1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/signal.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 8 * 9 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 10 * Changes to use preallocated sigqueue structures 11 * to allow signals to be sent reliably. 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/user.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/sched/cputime.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/mm.h> 26 #include <linux/proc_fs.h> 27 #include <linux/tty.h> 28 #include <linux/binfmts.h> 29 #include <linux/coredump.h> 30 #include <linux/security.h> 31 #include <linux/syscalls.h> 32 #include <linux/ptrace.h> 33 #include <linux/signal.h> 34 #include <linux/signalfd.h> 35 #include <linux/ratelimit.h> 36 #include <linux/task_work.h> 37 #include <linux/capability.h> 38 #include <linux/freezer.h> 39 #include <linux/pid_namespace.h> 40 #include <linux/nsproxy.h> 41 #include <linux/user_namespace.h> 42 #include <linux/uprobes.h> 43 #include <linux/compat.h> 44 #include <linux/cn_proc.h> 45 #include <linux/compiler.h> 46 #include <linux/posix-timers.h> 47 #include <linux/cgroup.h> 48 #include <linux/audit.h> 49 #include <linux/sysctl.h> 50 51 #define CREATE_TRACE_POINTS 52 #include <trace/events/signal.h> 53 54 #include <asm/param.h> 55 #include <linux/uaccess.h> 56 #include <asm/unistd.h> 57 #include <asm/siginfo.h> 58 #include <asm/cacheflush.h> 59 #include <asm/syscall.h> /* for syscall_get_* */ 60 61 /* 62 * SLAB caches for signal bits. 63 */ 64 65 static struct kmem_cache *sigqueue_cachep; 66 67 int print_fatal_signals __read_mostly; 68 69 static void __user *sig_handler(struct task_struct *t, int sig) 70 { 71 return t->sighand->action[sig - 1].sa.sa_handler; 72 } 73 74 static inline bool sig_handler_ignored(void __user *handler, int sig) 75 { 76 /* Is it explicitly or implicitly ignored? */ 77 return handler == SIG_IGN || 78 (handler == SIG_DFL && sig_kernel_ignore(sig)); 79 } 80 81 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 82 { 83 void __user *handler; 84 85 handler = sig_handler(t, sig); 86 87 /* SIGKILL and SIGSTOP may not be sent to the global init */ 88 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 89 return true; 90 91 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 92 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 93 return true; 94 95 /* Only allow kernel generated signals to this kthread */ 96 if (unlikely((t->flags & PF_KTHREAD) && 97 (handler == SIG_KTHREAD_KERNEL) && !force)) 98 return true; 99 100 return sig_handler_ignored(handler, sig); 101 } 102 103 static bool sig_ignored(struct task_struct *t, int sig, bool force) 104 { 105 /* 106 * Blocked signals are never ignored, since the 107 * signal handler may change by the time it is 108 * unblocked. 109 */ 110 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 111 return false; 112 113 /* 114 * Tracers may want to know about even ignored signal unless it 115 * is SIGKILL which can't be reported anyway but can be ignored 116 * by SIGNAL_UNKILLABLE task. 117 */ 118 if (t->ptrace && sig != SIGKILL) 119 return false; 120 121 return sig_task_ignored(t, sig, force); 122 } 123 124 /* 125 * Re-calculate pending state from the set of locally pending 126 * signals, globally pending signals, and blocked signals. 127 */ 128 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 129 { 130 unsigned long ready; 131 long i; 132 133 switch (_NSIG_WORDS) { 134 default: 135 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 136 ready |= signal->sig[i] &~ blocked->sig[i]; 137 break; 138 139 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 140 ready |= signal->sig[2] &~ blocked->sig[2]; 141 ready |= signal->sig[1] &~ blocked->sig[1]; 142 ready |= signal->sig[0] &~ blocked->sig[0]; 143 break; 144 145 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 146 ready |= signal->sig[0] &~ blocked->sig[0]; 147 break; 148 149 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 150 } 151 return ready != 0; 152 } 153 154 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 155 156 static bool recalc_sigpending_tsk(struct task_struct *t) 157 { 158 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || 159 PENDING(&t->pending, &t->blocked) || 160 PENDING(&t->signal->shared_pending, &t->blocked) || 161 cgroup_task_frozen(t)) { 162 set_tsk_thread_flag(t, TIF_SIGPENDING); 163 return true; 164 } 165 166 /* 167 * We must never clear the flag in another thread, or in current 168 * when it's possible the current syscall is returning -ERESTART*. 169 * So we don't clear it here, and only callers who know they should do. 170 */ 171 return false; 172 } 173 174 /* 175 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 176 * This is superfluous when called on current, the wakeup is a harmless no-op. 177 */ 178 void recalc_sigpending_and_wake(struct task_struct *t) 179 { 180 if (recalc_sigpending_tsk(t)) 181 signal_wake_up(t, 0); 182 } 183 184 void recalc_sigpending(void) 185 { 186 if (!recalc_sigpending_tsk(current) && !freezing(current)) 187 clear_thread_flag(TIF_SIGPENDING); 188 189 } 190 EXPORT_SYMBOL(recalc_sigpending); 191 192 void calculate_sigpending(void) 193 { 194 /* Have any signals or users of TIF_SIGPENDING been delayed 195 * until after fork? 196 */ 197 spin_lock_irq(¤t->sighand->siglock); 198 set_tsk_thread_flag(current, TIF_SIGPENDING); 199 recalc_sigpending(); 200 spin_unlock_irq(¤t->sighand->siglock); 201 } 202 203 /* Given the mask, find the first available signal that should be serviced. */ 204 205 #define SYNCHRONOUS_MASK \ 206 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 207 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 208 209 int next_signal(struct sigpending *pending, sigset_t *mask) 210 { 211 unsigned long i, *s, *m, x; 212 int sig = 0; 213 214 s = pending->signal.sig; 215 m = mask->sig; 216 217 /* 218 * Handle the first word specially: it contains the 219 * synchronous signals that need to be dequeued first. 220 */ 221 x = *s &~ *m; 222 if (x) { 223 if (x & SYNCHRONOUS_MASK) 224 x &= SYNCHRONOUS_MASK; 225 sig = ffz(~x) + 1; 226 return sig; 227 } 228 229 switch (_NSIG_WORDS) { 230 default: 231 for (i = 1; i < _NSIG_WORDS; ++i) { 232 x = *++s &~ *++m; 233 if (!x) 234 continue; 235 sig = ffz(~x) + i*_NSIG_BPW + 1; 236 break; 237 } 238 break; 239 240 case 2: 241 x = s[1] &~ m[1]; 242 if (!x) 243 break; 244 sig = ffz(~x) + _NSIG_BPW + 1; 245 break; 246 247 case 1: 248 /* Nothing to do */ 249 break; 250 } 251 252 return sig; 253 } 254 255 static inline void print_dropped_signal(int sig) 256 { 257 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 258 259 if (!print_fatal_signals) 260 return; 261 262 if (!__ratelimit(&ratelimit_state)) 263 return; 264 265 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 266 current->comm, current->pid, sig); 267 } 268 269 /** 270 * task_set_jobctl_pending - set jobctl pending bits 271 * @task: target task 272 * @mask: pending bits to set 273 * 274 * Clear @mask from @task->jobctl. @mask must be subset of 275 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 276 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 277 * cleared. If @task is already being killed or exiting, this function 278 * becomes noop. 279 * 280 * CONTEXT: 281 * Must be called with @task->sighand->siglock held. 282 * 283 * RETURNS: 284 * %true if @mask is set, %false if made noop because @task was dying. 285 */ 286 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 287 { 288 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 289 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 290 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 291 292 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 293 return false; 294 295 if (mask & JOBCTL_STOP_SIGMASK) 296 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 297 298 task->jobctl |= mask; 299 return true; 300 } 301 302 /** 303 * task_clear_jobctl_trapping - clear jobctl trapping bit 304 * @task: target task 305 * 306 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 307 * Clear it and wake up the ptracer. Note that we don't need any further 308 * locking. @task->siglock guarantees that @task->parent points to the 309 * ptracer. 310 * 311 * CONTEXT: 312 * Must be called with @task->sighand->siglock held. 313 */ 314 void task_clear_jobctl_trapping(struct task_struct *task) 315 { 316 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 317 task->jobctl &= ~JOBCTL_TRAPPING; 318 smp_mb(); /* advised by wake_up_bit() */ 319 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 320 } 321 } 322 323 /** 324 * task_clear_jobctl_pending - clear jobctl pending bits 325 * @task: target task 326 * @mask: pending bits to clear 327 * 328 * Clear @mask from @task->jobctl. @mask must be subset of 329 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 330 * STOP bits are cleared together. 331 * 332 * If clearing of @mask leaves no stop or trap pending, this function calls 333 * task_clear_jobctl_trapping(). 334 * 335 * CONTEXT: 336 * Must be called with @task->sighand->siglock held. 337 */ 338 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 339 { 340 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 341 342 if (mask & JOBCTL_STOP_PENDING) 343 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 344 345 task->jobctl &= ~mask; 346 347 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 348 task_clear_jobctl_trapping(task); 349 } 350 351 /** 352 * task_participate_group_stop - participate in a group stop 353 * @task: task participating in a group stop 354 * 355 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 356 * Group stop states are cleared and the group stop count is consumed if 357 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 358 * stop, the appropriate `SIGNAL_*` flags are set. 359 * 360 * CONTEXT: 361 * Must be called with @task->sighand->siglock held. 362 * 363 * RETURNS: 364 * %true if group stop completion should be notified to the parent, %false 365 * otherwise. 366 */ 367 static bool task_participate_group_stop(struct task_struct *task) 368 { 369 struct signal_struct *sig = task->signal; 370 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 371 372 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 373 374 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 375 376 if (!consume) 377 return false; 378 379 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 380 sig->group_stop_count--; 381 382 /* 383 * Tell the caller to notify completion iff we are entering into a 384 * fresh group stop. Read comment in do_signal_stop() for details. 385 */ 386 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 387 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 388 return true; 389 } 390 return false; 391 } 392 393 void task_join_group_stop(struct task_struct *task) 394 { 395 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK; 396 struct signal_struct *sig = current->signal; 397 398 if (sig->group_stop_count) { 399 sig->group_stop_count++; 400 mask |= JOBCTL_STOP_CONSUME; 401 } else if (!(sig->flags & SIGNAL_STOP_STOPPED)) 402 return; 403 404 /* Have the new thread join an on-going signal group stop */ 405 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING); 406 } 407 408 /* 409 * allocate a new signal queue record 410 * - this may be called without locks if and only if t == current, otherwise an 411 * appropriate lock must be held to stop the target task from exiting 412 */ 413 static struct sigqueue * 414 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags, 415 int override_rlimit, const unsigned int sigqueue_flags) 416 { 417 struct sigqueue *q = NULL; 418 struct ucounts *ucounts; 419 long sigpending; 420 421 /* 422 * Protect access to @t credentials. This can go away when all 423 * callers hold rcu read lock. 424 * 425 * NOTE! A pending signal will hold on to the user refcount, 426 * and we get/put the refcount only when the sigpending count 427 * changes from/to zero. 428 */ 429 rcu_read_lock(); 430 ucounts = task_ucounts(t); 431 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 432 rcu_read_unlock(); 433 if (!sigpending) 434 return NULL; 435 436 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) { 437 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags); 438 } else { 439 print_dropped_signal(sig); 440 } 441 442 if (unlikely(q == NULL)) { 443 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 444 } else { 445 INIT_LIST_HEAD(&q->list); 446 q->flags = sigqueue_flags; 447 q->ucounts = ucounts; 448 } 449 return q; 450 } 451 452 static void __sigqueue_free(struct sigqueue *q) 453 { 454 if (q->flags & SIGQUEUE_PREALLOC) 455 return; 456 if (q->ucounts) { 457 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING); 458 q->ucounts = NULL; 459 } 460 kmem_cache_free(sigqueue_cachep, q); 461 } 462 463 void flush_sigqueue(struct sigpending *queue) 464 { 465 struct sigqueue *q; 466 467 sigemptyset(&queue->signal); 468 while (!list_empty(&queue->list)) { 469 q = list_entry(queue->list.next, struct sigqueue , list); 470 list_del_init(&q->list); 471 __sigqueue_free(q); 472 } 473 } 474 475 /* 476 * Flush all pending signals for this kthread. 477 */ 478 void flush_signals(struct task_struct *t) 479 { 480 unsigned long flags; 481 482 spin_lock_irqsave(&t->sighand->siglock, flags); 483 clear_tsk_thread_flag(t, TIF_SIGPENDING); 484 flush_sigqueue(&t->pending); 485 flush_sigqueue(&t->signal->shared_pending); 486 spin_unlock_irqrestore(&t->sighand->siglock, flags); 487 } 488 EXPORT_SYMBOL(flush_signals); 489 490 #ifdef CONFIG_POSIX_TIMERS 491 static void __flush_itimer_signals(struct sigpending *pending) 492 { 493 sigset_t signal, retain; 494 struct sigqueue *q, *n; 495 496 signal = pending->signal; 497 sigemptyset(&retain); 498 499 list_for_each_entry_safe(q, n, &pending->list, list) { 500 int sig = q->info.si_signo; 501 502 if (likely(q->info.si_code != SI_TIMER)) { 503 sigaddset(&retain, sig); 504 } else { 505 sigdelset(&signal, sig); 506 list_del_init(&q->list); 507 __sigqueue_free(q); 508 } 509 } 510 511 sigorsets(&pending->signal, &signal, &retain); 512 } 513 514 void flush_itimer_signals(void) 515 { 516 struct task_struct *tsk = current; 517 unsigned long flags; 518 519 spin_lock_irqsave(&tsk->sighand->siglock, flags); 520 __flush_itimer_signals(&tsk->pending); 521 __flush_itimer_signals(&tsk->signal->shared_pending); 522 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 523 } 524 #endif 525 526 void ignore_signals(struct task_struct *t) 527 { 528 int i; 529 530 for (i = 0; i < _NSIG; ++i) 531 t->sighand->action[i].sa.sa_handler = SIG_IGN; 532 533 flush_signals(t); 534 } 535 536 /* 537 * Flush all handlers for a task. 538 */ 539 540 void 541 flush_signal_handlers(struct task_struct *t, int force_default) 542 { 543 int i; 544 struct k_sigaction *ka = &t->sighand->action[0]; 545 for (i = _NSIG ; i != 0 ; i--) { 546 if (force_default || ka->sa.sa_handler != SIG_IGN) 547 ka->sa.sa_handler = SIG_DFL; 548 ka->sa.sa_flags = 0; 549 #ifdef __ARCH_HAS_SA_RESTORER 550 ka->sa.sa_restorer = NULL; 551 #endif 552 sigemptyset(&ka->sa.sa_mask); 553 ka++; 554 } 555 } 556 557 bool unhandled_signal(struct task_struct *tsk, int sig) 558 { 559 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 560 if (is_global_init(tsk)) 561 return true; 562 563 if (handler != SIG_IGN && handler != SIG_DFL) 564 return false; 565 566 /* If dying, we handle all new signals by ignoring them */ 567 if (fatal_signal_pending(tsk)) 568 return false; 569 570 /* if ptraced, let the tracer determine */ 571 return !tsk->ptrace; 572 } 573 574 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 575 bool *resched_timer) 576 { 577 struct sigqueue *q, *first = NULL; 578 579 /* 580 * Collect the siginfo appropriate to this signal. Check if 581 * there is another siginfo for the same signal. 582 */ 583 list_for_each_entry(q, &list->list, list) { 584 if (q->info.si_signo == sig) { 585 if (first) 586 goto still_pending; 587 first = q; 588 } 589 } 590 591 sigdelset(&list->signal, sig); 592 593 if (first) { 594 still_pending: 595 list_del_init(&first->list); 596 copy_siginfo(info, &first->info); 597 598 *resched_timer = 599 (first->flags & SIGQUEUE_PREALLOC) && 600 (info->si_code == SI_TIMER) && 601 (info->si_sys_private); 602 603 __sigqueue_free(first); 604 } else { 605 /* 606 * Ok, it wasn't in the queue. This must be 607 * a fast-pathed signal or we must have been 608 * out of queue space. So zero out the info. 609 */ 610 clear_siginfo(info); 611 info->si_signo = sig; 612 info->si_errno = 0; 613 info->si_code = SI_USER; 614 info->si_pid = 0; 615 info->si_uid = 0; 616 } 617 } 618 619 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 620 kernel_siginfo_t *info, bool *resched_timer) 621 { 622 int sig = next_signal(pending, mask); 623 624 if (sig) 625 collect_signal(sig, pending, info, resched_timer); 626 return sig; 627 } 628 629 /* 630 * Dequeue a signal and return the element to the caller, which is 631 * expected to free it. 632 * 633 * All callers have to hold the siglock. 634 */ 635 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, 636 kernel_siginfo_t *info, enum pid_type *type) 637 { 638 bool resched_timer = false; 639 int signr; 640 641 /* We only dequeue private signals from ourselves, we don't let 642 * signalfd steal them 643 */ 644 *type = PIDTYPE_PID; 645 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 646 if (!signr) { 647 *type = PIDTYPE_TGID; 648 signr = __dequeue_signal(&tsk->signal->shared_pending, 649 mask, info, &resched_timer); 650 #ifdef CONFIG_POSIX_TIMERS 651 /* 652 * itimer signal ? 653 * 654 * itimers are process shared and we restart periodic 655 * itimers in the signal delivery path to prevent DoS 656 * attacks in the high resolution timer case. This is 657 * compliant with the old way of self-restarting 658 * itimers, as the SIGALRM is a legacy signal and only 659 * queued once. Changing the restart behaviour to 660 * restart the timer in the signal dequeue path is 661 * reducing the timer noise on heavy loaded !highres 662 * systems too. 663 */ 664 if (unlikely(signr == SIGALRM)) { 665 struct hrtimer *tmr = &tsk->signal->real_timer; 666 667 if (!hrtimer_is_queued(tmr) && 668 tsk->signal->it_real_incr != 0) { 669 hrtimer_forward(tmr, tmr->base->get_time(), 670 tsk->signal->it_real_incr); 671 hrtimer_restart(tmr); 672 } 673 } 674 #endif 675 } 676 677 recalc_sigpending(); 678 if (!signr) 679 return 0; 680 681 if (unlikely(sig_kernel_stop(signr))) { 682 /* 683 * Set a marker that we have dequeued a stop signal. Our 684 * caller might release the siglock and then the pending 685 * stop signal it is about to process is no longer in the 686 * pending bitmasks, but must still be cleared by a SIGCONT 687 * (and overruled by a SIGKILL). So those cases clear this 688 * shared flag after we've set it. Note that this flag may 689 * remain set after the signal we return is ignored or 690 * handled. That doesn't matter because its only purpose 691 * is to alert stop-signal processing code when another 692 * processor has come along and cleared the flag. 693 */ 694 current->jobctl |= JOBCTL_STOP_DEQUEUED; 695 } 696 #ifdef CONFIG_POSIX_TIMERS 697 if (resched_timer) { 698 /* 699 * Release the siglock to ensure proper locking order 700 * of timer locks outside of siglocks. Note, we leave 701 * irqs disabled here, since the posix-timers code is 702 * about to disable them again anyway. 703 */ 704 spin_unlock(&tsk->sighand->siglock); 705 posixtimer_rearm(info); 706 spin_lock(&tsk->sighand->siglock); 707 708 /* Don't expose the si_sys_private value to userspace */ 709 info->si_sys_private = 0; 710 } 711 #endif 712 return signr; 713 } 714 EXPORT_SYMBOL_GPL(dequeue_signal); 715 716 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 717 { 718 struct task_struct *tsk = current; 719 struct sigpending *pending = &tsk->pending; 720 struct sigqueue *q, *sync = NULL; 721 722 /* 723 * Might a synchronous signal be in the queue? 724 */ 725 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 726 return 0; 727 728 /* 729 * Return the first synchronous signal in the queue. 730 */ 731 list_for_each_entry(q, &pending->list, list) { 732 /* Synchronous signals have a positive si_code */ 733 if ((q->info.si_code > SI_USER) && 734 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 735 sync = q; 736 goto next; 737 } 738 } 739 return 0; 740 next: 741 /* 742 * Check if there is another siginfo for the same signal. 743 */ 744 list_for_each_entry_continue(q, &pending->list, list) { 745 if (q->info.si_signo == sync->info.si_signo) 746 goto still_pending; 747 } 748 749 sigdelset(&pending->signal, sync->info.si_signo); 750 recalc_sigpending(); 751 still_pending: 752 list_del_init(&sync->list); 753 copy_siginfo(info, &sync->info); 754 __sigqueue_free(sync); 755 return info->si_signo; 756 } 757 758 /* 759 * Tell a process that it has a new active signal.. 760 * 761 * NOTE! we rely on the previous spin_lock to 762 * lock interrupts for us! We can only be called with 763 * "siglock" held, and the local interrupt must 764 * have been disabled when that got acquired! 765 * 766 * No need to set need_resched since signal event passing 767 * goes through ->blocked 768 */ 769 void signal_wake_up_state(struct task_struct *t, unsigned int state) 770 { 771 lockdep_assert_held(&t->sighand->siglock); 772 773 set_tsk_thread_flag(t, TIF_SIGPENDING); 774 775 /* 776 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 777 * case. We don't check t->state here because there is a race with it 778 * executing another processor and just now entering stopped state. 779 * By using wake_up_state, we ensure the process will wake up and 780 * handle its death signal. 781 */ 782 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 783 kick_process(t); 784 } 785 786 /* 787 * Remove signals in mask from the pending set and queue. 788 * Returns 1 if any signals were found. 789 * 790 * All callers must be holding the siglock. 791 */ 792 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 793 { 794 struct sigqueue *q, *n; 795 sigset_t m; 796 797 sigandsets(&m, mask, &s->signal); 798 if (sigisemptyset(&m)) 799 return; 800 801 sigandnsets(&s->signal, &s->signal, mask); 802 list_for_each_entry_safe(q, n, &s->list, list) { 803 if (sigismember(mask, q->info.si_signo)) { 804 list_del_init(&q->list); 805 __sigqueue_free(q); 806 } 807 } 808 } 809 810 static inline int is_si_special(const struct kernel_siginfo *info) 811 { 812 return info <= SEND_SIG_PRIV; 813 } 814 815 static inline bool si_fromuser(const struct kernel_siginfo *info) 816 { 817 return info == SEND_SIG_NOINFO || 818 (!is_si_special(info) && SI_FROMUSER(info)); 819 } 820 821 /* 822 * called with RCU read lock from check_kill_permission() 823 */ 824 static bool kill_ok_by_cred(struct task_struct *t) 825 { 826 const struct cred *cred = current_cred(); 827 const struct cred *tcred = __task_cred(t); 828 829 return uid_eq(cred->euid, tcred->suid) || 830 uid_eq(cred->euid, tcred->uid) || 831 uid_eq(cred->uid, tcred->suid) || 832 uid_eq(cred->uid, tcred->uid) || 833 ns_capable(tcred->user_ns, CAP_KILL); 834 } 835 836 /* 837 * Bad permissions for sending the signal 838 * - the caller must hold the RCU read lock 839 */ 840 static int check_kill_permission(int sig, struct kernel_siginfo *info, 841 struct task_struct *t) 842 { 843 struct pid *sid; 844 int error; 845 846 if (!valid_signal(sig)) 847 return -EINVAL; 848 849 if (!si_fromuser(info)) 850 return 0; 851 852 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 853 if (error) 854 return error; 855 856 if (!same_thread_group(current, t) && 857 !kill_ok_by_cred(t)) { 858 switch (sig) { 859 case SIGCONT: 860 sid = task_session(t); 861 /* 862 * We don't return the error if sid == NULL. The 863 * task was unhashed, the caller must notice this. 864 */ 865 if (!sid || sid == task_session(current)) 866 break; 867 fallthrough; 868 default: 869 return -EPERM; 870 } 871 } 872 873 return security_task_kill(t, info, sig, NULL); 874 } 875 876 /** 877 * ptrace_trap_notify - schedule trap to notify ptracer 878 * @t: tracee wanting to notify tracer 879 * 880 * This function schedules sticky ptrace trap which is cleared on the next 881 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 882 * ptracer. 883 * 884 * If @t is running, STOP trap will be taken. If trapped for STOP and 885 * ptracer is listening for events, tracee is woken up so that it can 886 * re-trap for the new event. If trapped otherwise, STOP trap will be 887 * eventually taken without returning to userland after the existing traps 888 * are finished by PTRACE_CONT. 889 * 890 * CONTEXT: 891 * Must be called with @task->sighand->siglock held. 892 */ 893 static void ptrace_trap_notify(struct task_struct *t) 894 { 895 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 896 lockdep_assert_held(&t->sighand->siglock); 897 898 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 899 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 900 } 901 902 /* 903 * Handle magic process-wide effects of stop/continue signals. Unlike 904 * the signal actions, these happen immediately at signal-generation 905 * time regardless of blocking, ignoring, or handling. This does the 906 * actual continuing for SIGCONT, but not the actual stopping for stop 907 * signals. The process stop is done as a signal action for SIG_DFL. 908 * 909 * Returns true if the signal should be actually delivered, otherwise 910 * it should be dropped. 911 */ 912 static bool prepare_signal(int sig, struct task_struct *p, bool force) 913 { 914 struct signal_struct *signal = p->signal; 915 struct task_struct *t; 916 sigset_t flush; 917 918 if (signal->flags & SIGNAL_GROUP_EXIT) { 919 if (signal->core_state) 920 return sig == SIGKILL; 921 /* 922 * The process is in the middle of dying, drop the signal. 923 */ 924 return false; 925 } else if (sig_kernel_stop(sig)) { 926 /* 927 * This is a stop signal. Remove SIGCONT from all queues. 928 */ 929 siginitset(&flush, sigmask(SIGCONT)); 930 flush_sigqueue_mask(&flush, &signal->shared_pending); 931 for_each_thread(p, t) 932 flush_sigqueue_mask(&flush, &t->pending); 933 } else if (sig == SIGCONT) { 934 unsigned int why; 935 /* 936 * Remove all stop signals from all queues, wake all threads. 937 */ 938 siginitset(&flush, SIG_KERNEL_STOP_MASK); 939 flush_sigqueue_mask(&flush, &signal->shared_pending); 940 for_each_thread(p, t) { 941 flush_sigqueue_mask(&flush, &t->pending); 942 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 943 if (likely(!(t->ptrace & PT_SEIZED))) { 944 t->jobctl &= ~JOBCTL_STOPPED; 945 wake_up_state(t, __TASK_STOPPED); 946 } else 947 ptrace_trap_notify(t); 948 } 949 950 /* 951 * Notify the parent with CLD_CONTINUED if we were stopped. 952 * 953 * If we were in the middle of a group stop, we pretend it 954 * was already finished, and then continued. Since SIGCHLD 955 * doesn't queue we report only CLD_STOPPED, as if the next 956 * CLD_CONTINUED was dropped. 957 */ 958 why = 0; 959 if (signal->flags & SIGNAL_STOP_STOPPED) 960 why |= SIGNAL_CLD_CONTINUED; 961 else if (signal->group_stop_count) 962 why |= SIGNAL_CLD_STOPPED; 963 964 if (why) { 965 /* 966 * The first thread which returns from do_signal_stop() 967 * will take ->siglock, notice SIGNAL_CLD_MASK, and 968 * notify its parent. See get_signal(). 969 */ 970 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 971 signal->group_stop_count = 0; 972 signal->group_exit_code = 0; 973 } 974 } 975 976 return !sig_ignored(p, sig, force); 977 } 978 979 /* 980 * Test if P wants to take SIG. After we've checked all threads with this, 981 * it's equivalent to finding no threads not blocking SIG. Any threads not 982 * blocking SIG were ruled out because they are not running and already 983 * have pending signals. Such threads will dequeue from the shared queue 984 * as soon as they're available, so putting the signal on the shared queue 985 * will be equivalent to sending it to one such thread. 986 */ 987 static inline bool wants_signal(int sig, struct task_struct *p) 988 { 989 if (sigismember(&p->blocked, sig)) 990 return false; 991 992 if (p->flags & PF_EXITING) 993 return false; 994 995 if (sig == SIGKILL) 996 return true; 997 998 if (task_is_stopped_or_traced(p)) 999 return false; 1000 1001 return task_curr(p) || !task_sigpending(p); 1002 } 1003 1004 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 1005 { 1006 struct signal_struct *signal = p->signal; 1007 struct task_struct *t; 1008 1009 /* 1010 * Now find a thread we can wake up to take the signal off the queue. 1011 * 1012 * Try the suggested task first (may or may not be the main thread). 1013 */ 1014 if (wants_signal(sig, p)) 1015 t = p; 1016 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 1017 /* 1018 * There is just one thread and it does not need to be woken. 1019 * It will dequeue unblocked signals before it runs again. 1020 */ 1021 return; 1022 else { 1023 /* 1024 * Otherwise try to find a suitable thread. 1025 */ 1026 t = signal->curr_target; 1027 while (!wants_signal(sig, t)) { 1028 t = next_thread(t); 1029 if (t == signal->curr_target) 1030 /* 1031 * No thread needs to be woken. 1032 * Any eligible threads will see 1033 * the signal in the queue soon. 1034 */ 1035 return; 1036 } 1037 signal->curr_target = t; 1038 } 1039 1040 /* 1041 * Found a killable thread. If the signal will be fatal, 1042 * then start taking the whole group down immediately. 1043 */ 1044 if (sig_fatal(p, sig) && 1045 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) && 1046 !sigismember(&t->real_blocked, sig) && 1047 (sig == SIGKILL || !p->ptrace)) { 1048 /* 1049 * This signal will be fatal to the whole group. 1050 */ 1051 if (!sig_kernel_coredump(sig)) { 1052 /* 1053 * Start a group exit and wake everybody up. 1054 * This way we don't have other threads 1055 * running and doing things after a slower 1056 * thread has the fatal signal pending. 1057 */ 1058 signal->flags = SIGNAL_GROUP_EXIT; 1059 signal->group_exit_code = sig; 1060 signal->group_stop_count = 0; 1061 __for_each_thread(signal, t) { 1062 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1063 sigaddset(&t->pending.signal, SIGKILL); 1064 signal_wake_up(t, 1); 1065 } 1066 return; 1067 } 1068 } 1069 1070 /* 1071 * The signal is already in the shared-pending queue. 1072 * Tell the chosen thread to wake up and dequeue it. 1073 */ 1074 signal_wake_up(t, sig == SIGKILL); 1075 return; 1076 } 1077 1078 static inline bool legacy_queue(struct sigpending *signals, int sig) 1079 { 1080 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1081 } 1082 1083 static int __send_signal_locked(int sig, struct kernel_siginfo *info, 1084 struct task_struct *t, enum pid_type type, bool force) 1085 { 1086 struct sigpending *pending; 1087 struct sigqueue *q; 1088 int override_rlimit; 1089 int ret = 0, result; 1090 1091 lockdep_assert_held(&t->sighand->siglock); 1092 1093 result = TRACE_SIGNAL_IGNORED; 1094 if (!prepare_signal(sig, t, force)) 1095 goto ret; 1096 1097 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1098 /* 1099 * Short-circuit ignored signals and support queuing 1100 * exactly one non-rt signal, so that we can get more 1101 * detailed information about the cause of the signal. 1102 */ 1103 result = TRACE_SIGNAL_ALREADY_PENDING; 1104 if (legacy_queue(pending, sig)) 1105 goto ret; 1106 1107 result = TRACE_SIGNAL_DELIVERED; 1108 /* 1109 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1110 */ 1111 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1112 goto out_set; 1113 1114 /* 1115 * Real-time signals must be queued if sent by sigqueue, or 1116 * some other real-time mechanism. It is implementation 1117 * defined whether kill() does so. We attempt to do so, on 1118 * the principle of least surprise, but since kill is not 1119 * allowed to fail with EAGAIN when low on memory we just 1120 * make sure at least one signal gets delivered and don't 1121 * pass on the info struct. 1122 */ 1123 if (sig < SIGRTMIN) 1124 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1125 else 1126 override_rlimit = 0; 1127 1128 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0); 1129 1130 if (q) { 1131 list_add_tail(&q->list, &pending->list); 1132 switch ((unsigned long) info) { 1133 case (unsigned long) SEND_SIG_NOINFO: 1134 clear_siginfo(&q->info); 1135 q->info.si_signo = sig; 1136 q->info.si_errno = 0; 1137 q->info.si_code = SI_USER; 1138 q->info.si_pid = task_tgid_nr_ns(current, 1139 task_active_pid_ns(t)); 1140 rcu_read_lock(); 1141 q->info.si_uid = 1142 from_kuid_munged(task_cred_xxx(t, user_ns), 1143 current_uid()); 1144 rcu_read_unlock(); 1145 break; 1146 case (unsigned long) SEND_SIG_PRIV: 1147 clear_siginfo(&q->info); 1148 q->info.si_signo = sig; 1149 q->info.si_errno = 0; 1150 q->info.si_code = SI_KERNEL; 1151 q->info.si_pid = 0; 1152 q->info.si_uid = 0; 1153 break; 1154 default: 1155 copy_siginfo(&q->info, info); 1156 break; 1157 } 1158 } else if (!is_si_special(info) && 1159 sig >= SIGRTMIN && info->si_code != SI_USER) { 1160 /* 1161 * Queue overflow, abort. We may abort if the 1162 * signal was rt and sent by user using something 1163 * other than kill(). 1164 */ 1165 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1166 ret = -EAGAIN; 1167 goto ret; 1168 } else { 1169 /* 1170 * This is a silent loss of information. We still 1171 * send the signal, but the *info bits are lost. 1172 */ 1173 result = TRACE_SIGNAL_LOSE_INFO; 1174 } 1175 1176 out_set: 1177 signalfd_notify(t, sig); 1178 sigaddset(&pending->signal, sig); 1179 1180 /* Let multiprocess signals appear after on-going forks */ 1181 if (type > PIDTYPE_TGID) { 1182 struct multiprocess_signals *delayed; 1183 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1184 sigset_t *signal = &delayed->signal; 1185 /* Can't queue both a stop and a continue signal */ 1186 if (sig == SIGCONT) 1187 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1188 else if (sig_kernel_stop(sig)) 1189 sigdelset(signal, SIGCONT); 1190 sigaddset(signal, sig); 1191 } 1192 } 1193 1194 complete_signal(sig, t, type); 1195 ret: 1196 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1197 return ret; 1198 } 1199 1200 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) 1201 { 1202 bool ret = false; 1203 switch (siginfo_layout(info->si_signo, info->si_code)) { 1204 case SIL_KILL: 1205 case SIL_CHLD: 1206 case SIL_RT: 1207 ret = true; 1208 break; 1209 case SIL_TIMER: 1210 case SIL_POLL: 1211 case SIL_FAULT: 1212 case SIL_FAULT_TRAPNO: 1213 case SIL_FAULT_MCEERR: 1214 case SIL_FAULT_BNDERR: 1215 case SIL_FAULT_PKUERR: 1216 case SIL_FAULT_PERF_EVENT: 1217 case SIL_SYS: 1218 ret = false; 1219 break; 1220 } 1221 return ret; 1222 } 1223 1224 int send_signal_locked(int sig, struct kernel_siginfo *info, 1225 struct task_struct *t, enum pid_type type) 1226 { 1227 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ 1228 bool force = false; 1229 1230 if (info == SEND_SIG_NOINFO) { 1231 /* Force if sent from an ancestor pid namespace */ 1232 force = !task_pid_nr_ns(current, task_active_pid_ns(t)); 1233 } else if (info == SEND_SIG_PRIV) { 1234 /* Don't ignore kernel generated signals */ 1235 force = true; 1236 } else if (has_si_pid_and_uid(info)) { 1237 /* SIGKILL and SIGSTOP is special or has ids */ 1238 struct user_namespace *t_user_ns; 1239 1240 rcu_read_lock(); 1241 t_user_ns = task_cred_xxx(t, user_ns); 1242 if (current_user_ns() != t_user_ns) { 1243 kuid_t uid = make_kuid(current_user_ns(), info->si_uid); 1244 info->si_uid = from_kuid_munged(t_user_ns, uid); 1245 } 1246 rcu_read_unlock(); 1247 1248 /* A kernel generated signal? */ 1249 force = (info->si_code == SI_KERNEL); 1250 1251 /* From an ancestor pid namespace? */ 1252 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { 1253 info->si_pid = 0; 1254 force = true; 1255 } 1256 } 1257 return __send_signal_locked(sig, info, t, type, force); 1258 } 1259 1260 static void print_fatal_signal(int signr) 1261 { 1262 struct pt_regs *regs = task_pt_regs(current); 1263 struct file *exe_file; 1264 1265 exe_file = get_task_exe_file(current); 1266 if (exe_file) { 1267 pr_info("%pD: %s: potentially unexpected fatal signal %d.\n", 1268 exe_file, current->comm, signr); 1269 fput(exe_file); 1270 } else { 1271 pr_info("%s: potentially unexpected fatal signal %d.\n", 1272 current->comm, signr); 1273 } 1274 1275 #if defined(__i386__) && !defined(__arch_um__) 1276 pr_info("code at %08lx: ", regs->ip); 1277 { 1278 int i; 1279 for (i = 0; i < 16; i++) { 1280 unsigned char insn; 1281 1282 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1283 break; 1284 pr_cont("%02x ", insn); 1285 } 1286 } 1287 pr_cont("\n"); 1288 #endif 1289 preempt_disable(); 1290 show_regs(regs); 1291 preempt_enable(); 1292 } 1293 1294 static int __init setup_print_fatal_signals(char *str) 1295 { 1296 get_option (&str, &print_fatal_signals); 1297 1298 return 1; 1299 } 1300 1301 __setup("print-fatal-signals=", setup_print_fatal_signals); 1302 1303 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1304 enum pid_type type) 1305 { 1306 unsigned long flags; 1307 int ret = -ESRCH; 1308 1309 if (lock_task_sighand(p, &flags)) { 1310 ret = send_signal_locked(sig, info, p, type); 1311 unlock_task_sighand(p, &flags); 1312 } 1313 1314 return ret; 1315 } 1316 1317 enum sig_handler { 1318 HANDLER_CURRENT, /* If reachable use the current handler */ 1319 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */ 1320 HANDLER_EXIT, /* Only visible as the process exit code */ 1321 }; 1322 1323 /* 1324 * Force a signal that the process can't ignore: if necessary 1325 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1326 * 1327 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1328 * since we do not want to have a signal handler that was blocked 1329 * be invoked when user space had explicitly blocked it. 1330 * 1331 * We don't want to have recursive SIGSEGV's etc, for example, 1332 * that is why we also clear SIGNAL_UNKILLABLE. 1333 */ 1334 static int 1335 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t, 1336 enum sig_handler handler) 1337 { 1338 unsigned long int flags; 1339 int ret, blocked, ignored; 1340 struct k_sigaction *action; 1341 int sig = info->si_signo; 1342 1343 spin_lock_irqsave(&t->sighand->siglock, flags); 1344 action = &t->sighand->action[sig-1]; 1345 ignored = action->sa.sa_handler == SIG_IGN; 1346 blocked = sigismember(&t->blocked, sig); 1347 if (blocked || ignored || (handler != HANDLER_CURRENT)) { 1348 action->sa.sa_handler = SIG_DFL; 1349 if (handler == HANDLER_EXIT) 1350 action->sa.sa_flags |= SA_IMMUTABLE; 1351 if (blocked) { 1352 sigdelset(&t->blocked, sig); 1353 recalc_sigpending_and_wake(t); 1354 } 1355 } 1356 /* 1357 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1358 * debugging to leave init killable. But HANDLER_EXIT is always fatal. 1359 */ 1360 if (action->sa.sa_handler == SIG_DFL && 1361 (!t->ptrace || (handler == HANDLER_EXIT))) 1362 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1363 ret = send_signal_locked(sig, info, t, PIDTYPE_PID); 1364 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1365 1366 return ret; 1367 } 1368 1369 int force_sig_info(struct kernel_siginfo *info) 1370 { 1371 return force_sig_info_to_task(info, current, HANDLER_CURRENT); 1372 } 1373 1374 /* 1375 * Nuke all other threads in the group. 1376 */ 1377 int zap_other_threads(struct task_struct *p) 1378 { 1379 struct task_struct *t = p; 1380 int count = 0; 1381 1382 p->signal->group_stop_count = 0; 1383 1384 while_each_thread(p, t) { 1385 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1386 /* Don't require de_thread to wait for the vhost_worker */ 1387 if ((t->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER) 1388 count++; 1389 1390 /* Don't bother with already dead threads */ 1391 if (t->exit_state) 1392 continue; 1393 sigaddset(&t->pending.signal, SIGKILL); 1394 signal_wake_up(t, 1); 1395 } 1396 1397 return count; 1398 } 1399 1400 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1401 unsigned long *flags) 1402 { 1403 struct sighand_struct *sighand; 1404 1405 rcu_read_lock(); 1406 for (;;) { 1407 sighand = rcu_dereference(tsk->sighand); 1408 if (unlikely(sighand == NULL)) 1409 break; 1410 1411 /* 1412 * This sighand can be already freed and even reused, but 1413 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1414 * initializes ->siglock: this slab can't go away, it has 1415 * the same object type, ->siglock can't be reinitialized. 1416 * 1417 * We need to ensure that tsk->sighand is still the same 1418 * after we take the lock, we can race with de_thread() or 1419 * __exit_signal(). In the latter case the next iteration 1420 * must see ->sighand == NULL. 1421 */ 1422 spin_lock_irqsave(&sighand->siglock, *flags); 1423 if (likely(sighand == rcu_access_pointer(tsk->sighand))) 1424 break; 1425 spin_unlock_irqrestore(&sighand->siglock, *flags); 1426 } 1427 rcu_read_unlock(); 1428 1429 return sighand; 1430 } 1431 1432 #ifdef CONFIG_LOCKDEP 1433 void lockdep_assert_task_sighand_held(struct task_struct *task) 1434 { 1435 struct sighand_struct *sighand; 1436 1437 rcu_read_lock(); 1438 sighand = rcu_dereference(task->sighand); 1439 if (sighand) 1440 lockdep_assert_held(&sighand->siglock); 1441 else 1442 WARN_ON_ONCE(1); 1443 rcu_read_unlock(); 1444 } 1445 #endif 1446 1447 /* 1448 * send signal info to all the members of a group 1449 */ 1450 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1451 struct task_struct *p, enum pid_type type) 1452 { 1453 int ret; 1454 1455 rcu_read_lock(); 1456 ret = check_kill_permission(sig, info, p); 1457 rcu_read_unlock(); 1458 1459 if (!ret && sig) 1460 ret = do_send_sig_info(sig, info, p, type); 1461 1462 return ret; 1463 } 1464 1465 /* 1466 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1467 * control characters do (^C, ^Z etc) 1468 * - the caller must hold at least a readlock on tasklist_lock 1469 */ 1470 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1471 { 1472 struct task_struct *p = NULL; 1473 int ret = -ESRCH; 1474 1475 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1476 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1477 /* 1478 * If group_send_sig_info() succeeds at least once ret 1479 * becomes 0 and after that the code below has no effect. 1480 * Otherwise we return the last err or -ESRCH if this 1481 * process group is empty. 1482 */ 1483 if (ret) 1484 ret = err; 1485 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1486 1487 return ret; 1488 } 1489 1490 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1491 { 1492 int error = -ESRCH; 1493 struct task_struct *p; 1494 1495 for (;;) { 1496 rcu_read_lock(); 1497 p = pid_task(pid, PIDTYPE_PID); 1498 if (p) 1499 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID); 1500 rcu_read_unlock(); 1501 if (likely(!p || error != -ESRCH)) 1502 return error; 1503 1504 /* 1505 * The task was unhashed in between, try again. If it 1506 * is dead, pid_task() will return NULL, if we race with 1507 * de_thread() it will find the new leader. 1508 */ 1509 } 1510 } 1511 1512 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1513 { 1514 int error; 1515 rcu_read_lock(); 1516 error = kill_pid_info(sig, info, find_vpid(pid)); 1517 rcu_read_unlock(); 1518 return error; 1519 } 1520 1521 static inline bool kill_as_cred_perm(const struct cred *cred, 1522 struct task_struct *target) 1523 { 1524 const struct cred *pcred = __task_cred(target); 1525 1526 return uid_eq(cred->euid, pcred->suid) || 1527 uid_eq(cred->euid, pcred->uid) || 1528 uid_eq(cred->uid, pcred->suid) || 1529 uid_eq(cred->uid, pcred->uid); 1530 } 1531 1532 /* 1533 * The usb asyncio usage of siginfo is wrong. The glibc support 1534 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. 1535 * AKA after the generic fields: 1536 * kernel_pid_t si_pid; 1537 * kernel_uid32_t si_uid; 1538 * sigval_t si_value; 1539 * 1540 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout 1541 * after the generic fields is: 1542 * void __user *si_addr; 1543 * 1544 * This is a practical problem when there is a 64bit big endian kernel 1545 * and a 32bit userspace. As the 32bit address will encoded in the low 1546 * 32bits of the pointer. Those low 32bits will be stored at higher 1547 * address than appear in a 32 bit pointer. So userspace will not 1548 * see the address it was expecting for it's completions. 1549 * 1550 * There is nothing in the encoding that can allow 1551 * copy_siginfo_to_user32 to detect this confusion of formats, so 1552 * handle this by requiring the caller of kill_pid_usb_asyncio to 1553 * notice when this situration takes place and to store the 32bit 1554 * pointer in sival_int, instead of sival_addr of the sigval_t addr 1555 * parameter. 1556 */ 1557 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, 1558 struct pid *pid, const struct cred *cred) 1559 { 1560 struct kernel_siginfo info; 1561 struct task_struct *p; 1562 unsigned long flags; 1563 int ret = -EINVAL; 1564 1565 if (!valid_signal(sig)) 1566 return ret; 1567 1568 clear_siginfo(&info); 1569 info.si_signo = sig; 1570 info.si_errno = errno; 1571 info.si_code = SI_ASYNCIO; 1572 *((sigval_t *)&info.si_pid) = addr; 1573 1574 rcu_read_lock(); 1575 p = pid_task(pid, PIDTYPE_PID); 1576 if (!p) { 1577 ret = -ESRCH; 1578 goto out_unlock; 1579 } 1580 if (!kill_as_cred_perm(cred, p)) { 1581 ret = -EPERM; 1582 goto out_unlock; 1583 } 1584 ret = security_task_kill(p, &info, sig, cred); 1585 if (ret) 1586 goto out_unlock; 1587 1588 if (sig) { 1589 if (lock_task_sighand(p, &flags)) { 1590 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false); 1591 unlock_task_sighand(p, &flags); 1592 } else 1593 ret = -ESRCH; 1594 } 1595 out_unlock: 1596 rcu_read_unlock(); 1597 return ret; 1598 } 1599 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); 1600 1601 /* 1602 * kill_something_info() interprets pid in interesting ways just like kill(2). 1603 * 1604 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1605 * is probably wrong. Should make it like BSD or SYSV. 1606 */ 1607 1608 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1609 { 1610 int ret; 1611 1612 if (pid > 0) 1613 return kill_proc_info(sig, info, pid); 1614 1615 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1616 if (pid == INT_MIN) 1617 return -ESRCH; 1618 1619 read_lock(&tasklist_lock); 1620 if (pid != -1) { 1621 ret = __kill_pgrp_info(sig, info, 1622 pid ? find_vpid(-pid) : task_pgrp(current)); 1623 } else { 1624 int retval = 0, count = 0; 1625 struct task_struct * p; 1626 1627 for_each_process(p) { 1628 if (task_pid_vnr(p) > 1 && 1629 !same_thread_group(p, current)) { 1630 int err = group_send_sig_info(sig, info, p, 1631 PIDTYPE_MAX); 1632 ++count; 1633 if (err != -EPERM) 1634 retval = err; 1635 } 1636 } 1637 ret = count ? retval : -ESRCH; 1638 } 1639 read_unlock(&tasklist_lock); 1640 1641 return ret; 1642 } 1643 1644 /* 1645 * These are for backward compatibility with the rest of the kernel source. 1646 */ 1647 1648 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1649 { 1650 /* 1651 * Make sure legacy kernel users don't send in bad values 1652 * (normal paths check this in check_kill_permission). 1653 */ 1654 if (!valid_signal(sig)) 1655 return -EINVAL; 1656 1657 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1658 } 1659 EXPORT_SYMBOL(send_sig_info); 1660 1661 #define __si_special(priv) \ 1662 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1663 1664 int 1665 send_sig(int sig, struct task_struct *p, int priv) 1666 { 1667 return send_sig_info(sig, __si_special(priv), p); 1668 } 1669 EXPORT_SYMBOL(send_sig); 1670 1671 void force_sig(int sig) 1672 { 1673 struct kernel_siginfo info; 1674 1675 clear_siginfo(&info); 1676 info.si_signo = sig; 1677 info.si_errno = 0; 1678 info.si_code = SI_KERNEL; 1679 info.si_pid = 0; 1680 info.si_uid = 0; 1681 force_sig_info(&info); 1682 } 1683 EXPORT_SYMBOL(force_sig); 1684 1685 void force_fatal_sig(int sig) 1686 { 1687 struct kernel_siginfo info; 1688 1689 clear_siginfo(&info); 1690 info.si_signo = sig; 1691 info.si_errno = 0; 1692 info.si_code = SI_KERNEL; 1693 info.si_pid = 0; 1694 info.si_uid = 0; 1695 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL); 1696 } 1697 1698 void force_exit_sig(int sig) 1699 { 1700 struct kernel_siginfo info; 1701 1702 clear_siginfo(&info); 1703 info.si_signo = sig; 1704 info.si_errno = 0; 1705 info.si_code = SI_KERNEL; 1706 info.si_pid = 0; 1707 info.si_uid = 0; 1708 force_sig_info_to_task(&info, current, HANDLER_EXIT); 1709 } 1710 1711 /* 1712 * When things go south during signal handling, we 1713 * will force a SIGSEGV. And if the signal that caused 1714 * the problem was already a SIGSEGV, we'll want to 1715 * make sure we don't even try to deliver the signal.. 1716 */ 1717 void force_sigsegv(int sig) 1718 { 1719 if (sig == SIGSEGV) 1720 force_fatal_sig(SIGSEGV); 1721 else 1722 force_sig(SIGSEGV); 1723 } 1724 1725 int force_sig_fault_to_task(int sig, int code, void __user *addr 1726 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1727 , struct task_struct *t) 1728 { 1729 struct kernel_siginfo info; 1730 1731 clear_siginfo(&info); 1732 info.si_signo = sig; 1733 info.si_errno = 0; 1734 info.si_code = code; 1735 info.si_addr = addr; 1736 #ifdef __ia64__ 1737 info.si_imm = imm; 1738 info.si_flags = flags; 1739 info.si_isr = isr; 1740 #endif 1741 return force_sig_info_to_task(&info, t, HANDLER_CURRENT); 1742 } 1743 1744 int force_sig_fault(int sig, int code, void __user *addr 1745 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)) 1746 { 1747 return force_sig_fault_to_task(sig, code, addr 1748 ___ARCH_SI_IA64(imm, flags, isr), current); 1749 } 1750 1751 int send_sig_fault(int sig, int code, void __user *addr 1752 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1753 , struct task_struct *t) 1754 { 1755 struct kernel_siginfo info; 1756 1757 clear_siginfo(&info); 1758 info.si_signo = sig; 1759 info.si_errno = 0; 1760 info.si_code = code; 1761 info.si_addr = addr; 1762 #ifdef __ia64__ 1763 info.si_imm = imm; 1764 info.si_flags = flags; 1765 info.si_isr = isr; 1766 #endif 1767 return send_sig_info(info.si_signo, &info, t); 1768 } 1769 1770 int force_sig_mceerr(int code, void __user *addr, short lsb) 1771 { 1772 struct kernel_siginfo info; 1773 1774 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1775 clear_siginfo(&info); 1776 info.si_signo = SIGBUS; 1777 info.si_errno = 0; 1778 info.si_code = code; 1779 info.si_addr = addr; 1780 info.si_addr_lsb = lsb; 1781 return force_sig_info(&info); 1782 } 1783 1784 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1785 { 1786 struct kernel_siginfo info; 1787 1788 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1789 clear_siginfo(&info); 1790 info.si_signo = SIGBUS; 1791 info.si_errno = 0; 1792 info.si_code = code; 1793 info.si_addr = addr; 1794 info.si_addr_lsb = lsb; 1795 return send_sig_info(info.si_signo, &info, t); 1796 } 1797 EXPORT_SYMBOL(send_sig_mceerr); 1798 1799 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1800 { 1801 struct kernel_siginfo info; 1802 1803 clear_siginfo(&info); 1804 info.si_signo = SIGSEGV; 1805 info.si_errno = 0; 1806 info.si_code = SEGV_BNDERR; 1807 info.si_addr = addr; 1808 info.si_lower = lower; 1809 info.si_upper = upper; 1810 return force_sig_info(&info); 1811 } 1812 1813 #ifdef SEGV_PKUERR 1814 int force_sig_pkuerr(void __user *addr, u32 pkey) 1815 { 1816 struct kernel_siginfo info; 1817 1818 clear_siginfo(&info); 1819 info.si_signo = SIGSEGV; 1820 info.si_errno = 0; 1821 info.si_code = SEGV_PKUERR; 1822 info.si_addr = addr; 1823 info.si_pkey = pkey; 1824 return force_sig_info(&info); 1825 } 1826 #endif 1827 1828 int send_sig_perf(void __user *addr, u32 type, u64 sig_data) 1829 { 1830 struct kernel_siginfo info; 1831 1832 clear_siginfo(&info); 1833 info.si_signo = SIGTRAP; 1834 info.si_errno = 0; 1835 info.si_code = TRAP_PERF; 1836 info.si_addr = addr; 1837 info.si_perf_data = sig_data; 1838 info.si_perf_type = type; 1839 1840 /* 1841 * Signals generated by perf events should not terminate the whole 1842 * process if SIGTRAP is blocked, however, delivering the signal 1843 * asynchronously is better than not delivering at all. But tell user 1844 * space if the signal was asynchronous, so it can clearly be 1845 * distinguished from normal synchronous ones. 1846 */ 1847 info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ? 1848 TRAP_PERF_FLAG_ASYNC : 1849 0; 1850 1851 return send_sig_info(info.si_signo, &info, current); 1852 } 1853 1854 /** 1855 * force_sig_seccomp - signals the task to allow in-process syscall emulation 1856 * @syscall: syscall number to send to userland 1857 * @reason: filter-supplied reason code to send to userland (via si_errno) 1858 * @force_coredump: true to trigger a coredump 1859 * 1860 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. 1861 */ 1862 int force_sig_seccomp(int syscall, int reason, bool force_coredump) 1863 { 1864 struct kernel_siginfo info; 1865 1866 clear_siginfo(&info); 1867 info.si_signo = SIGSYS; 1868 info.si_code = SYS_SECCOMP; 1869 info.si_call_addr = (void __user *)KSTK_EIP(current); 1870 info.si_errno = reason; 1871 info.si_arch = syscall_get_arch(current); 1872 info.si_syscall = syscall; 1873 return force_sig_info_to_task(&info, current, 1874 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT); 1875 } 1876 1877 /* For the crazy architectures that include trap information in 1878 * the errno field, instead of an actual errno value. 1879 */ 1880 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1881 { 1882 struct kernel_siginfo info; 1883 1884 clear_siginfo(&info); 1885 info.si_signo = SIGTRAP; 1886 info.si_errno = errno; 1887 info.si_code = TRAP_HWBKPT; 1888 info.si_addr = addr; 1889 return force_sig_info(&info); 1890 } 1891 1892 /* For the rare architectures that include trap information using 1893 * si_trapno. 1894 */ 1895 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno) 1896 { 1897 struct kernel_siginfo info; 1898 1899 clear_siginfo(&info); 1900 info.si_signo = sig; 1901 info.si_errno = 0; 1902 info.si_code = code; 1903 info.si_addr = addr; 1904 info.si_trapno = trapno; 1905 return force_sig_info(&info); 1906 } 1907 1908 /* For the rare architectures that include trap information using 1909 * si_trapno. 1910 */ 1911 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, 1912 struct task_struct *t) 1913 { 1914 struct kernel_siginfo info; 1915 1916 clear_siginfo(&info); 1917 info.si_signo = sig; 1918 info.si_errno = 0; 1919 info.si_code = code; 1920 info.si_addr = addr; 1921 info.si_trapno = trapno; 1922 return send_sig_info(info.si_signo, &info, t); 1923 } 1924 1925 int kill_pgrp(struct pid *pid, int sig, int priv) 1926 { 1927 int ret; 1928 1929 read_lock(&tasklist_lock); 1930 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1931 read_unlock(&tasklist_lock); 1932 1933 return ret; 1934 } 1935 EXPORT_SYMBOL(kill_pgrp); 1936 1937 int kill_pid(struct pid *pid, int sig, int priv) 1938 { 1939 return kill_pid_info(sig, __si_special(priv), pid); 1940 } 1941 EXPORT_SYMBOL(kill_pid); 1942 1943 /* 1944 * These functions support sending signals using preallocated sigqueue 1945 * structures. This is needed "because realtime applications cannot 1946 * afford to lose notifications of asynchronous events, like timer 1947 * expirations or I/O completions". In the case of POSIX Timers 1948 * we allocate the sigqueue structure from the timer_create. If this 1949 * allocation fails we are able to report the failure to the application 1950 * with an EAGAIN error. 1951 */ 1952 struct sigqueue *sigqueue_alloc(void) 1953 { 1954 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC); 1955 } 1956 1957 void sigqueue_free(struct sigqueue *q) 1958 { 1959 unsigned long flags; 1960 spinlock_t *lock = ¤t->sighand->siglock; 1961 1962 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1963 /* 1964 * We must hold ->siglock while testing q->list 1965 * to serialize with collect_signal() or with 1966 * __exit_signal()->flush_sigqueue(). 1967 */ 1968 spin_lock_irqsave(lock, flags); 1969 q->flags &= ~SIGQUEUE_PREALLOC; 1970 /* 1971 * If it is queued it will be freed when dequeued, 1972 * like the "regular" sigqueue. 1973 */ 1974 if (!list_empty(&q->list)) 1975 q = NULL; 1976 spin_unlock_irqrestore(lock, flags); 1977 1978 if (q) 1979 __sigqueue_free(q); 1980 } 1981 1982 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) 1983 { 1984 int sig = q->info.si_signo; 1985 struct sigpending *pending; 1986 struct task_struct *t; 1987 unsigned long flags; 1988 int ret, result; 1989 1990 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1991 1992 ret = -1; 1993 rcu_read_lock(); 1994 1995 /* 1996 * This function is used by POSIX timers to deliver a timer signal. 1997 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID 1998 * set), the signal must be delivered to the specific thread (queues 1999 * into t->pending). 2000 * 2001 * Where type is not PIDTYPE_PID, signals must be delivered to the 2002 * process. In this case, prefer to deliver to current if it is in 2003 * the same thread group as the target process, which avoids 2004 * unnecessarily waking up a potentially idle task. 2005 */ 2006 t = pid_task(pid, type); 2007 if (!t) 2008 goto ret; 2009 if (type != PIDTYPE_PID && same_thread_group(t, current)) 2010 t = current; 2011 if (!likely(lock_task_sighand(t, &flags))) 2012 goto ret; 2013 2014 ret = 1; /* the signal is ignored */ 2015 result = TRACE_SIGNAL_IGNORED; 2016 if (!prepare_signal(sig, t, false)) 2017 goto out; 2018 2019 ret = 0; 2020 if (unlikely(!list_empty(&q->list))) { 2021 /* 2022 * If an SI_TIMER entry is already queue just increment 2023 * the overrun count. 2024 */ 2025 BUG_ON(q->info.si_code != SI_TIMER); 2026 q->info.si_overrun++; 2027 result = TRACE_SIGNAL_ALREADY_PENDING; 2028 goto out; 2029 } 2030 q->info.si_overrun = 0; 2031 2032 signalfd_notify(t, sig); 2033 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 2034 list_add_tail(&q->list, &pending->list); 2035 sigaddset(&pending->signal, sig); 2036 complete_signal(sig, t, type); 2037 result = TRACE_SIGNAL_DELIVERED; 2038 out: 2039 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result); 2040 unlock_task_sighand(t, &flags); 2041 ret: 2042 rcu_read_unlock(); 2043 return ret; 2044 } 2045 2046 static void do_notify_pidfd(struct task_struct *task) 2047 { 2048 struct pid *pid; 2049 2050 WARN_ON(task->exit_state == 0); 2051 pid = task_pid(task); 2052 wake_up_all(&pid->wait_pidfd); 2053 } 2054 2055 /* 2056 * Let a parent know about the death of a child. 2057 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 2058 * 2059 * Returns true if our parent ignored us and so we've switched to 2060 * self-reaping. 2061 */ 2062 bool do_notify_parent(struct task_struct *tsk, int sig) 2063 { 2064 struct kernel_siginfo info; 2065 unsigned long flags; 2066 struct sighand_struct *psig; 2067 bool autoreap = false; 2068 u64 utime, stime; 2069 2070 WARN_ON_ONCE(sig == -1); 2071 2072 /* do_notify_parent_cldstop should have been called instead. */ 2073 WARN_ON_ONCE(task_is_stopped_or_traced(tsk)); 2074 2075 WARN_ON_ONCE(!tsk->ptrace && 2076 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 2077 2078 /* Wake up all pidfd waiters */ 2079 do_notify_pidfd(tsk); 2080 2081 if (sig != SIGCHLD) { 2082 /* 2083 * This is only possible if parent == real_parent. 2084 * Check if it has changed security domain. 2085 */ 2086 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) 2087 sig = SIGCHLD; 2088 } 2089 2090 clear_siginfo(&info); 2091 info.si_signo = sig; 2092 info.si_errno = 0; 2093 /* 2094 * We are under tasklist_lock here so our parent is tied to 2095 * us and cannot change. 2096 * 2097 * task_active_pid_ns will always return the same pid namespace 2098 * until a task passes through release_task. 2099 * 2100 * write_lock() currently calls preempt_disable() which is the 2101 * same as rcu_read_lock(), but according to Oleg, this is not 2102 * correct to rely on this 2103 */ 2104 rcu_read_lock(); 2105 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 2106 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 2107 task_uid(tsk)); 2108 rcu_read_unlock(); 2109 2110 task_cputime(tsk, &utime, &stime); 2111 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 2112 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 2113 2114 info.si_status = tsk->exit_code & 0x7f; 2115 if (tsk->exit_code & 0x80) 2116 info.si_code = CLD_DUMPED; 2117 else if (tsk->exit_code & 0x7f) 2118 info.si_code = CLD_KILLED; 2119 else { 2120 info.si_code = CLD_EXITED; 2121 info.si_status = tsk->exit_code >> 8; 2122 } 2123 2124 psig = tsk->parent->sighand; 2125 spin_lock_irqsave(&psig->siglock, flags); 2126 if (!tsk->ptrace && sig == SIGCHLD && 2127 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 2128 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 2129 /* 2130 * We are exiting and our parent doesn't care. POSIX.1 2131 * defines special semantics for setting SIGCHLD to SIG_IGN 2132 * or setting the SA_NOCLDWAIT flag: we should be reaped 2133 * automatically and not left for our parent's wait4 call. 2134 * Rather than having the parent do it as a magic kind of 2135 * signal handler, we just set this to tell do_exit that we 2136 * can be cleaned up without becoming a zombie. Note that 2137 * we still call __wake_up_parent in this case, because a 2138 * blocked sys_wait4 might now return -ECHILD. 2139 * 2140 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 2141 * is implementation-defined: we do (if you don't want 2142 * it, just use SIG_IGN instead). 2143 */ 2144 autoreap = true; 2145 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 2146 sig = 0; 2147 } 2148 /* 2149 * Send with __send_signal as si_pid and si_uid are in the 2150 * parent's namespaces. 2151 */ 2152 if (valid_signal(sig) && sig) 2153 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false); 2154 __wake_up_parent(tsk, tsk->parent); 2155 spin_unlock_irqrestore(&psig->siglock, flags); 2156 2157 return autoreap; 2158 } 2159 2160 /** 2161 * do_notify_parent_cldstop - notify parent of stopped/continued state change 2162 * @tsk: task reporting the state change 2163 * @for_ptracer: the notification is for ptracer 2164 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 2165 * 2166 * Notify @tsk's parent that the stopped/continued state has changed. If 2167 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 2168 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 2169 * 2170 * CONTEXT: 2171 * Must be called with tasklist_lock at least read locked. 2172 */ 2173 static void do_notify_parent_cldstop(struct task_struct *tsk, 2174 bool for_ptracer, int why) 2175 { 2176 struct kernel_siginfo info; 2177 unsigned long flags; 2178 struct task_struct *parent; 2179 struct sighand_struct *sighand; 2180 u64 utime, stime; 2181 2182 if (for_ptracer) { 2183 parent = tsk->parent; 2184 } else { 2185 tsk = tsk->group_leader; 2186 parent = tsk->real_parent; 2187 } 2188 2189 clear_siginfo(&info); 2190 info.si_signo = SIGCHLD; 2191 info.si_errno = 0; 2192 /* 2193 * see comment in do_notify_parent() about the following 4 lines 2194 */ 2195 rcu_read_lock(); 2196 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 2197 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 2198 rcu_read_unlock(); 2199 2200 task_cputime(tsk, &utime, &stime); 2201 info.si_utime = nsec_to_clock_t(utime); 2202 info.si_stime = nsec_to_clock_t(stime); 2203 2204 info.si_code = why; 2205 switch (why) { 2206 case CLD_CONTINUED: 2207 info.si_status = SIGCONT; 2208 break; 2209 case CLD_STOPPED: 2210 info.si_status = tsk->signal->group_exit_code & 0x7f; 2211 break; 2212 case CLD_TRAPPED: 2213 info.si_status = tsk->exit_code & 0x7f; 2214 break; 2215 default: 2216 BUG(); 2217 } 2218 2219 sighand = parent->sighand; 2220 spin_lock_irqsave(&sighand->siglock, flags); 2221 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 2222 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 2223 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID); 2224 /* 2225 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 2226 */ 2227 __wake_up_parent(tsk, parent); 2228 spin_unlock_irqrestore(&sighand->siglock, flags); 2229 } 2230 2231 /* 2232 * This must be called with current->sighand->siglock held. 2233 * 2234 * This should be the path for all ptrace stops. 2235 * We always set current->last_siginfo while stopped here. 2236 * That makes it a way to test a stopped process for 2237 * being ptrace-stopped vs being job-control-stopped. 2238 * 2239 * Returns the signal the ptracer requested the code resume 2240 * with. If the code did not stop because the tracer is gone, 2241 * the stop signal remains unchanged unless clear_code. 2242 */ 2243 static int ptrace_stop(int exit_code, int why, unsigned long message, 2244 kernel_siginfo_t *info) 2245 __releases(¤t->sighand->siglock) 2246 __acquires(¤t->sighand->siglock) 2247 { 2248 bool gstop_done = false; 2249 2250 if (arch_ptrace_stop_needed()) { 2251 /* 2252 * The arch code has something special to do before a 2253 * ptrace stop. This is allowed to block, e.g. for faults 2254 * on user stack pages. We can't keep the siglock while 2255 * calling arch_ptrace_stop, so we must release it now. 2256 * To preserve proper semantics, we must do this before 2257 * any signal bookkeeping like checking group_stop_count. 2258 */ 2259 spin_unlock_irq(¤t->sighand->siglock); 2260 arch_ptrace_stop(); 2261 spin_lock_irq(¤t->sighand->siglock); 2262 } 2263 2264 /* 2265 * After this point ptrace_signal_wake_up or signal_wake_up 2266 * will clear TASK_TRACED if ptrace_unlink happens or a fatal 2267 * signal comes in. Handle previous ptrace_unlinks and fatal 2268 * signals here to prevent ptrace_stop sleeping in schedule. 2269 */ 2270 if (!current->ptrace || __fatal_signal_pending(current)) 2271 return exit_code; 2272 2273 set_special_state(TASK_TRACED); 2274 current->jobctl |= JOBCTL_TRACED; 2275 2276 /* 2277 * We're committing to trapping. TRACED should be visible before 2278 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2279 * Also, transition to TRACED and updates to ->jobctl should be 2280 * atomic with respect to siglock and should be done after the arch 2281 * hook as siglock is released and regrabbed across it. 2282 * 2283 * TRACER TRACEE 2284 * 2285 * ptrace_attach() 2286 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2287 * do_wait() 2288 * set_current_state() smp_wmb(); 2289 * ptrace_do_wait() 2290 * wait_task_stopped() 2291 * task_stopped_code() 2292 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2293 */ 2294 smp_wmb(); 2295 2296 current->ptrace_message = message; 2297 current->last_siginfo = info; 2298 current->exit_code = exit_code; 2299 2300 /* 2301 * If @why is CLD_STOPPED, we're trapping to participate in a group 2302 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2303 * across siglock relocks since INTERRUPT was scheduled, PENDING 2304 * could be clear now. We act as if SIGCONT is received after 2305 * TASK_TRACED is entered - ignore it. 2306 */ 2307 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2308 gstop_done = task_participate_group_stop(current); 2309 2310 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2311 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2312 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2313 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2314 2315 /* entering a trap, clear TRAPPING */ 2316 task_clear_jobctl_trapping(current); 2317 2318 spin_unlock_irq(¤t->sighand->siglock); 2319 read_lock(&tasklist_lock); 2320 /* 2321 * Notify parents of the stop. 2322 * 2323 * While ptraced, there are two parents - the ptracer and 2324 * the real_parent of the group_leader. The ptracer should 2325 * know about every stop while the real parent is only 2326 * interested in the completion of group stop. The states 2327 * for the two don't interact with each other. Notify 2328 * separately unless they're gonna be duplicates. 2329 */ 2330 if (current->ptrace) 2331 do_notify_parent_cldstop(current, true, why); 2332 if (gstop_done && (!current->ptrace || ptrace_reparented(current))) 2333 do_notify_parent_cldstop(current, false, why); 2334 2335 /* 2336 * Don't want to allow preemption here, because 2337 * sys_ptrace() needs this task to be inactive. 2338 * 2339 * XXX: implement read_unlock_no_resched(). 2340 */ 2341 preempt_disable(); 2342 read_unlock(&tasklist_lock); 2343 cgroup_enter_frozen(); 2344 preempt_enable_no_resched(); 2345 schedule(); 2346 cgroup_leave_frozen(true); 2347 2348 /* 2349 * We are back. Now reacquire the siglock before touching 2350 * last_siginfo, so that we are sure to have synchronized with 2351 * any signal-sending on another CPU that wants to examine it. 2352 */ 2353 spin_lock_irq(¤t->sighand->siglock); 2354 exit_code = current->exit_code; 2355 current->last_siginfo = NULL; 2356 current->ptrace_message = 0; 2357 current->exit_code = 0; 2358 2359 /* LISTENING can be set only during STOP traps, clear it */ 2360 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN); 2361 2362 /* 2363 * Queued signals ignored us while we were stopped for tracing. 2364 * So check for any that we should take before resuming user mode. 2365 * This sets TIF_SIGPENDING, but never clears it. 2366 */ 2367 recalc_sigpending_tsk(current); 2368 return exit_code; 2369 } 2370 2371 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message) 2372 { 2373 kernel_siginfo_t info; 2374 2375 clear_siginfo(&info); 2376 info.si_signo = signr; 2377 info.si_code = exit_code; 2378 info.si_pid = task_pid_vnr(current); 2379 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2380 2381 /* Let the debugger run. */ 2382 return ptrace_stop(exit_code, why, message, &info); 2383 } 2384 2385 int ptrace_notify(int exit_code, unsigned long message) 2386 { 2387 int signr; 2388 2389 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2390 if (unlikely(task_work_pending(current))) 2391 task_work_run(); 2392 2393 spin_lock_irq(¤t->sighand->siglock); 2394 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message); 2395 spin_unlock_irq(¤t->sighand->siglock); 2396 return signr; 2397 } 2398 2399 /** 2400 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2401 * @signr: signr causing group stop if initiating 2402 * 2403 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2404 * and participate in it. If already set, participate in the existing 2405 * group stop. If participated in a group stop (and thus slept), %true is 2406 * returned with siglock released. 2407 * 2408 * If ptraced, this function doesn't handle stop itself. Instead, 2409 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2410 * untouched. The caller must ensure that INTERRUPT trap handling takes 2411 * places afterwards. 2412 * 2413 * CONTEXT: 2414 * Must be called with @current->sighand->siglock held, which is released 2415 * on %true return. 2416 * 2417 * RETURNS: 2418 * %false if group stop is already cancelled or ptrace trap is scheduled. 2419 * %true if participated in group stop. 2420 */ 2421 static bool do_signal_stop(int signr) 2422 __releases(¤t->sighand->siglock) 2423 { 2424 struct signal_struct *sig = current->signal; 2425 2426 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2427 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2428 struct task_struct *t; 2429 2430 /* signr will be recorded in task->jobctl for retries */ 2431 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2432 2433 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2434 unlikely(sig->flags & SIGNAL_GROUP_EXIT) || 2435 unlikely(sig->group_exec_task)) 2436 return false; 2437 /* 2438 * There is no group stop already in progress. We must 2439 * initiate one now. 2440 * 2441 * While ptraced, a task may be resumed while group stop is 2442 * still in effect and then receive a stop signal and 2443 * initiate another group stop. This deviates from the 2444 * usual behavior as two consecutive stop signals can't 2445 * cause two group stops when !ptraced. That is why we 2446 * also check !task_is_stopped(t) below. 2447 * 2448 * The condition can be distinguished by testing whether 2449 * SIGNAL_STOP_STOPPED is already set. Don't generate 2450 * group_exit_code in such case. 2451 * 2452 * This is not necessary for SIGNAL_STOP_CONTINUED because 2453 * an intervening stop signal is required to cause two 2454 * continued events regardless of ptrace. 2455 */ 2456 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2457 sig->group_exit_code = signr; 2458 2459 sig->group_stop_count = 0; 2460 2461 if (task_set_jobctl_pending(current, signr | gstop)) 2462 sig->group_stop_count++; 2463 2464 t = current; 2465 while_each_thread(current, t) { 2466 /* 2467 * Setting state to TASK_STOPPED for a group 2468 * stop is always done with the siglock held, 2469 * so this check has no races. 2470 */ 2471 if (!task_is_stopped(t) && 2472 task_set_jobctl_pending(t, signr | gstop)) { 2473 sig->group_stop_count++; 2474 if (likely(!(t->ptrace & PT_SEIZED))) 2475 signal_wake_up(t, 0); 2476 else 2477 ptrace_trap_notify(t); 2478 } 2479 } 2480 } 2481 2482 if (likely(!current->ptrace)) { 2483 int notify = 0; 2484 2485 /* 2486 * If there are no other threads in the group, or if there 2487 * is a group stop in progress and we are the last to stop, 2488 * report to the parent. 2489 */ 2490 if (task_participate_group_stop(current)) 2491 notify = CLD_STOPPED; 2492 2493 current->jobctl |= JOBCTL_STOPPED; 2494 set_special_state(TASK_STOPPED); 2495 spin_unlock_irq(¤t->sighand->siglock); 2496 2497 /* 2498 * Notify the parent of the group stop completion. Because 2499 * we're not holding either the siglock or tasklist_lock 2500 * here, ptracer may attach inbetween; however, this is for 2501 * group stop and should always be delivered to the real 2502 * parent of the group leader. The new ptracer will get 2503 * its notification when this task transitions into 2504 * TASK_TRACED. 2505 */ 2506 if (notify) { 2507 read_lock(&tasklist_lock); 2508 do_notify_parent_cldstop(current, false, notify); 2509 read_unlock(&tasklist_lock); 2510 } 2511 2512 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2513 cgroup_enter_frozen(); 2514 schedule(); 2515 return true; 2516 } else { 2517 /* 2518 * While ptraced, group stop is handled by STOP trap. 2519 * Schedule it and let the caller deal with it. 2520 */ 2521 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2522 return false; 2523 } 2524 } 2525 2526 /** 2527 * do_jobctl_trap - take care of ptrace jobctl traps 2528 * 2529 * When PT_SEIZED, it's used for both group stop and explicit 2530 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2531 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2532 * the stop signal; otherwise, %SIGTRAP. 2533 * 2534 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2535 * number as exit_code and no siginfo. 2536 * 2537 * CONTEXT: 2538 * Must be called with @current->sighand->siglock held, which may be 2539 * released and re-acquired before returning with intervening sleep. 2540 */ 2541 static void do_jobctl_trap(void) 2542 { 2543 struct signal_struct *signal = current->signal; 2544 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2545 2546 if (current->ptrace & PT_SEIZED) { 2547 if (!signal->group_stop_count && 2548 !(signal->flags & SIGNAL_STOP_STOPPED)) 2549 signr = SIGTRAP; 2550 WARN_ON_ONCE(!signr); 2551 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2552 CLD_STOPPED, 0); 2553 } else { 2554 WARN_ON_ONCE(!signr); 2555 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2556 } 2557 } 2558 2559 /** 2560 * do_freezer_trap - handle the freezer jobctl trap 2561 * 2562 * Puts the task into frozen state, if only the task is not about to quit. 2563 * In this case it drops JOBCTL_TRAP_FREEZE. 2564 * 2565 * CONTEXT: 2566 * Must be called with @current->sighand->siglock held, 2567 * which is always released before returning. 2568 */ 2569 static void do_freezer_trap(void) 2570 __releases(¤t->sighand->siglock) 2571 { 2572 /* 2573 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, 2574 * let's make another loop to give it a chance to be handled. 2575 * In any case, we'll return back. 2576 */ 2577 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != 2578 JOBCTL_TRAP_FREEZE) { 2579 spin_unlock_irq(¤t->sighand->siglock); 2580 return; 2581 } 2582 2583 /* 2584 * Now we're sure that there is no pending fatal signal and no 2585 * pending traps. Clear TIF_SIGPENDING to not get out of schedule() 2586 * immediately (if there is a non-fatal signal pending), and 2587 * put the task into sleep. 2588 */ 2589 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 2590 clear_thread_flag(TIF_SIGPENDING); 2591 spin_unlock_irq(¤t->sighand->siglock); 2592 cgroup_enter_frozen(); 2593 schedule(); 2594 } 2595 2596 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type) 2597 { 2598 /* 2599 * We do not check sig_kernel_stop(signr) but set this marker 2600 * unconditionally because we do not know whether debugger will 2601 * change signr. This flag has no meaning unless we are going 2602 * to stop after return from ptrace_stop(). In this case it will 2603 * be checked in do_signal_stop(), we should only stop if it was 2604 * not cleared by SIGCONT while we were sleeping. See also the 2605 * comment in dequeue_signal(). 2606 */ 2607 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2608 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info); 2609 2610 /* We're back. Did the debugger cancel the sig? */ 2611 if (signr == 0) 2612 return signr; 2613 2614 /* 2615 * Update the siginfo structure if the signal has 2616 * changed. If the debugger wanted something 2617 * specific in the siginfo structure then it should 2618 * have updated *info via PTRACE_SETSIGINFO. 2619 */ 2620 if (signr != info->si_signo) { 2621 clear_siginfo(info); 2622 info->si_signo = signr; 2623 info->si_errno = 0; 2624 info->si_code = SI_USER; 2625 rcu_read_lock(); 2626 info->si_pid = task_pid_vnr(current->parent); 2627 info->si_uid = from_kuid_munged(current_user_ns(), 2628 task_uid(current->parent)); 2629 rcu_read_unlock(); 2630 } 2631 2632 /* If the (new) signal is now blocked, requeue it. */ 2633 if (sigismember(¤t->blocked, signr) || 2634 fatal_signal_pending(current)) { 2635 send_signal_locked(signr, info, current, type); 2636 signr = 0; 2637 } 2638 2639 return signr; 2640 } 2641 2642 static void hide_si_addr_tag_bits(struct ksignal *ksig) 2643 { 2644 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) { 2645 case SIL_FAULT: 2646 case SIL_FAULT_TRAPNO: 2647 case SIL_FAULT_MCEERR: 2648 case SIL_FAULT_BNDERR: 2649 case SIL_FAULT_PKUERR: 2650 case SIL_FAULT_PERF_EVENT: 2651 ksig->info.si_addr = arch_untagged_si_addr( 2652 ksig->info.si_addr, ksig->sig, ksig->info.si_code); 2653 break; 2654 case SIL_KILL: 2655 case SIL_TIMER: 2656 case SIL_POLL: 2657 case SIL_CHLD: 2658 case SIL_RT: 2659 case SIL_SYS: 2660 break; 2661 } 2662 } 2663 2664 bool get_signal(struct ksignal *ksig) 2665 { 2666 struct sighand_struct *sighand = current->sighand; 2667 struct signal_struct *signal = current->signal; 2668 int signr; 2669 2670 clear_notify_signal(); 2671 if (unlikely(task_work_pending(current))) 2672 task_work_run(); 2673 2674 if (!task_sigpending(current)) 2675 return false; 2676 2677 if (unlikely(uprobe_deny_signal())) 2678 return false; 2679 2680 /* 2681 * Do this once, we can't return to user-mode if freezing() == T. 2682 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2683 * thus do not need another check after return. 2684 */ 2685 try_to_freeze(); 2686 2687 relock: 2688 spin_lock_irq(&sighand->siglock); 2689 2690 /* 2691 * Every stopped thread goes here after wakeup. Check to see if 2692 * we should notify the parent, prepare_signal(SIGCONT) encodes 2693 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2694 */ 2695 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2696 int why; 2697 2698 if (signal->flags & SIGNAL_CLD_CONTINUED) 2699 why = CLD_CONTINUED; 2700 else 2701 why = CLD_STOPPED; 2702 2703 signal->flags &= ~SIGNAL_CLD_MASK; 2704 2705 spin_unlock_irq(&sighand->siglock); 2706 2707 /* 2708 * Notify the parent that we're continuing. This event is 2709 * always per-process and doesn't make whole lot of sense 2710 * for ptracers, who shouldn't consume the state via 2711 * wait(2) either, but, for backward compatibility, notify 2712 * the ptracer of the group leader too unless it's gonna be 2713 * a duplicate. 2714 */ 2715 read_lock(&tasklist_lock); 2716 do_notify_parent_cldstop(current, false, why); 2717 2718 if (ptrace_reparented(current->group_leader)) 2719 do_notify_parent_cldstop(current->group_leader, 2720 true, why); 2721 read_unlock(&tasklist_lock); 2722 2723 goto relock; 2724 } 2725 2726 for (;;) { 2727 struct k_sigaction *ka; 2728 enum pid_type type; 2729 2730 /* Has this task already been marked for death? */ 2731 if ((signal->flags & SIGNAL_GROUP_EXIT) || 2732 signal->group_exec_task) { 2733 clear_siginfo(&ksig->info); 2734 ksig->info.si_signo = signr = SIGKILL; 2735 sigdelset(¤t->pending.signal, SIGKILL); 2736 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, 2737 &sighand->action[SIGKILL - 1]); 2738 recalc_sigpending(); 2739 goto fatal; 2740 } 2741 2742 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2743 do_signal_stop(0)) 2744 goto relock; 2745 2746 if (unlikely(current->jobctl & 2747 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { 2748 if (current->jobctl & JOBCTL_TRAP_MASK) { 2749 do_jobctl_trap(); 2750 spin_unlock_irq(&sighand->siglock); 2751 } else if (current->jobctl & JOBCTL_TRAP_FREEZE) 2752 do_freezer_trap(); 2753 2754 goto relock; 2755 } 2756 2757 /* 2758 * If the task is leaving the frozen state, let's update 2759 * cgroup counters and reset the frozen bit. 2760 */ 2761 if (unlikely(cgroup_task_frozen(current))) { 2762 spin_unlock_irq(&sighand->siglock); 2763 cgroup_leave_frozen(false); 2764 goto relock; 2765 } 2766 2767 /* 2768 * Signals generated by the execution of an instruction 2769 * need to be delivered before any other pending signals 2770 * so that the instruction pointer in the signal stack 2771 * frame points to the faulting instruction. 2772 */ 2773 type = PIDTYPE_PID; 2774 signr = dequeue_synchronous_signal(&ksig->info); 2775 if (!signr) 2776 signr = dequeue_signal(current, ¤t->blocked, 2777 &ksig->info, &type); 2778 2779 if (!signr) 2780 break; /* will return 0 */ 2781 2782 if (unlikely(current->ptrace) && (signr != SIGKILL) && 2783 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) { 2784 signr = ptrace_signal(signr, &ksig->info, type); 2785 if (!signr) 2786 continue; 2787 } 2788 2789 ka = &sighand->action[signr-1]; 2790 2791 /* Trace actually delivered signals. */ 2792 trace_signal_deliver(signr, &ksig->info, ka); 2793 2794 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2795 continue; 2796 if (ka->sa.sa_handler != SIG_DFL) { 2797 /* Run the handler. */ 2798 ksig->ka = *ka; 2799 2800 if (ka->sa.sa_flags & SA_ONESHOT) 2801 ka->sa.sa_handler = SIG_DFL; 2802 2803 break; /* will return non-zero "signr" value */ 2804 } 2805 2806 /* 2807 * Now we are doing the default action for this signal. 2808 */ 2809 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2810 continue; 2811 2812 /* 2813 * Global init gets no signals it doesn't want. 2814 * Container-init gets no signals it doesn't want from same 2815 * container. 2816 * 2817 * Note that if global/container-init sees a sig_kernel_only() 2818 * signal here, the signal must have been generated internally 2819 * or must have come from an ancestor namespace. In either 2820 * case, the signal cannot be dropped. 2821 */ 2822 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2823 !sig_kernel_only(signr)) 2824 continue; 2825 2826 if (sig_kernel_stop(signr)) { 2827 /* 2828 * The default action is to stop all threads in 2829 * the thread group. The job control signals 2830 * do nothing in an orphaned pgrp, but SIGSTOP 2831 * always works. Note that siglock needs to be 2832 * dropped during the call to is_orphaned_pgrp() 2833 * because of lock ordering with tasklist_lock. 2834 * This allows an intervening SIGCONT to be posted. 2835 * We need to check for that and bail out if necessary. 2836 */ 2837 if (signr != SIGSTOP) { 2838 spin_unlock_irq(&sighand->siglock); 2839 2840 /* signals can be posted during this window */ 2841 2842 if (is_current_pgrp_orphaned()) 2843 goto relock; 2844 2845 spin_lock_irq(&sighand->siglock); 2846 } 2847 2848 if (likely(do_signal_stop(ksig->info.si_signo))) { 2849 /* It released the siglock. */ 2850 goto relock; 2851 } 2852 2853 /* 2854 * We didn't actually stop, due to a race 2855 * with SIGCONT or something like that. 2856 */ 2857 continue; 2858 } 2859 2860 fatal: 2861 spin_unlock_irq(&sighand->siglock); 2862 if (unlikely(cgroup_task_frozen(current))) 2863 cgroup_leave_frozen(true); 2864 2865 /* 2866 * Anything else is fatal, maybe with a core dump. 2867 */ 2868 current->flags |= PF_SIGNALED; 2869 2870 if (sig_kernel_coredump(signr)) { 2871 if (print_fatal_signals) 2872 print_fatal_signal(ksig->info.si_signo); 2873 proc_coredump_connector(current); 2874 /* 2875 * If it was able to dump core, this kills all 2876 * other threads in the group and synchronizes with 2877 * their demise. If we lost the race with another 2878 * thread getting here, it set group_exit_code 2879 * first and our do_group_exit call below will use 2880 * that value and ignore the one we pass it. 2881 */ 2882 do_coredump(&ksig->info); 2883 } 2884 2885 /* 2886 * PF_USER_WORKER threads will catch and exit on fatal signals 2887 * themselves. They have cleanup that must be performed, so 2888 * we cannot call do_exit() on their behalf. 2889 */ 2890 if (current->flags & PF_USER_WORKER) 2891 goto out; 2892 2893 /* 2894 * Death signals, no core dump. 2895 */ 2896 do_group_exit(ksig->info.si_signo); 2897 /* NOTREACHED */ 2898 } 2899 spin_unlock_irq(&sighand->siglock); 2900 out: 2901 ksig->sig = signr; 2902 2903 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS)) 2904 hide_si_addr_tag_bits(ksig); 2905 2906 return ksig->sig > 0; 2907 } 2908 2909 /** 2910 * signal_delivered - called after signal delivery to update blocked signals 2911 * @ksig: kernel signal struct 2912 * @stepping: nonzero if debugger single-step or block-step in use 2913 * 2914 * This function should be called when a signal has successfully been 2915 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2916 * is always blocked), and the signal itself is blocked unless %SA_NODEFER 2917 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2918 */ 2919 static void signal_delivered(struct ksignal *ksig, int stepping) 2920 { 2921 sigset_t blocked; 2922 2923 /* A signal was successfully delivered, and the 2924 saved sigmask was stored on the signal frame, 2925 and will be restored by sigreturn. So we can 2926 simply clear the restore sigmask flag. */ 2927 clear_restore_sigmask(); 2928 2929 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2930 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2931 sigaddset(&blocked, ksig->sig); 2932 set_current_blocked(&blocked); 2933 if (current->sas_ss_flags & SS_AUTODISARM) 2934 sas_ss_reset(current); 2935 if (stepping) 2936 ptrace_notify(SIGTRAP, 0); 2937 } 2938 2939 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2940 { 2941 if (failed) 2942 force_sigsegv(ksig->sig); 2943 else 2944 signal_delivered(ksig, stepping); 2945 } 2946 2947 /* 2948 * It could be that complete_signal() picked us to notify about the 2949 * group-wide signal. Other threads should be notified now to take 2950 * the shared signals in @which since we will not. 2951 */ 2952 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2953 { 2954 sigset_t retarget; 2955 struct task_struct *t; 2956 2957 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2958 if (sigisemptyset(&retarget)) 2959 return; 2960 2961 t = tsk; 2962 while_each_thread(tsk, t) { 2963 if (t->flags & PF_EXITING) 2964 continue; 2965 2966 if (!has_pending_signals(&retarget, &t->blocked)) 2967 continue; 2968 /* Remove the signals this thread can handle. */ 2969 sigandsets(&retarget, &retarget, &t->blocked); 2970 2971 if (!task_sigpending(t)) 2972 signal_wake_up(t, 0); 2973 2974 if (sigisemptyset(&retarget)) 2975 break; 2976 } 2977 } 2978 2979 void exit_signals(struct task_struct *tsk) 2980 { 2981 int group_stop = 0; 2982 sigset_t unblocked; 2983 2984 /* 2985 * @tsk is about to have PF_EXITING set - lock out users which 2986 * expect stable threadgroup. 2987 */ 2988 cgroup_threadgroup_change_begin(tsk); 2989 2990 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) { 2991 sched_mm_cid_exit_signals(tsk); 2992 tsk->flags |= PF_EXITING; 2993 cgroup_threadgroup_change_end(tsk); 2994 return; 2995 } 2996 2997 spin_lock_irq(&tsk->sighand->siglock); 2998 /* 2999 * From now this task is not visible for group-wide signals, 3000 * see wants_signal(), do_signal_stop(). 3001 */ 3002 sched_mm_cid_exit_signals(tsk); 3003 tsk->flags |= PF_EXITING; 3004 3005 cgroup_threadgroup_change_end(tsk); 3006 3007 if (!task_sigpending(tsk)) 3008 goto out; 3009 3010 unblocked = tsk->blocked; 3011 signotset(&unblocked); 3012 retarget_shared_pending(tsk, &unblocked); 3013 3014 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 3015 task_participate_group_stop(tsk)) 3016 group_stop = CLD_STOPPED; 3017 out: 3018 spin_unlock_irq(&tsk->sighand->siglock); 3019 3020 /* 3021 * If group stop has completed, deliver the notification. This 3022 * should always go to the real parent of the group leader. 3023 */ 3024 if (unlikely(group_stop)) { 3025 read_lock(&tasklist_lock); 3026 do_notify_parent_cldstop(tsk, false, group_stop); 3027 read_unlock(&tasklist_lock); 3028 } 3029 } 3030 3031 /* 3032 * System call entry points. 3033 */ 3034 3035 /** 3036 * sys_restart_syscall - restart a system call 3037 */ 3038 SYSCALL_DEFINE0(restart_syscall) 3039 { 3040 struct restart_block *restart = ¤t->restart_block; 3041 return restart->fn(restart); 3042 } 3043 3044 long do_no_restart_syscall(struct restart_block *param) 3045 { 3046 return -EINTR; 3047 } 3048 3049 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 3050 { 3051 if (task_sigpending(tsk) && !thread_group_empty(tsk)) { 3052 sigset_t newblocked; 3053 /* A set of now blocked but previously unblocked signals. */ 3054 sigandnsets(&newblocked, newset, ¤t->blocked); 3055 retarget_shared_pending(tsk, &newblocked); 3056 } 3057 tsk->blocked = *newset; 3058 recalc_sigpending(); 3059 } 3060 3061 /** 3062 * set_current_blocked - change current->blocked mask 3063 * @newset: new mask 3064 * 3065 * It is wrong to change ->blocked directly, this helper should be used 3066 * to ensure the process can't miss a shared signal we are going to block. 3067 */ 3068 void set_current_blocked(sigset_t *newset) 3069 { 3070 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3071 __set_current_blocked(newset); 3072 } 3073 3074 void __set_current_blocked(const sigset_t *newset) 3075 { 3076 struct task_struct *tsk = current; 3077 3078 /* 3079 * In case the signal mask hasn't changed, there is nothing we need 3080 * to do. The current->blocked shouldn't be modified by other task. 3081 */ 3082 if (sigequalsets(&tsk->blocked, newset)) 3083 return; 3084 3085 spin_lock_irq(&tsk->sighand->siglock); 3086 __set_task_blocked(tsk, newset); 3087 spin_unlock_irq(&tsk->sighand->siglock); 3088 } 3089 3090 /* 3091 * This is also useful for kernel threads that want to temporarily 3092 * (or permanently) block certain signals. 3093 * 3094 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 3095 * interface happily blocks "unblockable" signals like SIGKILL 3096 * and friends. 3097 */ 3098 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 3099 { 3100 struct task_struct *tsk = current; 3101 sigset_t newset; 3102 3103 /* Lockless, only current can change ->blocked, never from irq */ 3104 if (oldset) 3105 *oldset = tsk->blocked; 3106 3107 switch (how) { 3108 case SIG_BLOCK: 3109 sigorsets(&newset, &tsk->blocked, set); 3110 break; 3111 case SIG_UNBLOCK: 3112 sigandnsets(&newset, &tsk->blocked, set); 3113 break; 3114 case SIG_SETMASK: 3115 newset = *set; 3116 break; 3117 default: 3118 return -EINVAL; 3119 } 3120 3121 __set_current_blocked(&newset); 3122 return 0; 3123 } 3124 EXPORT_SYMBOL(sigprocmask); 3125 3126 /* 3127 * The api helps set app-provided sigmasks. 3128 * 3129 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 3130 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 3131 * 3132 * Note that it does set_restore_sigmask() in advance, so it must be always 3133 * paired with restore_saved_sigmask_unless() before return from syscall. 3134 */ 3135 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) 3136 { 3137 sigset_t kmask; 3138 3139 if (!umask) 3140 return 0; 3141 if (sigsetsize != sizeof(sigset_t)) 3142 return -EINVAL; 3143 if (copy_from_user(&kmask, umask, sizeof(sigset_t))) 3144 return -EFAULT; 3145 3146 set_restore_sigmask(); 3147 current->saved_sigmask = current->blocked; 3148 set_current_blocked(&kmask); 3149 3150 return 0; 3151 } 3152 3153 #ifdef CONFIG_COMPAT 3154 int set_compat_user_sigmask(const compat_sigset_t __user *umask, 3155 size_t sigsetsize) 3156 { 3157 sigset_t kmask; 3158 3159 if (!umask) 3160 return 0; 3161 if (sigsetsize != sizeof(compat_sigset_t)) 3162 return -EINVAL; 3163 if (get_compat_sigset(&kmask, umask)) 3164 return -EFAULT; 3165 3166 set_restore_sigmask(); 3167 current->saved_sigmask = current->blocked; 3168 set_current_blocked(&kmask); 3169 3170 return 0; 3171 } 3172 #endif 3173 3174 /** 3175 * sys_rt_sigprocmask - change the list of currently blocked signals 3176 * @how: whether to add, remove, or set signals 3177 * @nset: stores pending signals 3178 * @oset: previous value of signal mask if non-null 3179 * @sigsetsize: size of sigset_t type 3180 */ 3181 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 3182 sigset_t __user *, oset, size_t, sigsetsize) 3183 { 3184 sigset_t old_set, new_set; 3185 int error; 3186 3187 /* XXX: Don't preclude handling different sized sigset_t's. */ 3188 if (sigsetsize != sizeof(sigset_t)) 3189 return -EINVAL; 3190 3191 old_set = current->blocked; 3192 3193 if (nset) { 3194 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 3195 return -EFAULT; 3196 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3197 3198 error = sigprocmask(how, &new_set, NULL); 3199 if (error) 3200 return error; 3201 } 3202 3203 if (oset) { 3204 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 3205 return -EFAULT; 3206 } 3207 3208 return 0; 3209 } 3210 3211 #ifdef CONFIG_COMPAT 3212 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 3213 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 3214 { 3215 sigset_t old_set = current->blocked; 3216 3217 /* XXX: Don't preclude handling different sized sigset_t's. */ 3218 if (sigsetsize != sizeof(sigset_t)) 3219 return -EINVAL; 3220 3221 if (nset) { 3222 sigset_t new_set; 3223 int error; 3224 if (get_compat_sigset(&new_set, nset)) 3225 return -EFAULT; 3226 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3227 3228 error = sigprocmask(how, &new_set, NULL); 3229 if (error) 3230 return error; 3231 } 3232 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 3233 } 3234 #endif 3235 3236 static void do_sigpending(sigset_t *set) 3237 { 3238 spin_lock_irq(¤t->sighand->siglock); 3239 sigorsets(set, ¤t->pending.signal, 3240 ¤t->signal->shared_pending.signal); 3241 spin_unlock_irq(¤t->sighand->siglock); 3242 3243 /* Outside the lock because only this thread touches it. */ 3244 sigandsets(set, ¤t->blocked, set); 3245 } 3246 3247 /** 3248 * sys_rt_sigpending - examine a pending signal that has been raised 3249 * while blocked 3250 * @uset: stores pending signals 3251 * @sigsetsize: size of sigset_t type or larger 3252 */ 3253 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 3254 { 3255 sigset_t set; 3256 3257 if (sigsetsize > sizeof(*uset)) 3258 return -EINVAL; 3259 3260 do_sigpending(&set); 3261 3262 if (copy_to_user(uset, &set, sigsetsize)) 3263 return -EFAULT; 3264 3265 return 0; 3266 } 3267 3268 #ifdef CONFIG_COMPAT 3269 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 3270 compat_size_t, sigsetsize) 3271 { 3272 sigset_t set; 3273 3274 if (sigsetsize > sizeof(*uset)) 3275 return -EINVAL; 3276 3277 do_sigpending(&set); 3278 3279 return put_compat_sigset(uset, &set, sigsetsize); 3280 } 3281 #endif 3282 3283 static const struct { 3284 unsigned char limit, layout; 3285 } sig_sicodes[] = { 3286 [SIGILL] = { NSIGILL, SIL_FAULT }, 3287 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 3288 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 3289 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 3290 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 3291 #if defined(SIGEMT) 3292 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 3293 #endif 3294 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 3295 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 3296 [SIGSYS] = { NSIGSYS, SIL_SYS }, 3297 }; 3298 3299 static bool known_siginfo_layout(unsigned sig, int si_code) 3300 { 3301 if (si_code == SI_KERNEL) 3302 return true; 3303 else if ((si_code > SI_USER)) { 3304 if (sig_specific_sicodes(sig)) { 3305 if (si_code <= sig_sicodes[sig].limit) 3306 return true; 3307 } 3308 else if (si_code <= NSIGPOLL) 3309 return true; 3310 } 3311 else if (si_code >= SI_DETHREAD) 3312 return true; 3313 else if (si_code == SI_ASYNCNL) 3314 return true; 3315 return false; 3316 } 3317 3318 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3319 { 3320 enum siginfo_layout layout = SIL_KILL; 3321 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3322 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3323 (si_code <= sig_sicodes[sig].limit)) { 3324 layout = sig_sicodes[sig].layout; 3325 /* Handle the exceptions */ 3326 if ((sig == SIGBUS) && 3327 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3328 layout = SIL_FAULT_MCEERR; 3329 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3330 layout = SIL_FAULT_BNDERR; 3331 #ifdef SEGV_PKUERR 3332 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3333 layout = SIL_FAULT_PKUERR; 3334 #endif 3335 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF)) 3336 layout = SIL_FAULT_PERF_EVENT; 3337 else if (IS_ENABLED(CONFIG_SPARC) && 3338 (sig == SIGILL) && (si_code == ILL_ILLTRP)) 3339 layout = SIL_FAULT_TRAPNO; 3340 else if (IS_ENABLED(CONFIG_ALPHA) && 3341 ((sig == SIGFPE) || 3342 ((sig == SIGTRAP) && (si_code == TRAP_UNK)))) 3343 layout = SIL_FAULT_TRAPNO; 3344 } 3345 else if (si_code <= NSIGPOLL) 3346 layout = SIL_POLL; 3347 } else { 3348 if (si_code == SI_TIMER) 3349 layout = SIL_TIMER; 3350 else if (si_code == SI_SIGIO) 3351 layout = SIL_POLL; 3352 else if (si_code < 0) 3353 layout = SIL_RT; 3354 } 3355 return layout; 3356 } 3357 3358 static inline char __user *si_expansion(const siginfo_t __user *info) 3359 { 3360 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3361 } 3362 3363 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3364 { 3365 char __user *expansion = si_expansion(to); 3366 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3367 return -EFAULT; 3368 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3369 return -EFAULT; 3370 return 0; 3371 } 3372 3373 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3374 const siginfo_t __user *from) 3375 { 3376 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3377 char __user *expansion = si_expansion(from); 3378 char buf[SI_EXPANSION_SIZE]; 3379 int i; 3380 /* 3381 * An unknown si_code might need more than 3382 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3383 * extra bytes are 0. This guarantees copy_siginfo_to_user 3384 * will return this data to userspace exactly. 3385 */ 3386 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3387 return -EFAULT; 3388 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3389 if (buf[i] != 0) 3390 return -E2BIG; 3391 } 3392 } 3393 return 0; 3394 } 3395 3396 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3397 const siginfo_t __user *from) 3398 { 3399 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3400 return -EFAULT; 3401 to->si_signo = signo; 3402 return post_copy_siginfo_from_user(to, from); 3403 } 3404 3405 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3406 { 3407 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3408 return -EFAULT; 3409 return post_copy_siginfo_from_user(to, from); 3410 } 3411 3412 #ifdef CONFIG_COMPAT 3413 /** 3414 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo 3415 * @to: compat siginfo destination 3416 * @from: kernel siginfo source 3417 * 3418 * Note: This function does not work properly for the SIGCHLD on x32, but 3419 * fortunately it doesn't have to. The only valid callers for this function are 3420 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. 3421 * The latter does not care because SIGCHLD will never cause a coredump. 3422 */ 3423 void copy_siginfo_to_external32(struct compat_siginfo *to, 3424 const struct kernel_siginfo *from) 3425 { 3426 memset(to, 0, sizeof(*to)); 3427 3428 to->si_signo = from->si_signo; 3429 to->si_errno = from->si_errno; 3430 to->si_code = from->si_code; 3431 switch(siginfo_layout(from->si_signo, from->si_code)) { 3432 case SIL_KILL: 3433 to->si_pid = from->si_pid; 3434 to->si_uid = from->si_uid; 3435 break; 3436 case SIL_TIMER: 3437 to->si_tid = from->si_tid; 3438 to->si_overrun = from->si_overrun; 3439 to->si_int = from->si_int; 3440 break; 3441 case SIL_POLL: 3442 to->si_band = from->si_band; 3443 to->si_fd = from->si_fd; 3444 break; 3445 case SIL_FAULT: 3446 to->si_addr = ptr_to_compat(from->si_addr); 3447 break; 3448 case SIL_FAULT_TRAPNO: 3449 to->si_addr = ptr_to_compat(from->si_addr); 3450 to->si_trapno = from->si_trapno; 3451 break; 3452 case SIL_FAULT_MCEERR: 3453 to->si_addr = ptr_to_compat(from->si_addr); 3454 to->si_addr_lsb = from->si_addr_lsb; 3455 break; 3456 case SIL_FAULT_BNDERR: 3457 to->si_addr = ptr_to_compat(from->si_addr); 3458 to->si_lower = ptr_to_compat(from->si_lower); 3459 to->si_upper = ptr_to_compat(from->si_upper); 3460 break; 3461 case SIL_FAULT_PKUERR: 3462 to->si_addr = ptr_to_compat(from->si_addr); 3463 to->si_pkey = from->si_pkey; 3464 break; 3465 case SIL_FAULT_PERF_EVENT: 3466 to->si_addr = ptr_to_compat(from->si_addr); 3467 to->si_perf_data = from->si_perf_data; 3468 to->si_perf_type = from->si_perf_type; 3469 to->si_perf_flags = from->si_perf_flags; 3470 break; 3471 case SIL_CHLD: 3472 to->si_pid = from->si_pid; 3473 to->si_uid = from->si_uid; 3474 to->si_status = from->si_status; 3475 to->si_utime = from->si_utime; 3476 to->si_stime = from->si_stime; 3477 break; 3478 case SIL_RT: 3479 to->si_pid = from->si_pid; 3480 to->si_uid = from->si_uid; 3481 to->si_int = from->si_int; 3482 break; 3483 case SIL_SYS: 3484 to->si_call_addr = ptr_to_compat(from->si_call_addr); 3485 to->si_syscall = from->si_syscall; 3486 to->si_arch = from->si_arch; 3487 break; 3488 } 3489 } 3490 3491 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3492 const struct kernel_siginfo *from) 3493 { 3494 struct compat_siginfo new; 3495 3496 copy_siginfo_to_external32(&new, from); 3497 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3498 return -EFAULT; 3499 return 0; 3500 } 3501 3502 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3503 const struct compat_siginfo *from) 3504 { 3505 clear_siginfo(to); 3506 to->si_signo = from->si_signo; 3507 to->si_errno = from->si_errno; 3508 to->si_code = from->si_code; 3509 switch(siginfo_layout(from->si_signo, from->si_code)) { 3510 case SIL_KILL: 3511 to->si_pid = from->si_pid; 3512 to->si_uid = from->si_uid; 3513 break; 3514 case SIL_TIMER: 3515 to->si_tid = from->si_tid; 3516 to->si_overrun = from->si_overrun; 3517 to->si_int = from->si_int; 3518 break; 3519 case SIL_POLL: 3520 to->si_band = from->si_band; 3521 to->si_fd = from->si_fd; 3522 break; 3523 case SIL_FAULT: 3524 to->si_addr = compat_ptr(from->si_addr); 3525 break; 3526 case SIL_FAULT_TRAPNO: 3527 to->si_addr = compat_ptr(from->si_addr); 3528 to->si_trapno = from->si_trapno; 3529 break; 3530 case SIL_FAULT_MCEERR: 3531 to->si_addr = compat_ptr(from->si_addr); 3532 to->si_addr_lsb = from->si_addr_lsb; 3533 break; 3534 case SIL_FAULT_BNDERR: 3535 to->si_addr = compat_ptr(from->si_addr); 3536 to->si_lower = compat_ptr(from->si_lower); 3537 to->si_upper = compat_ptr(from->si_upper); 3538 break; 3539 case SIL_FAULT_PKUERR: 3540 to->si_addr = compat_ptr(from->si_addr); 3541 to->si_pkey = from->si_pkey; 3542 break; 3543 case SIL_FAULT_PERF_EVENT: 3544 to->si_addr = compat_ptr(from->si_addr); 3545 to->si_perf_data = from->si_perf_data; 3546 to->si_perf_type = from->si_perf_type; 3547 to->si_perf_flags = from->si_perf_flags; 3548 break; 3549 case SIL_CHLD: 3550 to->si_pid = from->si_pid; 3551 to->si_uid = from->si_uid; 3552 to->si_status = from->si_status; 3553 #ifdef CONFIG_X86_X32_ABI 3554 if (in_x32_syscall()) { 3555 to->si_utime = from->_sifields._sigchld_x32._utime; 3556 to->si_stime = from->_sifields._sigchld_x32._stime; 3557 } else 3558 #endif 3559 { 3560 to->si_utime = from->si_utime; 3561 to->si_stime = from->si_stime; 3562 } 3563 break; 3564 case SIL_RT: 3565 to->si_pid = from->si_pid; 3566 to->si_uid = from->si_uid; 3567 to->si_int = from->si_int; 3568 break; 3569 case SIL_SYS: 3570 to->si_call_addr = compat_ptr(from->si_call_addr); 3571 to->si_syscall = from->si_syscall; 3572 to->si_arch = from->si_arch; 3573 break; 3574 } 3575 return 0; 3576 } 3577 3578 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3579 const struct compat_siginfo __user *ufrom) 3580 { 3581 struct compat_siginfo from; 3582 3583 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3584 return -EFAULT; 3585 3586 from.si_signo = signo; 3587 return post_copy_siginfo_from_user32(to, &from); 3588 } 3589 3590 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3591 const struct compat_siginfo __user *ufrom) 3592 { 3593 struct compat_siginfo from; 3594 3595 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3596 return -EFAULT; 3597 3598 return post_copy_siginfo_from_user32(to, &from); 3599 } 3600 #endif /* CONFIG_COMPAT */ 3601 3602 /** 3603 * do_sigtimedwait - wait for queued signals specified in @which 3604 * @which: queued signals to wait for 3605 * @info: if non-null, the signal's siginfo is returned here 3606 * @ts: upper bound on process time suspension 3607 */ 3608 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3609 const struct timespec64 *ts) 3610 { 3611 ktime_t *to = NULL, timeout = KTIME_MAX; 3612 struct task_struct *tsk = current; 3613 sigset_t mask = *which; 3614 enum pid_type type; 3615 int sig, ret = 0; 3616 3617 if (ts) { 3618 if (!timespec64_valid(ts)) 3619 return -EINVAL; 3620 timeout = timespec64_to_ktime(*ts); 3621 to = &timeout; 3622 } 3623 3624 /* 3625 * Invert the set of allowed signals to get those we want to block. 3626 */ 3627 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3628 signotset(&mask); 3629 3630 spin_lock_irq(&tsk->sighand->siglock); 3631 sig = dequeue_signal(tsk, &mask, info, &type); 3632 if (!sig && timeout) { 3633 /* 3634 * None ready, temporarily unblock those we're interested 3635 * while we are sleeping in so that we'll be awakened when 3636 * they arrive. Unblocking is always fine, we can avoid 3637 * set_current_blocked(). 3638 */ 3639 tsk->real_blocked = tsk->blocked; 3640 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3641 recalc_sigpending(); 3642 spin_unlock_irq(&tsk->sighand->siglock); 3643 3644 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 3645 ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3646 HRTIMER_MODE_REL); 3647 spin_lock_irq(&tsk->sighand->siglock); 3648 __set_task_blocked(tsk, &tsk->real_blocked); 3649 sigemptyset(&tsk->real_blocked); 3650 sig = dequeue_signal(tsk, &mask, info, &type); 3651 } 3652 spin_unlock_irq(&tsk->sighand->siglock); 3653 3654 if (sig) 3655 return sig; 3656 return ret ? -EINTR : -EAGAIN; 3657 } 3658 3659 /** 3660 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3661 * in @uthese 3662 * @uthese: queued signals to wait for 3663 * @uinfo: if non-null, the signal's siginfo is returned here 3664 * @uts: upper bound on process time suspension 3665 * @sigsetsize: size of sigset_t type 3666 */ 3667 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3668 siginfo_t __user *, uinfo, 3669 const struct __kernel_timespec __user *, uts, 3670 size_t, sigsetsize) 3671 { 3672 sigset_t these; 3673 struct timespec64 ts; 3674 kernel_siginfo_t info; 3675 int ret; 3676 3677 /* XXX: Don't preclude handling different sized sigset_t's. */ 3678 if (sigsetsize != sizeof(sigset_t)) 3679 return -EINVAL; 3680 3681 if (copy_from_user(&these, uthese, sizeof(these))) 3682 return -EFAULT; 3683 3684 if (uts) { 3685 if (get_timespec64(&ts, uts)) 3686 return -EFAULT; 3687 } 3688 3689 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3690 3691 if (ret > 0 && uinfo) { 3692 if (copy_siginfo_to_user(uinfo, &info)) 3693 ret = -EFAULT; 3694 } 3695 3696 return ret; 3697 } 3698 3699 #ifdef CONFIG_COMPAT_32BIT_TIME 3700 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3701 siginfo_t __user *, uinfo, 3702 const struct old_timespec32 __user *, uts, 3703 size_t, sigsetsize) 3704 { 3705 sigset_t these; 3706 struct timespec64 ts; 3707 kernel_siginfo_t info; 3708 int ret; 3709 3710 if (sigsetsize != sizeof(sigset_t)) 3711 return -EINVAL; 3712 3713 if (copy_from_user(&these, uthese, sizeof(these))) 3714 return -EFAULT; 3715 3716 if (uts) { 3717 if (get_old_timespec32(&ts, uts)) 3718 return -EFAULT; 3719 } 3720 3721 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3722 3723 if (ret > 0 && uinfo) { 3724 if (copy_siginfo_to_user(uinfo, &info)) 3725 ret = -EFAULT; 3726 } 3727 3728 return ret; 3729 } 3730 #endif 3731 3732 #ifdef CONFIG_COMPAT 3733 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3734 struct compat_siginfo __user *, uinfo, 3735 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3736 { 3737 sigset_t s; 3738 struct timespec64 t; 3739 kernel_siginfo_t info; 3740 long ret; 3741 3742 if (sigsetsize != sizeof(sigset_t)) 3743 return -EINVAL; 3744 3745 if (get_compat_sigset(&s, uthese)) 3746 return -EFAULT; 3747 3748 if (uts) { 3749 if (get_timespec64(&t, uts)) 3750 return -EFAULT; 3751 } 3752 3753 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3754 3755 if (ret > 0 && uinfo) { 3756 if (copy_siginfo_to_user32(uinfo, &info)) 3757 ret = -EFAULT; 3758 } 3759 3760 return ret; 3761 } 3762 3763 #ifdef CONFIG_COMPAT_32BIT_TIME 3764 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3765 struct compat_siginfo __user *, uinfo, 3766 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3767 { 3768 sigset_t s; 3769 struct timespec64 t; 3770 kernel_siginfo_t info; 3771 long ret; 3772 3773 if (sigsetsize != sizeof(sigset_t)) 3774 return -EINVAL; 3775 3776 if (get_compat_sigset(&s, uthese)) 3777 return -EFAULT; 3778 3779 if (uts) { 3780 if (get_old_timespec32(&t, uts)) 3781 return -EFAULT; 3782 } 3783 3784 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3785 3786 if (ret > 0 && uinfo) { 3787 if (copy_siginfo_to_user32(uinfo, &info)) 3788 ret = -EFAULT; 3789 } 3790 3791 return ret; 3792 } 3793 #endif 3794 #endif 3795 3796 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info) 3797 { 3798 clear_siginfo(info); 3799 info->si_signo = sig; 3800 info->si_errno = 0; 3801 info->si_code = SI_USER; 3802 info->si_pid = task_tgid_vnr(current); 3803 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3804 } 3805 3806 /** 3807 * sys_kill - send a signal to a process 3808 * @pid: the PID of the process 3809 * @sig: signal to be sent 3810 */ 3811 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3812 { 3813 struct kernel_siginfo info; 3814 3815 prepare_kill_siginfo(sig, &info); 3816 3817 return kill_something_info(sig, &info, pid); 3818 } 3819 3820 /* 3821 * Verify that the signaler and signalee either are in the same pid namespace 3822 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3823 * namespace. 3824 */ 3825 static bool access_pidfd_pidns(struct pid *pid) 3826 { 3827 struct pid_namespace *active = task_active_pid_ns(current); 3828 struct pid_namespace *p = ns_of_pid(pid); 3829 3830 for (;;) { 3831 if (!p) 3832 return false; 3833 if (p == active) 3834 break; 3835 p = p->parent; 3836 } 3837 3838 return true; 3839 } 3840 3841 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, 3842 siginfo_t __user *info) 3843 { 3844 #ifdef CONFIG_COMPAT 3845 /* 3846 * Avoid hooking up compat syscalls and instead handle necessary 3847 * conversions here. Note, this is a stop-gap measure and should not be 3848 * considered a generic solution. 3849 */ 3850 if (in_compat_syscall()) 3851 return copy_siginfo_from_user32( 3852 kinfo, (struct compat_siginfo __user *)info); 3853 #endif 3854 return copy_siginfo_from_user(kinfo, info); 3855 } 3856 3857 static struct pid *pidfd_to_pid(const struct file *file) 3858 { 3859 struct pid *pid; 3860 3861 pid = pidfd_pid(file); 3862 if (!IS_ERR(pid)) 3863 return pid; 3864 3865 return tgid_pidfd_to_pid(file); 3866 } 3867 3868 /** 3869 * sys_pidfd_send_signal - Signal a process through a pidfd 3870 * @pidfd: file descriptor of the process 3871 * @sig: signal to send 3872 * @info: signal info 3873 * @flags: future flags 3874 * 3875 * The syscall currently only signals via PIDTYPE_PID which covers 3876 * kill(<positive-pid>, <signal>. It does not signal threads or process 3877 * groups. 3878 * In order to extend the syscall to threads and process groups the @flags 3879 * argument should be used. In essence, the @flags argument will determine 3880 * what is signaled and not the file descriptor itself. Put in other words, 3881 * grouping is a property of the flags argument not a property of the file 3882 * descriptor. 3883 * 3884 * Return: 0 on success, negative errno on failure 3885 */ 3886 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 3887 siginfo_t __user *, info, unsigned int, flags) 3888 { 3889 int ret; 3890 struct fd f; 3891 struct pid *pid; 3892 kernel_siginfo_t kinfo; 3893 3894 /* Enforce flags be set to 0 until we add an extension. */ 3895 if (flags) 3896 return -EINVAL; 3897 3898 f = fdget(pidfd); 3899 if (!f.file) 3900 return -EBADF; 3901 3902 /* Is this a pidfd? */ 3903 pid = pidfd_to_pid(f.file); 3904 if (IS_ERR(pid)) { 3905 ret = PTR_ERR(pid); 3906 goto err; 3907 } 3908 3909 ret = -EINVAL; 3910 if (!access_pidfd_pidns(pid)) 3911 goto err; 3912 3913 if (info) { 3914 ret = copy_siginfo_from_user_any(&kinfo, info); 3915 if (unlikely(ret)) 3916 goto err; 3917 3918 ret = -EINVAL; 3919 if (unlikely(sig != kinfo.si_signo)) 3920 goto err; 3921 3922 /* Only allow sending arbitrary signals to yourself. */ 3923 ret = -EPERM; 3924 if ((task_pid(current) != pid) && 3925 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) 3926 goto err; 3927 } else { 3928 prepare_kill_siginfo(sig, &kinfo); 3929 } 3930 3931 ret = kill_pid_info(sig, &kinfo, pid); 3932 3933 err: 3934 fdput(f); 3935 return ret; 3936 } 3937 3938 static int 3939 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 3940 { 3941 struct task_struct *p; 3942 int error = -ESRCH; 3943 3944 rcu_read_lock(); 3945 p = find_task_by_vpid(pid); 3946 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 3947 error = check_kill_permission(sig, info, p); 3948 /* 3949 * The null signal is a permissions and process existence 3950 * probe. No signal is actually delivered. 3951 */ 3952 if (!error && sig) { 3953 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 3954 /* 3955 * If lock_task_sighand() failed we pretend the task 3956 * dies after receiving the signal. The window is tiny, 3957 * and the signal is private anyway. 3958 */ 3959 if (unlikely(error == -ESRCH)) 3960 error = 0; 3961 } 3962 } 3963 rcu_read_unlock(); 3964 3965 return error; 3966 } 3967 3968 static int do_tkill(pid_t tgid, pid_t pid, int sig) 3969 { 3970 struct kernel_siginfo info; 3971 3972 clear_siginfo(&info); 3973 info.si_signo = sig; 3974 info.si_errno = 0; 3975 info.si_code = SI_TKILL; 3976 info.si_pid = task_tgid_vnr(current); 3977 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3978 3979 return do_send_specific(tgid, pid, sig, &info); 3980 } 3981 3982 /** 3983 * sys_tgkill - send signal to one specific thread 3984 * @tgid: the thread group ID of the thread 3985 * @pid: the PID of the thread 3986 * @sig: signal to be sent 3987 * 3988 * This syscall also checks the @tgid and returns -ESRCH even if the PID 3989 * exists but it's not belonging to the target process anymore. This 3990 * method solves the problem of threads exiting and PIDs getting reused. 3991 */ 3992 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 3993 { 3994 /* This is only valid for single tasks */ 3995 if (pid <= 0 || tgid <= 0) 3996 return -EINVAL; 3997 3998 return do_tkill(tgid, pid, sig); 3999 } 4000 4001 /** 4002 * sys_tkill - send signal to one specific task 4003 * @pid: the PID of the task 4004 * @sig: signal to be sent 4005 * 4006 * Send a signal to only one task, even if it's a CLONE_THREAD task. 4007 */ 4008 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 4009 { 4010 /* This is only valid for single tasks */ 4011 if (pid <= 0) 4012 return -EINVAL; 4013 4014 return do_tkill(0, pid, sig); 4015 } 4016 4017 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 4018 { 4019 /* Not even root can pretend to send signals from the kernel. 4020 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4021 */ 4022 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4023 (task_pid_vnr(current) != pid)) 4024 return -EPERM; 4025 4026 /* POSIX.1b doesn't mention process groups. */ 4027 return kill_proc_info(sig, info, pid); 4028 } 4029 4030 /** 4031 * sys_rt_sigqueueinfo - send signal information to a signal 4032 * @pid: the PID of the thread 4033 * @sig: signal to be sent 4034 * @uinfo: signal info to be sent 4035 */ 4036 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 4037 siginfo_t __user *, uinfo) 4038 { 4039 kernel_siginfo_t info; 4040 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4041 if (unlikely(ret)) 4042 return ret; 4043 return do_rt_sigqueueinfo(pid, sig, &info); 4044 } 4045 4046 #ifdef CONFIG_COMPAT 4047 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 4048 compat_pid_t, pid, 4049 int, sig, 4050 struct compat_siginfo __user *, uinfo) 4051 { 4052 kernel_siginfo_t info; 4053 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4054 if (unlikely(ret)) 4055 return ret; 4056 return do_rt_sigqueueinfo(pid, sig, &info); 4057 } 4058 #endif 4059 4060 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 4061 { 4062 /* This is only valid for single tasks */ 4063 if (pid <= 0 || tgid <= 0) 4064 return -EINVAL; 4065 4066 /* Not even root can pretend to send signals from the kernel. 4067 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4068 */ 4069 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4070 (task_pid_vnr(current) != pid)) 4071 return -EPERM; 4072 4073 return do_send_specific(tgid, pid, sig, info); 4074 } 4075 4076 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 4077 siginfo_t __user *, uinfo) 4078 { 4079 kernel_siginfo_t info; 4080 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4081 if (unlikely(ret)) 4082 return ret; 4083 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4084 } 4085 4086 #ifdef CONFIG_COMPAT 4087 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 4088 compat_pid_t, tgid, 4089 compat_pid_t, pid, 4090 int, sig, 4091 struct compat_siginfo __user *, uinfo) 4092 { 4093 kernel_siginfo_t info; 4094 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4095 if (unlikely(ret)) 4096 return ret; 4097 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4098 } 4099 #endif 4100 4101 /* 4102 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 4103 */ 4104 void kernel_sigaction(int sig, __sighandler_t action) 4105 { 4106 spin_lock_irq(¤t->sighand->siglock); 4107 current->sighand->action[sig - 1].sa.sa_handler = action; 4108 if (action == SIG_IGN) { 4109 sigset_t mask; 4110 4111 sigemptyset(&mask); 4112 sigaddset(&mask, sig); 4113 4114 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 4115 flush_sigqueue_mask(&mask, ¤t->pending); 4116 recalc_sigpending(); 4117 } 4118 spin_unlock_irq(¤t->sighand->siglock); 4119 } 4120 EXPORT_SYMBOL(kernel_sigaction); 4121 4122 void __weak sigaction_compat_abi(struct k_sigaction *act, 4123 struct k_sigaction *oact) 4124 { 4125 } 4126 4127 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 4128 { 4129 struct task_struct *p = current, *t; 4130 struct k_sigaction *k; 4131 sigset_t mask; 4132 4133 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 4134 return -EINVAL; 4135 4136 k = &p->sighand->action[sig-1]; 4137 4138 spin_lock_irq(&p->sighand->siglock); 4139 if (k->sa.sa_flags & SA_IMMUTABLE) { 4140 spin_unlock_irq(&p->sighand->siglock); 4141 return -EINVAL; 4142 } 4143 if (oact) 4144 *oact = *k; 4145 4146 /* 4147 * Make sure that we never accidentally claim to support SA_UNSUPPORTED, 4148 * e.g. by having an architecture use the bit in their uapi. 4149 */ 4150 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED); 4151 4152 /* 4153 * Clear unknown flag bits in order to allow userspace to detect missing 4154 * support for flag bits and to allow the kernel to use non-uapi bits 4155 * internally. 4156 */ 4157 if (act) 4158 act->sa.sa_flags &= UAPI_SA_FLAGS; 4159 if (oact) 4160 oact->sa.sa_flags &= UAPI_SA_FLAGS; 4161 4162 sigaction_compat_abi(act, oact); 4163 4164 if (act) { 4165 sigdelsetmask(&act->sa.sa_mask, 4166 sigmask(SIGKILL) | sigmask(SIGSTOP)); 4167 *k = *act; 4168 /* 4169 * POSIX 3.3.1.3: 4170 * "Setting a signal action to SIG_IGN for a signal that is 4171 * pending shall cause the pending signal to be discarded, 4172 * whether or not it is blocked." 4173 * 4174 * "Setting a signal action to SIG_DFL for a signal that is 4175 * pending and whose default action is to ignore the signal 4176 * (for example, SIGCHLD), shall cause the pending signal to 4177 * be discarded, whether or not it is blocked" 4178 */ 4179 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 4180 sigemptyset(&mask); 4181 sigaddset(&mask, sig); 4182 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 4183 for_each_thread(p, t) 4184 flush_sigqueue_mask(&mask, &t->pending); 4185 } 4186 } 4187 4188 spin_unlock_irq(&p->sighand->siglock); 4189 return 0; 4190 } 4191 4192 #ifdef CONFIG_DYNAMIC_SIGFRAME 4193 static inline void sigaltstack_lock(void) 4194 __acquires(¤t->sighand->siglock) 4195 { 4196 spin_lock_irq(¤t->sighand->siglock); 4197 } 4198 4199 static inline void sigaltstack_unlock(void) 4200 __releases(¤t->sighand->siglock) 4201 { 4202 spin_unlock_irq(¤t->sighand->siglock); 4203 } 4204 #else 4205 static inline void sigaltstack_lock(void) { } 4206 static inline void sigaltstack_unlock(void) { } 4207 #endif 4208 4209 static int 4210 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 4211 size_t min_ss_size) 4212 { 4213 struct task_struct *t = current; 4214 int ret = 0; 4215 4216 if (oss) { 4217 memset(oss, 0, sizeof(stack_t)); 4218 oss->ss_sp = (void __user *) t->sas_ss_sp; 4219 oss->ss_size = t->sas_ss_size; 4220 oss->ss_flags = sas_ss_flags(sp) | 4221 (current->sas_ss_flags & SS_FLAG_BITS); 4222 } 4223 4224 if (ss) { 4225 void __user *ss_sp = ss->ss_sp; 4226 size_t ss_size = ss->ss_size; 4227 unsigned ss_flags = ss->ss_flags; 4228 int ss_mode; 4229 4230 if (unlikely(on_sig_stack(sp))) 4231 return -EPERM; 4232 4233 ss_mode = ss_flags & ~SS_FLAG_BITS; 4234 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 4235 ss_mode != 0)) 4236 return -EINVAL; 4237 4238 /* 4239 * Return before taking any locks if no actual 4240 * sigaltstack changes were requested. 4241 */ 4242 if (t->sas_ss_sp == (unsigned long)ss_sp && 4243 t->sas_ss_size == ss_size && 4244 t->sas_ss_flags == ss_flags) 4245 return 0; 4246 4247 sigaltstack_lock(); 4248 if (ss_mode == SS_DISABLE) { 4249 ss_size = 0; 4250 ss_sp = NULL; 4251 } else { 4252 if (unlikely(ss_size < min_ss_size)) 4253 ret = -ENOMEM; 4254 if (!sigaltstack_size_valid(ss_size)) 4255 ret = -ENOMEM; 4256 } 4257 if (!ret) { 4258 t->sas_ss_sp = (unsigned long) ss_sp; 4259 t->sas_ss_size = ss_size; 4260 t->sas_ss_flags = ss_flags; 4261 } 4262 sigaltstack_unlock(); 4263 } 4264 return ret; 4265 } 4266 4267 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 4268 { 4269 stack_t new, old; 4270 int err; 4271 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 4272 return -EFAULT; 4273 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 4274 current_user_stack_pointer(), 4275 MINSIGSTKSZ); 4276 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 4277 err = -EFAULT; 4278 return err; 4279 } 4280 4281 int restore_altstack(const stack_t __user *uss) 4282 { 4283 stack_t new; 4284 if (copy_from_user(&new, uss, sizeof(stack_t))) 4285 return -EFAULT; 4286 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 4287 MINSIGSTKSZ); 4288 /* squash all but EFAULT for now */ 4289 return 0; 4290 } 4291 4292 int __save_altstack(stack_t __user *uss, unsigned long sp) 4293 { 4294 struct task_struct *t = current; 4295 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 4296 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4297 __put_user(t->sas_ss_size, &uss->ss_size); 4298 return err; 4299 } 4300 4301 #ifdef CONFIG_COMPAT 4302 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 4303 compat_stack_t __user *uoss_ptr) 4304 { 4305 stack_t uss, uoss; 4306 int ret; 4307 4308 if (uss_ptr) { 4309 compat_stack_t uss32; 4310 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 4311 return -EFAULT; 4312 uss.ss_sp = compat_ptr(uss32.ss_sp); 4313 uss.ss_flags = uss32.ss_flags; 4314 uss.ss_size = uss32.ss_size; 4315 } 4316 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 4317 compat_user_stack_pointer(), 4318 COMPAT_MINSIGSTKSZ); 4319 if (ret >= 0 && uoss_ptr) { 4320 compat_stack_t old; 4321 memset(&old, 0, sizeof(old)); 4322 old.ss_sp = ptr_to_compat(uoss.ss_sp); 4323 old.ss_flags = uoss.ss_flags; 4324 old.ss_size = uoss.ss_size; 4325 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 4326 ret = -EFAULT; 4327 } 4328 return ret; 4329 } 4330 4331 COMPAT_SYSCALL_DEFINE2(sigaltstack, 4332 const compat_stack_t __user *, uss_ptr, 4333 compat_stack_t __user *, uoss_ptr) 4334 { 4335 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 4336 } 4337 4338 int compat_restore_altstack(const compat_stack_t __user *uss) 4339 { 4340 int err = do_compat_sigaltstack(uss, NULL); 4341 /* squash all but -EFAULT for now */ 4342 return err == -EFAULT ? err : 0; 4343 } 4344 4345 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 4346 { 4347 int err; 4348 struct task_struct *t = current; 4349 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 4350 &uss->ss_sp) | 4351 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4352 __put_user(t->sas_ss_size, &uss->ss_size); 4353 return err; 4354 } 4355 #endif 4356 4357 #ifdef __ARCH_WANT_SYS_SIGPENDING 4358 4359 /** 4360 * sys_sigpending - examine pending signals 4361 * @uset: where mask of pending signal is returned 4362 */ 4363 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4364 { 4365 sigset_t set; 4366 4367 if (sizeof(old_sigset_t) > sizeof(*uset)) 4368 return -EINVAL; 4369 4370 do_sigpending(&set); 4371 4372 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4373 return -EFAULT; 4374 4375 return 0; 4376 } 4377 4378 #ifdef CONFIG_COMPAT 4379 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4380 { 4381 sigset_t set; 4382 4383 do_sigpending(&set); 4384 4385 return put_user(set.sig[0], set32); 4386 } 4387 #endif 4388 4389 #endif 4390 4391 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 4392 /** 4393 * sys_sigprocmask - examine and change blocked signals 4394 * @how: whether to add, remove, or set signals 4395 * @nset: signals to add or remove (if non-null) 4396 * @oset: previous value of signal mask if non-null 4397 * 4398 * Some platforms have their own version with special arguments; 4399 * others support only sys_rt_sigprocmask. 4400 */ 4401 4402 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4403 old_sigset_t __user *, oset) 4404 { 4405 old_sigset_t old_set, new_set; 4406 sigset_t new_blocked; 4407 4408 old_set = current->blocked.sig[0]; 4409 4410 if (nset) { 4411 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4412 return -EFAULT; 4413 4414 new_blocked = current->blocked; 4415 4416 switch (how) { 4417 case SIG_BLOCK: 4418 sigaddsetmask(&new_blocked, new_set); 4419 break; 4420 case SIG_UNBLOCK: 4421 sigdelsetmask(&new_blocked, new_set); 4422 break; 4423 case SIG_SETMASK: 4424 new_blocked.sig[0] = new_set; 4425 break; 4426 default: 4427 return -EINVAL; 4428 } 4429 4430 set_current_blocked(&new_blocked); 4431 } 4432 4433 if (oset) { 4434 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4435 return -EFAULT; 4436 } 4437 4438 return 0; 4439 } 4440 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4441 4442 #ifndef CONFIG_ODD_RT_SIGACTION 4443 /** 4444 * sys_rt_sigaction - alter an action taken by a process 4445 * @sig: signal to be sent 4446 * @act: new sigaction 4447 * @oact: used to save the previous sigaction 4448 * @sigsetsize: size of sigset_t type 4449 */ 4450 SYSCALL_DEFINE4(rt_sigaction, int, sig, 4451 const struct sigaction __user *, act, 4452 struct sigaction __user *, oact, 4453 size_t, sigsetsize) 4454 { 4455 struct k_sigaction new_sa, old_sa; 4456 int ret; 4457 4458 /* XXX: Don't preclude handling different sized sigset_t's. */ 4459 if (sigsetsize != sizeof(sigset_t)) 4460 return -EINVAL; 4461 4462 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4463 return -EFAULT; 4464 4465 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4466 if (ret) 4467 return ret; 4468 4469 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4470 return -EFAULT; 4471 4472 return 0; 4473 } 4474 #ifdef CONFIG_COMPAT 4475 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4476 const struct compat_sigaction __user *, act, 4477 struct compat_sigaction __user *, oact, 4478 compat_size_t, sigsetsize) 4479 { 4480 struct k_sigaction new_ka, old_ka; 4481 #ifdef __ARCH_HAS_SA_RESTORER 4482 compat_uptr_t restorer; 4483 #endif 4484 int ret; 4485 4486 /* XXX: Don't preclude handling different sized sigset_t's. */ 4487 if (sigsetsize != sizeof(compat_sigset_t)) 4488 return -EINVAL; 4489 4490 if (act) { 4491 compat_uptr_t handler; 4492 ret = get_user(handler, &act->sa_handler); 4493 new_ka.sa.sa_handler = compat_ptr(handler); 4494 #ifdef __ARCH_HAS_SA_RESTORER 4495 ret |= get_user(restorer, &act->sa_restorer); 4496 new_ka.sa.sa_restorer = compat_ptr(restorer); 4497 #endif 4498 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4499 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4500 if (ret) 4501 return -EFAULT; 4502 } 4503 4504 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4505 if (!ret && oact) { 4506 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4507 &oact->sa_handler); 4508 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4509 sizeof(oact->sa_mask)); 4510 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4511 #ifdef __ARCH_HAS_SA_RESTORER 4512 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4513 &oact->sa_restorer); 4514 #endif 4515 } 4516 return ret; 4517 } 4518 #endif 4519 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4520 4521 #ifdef CONFIG_OLD_SIGACTION 4522 SYSCALL_DEFINE3(sigaction, int, sig, 4523 const struct old_sigaction __user *, act, 4524 struct old_sigaction __user *, oact) 4525 { 4526 struct k_sigaction new_ka, old_ka; 4527 int ret; 4528 4529 if (act) { 4530 old_sigset_t mask; 4531 if (!access_ok(act, sizeof(*act)) || 4532 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4533 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4534 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4535 __get_user(mask, &act->sa_mask)) 4536 return -EFAULT; 4537 #ifdef __ARCH_HAS_KA_RESTORER 4538 new_ka.ka_restorer = NULL; 4539 #endif 4540 siginitset(&new_ka.sa.sa_mask, mask); 4541 } 4542 4543 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4544 4545 if (!ret && oact) { 4546 if (!access_ok(oact, sizeof(*oact)) || 4547 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4548 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4549 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4550 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4551 return -EFAULT; 4552 } 4553 4554 return ret; 4555 } 4556 #endif 4557 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4558 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4559 const struct compat_old_sigaction __user *, act, 4560 struct compat_old_sigaction __user *, oact) 4561 { 4562 struct k_sigaction new_ka, old_ka; 4563 int ret; 4564 compat_old_sigset_t mask; 4565 compat_uptr_t handler, restorer; 4566 4567 if (act) { 4568 if (!access_ok(act, sizeof(*act)) || 4569 __get_user(handler, &act->sa_handler) || 4570 __get_user(restorer, &act->sa_restorer) || 4571 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4572 __get_user(mask, &act->sa_mask)) 4573 return -EFAULT; 4574 4575 #ifdef __ARCH_HAS_KA_RESTORER 4576 new_ka.ka_restorer = NULL; 4577 #endif 4578 new_ka.sa.sa_handler = compat_ptr(handler); 4579 new_ka.sa.sa_restorer = compat_ptr(restorer); 4580 siginitset(&new_ka.sa.sa_mask, mask); 4581 } 4582 4583 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4584 4585 if (!ret && oact) { 4586 if (!access_ok(oact, sizeof(*oact)) || 4587 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4588 &oact->sa_handler) || 4589 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4590 &oact->sa_restorer) || 4591 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4592 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4593 return -EFAULT; 4594 } 4595 return ret; 4596 } 4597 #endif 4598 4599 #ifdef CONFIG_SGETMASK_SYSCALL 4600 4601 /* 4602 * For backwards compatibility. Functionality superseded by sigprocmask. 4603 */ 4604 SYSCALL_DEFINE0(sgetmask) 4605 { 4606 /* SMP safe */ 4607 return current->blocked.sig[0]; 4608 } 4609 4610 SYSCALL_DEFINE1(ssetmask, int, newmask) 4611 { 4612 int old = current->blocked.sig[0]; 4613 sigset_t newset; 4614 4615 siginitset(&newset, newmask); 4616 set_current_blocked(&newset); 4617 4618 return old; 4619 } 4620 #endif /* CONFIG_SGETMASK_SYSCALL */ 4621 4622 #ifdef __ARCH_WANT_SYS_SIGNAL 4623 /* 4624 * For backwards compatibility. Functionality superseded by sigaction. 4625 */ 4626 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4627 { 4628 struct k_sigaction new_sa, old_sa; 4629 int ret; 4630 4631 new_sa.sa.sa_handler = handler; 4632 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4633 sigemptyset(&new_sa.sa.sa_mask); 4634 4635 ret = do_sigaction(sig, &new_sa, &old_sa); 4636 4637 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4638 } 4639 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4640 4641 #ifdef __ARCH_WANT_SYS_PAUSE 4642 4643 SYSCALL_DEFINE0(pause) 4644 { 4645 while (!signal_pending(current)) { 4646 __set_current_state(TASK_INTERRUPTIBLE); 4647 schedule(); 4648 } 4649 return -ERESTARTNOHAND; 4650 } 4651 4652 #endif 4653 4654 static int sigsuspend(sigset_t *set) 4655 { 4656 current->saved_sigmask = current->blocked; 4657 set_current_blocked(set); 4658 4659 while (!signal_pending(current)) { 4660 __set_current_state(TASK_INTERRUPTIBLE); 4661 schedule(); 4662 } 4663 set_restore_sigmask(); 4664 return -ERESTARTNOHAND; 4665 } 4666 4667 /** 4668 * sys_rt_sigsuspend - replace the signal mask for a value with the 4669 * @unewset value until a signal is received 4670 * @unewset: new signal mask value 4671 * @sigsetsize: size of sigset_t type 4672 */ 4673 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4674 { 4675 sigset_t newset; 4676 4677 /* XXX: Don't preclude handling different sized sigset_t's. */ 4678 if (sigsetsize != sizeof(sigset_t)) 4679 return -EINVAL; 4680 4681 if (copy_from_user(&newset, unewset, sizeof(newset))) 4682 return -EFAULT; 4683 return sigsuspend(&newset); 4684 } 4685 4686 #ifdef CONFIG_COMPAT 4687 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4688 { 4689 sigset_t newset; 4690 4691 /* XXX: Don't preclude handling different sized sigset_t's. */ 4692 if (sigsetsize != sizeof(sigset_t)) 4693 return -EINVAL; 4694 4695 if (get_compat_sigset(&newset, unewset)) 4696 return -EFAULT; 4697 return sigsuspend(&newset); 4698 } 4699 #endif 4700 4701 #ifdef CONFIG_OLD_SIGSUSPEND 4702 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4703 { 4704 sigset_t blocked; 4705 siginitset(&blocked, mask); 4706 return sigsuspend(&blocked); 4707 } 4708 #endif 4709 #ifdef CONFIG_OLD_SIGSUSPEND3 4710 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4711 { 4712 sigset_t blocked; 4713 siginitset(&blocked, mask); 4714 return sigsuspend(&blocked); 4715 } 4716 #endif 4717 4718 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4719 { 4720 return NULL; 4721 } 4722 4723 static inline void siginfo_buildtime_checks(void) 4724 { 4725 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4726 4727 /* Verify the offsets in the two siginfos match */ 4728 #define CHECK_OFFSET(field) \ 4729 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4730 4731 /* kill */ 4732 CHECK_OFFSET(si_pid); 4733 CHECK_OFFSET(si_uid); 4734 4735 /* timer */ 4736 CHECK_OFFSET(si_tid); 4737 CHECK_OFFSET(si_overrun); 4738 CHECK_OFFSET(si_value); 4739 4740 /* rt */ 4741 CHECK_OFFSET(si_pid); 4742 CHECK_OFFSET(si_uid); 4743 CHECK_OFFSET(si_value); 4744 4745 /* sigchld */ 4746 CHECK_OFFSET(si_pid); 4747 CHECK_OFFSET(si_uid); 4748 CHECK_OFFSET(si_status); 4749 CHECK_OFFSET(si_utime); 4750 CHECK_OFFSET(si_stime); 4751 4752 /* sigfault */ 4753 CHECK_OFFSET(si_addr); 4754 CHECK_OFFSET(si_trapno); 4755 CHECK_OFFSET(si_addr_lsb); 4756 CHECK_OFFSET(si_lower); 4757 CHECK_OFFSET(si_upper); 4758 CHECK_OFFSET(si_pkey); 4759 CHECK_OFFSET(si_perf_data); 4760 CHECK_OFFSET(si_perf_type); 4761 CHECK_OFFSET(si_perf_flags); 4762 4763 /* sigpoll */ 4764 CHECK_OFFSET(si_band); 4765 CHECK_OFFSET(si_fd); 4766 4767 /* sigsys */ 4768 CHECK_OFFSET(si_call_addr); 4769 CHECK_OFFSET(si_syscall); 4770 CHECK_OFFSET(si_arch); 4771 #undef CHECK_OFFSET 4772 4773 /* usb asyncio */ 4774 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != 4775 offsetof(struct siginfo, si_addr)); 4776 if (sizeof(int) == sizeof(void __user *)) { 4777 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != 4778 sizeof(void __user *)); 4779 } else { 4780 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + 4781 sizeof_field(struct siginfo, si_uid)) != 4782 sizeof(void __user *)); 4783 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != 4784 offsetof(struct siginfo, si_uid)); 4785 } 4786 #ifdef CONFIG_COMPAT 4787 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != 4788 offsetof(struct compat_siginfo, si_addr)); 4789 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4790 sizeof(compat_uptr_t)); 4791 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4792 sizeof_field(struct siginfo, si_pid)); 4793 #endif 4794 } 4795 4796 #if defined(CONFIG_SYSCTL) 4797 static struct ctl_table signal_debug_table[] = { 4798 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE 4799 { 4800 .procname = "exception-trace", 4801 .data = &show_unhandled_signals, 4802 .maxlen = sizeof(int), 4803 .mode = 0644, 4804 .proc_handler = proc_dointvec 4805 }, 4806 #endif 4807 { } 4808 }; 4809 4810 static int __init init_signal_sysctls(void) 4811 { 4812 register_sysctl_init("debug", signal_debug_table); 4813 return 0; 4814 } 4815 early_initcall(init_signal_sysctls); 4816 #endif /* CONFIG_SYSCTL */ 4817 4818 void __init signals_init(void) 4819 { 4820 siginfo_buildtime_checks(); 4821 4822 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT); 4823 } 4824 4825 #ifdef CONFIG_KGDB_KDB 4826 #include <linux/kdb.h> 4827 /* 4828 * kdb_send_sig - Allows kdb to send signals without exposing 4829 * signal internals. This function checks if the required locks are 4830 * available before calling the main signal code, to avoid kdb 4831 * deadlocks. 4832 */ 4833 void kdb_send_sig(struct task_struct *t, int sig) 4834 { 4835 static struct task_struct *kdb_prev_t; 4836 int new_t, ret; 4837 if (!spin_trylock(&t->sighand->siglock)) { 4838 kdb_printf("Can't do kill command now.\n" 4839 "The sigmask lock is held somewhere else in " 4840 "kernel, try again later\n"); 4841 return; 4842 } 4843 new_t = kdb_prev_t != t; 4844 kdb_prev_t = t; 4845 if (!task_is_running(t) && new_t) { 4846 spin_unlock(&t->sighand->siglock); 4847 kdb_printf("Process is not RUNNING, sending a signal from " 4848 "kdb risks deadlock\n" 4849 "on the run queue locks. " 4850 "The signal has _not_ been sent.\n" 4851 "Reissue the kill command if you want to risk " 4852 "the deadlock.\n"); 4853 return; 4854 } 4855 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 4856 spin_unlock(&t->sighand->siglock); 4857 if (ret) 4858 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4859 sig, t->pid); 4860 else 4861 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4862 } 4863 #endif /* CONFIG_KGDB_KDB */ 4864