sig->flags & SIGNAL_GROUP_EXIT) || 2546 unlikely(sig->group_exec_task)) 2547 return false; 2548 /* 2549 * There is no group stop already in progress. We must 2550 * initiate one now. 2551 * 2552 * While ptraced, a task may be resumed while group stop is 2553 * still in effect and then receive a stop signal and 2554 * initiate another group stop. This deviates from the 2555 * usual behavior as two consecutive stop signals can't 2556 * cause two group stops when !ptraced. That is why we 2557 * also check !task_is_stopped(t) below. 2558 * 2559 * The condition can be distinguished by testing whether 2560 * SIGNAL_STOP_STOPPED is already set. Don't generate 2561 * group_exit_code in such case. 2562 * 2563 * This is not necessary for SIGNAL_STOP_CONTINUED because 2564 * an intervening stop signal is required to cause two 2565 * continued events regardless of ptrace. 2566 */ 2567 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2568 sig->group_exit_code = signr; 2569 2570 sig->group_stop_count = 0; 2571 if (task_set_jobctl_pending(current, signr | gstop)) 2572 sig->group_stop_count++; 2573 2574 for_other_threads(current, t) { 2575 /* 2576 * Setting state to TASK_STOPPED for a group 2577 * stop is always done with the siglock held, 2578 * so this check has no races. 2579 */ 2580 if (!task_is_stopped(t) && 2581 task_set_jobctl_pending(t, signr | gstop)) { 2582 sig->group_stop_count++; 2583 if (likely(!(t->ptrace & PT_SEIZED))) 2584 signal_wake_up(t, 0); 2585 else 2586 ptrace_trap_notify(t); 2587 } 2588 } 2589 } 2590 2591 if (likely(!current->ptrace)) { 2592 int notify = 0; 2593 2594 /* 2595 * If there are no other threads in the group, or if there 2596 * is a group stop in progress and we are the last to stop, 2597 * report to the parent. 2598 */ 2599 if (task_participate_group_stop(current)) 2600 notify = CLD_STOPPED; 2601 2602 current->jobctl |= JOBCTL_STOPPED; 2603 set_special_state(TASK_STOPPED); 2604 spin_unlock_irq(¤t->sighand->siglock); 2605 2606 /* 2607 * Notify the parent of the group stop completion. Because 2608 * we're not holding either the siglock or tasklist_lock 2609 * here, ptracer may attach inbetween; however, this is for 2610 * group stop and should always be delivered to the real 2611 * parent of the group leader. The new ptracer will get 2612 * its notification when this task transitions into 2613 * TASK_TRACED. 2614 */ 2615 if (notify) { 2616 read_lock(&tasklist_lock); 2617 do_notify_parent_cldstop(current, false, notify); 2618 read_unlock(&tasklist_lock); 2619 } 2620 2621 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2622 cgroup_enter_frozen(); 2623 schedule(); 2624 return true; 2625 } else { 2626 /* 2627 * While ptraced, group stop is handled by STOP trap. 2628 * Schedule it and let the caller deal with it. 2629 */ 2630 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2631 return false; 2632 } 2633 } 2634 2635 /** 2636 * do_jobctl_trap - take care of ptrace jobctl traps 2637 * 2638 * When PT_SEIZED, it's used for both group stop and explicit 2639 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2640 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2641 * the stop signal; otherwise, %SIGTRAP. 2642 * 2643 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2644 * number as exit_code and no siginfo. 2645 * 2646 * CONTEXT: 2647 * Must be called with @current->sighand->siglock held, which may be 2648 * released and re-acquired before returning with intervening sleep. 2649 */ 2650 static void do_jobctl_trap(void) 2651 { 2652 struct signal_struct *signal = current->signal; 2653 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2654 2655 if (current->ptrace & PT_SEIZED) { 2656 if (!signal->group_stop_count && 2657 !(signal->flags & SIGNAL_STOP_STOPPED)) 2658 signr = SIGTRAP; 2659 WARN_ON_ONCE(!signr); 2660 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2661 CLD_STOPPED, 0); 2662 } else { 2663 WARN_ON_ONCE(!signr); 2664 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2665 } 2666 } 2667 2668 /** 2669 * do_freezer_trap - handle the freezer jobctl trap 2670 * 2671 * Puts the task into frozen state, if only the task is not about to quit. 2672 * In this case it drops JOBCTL_TRAP_FREEZE. 2673 * 2674 * CONTEXT: 2675 * Must be called with @current->sighand->siglock held, 2676 * which is always released before returning. 2677 */ 2678 static void do_freezer_trap(void) 2679 __releases(¤t->sighand->siglock) 2680 { 2681 /* 2682 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, 2683 * let's make another loop to give it a chance to be handled. 2684 * In any case, we'll return back. 2685 */ 2686 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != 2687 JOBCTL_TRAP_FREEZE) { 2688 spin_unlock_irq(¤t->sighand->siglock); 2689 return; 2690 } 2691 2692 /* 2693 * Now we're sure that there is no pending fatal signal and no 2694 * pending traps. Clear TIF_SIGPENDING to not get out of schedule() 2695 * immediately (if there is a non-fatal signal pending), and 2696 * put the task into sleep. 2697 */ 2698 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 2699 clear_thread_flag(TIF_SIGPENDING); 2700 spin_unlock_irq(¤t->sighand->siglock); 2701 cgroup_enter_frozen(); 2702 schedule(); 2703 2704 /* 2705 * We could've been woken by task_work, run it to clear 2706 * TIF_NOTIFY_SIGNAL. The caller will retry if necessary. 2707 */ 2708 clear_notify_signal(); 2709 if (unlikely(task_work_pending(current))) 2710 task_work_run(); 2711 } 2712 2713 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type) 2714 { 2715 /* 2716 * We do not check sig_kernel_stop(signr) but set this marker 2717 * unconditionally because we do not know whether debugger will 2718 * change signr. This flag has no meaning unless we are going 2719 * to stop after return from ptrace_stop(). In this case it will 2720 * be checked in do_signal_stop(), we should only stop if it was 2721 * not cleared by SIGCONT while we were sleeping. See also the 2722 * comment in dequeue_signal(). 2723 */ 2724 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2725 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info); 2726 2727 /* We're back. Did the debugger cancel the sig? */ 2728 if (signr == 0) 2729 return signr; 2730 2731 /* 2732 * Update the siginfo structure if the signal has 2733 * changed. If the debugger wanted something 2734 * specific in the siginfo structure then it should 2735 * have updated *info via PTRACE_SETSIGINFO. 2736 */ 2737 if (signr != info->si_signo) { 2738 clear_siginfo(info); 2739 info->si_signo = signr; 2740 info->si_errno = 0; 2741 info->si_code = SI_USER; 2742 rcu_read_lock(); 2743 info->si_pid = task_pid_vnr(current->parent); 2744 info->si_uid = from_kuid_munged(current_user_ns(), 2745 task_uid(current->parent)); 2746 rcu_read_unlock(); 2747 } 2748 2749 /* If the (new) signal is now blocked, requeue it. */ 2750 if (sigismember(¤t->blocked, signr) || 2751 fatal_signal_pending(current)) { 2752 send_signal_locked(signr, info, current, type); 2753 signr = 0; 2754 } 2755 2756 return signr; 2757 } 2758 2759 static void hide_si_addr_tag_bits(struct ksignal *ksig) 2760 { 2761 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) { 2762 case SIL_FAULT: 2763 case SIL_FAULT_TRAPNO: 2764 case SIL_FAULT_MCEERR: 2765 case SIL_FAULT_BNDERR: 2766 case SIL_FAULT_PKUERR: 2767 case SIL_FAULT_PERF_EVENT: 2768 ksig->info.si_addr = arch_untagged_si_addr( 2769 ksig->info.si_addr, ksig->sig, ksig->info.si_code); 2770 break; 2771 case SIL_KILL: 2772 case SIL_TIMER: 2773 case SIL_POLL: 2774 case SIL_CHLD: 2775 case SIL_RT: 2776 case SIL_SYS: 2777 break; 2778 } 2779 } 2780 2781 bool get_signal(struct ksignal *ksig) 2782 { 2783 struct sighand_struct *sighand = current->sighand; 2784 struct signal_struct *signal = current->signal; 2785 int signr; 2786 2787 clear_notify_signal(); 2788 if (unlikely(task_work_pending(current))) 2789 task_work_run(); 2790 2791 if (!task_sigpending(current)) 2792 return false; 2793 2794 if (unlikely(uprobe_deny_signal())) 2795 return false; 2796 2797 /* 2798 * Do this once, we can't return to user-mode if freezing() == T. 2799 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2800 * thus do not need another check after return. 2801 */ 2802 try_to_freeze(); 2803 2804 relock: 2805 spin_lock_irq(&sighand->siglock); 2806 2807 /* 2808 * Every stopped thread goes here after wakeup. Check to see if 2809 * we should notify the parent, prepare_signal(SIGCONT) encodes 2810 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2811 */ 2812 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2813 int why; 2814 2815 if (signal->flags & SIGNAL_CLD_CONTINUED) 2816 why = CLD_CONTINUED; 2817 else 2818 why = CLD_STOPPED; 2819 2820 signal->flags &= ~SIGNAL_CLD_MASK; 2821 2822 spin_unlock_irq(&sighand->siglock); 2823 2824 /* 2825 * Notify the parent that we're continuing. This event is 2826 * always per-process and doesn't make whole lot of sense 2827 * for ptracers, who shouldn't consume the state via 2828 * wait(2) either, but, for backward compatibility, notify 2829 * the ptracer of the group leader too unless it's gonna be 2830 * a duplicate. 2831 */ 2832 read_lock(&tasklist_lock); 2833 do_notify_parent_cldstop(current, false, why); 2834 2835 if (ptrace_reparented(current->group_leader)) 2836 do_notify_parent_cldstop(current->group_leader, 2837 true, why); 2838 read_unlock(&tasklist_lock); 2839 2840 goto relock; 2841 } 2842 2843 for (;;) { 2844 struct k_sigaction *ka; 2845 enum pid_type type; 2846 2847 /* Has this task already been marked for death? */ 2848 if ((signal->flags & SIGNAL_GROUP_EXIT) || 2849 signal->group_exec_task) { 2850 signr = SIGKILL; 2851 sigdelset(¤t->pending.signal, SIGKILL); 2852 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, 2853 &sighand->action[SIGKILL-1]); 2854 recalc_sigpending(); 2855 /* 2856 * implies do_group_exit() or return to PF_USER_WORKER, 2857 * no need to initialize ksig->info/etc. 2858 */ 2859 goto fatal; 2860 } 2861 2862 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2863 do_signal_stop(0)) 2864 goto relock; 2865 2866 if (unlikely(current->jobctl & 2867 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { 2868 if (current->jobctl & JOBCTL_TRAP_MASK) { 2869 do_jobctl_trap(); 2870 spin_unlock_irq(&sighand->siglock); 2871 } else if (current->jobctl & JOBCTL_TRAP_FREEZE) 2872 do_freezer_trap(); 2873 2874 goto relock; 2875 } 2876 2877 /* 2878 * If the task is leaving the frozen state, let's update 2879 * cgroup counters and reset the frozen bit. 2880 */ 2881 if (unlikely(cgroup_task_frozen(current))) { 2882 spin_unlock_irq(&sighand->siglock); 2883 cgroup_leave_frozen(false); 2884 goto relock; 2885 } 2886 2887 /* 2888 * Signals generated by the execution of an instruction 2889 * need to be delivered before any other pending signals 2890 * so that the instruction pointer in the signal stack 2891 * frame points to the faulting instruction. 2892 */ 2893 type = PIDTYPE_PID; 2894 signr = dequeue_synchronous_signal(&ksig->info); 2895 if (!signr) 2896 signr = dequeue_signal(¤t->blocked, &ksig->info, &type); 2897 2898 if (!signr) 2899 break; /* will return 0 */ 2900 2901 if (unlikely(current->ptrace) && (signr != SIGKILL) && 2902 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) { 2903 signr = ptrace_signal(signr, &ksig->info, type); 2904 if (!signr) 2905 continue; 2906 } 2907 2908 ka = &sighand->action[signr-1]; 2909 2910 /* Trace actually delivered signals. */ 2911 trace_signal_deliver(signr, &ksig->info, ka); 2912 2913 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2914 continue; 2915 if (ka->sa.sa_handler != SIG_DFL) { 2916 /* Run the handler. */ 2917 ksig->ka = *ka; 2918 2919 if (ka->sa.sa_flags & SA_ONESHOT) 2920 ka->sa.sa_handler = SIG_DFL; 2921 2922 break; /* will return non-zero "signr" value */ 2923 } 2924 2925 /* 2926 * Now we are doing the default action for this signal. 2927 */ 2928 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2929 continue; 2930 2931 /* 2932 * Global init gets no signals it doesn't want. 2933 * Container-init gets no signals it doesn't want from same 2934 * container. 2935 * 2936 * Note that if global/container-init sees a sig_kernel_only() 2937 * signal here, the signal must have been generated internally 2938 * or must have come from an ancestor namespace. In either 2939 * case, the signal cannot be dropped. 2940 */ 2941 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2942 !sig_kernel_only(signr)) 2943 continue; 2944 2945 if (sig_kernel_stop(signr)) { 2946 /* 2947 * The default action is to stop all threads in 2948 * the thread group. The job control signals 2949 * do nothing in an orphaned pgrp, but SIGSTOP 2950 * always works. Note that siglock needs to be 2951 * dropped during the call to is_orphaned_pgrp() 2952 * because of lock ordering with tasklist_lock. 2953 * This allows an intervening SIGCONT to be posted. 2954 * We need to check for that and bail out if necessary. 2955 */ 2956 if (signr != SIGSTOP) { 2957 spin_unlock_irq(&sighand->siglock); 2958 2959 /* signals can be posted during this window */ 2960 2961 if (is_current_pgrp_orphaned()) 2962 goto relock; 2963 2964 spin_lock_irq(&sighand->siglock); 2965 } 2966 2967 if (likely(do_signal_stop(signr))) { 2968 /* It released the siglock. */ 2969 goto relock; 2970 } 2971 2972 /* 2973 * We didn't actually stop, due to a race 2974 * with SIGCONT or something like that. 2975 */ 2976 continue; 2977 } 2978 2979 fatal: 2980 spin_unlock_irq(&sighand->siglock); 2981 if (unlikely(cgroup_task_frozen(current))) 2982 cgroup_leave_frozen(true); 2983 2984 /* 2985 * Anything else is fatal, maybe with a core dump. 2986 */ 2987 current->flags |= PF_SIGNALED; 2988 2989 if (sig_kernel_coredump(signr)) { 2990 if (print_fatal_signals) 2991 print_fatal_signal(signr); 2992 proc_coredump_connector(current); 2993 /* 2994 * If it was able to dump core, this kills all 2995 * other threads in the group and synchronizes with 2996 * their demise. If we lost the race with another 2997 * thread getting here, it set group_exit_code 2998 * first and our do_group_exit call below will use 2999 * that value and ignore the one we pass it. 3000 */ 3001 do_coredump(&ksig->info); 3002 } 3003 3004 /* 3005 * PF_USER_WORKER threads will catch and exit on fatal signals 3006 * themselves. They have cleanup that must be performed, so we 3007 * cannot call do_exit() on their behalf. Note that ksig won't 3008 * be properly initialized, PF_USER_WORKER's shouldn't use it. 3009 */ 3010 if (current->flags & PF_USER_WORKER) 3011 goto out; 3012 3013 /* 3014 * Death signals, no core dump. 3015 */ 3016 do_group_exit(signr); 3017 /* NOTREACHED */ 3018 } 3019 spin_unlock_irq(&sighand->siglock); 3020 3021 ksig->sig = signr; 3022 3023 if (signr && !(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS)) 3024 hide_si_addr_tag_bits(ksig); 3025 out: 3026 return signr > 0; 3027 } 3028 3029 /** 3030 * signal_delivered - called after signal delivery to update blocked signals 3031 * @ksig: kernel signal struct 3032 * @stepping: nonzero if debugger single-step or block-step in use 3033 * 3034 * This function should be called when a signal has successfully been 3035 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 3036 * is always blocked), and the signal itself is blocked unless %SA_NODEFER 3037 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 3038 */ 3039 static void signal_delivered(struct ksignal *ksig, int stepping) 3040 { 3041 sigset_t blocked; 3042 3043 /* A signal was successfully delivered, and the 3044 saved sigmask was stored on the signal frame, 3045 and will be restored by sigreturn. So we can 3046 simply clear the restore sigmask flag. */ 3047 clear_restore_sigmask(); 3048 3049 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 3050 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 3051 sigaddset(&blocked, ksig->sig); 3052 set_current_blocked(&blocked); 3053 if (current->sas_ss_flags & SS_AUTODISARM) 3054 sas_ss_reset(current); 3055 if (stepping) 3056 ptrace_notify(SIGTRAP, 0); 3057 } 3058 3059 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 3060 { 3061 if (failed) 3062 force_sigsegv(ksig->sig); 3063 else 3064 signal_delivered(ksig, stepping); 3065 } 3066 3067 /* 3068 * It could be that complete_signal() picked us to notify about the 3069 * group-wide signal. Other threads should be notified now to take 3070 * the shared signals in @which since we will not. 3071 */ 3072 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 3073 { 3074 sigset_t retarget; 3075 struct task_struct *t; 3076 3077 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 3078 if (sigisemptyset(&retarget)) 3079 return; 3080 3081 for_other_threads(tsk, t) { 3082 if (t->flags & PF_EXITING) 3083 continue; 3084 3085 if (!has_pending_signals(&retarget, &t->blocked)) 3086 continue; 3087 /* Remove the signals this thread can handle. */ 3088 sigandsets(&retarget, &retarget, &t->blocked); 3089 3090 if (!task_sigpending(t)) 3091 signal_wake_up(t, 0); 3092 3093 if (sigisemptyset(&retarget)) 3094 break; 3095 } 3096 } 3097 3098 void exit_signals(struct task_struct *tsk) 3099 { 3100 int group_stop = 0; 3101 sigset_t unblocked; 3102 3103 /* 3104 * @tsk is about to have PF_EXITING set - lock out users which 3105 * expect stable threadgroup. 3106 */ 3107 cgroup_threadgroup_change_begin(tsk); 3108 3109 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) { 3110 sched_mm_cid_exit_signals(tsk); 3111 tsk->flags |= PF_EXITING; 3112 cgroup_threadgroup_change_end(tsk); 3113 return; 3114 } 3115 3116 spin_lock_irq(&tsk->sighand->siglock); 3117 /* 3118 * From now this task is not visible for group-wide signals, 3119 * see wants_signal(), do_signal_stop(). 3120 */ 3121 sched_mm_cid_exit_signals(tsk); 3122 tsk->flags |= PF_EXITING; 3123 3124 cgroup_threadgroup_change_end(tsk); 3125 3126 if (!task_sigpending(tsk)) 3127 goto out; 3128 3129 unblocked = tsk->blocked; 3130 signotset(&unblocked); 3131 retarget_shared_pending(tsk, &unblocked); 3132 3133 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 3134 task_participate_group_stop(tsk)) 3135 group_stop = CLD_STOPPED; 3136 out: 3137 spin_unlock_irq(&tsk->sighand->siglock); 3138 3139 /* 3140 * If group stop has completed, deliver the notification. This 3141 * should always go to the real parent of the group leader. 3142 */ 3143 if (unlikely(group_stop)) { 3144 read_lock(&tasklist_lock); 3145 do_notify_parent_cldstop(tsk, false, group_stop); 3146 read_unlock(&tasklist_lock); 3147 } 3148 } 3149 3150 /* 3151 * System call entry points. 3152 */ 3153 3154 /** 3155 * sys_restart_syscall - restart a system call 3156 */ 3157 SYSCALL_DEFINE0(restart_syscall) 3158 { 3159 struct restart_block *restart = ¤t->restart_block; 3160 return restart->fn(restart); 3161 } 3162 3163 long do_no_restart_syscall(struct restart_block *param) 3164 { 3165 return -EINTR; 3166 } 3167 3168 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 3169 { 3170 if (task_sigpending(tsk) && !thread_group_empty(tsk)) { 3171 sigset_t newblocked; 3172 /* A set of now blocked but previously unblocked signals. */ 3173 sigandnsets(&newblocked, newset, ¤t->blocked); 3174 retarget_shared_pending(tsk, &newblocked); 3175 } 3176 tsk->blocked = *newset; 3177 recalc_sigpending(); 3178 } 3179 3180 /** 3181 * set_current_blocked - change current->blocked mask 3182 * @newset: new mask 3183 * 3184 * It is wrong to change ->blocked directly, this helper should be used 3185 * to ensure the process can't miss a shared signal we are going to block. 3186 */ 3187 void set_current_blocked(sigset_t *newset) 3188 { 3189 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3190 __set_current_blocked(newset); 3191 } 3192 3193 void __set_current_blocked(const sigset_t *newset) 3194 { 3195 struct task_struct *tsk = current; 3196 3197 /* 3198 * In case the signal mask hasn't changed, there is nothing we need 3199 * to do. The current->blocked shouldn't be modified by other task. 3200 */ 3201 if (sigequalsets(&tsk->blocked, newset)) 3202 return; 3203 3204 spin_lock_irq(&tsk->sighand->siglock); 3205 __set_task_blocked(tsk, newset); 3206 spin_unlock_irq(&tsk->sighand->siglock); 3207 } 3208 3209 /* 3210 * This is also useful for kernel threads that want to temporarily 3211 * (or permanently) block certain signals. 3212 * 3213 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 3214 * interface happily blocks "unblockable" signals like SIGKILL 3215 * and friends. 3216 */ 3217 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 3218 { 3219 struct task_struct *tsk = current; 3220 sigset_t newset; 3221 3222 /* Lockless, only current can change ->blocked, never from irq */ 3223 if (oldset) 3224 *oldset = tsk->blocked; 3225 3226 switch (how) { 3227 case SIG_BLOCK: 3228 sigorsets(&newset, &tsk->blocked, set); 3229 break; 3230 case SIG_UNBLOCK: 3231 sigandnsets(&newset, &tsk->blocked, set); 3232 break; 3233 case SIG_SETMASK: 3234 newset = *set; 3235 break; 3236 default: 3237 return -EINVAL; 3238 } 3239 3240 __set_current_blocked(&newset); 3241 return 0; 3242 } 3243 EXPORT_SYMBOL(sigprocmask); 3244 3245 /* 3246 * The api helps set app-provided sigmasks. 3247 * 3248 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 3249 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 3250 * 3251 * Note that it does set_restore_sigmask() in advance, so it must be always 3252 * paired with restore_saved_sigmask_unless() before return from syscall. 3253 */ 3254 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) 3255 { 3256 sigset_t kmask; 3257 3258 if (!umask) 3259 return 0; 3260 if (sigsetsize != sizeof(sigset_t)) 3261 return -EINVAL; 3262 if (copy_from_user(&kmask, umask, sizeof(sigset_t))) 3263 return -EFAULT; 3264 3265 set_restore_sigmask(); 3266 current->saved_sigmask = current->blocked; 3267 set_current_blocked(&kmask); 3268 3269 return 0; 3270 } 3271 3272 #ifdef CONFIG_COMPAT 3273 int set_compat_user_sigmask(const compat_sigset_t __user *umask, 3274 size_t sigsetsize) 3275 { 3276 sigset_t kmask; 3277 3278 if (!umask) 3279 return 0; 3280 if (sigsetsize != sizeof(compat_sigset_t)) 3281 return -EINVAL; 3282 if (get_compat_sigset(&kmask, umask)) 3283 return -EFAULT; 3284 3285 set_restore_sigmask(); 3286 current->saved_sigmask = current->blocked; 3287 set_current_blocked(&kmask); 3288 3289 return 0; 3290 } 3291 #endif 3292 3293 /** 3294 * sys_rt_sigprocmask - change the list of currently blocked signals 3295 * @how: whether to add, remove, or set signals 3296 * @nset: stores pending signals 3297 * @oset: previous value of signal mask if non-null 3298 * @sigsetsize: size of sigset_t type 3299 */ 3300 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 3301 sigset_t __user *, oset, size_t, sigsetsize) 3302 { 3303 sigset_t old_set, new_set; 3304 int error; 3305 3306 /* XXX: Don't preclude handling different sized sigset_t's. */ 3307 if (sigsetsize != sizeof(sigset_t)) 3308 return -EINVAL; 3309 3310 old_set = current->blocked; 3311 3312 if (nset) { 3313 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 3314 return -EFAULT; 3315 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3316 3317 error = sigprocmask(how, &new_set, NULL); 3318 if (error) 3319 return error; 3320 } 3321 3322 if (oset) { 3323 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 3324 return -EFAULT; 3325 } 3326 3327 return 0; 3328 } 3329 3330 #ifdef CONFIG_COMPAT 3331 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 3332 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 3333 { 3334 sigset_t old_set = current->blocked; 3335 3336 /* XXX: Don't preclude handling different sized sigset_t's. */ 3337 if (sigsetsize != sizeof(sigset_t)) 3338 return -EINVAL; 3339 3340 if (nset) { 3341 sigset_t new_set; 3342 int error; 3343 if (get_compat_sigset(&new_set, nset)) 3344 return -EFAULT; 3345 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3346 3347 error = sigprocmask(how, &new_set, NULL); 3348 if (error) 3349 return error; 3350 } 3351 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 3352 } 3353 #endif 3354 3355 static void do_sigpending(sigset_t *set) 3356 { 3357 spin_lock_irq(¤t->sighand->siglock); 3358 sigorsets(set, ¤t->pending.signal, 3359 ¤t->signal->shared_pending.signal); 3360 spin_unlock_irq(¤t->sighand->siglock); 3361 3362 /* Outside the lock because only this thread touches it. */ 3363 sigandsets(set, ¤t->blocked, set); 3364 } 3365 3366 /** 3367 * sys_rt_sigpending - examine a pending signal that has been raised 3368 * while blocked 3369 * @uset: stores pending signals 3370 * @sigsetsize: size of sigset_t type or larger 3371 */ 3372 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 3373 { 3374 sigset_t set; 3375 3376 if (sigsetsize > sizeof(*uset)) 3377 return -EINVAL; 3378 3379 do_sigpending(&set); 3380 3381 if (copy_to_user(uset, &set, sigsetsize)) 3382 return -EFAULT; 3383 3384 return 0; 3385 } 3386 3387 #ifdef CONFIG_COMPAT 3388 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 3389 compat_size_t, sigsetsize) 3390 { 3391 sigset_t set; 3392 3393 if (sigsetsize > sizeof(*uset)) 3394 return -EINVAL; 3395 3396 do_sigpending(&set); 3397 3398 return put_compat_sigset(uset, &set, sigsetsize); 3399 } 3400 #endif 3401 3402 static const struct { 3403 unsigned char limit, layout; 3404 } sig_sicodes[] = { 3405 [SIGILL] = { NSIGILL, SIL_FAULT }, 3406 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 3407 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 3408 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 3409 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 3410 #if defined(SIGEMT) 3411 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 3412 #endif 3413 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 3414 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 3415 [SIGSYS] = { NSIGSYS, SIL_SYS }, 3416 }; 3417 3418 static bool known_siginfo_layout(unsigned sig, int si_code) 3419 { 3420 if (si_code == SI_KERNEL) 3421 return true; 3422 else if ((si_code > SI_USER)) { 3423 if (sig_specific_sicodes(sig)) { 3424 if (si_code <= sig_sicodes[sig].limit) 3425 return true; 3426 } 3427 else if (si_code <= NSIGPOLL) 3428 return true; 3429 } 3430 else if (si_code >= SI_DETHREAD) 3431 return true; 3432 else if (si_code == SI_ASYNCNL) 3433 return true; 3434 return false; 3435 } 3436 3437 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3438 { 3439 enum siginfo_layout layout = SIL_KILL; 3440 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3441 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3442 (si_code <= sig_sicodes[sig].limit)) { 3443 layout = sig_sicodes[sig].layout; 3444 /* Handle the exceptions */ 3445 if ((sig == SIGBUS) && 3446 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3447 layout = SIL_FAULT_MCEERR; 3448 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3449 layout = SIL_FAULT_BNDERR; 3450 #ifdef SEGV_PKUERR 3451 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3452 layout = SIL_FAULT_PKUERR; 3453 #endif 3454 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF)) 3455 layout = SIL_FAULT_PERF_EVENT; 3456 else if (IS_ENABLED(CONFIG_SPARC) && 3457 (sig == SIGILL) && (si_code == ILL_ILLTRP)) 3458 layout = SIL_FAULT_TRAPNO; 3459 else if (IS_ENABLED(CONFIG_ALPHA) && 3460 ((sig == SIGFPE) || 3461 ((sig == SIGTRAP) && (si_code == TRAP_UNK)))) 3462 layout = SIL_FAULT_TRAPNO; 3463 } 3464 else if (si_code <= NSIGPOLL) 3465 layout = SIL_POLL; 3466 } else { 3467 if (si_code == SI_TIMER) 3468 layout = SIL_TIMER; 3469 else if (si_code == SI_SIGIO) 3470 layout = SIL_POLL; 3471 else if (si_code < 0) 3472 layout = SIL_RT; 3473 } 3474 return layout; 3475 } 3476 3477 static inline char __user *si_expansion(const siginfo_t __user *info) 3478 { 3479 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3480 } 3481 3482 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3483 { 3484 char __user *expansion = si_expansion(to); 3485 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3486 return -EFAULT; 3487 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3488 return -EFAULT; 3489 return 0; 3490 } 3491 3492 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3493 const siginfo_t __user *from) 3494 { 3495 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3496 char __user *expansion = si_expansion(from); 3497 char buf[SI_EXPANSION_SIZE]; 3498 int i; 3499 /* 3500 * An unknown si_code might need more than 3501 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3502 * extra bytes are 0. This guarantees copy_siginfo_to_user 3503 * will return this data to userspace exactly. 3504 */ 3505 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3506 return -EFAULT; 3507 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3508 if (buf[i] != 0) 3509 return -E2BIG; 3510 } 3511 } 3512 return 0; 3513 } 3514 3515 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3516 const siginfo_t __user *from) 3517 { 3518 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3519 return -EFAULT; 3520 to->si_signo = signo; 3521 return post_copy_siginfo_from_user(to, from); 3522 } 3523 3524 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3525 { 3526 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3527 return -EFAULT; 3528 return post_copy_siginfo_from_user(to, from); 3529 } 3530 3531 #ifdef CONFIG_COMPAT 3532 /** 3533 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo 3534 * @to: compat siginfo destination 3535 * @from: kernel siginfo source 3536 * 3537 * Note: This function does not work properly for the SIGCHLD on x32, but 3538 * fortunately it doesn't have to. The only valid callers for this function are 3539 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. 3540 * The latter does not care because SIGCHLD will never cause a coredump. 3541 */ 3542 void copy_siginfo_to_external32(struct compat_siginfo *to, 3543 const struct kernel_siginfo *from) 3544 { 3545 memset(to, 0, sizeof(*to)); 3546 3547 to->si_signo = from->si_signo; 3548 to->si_errno = from->si_errno; 3549 to->si_code = from->si_code; 3550 switch(siginfo_layout(from->si_signo, from->si_code)) { 3551 case SIL_KILL: 3552 to->si_pid = from->si_pid; 3553 to->si_uid = from->si_uid; 3554 break; 3555 case SIL_TIMER: 3556 to->si_tid = from->si_tid; 3557 to->si_overrun = from->si_overrun; 3558 to->si_int = from->si_int; 3559 break; 3560 case SIL_POLL: 3561 to->si_band = from->si_band; 3562 to->si_fd = from->si_fd; 3563 break; 3564 case SIL_FAULT: 3565 to->si_addr = ptr_to_compat(from->si_addr); 3566 break; 3567 case SIL_FAULT_TRAPNO: 3568 to->si_addr = ptr_to_compat(from->si_addr); 3569 to->si_trapno = from->si_trapno; 3570 break; 3571 case SIL_FAULT_MCEERR: 3572 to->si_addr = ptr_to_compat(from->si_addr); 3573 to->si_addr_lsb = from->si_addr_lsb; 3574 break; 3575 case SIL_FAULT_BNDERR: 3576 to->si_addr = ptr_to_compat(from->si_addr); 3577 to->si_lower = ptr_to_compat(from->si_lower); 3578 to->si_upper = ptr_to_compat(from->si_upper); 3579 break; 3580 case SIL_FAULT_PKUERR: 3581 to->si_addr = ptr_to_compat(from->si_addr); 3582 to->si_pkey = from->si_pkey; 3583 break; 3584 case SIL_FAULT_PERF_EVENT: 3585 to->si_addr = ptr_to_compat(from->si_addr); 3586 to->si_perf_data = from->si_perf_data; 3587 to->si_perf_type = from->si_perf_type; 3588 to->si_perf_flags = from->si_perf_flags; 3589 break; 3590 case SIL_CHLD: 3591 to->si_pid = from->si_pid; 3592 to->si_uid = from->si_uid; 3593 to->si_status = from->si_status; 3594 to->si_utime = from->si_utime; 3595 to->si_stime = from->si_stime; 3596 break; 3597 case SIL_RT: 3598 to->si_pid = from->si_pid; 3599 to->si_uid = from->si_uid; 3600 to->si_int = from->si_int; 3601 break; 3602 case SIL_SYS: 3603 to->si_call_addr = ptr_to_compat(from->si_call_addr); 3604 to->si_syscall = from->si_syscall; 3605 to->si_arch = from->si_arch; 3606 break; 3607 } 3608 } 3609 3610 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3611 const struct kernel_siginfo *from) 3612 { 3613 struct compat_siginfo new; 3614 3615 copy_siginfo_to_external32(&new, from); 3616 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3617 return -EFAULT; 3618 return 0; 3619 } 3620 3621 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3622 const struct compat_siginfo *from) 3623 { 3624 clear_siginfo(to); 3625 to->si_signo = from->si_signo; 3626 to->si_errno = from->si_errno; 3627 to->si_code = from->si_code; 3628 switch(siginfo_layout(from->si_signo, from->si_code)) { 3629 case SIL_KILL: 3630 to->si_pid = from->si_pid; 3631 to->si_uid = from->si_uid; 3632 break; 3633 case SIL_TIMER: 3634 to->si_tid = from->si_tid; 3635 to->si_overrun = from->si_overrun; 3636 to->si_int = from->si_int; 3637 break; 3638 case SIL_POLL: 3639 to->si_band = from->si_band; 3640 to->si_fd = from->si_fd; 3641 break; 3642 case SIL_FAULT: 3643 to->si_addr = compat_ptr(from->si_addr); 3644 break; 3645 case SIL_FAULT_TRAPNO: 3646 to->si_addr = compat_ptr(from->si_addr); 3647 to->si_trapno = from->si_trapno; 3648 break; 3649 case SIL_FAULT_MCEERR: 3650 to->si_addr = compat_ptr(from->si_addr); 3651 to->si_addr_lsb = from->si_addr_lsb; 3652 break; 3653 case SIL_FAULT_BNDERR: 3654 to->si_addr = compat_ptr(from->si_addr); 3655 to->si_lower = compat_ptr(from->si_lower); 3656 to->si_upper = compat_ptr(from->si_upper); 3657 break; 3658 case SIL_FAULT_PKUERR: 3659 to->si_addr = compat_ptr(from->si_addr); 3660 to->si_pkey = from->si_pkey; 3661 break; 3662 case SIL_FAULT_PERF_EVENT: 3663 to->si_addr = compat_ptr(from->si_addr); 3664 to->si_perf_data = from->si_perf_data; 3665 to->si_perf_type = from->si_perf_type; 3666 to->si_perf_flags = from->si_perf_flags; 3667 break; 3668 case SIL_CHLD: 3669 to->si_pid = from->si_pid; 3670 to->si_uid = from->si_uid; 3671 to->si_status = from->si_status; 3672 #ifdef CONFIG_X86_X32_ABI 3673 if (in_x32_syscall()) { 3674 to->si_utime = from->_sifields._sigchld_x32._utime; 3675 to->si_stime = from->_sifields._sigchld_x32._stime; 3676 } else 3677 #endif 3678 { 3679 to->si_utime = from->si_utime; 3680 to->si_stime = from->si_stime; 3681 } 3682 break; 3683 case SIL_RT: 3684 to->si_pid = from->si_pid; 3685 to->si_uid = from->si_uid; 3686 to->si_int = from->si_int; 3687 break; 3688 case SIL_SYS: 3689 to->si_call_addr = compat_ptr(from->si_call_addr); 3690 to->si_syscall = from->si_syscall; 3691 to->si_arch = from->si_arch; 3692 break; 3693 } 3694 return 0; 3695 } 3696 3697 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3698 const struct compat_siginfo __user *ufrom) 3699 { 3700 struct compat_siginfo from; 3701 3702 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3703 return -EFAULT; 3704 3705 from.si_signo = signo; 3706 return post_copy_siginfo_from_user32(to, &from); 3707 } 3708 3709 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3710 const struct compat_siginfo __user *ufrom) 3711 { 3712 struct compat_siginfo from; 3713 3714 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3715 return -EFAULT; 3716 3717 return post_copy_siginfo_from_user32(to, &from); 3718 } 3719 #endif /* CONFIG_COMPAT */ 3720 3721 /** 3722 * do_sigtimedwait - wait for queued signals specified in @which 3723 * @which: queued signals to wait for 3724 * @info: if non-null, the signal's siginfo is returned here 3725 * @ts: upper bound on process time suspension 3726 */ 3727 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3728 const struct timespec64 *ts) 3729 { 3730 ktime_t *to = NULL, timeout = KTIME_MAX; 3731 struct task_struct *tsk = current; 3732 sigset_t mask = *which; 3733 enum pid_type type; 3734 int sig, ret = 0; 3735 3736 if (ts) { 3737 if (!timespec64_valid(ts)) 3738 return -EINVAL; 3739 timeout = timespec64_to_ktime(*ts); 3740 to = &timeout; 3741 } 3742 3743 /* 3744 * Invert the set of allowed signals to get those we want to block. 3745 */ 3746 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3747 signotset(&mask); 3748 3749 spin_lock_irq(&tsk->sighand->siglock); 3750 sig = dequeue_signal(&mask, info, &type); 3751 if (!sig && timeout) { 3752 /* 3753 * None ready, temporarily unblock those we're interested 3754 * while we are sleeping in so that we'll be awakened when 3755 * they arrive. Unblocking is always fine, we can avoid 3756 * set_current_blocked(). 3757 */ 3758 tsk->real_blocked = tsk->blocked; 3759 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3760 recalc_sigpending(); 3761 spin_unlock_irq(&tsk->sighand->siglock); 3762 3763 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 3764 ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3765 HRTIMER_MODE_REL); 3766 spin_lock_irq(&tsk->sighand->siglock); 3767 __set_task_blocked(tsk, &tsk->real_blocked); 3768 sigemptyset(&tsk->real_blocked); 3769 sig = dequeue_signal(&mask, info, &type); 3770 } 3771 spin_unlock_irq(&tsk->sighand->siglock); 3772 3773 if (sig) 3774 return sig; 3775 return ret ? -EINTR : -EAGAIN; 3776 } 3777 3778 /** 3779 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3780 * in @uthese 3781 * @uthese: queued signals to wait for 3782 * @uinfo: if non-null, the signal's siginfo is returned here 3783 * @uts: upper bound on process time suspension 3784 * @sigsetsize: size of sigset_t type 3785 */ 3786 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3787 siginfo_t __user *, uinfo, 3788 const struct __kernel_timespec __user *, uts, 3789 size_t, sigsetsize) 3790 { 3791 sigset_t these; 3792 struct timespec64 ts; 3793 kernel_siginfo_t info; 3794 int ret; 3795 3796 /* XXX: Don't preclude handling different sized sigset_t's. */ 3797 if (sigsetsize != sizeof(sigset_t)) 3798 return -EINVAL; 3799 3800 if (copy_from_user(&these, uthese, sizeof(these))) 3801 return -EFAULT; 3802 3803 if (uts) { 3804 if (get_timespec64(&ts, uts)) 3805 return -EFAULT; 3806 } 3807 3808 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3809 3810 if (ret > 0 && uinfo) { 3811 if (copy_siginfo_to_user(uinfo, &info)) 3812 ret = -EFAULT; 3813 } 3814 3815 return ret; 3816 } 3817 3818 #ifdef CONFIG_COMPAT_32BIT_TIME 3819 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3820 siginfo_t __user *, uinfo, 3821 const struct old_timespec32 __user *, uts, 3822 size_t, sigsetsize) 3823 { 3824 sigset_t these; 3825 struct timespec64 ts; 3826 kernel_siginfo_t info; 3827 int ret; 3828 3829 if (sigsetsize != sizeof(sigset_t)) 3830 return -EINVAL; 3831 3832 if (copy_from_user(&these, uthese, sizeof(these))) 3833 return -EFAULT; 3834 3835 if (uts) { 3836 if (get_old_timespec32(&ts, uts)) 3837 return -EFAULT; 3838 } 3839 3840 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3841 3842 if (ret > 0 && uinfo) { 3843 if (copy_siginfo_to_user(uinfo, &info)) 3844 ret = -EFAULT; 3845 } 3846 3847 return ret; 3848 } 3849 #endif 3850 3851 #ifdef CONFIG_COMPAT 3852 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3853 struct compat_siginfo __user *, uinfo, 3854 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3855 { 3856 sigset_t s; 3857 struct timespec64 t; 3858 kernel_siginfo_t info; 3859 long ret; 3860 3861 if (sigsetsize != sizeof(sigset_t)) 3862 return -EINVAL; 3863 3864 if (get_compat_sigset(&s, uthese)) 3865 return -EFAULT; 3866 3867 if (uts) { 3868 if (get_timespec64(&t, uts)) 3869 return -EFAULT; 3870 } 3871 3872 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3873 3874 if (ret > 0 && uinfo) { 3875 if (copy_siginfo_to_user32(uinfo, &info)) 3876 ret = -EFAULT; 3877 } 3878 3879 return ret; 3880 } 3881 3882 #ifdef CONFIG_COMPAT_32BIT_TIME 3883 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3884 struct compat_siginfo __user *, uinfo, 3885 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3886 { 3887 sigset_t s; 3888 struct timespec64 t; 3889 kernel_siginfo_t info; 3890 long ret; 3891 3892 if (sigsetsize != sizeof(sigset_t)) 3893 return -EINVAL; 3894 3895 if (get_compat_sigset(&s, uthese)) 3896 return -EFAULT; 3897 3898 if (uts) { 3899 if (get_old_timespec32(&t, uts)) 3900 return -EFAULT; 3901 } 3902 3903 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3904 3905 if (ret > 0 && uinfo) { 3906 if (copy_siginfo_to_user32(uinfo, &info)) 3907 ret = -EFAULT; 3908 } 3909 3910 return ret; 3911 } 3912 #endif 3913 #endif 3914 3915 static void prepare_kill_siginfo(int sig, struct kernel_siginfo *info, 3916 enum pid_type type) 3917 { 3918 clear_siginfo(info); 3919 info->si_signo = sig; 3920 info->si_errno = 0; 3921 info->si_code = (type == PIDTYPE_PID) ? SI_TKILL : SI_USER; 3922 info->si_pid = task_tgid_vnr(current); 3923 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3924 } 3925 3926 /** 3927 * sys_kill - send a signal to a process 3928 * @pid: the PID of the process 3929 * @sig: signal to be sent 3930 */ 3931 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3932 { 3933 struct kernel_siginfo info; 3934 3935 prepare_kill_siginfo(sig, &info, PIDTYPE_TGID); 3936 3937 return kill_something_info(sig, &info, pid); 3938 } 3939 3940 /* 3941 * Verify that the signaler and signalee either are in the same pid namespace 3942 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3943 * namespace. 3944 */ 3945 static bool access_pidfd_pidns(struct pid *pid) 3946 { 3947 struct pid_namespace *active = task_active_pid_ns(current); 3948 struct pid_namespace *p = ns_of_pid(pid); 3949 3950 for (;;) { 3951 if (!p) 3952 return false; 3953 if (p == active) 3954 break; 3955 p = p->parent; 3956 } 3957 3958 return true; 3959 } 3960 3961 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, 3962 siginfo_t __user *info) 3963 { 3964 #ifdef CONFIG_COMPAT 3965 /* 3966 * Avoid hooking up compat syscalls and instead handle necessary 3967 * conversions here. Note, this is a stop-gap measure and should not be 3968 * considered a generic solution. 3969 */ 3970 if (in_compat_syscall()) 3971 return copy_siginfo_from_user32( 3972 kinfo, (struct compat_siginfo __user *)info); 3973 #endif 3974 return copy_siginfo_from_user(kinfo, info); 3975 } 3976 3977 static struct pid *pidfd_to_pid(const struct file *file) 3978 { 3979 struct pid *pid; 3980 3981 pid = pidfd_pid(file); 3982 if (!IS_ERR(pid)) 3983 return pid; 3984 3985 return tgid_pidfd_to_pid(file); 3986 } 3987 3988 #define PIDFD_SEND_SIGNAL_FLAGS \ 3989 (PIDFD_SIGNAL_THREAD | PIDFD_SIGNAL_THREAD_GROUP | \ 3990 PIDFD_SIGNAL_PROCESS_GROUP) 3991 3992 /** 3993 * sys_pidfd_send_signal - Signal a process through a pidfd 3994 * @pidfd: file descriptor of the process 3995 * @sig: signal to send 3996 * @info: signal info 3997 * @flags: future flags 3998 * 3999 * Send the signal to the thread group or to the individual thread depending 4000 * on PIDFD_THREAD. 4001 * In the future extension to @flags may be used to override the default scope 4002 * of @pidfd. 4003 * 4004 * Return: 0 on success, negative errno on failure 4005 */ 4006 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 4007 siginfo_t __user *, info, unsigned int, flags) 4008 { 4009 int ret; 4010 struct pid *pid; 4011 kernel_siginfo_t kinfo; 4012 enum pid_type type; 4013 4014 /* Enforce flags be set to 0 until we add an extension. */ 4015 if (flags & ~PIDFD_SEND_SIGNAL_FLAGS) 4016 return -EINVAL; 4017 4018 /* Ensure that only a single signal scope determining flag is set. */ 4019 if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1) 4020 return -EINVAL; 4021 4022 CLASS(fd, f)(pidfd); 4023 if (fd_empty(f)) 4024 return -EBADF; 4025 4026 /* Is this a pidfd? */ 4027 pid = pidfd_to_pid(fd_file(f)); 4028 if (IS_ERR(pid)) 4029 return PTR_ERR(pid); 4030 4031 if (!access_pidfd_pidns(pid)) 4032 return -EINVAL; 4033 4034 switch (flags) { 4035 case 0: 4036 /* Infer scope from the type of pidfd. */ 4037 if (fd_file(f)->f_flags & PIDFD_THREAD) 4038 type = PIDTYPE_PID; 4039 else 4040 type = PIDTYPE_TGID; 4041 break; 4042 case PIDFD_SIGNAL_THREAD: 4043 type = PIDTYPE_PID; 4044 break; 4045 case PIDFD_SIGNAL_THREAD_GROUP: 4046 type = PIDTYPE_TGID; 4047 break; 4048 case PIDFD_SIGNAL_PROCESS_GROUP: 4049 type = PIDTYPE_PGID; 4050 break; 4051 } 4052 4053 if (info) { 4054 ret = copy_siginfo_from_user_any(&kinfo, info); 4055 if (unlikely(ret)) 4056 return ret; 4057 4058 if (unlikely(sig != kinfo.si_signo)) 4059 return -EINVAL; 4060 4061 /* Only allow sending arbitrary signals to yourself. */ 4062 if ((task_pid(current) != pid || type > PIDTYPE_TGID) && 4063 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) 4064 return -EPERM; 4065 } else { 4066 prepare_kill_siginfo(sig, &kinfo, type); 4067 } 4068 4069 if (type == PIDTYPE_PGID) 4070 return kill_pgrp_info(sig, &kinfo, pid); 4071 else 4072 return kill_pid_info_type(sig, &kinfo, pid, type); 4073 } 4074 4075 static int 4076 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 4077 { 4078 struct task_struct *p; 4079 int error = -ESRCH; 4080 4081 rcu_read_lock(); 4082 p = find_task_by_vpid(pid); 4083 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 4084 error = check_kill_permission(sig, info, p); 4085 /* 4086 * The null signal is a permissions and process existence 4087 * probe. No signal is actually delivered. 4088 */ 4089 if (!error && sig) { 4090 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 4091 /* 4092 * If lock_task_sighand() failed we pretend the task 4093 * dies after receiving the signal. The window is tiny, 4094 * and the signal is private anyway. 4095 */ 4096 if (unlikely(error == -ESRCH)) 4097 error = 0; 4098 } 4099 } 4100 rcu_read_unlock(); 4101 4102 return error; 4103 } 4104 4105 static int do_tkill(pid_t tgid, pid_t pid, int sig) 4106 { 4107 struct kernel_siginfo info; 4108 4109 prepare_kill_siginfo(sig, &info, PIDTYPE_PID); 4110 4111 return do_send_specific(tgid, pid, sig, &info); 4112 } 4113 4114 /** 4115 * sys_tgkill - send signal to one specific thread 4116 * @tgid: the thread group ID of the thread 4117 * @pid: the PID of the thread 4118 * @sig: signal to be sent 4119 * 4120 * This syscall also checks the @tgid and returns -ESRCH even if the PID 4121 * exists but it's not belonging to the target process anymore. This 4122 * method solves the problem of threads exiting and PIDs getting reused. 4123 */ 4124 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 4125 { 4126 /* This is only valid for single tasks */ 4127 if (pid <= 0 || tgid <= 0) 4128 return -EINVAL; 4129 4130 return do_tkill(tgid, pid, sig); 4131 } 4132 4133 /** 4134 * sys_tkill - send signal to one specific task 4135 * @pid: the PID of the task 4136 * @sig: signal to be sent 4137 * 4138 * Send a signal to only one task, even if it's a CLONE_THREAD task. 4139 */ 4140 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 4141 { 4142 /* This is only valid for single tasks */ 4143 if (pid <= 0) 4144 return -EINVAL; 4145 4146 return do_tkill(0, pid, sig); 4147 } 4148 4149 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 4150 { 4151 /* Not even root can pretend to send signals from the kernel. 4152 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4153 */ 4154 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4155 (task_pid_vnr(current) != pid)) 4156 return -EPERM; 4157 4158 /* POSIX.1b doesn't mention process groups. */ 4159 return kill_proc_info(sig, info, pid); 4160 } 4161 4162 /** 4163 * sys_rt_sigqueueinfo - send signal information to a signal 4164 * @pid: the PID of the thread 4165 * @sig: signal to be sent 4166 * @uinfo: signal info to be sent 4167 */ 4168 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 4169 siginfo_t __user *, uinfo) 4170 { 4171 kernel_siginfo_t info; 4172 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4173 if (unlikely(ret)) 4174 return ret; 4175 return do_rt_sigqueueinfo(pid, sig, &info); 4176 } 4177 4178 #ifdef CONFIG_COMPAT 4179 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 4180 compat_pid_t, pid, 4181 int, sig, 4182 struct compat_siginfo __user *, uinfo) 4183 { 4184 kernel_siginfo_t info; 4185 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4186 if (unlikely(ret)) 4187 return ret; 4188 return do_rt_sigqueueinfo(pid, sig, &info); 4189 } 4190 #endif 4191 4192 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 4193 { 4194 /* This is only valid for single tasks */ 4195 if (pid <= 0 || tgid <= 0) 4196 return -EINVAL; 4197 4198 /* Not even root can pretend to send signals from the kernel. 4199 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4200 */ 4201 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4202 (task_pid_vnr(current) != pid)) 4203 return -EPERM; 4204 4205 return do_send_specific(tgid, pid, sig, info); 4206 } 4207 4208 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 4209 siginfo_t __user *, uinfo) 4210 { 4211 kernel_siginfo_t info; 4212 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4213 if (unlikely(ret)) 4214 return ret; 4215 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4216 } 4217 4218 #ifdef CONFIG_COMPAT 4219 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 4220 compat_pid_t, tgid, 4221 compat_pid_t, pid, 4222 int, sig, 4223 struct compat_siginfo __user *, uinfo) 4224 { 4225 kernel_siginfo_t info; 4226 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4227 if (unlikely(ret)) 4228 return ret; 4229 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4230 } 4231 #endif 4232 4233 /* 4234 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 4235 */ 4236 void kernel_sigaction(int sig, __sighandler_t action) 4237 { 4238 spin_lock_irq(¤t->sighand->siglock); 4239 current->sighand->action[sig - 1].sa.sa_handler = action; 4240 if (action == SIG_IGN) { 4241 sigset_t mask; 4242 4243 sigemptyset(&mask); 4244 sigaddset(&mask, sig); 4245 4246 flush_sigqueue_mask(current, &mask, ¤t->signal->shared_pending); 4247 flush_sigqueue_mask(current, &mask, ¤t->pending); 4248 recalc_sigpending(); 4249 } 4250 spin_unlock_irq(¤t->sighand->siglock); 4251 } 4252 EXPORT_SYMBOL(kernel_sigaction); 4253 4254 void __weak sigaction_compat_abi(struct k_sigaction *act, 4255 struct k_sigaction *oact) 4256 { 4257 } 4258 4259 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 4260 { 4261 struct task_struct *p = current, *t; 4262 struct k_sigaction *k; 4263 sigset_t mask; 4264 4265 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 4266 return -EINVAL; 4267 4268 k = &p->sighand->action[sig-1]; 4269 4270 spin_lock_irq(&p->sighand->siglock); 4271 if (k->sa.sa_flags & SA_IMMUTABLE) { 4272 spin_unlock_irq(&p->sighand->siglock); 4273 return -EINVAL; 4274 } 4275 if (oact) 4276 *oact = *k; 4277 4278 /* 4279 * Make sure that we never accidentally claim to support SA_UNSUPPORTED, 4280 * e.g. by having an architecture use the bit in their uapi. 4281 */ 4282 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED); 4283 4284 /* 4285 * Clear unknown flag bits in order to allow userspace to detect missing 4286 * support for flag bits and to allow the kernel to use non-uapi bits 4287 * internally. 4288 */ 4289 if (act) 4290 act->sa.sa_flags &= UAPI_SA_FLAGS; 4291 if (oact) 4292 oact->sa.sa_flags &= UAPI_SA_FLAGS; 4293 4294 sigaction_compat_abi(act, oact); 4295 4296 if (act) { 4297 bool was_ignored = k->sa.sa_handler == SIG_IGN; 4298 4299 sigdelsetmask(&act->sa.sa_mask, 4300 sigmask(SIGKILL) | sigmask(SIGSTOP)); 4301 *k = *act; 4302 /* 4303 * POSIX 3.3.1.3: 4304 * "Setting a signal action to SIG_IGN for a signal that is 4305 * pending shall cause the pending signal to be discarded, 4306 * whether or not it is blocked." 4307 * 4308 * "Setting a signal action to SIG_DFL for a signal that is 4309 * pending and whose default action is to ignore the signal 4310 * (for example, SIGCHLD), shall cause the pending signal to 4311 * be discarded, whether or not it is blocked" 4312 */ 4313 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 4314 sigemptyset(&mask); 4315 sigaddset(&mask, sig); 4316 flush_sigqueue_mask(p, &mask, &p->signal->shared_pending); 4317 for_each_thread(p, t) 4318 flush_sigqueue_mask(p, &mask, &t->pending); 4319 } else if (was_ignored) { 4320 posixtimer_sig_unignore(p, sig); 4321 } 4322 } 4323 4324 spin_unlock_irq(&p->sighand->siglock); 4325 return 0; 4326 } 4327 4328 #ifdef CONFIG_DYNAMIC_SIGFRAME 4329 static inline void sigaltstack_lock(void) 4330 __acquires(¤t->sighand->siglock) 4331 { 4332 spin_lock_irq(¤t->sighand->siglock); 4333 } 4334 4335 static inline void sigaltstack_unlock(void) 4336 __releases(¤t->sighand->siglock) 4337 { 4338 spin_unlock_irq(¤t->sighand->siglock); 4339 } 4340 #else 4341 static inline void sigaltstack_lock(void) { } 4342 static inline void sigaltstack_unlock(void) { } 4343 #endif 4344 4345 static int 4346 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 4347 size_t min_ss_size) 4348 { 4349 struct task_struct *t = current; 4350 int ret = 0; 4351 4352 if (oss) { 4353 memset(oss, 0, sizeof(stack_t)); 4354 oss->ss_sp = (void __user *) t->sas_ss_sp; 4355 oss->ss_size = t->sas_ss_size; 4356 oss->ss_flags = sas_ss_flags(sp) | 4357 (current->sas_ss_flags & SS_FLAG_BITS); 4358 } 4359 4360 if (ss) { 4361 void __user *ss_sp = ss->ss_sp; 4362 size_t ss_size = ss->ss_size; 4363 unsigned ss_flags = ss->ss_flags; 4364 int ss_mode; 4365 4366 if (unlikely(on_sig_stack(sp))) 4367 return -EPERM; 4368 4369 ss_mode = ss_flags & ~SS_FLAG_BITS; 4370 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 4371 ss_mode != 0)) 4372 return -EINVAL; 4373 4374 /* 4375 * Return before taking any locks if no actual 4376 * sigaltstack changes were requested. 4377 */ 4378 if (t->sas_ss_sp == (unsigned long)ss_sp && 4379 t->sas_ss_size == ss_size && 4380 t->sas_ss_flags == ss_flags) 4381 return 0; 4382 4383 sigaltstack_lock(); 4384 if (ss_mode == SS_DISABLE) { 4385 ss_size = 0; 4386 ss_sp = NULL; 4387 } else { 4388 if (unlikely(ss_size < min_ss_size)) 4389 ret = -ENOMEM; 4390 if (!sigaltstack_size_valid(ss_size)) 4391 ret = -ENOMEM; 4392 } 4393 if (!ret) { 4394 t->sas_ss_sp = (unsigned long) ss_sp; 4395 t->sas_ss_size = ss_size; 4396 t->sas_ss_flags = ss_flags; 4397 } 4398 sigaltstack_unlock(); 4399 } 4400 return ret; 4401 } 4402 4403 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 4404 { 4405 stack_t new, old; 4406 int err; 4407 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 4408 return -EFAULT; 4409 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 4410 current_user_stack_pointer(), 4411 MINSIGSTKSZ); 4412 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 4413 err = -EFAULT; 4414 return err; 4415 } 4416 4417 int restore_altstack(const stack_t __user *uss) 4418 { 4419 stack_t new; 4420 if (copy_from_user(&new, uss, sizeof(stack_t))) 4421 return -EFAULT; 4422 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 4423 MINSIGSTKSZ); 4424 /* squash all but EFAULT for now */ 4425 return 0; 4426 } 4427 4428 int __save_altstack(stack_t __user *uss, unsigned long sp) 4429 { 4430 struct task_struct *t = current; 4431 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 4432 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4433 __put_user(t->sas_ss_size, &uss->ss_size); 4434 return err; 4435 } 4436 4437 #ifdef CONFIG_COMPAT 4438 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 4439 compat_stack_t __user *uoss_ptr) 4440 { 4441 stack_t uss, uoss; 4442 int ret; 4443 4444 if (uss_ptr) { 4445 compat_stack_t uss32; 4446 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 4447 return -EFAULT; 4448 uss.ss_sp = compat_ptr(uss32.ss_sp); 4449 uss.ss_flags = uss32.ss_flags; 4450 uss.ss_size = uss32.ss_size; 4451 } 4452 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 4453 compat_user_stack_pointer(), 4454 COMPAT_MINSIGSTKSZ); 4455 if (ret >= 0 && uoss_ptr) { 4456 compat_stack_t old; 4457 memset(&old, 0, sizeof(old)); 4458 old.ss_sp = ptr_to_compat(uoss.ss_sp); 4459 old.ss_flags = uoss.ss_flags; 4460 old.ss_size = uoss.ss_size; 4461 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 4462 ret = -EFAULT; 4463 } 4464 return ret; 4465 } 4466 4467 COMPAT_SYSCALL_DEFINE2(sigaltstack, 4468 const compat_stack_t __user *, uss_ptr, 4469 compat_stack_t __user *, uoss_ptr) 4470 { 4471 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 4472 } 4473 4474 int compat_restore_altstack(const compat_stack_t __user *uss) 4475 { 4476 int err = do_compat_sigaltstack(uss, NULL); 4477 /* squash all but -EFAULT for now */ 4478 return err == -EFAULT ? err : 0; 4479 } 4480 4481 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 4482 { 4483 int err; 4484 struct task_struct *t = current; 4485 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 4486 &uss->ss_sp) | 4487 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4488 __put_user(t->sas_ss_size, &uss->ss_size); 4489 return err; 4490 } 4491 #endif 4492 4493 #ifdef __ARCH_WANT_SYS_SIGPENDING 4494 4495 /** 4496 * sys_sigpending - examine pending signals 4497 * @uset: where mask of pending signal is returned 4498 */ 4499 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4500 { 4501 sigset_t set; 4502 4503 if (sizeof(old_sigset_t) > sizeof(*uset)) 4504 return -EINVAL; 4505 4506 do_sigpending(&set); 4507 4508 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4509 return -EFAULT; 4510 4511 return 0; 4512 } 4513 4514 #ifdef CONFIG_COMPAT 4515 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4516 { 4517 sigset_t set; 4518 4519 do_sigpending(&set); 4520 4521 return put_user(set.sig[0], set32); 4522 } 4523 #endif 4524 4525 #endif 4526 4527 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 4528 /** 4529 * sys_sigprocmask - examine and change blocked signals 4530 * @how: whether to add, remove, or set signals 4531 * @nset: signals to add or remove (if non-null) 4532 * @oset: previous value of signal mask if non-null 4533 * 4534 * Some platforms have their own version with special arguments; 4535 * others support only sys_rt_sigprocmask. 4536 */ 4537 4538 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4539 old_sigset_t __user *, oset) 4540 { 4541 old_sigset_t old_set, new_set; 4542 sigset_t new_blocked; 4543 4544 old_set = current->blocked.sig[0]; 4545 4546 if (nset) { 4547 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4548 return -EFAULT; 4549 4550 new_blocked = current->blocked; 4551 4552 switch (how) { 4553 case SIG_BLOCK: 4554 sigaddsetmask(&new_blocked, new_set); 4555 break; 4556 case SIG_UNBLOCK: 4557 sigdelsetmask(&new_blocked, new_set); 4558 break; 4559 case SIG_SETMASK: 4560 new_blocked.sig[0] = new_set; 4561 break; 4562 default: 4563 return -EINVAL; 4564 } 4565 4566 set_current_blocked(&new_blocked); 4567 } 4568 4569 if (oset) { 4570 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4571 return -EFAULT; 4572 } 4573 4574 return 0; 4575 } 4576 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4577 4578 #ifndef CONFIG_ODD_RT_SIGACTION 4579 /** 4580 * sys_rt_sigaction - alter an action taken by a process 4581 * @sig: signal to be sent 4582 * @act: new sigaction 4583 * @oact: used to save the previous sigaction 4584 * @sigsetsize: size of sigset_t type 4585 */ 4586 SYSCALL_DEFINE4(rt_sigaction, int, sig, 4587 const struct sigaction __user *, act, 4588 struct sigaction __user *, oact, 4589 size_t, sigsetsize) 4590 { 4591 struct k_sigaction new_sa, old_sa; 4592 int ret; 4593 4594 /* XXX: Don't preclude handling different sized sigset_t's. */ 4595 if (sigsetsize != sizeof(sigset_t)) 4596 return -EINVAL; 4597 4598 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4599 return -EFAULT; 4600 4601 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4602 if (ret) 4603 return ret; 4604 4605 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4606 return -EFAULT; 4607 4608 return 0; 4609 } 4610 #ifdef CONFIG_COMPAT 4611 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4612 const struct compat_sigaction __user *, act, 4613 struct compat_sigaction __user *, oact, 4614 compat_size_t, sigsetsize) 4615 { 4616 struct k_sigaction new_ka, old_ka; 4617 #ifdef __ARCH_HAS_SA_RESTORER 4618 compat_uptr_t restorer; 4619 #endif 4620 int ret; 4621 4622 /* XXX: Don't preclude handling different sized sigset_t's. */ 4623 if (sigsetsize != sizeof(compat_sigset_t)) 4624 return -EINVAL; 4625 4626 if (act) { 4627 compat_uptr_t handler; 4628 ret = get_user(handler, &act->sa_handler); 4629 new_ka.sa.sa_handler = compat_ptr(handler); 4630 #ifdef __ARCH_HAS_SA_RESTORER 4631 ret |= get_user(restorer, &act->sa_restorer); 4632 new_ka.sa.sa_restorer = compat_ptr(restorer); 4633 #endif 4634 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4635 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4636 if (ret) 4637 return -EFAULT; 4638 } 4639 4640 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4641 if (!ret && oact) { 4642 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4643 &oact->sa_handler); 4644 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4645 sizeof(oact->sa_mask)); 4646 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4647 #ifdef __ARCH_HAS_SA_RESTORER 4648 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4649 &oact->sa_restorer); 4650 #endif 4651 } 4652 return ret; 4653 } 4654 #endif 4655 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4656 4657 #ifdef CONFIG_OLD_SIGACTION 4658 SYSCALL_DEFINE3(sigaction, int, sig, 4659 const struct old_sigaction __user *, act, 4660 struct old_sigaction __user *, oact) 4661 { 4662 struct k_sigaction new_ka, old_ka; 4663 int ret; 4664 4665 if (act) { 4666 old_sigset_t mask; 4667 if (!access_ok(act, sizeof(*act)) || 4668 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4669 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4670 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4671 __get_user(mask, &act->sa_mask)) 4672 return -EFAULT; 4673 #ifdef __ARCH_HAS_KA_RESTORER 4674 new_ka.ka_restorer = NULL; 4675 #endif 4676 siginitset(&new_ka.sa.sa_mask, mask); 4677 } 4678 4679 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4680 4681 if (!ret && oact) { 4682 if (!access_ok(oact, sizeof(*oact)) || 4683 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4684 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4685 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4686 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4687 return -EFAULT; 4688 } 4689 4690 return ret; 4691 } 4692 #endif 4693 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4694 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4695 const struct compat_old_sigaction __user *, act, 4696 struct compat_old_sigaction __user *, oact) 4697 { 4698 struct k_sigaction new_ka, old_ka; 4699 int ret; 4700 compat_old_sigset_t mask; 4701 compat_uptr_t handler, restorer; 4702 4703 if (act) { 4704 if (!access_ok(act, sizeof(*act)) || 4705 __get_user(handler, &act->sa_handler) || 4706 __get_user(restorer, &act->sa_restorer) || 4707 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4708 __get_user(mask, &act->sa_mask)) 4709 return -EFAULT; 4710 4711 #ifdef __ARCH_HAS_KA_RESTORER 4712 new_ka.ka_restorer = NULL; 4713 #endif 4714 new_ka.sa.sa_handler = compat_ptr(handler); 4715 new_ka.sa.sa_restorer = compat_ptr(restorer); 4716 siginitset(&new_ka.sa.sa_mask, mask); 4717 } 4718 4719 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4720 4721 if (!ret && oact) { 4722 if (!access_ok(oact, sizeof(*oact)) || 4723 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4724 &oact->sa_handler) || 4725 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4726 &oact->sa_restorer) || 4727 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4728 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4729 return -EFAULT; 4730 } 4731 return ret; 4732 } 4733 #endif 4734 4735 #ifdef CONFIG_SGETMASK_SYSCALL 4736 4737 /* 4738 * For backwards compatibility. Functionality superseded by sigprocmask. 4739 */ 4740 SYSCALL_DEFINE0(sgetmask) 4741 { 4742 /* SMP safe */ 4743 return current->blocked.sig[0]; 4744 } 4745 4746 SYSCALL_DEFINE1(ssetmask, int, newmask) 4747 { 4748 int old = current->blocked.sig[0]; 4749 sigset_t newset; 4750 4751 siginitset(&newset, newmask); 4752 set_current_blocked(&newset); 4753 4754 return old; 4755 } 4756 #endif /* CONFIG_SGETMASK_SYSCALL */ 4757 4758 #ifdef __ARCH_WANT_SYS_SIGNAL 4759 /* 4760 * For backwards compatibility. Functionality superseded by sigaction. 4761 */ 4762 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4763 { 4764 struct k_sigaction new_sa, old_sa; 4765 int ret; 4766 4767 new_sa.sa.sa_handler = handler; 4768 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4769 sigemptyset(&new_sa.sa.sa_mask); 4770 4771 ret = do_sigaction(sig, &new_sa, &old_sa); 4772 4773 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4774 } 4775 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4776 4777 #ifdef __ARCH_WANT_SYS_PAUSE 4778 4779 SYSCALL_DEFINE0(pause) 4780 { 4781 while (!signal_pending(current)) { 4782 __set_current_state(TASK_INTERRUPTIBLE); 4783 schedule(); 4784 } 4785 return -ERESTARTNOHAND; 4786 } 4787 4788 #endif 4789 4790 static int sigsuspend(sigset_t *set) 4791 { 4792 current->saved_sigmask = current->blocked; 4793 set_current_blocked(set); 4794 4795 while (!signal_pending(current)) { 4796 __set_current_state(TASK_INTERRUPTIBLE); 4797 schedule(); 4798 } 4799 set_restore_sigmask(); 4800 return -ERESTARTNOHAND; 4801 } 4802 4803 /** 4804 * sys_rt_sigsuspend - replace the signal mask for a value with the 4805 * @unewset value until a signal is received 4806 * @unewset: new signal mask value 4807 * @sigsetsize: size of sigset_t type 4808 */ 4809 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4810 { 4811 sigset_t newset; 4812 4813 /* XXX: Don't preclude handling different sized sigset_t's. */ 4814 if (sigsetsize != sizeof(sigset_t)) 4815 return -EINVAL; 4816 4817 if (copy_from_user(&newset, unewset, sizeof(newset))) 4818 return -EFAULT; 4819 return sigsuspend(&newset); 4820 } 4821 4822 #ifdef CONFIG_COMPAT 4823 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4824 { 4825 sigset_t newset; 4826 4827 /* XXX: Don't preclude handling different sized sigset_t's. */ 4828 if (sigsetsize != sizeof(sigset_t)) 4829 return -EINVAL; 4830 4831 if (get_compat_sigset(&newset, unewset)) 4832 return -EFAULT; 4833 return sigsuspend(&newset); 4834 } 4835 #endif 4836 4837 #ifdef CONFIG_OLD_SIGSUSPEND 4838 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4839 { 4840 sigset_t blocked; 4841 siginitset(&blocked, mask); 4842 return sigsuspend(&blocked); 4843 } 4844 #endif 4845 #ifdef CONFIG_OLD_SIGSUSPEND3 4846 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4847 { 4848 sigset_t blocked; 4849 siginitset(&blocked, mask); 4850 return sigsuspend(&blocked); 4851 } 4852 #endif 4853 4854 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4855 { 4856 return NULL; 4857 } 4858 4859 static inline void siginfo_buildtime_checks(void) 4860 { 4861 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4862 4863 /* Verify the offsets in the two siginfos match */ 4864 #define CHECK_OFFSET(field) \ 4865 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4866 4867 /* kill */ 4868 CHECK_OFFSET(si_pid); 4869 CHECK_OFFSET(si_uid); 4870 4871 /* timer */ 4872 CHECK_OFFSET(si_tid); 4873 CHECK_OFFSET(si_overrun); 4874 CHECK_OFFSET(si_value); 4875 4876 /* rt */ 4877 CHECK_OFFSET(si_pid); 4878 CHECK_OFFSET(si_uid); 4879 CHECK_OFFSET(si_value); 4880 4881 /* sigchld */ 4882 CHECK_OFFSET(si_pid); 4883 CHECK_OFFSET(si_uid); 4884 CHECK_OFFSET(si_status); 4885 CHECK_OFFSET(si_utime); 4886 CHECK_OFFSET(si_stime); 4887 4888 /* sigfault */ 4889 CHECK_OFFSET(si_addr); 4890 CHECK_OFFSET(si_trapno); 4891 CHECK_OFFSET(si_addr_lsb); 4892 CHECK_OFFSET(si_lower); 4893 CHECK_OFFSET(si_upper); 4894 CHECK_OFFSET(si_pkey); 4895 CHECK_OFFSET(si_perf_data); 4896 CHECK_OFFSET(si_perf_type); 4897 CHECK_OFFSET(si_perf_flags); 4898 4899 /* sigpoll */ 4900 CHECK_OFFSET(si_band); 4901 CHECK_OFFSET(si_fd); 4902 4903 /* sigsys */ 4904 CHECK_OFFSET(si_call_addr); 4905 CHECK_OFFSET(si_syscall); 4906 CHECK_OFFSET(si_arch); 4907 #undef CHECK_OFFSET 4908 4909 /* usb asyncio */ 4910 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != 4911 offsetof(struct siginfo, si_addr)); 4912 if (sizeof(int) == sizeof(void __user *)) { 4913 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != 4914 sizeof(void __user *)); 4915 } else { 4916 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + 4917 sizeof_field(struct siginfo, si_uid)) != 4918 sizeof(void __user *)); 4919 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != 4920 offsetof(struct siginfo, si_uid)); 4921 } 4922 #ifdef CONFIG_COMPAT 4923 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != 4924 offsetof(struct compat_siginfo, si_addr)); 4925 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4926 sizeof(compat_uptr_t)); 4927 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4928 sizeof_field(struct siginfo, si_pid)); 4929 #endif 4930 } 4931 4932 #if defined(CONFIG_SYSCTL) 4933 static struct ctl_table signal_debug_table[] = { 4934 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE 4935 { 4936 .procname = "exception-trace", 4937 .data = &show_unhandled_signals, 4938 .maxlen = sizeof(int), 4939 .mode = 0644, 4940 .proc_handler = proc_dointvec 4941 }, 4942 #endif 4943 }; 4944 4945 static int __init init_signal_sysctls(void) 4946 { 4947 register_sysctl_init("debug", signal_debug_table); 4948 return 0; 4949 } 4950 early_initcall(init_signal_sysctls); 4951 #endif /* CONFIG_SYSCTL */ 4952 4953 void __init signals_init(void) 4954 { 4955 siginfo_buildtime_checks(); 4956 4957 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT); 4958 } 4959 4960 #ifdef CONFIG_KGDB_KDB 4961 #include <linux/kdb.h> 4962 /* 4963 * kdb_send_sig - Allows kdb to send signals without exposing 4964 * signal internals. This function checks if the required locks are 4965 * available before calling the main signal code, to avoid kdb 4966 * deadlocks. 4967 */ 4968 void kdb_send_sig(struct task_struct *t, int sig) 4969 { 4970 static struct task_struct *kdb_prev_t; 4971 int new_t, ret; 4972 if (!spin_trylock(&t->sighand->siglock)) { 4973 kdb_printf("Can't do kill command now.\n" 4974 "The sigmask lock is held somewhere else in " 4975 "kernel, try again later\n"); 4976 return; 4977 } 4978 new_t = kdb_prev_t != t; 4979 kdb_prev_t = t; 4980 if (!task_is_running(t) && new_t) { 4981 spin_unlock(&t->sighand->siglock); 4982 kdb_printf("Process is not RUNNING, sending a signal from " 4983 "kdb risks deadlock\n" 4984 "on the run queue locks. " 4985 "The signal has _not_ been sent.\n" 4986 "Reissue the kill command if you want to risk " 4987 "the deadlock.\n"); 4988 return; 4989 } 4990 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 4991 spin_unlock(&t->sighand->siglock); 4992 if (ret) 4993 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4994 sig, t->pid); 4995 else 4996 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4997 } 4998 #endif /* CONFIG_KGDB_KDB */ 4999