xref: /linux/kernel/signal.c (revision fcc79e1714e8c2b8e216dc3149812edd37884eef)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/mm.h>
26 #include <linux/proc_fs.h>
27 #include <linux/tty.h>
28 #include <linux/binfmts.h>
29 #include <linux/coredump.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/ptrace.h>
33 #include <linux/signal.h>
34 #include <linux/signalfd.h>
35 #include <linux/ratelimit.h>
36 #include <linux/task_work.h>
37 #include <linux/capability.h>
38 #include <linux/freezer.h>
39 #include <linux/pid_namespace.h>
40 #include <linux/nsproxy.h>
41 #include <linux/user_namespace.h>
42 #include <linux/uprobes.h>
43 #include <linux/compat.h>
44 #include <linux/cn_proc.h>
45 #include <linux/compiler.h>
46 #include <linux/posix-timers.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49 #include <linux/sysctl.h>
50 #include <uapi/linux/pidfd.h>
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/signal.h>
54 
55 #include <asm/param.h>
56 #include <linux/uaccess.h>
57 #include <asm/unistd.h>
58 #include <asm/siginfo.h>
59 #include <asm/cacheflush.h>
60 #include <asm/syscall.h>	/* for syscall_get_* */
61 
62 #include "time/posix-timers.h"
63 
64 /*
65  * SLAB caches for signal bits.
66  */
67 
68 static struct kmem_cache *sigqueue_cachep;
69 
70 int print_fatal_signals __read_mostly;
71 
72 static void __user *sig_handler(struct task_struct *t, int sig)
73 {
74 	return t->sighand->action[sig - 1].sa.sa_handler;
75 }
76 
77 static inline bool sig_handler_ignored(void __user *handler, int sig)
78 {
79 	/* Is it explicitly or implicitly ignored? */
80 	return handler == SIG_IGN ||
81 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
82 }
83 
84 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
85 {
86 	void __user *handler;
87 
88 	handler = sig_handler(t, sig);
89 
90 	/* SIGKILL and SIGSTOP may not be sent to the global init */
91 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
92 		return true;
93 
94 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
95 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
96 		return true;
97 
98 	/* Only allow kernel generated signals to this kthread */
99 	if (unlikely((t->flags & PF_KTHREAD) &&
100 		     (handler == SIG_KTHREAD_KERNEL) && !force))
101 		return true;
102 
103 	return sig_handler_ignored(handler, sig);
104 }
105 
106 static bool sig_ignored(struct task_struct *t, int sig, bool force)
107 {
108 	/*
109 	 * Blocked signals are never ignored, since the
110 	 * signal handler may change by the time it is
111 	 * unblocked.
112 	 */
113 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
114 		return false;
115 
116 	/*
117 	 * Tracers may want to know about even ignored signal unless it
118 	 * is SIGKILL which can't be reported anyway but can be ignored
119 	 * by SIGNAL_UNKILLABLE task.
120 	 */
121 	if (t->ptrace && sig != SIGKILL)
122 		return false;
123 
124 	return sig_task_ignored(t, sig, force);
125 }
126 
127 /*
128  * Re-calculate pending state from the set of locally pending
129  * signals, globally pending signals, and blocked signals.
130  */
131 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
132 {
133 	unsigned long ready;
134 	long i;
135 
136 	switch (_NSIG_WORDS) {
137 	default:
138 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
139 			ready |= signal->sig[i] &~ blocked->sig[i];
140 		break;
141 
142 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
143 		ready |= signal->sig[2] &~ blocked->sig[2];
144 		ready |= signal->sig[1] &~ blocked->sig[1];
145 		ready |= signal->sig[0] &~ blocked->sig[0];
146 		break;
147 
148 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
149 		ready |= signal->sig[0] &~ blocked->sig[0];
150 		break;
151 
152 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
153 	}
154 	return ready !=	0;
155 }
156 
157 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
158 
159 static bool recalc_sigpending_tsk(struct task_struct *t)
160 {
161 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
162 	    PENDING(&t->pending, &t->blocked) ||
163 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
164 	    cgroup_task_frozen(t)) {
165 		set_tsk_thread_flag(t, TIF_SIGPENDING);
166 		return true;
167 	}
168 
169 	/*
170 	 * We must never clear the flag in another thread, or in current
171 	 * when it's possible the current syscall is returning -ERESTART*.
172 	 * So we don't clear it here, and only callers who know they should do.
173 	 */
174 	return false;
175 }
176 
177 void recalc_sigpending(void)
178 {
179 	if (!recalc_sigpending_tsk(current) && !freezing(current))
180 		clear_thread_flag(TIF_SIGPENDING);
181 
182 }
183 EXPORT_SYMBOL(recalc_sigpending);
184 
185 void calculate_sigpending(void)
186 {
187 	/* Have any signals or users of TIF_SIGPENDING been delayed
188 	 * until after fork?
189 	 */
190 	spin_lock_irq(&current->sighand->siglock);
191 	set_tsk_thread_flag(current, TIF_SIGPENDING);
192 	recalc_sigpending();
193 	spin_unlock_irq(&current->sighand->siglock);
194 }
195 
196 /* Given the mask, find the first available signal that should be serviced. */
197 
198 #define SYNCHRONOUS_MASK \
199 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
200 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
201 
202 int next_signal(struct sigpending *pending, sigset_t *mask)
203 {
204 	unsigned long i, *s, *m, x;
205 	int sig = 0;
206 
207 	s = pending->signal.sig;
208 	m = mask->sig;
209 
210 	/*
211 	 * Handle the first word specially: it contains the
212 	 * synchronous signals that need to be dequeued first.
213 	 */
214 	x = *s &~ *m;
215 	if (x) {
216 		if (x & SYNCHRONOUS_MASK)
217 			x &= SYNCHRONOUS_MASK;
218 		sig = ffz(~x) + 1;
219 		return sig;
220 	}
221 
222 	switch (_NSIG_WORDS) {
223 	default:
224 		for (i = 1; i < _NSIG_WORDS; ++i) {
225 			x = *++s &~ *++m;
226 			if (!x)
227 				continue;
228 			sig = ffz(~x) + i*_NSIG_BPW + 1;
229 			break;
230 		}
231 		break;
232 
233 	case 2:
234 		x = s[1] &~ m[1];
235 		if (!x)
236 			break;
237 		sig = ffz(~x) + _NSIG_BPW + 1;
238 		break;
239 
240 	case 1:
241 		/* Nothing to do */
242 		break;
243 	}
244 
245 	return sig;
246 }
247 
248 static inline void print_dropped_signal(int sig)
249 {
250 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
251 
252 	if (!print_fatal_signals)
253 		return;
254 
255 	if (!__ratelimit(&ratelimit_state))
256 		return;
257 
258 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
259 				current->comm, current->pid, sig);
260 }
261 
262 /**
263  * task_set_jobctl_pending - set jobctl pending bits
264  * @task: target task
265  * @mask: pending bits to set
266  *
267  * Clear @mask from @task->jobctl.  @mask must be subset of
268  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
269  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
270  * cleared.  If @task is already being killed or exiting, this function
271  * becomes noop.
272  *
273  * CONTEXT:
274  * Must be called with @task->sighand->siglock held.
275  *
276  * RETURNS:
277  * %true if @mask is set, %false if made noop because @task was dying.
278  */
279 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
280 {
281 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
282 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
283 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
284 
285 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
286 		return false;
287 
288 	if (mask & JOBCTL_STOP_SIGMASK)
289 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
290 
291 	task->jobctl |= mask;
292 	return true;
293 }
294 
295 /**
296  * task_clear_jobctl_trapping - clear jobctl trapping bit
297  * @task: target task
298  *
299  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
300  * Clear it and wake up the ptracer.  Note that we don't need any further
301  * locking.  @task->siglock guarantees that @task->parent points to the
302  * ptracer.
303  *
304  * CONTEXT:
305  * Must be called with @task->sighand->siglock held.
306  */
307 void task_clear_jobctl_trapping(struct task_struct *task)
308 {
309 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
310 		task->jobctl &= ~JOBCTL_TRAPPING;
311 		smp_mb();	/* advised by wake_up_bit() */
312 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
313 	}
314 }
315 
316 /**
317  * task_clear_jobctl_pending - clear jobctl pending bits
318  * @task: target task
319  * @mask: pending bits to clear
320  *
321  * Clear @mask from @task->jobctl.  @mask must be subset of
322  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
323  * STOP bits are cleared together.
324  *
325  * If clearing of @mask leaves no stop or trap pending, this function calls
326  * task_clear_jobctl_trapping().
327  *
328  * CONTEXT:
329  * Must be called with @task->sighand->siglock held.
330  */
331 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
332 {
333 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
334 
335 	if (mask & JOBCTL_STOP_PENDING)
336 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
337 
338 	task->jobctl &= ~mask;
339 
340 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
341 		task_clear_jobctl_trapping(task);
342 }
343 
344 /**
345  * task_participate_group_stop - participate in a group stop
346  * @task: task participating in a group stop
347  *
348  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
349  * Group stop states are cleared and the group stop count is consumed if
350  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
351  * stop, the appropriate `SIGNAL_*` flags are set.
352  *
353  * CONTEXT:
354  * Must be called with @task->sighand->siglock held.
355  *
356  * RETURNS:
357  * %true if group stop completion should be notified to the parent, %false
358  * otherwise.
359  */
360 static bool task_participate_group_stop(struct task_struct *task)
361 {
362 	struct signal_struct *sig = task->signal;
363 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
364 
365 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
366 
367 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
368 
369 	if (!consume)
370 		return false;
371 
372 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
373 		sig->group_stop_count--;
374 
375 	/*
376 	 * Tell the caller to notify completion iff we are entering into a
377 	 * fresh group stop.  Read comment in do_signal_stop() for details.
378 	 */
379 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
380 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
381 		return true;
382 	}
383 	return false;
384 }
385 
386 void task_join_group_stop(struct task_struct *task)
387 {
388 	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
389 	struct signal_struct *sig = current->signal;
390 
391 	if (sig->group_stop_count) {
392 		sig->group_stop_count++;
393 		mask |= JOBCTL_STOP_CONSUME;
394 	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
395 		return;
396 
397 	/* Have the new thread join an on-going signal group stop */
398 	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
399 }
400 
401 static struct ucounts *sig_get_ucounts(struct task_struct *t, int sig,
402 				       int override_rlimit)
403 {
404 	struct ucounts *ucounts;
405 	long sigpending;
406 
407 	/*
408 	 * Protect access to @t credentials. This can go away when all
409 	 * callers hold rcu read lock.
410 	 *
411 	 * NOTE! A pending signal will hold on to the user refcount,
412 	 * and we get/put the refcount only when the sigpending count
413 	 * changes from/to zero.
414 	 */
415 	rcu_read_lock();
416 	ucounts = task_ucounts(t);
417 	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING,
418 					    override_rlimit);
419 	rcu_read_unlock();
420 	if (!sigpending)
421 		return NULL;
422 
423 	if (unlikely(!override_rlimit && sigpending > task_rlimit(t, RLIMIT_SIGPENDING))) {
424 		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
425 		print_dropped_signal(sig);
426 		return NULL;
427 	}
428 
429 	return ucounts;
430 }
431 
432 static void __sigqueue_init(struct sigqueue *q, struct ucounts *ucounts,
433 			    const unsigned int sigqueue_flags)
434 {
435 	INIT_LIST_HEAD(&q->list);
436 	q->flags = sigqueue_flags;
437 	q->ucounts = ucounts;
438 }
439 
440 /*
441  * allocate a new signal queue record
442  * - this may be called without locks if and only if t == current, otherwise an
443  *   appropriate lock must be held to stop the target task from exiting
444  */
445 static struct sigqueue *sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
446 				       int override_rlimit)
447 {
448 	struct ucounts *ucounts = sig_get_ucounts(t, sig, override_rlimit);
449 	struct sigqueue *q;
450 
451 	if (!ucounts)
452 		return NULL;
453 
454 	q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
455 	if (!q) {
456 		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
457 		return NULL;
458 	}
459 
460 	__sigqueue_init(q, ucounts, 0);
461 	return q;
462 }
463 
464 static void __sigqueue_free(struct sigqueue *q)
465 {
466 	if (q->flags & SIGQUEUE_PREALLOC) {
467 		posixtimer_sigqueue_putref(q);
468 		return;
469 	}
470 	if (q->ucounts) {
471 		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
472 		q->ucounts = NULL;
473 	}
474 	kmem_cache_free(sigqueue_cachep, q);
475 }
476 
477 void flush_sigqueue(struct sigpending *queue)
478 {
479 	struct sigqueue *q;
480 
481 	sigemptyset(&queue->signal);
482 	while (!list_empty(&queue->list)) {
483 		q = list_entry(queue->list.next, struct sigqueue , list);
484 		list_del_init(&q->list);
485 		__sigqueue_free(q);
486 	}
487 }
488 
489 /*
490  * Flush all pending signals for this kthread.
491  */
492 void flush_signals(struct task_struct *t)
493 {
494 	unsigned long flags;
495 
496 	spin_lock_irqsave(&t->sighand->siglock, flags);
497 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
498 	flush_sigqueue(&t->pending);
499 	flush_sigqueue(&t->signal->shared_pending);
500 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
501 }
502 EXPORT_SYMBOL(flush_signals);
503 
504 void ignore_signals(struct task_struct *t)
505 {
506 	int i;
507 
508 	for (i = 0; i < _NSIG; ++i)
509 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
510 
511 	flush_signals(t);
512 }
513 
514 /*
515  * Flush all handlers for a task.
516  */
517 
518 void
519 flush_signal_handlers(struct task_struct *t, int force_default)
520 {
521 	int i;
522 	struct k_sigaction *ka = &t->sighand->action[0];
523 	for (i = _NSIG ; i != 0 ; i--) {
524 		if (force_default || ka->sa.sa_handler != SIG_IGN)
525 			ka->sa.sa_handler = SIG_DFL;
526 		ka->sa.sa_flags = 0;
527 #ifdef __ARCH_HAS_SA_RESTORER
528 		ka->sa.sa_restorer = NULL;
529 #endif
530 		sigemptyset(&ka->sa.sa_mask);
531 		ka++;
532 	}
533 }
534 
535 bool unhandled_signal(struct task_struct *tsk, int sig)
536 {
537 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
538 	if (is_global_init(tsk))
539 		return true;
540 
541 	if (handler != SIG_IGN && handler != SIG_DFL)
542 		return false;
543 
544 	/* If dying, we handle all new signals by ignoring them */
545 	if (fatal_signal_pending(tsk))
546 		return false;
547 
548 	/* if ptraced, let the tracer determine */
549 	return !tsk->ptrace;
550 }
551 
552 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
553 			   struct sigqueue **timer_sigq)
554 {
555 	struct sigqueue *q, *first = NULL;
556 
557 	/*
558 	 * Collect the siginfo appropriate to this signal.  Check if
559 	 * there is another siginfo for the same signal.
560 	*/
561 	list_for_each_entry(q, &list->list, list) {
562 		if (q->info.si_signo == sig) {
563 			if (first)
564 				goto still_pending;
565 			first = q;
566 		}
567 	}
568 
569 	sigdelset(&list->signal, sig);
570 
571 	if (first) {
572 still_pending:
573 		list_del_init(&first->list);
574 		copy_siginfo(info, &first->info);
575 
576 		/*
577 		 * posix-timer signals are preallocated and freed when the last
578 		 * reference count is dropped in posixtimer_deliver_signal() or
579 		 * immediately on timer deletion when the signal is not pending.
580 		 * Spare the extra round through __sigqueue_free() which is
581 		 * ignoring preallocated signals.
582 		 */
583 		if (unlikely((first->flags & SIGQUEUE_PREALLOC) && (info->si_code == SI_TIMER)))
584 			*timer_sigq = first;
585 		else
586 			__sigqueue_free(first);
587 	} else {
588 		/*
589 		 * Ok, it wasn't in the queue.  This must be
590 		 * a fast-pathed signal or we must have been
591 		 * out of queue space.  So zero out the info.
592 		 */
593 		clear_siginfo(info);
594 		info->si_signo = sig;
595 		info->si_errno = 0;
596 		info->si_code = SI_USER;
597 		info->si_pid = 0;
598 		info->si_uid = 0;
599 	}
600 }
601 
602 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
603 			    kernel_siginfo_t *info, struct sigqueue **timer_sigq)
604 {
605 	int sig = next_signal(pending, mask);
606 
607 	if (sig)
608 		collect_signal(sig, pending, info, timer_sigq);
609 	return sig;
610 }
611 
612 /*
613  * Try to dequeue a signal. If a deliverable signal is found fill in the
614  * caller provided siginfo and return the signal number. Otherwise return
615  * 0.
616  */
617 int dequeue_signal(sigset_t *mask, kernel_siginfo_t *info, enum pid_type *type)
618 {
619 	struct task_struct *tsk = current;
620 	struct sigqueue *timer_sigq;
621 	int signr;
622 
623 	lockdep_assert_held(&tsk->sighand->siglock);
624 
625 again:
626 	*type = PIDTYPE_PID;
627 	timer_sigq = NULL;
628 	signr = __dequeue_signal(&tsk->pending, mask, info, &timer_sigq);
629 	if (!signr) {
630 		*type = PIDTYPE_TGID;
631 		signr = __dequeue_signal(&tsk->signal->shared_pending,
632 					 mask, info, &timer_sigq);
633 
634 		if (unlikely(signr == SIGALRM))
635 			posixtimer_rearm_itimer(tsk);
636 	}
637 
638 	recalc_sigpending();
639 	if (!signr)
640 		return 0;
641 
642 	if (unlikely(sig_kernel_stop(signr))) {
643 		/*
644 		 * Set a marker that we have dequeued a stop signal.  Our
645 		 * caller might release the siglock and then the pending
646 		 * stop signal it is about to process is no longer in the
647 		 * pending bitmasks, but must still be cleared by a SIGCONT
648 		 * (and overruled by a SIGKILL).  So those cases clear this
649 		 * shared flag after we've set it.  Note that this flag may
650 		 * remain set after the signal we return is ignored or
651 		 * handled.  That doesn't matter because its only purpose
652 		 * is to alert stop-signal processing code when another
653 		 * processor has come along and cleared the flag.
654 		 */
655 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
656 	}
657 
658 	if (IS_ENABLED(CONFIG_POSIX_TIMERS) && unlikely(timer_sigq)) {
659 		if (!posixtimer_deliver_signal(info, timer_sigq))
660 			goto again;
661 	}
662 
663 	return signr;
664 }
665 EXPORT_SYMBOL_GPL(dequeue_signal);
666 
667 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
668 {
669 	struct task_struct *tsk = current;
670 	struct sigpending *pending = &tsk->pending;
671 	struct sigqueue *q, *sync = NULL;
672 
673 	/*
674 	 * Might a synchronous signal be in the queue?
675 	 */
676 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
677 		return 0;
678 
679 	/*
680 	 * Return the first synchronous signal in the queue.
681 	 */
682 	list_for_each_entry(q, &pending->list, list) {
683 		/* Synchronous signals have a positive si_code */
684 		if ((q->info.si_code > SI_USER) &&
685 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
686 			sync = q;
687 			goto next;
688 		}
689 	}
690 	return 0;
691 next:
692 	/*
693 	 * Check if there is another siginfo for the same signal.
694 	 */
695 	list_for_each_entry_continue(q, &pending->list, list) {
696 		if (q->info.si_signo == sync->info.si_signo)
697 			goto still_pending;
698 	}
699 
700 	sigdelset(&pending->signal, sync->info.si_signo);
701 	recalc_sigpending();
702 still_pending:
703 	list_del_init(&sync->list);
704 	copy_siginfo(info, &sync->info);
705 	__sigqueue_free(sync);
706 	return info->si_signo;
707 }
708 
709 /*
710  * Tell a process that it has a new active signal..
711  *
712  * NOTE! we rely on the previous spin_lock to
713  * lock interrupts for us! We can only be called with
714  * "siglock" held, and the local interrupt must
715  * have been disabled when that got acquired!
716  *
717  * No need to set need_resched since signal event passing
718  * goes through ->blocked
719  */
720 void signal_wake_up_state(struct task_struct *t, unsigned int state)
721 {
722 	lockdep_assert_held(&t->sighand->siglock);
723 
724 	set_tsk_thread_flag(t, TIF_SIGPENDING);
725 
726 	/*
727 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
728 	 * case. We don't check t->state here because there is a race with it
729 	 * executing another processor and just now entering stopped state.
730 	 * By using wake_up_state, we ensure the process will wake up and
731 	 * handle its death signal.
732 	 */
733 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
734 		kick_process(t);
735 }
736 
737 static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q);
738 
739 static void sigqueue_free_ignored(struct task_struct *tsk, struct sigqueue *q)
740 {
741 	if (likely(!(q->flags & SIGQUEUE_PREALLOC) || q->info.si_code != SI_TIMER))
742 		__sigqueue_free(q);
743 	else
744 		posixtimer_sig_ignore(tsk, q);
745 }
746 
747 /* Remove signals in mask from the pending set and queue. */
748 static void flush_sigqueue_mask(struct task_struct *p, sigset_t *mask, struct sigpending *s)
749 {
750 	struct sigqueue *q, *n;
751 	sigset_t m;
752 
753 	lockdep_assert_held(&p->sighand->siglock);
754 
755 	sigandsets(&m, mask, &s->signal);
756 	if (sigisemptyset(&m))
757 		return;
758 
759 	sigandnsets(&s->signal, &s->signal, mask);
760 	list_for_each_entry_safe(q, n, &s->list, list) {
761 		if (sigismember(mask, q->info.si_signo)) {
762 			list_del_init(&q->list);
763 			sigqueue_free_ignored(p, q);
764 		}
765 	}
766 }
767 
768 static inline int is_si_special(const struct kernel_siginfo *info)
769 {
770 	return info <= SEND_SIG_PRIV;
771 }
772 
773 static inline bool si_fromuser(const struct kernel_siginfo *info)
774 {
775 	return info == SEND_SIG_NOINFO ||
776 		(!is_si_special(info) && SI_FROMUSER(info));
777 }
778 
779 /*
780  * called with RCU read lock from check_kill_permission()
781  */
782 static bool kill_ok_by_cred(struct task_struct *t)
783 {
784 	const struct cred *cred = current_cred();
785 	const struct cred *tcred = __task_cred(t);
786 
787 	return uid_eq(cred->euid, tcred->suid) ||
788 	       uid_eq(cred->euid, tcred->uid) ||
789 	       uid_eq(cred->uid, tcred->suid) ||
790 	       uid_eq(cred->uid, tcred->uid) ||
791 	       ns_capable(tcred->user_ns, CAP_KILL);
792 }
793 
794 /*
795  * Bad permissions for sending the signal
796  * - the caller must hold the RCU read lock
797  */
798 static int check_kill_permission(int sig, struct kernel_siginfo *info,
799 				 struct task_struct *t)
800 {
801 	struct pid *sid;
802 	int error;
803 
804 	if (!valid_signal(sig))
805 		return -EINVAL;
806 
807 	if (!si_fromuser(info))
808 		return 0;
809 
810 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
811 	if (error)
812 		return error;
813 
814 	if (!same_thread_group(current, t) &&
815 	    !kill_ok_by_cred(t)) {
816 		switch (sig) {
817 		case SIGCONT:
818 			sid = task_session(t);
819 			/*
820 			 * We don't return the error if sid == NULL. The
821 			 * task was unhashed, the caller must notice this.
822 			 */
823 			if (!sid || sid == task_session(current))
824 				break;
825 			fallthrough;
826 		default:
827 			return -EPERM;
828 		}
829 	}
830 
831 	return security_task_kill(t, info, sig, NULL);
832 }
833 
834 /**
835  * ptrace_trap_notify - schedule trap to notify ptracer
836  * @t: tracee wanting to notify tracer
837  *
838  * This function schedules sticky ptrace trap which is cleared on the next
839  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
840  * ptracer.
841  *
842  * If @t is running, STOP trap will be taken.  If trapped for STOP and
843  * ptracer is listening for events, tracee is woken up so that it can
844  * re-trap for the new event.  If trapped otherwise, STOP trap will be
845  * eventually taken without returning to userland after the existing traps
846  * are finished by PTRACE_CONT.
847  *
848  * CONTEXT:
849  * Must be called with @task->sighand->siglock held.
850  */
851 static void ptrace_trap_notify(struct task_struct *t)
852 {
853 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
854 	lockdep_assert_held(&t->sighand->siglock);
855 
856 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
857 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
858 }
859 
860 /*
861  * Handle magic process-wide effects of stop/continue signals. Unlike
862  * the signal actions, these happen immediately at signal-generation
863  * time regardless of blocking, ignoring, or handling.  This does the
864  * actual continuing for SIGCONT, but not the actual stopping for stop
865  * signals. The process stop is done as a signal action for SIG_DFL.
866  *
867  * Returns true if the signal should be actually delivered, otherwise
868  * it should be dropped.
869  */
870 static bool prepare_signal(int sig, struct task_struct *p, bool force)
871 {
872 	struct signal_struct *signal = p->signal;
873 	struct task_struct *t;
874 	sigset_t flush;
875 
876 	if (signal->flags & SIGNAL_GROUP_EXIT) {
877 		if (signal->core_state)
878 			return sig == SIGKILL;
879 		/*
880 		 * The process is in the middle of dying, drop the signal.
881 		 */
882 		return false;
883 	} else if (sig_kernel_stop(sig)) {
884 		/*
885 		 * This is a stop signal.  Remove SIGCONT from all queues.
886 		 */
887 		siginitset(&flush, sigmask(SIGCONT));
888 		flush_sigqueue_mask(p, &flush, &signal->shared_pending);
889 		for_each_thread(p, t)
890 			flush_sigqueue_mask(p, &flush, &t->pending);
891 	} else if (sig == SIGCONT) {
892 		unsigned int why;
893 		/*
894 		 * Remove all stop signals from all queues, wake all threads.
895 		 */
896 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
897 		flush_sigqueue_mask(p, &flush, &signal->shared_pending);
898 		for_each_thread(p, t) {
899 			flush_sigqueue_mask(p, &flush, &t->pending);
900 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
901 			if (likely(!(t->ptrace & PT_SEIZED))) {
902 				t->jobctl &= ~JOBCTL_STOPPED;
903 				wake_up_state(t, __TASK_STOPPED);
904 			} else
905 				ptrace_trap_notify(t);
906 		}
907 
908 		/*
909 		 * Notify the parent with CLD_CONTINUED if we were stopped.
910 		 *
911 		 * If we were in the middle of a group stop, we pretend it
912 		 * was already finished, and then continued. Since SIGCHLD
913 		 * doesn't queue we report only CLD_STOPPED, as if the next
914 		 * CLD_CONTINUED was dropped.
915 		 */
916 		why = 0;
917 		if (signal->flags & SIGNAL_STOP_STOPPED)
918 			why |= SIGNAL_CLD_CONTINUED;
919 		else if (signal->group_stop_count)
920 			why |= SIGNAL_CLD_STOPPED;
921 
922 		if (why) {
923 			/*
924 			 * The first thread which returns from do_signal_stop()
925 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
926 			 * notify its parent. See get_signal().
927 			 */
928 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
929 			signal->group_stop_count = 0;
930 			signal->group_exit_code = 0;
931 		}
932 	}
933 
934 	return !sig_ignored(p, sig, force);
935 }
936 
937 /*
938  * Test if P wants to take SIG.  After we've checked all threads with this,
939  * it's equivalent to finding no threads not blocking SIG.  Any threads not
940  * blocking SIG were ruled out because they are not running and already
941  * have pending signals.  Such threads will dequeue from the shared queue
942  * as soon as they're available, so putting the signal on the shared queue
943  * will be equivalent to sending it to one such thread.
944  */
945 static inline bool wants_signal(int sig, struct task_struct *p)
946 {
947 	if (sigismember(&p->blocked, sig))
948 		return false;
949 
950 	if (p->flags & PF_EXITING)
951 		return false;
952 
953 	if (sig == SIGKILL)
954 		return true;
955 
956 	if (task_is_stopped_or_traced(p))
957 		return false;
958 
959 	return task_curr(p) || !task_sigpending(p);
960 }
961 
962 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
963 {
964 	struct signal_struct *signal = p->signal;
965 	struct task_struct *t;
966 
967 	/*
968 	 * Now find a thread we can wake up to take the signal off the queue.
969 	 *
970 	 * Try the suggested task first (may or may not be the main thread).
971 	 */
972 	if (wants_signal(sig, p))
973 		t = p;
974 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
975 		/*
976 		 * There is just one thread and it does not need to be woken.
977 		 * It will dequeue unblocked signals before it runs again.
978 		 */
979 		return;
980 	else {
981 		/*
982 		 * Otherwise try to find a suitable thread.
983 		 */
984 		t = signal->curr_target;
985 		while (!wants_signal(sig, t)) {
986 			t = next_thread(t);
987 			if (t == signal->curr_target)
988 				/*
989 				 * No thread needs to be woken.
990 				 * Any eligible threads will see
991 				 * the signal in the queue soon.
992 				 */
993 				return;
994 		}
995 		signal->curr_target = t;
996 	}
997 
998 	/*
999 	 * Found a killable thread.  If the signal will be fatal,
1000 	 * then start taking the whole group down immediately.
1001 	 */
1002 	if (sig_fatal(p, sig) &&
1003 	    (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1004 	    !sigismember(&t->real_blocked, sig) &&
1005 	    (sig == SIGKILL || !p->ptrace)) {
1006 		/*
1007 		 * This signal will be fatal to the whole group.
1008 		 */
1009 		if (!sig_kernel_coredump(sig)) {
1010 			/*
1011 			 * Start a group exit and wake everybody up.
1012 			 * This way we don't have other threads
1013 			 * running and doing things after a slower
1014 			 * thread has the fatal signal pending.
1015 			 */
1016 			signal->flags = SIGNAL_GROUP_EXIT;
1017 			signal->group_exit_code = sig;
1018 			signal->group_stop_count = 0;
1019 			__for_each_thread(signal, t) {
1020 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1021 				sigaddset(&t->pending.signal, SIGKILL);
1022 				signal_wake_up(t, 1);
1023 			}
1024 			return;
1025 		}
1026 	}
1027 
1028 	/*
1029 	 * The signal is already in the shared-pending queue.
1030 	 * Tell the chosen thread to wake up and dequeue it.
1031 	 */
1032 	signal_wake_up(t, sig == SIGKILL);
1033 	return;
1034 }
1035 
1036 static inline bool legacy_queue(struct sigpending *signals, int sig)
1037 {
1038 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1039 }
1040 
1041 static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1042 				struct task_struct *t, enum pid_type type, bool force)
1043 {
1044 	struct sigpending *pending;
1045 	struct sigqueue *q;
1046 	int override_rlimit;
1047 	int ret = 0, result;
1048 
1049 	lockdep_assert_held(&t->sighand->siglock);
1050 
1051 	result = TRACE_SIGNAL_IGNORED;
1052 	if (!prepare_signal(sig, t, force))
1053 		goto ret;
1054 
1055 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1056 	/*
1057 	 * Short-circuit ignored signals and support queuing
1058 	 * exactly one non-rt signal, so that we can get more
1059 	 * detailed information about the cause of the signal.
1060 	 */
1061 	result = TRACE_SIGNAL_ALREADY_PENDING;
1062 	if (legacy_queue(pending, sig))
1063 		goto ret;
1064 
1065 	result = TRACE_SIGNAL_DELIVERED;
1066 	/*
1067 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1068 	 */
1069 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1070 		goto out_set;
1071 
1072 	/*
1073 	 * Real-time signals must be queued if sent by sigqueue, or
1074 	 * some other real-time mechanism.  It is implementation
1075 	 * defined whether kill() does so.  We attempt to do so, on
1076 	 * the principle of least surprise, but since kill is not
1077 	 * allowed to fail with EAGAIN when low on memory we just
1078 	 * make sure at least one signal gets delivered and don't
1079 	 * pass on the info struct.
1080 	 */
1081 	if (sig < SIGRTMIN)
1082 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1083 	else
1084 		override_rlimit = 0;
1085 
1086 	q = sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1087 
1088 	if (q) {
1089 		list_add_tail(&q->list, &pending->list);
1090 		switch ((unsigned long) info) {
1091 		case (unsigned long) SEND_SIG_NOINFO:
1092 			clear_siginfo(&q->info);
1093 			q->info.si_signo = sig;
1094 			q->info.si_errno = 0;
1095 			q->info.si_code = SI_USER;
1096 			q->info.si_pid = task_tgid_nr_ns(current,
1097 							task_active_pid_ns(t));
1098 			rcu_read_lock();
1099 			q->info.si_uid =
1100 				from_kuid_munged(task_cred_xxx(t, user_ns),
1101 						 current_uid());
1102 			rcu_read_unlock();
1103 			break;
1104 		case (unsigned long) SEND_SIG_PRIV:
1105 			clear_siginfo(&q->info);
1106 			q->info.si_signo = sig;
1107 			q->info.si_errno = 0;
1108 			q->info.si_code = SI_KERNEL;
1109 			q->info.si_pid = 0;
1110 			q->info.si_uid = 0;
1111 			break;
1112 		default:
1113 			copy_siginfo(&q->info, info);
1114 			break;
1115 		}
1116 	} else if (!is_si_special(info) &&
1117 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1118 		/*
1119 		 * Queue overflow, abort.  We may abort if the
1120 		 * signal was rt and sent by user using something
1121 		 * other than kill().
1122 		 */
1123 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1124 		ret = -EAGAIN;
1125 		goto ret;
1126 	} else {
1127 		/*
1128 		 * This is a silent loss of information.  We still
1129 		 * send the signal, but the *info bits are lost.
1130 		 */
1131 		result = TRACE_SIGNAL_LOSE_INFO;
1132 	}
1133 
1134 out_set:
1135 	signalfd_notify(t, sig);
1136 	sigaddset(&pending->signal, sig);
1137 
1138 	/* Let multiprocess signals appear after on-going forks */
1139 	if (type > PIDTYPE_TGID) {
1140 		struct multiprocess_signals *delayed;
1141 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1142 			sigset_t *signal = &delayed->signal;
1143 			/* Can't queue both a stop and a continue signal */
1144 			if (sig == SIGCONT)
1145 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1146 			else if (sig_kernel_stop(sig))
1147 				sigdelset(signal, SIGCONT);
1148 			sigaddset(signal, sig);
1149 		}
1150 	}
1151 
1152 	complete_signal(sig, t, type);
1153 ret:
1154 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1155 	return ret;
1156 }
1157 
1158 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1159 {
1160 	bool ret = false;
1161 	switch (siginfo_layout(info->si_signo, info->si_code)) {
1162 	case SIL_KILL:
1163 	case SIL_CHLD:
1164 	case SIL_RT:
1165 		ret = true;
1166 		break;
1167 	case SIL_TIMER:
1168 	case SIL_POLL:
1169 	case SIL_FAULT:
1170 	case SIL_FAULT_TRAPNO:
1171 	case SIL_FAULT_MCEERR:
1172 	case SIL_FAULT_BNDERR:
1173 	case SIL_FAULT_PKUERR:
1174 	case SIL_FAULT_PERF_EVENT:
1175 	case SIL_SYS:
1176 		ret = false;
1177 		break;
1178 	}
1179 	return ret;
1180 }
1181 
1182 int send_signal_locked(int sig, struct kernel_siginfo *info,
1183 		       struct task_struct *t, enum pid_type type)
1184 {
1185 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1186 	bool force = false;
1187 
1188 	if (info == SEND_SIG_NOINFO) {
1189 		/* Force if sent from an ancestor pid namespace */
1190 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1191 	} else if (info == SEND_SIG_PRIV) {
1192 		/* Don't ignore kernel generated signals */
1193 		force = true;
1194 	} else if (has_si_pid_and_uid(info)) {
1195 		/* SIGKILL and SIGSTOP is special or has ids */
1196 		struct user_namespace *t_user_ns;
1197 
1198 		rcu_read_lock();
1199 		t_user_ns = task_cred_xxx(t, user_ns);
1200 		if (current_user_ns() != t_user_ns) {
1201 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1202 			info->si_uid = from_kuid_munged(t_user_ns, uid);
1203 		}
1204 		rcu_read_unlock();
1205 
1206 		/* A kernel generated signal? */
1207 		force = (info->si_code == SI_KERNEL);
1208 
1209 		/* From an ancestor pid namespace? */
1210 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1211 			info->si_pid = 0;
1212 			force = true;
1213 		}
1214 	}
1215 	return __send_signal_locked(sig, info, t, type, force);
1216 }
1217 
1218 static void print_fatal_signal(int signr)
1219 {
1220 	struct pt_regs *regs = task_pt_regs(current);
1221 	struct file *exe_file;
1222 
1223 	exe_file = get_task_exe_file(current);
1224 	if (exe_file) {
1225 		pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
1226 			exe_file, current->comm, signr);
1227 		fput(exe_file);
1228 	} else {
1229 		pr_info("%s: potentially unexpected fatal signal %d.\n",
1230 			current->comm, signr);
1231 	}
1232 
1233 #if defined(__i386__) && !defined(__arch_um__)
1234 	pr_info("code at %08lx: ", regs->ip);
1235 	{
1236 		int i;
1237 		for (i = 0; i < 16; i++) {
1238 			unsigned char insn;
1239 
1240 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1241 				break;
1242 			pr_cont("%02x ", insn);
1243 		}
1244 	}
1245 	pr_cont("\n");
1246 #endif
1247 	preempt_disable();
1248 	show_regs(regs);
1249 	preempt_enable();
1250 }
1251 
1252 static int __init setup_print_fatal_signals(char *str)
1253 {
1254 	get_option (&str, &print_fatal_signals);
1255 
1256 	return 1;
1257 }
1258 
1259 __setup("print-fatal-signals=", setup_print_fatal_signals);
1260 
1261 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1262 			enum pid_type type)
1263 {
1264 	unsigned long flags;
1265 	int ret = -ESRCH;
1266 
1267 	if (lock_task_sighand(p, &flags)) {
1268 		ret = send_signal_locked(sig, info, p, type);
1269 		unlock_task_sighand(p, &flags);
1270 	}
1271 
1272 	return ret;
1273 }
1274 
1275 enum sig_handler {
1276 	HANDLER_CURRENT, /* If reachable use the current handler */
1277 	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1278 	HANDLER_EXIT,	 /* Only visible as the process exit code */
1279 };
1280 
1281 /*
1282  * Force a signal that the process can't ignore: if necessary
1283  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1284  *
1285  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1286  * since we do not want to have a signal handler that was blocked
1287  * be invoked when user space had explicitly blocked it.
1288  *
1289  * We don't want to have recursive SIGSEGV's etc, for example,
1290  * that is why we also clear SIGNAL_UNKILLABLE.
1291  */
1292 static int
1293 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1294 	enum sig_handler handler)
1295 {
1296 	unsigned long int flags;
1297 	int ret, blocked, ignored;
1298 	struct k_sigaction *action;
1299 	int sig = info->si_signo;
1300 
1301 	spin_lock_irqsave(&t->sighand->siglock, flags);
1302 	action = &t->sighand->action[sig-1];
1303 	ignored = action->sa.sa_handler == SIG_IGN;
1304 	blocked = sigismember(&t->blocked, sig);
1305 	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1306 		action->sa.sa_handler = SIG_DFL;
1307 		if (handler == HANDLER_EXIT)
1308 			action->sa.sa_flags |= SA_IMMUTABLE;
1309 		if (blocked)
1310 			sigdelset(&t->blocked, sig);
1311 	}
1312 	/*
1313 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1314 	 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1315 	 */
1316 	if (action->sa.sa_handler == SIG_DFL &&
1317 	    (!t->ptrace || (handler == HANDLER_EXIT)))
1318 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1319 	ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1320 	/* This can happen if the signal was already pending and blocked */
1321 	if (!task_sigpending(t))
1322 		signal_wake_up(t, 0);
1323 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1324 
1325 	return ret;
1326 }
1327 
1328 int force_sig_info(struct kernel_siginfo *info)
1329 {
1330 	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1331 }
1332 
1333 /*
1334  * Nuke all other threads in the group.
1335  */
1336 int zap_other_threads(struct task_struct *p)
1337 {
1338 	struct task_struct *t;
1339 	int count = 0;
1340 
1341 	p->signal->group_stop_count = 0;
1342 
1343 	for_other_threads(p, t) {
1344 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1345 		count++;
1346 
1347 		/* Don't bother with already dead threads */
1348 		if (t->exit_state)
1349 			continue;
1350 		sigaddset(&t->pending.signal, SIGKILL);
1351 		signal_wake_up(t, 1);
1352 	}
1353 
1354 	return count;
1355 }
1356 
1357 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1358 					   unsigned long *flags)
1359 {
1360 	struct sighand_struct *sighand;
1361 
1362 	rcu_read_lock();
1363 	for (;;) {
1364 		sighand = rcu_dereference(tsk->sighand);
1365 		if (unlikely(sighand == NULL))
1366 			break;
1367 
1368 		/*
1369 		 * This sighand can be already freed and even reused, but
1370 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1371 		 * initializes ->siglock: this slab can't go away, it has
1372 		 * the same object type, ->siglock can't be reinitialized.
1373 		 *
1374 		 * We need to ensure that tsk->sighand is still the same
1375 		 * after we take the lock, we can race with de_thread() or
1376 		 * __exit_signal(). In the latter case the next iteration
1377 		 * must see ->sighand == NULL.
1378 		 */
1379 		spin_lock_irqsave(&sighand->siglock, *flags);
1380 		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1381 			break;
1382 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1383 	}
1384 	rcu_read_unlock();
1385 
1386 	return sighand;
1387 }
1388 
1389 #ifdef CONFIG_LOCKDEP
1390 void lockdep_assert_task_sighand_held(struct task_struct *task)
1391 {
1392 	struct sighand_struct *sighand;
1393 
1394 	rcu_read_lock();
1395 	sighand = rcu_dereference(task->sighand);
1396 	if (sighand)
1397 		lockdep_assert_held(&sighand->siglock);
1398 	else
1399 		WARN_ON_ONCE(1);
1400 	rcu_read_unlock();
1401 }
1402 #endif
1403 
1404 /*
1405  * send signal info to all the members of a thread group or to the
1406  * individual thread if type == PIDTYPE_PID.
1407  */
1408 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1409 			struct task_struct *p, enum pid_type type)
1410 {
1411 	int ret;
1412 
1413 	rcu_read_lock();
1414 	ret = check_kill_permission(sig, info, p);
1415 	rcu_read_unlock();
1416 
1417 	if (!ret && sig)
1418 		ret = do_send_sig_info(sig, info, p, type);
1419 
1420 	return ret;
1421 }
1422 
1423 /*
1424  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1425  * control characters do (^C, ^Z etc)
1426  * - the caller must hold at least a readlock on tasklist_lock
1427  */
1428 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1429 {
1430 	struct task_struct *p = NULL;
1431 	int ret = -ESRCH;
1432 
1433 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1434 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1435 		/*
1436 		 * If group_send_sig_info() succeeds at least once ret
1437 		 * becomes 0 and after that the code below has no effect.
1438 		 * Otherwise we return the last err or -ESRCH if this
1439 		 * process group is empty.
1440 		 */
1441 		if (ret)
1442 			ret = err;
1443 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1444 
1445 	return ret;
1446 }
1447 
1448 static int kill_pid_info_type(int sig, struct kernel_siginfo *info,
1449 				struct pid *pid, enum pid_type type)
1450 {
1451 	int error = -ESRCH;
1452 	struct task_struct *p;
1453 
1454 	for (;;) {
1455 		rcu_read_lock();
1456 		p = pid_task(pid, PIDTYPE_PID);
1457 		if (p)
1458 			error = group_send_sig_info(sig, info, p, type);
1459 		rcu_read_unlock();
1460 		if (likely(!p || error != -ESRCH))
1461 			return error;
1462 		/*
1463 		 * The task was unhashed in between, try again.  If it
1464 		 * is dead, pid_task() will return NULL, if we race with
1465 		 * de_thread() it will find the new leader.
1466 		 */
1467 	}
1468 }
1469 
1470 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1471 {
1472 	return kill_pid_info_type(sig, info, pid, PIDTYPE_TGID);
1473 }
1474 
1475 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1476 {
1477 	int error;
1478 	rcu_read_lock();
1479 	error = kill_pid_info(sig, info, find_vpid(pid));
1480 	rcu_read_unlock();
1481 	return error;
1482 }
1483 
1484 static inline bool kill_as_cred_perm(const struct cred *cred,
1485 				     struct task_struct *target)
1486 {
1487 	const struct cred *pcred = __task_cred(target);
1488 
1489 	return uid_eq(cred->euid, pcred->suid) ||
1490 	       uid_eq(cred->euid, pcred->uid) ||
1491 	       uid_eq(cred->uid, pcred->suid) ||
1492 	       uid_eq(cred->uid, pcred->uid);
1493 }
1494 
1495 /*
1496  * The usb asyncio usage of siginfo is wrong.  The glibc support
1497  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1498  * AKA after the generic fields:
1499  *	kernel_pid_t	si_pid;
1500  *	kernel_uid32_t	si_uid;
1501  *	sigval_t	si_value;
1502  *
1503  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1504  * after the generic fields is:
1505  *	void __user 	*si_addr;
1506  *
1507  * This is a practical problem when there is a 64bit big endian kernel
1508  * and a 32bit userspace.  As the 32bit address will encoded in the low
1509  * 32bits of the pointer.  Those low 32bits will be stored at higher
1510  * address than appear in a 32 bit pointer.  So userspace will not
1511  * see the address it was expecting for it's completions.
1512  *
1513  * There is nothing in the encoding that can allow
1514  * copy_siginfo_to_user32 to detect this confusion of formats, so
1515  * handle this by requiring the caller of kill_pid_usb_asyncio to
1516  * notice when this situration takes place and to store the 32bit
1517  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1518  * parameter.
1519  */
1520 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1521 			 struct pid *pid, const struct cred *cred)
1522 {
1523 	struct kernel_siginfo info;
1524 	struct task_struct *p;
1525 	unsigned long flags;
1526 	int ret = -EINVAL;
1527 
1528 	if (!valid_signal(sig))
1529 		return ret;
1530 
1531 	clear_siginfo(&info);
1532 	info.si_signo = sig;
1533 	info.si_errno = errno;
1534 	info.si_code = SI_ASYNCIO;
1535 	*((sigval_t *)&info.si_pid) = addr;
1536 
1537 	rcu_read_lock();
1538 	p = pid_task(pid, PIDTYPE_PID);
1539 	if (!p) {
1540 		ret = -ESRCH;
1541 		goto out_unlock;
1542 	}
1543 	if (!kill_as_cred_perm(cred, p)) {
1544 		ret = -EPERM;
1545 		goto out_unlock;
1546 	}
1547 	ret = security_task_kill(p, &info, sig, cred);
1548 	if (ret)
1549 		goto out_unlock;
1550 
1551 	if (sig) {
1552 		if (lock_task_sighand(p, &flags)) {
1553 			ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1554 			unlock_task_sighand(p, &flags);
1555 		} else
1556 			ret = -ESRCH;
1557 	}
1558 out_unlock:
1559 	rcu_read_unlock();
1560 	return ret;
1561 }
1562 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1563 
1564 /*
1565  * kill_something_info() interprets pid in interesting ways just like kill(2).
1566  *
1567  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1568  * is probably wrong.  Should make it like BSD or SYSV.
1569  */
1570 
1571 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1572 {
1573 	int ret;
1574 
1575 	if (pid > 0)
1576 		return kill_proc_info(sig, info, pid);
1577 
1578 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1579 	if (pid == INT_MIN)
1580 		return -ESRCH;
1581 
1582 	read_lock(&tasklist_lock);
1583 	if (pid != -1) {
1584 		ret = __kill_pgrp_info(sig, info,
1585 				pid ? find_vpid(-pid) : task_pgrp(current));
1586 	} else {
1587 		int retval = 0, count = 0;
1588 		struct task_struct * p;
1589 
1590 		for_each_process(p) {
1591 			if (task_pid_vnr(p) > 1 &&
1592 					!same_thread_group(p, current)) {
1593 				int err = group_send_sig_info(sig, info, p,
1594 							      PIDTYPE_MAX);
1595 				++count;
1596 				if (err != -EPERM)
1597 					retval = err;
1598 			}
1599 		}
1600 		ret = count ? retval : -ESRCH;
1601 	}
1602 	read_unlock(&tasklist_lock);
1603 
1604 	return ret;
1605 }
1606 
1607 /*
1608  * These are for backward compatibility with the rest of the kernel source.
1609  */
1610 
1611 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1612 {
1613 	/*
1614 	 * Make sure legacy kernel users don't send in bad values
1615 	 * (normal paths check this in check_kill_permission).
1616 	 */
1617 	if (!valid_signal(sig))
1618 		return -EINVAL;
1619 
1620 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1621 }
1622 EXPORT_SYMBOL(send_sig_info);
1623 
1624 #define __si_special(priv) \
1625 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1626 
1627 int
1628 send_sig(int sig, struct task_struct *p, int priv)
1629 {
1630 	return send_sig_info(sig, __si_special(priv), p);
1631 }
1632 EXPORT_SYMBOL(send_sig);
1633 
1634 void force_sig(int sig)
1635 {
1636 	struct kernel_siginfo info;
1637 
1638 	clear_siginfo(&info);
1639 	info.si_signo = sig;
1640 	info.si_errno = 0;
1641 	info.si_code = SI_KERNEL;
1642 	info.si_pid = 0;
1643 	info.si_uid = 0;
1644 	force_sig_info(&info);
1645 }
1646 EXPORT_SYMBOL(force_sig);
1647 
1648 void force_fatal_sig(int sig)
1649 {
1650 	struct kernel_siginfo info;
1651 
1652 	clear_siginfo(&info);
1653 	info.si_signo = sig;
1654 	info.si_errno = 0;
1655 	info.si_code = SI_KERNEL;
1656 	info.si_pid = 0;
1657 	info.si_uid = 0;
1658 	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1659 }
1660 
1661 void force_exit_sig(int sig)
1662 {
1663 	struct kernel_siginfo info;
1664 
1665 	clear_siginfo(&info);
1666 	info.si_signo = sig;
1667 	info.si_errno = 0;
1668 	info.si_code = SI_KERNEL;
1669 	info.si_pid = 0;
1670 	info.si_uid = 0;
1671 	force_sig_info_to_task(&info, current, HANDLER_EXIT);
1672 }
1673 
1674 /*
1675  * When things go south during signal handling, we
1676  * will force a SIGSEGV. And if the signal that caused
1677  * the problem was already a SIGSEGV, we'll want to
1678  * make sure we don't even try to deliver the signal..
1679  */
1680 void force_sigsegv(int sig)
1681 {
1682 	if (sig == SIGSEGV)
1683 		force_fatal_sig(SIGSEGV);
1684 	else
1685 		force_sig(SIGSEGV);
1686 }
1687 
1688 int force_sig_fault_to_task(int sig, int code, void __user *addr,
1689 			    struct task_struct *t)
1690 {
1691 	struct kernel_siginfo info;
1692 
1693 	clear_siginfo(&info);
1694 	info.si_signo = sig;
1695 	info.si_errno = 0;
1696 	info.si_code  = code;
1697 	info.si_addr  = addr;
1698 	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1699 }
1700 
1701 int force_sig_fault(int sig, int code, void __user *addr)
1702 {
1703 	return force_sig_fault_to_task(sig, code, addr, current);
1704 }
1705 
1706 int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t)
1707 {
1708 	struct kernel_siginfo info;
1709 
1710 	clear_siginfo(&info);
1711 	info.si_signo = sig;
1712 	info.si_errno = 0;
1713 	info.si_code  = code;
1714 	info.si_addr  = addr;
1715 	return send_sig_info(info.si_signo, &info, t);
1716 }
1717 
1718 int force_sig_mceerr(int code, void __user *addr, short lsb)
1719 {
1720 	struct kernel_siginfo info;
1721 
1722 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1723 	clear_siginfo(&info);
1724 	info.si_signo = SIGBUS;
1725 	info.si_errno = 0;
1726 	info.si_code = code;
1727 	info.si_addr = addr;
1728 	info.si_addr_lsb = lsb;
1729 	return force_sig_info(&info);
1730 }
1731 
1732 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1733 {
1734 	struct kernel_siginfo info;
1735 
1736 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1737 	clear_siginfo(&info);
1738 	info.si_signo = SIGBUS;
1739 	info.si_errno = 0;
1740 	info.si_code = code;
1741 	info.si_addr = addr;
1742 	info.si_addr_lsb = lsb;
1743 	return send_sig_info(info.si_signo, &info, t);
1744 }
1745 EXPORT_SYMBOL(send_sig_mceerr);
1746 
1747 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1748 {
1749 	struct kernel_siginfo info;
1750 
1751 	clear_siginfo(&info);
1752 	info.si_signo = SIGSEGV;
1753 	info.si_errno = 0;
1754 	info.si_code  = SEGV_BNDERR;
1755 	info.si_addr  = addr;
1756 	info.si_lower = lower;
1757 	info.si_upper = upper;
1758 	return force_sig_info(&info);
1759 }
1760 
1761 #ifdef SEGV_PKUERR
1762 int force_sig_pkuerr(void __user *addr, u32 pkey)
1763 {
1764 	struct kernel_siginfo info;
1765 
1766 	clear_siginfo(&info);
1767 	info.si_signo = SIGSEGV;
1768 	info.si_errno = 0;
1769 	info.si_code  = SEGV_PKUERR;
1770 	info.si_addr  = addr;
1771 	info.si_pkey  = pkey;
1772 	return force_sig_info(&info);
1773 }
1774 #endif
1775 
1776 int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1777 {
1778 	struct kernel_siginfo info;
1779 
1780 	clear_siginfo(&info);
1781 	info.si_signo     = SIGTRAP;
1782 	info.si_errno     = 0;
1783 	info.si_code      = TRAP_PERF;
1784 	info.si_addr      = addr;
1785 	info.si_perf_data = sig_data;
1786 	info.si_perf_type = type;
1787 
1788 	/*
1789 	 * Signals generated by perf events should not terminate the whole
1790 	 * process if SIGTRAP is blocked, however, delivering the signal
1791 	 * asynchronously is better than not delivering at all. But tell user
1792 	 * space if the signal was asynchronous, so it can clearly be
1793 	 * distinguished from normal synchronous ones.
1794 	 */
1795 	info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
1796 				     TRAP_PERF_FLAG_ASYNC :
1797 				     0;
1798 
1799 	return send_sig_info(info.si_signo, &info, current);
1800 }
1801 
1802 /**
1803  * force_sig_seccomp - signals the task to allow in-process syscall emulation
1804  * @syscall: syscall number to send to userland
1805  * @reason: filter-supplied reason code to send to userland (via si_errno)
1806  * @force_coredump: true to trigger a coredump
1807  *
1808  * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1809  */
1810 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1811 {
1812 	struct kernel_siginfo info;
1813 
1814 	clear_siginfo(&info);
1815 	info.si_signo = SIGSYS;
1816 	info.si_code = SYS_SECCOMP;
1817 	info.si_call_addr = (void __user *)KSTK_EIP(current);
1818 	info.si_errno = reason;
1819 	info.si_arch = syscall_get_arch(current);
1820 	info.si_syscall = syscall;
1821 	return force_sig_info_to_task(&info, current,
1822 		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1823 }
1824 
1825 /* For the crazy architectures that include trap information in
1826  * the errno field, instead of an actual errno value.
1827  */
1828 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1829 {
1830 	struct kernel_siginfo info;
1831 
1832 	clear_siginfo(&info);
1833 	info.si_signo = SIGTRAP;
1834 	info.si_errno = errno;
1835 	info.si_code  = TRAP_HWBKPT;
1836 	info.si_addr  = addr;
1837 	return force_sig_info(&info);
1838 }
1839 
1840 /* For the rare architectures that include trap information using
1841  * si_trapno.
1842  */
1843 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1844 {
1845 	struct kernel_siginfo info;
1846 
1847 	clear_siginfo(&info);
1848 	info.si_signo = sig;
1849 	info.si_errno = 0;
1850 	info.si_code  = code;
1851 	info.si_addr  = addr;
1852 	info.si_trapno = trapno;
1853 	return force_sig_info(&info);
1854 }
1855 
1856 /* For the rare architectures that include trap information using
1857  * si_trapno.
1858  */
1859 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1860 			  struct task_struct *t)
1861 {
1862 	struct kernel_siginfo info;
1863 
1864 	clear_siginfo(&info);
1865 	info.si_signo = sig;
1866 	info.si_errno = 0;
1867 	info.si_code  = code;
1868 	info.si_addr  = addr;
1869 	info.si_trapno = trapno;
1870 	return send_sig_info(info.si_signo, &info, t);
1871 }
1872 
1873 static int kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1874 {
1875 	int ret;
1876 	read_lock(&tasklist_lock);
1877 	ret = __kill_pgrp_info(sig, info, pgrp);
1878 	read_unlock(&tasklist_lock);
1879 	return ret;
1880 }
1881 
1882 int kill_pgrp(struct pid *pid, int sig, int priv)
1883 {
1884 	return kill_pgrp_info(sig, __si_special(priv), pid);
1885 }
1886 EXPORT_SYMBOL(kill_pgrp);
1887 
1888 int kill_pid(struct pid *pid, int sig, int priv)
1889 {
1890 	return kill_pid_info(sig, __si_special(priv), pid);
1891 }
1892 EXPORT_SYMBOL(kill_pid);
1893 
1894 #ifdef CONFIG_POSIX_TIMERS
1895 /*
1896  * These functions handle POSIX timer signals. POSIX timers use
1897  * preallocated sigqueue structs for sending signals.
1898  */
1899 static void __flush_itimer_signals(struct sigpending *pending)
1900 {
1901 	sigset_t signal, retain;
1902 	struct sigqueue *q, *n;
1903 
1904 	signal = pending->signal;
1905 	sigemptyset(&retain);
1906 
1907 	list_for_each_entry_safe(q, n, &pending->list, list) {
1908 		int sig = q->info.si_signo;
1909 
1910 		if (likely(q->info.si_code != SI_TIMER)) {
1911 			sigaddset(&retain, sig);
1912 		} else {
1913 			sigdelset(&signal, sig);
1914 			list_del_init(&q->list);
1915 			__sigqueue_free(q);
1916 		}
1917 	}
1918 
1919 	sigorsets(&pending->signal, &signal, &retain);
1920 }
1921 
1922 void flush_itimer_signals(void)
1923 {
1924 	struct task_struct *tsk = current;
1925 
1926 	guard(spinlock_irqsave)(&tsk->sighand->siglock);
1927 	__flush_itimer_signals(&tsk->pending);
1928 	__flush_itimer_signals(&tsk->signal->shared_pending);
1929 }
1930 
1931 bool posixtimer_init_sigqueue(struct sigqueue *q)
1932 {
1933 	struct ucounts *ucounts = sig_get_ucounts(current, -1, 0);
1934 
1935 	if (!ucounts)
1936 		return false;
1937 	clear_siginfo(&q->info);
1938 	__sigqueue_init(q, ucounts, SIGQUEUE_PREALLOC);
1939 	return true;
1940 }
1941 
1942 static void posixtimer_queue_sigqueue(struct sigqueue *q, struct task_struct *t, enum pid_type type)
1943 {
1944 	struct sigpending *pending;
1945 	int sig = q->info.si_signo;
1946 
1947 	signalfd_notify(t, sig);
1948 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1949 	list_add_tail(&q->list, &pending->list);
1950 	sigaddset(&pending->signal, sig);
1951 	complete_signal(sig, t, type);
1952 }
1953 
1954 /*
1955  * This function is used by POSIX timers to deliver a timer signal.
1956  * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1957  * set), the signal must be delivered to the specific thread (queues
1958  * into t->pending).
1959  *
1960  * Where type is not PIDTYPE_PID, signals must be delivered to the
1961  * process. In this case, prefer to deliver to current if it is in
1962  * the same thread group as the target process, which avoids
1963  * unnecessarily waking up a potentially idle task.
1964  */
1965 static inline struct task_struct *posixtimer_get_target(struct k_itimer *tmr)
1966 {
1967 	struct task_struct *t = pid_task(tmr->it_pid, tmr->it_pid_type);
1968 
1969 	if (t && tmr->it_pid_type != PIDTYPE_PID && same_thread_group(t, current))
1970 		t = current;
1971 	return t;
1972 }
1973 
1974 void posixtimer_send_sigqueue(struct k_itimer *tmr)
1975 {
1976 	struct sigqueue *q = &tmr->sigq;
1977 	int sig = q->info.si_signo;
1978 	struct task_struct *t;
1979 	unsigned long flags;
1980 	int result;
1981 
1982 	guard(rcu)();
1983 
1984 	t = posixtimer_get_target(tmr);
1985 	if (!t)
1986 		return;
1987 
1988 	if (!likely(lock_task_sighand(t, &flags)))
1989 		return;
1990 
1991 	/*
1992 	 * Update @tmr::sigqueue_seq for posix timer signals with sighand
1993 	 * locked to prevent a race against dequeue_signal().
1994 	 */
1995 	tmr->it_sigqueue_seq = tmr->it_signal_seq;
1996 
1997 	/*
1998 	 * Set the signal delivery status under sighand lock, so that the
1999 	 * ignored signal handling can distinguish between a periodic and a
2000 	 * non-periodic timer.
2001 	 */
2002 	tmr->it_sig_periodic = tmr->it_status == POSIX_TIMER_REQUEUE_PENDING;
2003 
2004 	if (!prepare_signal(sig, t, false)) {
2005 		result = TRACE_SIGNAL_IGNORED;
2006 
2007 		if (!list_empty(&q->list)) {
2008 			/*
2009 			 * If task group is exiting with the signal already pending,
2010 			 * wait for __exit_signal() to do its job. Otherwise if
2011 			 * ignored, it's not supposed to be queued. Try to survive.
2012 			 */
2013 			WARN_ON_ONCE(!(t->signal->flags & SIGNAL_GROUP_EXIT));
2014 			goto out;
2015 		}
2016 
2017 		/* Periodic timers with SIG_IGN are queued on the ignored list */
2018 		if (tmr->it_sig_periodic) {
2019 			/*
2020 			 * Already queued means the timer was rearmed after
2021 			 * the previous expiry got it on the ignore list.
2022 			 * Nothing to do for that case.
2023 			 */
2024 			if (hlist_unhashed(&tmr->ignored_list)) {
2025 				/*
2026 				 * Take a signal reference and queue it on
2027 				 * the ignored list.
2028 				 */
2029 				posixtimer_sigqueue_getref(q);
2030 				posixtimer_sig_ignore(t, q);
2031 			}
2032 		} else if (!hlist_unhashed(&tmr->ignored_list)) {
2033 			/*
2034 			 * Covers the case where a timer was periodic and
2035 			 * then the signal was ignored. Later it was rearmed
2036 			 * as oneshot timer. The previous signal is invalid
2037 			 * now, and this oneshot signal has to be dropped.
2038 			 * Remove it from the ignored list and drop the
2039 			 * reference count as the signal is not longer
2040 			 * queued.
2041 			 */
2042 			hlist_del_init(&tmr->ignored_list);
2043 			posixtimer_putref(tmr);
2044 		}
2045 		goto out;
2046 	}
2047 
2048 	/* This should never happen and leaks a reference count */
2049 	if (WARN_ON_ONCE(!hlist_unhashed(&tmr->ignored_list)))
2050 		hlist_del_init(&tmr->ignored_list);
2051 
2052 	if (unlikely(!list_empty(&q->list))) {
2053 		/* This holds a reference count already */
2054 		result = TRACE_SIGNAL_ALREADY_PENDING;
2055 		goto out;
2056 	}
2057 
2058 	posixtimer_sigqueue_getref(q);
2059 	posixtimer_queue_sigqueue(q, t, tmr->it_pid_type);
2060 	result = TRACE_SIGNAL_DELIVERED;
2061 out:
2062 	trace_signal_generate(sig, &q->info, t, tmr->it_pid_type != PIDTYPE_PID, result);
2063 	unlock_task_sighand(t, &flags);
2064 }
2065 
2066 static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q)
2067 {
2068 	struct k_itimer *tmr = container_of(q, struct k_itimer, sigq);
2069 
2070 	/*
2071 	 * If the timer is marked deleted already or the signal originates
2072 	 * from a non-periodic timer, then just drop the reference
2073 	 * count. Otherwise queue it on the ignored list.
2074 	 */
2075 	if (tmr->it_signal && tmr->it_sig_periodic)
2076 		hlist_add_head(&tmr->ignored_list, &tsk->signal->ignored_posix_timers);
2077 	else
2078 		posixtimer_putref(tmr);
2079 }
2080 
2081 static void posixtimer_sig_unignore(struct task_struct *tsk, int sig)
2082 {
2083 	struct hlist_head *head = &tsk->signal->ignored_posix_timers;
2084 	struct hlist_node *tmp;
2085 	struct k_itimer *tmr;
2086 
2087 	if (likely(hlist_empty(head)))
2088 		return;
2089 
2090 	/*
2091 	 * Rearming a timer with sighand lock held is not possible due to
2092 	 * lock ordering vs. tmr::it_lock. Just stick the sigqueue back and
2093 	 * let the signal delivery path deal with it whether it needs to be
2094 	 * rearmed or not. This cannot be decided here w/o dropping sighand
2095 	 * lock and creating a loop retry horror show.
2096 	 */
2097 	hlist_for_each_entry_safe(tmr, tmp , head, ignored_list) {
2098 		struct task_struct *target;
2099 
2100 		/*
2101 		 * tmr::sigq.info.si_signo is immutable, so accessing it
2102 		 * without holding tmr::it_lock is safe.
2103 		 */
2104 		if (tmr->sigq.info.si_signo != sig)
2105 			continue;
2106 
2107 		hlist_del_init(&tmr->ignored_list);
2108 
2109 		/* This should never happen and leaks a reference count */
2110 		if (WARN_ON_ONCE(!list_empty(&tmr->sigq.list)))
2111 			continue;
2112 
2113 		/*
2114 		 * Get the target for the signal. If target is a thread and
2115 		 * has exited by now, drop the reference count.
2116 		 */
2117 		guard(rcu)();
2118 		target = posixtimer_get_target(tmr);
2119 		if (target)
2120 			posixtimer_queue_sigqueue(&tmr->sigq, target, tmr->it_pid_type);
2121 		else
2122 			posixtimer_putref(tmr);
2123 	}
2124 }
2125 #else /* CONFIG_POSIX_TIMERS */
2126 static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q) { }
2127 static inline void posixtimer_sig_unignore(struct task_struct *tsk, int sig) { }
2128 #endif /* !CONFIG_POSIX_TIMERS */
2129 
2130 void do_notify_pidfd(struct task_struct *task)
2131 {
2132 	struct pid *pid = task_pid(task);
2133 
2134 	WARN_ON(task->exit_state == 0);
2135 
2136 	__wake_up(&pid->wait_pidfd, TASK_NORMAL, 0,
2137 			poll_to_key(EPOLLIN | EPOLLRDNORM));
2138 }
2139 
2140 /*
2141  * Let a parent know about the death of a child.
2142  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2143  *
2144  * Returns true if our parent ignored us and so we've switched to
2145  * self-reaping.
2146  */
2147 bool do_notify_parent(struct task_struct *tsk, int sig)
2148 {
2149 	struct kernel_siginfo info;
2150 	unsigned long flags;
2151 	struct sighand_struct *psig;
2152 	bool autoreap = false;
2153 	u64 utime, stime;
2154 
2155 	WARN_ON_ONCE(sig == -1);
2156 
2157 	/* do_notify_parent_cldstop should have been called instead.  */
2158 	WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2159 
2160 	WARN_ON_ONCE(!tsk->ptrace &&
2161 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2162 	/*
2163 	 * tsk is a group leader and has no threads, wake up the
2164 	 * non-PIDFD_THREAD waiters.
2165 	 */
2166 	if (thread_group_empty(tsk))
2167 		do_notify_pidfd(tsk);
2168 
2169 	if (sig != SIGCHLD) {
2170 		/*
2171 		 * This is only possible if parent == real_parent.
2172 		 * Check if it has changed security domain.
2173 		 */
2174 		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2175 			sig = SIGCHLD;
2176 	}
2177 
2178 	clear_siginfo(&info);
2179 	info.si_signo = sig;
2180 	info.si_errno = 0;
2181 	/*
2182 	 * We are under tasklist_lock here so our parent is tied to
2183 	 * us and cannot change.
2184 	 *
2185 	 * task_active_pid_ns will always return the same pid namespace
2186 	 * until a task passes through release_task.
2187 	 *
2188 	 * write_lock() currently calls preempt_disable() which is the
2189 	 * same as rcu_read_lock(), but according to Oleg, this is not
2190 	 * correct to rely on this
2191 	 */
2192 	rcu_read_lock();
2193 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2194 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2195 				       task_uid(tsk));
2196 	rcu_read_unlock();
2197 
2198 	task_cputime(tsk, &utime, &stime);
2199 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2200 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2201 
2202 	info.si_status = tsk->exit_code & 0x7f;
2203 	if (tsk->exit_code & 0x80)
2204 		info.si_code = CLD_DUMPED;
2205 	else if (tsk->exit_code & 0x7f)
2206 		info.si_code = CLD_KILLED;
2207 	else {
2208 		info.si_code = CLD_EXITED;
2209 		info.si_status = tsk->exit_code >> 8;
2210 	}
2211 
2212 	psig = tsk->parent->sighand;
2213 	spin_lock_irqsave(&psig->siglock, flags);
2214 	if (!tsk->ptrace && sig == SIGCHLD &&
2215 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2216 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2217 		/*
2218 		 * We are exiting and our parent doesn't care.  POSIX.1
2219 		 * defines special semantics for setting SIGCHLD to SIG_IGN
2220 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2221 		 * automatically and not left for our parent's wait4 call.
2222 		 * Rather than having the parent do it as a magic kind of
2223 		 * signal handler, we just set this to tell do_exit that we
2224 		 * can be cleaned up without becoming a zombie.  Note that
2225 		 * we still call __wake_up_parent in this case, because a
2226 		 * blocked sys_wait4 might now return -ECHILD.
2227 		 *
2228 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2229 		 * is implementation-defined: we do (if you don't want
2230 		 * it, just use SIG_IGN instead).
2231 		 */
2232 		autoreap = true;
2233 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2234 			sig = 0;
2235 	}
2236 	/*
2237 	 * Send with __send_signal as si_pid and si_uid are in the
2238 	 * parent's namespaces.
2239 	 */
2240 	if (valid_signal(sig) && sig)
2241 		__send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2242 	__wake_up_parent(tsk, tsk->parent);
2243 	spin_unlock_irqrestore(&psig->siglock, flags);
2244 
2245 	return autoreap;
2246 }
2247 
2248 /**
2249  * do_notify_parent_cldstop - notify parent of stopped/continued state change
2250  * @tsk: task reporting the state change
2251  * @for_ptracer: the notification is for ptracer
2252  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2253  *
2254  * Notify @tsk's parent that the stopped/continued state has changed.  If
2255  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2256  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2257  *
2258  * CONTEXT:
2259  * Must be called with tasklist_lock at least read locked.
2260  */
2261 static void do_notify_parent_cldstop(struct task_struct *tsk,
2262 				     bool for_ptracer, int why)
2263 {
2264 	struct kernel_siginfo info;
2265 	unsigned long flags;
2266 	struct task_struct *parent;
2267 	struct sighand_struct *sighand;
2268 	u64 utime, stime;
2269 
2270 	if (for_ptracer) {
2271 		parent = tsk->parent;
2272 	} else {
2273 		tsk = tsk->group_leader;
2274 		parent = tsk->real_parent;
2275 	}
2276 
2277 	clear_siginfo(&info);
2278 	info.si_signo = SIGCHLD;
2279 	info.si_errno = 0;
2280 	/*
2281 	 * see comment in do_notify_parent() about the following 4 lines
2282 	 */
2283 	rcu_read_lock();
2284 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2285 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2286 	rcu_read_unlock();
2287 
2288 	task_cputime(tsk, &utime, &stime);
2289 	info.si_utime = nsec_to_clock_t(utime);
2290 	info.si_stime = nsec_to_clock_t(stime);
2291 
2292  	info.si_code = why;
2293  	switch (why) {
2294  	case CLD_CONTINUED:
2295  		info.si_status = SIGCONT;
2296  		break;
2297  	case CLD_STOPPED:
2298  		info.si_status = tsk->signal->group_exit_code & 0x7f;
2299  		break;
2300  	case CLD_TRAPPED:
2301  		info.si_status = tsk->exit_code & 0x7f;
2302  		break;
2303  	default:
2304  		BUG();
2305  	}
2306 
2307 	sighand = parent->sighand;
2308 	spin_lock_irqsave(&sighand->siglock, flags);
2309 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2310 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2311 		send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2312 	/*
2313 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2314 	 */
2315 	__wake_up_parent(tsk, parent);
2316 	spin_unlock_irqrestore(&sighand->siglock, flags);
2317 }
2318 
2319 /*
2320  * This must be called with current->sighand->siglock held.
2321  *
2322  * This should be the path for all ptrace stops.
2323  * We always set current->last_siginfo while stopped here.
2324  * That makes it a way to test a stopped process for
2325  * being ptrace-stopped vs being job-control-stopped.
2326  *
2327  * Returns the signal the ptracer requested the code resume
2328  * with.  If the code did not stop because the tracer is gone,
2329  * the stop signal remains unchanged unless clear_code.
2330  */
2331 static int ptrace_stop(int exit_code, int why, unsigned long message,
2332 		       kernel_siginfo_t *info)
2333 	__releases(&current->sighand->siglock)
2334 	__acquires(&current->sighand->siglock)
2335 {
2336 	bool gstop_done = false;
2337 
2338 	if (arch_ptrace_stop_needed()) {
2339 		/*
2340 		 * The arch code has something special to do before a
2341 		 * ptrace stop.  This is allowed to block, e.g. for faults
2342 		 * on user stack pages.  We can't keep the siglock while
2343 		 * calling arch_ptrace_stop, so we must release it now.
2344 		 * To preserve proper semantics, we must do this before
2345 		 * any signal bookkeeping like checking group_stop_count.
2346 		 */
2347 		spin_unlock_irq(&current->sighand->siglock);
2348 		arch_ptrace_stop();
2349 		spin_lock_irq(&current->sighand->siglock);
2350 	}
2351 
2352 	/*
2353 	 * After this point ptrace_signal_wake_up or signal_wake_up
2354 	 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2355 	 * signal comes in.  Handle previous ptrace_unlinks and fatal
2356 	 * signals here to prevent ptrace_stop sleeping in schedule.
2357 	 */
2358 	if (!current->ptrace || __fatal_signal_pending(current))
2359 		return exit_code;
2360 
2361 	set_special_state(TASK_TRACED);
2362 	current->jobctl |= JOBCTL_TRACED;
2363 
2364 	/*
2365 	 * We're committing to trapping.  TRACED should be visible before
2366 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2367 	 * Also, transition to TRACED and updates to ->jobctl should be
2368 	 * atomic with respect to siglock and should be done after the arch
2369 	 * hook as siglock is released and regrabbed across it.
2370 	 *
2371 	 *     TRACER				    TRACEE
2372 	 *
2373 	 *     ptrace_attach()
2374 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2375 	 *     do_wait()
2376 	 *       set_current_state()                smp_wmb();
2377 	 *       ptrace_do_wait()
2378 	 *         wait_task_stopped()
2379 	 *           task_stopped_code()
2380 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2381 	 */
2382 	smp_wmb();
2383 
2384 	current->ptrace_message = message;
2385 	current->last_siginfo = info;
2386 	current->exit_code = exit_code;
2387 
2388 	/*
2389 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2390 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2391 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2392 	 * could be clear now.  We act as if SIGCONT is received after
2393 	 * TASK_TRACED is entered - ignore it.
2394 	 */
2395 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2396 		gstop_done = task_participate_group_stop(current);
2397 
2398 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2399 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2400 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2401 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2402 
2403 	/* entering a trap, clear TRAPPING */
2404 	task_clear_jobctl_trapping(current);
2405 
2406 	spin_unlock_irq(&current->sighand->siglock);
2407 	read_lock(&tasklist_lock);
2408 	/*
2409 	 * Notify parents of the stop.
2410 	 *
2411 	 * While ptraced, there are two parents - the ptracer and
2412 	 * the real_parent of the group_leader.  The ptracer should
2413 	 * know about every stop while the real parent is only
2414 	 * interested in the completion of group stop.  The states
2415 	 * for the two don't interact with each other.  Notify
2416 	 * separately unless they're gonna be duplicates.
2417 	 */
2418 	if (current->ptrace)
2419 		do_notify_parent_cldstop(current, true, why);
2420 	if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2421 		do_notify_parent_cldstop(current, false, why);
2422 
2423 	/*
2424 	 * The previous do_notify_parent_cldstop() invocation woke ptracer.
2425 	 * One a PREEMPTION kernel this can result in preemption requirement
2426 	 * which will be fulfilled after read_unlock() and the ptracer will be
2427 	 * put on the CPU.
2428 	 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for
2429 	 * this task wait in schedule(). If this task gets preempted then it
2430 	 * remains enqueued on the runqueue. The ptracer will observe this and
2431 	 * then sleep for a delay of one HZ tick. In the meantime this task
2432 	 * gets scheduled, enters schedule() and will wait for the ptracer.
2433 	 *
2434 	 * This preemption point is not bad from a correctness point of
2435 	 * view but extends the runtime by one HZ tick time due to the
2436 	 * ptracer's sleep.  The preempt-disable section ensures that there
2437 	 * will be no preemption between unlock and schedule() and so
2438 	 * improving the performance since the ptracer will observe that
2439 	 * the tracee is scheduled out once it gets on the CPU.
2440 	 *
2441 	 * On PREEMPT_RT locking tasklist_lock does not disable preemption.
2442 	 * Therefore the task can be preempted after do_notify_parent_cldstop()
2443 	 * before unlocking tasklist_lock so there is no benefit in doing this.
2444 	 *
2445 	 * In fact disabling preemption is harmful on PREEMPT_RT because
2446 	 * the spinlock_t in cgroup_enter_frozen() must not be acquired
2447 	 * with preemption disabled due to the 'sleeping' spinlock
2448 	 * substitution of RT.
2449 	 */
2450 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2451 		preempt_disable();
2452 	read_unlock(&tasklist_lock);
2453 	cgroup_enter_frozen();
2454 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2455 		preempt_enable_no_resched();
2456 	schedule();
2457 	cgroup_leave_frozen(true);
2458 
2459 	/*
2460 	 * We are back.  Now reacquire the siglock before touching
2461 	 * last_siginfo, so that we are sure to have synchronized with
2462 	 * any signal-sending on another CPU that wants to examine it.
2463 	 */
2464 	spin_lock_irq(&current->sighand->siglock);
2465 	exit_code = current->exit_code;
2466 	current->last_siginfo = NULL;
2467 	current->ptrace_message = 0;
2468 	current->exit_code = 0;
2469 
2470 	/* LISTENING can be set only during STOP traps, clear it */
2471 	current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2472 
2473 	/*
2474 	 * Queued signals ignored us while we were stopped for tracing.
2475 	 * So check for any that we should take before resuming user mode.
2476 	 * This sets TIF_SIGPENDING, but never clears it.
2477 	 */
2478 	recalc_sigpending_tsk(current);
2479 	return exit_code;
2480 }
2481 
2482 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2483 {
2484 	kernel_siginfo_t info;
2485 
2486 	clear_siginfo(&info);
2487 	info.si_signo = signr;
2488 	info.si_code = exit_code;
2489 	info.si_pid = task_pid_vnr(current);
2490 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2491 
2492 	/* Let the debugger run.  */
2493 	return ptrace_stop(exit_code, why, message, &info);
2494 }
2495 
2496 int ptrace_notify(int exit_code, unsigned long message)
2497 {
2498 	int signr;
2499 
2500 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2501 	if (unlikely(task_work_pending(current)))
2502 		task_work_run();
2503 
2504 	spin_lock_irq(&current->sighand->siglock);
2505 	signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2506 	spin_unlock_irq(&current->sighand->siglock);
2507 	return signr;
2508 }
2509 
2510 /**
2511  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2512  * @signr: signr causing group stop if initiating
2513  *
2514  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2515  * and participate in it.  If already set, participate in the existing
2516  * group stop.  If participated in a group stop (and thus slept), %true is
2517  * returned with siglock released.
2518  *
2519  * If ptraced, this function doesn't handle stop itself.  Instead,
2520  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2521  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2522  * places afterwards.
2523  *
2524  * CONTEXT:
2525  * Must be called with @current->sighand->siglock held, which is released
2526  * on %true return.
2527  *
2528  * RETURNS:
2529  * %false if group stop is already cancelled or ptrace trap is scheduled.
2530  * %true if participated in group stop.
2531  */
2532 static bool do_signal_stop(int signr)
2533 	__releases(&current->sighand->siglock)
2534 {
2535 	struct signal_struct *sig = current->signal;
2536 
2537 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2538 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2539 		struct task_struct *t;
2540 
2541 		/* signr will be recorded in task->jobctl for retries */
2542 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2543 
2544 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2545 		    unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2546 		    unlikely(sig->group_exec_task))
2547 			return false;
2548 		/*
2549 		 * There is no group stop already in progress.  We must
2550 		 * initiate one now.
2551 		 *
2552 		 * While ptraced, a task may be resumed while group stop is
2553 		 * still in effect and then receive a stop signal and
2554 		 * initiate another group stop.  This deviates from the
2555 		 * usual behavior as two consecutive stop signals can't
2556 		 * cause two group stops when !ptraced.  That is why we
2557 		 * also check !task_is_stopped(t) below.
2558 		 *
2559 		 * The condition can be distinguished by testing whether
2560 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2561 		 * group_exit_code in such case.
2562 		 *
2563 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2564 		 * an intervening stop signal is required to cause two
2565 		 * continued events regardless of ptrace.
2566 		 */
2567 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2568 			sig->group_exit_code = signr;
2569 
2570 		sig->group_stop_count = 0;
2571 		if (task_set_jobctl_pending(current, signr | gstop))
2572 			sig->group_stop_count++;
2573 
2574 		for_other_threads(current, t) {
2575 			/*
2576 			 * Setting state to TASK_STOPPED for a group
2577 			 * stop is always done with the siglock held,
2578 			 * so this check has no races.
2579 			 */
2580 			if (!task_is_stopped(t) &&
2581 			    task_set_jobctl_pending(t, signr | gstop)) {
2582 				sig->group_stop_count++;
2583 				if (likely(!(t->ptrace & PT_SEIZED)))
2584 					signal_wake_up(t, 0);
2585 				else
2586 					ptrace_trap_notify(t);
2587 			}
2588 		}
2589 	}
2590 
2591 	if (likely(!current->ptrace)) {
2592 		int notify = 0;
2593 
2594 		/*
2595 		 * If there are no other threads in the group, or if there
2596 		 * is a group stop in progress and we are the last to stop,
2597 		 * report to the parent.
2598 		 */
2599 		if (task_participate_group_stop(current))
2600 			notify = CLD_STOPPED;
2601 
2602 		current->jobctl |= JOBCTL_STOPPED;
2603 		set_special_state(TASK_STOPPED);
2604 		spin_unlock_irq(&current->sighand->siglock);
2605 
2606 		/*
2607 		 * Notify the parent of the group stop completion.  Because
2608 		 * we're not holding either the siglock or tasklist_lock
2609 		 * here, ptracer may attach inbetween; however, this is for
2610 		 * group stop and should always be delivered to the real
2611 		 * parent of the group leader.  The new ptracer will get
2612 		 * its notification when this task transitions into
2613 		 * TASK_TRACED.
2614 		 */
2615 		if (notify) {
2616 			read_lock(&tasklist_lock);
2617 			do_notify_parent_cldstop(current, false, notify);
2618 			read_unlock(&tasklist_lock);
2619 		}
2620 
2621 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2622 		cgroup_enter_frozen();
2623 		schedule();
2624 		return true;
2625 	} else {
2626 		/*
2627 		 * While ptraced, group stop is handled by STOP trap.
2628 		 * Schedule it and let the caller deal with it.
2629 		 */
2630 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2631 		return false;
2632 	}
2633 }
2634 
2635 /**
2636  * do_jobctl_trap - take care of ptrace jobctl traps
2637  *
2638  * When PT_SEIZED, it's used for both group stop and explicit
2639  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2640  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2641  * the stop signal; otherwise, %SIGTRAP.
2642  *
2643  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2644  * number as exit_code and no siginfo.
2645  *
2646  * CONTEXT:
2647  * Must be called with @current->sighand->siglock held, which may be
2648  * released and re-acquired before returning with intervening sleep.
2649  */
2650 static void do_jobctl_trap(void)
2651 {
2652 	struct signal_struct *signal = current->signal;
2653 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2654 
2655 	if (current->ptrace & PT_SEIZED) {
2656 		if (!signal->group_stop_count &&
2657 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2658 			signr = SIGTRAP;
2659 		WARN_ON_ONCE(!signr);
2660 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2661 				 CLD_STOPPED, 0);
2662 	} else {
2663 		WARN_ON_ONCE(!signr);
2664 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2665 	}
2666 }
2667 
2668 /**
2669  * do_freezer_trap - handle the freezer jobctl trap
2670  *
2671  * Puts the task into frozen state, if only the task is not about to quit.
2672  * In this case it drops JOBCTL_TRAP_FREEZE.
2673  *
2674  * CONTEXT:
2675  * Must be called with @current->sighand->siglock held,
2676  * which is always released before returning.
2677  */
2678 static void do_freezer_trap(void)
2679 	__releases(&current->sighand->siglock)
2680 {
2681 	/*
2682 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2683 	 * let's make another loop to give it a chance to be handled.
2684 	 * In any case, we'll return back.
2685 	 */
2686 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2687 	     JOBCTL_TRAP_FREEZE) {
2688 		spin_unlock_irq(&current->sighand->siglock);
2689 		return;
2690 	}
2691 
2692 	/*
2693 	 * Now we're sure that there is no pending fatal signal and no
2694 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2695 	 * immediately (if there is a non-fatal signal pending), and
2696 	 * put the task into sleep.
2697 	 */
2698 	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2699 	clear_thread_flag(TIF_SIGPENDING);
2700 	spin_unlock_irq(&current->sighand->siglock);
2701 	cgroup_enter_frozen();
2702 	schedule();
2703 
2704 	/*
2705 	 * We could've been woken by task_work, run it to clear
2706 	 * TIF_NOTIFY_SIGNAL. The caller will retry if necessary.
2707 	 */
2708 	clear_notify_signal();
2709 	if (unlikely(task_work_pending(current)))
2710 		task_work_run();
2711 }
2712 
2713 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2714 {
2715 	/*
2716 	 * We do not check sig_kernel_stop(signr) but set this marker
2717 	 * unconditionally because we do not know whether debugger will
2718 	 * change signr. This flag has no meaning unless we are going
2719 	 * to stop after return from ptrace_stop(). In this case it will
2720 	 * be checked in do_signal_stop(), we should only stop if it was
2721 	 * not cleared by SIGCONT while we were sleeping. See also the
2722 	 * comment in dequeue_signal().
2723 	 */
2724 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2725 	signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2726 
2727 	/* We're back.  Did the debugger cancel the sig?  */
2728 	if (signr == 0)
2729 		return signr;
2730 
2731 	/*
2732 	 * Update the siginfo structure if the signal has
2733 	 * changed.  If the debugger wanted something
2734 	 * specific in the siginfo structure then it should
2735 	 * have updated *info via PTRACE_SETSIGINFO.
2736 	 */
2737 	if (signr != info->si_signo) {
2738 		clear_siginfo(info);
2739 		info->si_signo = signr;
2740 		info->si_errno = 0;
2741 		info->si_code = SI_USER;
2742 		rcu_read_lock();
2743 		info->si_pid = task_pid_vnr(current->parent);
2744 		info->si_uid = from_kuid_munged(current_user_ns(),
2745 						task_uid(current->parent));
2746 		rcu_read_unlock();
2747 	}
2748 
2749 	/* If the (new) signal is now blocked, requeue it.  */
2750 	if (sigismember(&current->blocked, signr) ||
2751 	    fatal_signal_pending(current)) {
2752 		send_signal_locked(signr, info, current, type);
2753 		signr = 0;
2754 	}
2755 
2756 	return signr;
2757 }
2758 
2759 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2760 {
2761 	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2762 	case SIL_FAULT:
2763 	case SIL_FAULT_TRAPNO:
2764 	case SIL_FAULT_MCEERR:
2765 	case SIL_FAULT_BNDERR:
2766 	case SIL_FAULT_PKUERR:
2767 	case SIL_FAULT_PERF_EVENT:
2768 		ksig->info.si_addr = arch_untagged_si_addr(
2769 			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2770 		break;
2771 	case SIL_KILL:
2772 	case SIL_TIMER:
2773 	case SIL_POLL:
2774 	case SIL_CHLD:
2775 	case SIL_RT:
2776 	case SIL_SYS:
2777 		break;
2778 	}
2779 }
2780 
2781 bool get_signal(struct ksignal *ksig)
2782 {
2783 	struct sighand_struct *sighand = current->sighand;
2784 	struct signal_struct *signal = current->signal;
2785 	int signr;
2786 
2787 	clear_notify_signal();
2788 	if (unlikely(task_work_pending(current)))
2789 		task_work_run();
2790 
2791 	if (!task_sigpending(current))
2792 		return false;
2793 
2794 	if (unlikely(uprobe_deny_signal()))
2795 		return false;
2796 
2797 	/*
2798 	 * Do this once, we can't return to user-mode if freezing() == T.
2799 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2800 	 * thus do not need another check after return.
2801 	 */
2802 	try_to_freeze();
2803 
2804 relock:
2805 	spin_lock_irq(&sighand->siglock);
2806 
2807 	/*
2808 	 * Every stopped thread goes here after wakeup. Check to see if
2809 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2810 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2811 	 */
2812 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2813 		int why;
2814 
2815 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2816 			why = CLD_CONTINUED;
2817 		else
2818 			why = CLD_STOPPED;
2819 
2820 		signal->flags &= ~SIGNAL_CLD_MASK;
2821 
2822 		spin_unlock_irq(&sighand->siglock);
2823 
2824 		/*
2825 		 * Notify the parent that we're continuing.  This event is
2826 		 * always per-process and doesn't make whole lot of sense
2827 		 * for ptracers, who shouldn't consume the state via
2828 		 * wait(2) either, but, for backward compatibility, notify
2829 		 * the ptracer of the group leader too unless it's gonna be
2830 		 * a duplicate.
2831 		 */
2832 		read_lock(&tasklist_lock);
2833 		do_notify_parent_cldstop(current, false, why);
2834 
2835 		if (ptrace_reparented(current->group_leader))
2836 			do_notify_parent_cldstop(current->group_leader,
2837 						true, why);
2838 		read_unlock(&tasklist_lock);
2839 
2840 		goto relock;
2841 	}
2842 
2843 	for (;;) {
2844 		struct k_sigaction *ka;
2845 		enum pid_type type;
2846 
2847 		/* Has this task already been marked for death? */
2848 		if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2849 		     signal->group_exec_task) {
2850 			signr = SIGKILL;
2851 			sigdelset(&current->pending.signal, SIGKILL);
2852 			trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2853 					     &sighand->action[SIGKILL-1]);
2854 			recalc_sigpending();
2855 			/*
2856 			 * implies do_group_exit() or return to PF_USER_WORKER,
2857 			 * no need to initialize ksig->info/etc.
2858 			 */
2859 			goto fatal;
2860 		}
2861 
2862 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2863 		    do_signal_stop(0))
2864 			goto relock;
2865 
2866 		if (unlikely(current->jobctl &
2867 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2868 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2869 				do_jobctl_trap();
2870 				spin_unlock_irq(&sighand->siglock);
2871 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2872 				do_freezer_trap();
2873 
2874 			goto relock;
2875 		}
2876 
2877 		/*
2878 		 * If the task is leaving the frozen state, let's update
2879 		 * cgroup counters and reset the frozen bit.
2880 		 */
2881 		if (unlikely(cgroup_task_frozen(current))) {
2882 			spin_unlock_irq(&sighand->siglock);
2883 			cgroup_leave_frozen(false);
2884 			goto relock;
2885 		}
2886 
2887 		/*
2888 		 * Signals generated by the execution of an instruction
2889 		 * need to be delivered before any other pending signals
2890 		 * so that the instruction pointer in the signal stack
2891 		 * frame points to the faulting instruction.
2892 		 */
2893 		type = PIDTYPE_PID;
2894 		signr = dequeue_synchronous_signal(&ksig->info);
2895 		if (!signr)
2896 			signr = dequeue_signal(&current->blocked, &ksig->info, &type);
2897 
2898 		if (!signr)
2899 			break; /* will return 0 */
2900 
2901 		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2902 		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2903 			signr = ptrace_signal(signr, &ksig->info, type);
2904 			if (!signr)
2905 				continue;
2906 		}
2907 
2908 		ka = &sighand->action[signr-1];
2909 
2910 		/* Trace actually delivered signals. */
2911 		trace_signal_deliver(signr, &ksig->info, ka);
2912 
2913 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2914 			continue;
2915 		if (ka->sa.sa_handler != SIG_DFL) {
2916 			/* Run the handler.  */
2917 			ksig->ka = *ka;
2918 
2919 			if (ka->sa.sa_flags & SA_ONESHOT)
2920 				ka->sa.sa_handler = SIG_DFL;
2921 
2922 			break; /* will return non-zero "signr" value */
2923 		}
2924 
2925 		/*
2926 		 * Now we are doing the default action for this signal.
2927 		 */
2928 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2929 			continue;
2930 
2931 		/*
2932 		 * Global init gets no signals it doesn't want.
2933 		 * Container-init gets no signals it doesn't want from same
2934 		 * container.
2935 		 *
2936 		 * Note that if global/container-init sees a sig_kernel_only()
2937 		 * signal here, the signal must have been generated internally
2938 		 * or must have come from an ancestor namespace. In either
2939 		 * case, the signal cannot be dropped.
2940 		 */
2941 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2942 				!sig_kernel_only(signr))
2943 			continue;
2944 
2945 		if (sig_kernel_stop(signr)) {
2946 			/*
2947 			 * The default action is to stop all threads in
2948 			 * the thread group.  The job control signals
2949 			 * do nothing in an orphaned pgrp, but SIGSTOP
2950 			 * always works.  Note that siglock needs to be
2951 			 * dropped during the call to is_orphaned_pgrp()
2952 			 * because of lock ordering with tasklist_lock.
2953 			 * This allows an intervening SIGCONT to be posted.
2954 			 * We need to check for that and bail out if necessary.
2955 			 */
2956 			if (signr != SIGSTOP) {
2957 				spin_unlock_irq(&sighand->siglock);
2958 
2959 				/* signals can be posted during this window */
2960 
2961 				if (is_current_pgrp_orphaned())
2962 					goto relock;
2963 
2964 				spin_lock_irq(&sighand->siglock);
2965 			}
2966 
2967 			if (likely(do_signal_stop(signr))) {
2968 				/* It released the siglock.  */
2969 				goto relock;
2970 			}
2971 
2972 			/*
2973 			 * We didn't actually stop, due to a race
2974 			 * with SIGCONT or something like that.
2975 			 */
2976 			continue;
2977 		}
2978 
2979 	fatal:
2980 		spin_unlock_irq(&sighand->siglock);
2981 		if (unlikely(cgroup_task_frozen(current)))
2982 			cgroup_leave_frozen(true);
2983 
2984 		/*
2985 		 * Anything else is fatal, maybe with a core dump.
2986 		 */
2987 		current->flags |= PF_SIGNALED;
2988 
2989 		if (sig_kernel_coredump(signr)) {
2990 			if (print_fatal_signals)
2991 				print_fatal_signal(signr);
2992 			proc_coredump_connector(current);
2993 			/*
2994 			 * If it was able to dump core, this kills all
2995 			 * other threads in the group and synchronizes with
2996 			 * their demise.  If we lost the race with another
2997 			 * thread getting here, it set group_exit_code
2998 			 * first and our do_group_exit call below will use
2999 			 * that value and ignore the one we pass it.
3000 			 */
3001 			do_coredump(&ksig->info);
3002 		}
3003 
3004 		/*
3005 		 * PF_USER_WORKER threads will catch and exit on fatal signals
3006 		 * themselves. They have cleanup that must be performed, so we
3007 		 * cannot call do_exit() on their behalf. Note that ksig won't
3008 		 * be properly initialized, PF_USER_WORKER's shouldn't use it.
3009 		 */
3010 		if (current->flags & PF_USER_WORKER)
3011 			goto out;
3012 
3013 		/*
3014 		 * Death signals, no core dump.
3015 		 */
3016 		do_group_exit(signr);
3017 		/* NOTREACHED */
3018 	}
3019 	spin_unlock_irq(&sighand->siglock);
3020 
3021 	ksig->sig = signr;
3022 
3023 	if (signr && !(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
3024 		hide_si_addr_tag_bits(ksig);
3025 out:
3026 	return signr > 0;
3027 }
3028 
3029 /**
3030  * signal_delivered - called after signal delivery to update blocked signals
3031  * @ksig:		kernel signal struct
3032  * @stepping:		nonzero if debugger single-step or block-step in use
3033  *
3034  * This function should be called when a signal has successfully been
3035  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
3036  * is always blocked), and the signal itself is blocked unless %SA_NODEFER
3037  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
3038  */
3039 static void signal_delivered(struct ksignal *ksig, int stepping)
3040 {
3041 	sigset_t blocked;
3042 
3043 	/* A signal was successfully delivered, and the
3044 	   saved sigmask was stored on the signal frame,
3045 	   and will be restored by sigreturn.  So we can
3046 	   simply clear the restore sigmask flag.  */
3047 	clear_restore_sigmask();
3048 
3049 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
3050 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
3051 		sigaddset(&blocked, ksig->sig);
3052 	set_current_blocked(&blocked);
3053 	if (current->sas_ss_flags & SS_AUTODISARM)
3054 		sas_ss_reset(current);
3055 	if (stepping)
3056 		ptrace_notify(SIGTRAP, 0);
3057 }
3058 
3059 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
3060 {
3061 	if (failed)
3062 		force_sigsegv(ksig->sig);
3063 	else
3064 		signal_delivered(ksig, stepping);
3065 }
3066 
3067 /*
3068  * It could be that complete_signal() picked us to notify about the
3069  * group-wide signal. Other threads should be notified now to take
3070  * the shared signals in @which since we will not.
3071  */
3072 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
3073 {
3074 	sigset_t retarget;
3075 	struct task_struct *t;
3076 
3077 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
3078 	if (sigisemptyset(&retarget))
3079 		return;
3080 
3081 	for_other_threads(tsk, t) {
3082 		if (t->flags & PF_EXITING)
3083 			continue;
3084 
3085 		if (!has_pending_signals(&retarget, &t->blocked))
3086 			continue;
3087 		/* Remove the signals this thread can handle. */
3088 		sigandsets(&retarget, &retarget, &t->blocked);
3089 
3090 		if (!task_sigpending(t))
3091 			signal_wake_up(t, 0);
3092 
3093 		if (sigisemptyset(&retarget))
3094 			break;
3095 	}
3096 }
3097 
3098 void exit_signals(struct task_struct *tsk)
3099 {
3100 	int group_stop = 0;
3101 	sigset_t unblocked;
3102 
3103 	/*
3104 	 * @tsk is about to have PF_EXITING set - lock out users which
3105 	 * expect stable threadgroup.
3106 	 */
3107 	cgroup_threadgroup_change_begin(tsk);
3108 
3109 	if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
3110 		sched_mm_cid_exit_signals(tsk);
3111 		tsk->flags |= PF_EXITING;
3112 		cgroup_threadgroup_change_end(tsk);
3113 		return;
3114 	}
3115 
3116 	spin_lock_irq(&tsk->sighand->siglock);
3117 	/*
3118 	 * From now this task is not visible for group-wide signals,
3119 	 * see wants_signal(), do_signal_stop().
3120 	 */
3121 	sched_mm_cid_exit_signals(tsk);
3122 	tsk->flags |= PF_EXITING;
3123 
3124 	cgroup_threadgroup_change_end(tsk);
3125 
3126 	if (!task_sigpending(tsk))
3127 		goto out;
3128 
3129 	unblocked = tsk->blocked;
3130 	signotset(&unblocked);
3131 	retarget_shared_pending(tsk, &unblocked);
3132 
3133 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3134 	    task_participate_group_stop(tsk))
3135 		group_stop = CLD_STOPPED;
3136 out:
3137 	spin_unlock_irq(&tsk->sighand->siglock);
3138 
3139 	/*
3140 	 * If group stop has completed, deliver the notification.  This
3141 	 * should always go to the real parent of the group leader.
3142 	 */
3143 	if (unlikely(group_stop)) {
3144 		read_lock(&tasklist_lock);
3145 		do_notify_parent_cldstop(tsk, false, group_stop);
3146 		read_unlock(&tasklist_lock);
3147 	}
3148 }
3149 
3150 /*
3151  * System call entry points.
3152  */
3153 
3154 /**
3155  *  sys_restart_syscall - restart a system call
3156  */
3157 SYSCALL_DEFINE0(restart_syscall)
3158 {
3159 	struct restart_block *restart = &current->restart_block;
3160 	return restart->fn(restart);
3161 }
3162 
3163 long do_no_restart_syscall(struct restart_block *param)
3164 {
3165 	return -EINTR;
3166 }
3167 
3168 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3169 {
3170 	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3171 		sigset_t newblocked;
3172 		/* A set of now blocked but previously unblocked signals. */
3173 		sigandnsets(&newblocked, newset, &current->blocked);
3174 		retarget_shared_pending(tsk, &newblocked);
3175 	}
3176 	tsk->blocked = *newset;
3177 	recalc_sigpending();
3178 }
3179 
3180 /**
3181  * set_current_blocked - change current->blocked mask
3182  * @newset: new mask
3183  *
3184  * It is wrong to change ->blocked directly, this helper should be used
3185  * to ensure the process can't miss a shared signal we are going to block.
3186  */
3187 void set_current_blocked(sigset_t *newset)
3188 {
3189 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3190 	__set_current_blocked(newset);
3191 }
3192 
3193 void __set_current_blocked(const sigset_t *newset)
3194 {
3195 	struct task_struct *tsk = current;
3196 
3197 	/*
3198 	 * In case the signal mask hasn't changed, there is nothing we need
3199 	 * to do. The current->blocked shouldn't be modified by other task.
3200 	 */
3201 	if (sigequalsets(&tsk->blocked, newset))
3202 		return;
3203 
3204 	spin_lock_irq(&tsk->sighand->siglock);
3205 	__set_task_blocked(tsk, newset);
3206 	spin_unlock_irq(&tsk->sighand->siglock);
3207 }
3208 
3209 /*
3210  * This is also useful for kernel threads that want to temporarily
3211  * (or permanently) block certain signals.
3212  *
3213  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3214  * interface happily blocks "unblockable" signals like SIGKILL
3215  * and friends.
3216  */
3217 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3218 {
3219 	struct task_struct *tsk = current;
3220 	sigset_t newset;
3221 
3222 	/* Lockless, only current can change ->blocked, never from irq */
3223 	if (oldset)
3224 		*oldset = tsk->blocked;
3225 
3226 	switch (how) {
3227 	case SIG_BLOCK:
3228 		sigorsets(&newset, &tsk->blocked, set);
3229 		break;
3230 	case SIG_UNBLOCK:
3231 		sigandnsets(&newset, &tsk->blocked, set);
3232 		break;
3233 	case SIG_SETMASK:
3234 		newset = *set;
3235 		break;
3236 	default:
3237 		return -EINVAL;
3238 	}
3239 
3240 	__set_current_blocked(&newset);
3241 	return 0;
3242 }
3243 EXPORT_SYMBOL(sigprocmask);
3244 
3245 /*
3246  * The api helps set app-provided sigmasks.
3247  *
3248  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3249  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3250  *
3251  * Note that it does set_restore_sigmask() in advance, so it must be always
3252  * paired with restore_saved_sigmask_unless() before return from syscall.
3253  */
3254 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3255 {
3256 	sigset_t kmask;
3257 
3258 	if (!umask)
3259 		return 0;
3260 	if (sigsetsize != sizeof(sigset_t))
3261 		return -EINVAL;
3262 	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3263 		return -EFAULT;
3264 
3265 	set_restore_sigmask();
3266 	current->saved_sigmask = current->blocked;
3267 	set_current_blocked(&kmask);
3268 
3269 	return 0;
3270 }
3271 
3272 #ifdef CONFIG_COMPAT
3273 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3274 			    size_t sigsetsize)
3275 {
3276 	sigset_t kmask;
3277 
3278 	if (!umask)
3279 		return 0;
3280 	if (sigsetsize != sizeof(compat_sigset_t))
3281 		return -EINVAL;
3282 	if (get_compat_sigset(&kmask, umask))
3283 		return -EFAULT;
3284 
3285 	set_restore_sigmask();
3286 	current->saved_sigmask = current->blocked;
3287 	set_current_blocked(&kmask);
3288 
3289 	return 0;
3290 }
3291 #endif
3292 
3293 /**
3294  *  sys_rt_sigprocmask - change the list of currently blocked signals
3295  *  @how: whether to add, remove, or set signals
3296  *  @nset: stores pending signals
3297  *  @oset: previous value of signal mask if non-null
3298  *  @sigsetsize: size of sigset_t type
3299  */
3300 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3301 		sigset_t __user *, oset, size_t, sigsetsize)
3302 {
3303 	sigset_t old_set, new_set;
3304 	int error;
3305 
3306 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3307 	if (sigsetsize != sizeof(sigset_t))
3308 		return -EINVAL;
3309 
3310 	old_set = current->blocked;
3311 
3312 	if (nset) {
3313 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3314 			return -EFAULT;
3315 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3316 
3317 		error = sigprocmask(how, &new_set, NULL);
3318 		if (error)
3319 			return error;
3320 	}
3321 
3322 	if (oset) {
3323 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3324 			return -EFAULT;
3325 	}
3326 
3327 	return 0;
3328 }
3329 
3330 #ifdef CONFIG_COMPAT
3331 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3332 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3333 {
3334 	sigset_t old_set = current->blocked;
3335 
3336 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3337 	if (sigsetsize != sizeof(sigset_t))
3338 		return -EINVAL;
3339 
3340 	if (nset) {
3341 		sigset_t new_set;
3342 		int error;
3343 		if (get_compat_sigset(&new_set, nset))
3344 			return -EFAULT;
3345 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3346 
3347 		error = sigprocmask(how, &new_set, NULL);
3348 		if (error)
3349 			return error;
3350 	}
3351 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3352 }
3353 #endif
3354 
3355 static void do_sigpending(sigset_t *set)
3356 {
3357 	spin_lock_irq(&current->sighand->siglock);
3358 	sigorsets(set, &current->pending.signal,
3359 		  &current->signal->shared_pending.signal);
3360 	spin_unlock_irq(&current->sighand->siglock);
3361 
3362 	/* Outside the lock because only this thread touches it.  */
3363 	sigandsets(set, &current->blocked, set);
3364 }
3365 
3366 /**
3367  *  sys_rt_sigpending - examine a pending signal that has been raised
3368  *			while blocked
3369  *  @uset: stores pending signals
3370  *  @sigsetsize: size of sigset_t type or larger
3371  */
3372 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3373 {
3374 	sigset_t set;
3375 
3376 	if (sigsetsize > sizeof(*uset))
3377 		return -EINVAL;
3378 
3379 	do_sigpending(&set);
3380 
3381 	if (copy_to_user(uset, &set, sigsetsize))
3382 		return -EFAULT;
3383 
3384 	return 0;
3385 }
3386 
3387 #ifdef CONFIG_COMPAT
3388 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3389 		compat_size_t, sigsetsize)
3390 {
3391 	sigset_t set;
3392 
3393 	if (sigsetsize > sizeof(*uset))
3394 		return -EINVAL;
3395 
3396 	do_sigpending(&set);
3397 
3398 	return put_compat_sigset(uset, &set, sigsetsize);
3399 }
3400 #endif
3401 
3402 static const struct {
3403 	unsigned char limit, layout;
3404 } sig_sicodes[] = {
3405 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3406 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3407 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3408 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3409 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3410 #if defined(SIGEMT)
3411 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3412 #endif
3413 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3414 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3415 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3416 };
3417 
3418 static bool known_siginfo_layout(unsigned sig, int si_code)
3419 {
3420 	if (si_code == SI_KERNEL)
3421 		return true;
3422 	else if ((si_code > SI_USER)) {
3423 		if (sig_specific_sicodes(sig)) {
3424 			if (si_code <= sig_sicodes[sig].limit)
3425 				return true;
3426 		}
3427 		else if (si_code <= NSIGPOLL)
3428 			return true;
3429 	}
3430 	else if (si_code >= SI_DETHREAD)
3431 		return true;
3432 	else if (si_code == SI_ASYNCNL)
3433 		return true;
3434 	return false;
3435 }
3436 
3437 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3438 {
3439 	enum siginfo_layout layout = SIL_KILL;
3440 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3441 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3442 		    (si_code <= sig_sicodes[sig].limit)) {
3443 			layout = sig_sicodes[sig].layout;
3444 			/* Handle the exceptions */
3445 			if ((sig == SIGBUS) &&
3446 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3447 				layout = SIL_FAULT_MCEERR;
3448 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3449 				layout = SIL_FAULT_BNDERR;
3450 #ifdef SEGV_PKUERR
3451 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3452 				layout = SIL_FAULT_PKUERR;
3453 #endif
3454 			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3455 				layout = SIL_FAULT_PERF_EVENT;
3456 			else if (IS_ENABLED(CONFIG_SPARC) &&
3457 				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3458 				layout = SIL_FAULT_TRAPNO;
3459 			else if (IS_ENABLED(CONFIG_ALPHA) &&
3460 				 ((sig == SIGFPE) ||
3461 				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3462 				layout = SIL_FAULT_TRAPNO;
3463 		}
3464 		else if (si_code <= NSIGPOLL)
3465 			layout = SIL_POLL;
3466 	} else {
3467 		if (si_code == SI_TIMER)
3468 			layout = SIL_TIMER;
3469 		else if (si_code == SI_SIGIO)
3470 			layout = SIL_POLL;
3471 		else if (si_code < 0)
3472 			layout = SIL_RT;
3473 	}
3474 	return layout;
3475 }
3476 
3477 static inline char __user *si_expansion(const siginfo_t __user *info)
3478 {
3479 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3480 }
3481 
3482 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3483 {
3484 	char __user *expansion = si_expansion(to);
3485 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3486 		return -EFAULT;
3487 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3488 		return -EFAULT;
3489 	return 0;
3490 }
3491 
3492 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3493 				       const siginfo_t __user *from)
3494 {
3495 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3496 		char __user *expansion = si_expansion(from);
3497 		char buf[SI_EXPANSION_SIZE];
3498 		int i;
3499 		/*
3500 		 * An unknown si_code might need more than
3501 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3502 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3503 		 * will return this data to userspace exactly.
3504 		 */
3505 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3506 			return -EFAULT;
3507 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3508 			if (buf[i] != 0)
3509 				return -E2BIG;
3510 		}
3511 	}
3512 	return 0;
3513 }
3514 
3515 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3516 				    const siginfo_t __user *from)
3517 {
3518 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3519 		return -EFAULT;
3520 	to->si_signo = signo;
3521 	return post_copy_siginfo_from_user(to, from);
3522 }
3523 
3524 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3525 {
3526 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3527 		return -EFAULT;
3528 	return post_copy_siginfo_from_user(to, from);
3529 }
3530 
3531 #ifdef CONFIG_COMPAT
3532 /**
3533  * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3534  * @to: compat siginfo destination
3535  * @from: kernel siginfo source
3536  *
3537  * Note: This function does not work properly for the SIGCHLD on x32, but
3538  * fortunately it doesn't have to.  The only valid callers for this function are
3539  * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3540  * The latter does not care because SIGCHLD will never cause a coredump.
3541  */
3542 void copy_siginfo_to_external32(struct compat_siginfo *to,
3543 		const struct kernel_siginfo *from)
3544 {
3545 	memset(to, 0, sizeof(*to));
3546 
3547 	to->si_signo = from->si_signo;
3548 	to->si_errno = from->si_errno;
3549 	to->si_code  = from->si_code;
3550 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3551 	case SIL_KILL:
3552 		to->si_pid = from->si_pid;
3553 		to->si_uid = from->si_uid;
3554 		break;
3555 	case SIL_TIMER:
3556 		to->si_tid     = from->si_tid;
3557 		to->si_overrun = from->si_overrun;
3558 		to->si_int     = from->si_int;
3559 		break;
3560 	case SIL_POLL:
3561 		to->si_band = from->si_band;
3562 		to->si_fd   = from->si_fd;
3563 		break;
3564 	case SIL_FAULT:
3565 		to->si_addr = ptr_to_compat(from->si_addr);
3566 		break;
3567 	case SIL_FAULT_TRAPNO:
3568 		to->si_addr = ptr_to_compat(from->si_addr);
3569 		to->si_trapno = from->si_trapno;
3570 		break;
3571 	case SIL_FAULT_MCEERR:
3572 		to->si_addr = ptr_to_compat(from->si_addr);
3573 		to->si_addr_lsb = from->si_addr_lsb;
3574 		break;
3575 	case SIL_FAULT_BNDERR:
3576 		to->si_addr = ptr_to_compat(from->si_addr);
3577 		to->si_lower = ptr_to_compat(from->si_lower);
3578 		to->si_upper = ptr_to_compat(from->si_upper);
3579 		break;
3580 	case SIL_FAULT_PKUERR:
3581 		to->si_addr = ptr_to_compat(from->si_addr);
3582 		to->si_pkey = from->si_pkey;
3583 		break;
3584 	case SIL_FAULT_PERF_EVENT:
3585 		to->si_addr = ptr_to_compat(from->si_addr);
3586 		to->si_perf_data = from->si_perf_data;
3587 		to->si_perf_type = from->si_perf_type;
3588 		to->si_perf_flags = from->si_perf_flags;
3589 		break;
3590 	case SIL_CHLD:
3591 		to->si_pid = from->si_pid;
3592 		to->si_uid = from->si_uid;
3593 		to->si_status = from->si_status;
3594 		to->si_utime = from->si_utime;
3595 		to->si_stime = from->si_stime;
3596 		break;
3597 	case SIL_RT:
3598 		to->si_pid = from->si_pid;
3599 		to->si_uid = from->si_uid;
3600 		to->si_int = from->si_int;
3601 		break;
3602 	case SIL_SYS:
3603 		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3604 		to->si_syscall   = from->si_syscall;
3605 		to->si_arch      = from->si_arch;
3606 		break;
3607 	}
3608 }
3609 
3610 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3611 			   const struct kernel_siginfo *from)
3612 {
3613 	struct compat_siginfo new;
3614 
3615 	copy_siginfo_to_external32(&new, from);
3616 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3617 		return -EFAULT;
3618 	return 0;
3619 }
3620 
3621 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3622 					 const struct compat_siginfo *from)
3623 {
3624 	clear_siginfo(to);
3625 	to->si_signo = from->si_signo;
3626 	to->si_errno = from->si_errno;
3627 	to->si_code  = from->si_code;
3628 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3629 	case SIL_KILL:
3630 		to->si_pid = from->si_pid;
3631 		to->si_uid = from->si_uid;
3632 		break;
3633 	case SIL_TIMER:
3634 		to->si_tid     = from->si_tid;
3635 		to->si_overrun = from->si_overrun;
3636 		to->si_int     = from->si_int;
3637 		break;
3638 	case SIL_POLL:
3639 		to->si_band = from->si_band;
3640 		to->si_fd   = from->si_fd;
3641 		break;
3642 	case SIL_FAULT:
3643 		to->si_addr = compat_ptr(from->si_addr);
3644 		break;
3645 	case SIL_FAULT_TRAPNO:
3646 		to->si_addr = compat_ptr(from->si_addr);
3647 		to->si_trapno = from->si_trapno;
3648 		break;
3649 	case SIL_FAULT_MCEERR:
3650 		to->si_addr = compat_ptr(from->si_addr);
3651 		to->si_addr_lsb = from->si_addr_lsb;
3652 		break;
3653 	case SIL_FAULT_BNDERR:
3654 		to->si_addr = compat_ptr(from->si_addr);
3655 		to->si_lower = compat_ptr(from->si_lower);
3656 		to->si_upper = compat_ptr(from->si_upper);
3657 		break;
3658 	case SIL_FAULT_PKUERR:
3659 		to->si_addr = compat_ptr(from->si_addr);
3660 		to->si_pkey = from->si_pkey;
3661 		break;
3662 	case SIL_FAULT_PERF_EVENT:
3663 		to->si_addr = compat_ptr(from->si_addr);
3664 		to->si_perf_data = from->si_perf_data;
3665 		to->si_perf_type = from->si_perf_type;
3666 		to->si_perf_flags = from->si_perf_flags;
3667 		break;
3668 	case SIL_CHLD:
3669 		to->si_pid    = from->si_pid;
3670 		to->si_uid    = from->si_uid;
3671 		to->si_status = from->si_status;
3672 #ifdef CONFIG_X86_X32_ABI
3673 		if (in_x32_syscall()) {
3674 			to->si_utime = from->_sifields._sigchld_x32._utime;
3675 			to->si_stime = from->_sifields._sigchld_x32._stime;
3676 		} else
3677 #endif
3678 		{
3679 			to->si_utime = from->si_utime;
3680 			to->si_stime = from->si_stime;
3681 		}
3682 		break;
3683 	case SIL_RT:
3684 		to->si_pid = from->si_pid;
3685 		to->si_uid = from->si_uid;
3686 		to->si_int = from->si_int;
3687 		break;
3688 	case SIL_SYS:
3689 		to->si_call_addr = compat_ptr(from->si_call_addr);
3690 		to->si_syscall   = from->si_syscall;
3691 		to->si_arch      = from->si_arch;
3692 		break;
3693 	}
3694 	return 0;
3695 }
3696 
3697 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3698 				      const struct compat_siginfo __user *ufrom)
3699 {
3700 	struct compat_siginfo from;
3701 
3702 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3703 		return -EFAULT;
3704 
3705 	from.si_signo = signo;
3706 	return post_copy_siginfo_from_user32(to, &from);
3707 }
3708 
3709 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3710 			     const struct compat_siginfo __user *ufrom)
3711 {
3712 	struct compat_siginfo from;
3713 
3714 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3715 		return -EFAULT;
3716 
3717 	return post_copy_siginfo_from_user32(to, &from);
3718 }
3719 #endif /* CONFIG_COMPAT */
3720 
3721 /**
3722  *  do_sigtimedwait - wait for queued signals specified in @which
3723  *  @which: queued signals to wait for
3724  *  @info: if non-null, the signal's siginfo is returned here
3725  *  @ts: upper bound on process time suspension
3726  */
3727 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3728 		    const struct timespec64 *ts)
3729 {
3730 	ktime_t *to = NULL, timeout = KTIME_MAX;
3731 	struct task_struct *tsk = current;
3732 	sigset_t mask = *which;
3733 	enum pid_type type;
3734 	int sig, ret = 0;
3735 
3736 	if (ts) {
3737 		if (!timespec64_valid(ts))
3738 			return -EINVAL;
3739 		timeout = timespec64_to_ktime(*ts);
3740 		to = &timeout;
3741 	}
3742 
3743 	/*
3744 	 * Invert the set of allowed signals to get those we want to block.
3745 	 */
3746 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3747 	signotset(&mask);
3748 
3749 	spin_lock_irq(&tsk->sighand->siglock);
3750 	sig = dequeue_signal(&mask, info, &type);
3751 	if (!sig && timeout) {
3752 		/*
3753 		 * None ready, temporarily unblock those we're interested
3754 		 * while we are sleeping in so that we'll be awakened when
3755 		 * they arrive. Unblocking is always fine, we can avoid
3756 		 * set_current_blocked().
3757 		 */
3758 		tsk->real_blocked = tsk->blocked;
3759 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3760 		recalc_sigpending();
3761 		spin_unlock_irq(&tsk->sighand->siglock);
3762 
3763 		__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3764 		ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3765 					       HRTIMER_MODE_REL);
3766 		spin_lock_irq(&tsk->sighand->siglock);
3767 		__set_task_blocked(tsk, &tsk->real_blocked);
3768 		sigemptyset(&tsk->real_blocked);
3769 		sig = dequeue_signal(&mask, info, &type);
3770 	}
3771 	spin_unlock_irq(&tsk->sighand->siglock);
3772 
3773 	if (sig)
3774 		return sig;
3775 	return ret ? -EINTR : -EAGAIN;
3776 }
3777 
3778 /**
3779  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3780  *			in @uthese
3781  *  @uthese: queued signals to wait for
3782  *  @uinfo: if non-null, the signal's siginfo is returned here
3783  *  @uts: upper bound on process time suspension
3784  *  @sigsetsize: size of sigset_t type
3785  */
3786 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3787 		siginfo_t __user *, uinfo,
3788 		const struct __kernel_timespec __user *, uts,
3789 		size_t, sigsetsize)
3790 {
3791 	sigset_t these;
3792 	struct timespec64 ts;
3793 	kernel_siginfo_t info;
3794 	int ret;
3795 
3796 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3797 	if (sigsetsize != sizeof(sigset_t))
3798 		return -EINVAL;
3799 
3800 	if (copy_from_user(&these, uthese, sizeof(these)))
3801 		return -EFAULT;
3802 
3803 	if (uts) {
3804 		if (get_timespec64(&ts, uts))
3805 			return -EFAULT;
3806 	}
3807 
3808 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3809 
3810 	if (ret > 0 && uinfo) {
3811 		if (copy_siginfo_to_user(uinfo, &info))
3812 			ret = -EFAULT;
3813 	}
3814 
3815 	return ret;
3816 }
3817 
3818 #ifdef CONFIG_COMPAT_32BIT_TIME
3819 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3820 		siginfo_t __user *, uinfo,
3821 		const struct old_timespec32 __user *, uts,
3822 		size_t, sigsetsize)
3823 {
3824 	sigset_t these;
3825 	struct timespec64 ts;
3826 	kernel_siginfo_t info;
3827 	int ret;
3828 
3829 	if (sigsetsize != sizeof(sigset_t))
3830 		return -EINVAL;
3831 
3832 	if (copy_from_user(&these, uthese, sizeof(these)))
3833 		return -EFAULT;
3834 
3835 	if (uts) {
3836 		if (get_old_timespec32(&ts, uts))
3837 			return -EFAULT;
3838 	}
3839 
3840 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3841 
3842 	if (ret > 0 && uinfo) {
3843 		if (copy_siginfo_to_user(uinfo, &info))
3844 			ret = -EFAULT;
3845 	}
3846 
3847 	return ret;
3848 }
3849 #endif
3850 
3851 #ifdef CONFIG_COMPAT
3852 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3853 		struct compat_siginfo __user *, uinfo,
3854 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3855 {
3856 	sigset_t s;
3857 	struct timespec64 t;
3858 	kernel_siginfo_t info;
3859 	long ret;
3860 
3861 	if (sigsetsize != sizeof(sigset_t))
3862 		return -EINVAL;
3863 
3864 	if (get_compat_sigset(&s, uthese))
3865 		return -EFAULT;
3866 
3867 	if (uts) {
3868 		if (get_timespec64(&t, uts))
3869 			return -EFAULT;
3870 	}
3871 
3872 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3873 
3874 	if (ret > 0 && uinfo) {
3875 		if (copy_siginfo_to_user32(uinfo, &info))
3876 			ret = -EFAULT;
3877 	}
3878 
3879 	return ret;
3880 }
3881 
3882 #ifdef CONFIG_COMPAT_32BIT_TIME
3883 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3884 		struct compat_siginfo __user *, uinfo,
3885 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3886 {
3887 	sigset_t s;
3888 	struct timespec64 t;
3889 	kernel_siginfo_t info;
3890 	long ret;
3891 
3892 	if (sigsetsize != sizeof(sigset_t))
3893 		return -EINVAL;
3894 
3895 	if (get_compat_sigset(&s, uthese))
3896 		return -EFAULT;
3897 
3898 	if (uts) {
3899 		if (get_old_timespec32(&t, uts))
3900 			return -EFAULT;
3901 	}
3902 
3903 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3904 
3905 	if (ret > 0 && uinfo) {
3906 		if (copy_siginfo_to_user32(uinfo, &info))
3907 			ret = -EFAULT;
3908 	}
3909 
3910 	return ret;
3911 }
3912 #endif
3913 #endif
3914 
3915 static void prepare_kill_siginfo(int sig, struct kernel_siginfo *info,
3916 				 enum pid_type type)
3917 {
3918 	clear_siginfo(info);
3919 	info->si_signo = sig;
3920 	info->si_errno = 0;
3921 	info->si_code = (type == PIDTYPE_PID) ? SI_TKILL : SI_USER;
3922 	info->si_pid = task_tgid_vnr(current);
3923 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3924 }
3925 
3926 /**
3927  *  sys_kill - send a signal to a process
3928  *  @pid: the PID of the process
3929  *  @sig: signal to be sent
3930  */
3931 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3932 {
3933 	struct kernel_siginfo info;
3934 
3935 	prepare_kill_siginfo(sig, &info, PIDTYPE_TGID);
3936 
3937 	return kill_something_info(sig, &info, pid);
3938 }
3939 
3940 /*
3941  * Verify that the signaler and signalee either are in the same pid namespace
3942  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3943  * namespace.
3944  */
3945 static bool access_pidfd_pidns(struct pid *pid)
3946 {
3947 	struct pid_namespace *active = task_active_pid_ns(current);
3948 	struct pid_namespace *p = ns_of_pid(pid);
3949 
3950 	for (;;) {
3951 		if (!p)
3952 			return false;
3953 		if (p == active)
3954 			break;
3955 		p = p->parent;
3956 	}
3957 
3958 	return true;
3959 }
3960 
3961 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3962 		siginfo_t __user *info)
3963 {
3964 #ifdef CONFIG_COMPAT
3965 	/*
3966 	 * Avoid hooking up compat syscalls and instead handle necessary
3967 	 * conversions here. Note, this is a stop-gap measure and should not be
3968 	 * considered a generic solution.
3969 	 */
3970 	if (in_compat_syscall())
3971 		return copy_siginfo_from_user32(
3972 			kinfo, (struct compat_siginfo __user *)info);
3973 #endif
3974 	return copy_siginfo_from_user(kinfo, info);
3975 }
3976 
3977 static struct pid *pidfd_to_pid(const struct file *file)
3978 {
3979 	struct pid *pid;
3980 
3981 	pid = pidfd_pid(file);
3982 	if (!IS_ERR(pid))
3983 		return pid;
3984 
3985 	return tgid_pidfd_to_pid(file);
3986 }
3987 
3988 #define PIDFD_SEND_SIGNAL_FLAGS                            \
3989 	(PIDFD_SIGNAL_THREAD | PIDFD_SIGNAL_THREAD_GROUP | \
3990 	 PIDFD_SIGNAL_PROCESS_GROUP)
3991 
3992 /**
3993  * sys_pidfd_send_signal - Signal a process through a pidfd
3994  * @pidfd:  file descriptor of the process
3995  * @sig:    signal to send
3996  * @info:   signal info
3997  * @flags:  future flags
3998  *
3999  * Send the signal to the thread group or to the individual thread depending
4000  * on PIDFD_THREAD.
4001  * In the future extension to @flags may be used to override the default scope
4002  * of @pidfd.
4003  *
4004  * Return: 0 on success, negative errno on failure
4005  */
4006 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
4007 		siginfo_t __user *, info, unsigned int, flags)
4008 {
4009 	int ret;
4010 	struct pid *pid;
4011 	kernel_siginfo_t kinfo;
4012 	enum pid_type type;
4013 
4014 	/* Enforce flags be set to 0 until we add an extension. */
4015 	if (flags & ~PIDFD_SEND_SIGNAL_FLAGS)
4016 		return -EINVAL;
4017 
4018 	/* Ensure that only a single signal scope determining flag is set. */
4019 	if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1)
4020 		return -EINVAL;
4021 
4022 	CLASS(fd, f)(pidfd);
4023 	if (fd_empty(f))
4024 		return -EBADF;
4025 
4026 	/* Is this a pidfd? */
4027 	pid = pidfd_to_pid(fd_file(f));
4028 	if (IS_ERR(pid))
4029 		return PTR_ERR(pid);
4030 
4031 	if (!access_pidfd_pidns(pid))
4032 		return -EINVAL;
4033 
4034 	switch (flags) {
4035 	case 0:
4036 		/* Infer scope from the type of pidfd. */
4037 		if (fd_file(f)->f_flags & PIDFD_THREAD)
4038 			type = PIDTYPE_PID;
4039 		else
4040 			type = PIDTYPE_TGID;
4041 		break;
4042 	case PIDFD_SIGNAL_THREAD:
4043 		type = PIDTYPE_PID;
4044 		break;
4045 	case PIDFD_SIGNAL_THREAD_GROUP:
4046 		type = PIDTYPE_TGID;
4047 		break;
4048 	case PIDFD_SIGNAL_PROCESS_GROUP:
4049 		type = PIDTYPE_PGID;
4050 		break;
4051 	}
4052 
4053 	if (info) {
4054 		ret = copy_siginfo_from_user_any(&kinfo, info);
4055 		if (unlikely(ret))
4056 			return ret;
4057 
4058 		if (unlikely(sig != kinfo.si_signo))
4059 			return -EINVAL;
4060 
4061 		/* Only allow sending arbitrary signals to yourself. */
4062 		if ((task_pid(current) != pid || type > PIDTYPE_TGID) &&
4063 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
4064 			return -EPERM;
4065 	} else {
4066 		prepare_kill_siginfo(sig, &kinfo, type);
4067 	}
4068 
4069 	if (type == PIDTYPE_PGID)
4070 		return kill_pgrp_info(sig, &kinfo, pid);
4071 	else
4072 		return kill_pid_info_type(sig, &kinfo, pid, type);
4073 }
4074 
4075 static int
4076 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
4077 {
4078 	struct task_struct *p;
4079 	int error = -ESRCH;
4080 
4081 	rcu_read_lock();
4082 	p = find_task_by_vpid(pid);
4083 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
4084 		error = check_kill_permission(sig, info, p);
4085 		/*
4086 		 * The null signal is a permissions and process existence
4087 		 * probe.  No signal is actually delivered.
4088 		 */
4089 		if (!error && sig) {
4090 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
4091 			/*
4092 			 * If lock_task_sighand() failed we pretend the task
4093 			 * dies after receiving the signal. The window is tiny,
4094 			 * and the signal is private anyway.
4095 			 */
4096 			if (unlikely(error == -ESRCH))
4097 				error = 0;
4098 		}
4099 	}
4100 	rcu_read_unlock();
4101 
4102 	return error;
4103 }
4104 
4105 static int do_tkill(pid_t tgid, pid_t pid, int sig)
4106 {
4107 	struct kernel_siginfo info;
4108 
4109 	prepare_kill_siginfo(sig, &info, PIDTYPE_PID);
4110 
4111 	return do_send_specific(tgid, pid, sig, &info);
4112 }
4113 
4114 /**
4115  *  sys_tgkill - send signal to one specific thread
4116  *  @tgid: the thread group ID of the thread
4117  *  @pid: the PID of the thread
4118  *  @sig: signal to be sent
4119  *
4120  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
4121  *  exists but it's not belonging to the target process anymore. This
4122  *  method solves the problem of threads exiting and PIDs getting reused.
4123  */
4124 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
4125 {
4126 	/* This is only valid for single tasks */
4127 	if (pid <= 0 || tgid <= 0)
4128 		return -EINVAL;
4129 
4130 	return do_tkill(tgid, pid, sig);
4131 }
4132 
4133 /**
4134  *  sys_tkill - send signal to one specific task
4135  *  @pid: the PID of the task
4136  *  @sig: signal to be sent
4137  *
4138  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
4139  */
4140 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4141 {
4142 	/* This is only valid for single tasks */
4143 	if (pid <= 0)
4144 		return -EINVAL;
4145 
4146 	return do_tkill(0, pid, sig);
4147 }
4148 
4149 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4150 {
4151 	/* Not even root can pretend to send signals from the kernel.
4152 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4153 	 */
4154 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4155 	    (task_pid_vnr(current) != pid))
4156 		return -EPERM;
4157 
4158 	/* POSIX.1b doesn't mention process groups.  */
4159 	return kill_proc_info(sig, info, pid);
4160 }
4161 
4162 /**
4163  *  sys_rt_sigqueueinfo - send signal information to a signal
4164  *  @pid: the PID of the thread
4165  *  @sig: signal to be sent
4166  *  @uinfo: signal info to be sent
4167  */
4168 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4169 		siginfo_t __user *, uinfo)
4170 {
4171 	kernel_siginfo_t info;
4172 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4173 	if (unlikely(ret))
4174 		return ret;
4175 	return do_rt_sigqueueinfo(pid, sig, &info);
4176 }
4177 
4178 #ifdef CONFIG_COMPAT
4179 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4180 			compat_pid_t, pid,
4181 			int, sig,
4182 			struct compat_siginfo __user *, uinfo)
4183 {
4184 	kernel_siginfo_t info;
4185 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4186 	if (unlikely(ret))
4187 		return ret;
4188 	return do_rt_sigqueueinfo(pid, sig, &info);
4189 }
4190 #endif
4191 
4192 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4193 {
4194 	/* This is only valid for single tasks */
4195 	if (pid <= 0 || tgid <= 0)
4196 		return -EINVAL;
4197 
4198 	/* Not even root can pretend to send signals from the kernel.
4199 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4200 	 */
4201 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4202 	    (task_pid_vnr(current) != pid))
4203 		return -EPERM;
4204 
4205 	return do_send_specific(tgid, pid, sig, info);
4206 }
4207 
4208 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4209 		siginfo_t __user *, uinfo)
4210 {
4211 	kernel_siginfo_t info;
4212 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4213 	if (unlikely(ret))
4214 		return ret;
4215 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4216 }
4217 
4218 #ifdef CONFIG_COMPAT
4219 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4220 			compat_pid_t, tgid,
4221 			compat_pid_t, pid,
4222 			int, sig,
4223 			struct compat_siginfo __user *, uinfo)
4224 {
4225 	kernel_siginfo_t info;
4226 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4227 	if (unlikely(ret))
4228 		return ret;
4229 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4230 }
4231 #endif
4232 
4233 /*
4234  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4235  */
4236 void kernel_sigaction(int sig, __sighandler_t action)
4237 {
4238 	spin_lock_irq(&current->sighand->siglock);
4239 	current->sighand->action[sig - 1].sa.sa_handler = action;
4240 	if (action == SIG_IGN) {
4241 		sigset_t mask;
4242 
4243 		sigemptyset(&mask);
4244 		sigaddset(&mask, sig);
4245 
4246 		flush_sigqueue_mask(current, &mask, &current->signal->shared_pending);
4247 		flush_sigqueue_mask(current, &mask, &current->pending);
4248 		recalc_sigpending();
4249 	}
4250 	spin_unlock_irq(&current->sighand->siglock);
4251 }
4252 EXPORT_SYMBOL(kernel_sigaction);
4253 
4254 void __weak sigaction_compat_abi(struct k_sigaction *act,
4255 		struct k_sigaction *oact)
4256 {
4257 }
4258 
4259 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4260 {
4261 	struct task_struct *p = current, *t;
4262 	struct k_sigaction *k;
4263 	sigset_t mask;
4264 
4265 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4266 		return -EINVAL;
4267 
4268 	k = &p->sighand->action[sig-1];
4269 
4270 	spin_lock_irq(&p->sighand->siglock);
4271 	if (k->sa.sa_flags & SA_IMMUTABLE) {
4272 		spin_unlock_irq(&p->sighand->siglock);
4273 		return -EINVAL;
4274 	}
4275 	if (oact)
4276 		*oact = *k;
4277 
4278 	/*
4279 	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4280 	 * e.g. by having an architecture use the bit in their uapi.
4281 	 */
4282 	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4283 
4284 	/*
4285 	 * Clear unknown flag bits in order to allow userspace to detect missing
4286 	 * support for flag bits and to allow the kernel to use non-uapi bits
4287 	 * internally.
4288 	 */
4289 	if (act)
4290 		act->sa.sa_flags &= UAPI_SA_FLAGS;
4291 	if (oact)
4292 		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4293 
4294 	sigaction_compat_abi(act, oact);
4295 
4296 	if (act) {
4297 		bool was_ignored = k->sa.sa_handler == SIG_IGN;
4298 
4299 		sigdelsetmask(&act->sa.sa_mask,
4300 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4301 		*k = *act;
4302 		/*
4303 		 * POSIX 3.3.1.3:
4304 		 *  "Setting a signal action to SIG_IGN for a signal that is
4305 		 *   pending shall cause the pending signal to be discarded,
4306 		 *   whether or not it is blocked."
4307 		 *
4308 		 *  "Setting a signal action to SIG_DFL for a signal that is
4309 		 *   pending and whose default action is to ignore the signal
4310 		 *   (for example, SIGCHLD), shall cause the pending signal to
4311 		 *   be discarded, whether or not it is blocked"
4312 		 */
4313 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4314 			sigemptyset(&mask);
4315 			sigaddset(&mask, sig);
4316 			flush_sigqueue_mask(p, &mask, &p->signal->shared_pending);
4317 			for_each_thread(p, t)
4318 				flush_sigqueue_mask(p, &mask, &t->pending);
4319 		} else if (was_ignored) {
4320 			posixtimer_sig_unignore(p, sig);
4321 		}
4322 	}
4323 
4324 	spin_unlock_irq(&p->sighand->siglock);
4325 	return 0;
4326 }
4327 
4328 #ifdef CONFIG_DYNAMIC_SIGFRAME
4329 static inline void sigaltstack_lock(void)
4330 	__acquires(&current->sighand->siglock)
4331 {
4332 	spin_lock_irq(&current->sighand->siglock);
4333 }
4334 
4335 static inline void sigaltstack_unlock(void)
4336 	__releases(&current->sighand->siglock)
4337 {
4338 	spin_unlock_irq(&current->sighand->siglock);
4339 }
4340 #else
4341 static inline void sigaltstack_lock(void) { }
4342 static inline void sigaltstack_unlock(void) { }
4343 #endif
4344 
4345 static int
4346 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4347 		size_t min_ss_size)
4348 {
4349 	struct task_struct *t = current;
4350 	int ret = 0;
4351 
4352 	if (oss) {
4353 		memset(oss, 0, sizeof(stack_t));
4354 		oss->ss_sp = (void __user *) t->sas_ss_sp;
4355 		oss->ss_size = t->sas_ss_size;
4356 		oss->ss_flags = sas_ss_flags(sp) |
4357 			(current->sas_ss_flags & SS_FLAG_BITS);
4358 	}
4359 
4360 	if (ss) {
4361 		void __user *ss_sp = ss->ss_sp;
4362 		size_t ss_size = ss->ss_size;
4363 		unsigned ss_flags = ss->ss_flags;
4364 		int ss_mode;
4365 
4366 		if (unlikely(on_sig_stack(sp)))
4367 			return -EPERM;
4368 
4369 		ss_mode = ss_flags & ~SS_FLAG_BITS;
4370 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4371 				ss_mode != 0))
4372 			return -EINVAL;
4373 
4374 		/*
4375 		 * Return before taking any locks if no actual
4376 		 * sigaltstack changes were requested.
4377 		 */
4378 		if (t->sas_ss_sp == (unsigned long)ss_sp &&
4379 		    t->sas_ss_size == ss_size &&
4380 		    t->sas_ss_flags == ss_flags)
4381 			return 0;
4382 
4383 		sigaltstack_lock();
4384 		if (ss_mode == SS_DISABLE) {
4385 			ss_size = 0;
4386 			ss_sp = NULL;
4387 		} else {
4388 			if (unlikely(ss_size < min_ss_size))
4389 				ret = -ENOMEM;
4390 			if (!sigaltstack_size_valid(ss_size))
4391 				ret = -ENOMEM;
4392 		}
4393 		if (!ret) {
4394 			t->sas_ss_sp = (unsigned long) ss_sp;
4395 			t->sas_ss_size = ss_size;
4396 			t->sas_ss_flags = ss_flags;
4397 		}
4398 		sigaltstack_unlock();
4399 	}
4400 	return ret;
4401 }
4402 
4403 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4404 {
4405 	stack_t new, old;
4406 	int err;
4407 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4408 		return -EFAULT;
4409 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4410 			      current_user_stack_pointer(),
4411 			      MINSIGSTKSZ);
4412 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4413 		err = -EFAULT;
4414 	return err;
4415 }
4416 
4417 int restore_altstack(const stack_t __user *uss)
4418 {
4419 	stack_t new;
4420 	if (copy_from_user(&new, uss, sizeof(stack_t)))
4421 		return -EFAULT;
4422 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4423 			     MINSIGSTKSZ);
4424 	/* squash all but EFAULT for now */
4425 	return 0;
4426 }
4427 
4428 int __save_altstack(stack_t __user *uss, unsigned long sp)
4429 {
4430 	struct task_struct *t = current;
4431 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4432 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4433 		__put_user(t->sas_ss_size, &uss->ss_size);
4434 	return err;
4435 }
4436 
4437 #ifdef CONFIG_COMPAT
4438 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4439 				 compat_stack_t __user *uoss_ptr)
4440 {
4441 	stack_t uss, uoss;
4442 	int ret;
4443 
4444 	if (uss_ptr) {
4445 		compat_stack_t uss32;
4446 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4447 			return -EFAULT;
4448 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4449 		uss.ss_flags = uss32.ss_flags;
4450 		uss.ss_size = uss32.ss_size;
4451 	}
4452 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4453 			     compat_user_stack_pointer(),
4454 			     COMPAT_MINSIGSTKSZ);
4455 	if (ret >= 0 && uoss_ptr)  {
4456 		compat_stack_t old;
4457 		memset(&old, 0, sizeof(old));
4458 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4459 		old.ss_flags = uoss.ss_flags;
4460 		old.ss_size = uoss.ss_size;
4461 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4462 			ret = -EFAULT;
4463 	}
4464 	return ret;
4465 }
4466 
4467 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4468 			const compat_stack_t __user *, uss_ptr,
4469 			compat_stack_t __user *, uoss_ptr)
4470 {
4471 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4472 }
4473 
4474 int compat_restore_altstack(const compat_stack_t __user *uss)
4475 {
4476 	int err = do_compat_sigaltstack(uss, NULL);
4477 	/* squash all but -EFAULT for now */
4478 	return err == -EFAULT ? err : 0;
4479 }
4480 
4481 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4482 {
4483 	int err;
4484 	struct task_struct *t = current;
4485 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4486 			 &uss->ss_sp) |
4487 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4488 		__put_user(t->sas_ss_size, &uss->ss_size);
4489 	return err;
4490 }
4491 #endif
4492 
4493 #ifdef __ARCH_WANT_SYS_SIGPENDING
4494 
4495 /**
4496  *  sys_sigpending - examine pending signals
4497  *  @uset: where mask of pending signal is returned
4498  */
4499 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4500 {
4501 	sigset_t set;
4502 
4503 	if (sizeof(old_sigset_t) > sizeof(*uset))
4504 		return -EINVAL;
4505 
4506 	do_sigpending(&set);
4507 
4508 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4509 		return -EFAULT;
4510 
4511 	return 0;
4512 }
4513 
4514 #ifdef CONFIG_COMPAT
4515 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4516 {
4517 	sigset_t set;
4518 
4519 	do_sigpending(&set);
4520 
4521 	return put_user(set.sig[0], set32);
4522 }
4523 #endif
4524 
4525 #endif
4526 
4527 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4528 /**
4529  *  sys_sigprocmask - examine and change blocked signals
4530  *  @how: whether to add, remove, or set signals
4531  *  @nset: signals to add or remove (if non-null)
4532  *  @oset: previous value of signal mask if non-null
4533  *
4534  * Some platforms have their own version with special arguments;
4535  * others support only sys_rt_sigprocmask.
4536  */
4537 
4538 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4539 		old_sigset_t __user *, oset)
4540 {
4541 	old_sigset_t old_set, new_set;
4542 	sigset_t new_blocked;
4543 
4544 	old_set = current->blocked.sig[0];
4545 
4546 	if (nset) {
4547 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4548 			return -EFAULT;
4549 
4550 		new_blocked = current->blocked;
4551 
4552 		switch (how) {
4553 		case SIG_BLOCK:
4554 			sigaddsetmask(&new_blocked, new_set);
4555 			break;
4556 		case SIG_UNBLOCK:
4557 			sigdelsetmask(&new_blocked, new_set);
4558 			break;
4559 		case SIG_SETMASK:
4560 			new_blocked.sig[0] = new_set;
4561 			break;
4562 		default:
4563 			return -EINVAL;
4564 		}
4565 
4566 		set_current_blocked(&new_blocked);
4567 	}
4568 
4569 	if (oset) {
4570 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4571 			return -EFAULT;
4572 	}
4573 
4574 	return 0;
4575 }
4576 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4577 
4578 #ifndef CONFIG_ODD_RT_SIGACTION
4579 /**
4580  *  sys_rt_sigaction - alter an action taken by a process
4581  *  @sig: signal to be sent
4582  *  @act: new sigaction
4583  *  @oact: used to save the previous sigaction
4584  *  @sigsetsize: size of sigset_t type
4585  */
4586 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4587 		const struct sigaction __user *, act,
4588 		struct sigaction __user *, oact,
4589 		size_t, sigsetsize)
4590 {
4591 	struct k_sigaction new_sa, old_sa;
4592 	int ret;
4593 
4594 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4595 	if (sigsetsize != sizeof(sigset_t))
4596 		return -EINVAL;
4597 
4598 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4599 		return -EFAULT;
4600 
4601 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4602 	if (ret)
4603 		return ret;
4604 
4605 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4606 		return -EFAULT;
4607 
4608 	return 0;
4609 }
4610 #ifdef CONFIG_COMPAT
4611 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4612 		const struct compat_sigaction __user *, act,
4613 		struct compat_sigaction __user *, oact,
4614 		compat_size_t, sigsetsize)
4615 {
4616 	struct k_sigaction new_ka, old_ka;
4617 #ifdef __ARCH_HAS_SA_RESTORER
4618 	compat_uptr_t restorer;
4619 #endif
4620 	int ret;
4621 
4622 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4623 	if (sigsetsize != sizeof(compat_sigset_t))
4624 		return -EINVAL;
4625 
4626 	if (act) {
4627 		compat_uptr_t handler;
4628 		ret = get_user(handler, &act->sa_handler);
4629 		new_ka.sa.sa_handler = compat_ptr(handler);
4630 #ifdef __ARCH_HAS_SA_RESTORER
4631 		ret |= get_user(restorer, &act->sa_restorer);
4632 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4633 #endif
4634 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4635 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4636 		if (ret)
4637 			return -EFAULT;
4638 	}
4639 
4640 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4641 	if (!ret && oact) {
4642 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4643 			       &oact->sa_handler);
4644 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4645 					 sizeof(oact->sa_mask));
4646 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4647 #ifdef __ARCH_HAS_SA_RESTORER
4648 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4649 				&oact->sa_restorer);
4650 #endif
4651 	}
4652 	return ret;
4653 }
4654 #endif
4655 #endif /* !CONFIG_ODD_RT_SIGACTION */
4656 
4657 #ifdef CONFIG_OLD_SIGACTION
4658 SYSCALL_DEFINE3(sigaction, int, sig,
4659 		const struct old_sigaction __user *, act,
4660 	        struct old_sigaction __user *, oact)
4661 {
4662 	struct k_sigaction new_ka, old_ka;
4663 	int ret;
4664 
4665 	if (act) {
4666 		old_sigset_t mask;
4667 		if (!access_ok(act, sizeof(*act)) ||
4668 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4669 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4670 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4671 		    __get_user(mask, &act->sa_mask))
4672 			return -EFAULT;
4673 #ifdef __ARCH_HAS_KA_RESTORER
4674 		new_ka.ka_restorer = NULL;
4675 #endif
4676 		siginitset(&new_ka.sa.sa_mask, mask);
4677 	}
4678 
4679 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4680 
4681 	if (!ret && oact) {
4682 		if (!access_ok(oact, sizeof(*oact)) ||
4683 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4684 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4685 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4686 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4687 			return -EFAULT;
4688 	}
4689 
4690 	return ret;
4691 }
4692 #endif
4693 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4694 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4695 		const struct compat_old_sigaction __user *, act,
4696 	        struct compat_old_sigaction __user *, oact)
4697 {
4698 	struct k_sigaction new_ka, old_ka;
4699 	int ret;
4700 	compat_old_sigset_t mask;
4701 	compat_uptr_t handler, restorer;
4702 
4703 	if (act) {
4704 		if (!access_ok(act, sizeof(*act)) ||
4705 		    __get_user(handler, &act->sa_handler) ||
4706 		    __get_user(restorer, &act->sa_restorer) ||
4707 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4708 		    __get_user(mask, &act->sa_mask))
4709 			return -EFAULT;
4710 
4711 #ifdef __ARCH_HAS_KA_RESTORER
4712 		new_ka.ka_restorer = NULL;
4713 #endif
4714 		new_ka.sa.sa_handler = compat_ptr(handler);
4715 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4716 		siginitset(&new_ka.sa.sa_mask, mask);
4717 	}
4718 
4719 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4720 
4721 	if (!ret && oact) {
4722 		if (!access_ok(oact, sizeof(*oact)) ||
4723 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4724 			       &oact->sa_handler) ||
4725 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4726 			       &oact->sa_restorer) ||
4727 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4728 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4729 			return -EFAULT;
4730 	}
4731 	return ret;
4732 }
4733 #endif
4734 
4735 #ifdef CONFIG_SGETMASK_SYSCALL
4736 
4737 /*
4738  * For backwards compatibility.  Functionality superseded by sigprocmask.
4739  */
4740 SYSCALL_DEFINE0(sgetmask)
4741 {
4742 	/* SMP safe */
4743 	return current->blocked.sig[0];
4744 }
4745 
4746 SYSCALL_DEFINE1(ssetmask, int, newmask)
4747 {
4748 	int old = current->blocked.sig[0];
4749 	sigset_t newset;
4750 
4751 	siginitset(&newset, newmask);
4752 	set_current_blocked(&newset);
4753 
4754 	return old;
4755 }
4756 #endif /* CONFIG_SGETMASK_SYSCALL */
4757 
4758 #ifdef __ARCH_WANT_SYS_SIGNAL
4759 /*
4760  * For backwards compatibility.  Functionality superseded by sigaction.
4761  */
4762 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4763 {
4764 	struct k_sigaction new_sa, old_sa;
4765 	int ret;
4766 
4767 	new_sa.sa.sa_handler = handler;
4768 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4769 	sigemptyset(&new_sa.sa.sa_mask);
4770 
4771 	ret = do_sigaction(sig, &new_sa, &old_sa);
4772 
4773 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4774 }
4775 #endif /* __ARCH_WANT_SYS_SIGNAL */
4776 
4777 #ifdef __ARCH_WANT_SYS_PAUSE
4778 
4779 SYSCALL_DEFINE0(pause)
4780 {
4781 	while (!signal_pending(current)) {
4782 		__set_current_state(TASK_INTERRUPTIBLE);
4783 		schedule();
4784 	}
4785 	return -ERESTARTNOHAND;
4786 }
4787 
4788 #endif
4789 
4790 static int sigsuspend(sigset_t *set)
4791 {
4792 	current->saved_sigmask = current->blocked;
4793 	set_current_blocked(set);
4794 
4795 	while (!signal_pending(current)) {
4796 		__set_current_state(TASK_INTERRUPTIBLE);
4797 		schedule();
4798 	}
4799 	set_restore_sigmask();
4800 	return -ERESTARTNOHAND;
4801 }
4802 
4803 /**
4804  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4805  *	@unewset value until a signal is received
4806  *  @unewset: new signal mask value
4807  *  @sigsetsize: size of sigset_t type
4808  */
4809 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4810 {
4811 	sigset_t newset;
4812 
4813 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4814 	if (sigsetsize != sizeof(sigset_t))
4815 		return -EINVAL;
4816 
4817 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4818 		return -EFAULT;
4819 	return sigsuspend(&newset);
4820 }
4821 
4822 #ifdef CONFIG_COMPAT
4823 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4824 {
4825 	sigset_t newset;
4826 
4827 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4828 	if (sigsetsize != sizeof(sigset_t))
4829 		return -EINVAL;
4830 
4831 	if (get_compat_sigset(&newset, unewset))
4832 		return -EFAULT;
4833 	return sigsuspend(&newset);
4834 }
4835 #endif
4836 
4837 #ifdef CONFIG_OLD_SIGSUSPEND
4838 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4839 {
4840 	sigset_t blocked;
4841 	siginitset(&blocked, mask);
4842 	return sigsuspend(&blocked);
4843 }
4844 #endif
4845 #ifdef CONFIG_OLD_SIGSUSPEND3
4846 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4847 {
4848 	sigset_t blocked;
4849 	siginitset(&blocked, mask);
4850 	return sigsuspend(&blocked);
4851 }
4852 #endif
4853 
4854 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4855 {
4856 	return NULL;
4857 }
4858 
4859 static inline void siginfo_buildtime_checks(void)
4860 {
4861 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4862 
4863 	/* Verify the offsets in the two siginfos match */
4864 #define CHECK_OFFSET(field) \
4865 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4866 
4867 	/* kill */
4868 	CHECK_OFFSET(si_pid);
4869 	CHECK_OFFSET(si_uid);
4870 
4871 	/* timer */
4872 	CHECK_OFFSET(si_tid);
4873 	CHECK_OFFSET(si_overrun);
4874 	CHECK_OFFSET(si_value);
4875 
4876 	/* rt */
4877 	CHECK_OFFSET(si_pid);
4878 	CHECK_OFFSET(si_uid);
4879 	CHECK_OFFSET(si_value);
4880 
4881 	/* sigchld */
4882 	CHECK_OFFSET(si_pid);
4883 	CHECK_OFFSET(si_uid);
4884 	CHECK_OFFSET(si_status);
4885 	CHECK_OFFSET(si_utime);
4886 	CHECK_OFFSET(si_stime);
4887 
4888 	/* sigfault */
4889 	CHECK_OFFSET(si_addr);
4890 	CHECK_OFFSET(si_trapno);
4891 	CHECK_OFFSET(si_addr_lsb);
4892 	CHECK_OFFSET(si_lower);
4893 	CHECK_OFFSET(si_upper);
4894 	CHECK_OFFSET(si_pkey);
4895 	CHECK_OFFSET(si_perf_data);
4896 	CHECK_OFFSET(si_perf_type);
4897 	CHECK_OFFSET(si_perf_flags);
4898 
4899 	/* sigpoll */
4900 	CHECK_OFFSET(si_band);
4901 	CHECK_OFFSET(si_fd);
4902 
4903 	/* sigsys */
4904 	CHECK_OFFSET(si_call_addr);
4905 	CHECK_OFFSET(si_syscall);
4906 	CHECK_OFFSET(si_arch);
4907 #undef CHECK_OFFSET
4908 
4909 	/* usb asyncio */
4910 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4911 		     offsetof(struct siginfo, si_addr));
4912 	if (sizeof(int) == sizeof(void __user *)) {
4913 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4914 			     sizeof(void __user *));
4915 	} else {
4916 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4917 			      sizeof_field(struct siginfo, si_uid)) !=
4918 			     sizeof(void __user *));
4919 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4920 			     offsetof(struct siginfo, si_uid));
4921 	}
4922 #ifdef CONFIG_COMPAT
4923 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4924 		     offsetof(struct compat_siginfo, si_addr));
4925 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4926 		     sizeof(compat_uptr_t));
4927 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4928 		     sizeof_field(struct siginfo, si_pid));
4929 #endif
4930 }
4931 
4932 #if defined(CONFIG_SYSCTL)
4933 static struct ctl_table signal_debug_table[] = {
4934 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4935 	{
4936 		.procname	= "exception-trace",
4937 		.data		= &show_unhandled_signals,
4938 		.maxlen		= sizeof(int),
4939 		.mode		= 0644,
4940 		.proc_handler	= proc_dointvec
4941 	},
4942 #endif
4943 };
4944 
4945 static int __init init_signal_sysctls(void)
4946 {
4947 	register_sysctl_init("debug", signal_debug_table);
4948 	return 0;
4949 }
4950 early_initcall(init_signal_sysctls);
4951 #endif /* CONFIG_SYSCTL */
4952 
4953 void __init signals_init(void)
4954 {
4955 	siginfo_buildtime_checks();
4956 
4957 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4958 }
4959 
4960 #ifdef CONFIG_KGDB_KDB
4961 #include <linux/kdb.h>
4962 /*
4963  * kdb_send_sig - Allows kdb to send signals without exposing
4964  * signal internals.  This function checks if the required locks are
4965  * available before calling the main signal code, to avoid kdb
4966  * deadlocks.
4967  */
4968 void kdb_send_sig(struct task_struct *t, int sig)
4969 {
4970 	static struct task_struct *kdb_prev_t;
4971 	int new_t, ret;
4972 	if (!spin_trylock(&t->sighand->siglock)) {
4973 		kdb_printf("Can't do kill command now.\n"
4974 			   "The sigmask lock is held somewhere else in "
4975 			   "kernel, try again later\n");
4976 		return;
4977 	}
4978 	new_t = kdb_prev_t != t;
4979 	kdb_prev_t = t;
4980 	if (!task_is_running(t) && new_t) {
4981 		spin_unlock(&t->sighand->siglock);
4982 		kdb_printf("Process is not RUNNING, sending a signal from "
4983 			   "kdb risks deadlock\n"
4984 			   "on the run queue locks. "
4985 			   "The signal has _not_ been sent.\n"
4986 			   "Reissue the kill command if you want to risk "
4987 			   "the deadlock.\n");
4988 		return;
4989 	}
4990 	ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4991 	spin_unlock(&t->sighand->siglock);
4992 	if (ret)
4993 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4994 			   sig, t->pid);
4995 	else
4996 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4997 }
4998 #endif	/* CONFIG_KGDB_KDB */
4999