xref: /linux/kernel/signal.c (revision fbd126f5a658b92c7f6af986a6d89cf5e5693268)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/mm.h>
26 #include <linux/proc_fs.h>
27 #include <linux/tty.h>
28 #include <linux/binfmts.h>
29 #include <linux/coredump.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/ptrace.h>
33 #include <linux/signal.h>
34 #include <linux/signalfd.h>
35 #include <linux/ratelimit.h>
36 #include <linux/task_work.h>
37 #include <linux/capability.h>
38 #include <linux/freezer.h>
39 #include <linux/pid_namespace.h>
40 #include <linux/nsproxy.h>
41 #include <linux/user_namespace.h>
42 #include <linux/uprobes.h>
43 #include <linux/compat.h>
44 #include <linux/cn_proc.h>
45 #include <linux/compiler.h>
46 #include <linux/posix-timers.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49 #include <linux/sysctl.h>
50 
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/signal.h>
53 
54 #include <asm/param.h>
55 #include <linux/uaccess.h>
56 #include <asm/unistd.h>
57 #include <asm/siginfo.h>
58 #include <asm/cacheflush.h>
59 #include <asm/syscall.h>	/* for syscall_get_* */
60 
61 /*
62  * SLAB caches for signal bits.
63  */
64 
65 static struct kmem_cache *sigqueue_cachep;
66 
67 int print_fatal_signals __read_mostly;
68 
69 static void __user *sig_handler(struct task_struct *t, int sig)
70 {
71 	return t->sighand->action[sig - 1].sa.sa_handler;
72 }
73 
74 static inline bool sig_handler_ignored(void __user *handler, int sig)
75 {
76 	/* Is it explicitly or implicitly ignored? */
77 	return handler == SIG_IGN ||
78 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
79 }
80 
81 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
82 {
83 	void __user *handler;
84 
85 	handler = sig_handler(t, sig);
86 
87 	/* SIGKILL and SIGSTOP may not be sent to the global init */
88 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
89 		return true;
90 
91 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
92 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
93 		return true;
94 
95 	/* Only allow kernel generated signals to this kthread */
96 	if (unlikely((t->flags & PF_KTHREAD) &&
97 		     (handler == SIG_KTHREAD_KERNEL) && !force))
98 		return true;
99 
100 	return sig_handler_ignored(handler, sig);
101 }
102 
103 static bool sig_ignored(struct task_struct *t, int sig, bool force)
104 {
105 	/*
106 	 * Blocked signals are never ignored, since the
107 	 * signal handler may change by the time it is
108 	 * unblocked.
109 	 */
110 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
111 		return false;
112 
113 	/*
114 	 * Tracers may want to know about even ignored signal unless it
115 	 * is SIGKILL which can't be reported anyway but can be ignored
116 	 * by SIGNAL_UNKILLABLE task.
117 	 */
118 	if (t->ptrace && sig != SIGKILL)
119 		return false;
120 
121 	return sig_task_ignored(t, sig, force);
122 }
123 
124 /*
125  * Re-calculate pending state from the set of locally pending
126  * signals, globally pending signals, and blocked signals.
127  */
128 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
129 {
130 	unsigned long ready;
131 	long i;
132 
133 	switch (_NSIG_WORDS) {
134 	default:
135 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
136 			ready |= signal->sig[i] &~ blocked->sig[i];
137 		break;
138 
139 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
140 		ready |= signal->sig[2] &~ blocked->sig[2];
141 		ready |= signal->sig[1] &~ blocked->sig[1];
142 		ready |= signal->sig[0] &~ blocked->sig[0];
143 		break;
144 
145 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
146 		ready |= signal->sig[0] &~ blocked->sig[0];
147 		break;
148 
149 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
150 	}
151 	return ready !=	0;
152 }
153 
154 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
155 
156 static bool recalc_sigpending_tsk(struct task_struct *t)
157 {
158 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
159 	    PENDING(&t->pending, &t->blocked) ||
160 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
161 	    cgroup_task_frozen(t)) {
162 		set_tsk_thread_flag(t, TIF_SIGPENDING);
163 		return true;
164 	}
165 
166 	/*
167 	 * We must never clear the flag in another thread, or in current
168 	 * when it's possible the current syscall is returning -ERESTART*.
169 	 * So we don't clear it here, and only callers who know they should do.
170 	 */
171 	return false;
172 }
173 
174 /*
175  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
176  * This is superfluous when called on current, the wakeup is a harmless no-op.
177  */
178 void recalc_sigpending_and_wake(struct task_struct *t)
179 {
180 	if (recalc_sigpending_tsk(t))
181 		signal_wake_up(t, 0);
182 }
183 
184 void recalc_sigpending(void)
185 {
186 	if (!recalc_sigpending_tsk(current) && !freezing(current))
187 		clear_thread_flag(TIF_SIGPENDING);
188 
189 }
190 EXPORT_SYMBOL(recalc_sigpending);
191 
192 void calculate_sigpending(void)
193 {
194 	/* Have any signals or users of TIF_SIGPENDING been delayed
195 	 * until after fork?
196 	 */
197 	spin_lock_irq(&current->sighand->siglock);
198 	set_tsk_thread_flag(current, TIF_SIGPENDING);
199 	recalc_sigpending();
200 	spin_unlock_irq(&current->sighand->siglock);
201 }
202 
203 /* Given the mask, find the first available signal that should be serviced. */
204 
205 #define SYNCHRONOUS_MASK \
206 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
207 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
208 
209 int next_signal(struct sigpending *pending, sigset_t *mask)
210 {
211 	unsigned long i, *s, *m, x;
212 	int sig = 0;
213 
214 	s = pending->signal.sig;
215 	m = mask->sig;
216 
217 	/*
218 	 * Handle the first word specially: it contains the
219 	 * synchronous signals that need to be dequeued first.
220 	 */
221 	x = *s &~ *m;
222 	if (x) {
223 		if (x & SYNCHRONOUS_MASK)
224 			x &= SYNCHRONOUS_MASK;
225 		sig = ffz(~x) + 1;
226 		return sig;
227 	}
228 
229 	switch (_NSIG_WORDS) {
230 	default:
231 		for (i = 1; i < _NSIG_WORDS; ++i) {
232 			x = *++s &~ *++m;
233 			if (!x)
234 				continue;
235 			sig = ffz(~x) + i*_NSIG_BPW + 1;
236 			break;
237 		}
238 		break;
239 
240 	case 2:
241 		x = s[1] &~ m[1];
242 		if (!x)
243 			break;
244 		sig = ffz(~x) + _NSIG_BPW + 1;
245 		break;
246 
247 	case 1:
248 		/* Nothing to do */
249 		break;
250 	}
251 
252 	return sig;
253 }
254 
255 static inline void print_dropped_signal(int sig)
256 {
257 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
258 
259 	if (!print_fatal_signals)
260 		return;
261 
262 	if (!__ratelimit(&ratelimit_state))
263 		return;
264 
265 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
266 				current->comm, current->pid, sig);
267 }
268 
269 /**
270  * task_set_jobctl_pending - set jobctl pending bits
271  * @task: target task
272  * @mask: pending bits to set
273  *
274  * Clear @mask from @task->jobctl.  @mask must be subset of
275  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
276  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
277  * cleared.  If @task is already being killed or exiting, this function
278  * becomes noop.
279  *
280  * CONTEXT:
281  * Must be called with @task->sighand->siglock held.
282  *
283  * RETURNS:
284  * %true if @mask is set, %false if made noop because @task was dying.
285  */
286 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
287 {
288 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
289 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
290 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
291 
292 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
293 		return false;
294 
295 	if (mask & JOBCTL_STOP_SIGMASK)
296 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
297 
298 	task->jobctl |= mask;
299 	return true;
300 }
301 
302 /**
303  * task_clear_jobctl_trapping - clear jobctl trapping bit
304  * @task: target task
305  *
306  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
307  * Clear it and wake up the ptracer.  Note that we don't need any further
308  * locking.  @task->siglock guarantees that @task->parent points to the
309  * ptracer.
310  *
311  * CONTEXT:
312  * Must be called with @task->sighand->siglock held.
313  */
314 void task_clear_jobctl_trapping(struct task_struct *task)
315 {
316 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
317 		task->jobctl &= ~JOBCTL_TRAPPING;
318 		smp_mb();	/* advised by wake_up_bit() */
319 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
320 	}
321 }
322 
323 /**
324  * task_clear_jobctl_pending - clear jobctl pending bits
325  * @task: target task
326  * @mask: pending bits to clear
327  *
328  * Clear @mask from @task->jobctl.  @mask must be subset of
329  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
330  * STOP bits are cleared together.
331  *
332  * If clearing of @mask leaves no stop or trap pending, this function calls
333  * task_clear_jobctl_trapping().
334  *
335  * CONTEXT:
336  * Must be called with @task->sighand->siglock held.
337  */
338 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
339 {
340 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
341 
342 	if (mask & JOBCTL_STOP_PENDING)
343 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
344 
345 	task->jobctl &= ~mask;
346 
347 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
348 		task_clear_jobctl_trapping(task);
349 }
350 
351 /**
352  * task_participate_group_stop - participate in a group stop
353  * @task: task participating in a group stop
354  *
355  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
356  * Group stop states are cleared and the group stop count is consumed if
357  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
358  * stop, the appropriate `SIGNAL_*` flags are set.
359  *
360  * CONTEXT:
361  * Must be called with @task->sighand->siglock held.
362  *
363  * RETURNS:
364  * %true if group stop completion should be notified to the parent, %false
365  * otherwise.
366  */
367 static bool task_participate_group_stop(struct task_struct *task)
368 {
369 	struct signal_struct *sig = task->signal;
370 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
371 
372 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
373 
374 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
375 
376 	if (!consume)
377 		return false;
378 
379 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
380 		sig->group_stop_count--;
381 
382 	/*
383 	 * Tell the caller to notify completion iff we are entering into a
384 	 * fresh group stop.  Read comment in do_signal_stop() for details.
385 	 */
386 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
387 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
388 		return true;
389 	}
390 	return false;
391 }
392 
393 void task_join_group_stop(struct task_struct *task)
394 {
395 	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
396 	struct signal_struct *sig = current->signal;
397 
398 	if (sig->group_stop_count) {
399 		sig->group_stop_count++;
400 		mask |= JOBCTL_STOP_CONSUME;
401 	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
402 		return;
403 
404 	/* Have the new thread join an on-going signal group stop */
405 	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
406 }
407 
408 /*
409  * allocate a new signal queue record
410  * - this may be called without locks if and only if t == current, otherwise an
411  *   appropriate lock must be held to stop the target task from exiting
412  */
413 static struct sigqueue *
414 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
415 		 int override_rlimit, const unsigned int sigqueue_flags)
416 {
417 	struct sigqueue *q = NULL;
418 	struct ucounts *ucounts;
419 	long sigpending;
420 
421 	/*
422 	 * Protect access to @t credentials. This can go away when all
423 	 * callers hold rcu read lock.
424 	 *
425 	 * NOTE! A pending signal will hold on to the user refcount,
426 	 * and we get/put the refcount only when the sigpending count
427 	 * changes from/to zero.
428 	 */
429 	rcu_read_lock();
430 	ucounts = task_ucounts(t);
431 	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
432 	rcu_read_unlock();
433 	if (!sigpending)
434 		return NULL;
435 
436 	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
437 		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
438 	} else {
439 		print_dropped_signal(sig);
440 	}
441 
442 	if (unlikely(q == NULL)) {
443 		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
444 	} else {
445 		INIT_LIST_HEAD(&q->list);
446 		q->flags = sigqueue_flags;
447 		q->ucounts = ucounts;
448 	}
449 	return q;
450 }
451 
452 static void __sigqueue_free(struct sigqueue *q)
453 {
454 	if (q->flags & SIGQUEUE_PREALLOC)
455 		return;
456 	if (q->ucounts) {
457 		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
458 		q->ucounts = NULL;
459 	}
460 	kmem_cache_free(sigqueue_cachep, q);
461 }
462 
463 void flush_sigqueue(struct sigpending *queue)
464 {
465 	struct sigqueue *q;
466 
467 	sigemptyset(&queue->signal);
468 	while (!list_empty(&queue->list)) {
469 		q = list_entry(queue->list.next, struct sigqueue , list);
470 		list_del_init(&q->list);
471 		__sigqueue_free(q);
472 	}
473 }
474 
475 /*
476  * Flush all pending signals for this kthread.
477  */
478 void flush_signals(struct task_struct *t)
479 {
480 	unsigned long flags;
481 
482 	spin_lock_irqsave(&t->sighand->siglock, flags);
483 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
484 	flush_sigqueue(&t->pending);
485 	flush_sigqueue(&t->signal->shared_pending);
486 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
487 }
488 EXPORT_SYMBOL(flush_signals);
489 
490 #ifdef CONFIG_POSIX_TIMERS
491 static void __flush_itimer_signals(struct sigpending *pending)
492 {
493 	sigset_t signal, retain;
494 	struct sigqueue *q, *n;
495 
496 	signal = pending->signal;
497 	sigemptyset(&retain);
498 
499 	list_for_each_entry_safe(q, n, &pending->list, list) {
500 		int sig = q->info.si_signo;
501 
502 		if (likely(q->info.si_code != SI_TIMER)) {
503 			sigaddset(&retain, sig);
504 		} else {
505 			sigdelset(&signal, sig);
506 			list_del_init(&q->list);
507 			__sigqueue_free(q);
508 		}
509 	}
510 
511 	sigorsets(&pending->signal, &signal, &retain);
512 }
513 
514 void flush_itimer_signals(void)
515 {
516 	struct task_struct *tsk = current;
517 	unsigned long flags;
518 
519 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
520 	__flush_itimer_signals(&tsk->pending);
521 	__flush_itimer_signals(&tsk->signal->shared_pending);
522 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
523 }
524 #endif
525 
526 void ignore_signals(struct task_struct *t)
527 {
528 	int i;
529 
530 	for (i = 0; i < _NSIG; ++i)
531 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
532 
533 	flush_signals(t);
534 }
535 
536 /*
537  * Flush all handlers for a task.
538  */
539 
540 void
541 flush_signal_handlers(struct task_struct *t, int force_default)
542 {
543 	int i;
544 	struct k_sigaction *ka = &t->sighand->action[0];
545 	for (i = _NSIG ; i != 0 ; i--) {
546 		if (force_default || ka->sa.sa_handler != SIG_IGN)
547 			ka->sa.sa_handler = SIG_DFL;
548 		ka->sa.sa_flags = 0;
549 #ifdef __ARCH_HAS_SA_RESTORER
550 		ka->sa.sa_restorer = NULL;
551 #endif
552 		sigemptyset(&ka->sa.sa_mask);
553 		ka++;
554 	}
555 }
556 
557 bool unhandled_signal(struct task_struct *tsk, int sig)
558 {
559 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
560 	if (is_global_init(tsk))
561 		return true;
562 
563 	if (handler != SIG_IGN && handler != SIG_DFL)
564 		return false;
565 
566 	/* If dying, we handle all new signals by ignoring them */
567 	if (fatal_signal_pending(tsk))
568 		return false;
569 
570 	/* if ptraced, let the tracer determine */
571 	return !tsk->ptrace;
572 }
573 
574 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
575 			   bool *resched_timer)
576 {
577 	struct sigqueue *q, *first = NULL;
578 
579 	/*
580 	 * Collect the siginfo appropriate to this signal.  Check if
581 	 * there is another siginfo for the same signal.
582 	*/
583 	list_for_each_entry(q, &list->list, list) {
584 		if (q->info.si_signo == sig) {
585 			if (first)
586 				goto still_pending;
587 			first = q;
588 		}
589 	}
590 
591 	sigdelset(&list->signal, sig);
592 
593 	if (first) {
594 still_pending:
595 		list_del_init(&first->list);
596 		copy_siginfo(info, &first->info);
597 
598 		*resched_timer =
599 			(first->flags & SIGQUEUE_PREALLOC) &&
600 			(info->si_code == SI_TIMER) &&
601 			(info->si_sys_private);
602 
603 		__sigqueue_free(first);
604 	} else {
605 		/*
606 		 * Ok, it wasn't in the queue.  This must be
607 		 * a fast-pathed signal or we must have been
608 		 * out of queue space.  So zero out the info.
609 		 */
610 		clear_siginfo(info);
611 		info->si_signo = sig;
612 		info->si_errno = 0;
613 		info->si_code = SI_USER;
614 		info->si_pid = 0;
615 		info->si_uid = 0;
616 	}
617 }
618 
619 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
620 			kernel_siginfo_t *info, bool *resched_timer)
621 {
622 	int sig = next_signal(pending, mask);
623 
624 	if (sig)
625 		collect_signal(sig, pending, info, resched_timer);
626 	return sig;
627 }
628 
629 /*
630  * Dequeue a signal and return the element to the caller, which is
631  * expected to free it.
632  *
633  * All callers have to hold the siglock.
634  */
635 int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
636 		   kernel_siginfo_t *info, enum pid_type *type)
637 {
638 	bool resched_timer = false;
639 	int signr;
640 
641 	/* We only dequeue private signals from ourselves, we don't let
642 	 * signalfd steal them
643 	 */
644 	*type = PIDTYPE_PID;
645 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
646 	if (!signr) {
647 		*type = PIDTYPE_TGID;
648 		signr = __dequeue_signal(&tsk->signal->shared_pending,
649 					 mask, info, &resched_timer);
650 #ifdef CONFIG_POSIX_TIMERS
651 		/*
652 		 * itimer signal ?
653 		 *
654 		 * itimers are process shared and we restart periodic
655 		 * itimers in the signal delivery path to prevent DoS
656 		 * attacks in the high resolution timer case. This is
657 		 * compliant with the old way of self-restarting
658 		 * itimers, as the SIGALRM is a legacy signal and only
659 		 * queued once. Changing the restart behaviour to
660 		 * restart the timer in the signal dequeue path is
661 		 * reducing the timer noise on heavy loaded !highres
662 		 * systems too.
663 		 */
664 		if (unlikely(signr == SIGALRM)) {
665 			struct hrtimer *tmr = &tsk->signal->real_timer;
666 
667 			if (!hrtimer_is_queued(tmr) &&
668 			    tsk->signal->it_real_incr != 0) {
669 				hrtimer_forward(tmr, tmr->base->get_time(),
670 						tsk->signal->it_real_incr);
671 				hrtimer_restart(tmr);
672 			}
673 		}
674 #endif
675 	}
676 
677 	recalc_sigpending();
678 	if (!signr)
679 		return 0;
680 
681 	if (unlikely(sig_kernel_stop(signr))) {
682 		/*
683 		 * Set a marker that we have dequeued a stop signal.  Our
684 		 * caller might release the siglock and then the pending
685 		 * stop signal it is about to process is no longer in the
686 		 * pending bitmasks, but must still be cleared by a SIGCONT
687 		 * (and overruled by a SIGKILL).  So those cases clear this
688 		 * shared flag after we've set it.  Note that this flag may
689 		 * remain set after the signal we return is ignored or
690 		 * handled.  That doesn't matter because its only purpose
691 		 * is to alert stop-signal processing code when another
692 		 * processor has come along and cleared the flag.
693 		 */
694 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
695 	}
696 #ifdef CONFIG_POSIX_TIMERS
697 	if (resched_timer) {
698 		/*
699 		 * Release the siglock to ensure proper locking order
700 		 * of timer locks outside of siglocks.  Note, we leave
701 		 * irqs disabled here, since the posix-timers code is
702 		 * about to disable them again anyway.
703 		 */
704 		spin_unlock(&tsk->sighand->siglock);
705 		posixtimer_rearm(info);
706 		spin_lock(&tsk->sighand->siglock);
707 
708 		/* Don't expose the si_sys_private value to userspace */
709 		info->si_sys_private = 0;
710 	}
711 #endif
712 	return signr;
713 }
714 EXPORT_SYMBOL_GPL(dequeue_signal);
715 
716 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
717 {
718 	struct task_struct *tsk = current;
719 	struct sigpending *pending = &tsk->pending;
720 	struct sigqueue *q, *sync = NULL;
721 
722 	/*
723 	 * Might a synchronous signal be in the queue?
724 	 */
725 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
726 		return 0;
727 
728 	/*
729 	 * Return the first synchronous signal in the queue.
730 	 */
731 	list_for_each_entry(q, &pending->list, list) {
732 		/* Synchronous signals have a positive si_code */
733 		if ((q->info.si_code > SI_USER) &&
734 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
735 			sync = q;
736 			goto next;
737 		}
738 	}
739 	return 0;
740 next:
741 	/*
742 	 * Check if there is another siginfo for the same signal.
743 	 */
744 	list_for_each_entry_continue(q, &pending->list, list) {
745 		if (q->info.si_signo == sync->info.si_signo)
746 			goto still_pending;
747 	}
748 
749 	sigdelset(&pending->signal, sync->info.si_signo);
750 	recalc_sigpending();
751 still_pending:
752 	list_del_init(&sync->list);
753 	copy_siginfo(info, &sync->info);
754 	__sigqueue_free(sync);
755 	return info->si_signo;
756 }
757 
758 /*
759  * Tell a process that it has a new active signal..
760  *
761  * NOTE! we rely on the previous spin_lock to
762  * lock interrupts for us! We can only be called with
763  * "siglock" held, and the local interrupt must
764  * have been disabled when that got acquired!
765  *
766  * No need to set need_resched since signal event passing
767  * goes through ->blocked
768  */
769 void signal_wake_up_state(struct task_struct *t, unsigned int state)
770 {
771 	lockdep_assert_held(&t->sighand->siglock);
772 
773 	set_tsk_thread_flag(t, TIF_SIGPENDING);
774 
775 	/*
776 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
777 	 * case. We don't check t->state here because there is a race with it
778 	 * executing another processor and just now entering stopped state.
779 	 * By using wake_up_state, we ensure the process will wake up and
780 	 * handle its death signal.
781 	 */
782 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
783 		kick_process(t);
784 }
785 
786 /*
787  * Remove signals in mask from the pending set and queue.
788  * Returns 1 if any signals were found.
789  *
790  * All callers must be holding the siglock.
791  */
792 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
793 {
794 	struct sigqueue *q, *n;
795 	sigset_t m;
796 
797 	sigandsets(&m, mask, &s->signal);
798 	if (sigisemptyset(&m))
799 		return;
800 
801 	sigandnsets(&s->signal, &s->signal, mask);
802 	list_for_each_entry_safe(q, n, &s->list, list) {
803 		if (sigismember(mask, q->info.si_signo)) {
804 			list_del_init(&q->list);
805 			__sigqueue_free(q);
806 		}
807 	}
808 }
809 
810 static inline int is_si_special(const struct kernel_siginfo *info)
811 {
812 	return info <= SEND_SIG_PRIV;
813 }
814 
815 static inline bool si_fromuser(const struct kernel_siginfo *info)
816 {
817 	return info == SEND_SIG_NOINFO ||
818 		(!is_si_special(info) && SI_FROMUSER(info));
819 }
820 
821 /*
822  * called with RCU read lock from check_kill_permission()
823  */
824 static bool kill_ok_by_cred(struct task_struct *t)
825 {
826 	const struct cred *cred = current_cred();
827 	const struct cred *tcred = __task_cred(t);
828 
829 	return uid_eq(cred->euid, tcred->suid) ||
830 	       uid_eq(cred->euid, tcred->uid) ||
831 	       uid_eq(cred->uid, tcred->suid) ||
832 	       uid_eq(cred->uid, tcred->uid) ||
833 	       ns_capable(tcred->user_ns, CAP_KILL);
834 }
835 
836 /*
837  * Bad permissions for sending the signal
838  * - the caller must hold the RCU read lock
839  */
840 static int check_kill_permission(int sig, struct kernel_siginfo *info,
841 				 struct task_struct *t)
842 {
843 	struct pid *sid;
844 	int error;
845 
846 	if (!valid_signal(sig))
847 		return -EINVAL;
848 
849 	if (!si_fromuser(info))
850 		return 0;
851 
852 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
853 	if (error)
854 		return error;
855 
856 	if (!same_thread_group(current, t) &&
857 	    !kill_ok_by_cred(t)) {
858 		switch (sig) {
859 		case SIGCONT:
860 			sid = task_session(t);
861 			/*
862 			 * We don't return the error if sid == NULL. The
863 			 * task was unhashed, the caller must notice this.
864 			 */
865 			if (!sid || sid == task_session(current))
866 				break;
867 			fallthrough;
868 		default:
869 			return -EPERM;
870 		}
871 	}
872 
873 	return security_task_kill(t, info, sig, NULL);
874 }
875 
876 /**
877  * ptrace_trap_notify - schedule trap to notify ptracer
878  * @t: tracee wanting to notify tracer
879  *
880  * This function schedules sticky ptrace trap which is cleared on the next
881  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
882  * ptracer.
883  *
884  * If @t is running, STOP trap will be taken.  If trapped for STOP and
885  * ptracer is listening for events, tracee is woken up so that it can
886  * re-trap for the new event.  If trapped otherwise, STOP trap will be
887  * eventually taken without returning to userland after the existing traps
888  * are finished by PTRACE_CONT.
889  *
890  * CONTEXT:
891  * Must be called with @task->sighand->siglock held.
892  */
893 static void ptrace_trap_notify(struct task_struct *t)
894 {
895 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
896 	lockdep_assert_held(&t->sighand->siglock);
897 
898 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
899 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
900 }
901 
902 /*
903  * Handle magic process-wide effects of stop/continue signals. Unlike
904  * the signal actions, these happen immediately at signal-generation
905  * time regardless of blocking, ignoring, or handling.  This does the
906  * actual continuing for SIGCONT, but not the actual stopping for stop
907  * signals. The process stop is done as a signal action for SIG_DFL.
908  *
909  * Returns true if the signal should be actually delivered, otherwise
910  * it should be dropped.
911  */
912 static bool prepare_signal(int sig, struct task_struct *p, bool force)
913 {
914 	struct signal_struct *signal = p->signal;
915 	struct task_struct *t;
916 	sigset_t flush;
917 
918 	if (signal->flags & SIGNAL_GROUP_EXIT) {
919 		if (signal->core_state)
920 			return sig == SIGKILL;
921 		/*
922 		 * The process is in the middle of dying, drop the signal.
923 		 */
924 		return false;
925 	} else if (sig_kernel_stop(sig)) {
926 		/*
927 		 * This is a stop signal.  Remove SIGCONT from all queues.
928 		 */
929 		siginitset(&flush, sigmask(SIGCONT));
930 		flush_sigqueue_mask(&flush, &signal->shared_pending);
931 		for_each_thread(p, t)
932 			flush_sigqueue_mask(&flush, &t->pending);
933 	} else if (sig == SIGCONT) {
934 		unsigned int why;
935 		/*
936 		 * Remove all stop signals from all queues, wake all threads.
937 		 */
938 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
939 		flush_sigqueue_mask(&flush, &signal->shared_pending);
940 		for_each_thread(p, t) {
941 			flush_sigqueue_mask(&flush, &t->pending);
942 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
943 			if (likely(!(t->ptrace & PT_SEIZED))) {
944 				t->jobctl &= ~JOBCTL_STOPPED;
945 				wake_up_state(t, __TASK_STOPPED);
946 			} else
947 				ptrace_trap_notify(t);
948 		}
949 
950 		/*
951 		 * Notify the parent with CLD_CONTINUED if we were stopped.
952 		 *
953 		 * If we were in the middle of a group stop, we pretend it
954 		 * was already finished, and then continued. Since SIGCHLD
955 		 * doesn't queue we report only CLD_STOPPED, as if the next
956 		 * CLD_CONTINUED was dropped.
957 		 */
958 		why = 0;
959 		if (signal->flags & SIGNAL_STOP_STOPPED)
960 			why |= SIGNAL_CLD_CONTINUED;
961 		else if (signal->group_stop_count)
962 			why |= SIGNAL_CLD_STOPPED;
963 
964 		if (why) {
965 			/*
966 			 * The first thread which returns from do_signal_stop()
967 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
968 			 * notify its parent. See get_signal().
969 			 */
970 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
971 			signal->group_stop_count = 0;
972 			signal->group_exit_code = 0;
973 		}
974 	}
975 
976 	return !sig_ignored(p, sig, force);
977 }
978 
979 /*
980  * Test if P wants to take SIG.  After we've checked all threads with this,
981  * it's equivalent to finding no threads not blocking SIG.  Any threads not
982  * blocking SIG were ruled out because they are not running and already
983  * have pending signals.  Such threads will dequeue from the shared queue
984  * as soon as they're available, so putting the signal on the shared queue
985  * will be equivalent to sending it to one such thread.
986  */
987 static inline bool wants_signal(int sig, struct task_struct *p)
988 {
989 	if (sigismember(&p->blocked, sig))
990 		return false;
991 
992 	if (p->flags & PF_EXITING)
993 		return false;
994 
995 	if (sig == SIGKILL)
996 		return true;
997 
998 	if (task_is_stopped_or_traced(p))
999 		return false;
1000 
1001 	return task_curr(p) || !task_sigpending(p);
1002 }
1003 
1004 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
1005 {
1006 	struct signal_struct *signal = p->signal;
1007 	struct task_struct *t;
1008 
1009 	/*
1010 	 * Now find a thread we can wake up to take the signal off the queue.
1011 	 *
1012 	 * Try the suggested task first (may or may not be the main thread).
1013 	 */
1014 	if (wants_signal(sig, p))
1015 		t = p;
1016 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1017 		/*
1018 		 * There is just one thread and it does not need to be woken.
1019 		 * It will dequeue unblocked signals before it runs again.
1020 		 */
1021 		return;
1022 	else {
1023 		/*
1024 		 * Otherwise try to find a suitable thread.
1025 		 */
1026 		t = signal->curr_target;
1027 		while (!wants_signal(sig, t)) {
1028 			t = next_thread(t);
1029 			if (t == signal->curr_target)
1030 				/*
1031 				 * No thread needs to be woken.
1032 				 * Any eligible threads will see
1033 				 * the signal in the queue soon.
1034 				 */
1035 				return;
1036 		}
1037 		signal->curr_target = t;
1038 	}
1039 
1040 	/*
1041 	 * Found a killable thread.  If the signal will be fatal,
1042 	 * then start taking the whole group down immediately.
1043 	 */
1044 	if (sig_fatal(p, sig) &&
1045 	    (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1046 	    !sigismember(&t->real_blocked, sig) &&
1047 	    (sig == SIGKILL || !p->ptrace)) {
1048 		/*
1049 		 * This signal will be fatal to the whole group.
1050 		 */
1051 		if (!sig_kernel_coredump(sig)) {
1052 			/*
1053 			 * Start a group exit and wake everybody up.
1054 			 * This way we don't have other threads
1055 			 * running and doing things after a slower
1056 			 * thread has the fatal signal pending.
1057 			 */
1058 			signal->flags = SIGNAL_GROUP_EXIT;
1059 			signal->group_exit_code = sig;
1060 			signal->group_stop_count = 0;
1061 			__for_each_thread(signal, t) {
1062 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1063 				sigaddset(&t->pending.signal, SIGKILL);
1064 				signal_wake_up(t, 1);
1065 			}
1066 			return;
1067 		}
1068 	}
1069 
1070 	/*
1071 	 * The signal is already in the shared-pending queue.
1072 	 * Tell the chosen thread to wake up and dequeue it.
1073 	 */
1074 	signal_wake_up(t, sig == SIGKILL);
1075 	return;
1076 }
1077 
1078 static inline bool legacy_queue(struct sigpending *signals, int sig)
1079 {
1080 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1081 }
1082 
1083 static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1084 				struct task_struct *t, enum pid_type type, bool force)
1085 {
1086 	struct sigpending *pending;
1087 	struct sigqueue *q;
1088 	int override_rlimit;
1089 	int ret = 0, result;
1090 
1091 	lockdep_assert_held(&t->sighand->siglock);
1092 
1093 	result = TRACE_SIGNAL_IGNORED;
1094 	if (!prepare_signal(sig, t, force))
1095 		goto ret;
1096 
1097 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1098 	/*
1099 	 * Short-circuit ignored signals and support queuing
1100 	 * exactly one non-rt signal, so that we can get more
1101 	 * detailed information about the cause of the signal.
1102 	 */
1103 	result = TRACE_SIGNAL_ALREADY_PENDING;
1104 	if (legacy_queue(pending, sig))
1105 		goto ret;
1106 
1107 	result = TRACE_SIGNAL_DELIVERED;
1108 	/*
1109 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1110 	 */
1111 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1112 		goto out_set;
1113 
1114 	/*
1115 	 * Real-time signals must be queued if sent by sigqueue, or
1116 	 * some other real-time mechanism.  It is implementation
1117 	 * defined whether kill() does so.  We attempt to do so, on
1118 	 * the principle of least surprise, but since kill is not
1119 	 * allowed to fail with EAGAIN when low on memory we just
1120 	 * make sure at least one signal gets delivered and don't
1121 	 * pass on the info struct.
1122 	 */
1123 	if (sig < SIGRTMIN)
1124 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1125 	else
1126 		override_rlimit = 0;
1127 
1128 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1129 
1130 	if (q) {
1131 		list_add_tail(&q->list, &pending->list);
1132 		switch ((unsigned long) info) {
1133 		case (unsigned long) SEND_SIG_NOINFO:
1134 			clear_siginfo(&q->info);
1135 			q->info.si_signo = sig;
1136 			q->info.si_errno = 0;
1137 			q->info.si_code = SI_USER;
1138 			q->info.si_pid = task_tgid_nr_ns(current,
1139 							task_active_pid_ns(t));
1140 			rcu_read_lock();
1141 			q->info.si_uid =
1142 				from_kuid_munged(task_cred_xxx(t, user_ns),
1143 						 current_uid());
1144 			rcu_read_unlock();
1145 			break;
1146 		case (unsigned long) SEND_SIG_PRIV:
1147 			clear_siginfo(&q->info);
1148 			q->info.si_signo = sig;
1149 			q->info.si_errno = 0;
1150 			q->info.si_code = SI_KERNEL;
1151 			q->info.si_pid = 0;
1152 			q->info.si_uid = 0;
1153 			break;
1154 		default:
1155 			copy_siginfo(&q->info, info);
1156 			break;
1157 		}
1158 	} else if (!is_si_special(info) &&
1159 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1160 		/*
1161 		 * Queue overflow, abort.  We may abort if the
1162 		 * signal was rt and sent by user using something
1163 		 * other than kill().
1164 		 */
1165 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1166 		ret = -EAGAIN;
1167 		goto ret;
1168 	} else {
1169 		/*
1170 		 * This is a silent loss of information.  We still
1171 		 * send the signal, but the *info bits are lost.
1172 		 */
1173 		result = TRACE_SIGNAL_LOSE_INFO;
1174 	}
1175 
1176 out_set:
1177 	signalfd_notify(t, sig);
1178 	sigaddset(&pending->signal, sig);
1179 
1180 	/* Let multiprocess signals appear after on-going forks */
1181 	if (type > PIDTYPE_TGID) {
1182 		struct multiprocess_signals *delayed;
1183 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1184 			sigset_t *signal = &delayed->signal;
1185 			/* Can't queue both a stop and a continue signal */
1186 			if (sig == SIGCONT)
1187 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1188 			else if (sig_kernel_stop(sig))
1189 				sigdelset(signal, SIGCONT);
1190 			sigaddset(signal, sig);
1191 		}
1192 	}
1193 
1194 	complete_signal(sig, t, type);
1195 ret:
1196 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1197 	return ret;
1198 }
1199 
1200 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1201 {
1202 	bool ret = false;
1203 	switch (siginfo_layout(info->si_signo, info->si_code)) {
1204 	case SIL_KILL:
1205 	case SIL_CHLD:
1206 	case SIL_RT:
1207 		ret = true;
1208 		break;
1209 	case SIL_TIMER:
1210 	case SIL_POLL:
1211 	case SIL_FAULT:
1212 	case SIL_FAULT_TRAPNO:
1213 	case SIL_FAULT_MCEERR:
1214 	case SIL_FAULT_BNDERR:
1215 	case SIL_FAULT_PKUERR:
1216 	case SIL_FAULT_PERF_EVENT:
1217 	case SIL_SYS:
1218 		ret = false;
1219 		break;
1220 	}
1221 	return ret;
1222 }
1223 
1224 int send_signal_locked(int sig, struct kernel_siginfo *info,
1225 		       struct task_struct *t, enum pid_type type)
1226 {
1227 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1228 	bool force = false;
1229 
1230 	if (info == SEND_SIG_NOINFO) {
1231 		/* Force if sent from an ancestor pid namespace */
1232 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1233 	} else if (info == SEND_SIG_PRIV) {
1234 		/* Don't ignore kernel generated signals */
1235 		force = true;
1236 	} else if (has_si_pid_and_uid(info)) {
1237 		/* SIGKILL and SIGSTOP is special or has ids */
1238 		struct user_namespace *t_user_ns;
1239 
1240 		rcu_read_lock();
1241 		t_user_ns = task_cred_xxx(t, user_ns);
1242 		if (current_user_ns() != t_user_ns) {
1243 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1244 			info->si_uid = from_kuid_munged(t_user_ns, uid);
1245 		}
1246 		rcu_read_unlock();
1247 
1248 		/* A kernel generated signal? */
1249 		force = (info->si_code == SI_KERNEL);
1250 
1251 		/* From an ancestor pid namespace? */
1252 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1253 			info->si_pid = 0;
1254 			force = true;
1255 		}
1256 	}
1257 	return __send_signal_locked(sig, info, t, type, force);
1258 }
1259 
1260 static void print_fatal_signal(int signr)
1261 {
1262 	struct pt_regs *regs = task_pt_regs(current);
1263 	struct file *exe_file;
1264 
1265 	exe_file = get_task_exe_file(current);
1266 	if (exe_file) {
1267 		pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
1268 			exe_file, current->comm, signr);
1269 		fput(exe_file);
1270 	} else {
1271 		pr_info("%s: potentially unexpected fatal signal %d.\n",
1272 			current->comm, signr);
1273 	}
1274 
1275 #if defined(__i386__) && !defined(__arch_um__)
1276 	pr_info("code at %08lx: ", regs->ip);
1277 	{
1278 		int i;
1279 		for (i = 0; i < 16; i++) {
1280 			unsigned char insn;
1281 
1282 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1283 				break;
1284 			pr_cont("%02x ", insn);
1285 		}
1286 	}
1287 	pr_cont("\n");
1288 #endif
1289 	preempt_disable();
1290 	show_regs(regs);
1291 	preempt_enable();
1292 }
1293 
1294 static int __init setup_print_fatal_signals(char *str)
1295 {
1296 	get_option (&str, &print_fatal_signals);
1297 
1298 	return 1;
1299 }
1300 
1301 __setup("print-fatal-signals=", setup_print_fatal_signals);
1302 
1303 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1304 			enum pid_type type)
1305 {
1306 	unsigned long flags;
1307 	int ret = -ESRCH;
1308 
1309 	if (lock_task_sighand(p, &flags)) {
1310 		ret = send_signal_locked(sig, info, p, type);
1311 		unlock_task_sighand(p, &flags);
1312 	}
1313 
1314 	return ret;
1315 }
1316 
1317 enum sig_handler {
1318 	HANDLER_CURRENT, /* If reachable use the current handler */
1319 	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1320 	HANDLER_EXIT,	 /* Only visible as the process exit code */
1321 };
1322 
1323 /*
1324  * Force a signal that the process can't ignore: if necessary
1325  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1326  *
1327  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1328  * since we do not want to have a signal handler that was blocked
1329  * be invoked when user space had explicitly blocked it.
1330  *
1331  * We don't want to have recursive SIGSEGV's etc, for example,
1332  * that is why we also clear SIGNAL_UNKILLABLE.
1333  */
1334 static int
1335 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1336 	enum sig_handler handler)
1337 {
1338 	unsigned long int flags;
1339 	int ret, blocked, ignored;
1340 	struct k_sigaction *action;
1341 	int sig = info->si_signo;
1342 
1343 	spin_lock_irqsave(&t->sighand->siglock, flags);
1344 	action = &t->sighand->action[sig-1];
1345 	ignored = action->sa.sa_handler == SIG_IGN;
1346 	blocked = sigismember(&t->blocked, sig);
1347 	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1348 		action->sa.sa_handler = SIG_DFL;
1349 		if (handler == HANDLER_EXIT)
1350 			action->sa.sa_flags |= SA_IMMUTABLE;
1351 		if (blocked) {
1352 			sigdelset(&t->blocked, sig);
1353 			recalc_sigpending_and_wake(t);
1354 		}
1355 	}
1356 	/*
1357 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1358 	 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1359 	 */
1360 	if (action->sa.sa_handler == SIG_DFL &&
1361 	    (!t->ptrace || (handler == HANDLER_EXIT)))
1362 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1363 	ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1364 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1365 
1366 	return ret;
1367 }
1368 
1369 int force_sig_info(struct kernel_siginfo *info)
1370 {
1371 	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1372 }
1373 
1374 /*
1375  * Nuke all other threads in the group.
1376  */
1377 int zap_other_threads(struct task_struct *p)
1378 {
1379 	struct task_struct *t = p;
1380 	int count = 0;
1381 
1382 	p->signal->group_stop_count = 0;
1383 
1384 	while_each_thread(p, t) {
1385 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1386 		/* Don't require de_thread to wait for the vhost_worker */
1387 		if ((t->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)
1388 			count++;
1389 
1390 		/* Don't bother with already dead threads */
1391 		if (t->exit_state)
1392 			continue;
1393 		sigaddset(&t->pending.signal, SIGKILL);
1394 		signal_wake_up(t, 1);
1395 	}
1396 
1397 	return count;
1398 }
1399 
1400 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1401 					   unsigned long *flags)
1402 {
1403 	struct sighand_struct *sighand;
1404 
1405 	rcu_read_lock();
1406 	for (;;) {
1407 		sighand = rcu_dereference(tsk->sighand);
1408 		if (unlikely(sighand == NULL))
1409 			break;
1410 
1411 		/*
1412 		 * This sighand can be already freed and even reused, but
1413 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1414 		 * initializes ->siglock: this slab can't go away, it has
1415 		 * the same object type, ->siglock can't be reinitialized.
1416 		 *
1417 		 * We need to ensure that tsk->sighand is still the same
1418 		 * after we take the lock, we can race with de_thread() or
1419 		 * __exit_signal(). In the latter case the next iteration
1420 		 * must see ->sighand == NULL.
1421 		 */
1422 		spin_lock_irqsave(&sighand->siglock, *flags);
1423 		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1424 			break;
1425 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1426 	}
1427 	rcu_read_unlock();
1428 
1429 	return sighand;
1430 }
1431 
1432 #ifdef CONFIG_LOCKDEP
1433 void lockdep_assert_task_sighand_held(struct task_struct *task)
1434 {
1435 	struct sighand_struct *sighand;
1436 
1437 	rcu_read_lock();
1438 	sighand = rcu_dereference(task->sighand);
1439 	if (sighand)
1440 		lockdep_assert_held(&sighand->siglock);
1441 	else
1442 		WARN_ON_ONCE(1);
1443 	rcu_read_unlock();
1444 }
1445 #endif
1446 
1447 /*
1448  * send signal info to all the members of a group
1449  */
1450 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1451 			struct task_struct *p, enum pid_type type)
1452 {
1453 	int ret;
1454 
1455 	rcu_read_lock();
1456 	ret = check_kill_permission(sig, info, p);
1457 	rcu_read_unlock();
1458 
1459 	if (!ret && sig)
1460 		ret = do_send_sig_info(sig, info, p, type);
1461 
1462 	return ret;
1463 }
1464 
1465 /*
1466  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1467  * control characters do (^C, ^Z etc)
1468  * - the caller must hold at least a readlock on tasklist_lock
1469  */
1470 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1471 {
1472 	struct task_struct *p = NULL;
1473 	int ret = -ESRCH;
1474 
1475 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1476 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1477 		/*
1478 		 * If group_send_sig_info() succeeds at least once ret
1479 		 * becomes 0 and after that the code below has no effect.
1480 		 * Otherwise we return the last err or -ESRCH if this
1481 		 * process group is empty.
1482 		 */
1483 		if (ret)
1484 			ret = err;
1485 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1486 
1487 	return ret;
1488 }
1489 
1490 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1491 {
1492 	int error = -ESRCH;
1493 	struct task_struct *p;
1494 
1495 	for (;;) {
1496 		rcu_read_lock();
1497 		p = pid_task(pid, PIDTYPE_PID);
1498 		if (p)
1499 			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1500 		rcu_read_unlock();
1501 		if (likely(!p || error != -ESRCH))
1502 			return error;
1503 
1504 		/*
1505 		 * The task was unhashed in between, try again.  If it
1506 		 * is dead, pid_task() will return NULL, if we race with
1507 		 * de_thread() it will find the new leader.
1508 		 */
1509 	}
1510 }
1511 
1512 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1513 {
1514 	int error;
1515 	rcu_read_lock();
1516 	error = kill_pid_info(sig, info, find_vpid(pid));
1517 	rcu_read_unlock();
1518 	return error;
1519 }
1520 
1521 static inline bool kill_as_cred_perm(const struct cred *cred,
1522 				     struct task_struct *target)
1523 {
1524 	const struct cred *pcred = __task_cred(target);
1525 
1526 	return uid_eq(cred->euid, pcred->suid) ||
1527 	       uid_eq(cred->euid, pcred->uid) ||
1528 	       uid_eq(cred->uid, pcred->suid) ||
1529 	       uid_eq(cred->uid, pcred->uid);
1530 }
1531 
1532 /*
1533  * The usb asyncio usage of siginfo is wrong.  The glibc support
1534  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1535  * AKA after the generic fields:
1536  *	kernel_pid_t	si_pid;
1537  *	kernel_uid32_t	si_uid;
1538  *	sigval_t	si_value;
1539  *
1540  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1541  * after the generic fields is:
1542  *	void __user 	*si_addr;
1543  *
1544  * This is a practical problem when there is a 64bit big endian kernel
1545  * and a 32bit userspace.  As the 32bit address will encoded in the low
1546  * 32bits of the pointer.  Those low 32bits will be stored at higher
1547  * address than appear in a 32 bit pointer.  So userspace will not
1548  * see the address it was expecting for it's completions.
1549  *
1550  * There is nothing in the encoding that can allow
1551  * copy_siginfo_to_user32 to detect this confusion of formats, so
1552  * handle this by requiring the caller of kill_pid_usb_asyncio to
1553  * notice when this situration takes place and to store the 32bit
1554  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1555  * parameter.
1556  */
1557 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1558 			 struct pid *pid, const struct cred *cred)
1559 {
1560 	struct kernel_siginfo info;
1561 	struct task_struct *p;
1562 	unsigned long flags;
1563 	int ret = -EINVAL;
1564 
1565 	if (!valid_signal(sig))
1566 		return ret;
1567 
1568 	clear_siginfo(&info);
1569 	info.si_signo = sig;
1570 	info.si_errno = errno;
1571 	info.si_code = SI_ASYNCIO;
1572 	*((sigval_t *)&info.si_pid) = addr;
1573 
1574 	rcu_read_lock();
1575 	p = pid_task(pid, PIDTYPE_PID);
1576 	if (!p) {
1577 		ret = -ESRCH;
1578 		goto out_unlock;
1579 	}
1580 	if (!kill_as_cred_perm(cred, p)) {
1581 		ret = -EPERM;
1582 		goto out_unlock;
1583 	}
1584 	ret = security_task_kill(p, &info, sig, cred);
1585 	if (ret)
1586 		goto out_unlock;
1587 
1588 	if (sig) {
1589 		if (lock_task_sighand(p, &flags)) {
1590 			ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1591 			unlock_task_sighand(p, &flags);
1592 		} else
1593 			ret = -ESRCH;
1594 	}
1595 out_unlock:
1596 	rcu_read_unlock();
1597 	return ret;
1598 }
1599 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1600 
1601 /*
1602  * kill_something_info() interprets pid in interesting ways just like kill(2).
1603  *
1604  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1605  * is probably wrong.  Should make it like BSD or SYSV.
1606  */
1607 
1608 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1609 {
1610 	int ret;
1611 
1612 	if (pid > 0)
1613 		return kill_proc_info(sig, info, pid);
1614 
1615 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1616 	if (pid == INT_MIN)
1617 		return -ESRCH;
1618 
1619 	read_lock(&tasklist_lock);
1620 	if (pid != -1) {
1621 		ret = __kill_pgrp_info(sig, info,
1622 				pid ? find_vpid(-pid) : task_pgrp(current));
1623 	} else {
1624 		int retval = 0, count = 0;
1625 		struct task_struct * p;
1626 
1627 		for_each_process(p) {
1628 			if (task_pid_vnr(p) > 1 &&
1629 					!same_thread_group(p, current)) {
1630 				int err = group_send_sig_info(sig, info, p,
1631 							      PIDTYPE_MAX);
1632 				++count;
1633 				if (err != -EPERM)
1634 					retval = err;
1635 			}
1636 		}
1637 		ret = count ? retval : -ESRCH;
1638 	}
1639 	read_unlock(&tasklist_lock);
1640 
1641 	return ret;
1642 }
1643 
1644 /*
1645  * These are for backward compatibility with the rest of the kernel source.
1646  */
1647 
1648 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1649 {
1650 	/*
1651 	 * Make sure legacy kernel users don't send in bad values
1652 	 * (normal paths check this in check_kill_permission).
1653 	 */
1654 	if (!valid_signal(sig))
1655 		return -EINVAL;
1656 
1657 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1658 }
1659 EXPORT_SYMBOL(send_sig_info);
1660 
1661 #define __si_special(priv) \
1662 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1663 
1664 int
1665 send_sig(int sig, struct task_struct *p, int priv)
1666 {
1667 	return send_sig_info(sig, __si_special(priv), p);
1668 }
1669 EXPORT_SYMBOL(send_sig);
1670 
1671 void force_sig(int sig)
1672 {
1673 	struct kernel_siginfo info;
1674 
1675 	clear_siginfo(&info);
1676 	info.si_signo = sig;
1677 	info.si_errno = 0;
1678 	info.si_code = SI_KERNEL;
1679 	info.si_pid = 0;
1680 	info.si_uid = 0;
1681 	force_sig_info(&info);
1682 }
1683 EXPORT_SYMBOL(force_sig);
1684 
1685 void force_fatal_sig(int sig)
1686 {
1687 	struct kernel_siginfo info;
1688 
1689 	clear_siginfo(&info);
1690 	info.si_signo = sig;
1691 	info.si_errno = 0;
1692 	info.si_code = SI_KERNEL;
1693 	info.si_pid = 0;
1694 	info.si_uid = 0;
1695 	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1696 }
1697 
1698 void force_exit_sig(int sig)
1699 {
1700 	struct kernel_siginfo info;
1701 
1702 	clear_siginfo(&info);
1703 	info.si_signo = sig;
1704 	info.si_errno = 0;
1705 	info.si_code = SI_KERNEL;
1706 	info.si_pid = 0;
1707 	info.si_uid = 0;
1708 	force_sig_info_to_task(&info, current, HANDLER_EXIT);
1709 }
1710 
1711 /*
1712  * When things go south during signal handling, we
1713  * will force a SIGSEGV. And if the signal that caused
1714  * the problem was already a SIGSEGV, we'll want to
1715  * make sure we don't even try to deliver the signal..
1716  */
1717 void force_sigsegv(int sig)
1718 {
1719 	if (sig == SIGSEGV)
1720 		force_fatal_sig(SIGSEGV);
1721 	else
1722 		force_sig(SIGSEGV);
1723 }
1724 
1725 int force_sig_fault_to_task(int sig, int code, void __user *addr
1726 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1727 	, struct task_struct *t)
1728 {
1729 	struct kernel_siginfo info;
1730 
1731 	clear_siginfo(&info);
1732 	info.si_signo = sig;
1733 	info.si_errno = 0;
1734 	info.si_code  = code;
1735 	info.si_addr  = addr;
1736 #ifdef __ia64__
1737 	info.si_imm = imm;
1738 	info.si_flags = flags;
1739 	info.si_isr = isr;
1740 #endif
1741 	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1742 }
1743 
1744 int force_sig_fault(int sig, int code, void __user *addr
1745 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1746 {
1747 	return force_sig_fault_to_task(sig, code, addr
1748 				       ___ARCH_SI_IA64(imm, flags, isr), current);
1749 }
1750 
1751 int send_sig_fault(int sig, int code, void __user *addr
1752 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1753 	, struct task_struct *t)
1754 {
1755 	struct kernel_siginfo info;
1756 
1757 	clear_siginfo(&info);
1758 	info.si_signo = sig;
1759 	info.si_errno = 0;
1760 	info.si_code  = code;
1761 	info.si_addr  = addr;
1762 #ifdef __ia64__
1763 	info.si_imm = imm;
1764 	info.si_flags = flags;
1765 	info.si_isr = isr;
1766 #endif
1767 	return send_sig_info(info.si_signo, &info, t);
1768 }
1769 
1770 int force_sig_mceerr(int code, void __user *addr, short lsb)
1771 {
1772 	struct kernel_siginfo info;
1773 
1774 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1775 	clear_siginfo(&info);
1776 	info.si_signo = SIGBUS;
1777 	info.si_errno = 0;
1778 	info.si_code = code;
1779 	info.si_addr = addr;
1780 	info.si_addr_lsb = lsb;
1781 	return force_sig_info(&info);
1782 }
1783 
1784 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1785 {
1786 	struct kernel_siginfo info;
1787 
1788 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1789 	clear_siginfo(&info);
1790 	info.si_signo = SIGBUS;
1791 	info.si_errno = 0;
1792 	info.si_code = code;
1793 	info.si_addr = addr;
1794 	info.si_addr_lsb = lsb;
1795 	return send_sig_info(info.si_signo, &info, t);
1796 }
1797 EXPORT_SYMBOL(send_sig_mceerr);
1798 
1799 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1800 {
1801 	struct kernel_siginfo info;
1802 
1803 	clear_siginfo(&info);
1804 	info.si_signo = SIGSEGV;
1805 	info.si_errno = 0;
1806 	info.si_code  = SEGV_BNDERR;
1807 	info.si_addr  = addr;
1808 	info.si_lower = lower;
1809 	info.si_upper = upper;
1810 	return force_sig_info(&info);
1811 }
1812 
1813 #ifdef SEGV_PKUERR
1814 int force_sig_pkuerr(void __user *addr, u32 pkey)
1815 {
1816 	struct kernel_siginfo info;
1817 
1818 	clear_siginfo(&info);
1819 	info.si_signo = SIGSEGV;
1820 	info.si_errno = 0;
1821 	info.si_code  = SEGV_PKUERR;
1822 	info.si_addr  = addr;
1823 	info.si_pkey  = pkey;
1824 	return force_sig_info(&info);
1825 }
1826 #endif
1827 
1828 int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1829 {
1830 	struct kernel_siginfo info;
1831 
1832 	clear_siginfo(&info);
1833 	info.si_signo     = SIGTRAP;
1834 	info.si_errno     = 0;
1835 	info.si_code      = TRAP_PERF;
1836 	info.si_addr      = addr;
1837 	info.si_perf_data = sig_data;
1838 	info.si_perf_type = type;
1839 
1840 	/*
1841 	 * Signals generated by perf events should not terminate the whole
1842 	 * process if SIGTRAP is blocked, however, delivering the signal
1843 	 * asynchronously is better than not delivering at all. But tell user
1844 	 * space if the signal was asynchronous, so it can clearly be
1845 	 * distinguished from normal synchronous ones.
1846 	 */
1847 	info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
1848 				     TRAP_PERF_FLAG_ASYNC :
1849 				     0;
1850 
1851 	return send_sig_info(info.si_signo, &info, current);
1852 }
1853 
1854 /**
1855  * force_sig_seccomp - signals the task to allow in-process syscall emulation
1856  * @syscall: syscall number to send to userland
1857  * @reason: filter-supplied reason code to send to userland (via si_errno)
1858  * @force_coredump: true to trigger a coredump
1859  *
1860  * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1861  */
1862 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1863 {
1864 	struct kernel_siginfo info;
1865 
1866 	clear_siginfo(&info);
1867 	info.si_signo = SIGSYS;
1868 	info.si_code = SYS_SECCOMP;
1869 	info.si_call_addr = (void __user *)KSTK_EIP(current);
1870 	info.si_errno = reason;
1871 	info.si_arch = syscall_get_arch(current);
1872 	info.si_syscall = syscall;
1873 	return force_sig_info_to_task(&info, current,
1874 		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1875 }
1876 
1877 /* For the crazy architectures that include trap information in
1878  * the errno field, instead of an actual errno value.
1879  */
1880 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1881 {
1882 	struct kernel_siginfo info;
1883 
1884 	clear_siginfo(&info);
1885 	info.si_signo = SIGTRAP;
1886 	info.si_errno = errno;
1887 	info.si_code  = TRAP_HWBKPT;
1888 	info.si_addr  = addr;
1889 	return force_sig_info(&info);
1890 }
1891 
1892 /* For the rare architectures that include trap information using
1893  * si_trapno.
1894  */
1895 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1896 {
1897 	struct kernel_siginfo info;
1898 
1899 	clear_siginfo(&info);
1900 	info.si_signo = sig;
1901 	info.si_errno = 0;
1902 	info.si_code  = code;
1903 	info.si_addr  = addr;
1904 	info.si_trapno = trapno;
1905 	return force_sig_info(&info);
1906 }
1907 
1908 /* For the rare architectures that include trap information using
1909  * si_trapno.
1910  */
1911 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1912 			  struct task_struct *t)
1913 {
1914 	struct kernel_siginfo info;
1915 
1916 	clear_siginfo(&info);
1917 	info.si_signo = sig;
1918 	info.si_errno = 0;
1919 	info.si_code  = code;
1920 	info.si_addr  = addr;
1921 	info.si_trapno = trapno;
1922 	return send_sig_info(info.si_signo, &info, t);
1923 }
1924 
1925 int kill_pgrp(struct pid *pid, int sig, int priv)
1926 {
1927 	int ret;
1928 
1929 	read_lock(&tasklist_lock);
1930 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1931 	read_unlock(&tasklist_lock);
1932 
1933 	return ret;
1934 }
1935 EXPORT_SYMBOL(kill_pgrp);
1936 
1937 int kill_pid(struct pid *pid, int sig, int priv)
1938 {
1939 	return kill_pid_info(sig, __si_special(priv), pid);
1940 }
1941 EXPORT_SYMBOL(kill_pid);
1942 
1943 /*
1944  * These functions support sending signals using preallocated sigqueue
1945  * structures.  This is needed "because realtime applications cannot
1946  * afford to lose notifications of asynchronous events, like timer
1947  * expirations or I/O completions".  In the case of POSIX Timers
1948  * we allocate the sigqueue structure from the timer_create.  If this
1949  * allocation fails we are able to report the failure to the application
1950  * with an EAGAIN error.
1951  */
1952 struct sigqueue *sigqueue_alloc(void)
1953 {
1954 	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1955 }
1956 
1957 void sigqueue_free(struct sigqueue *q)
1958 {
1959 	unsigned long flags;
1960 	spinlock_t *lock = &current->sighand->siglock;
1961 
1962 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1963 	/*
1964 	 * We must hold ->siglock while testing q->list
1965 	 * to serialize with collect_signal() or with
1966 	 * __exit_signal()->flush_sigqueue().
1967 	 */
1968 	spin_lock_irqsave(lock, flags);
1969 	q->flags &= ~SIGQUEUE_PREALLOC;
1970 	/*
1971 	 * If it is queued it will be freed when dequeued,
1972 	 * like the "regular" sigqueue.
1973 	 */
1974 	if (!list_empty(&q->list))
1975 		q = NULL;
1976 	spin_unlock_irqrestore(lock, flags);
1977 
1978 	if (q)
1979 		__sigqueue_free(q);
1980 }
1981 
1982 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1983 {
1984 	int sig = q->info.si_signo;
1985 	struct sigpending *pending;
1986 	struct task_struct *t;
1987 	unsigned long flags;
1988 	int ret, result;
1989 
1990 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1991 
1992 	ret = -1;
1993 	rcu_read_lock();
1994 
1995 	/*
1996 	 * This function is used by POSIX timers to deliver a timer signal.
1997 	 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1998 	 * set), the signal must be delivered to the specific thread (queues
1999 	 * into t->pending).
2000 	 *
2001 	 * Where type is not PIDTYPE_PID, signals must be delivered to the
2002 	 * process. In this case, prefer to deliver to current if it is in
2003 	 * the same thread group as the target process, which avoids
2004 	 * unnecessarily waking up a potentially idle task.
2005 	 */
2006 	t = pid_task(pid, type);
2007 	if (!t)
2008 		goto ret;
2009 	if (type != PIDTYPE_PID && same_thread_group(t, current))
2010 		t = current;
2011 	if (!likely(lock_task_sighand(t, &flags)))
2012 		goto ret;
2013 
2014 	ret = 1; /* the signal is ignored */
2015 	result = TRACE_SIGNAL_IGNORED;
2016 	if (!prepare_signal(sig, t, false))
2017 		goto out;
2018 
2019 	ret = 0;
2020 	if (unlikely(!list_empty(&q->list))) {
2021 		/*
2022 		 * If an SI_TIMER entry is already queue just increment
2023 		 * the overrun count.
2024 		 */
2025 		BUG_ON(q->info.si_code != SI_TIMER);
2026 		q->info.si_overrun++;
2027 		result = TRACE_SIGNAL_ALREADY_PENDING;
2028 		goto out;
2029 	}
2030 	q->info.si_overrun = 0;
2031 
2032 	signalfd_notify(t, sig);
2033 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
2034 	list_add_tail(&q->list, &pending->list);
2035 	sigaddset(&pending->signal, sig);
2036 	complete_signal(sig, t, type);
2037 	result = TRACE_SIGNAL_DELIVERED;
2038 out:
2039 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2040 	unlock_task_sighand(t, &flags);
2041 ret:
2042 	rcu_read_unlock();
2043 	return ret;
2044 }
2045 
2046 static void do_notify_pidfd(struct task_struct *task)
2047 {
2048 	struct pid *pid;
2049 
2050 	WARN_ON(task->exit_state == 0);
2051 	pid = task_pid(task);
2052 	wake_up_all(&pid->wait_pidfd);
2053 }
2054 
2055 /*
2056  * Let a parent know about the death of a child.
2057  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2058  *
2059  * Returns true if our parent ignored us and so we've switched to
2060  * self-reaping.
2061  */
2062 bool do_notify_parent(struct task_struct *tsk, int sig)
2063 {
2064 	struct kernel_siginfo info;
2065 	unsigned long flags;
2066 	struct sighand_struct *psig;
2067 	bool autoreap = false;
2068 	u64 utime, stime;
2069 
2070 	WARN_ON_ONCE(sig == -1);
2071 
2072 	/* do_notify_parent_cldstop should have been called instead.  */
2073 	WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2074 
2075 	WARN_ON_ONCE(!tsk->ptrace &&
2076 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2077 
2078 	/* Wake up all pidfd waiters */
2079 	do_notify_pidfd(tsk);
2080 
2081 	if (sig != SIGCHLD) {
2082 		/*
2083 		 * This is only possible if parent == real_parent.
2084 		 * Check if it has changed security domain.
2085 		 */
2086 		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2087 			sig = SIGCHLD;
2088 	}
2089 
2090 	clear_siginfo(&info);
2091 	info.si_signo = sig;
2092 	info.si_errno = 0;
2093 	/*
2094 	 * We are under tasklist_lock here so our parent is tied to
2095 	 * us and cannot change.
2096 	 *
2097 	 * task_active_pid_ns will always return the same pid namespace
2098 	 * until a task passes through release_task.
2099 	 *
2100 	 * write_lock() currently calls preempt_disable() which is the
2101 	 * same as rcu_read_lock(), but according to Oleg, this is not
2102 	 * correct to rely on this
2103 	 */
2104 	rcu_read_lock();
2105 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2106 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2107 				       task_uid(tsk));
2108 	rcu_read_unlock();
2109 
2110 	task_cputime(tsk, &utime, &stime);
2111 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2112 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2113 
2114 	info.si_status = tsk->exit_code & 0x7f;
2115 	if (tsk->exit_code & 0x80)
2116 		info.si_code = CLD_DUMPED;
2117 	else if (tsk->exit_code & 0x7f)
2118 		info.si_code = CLD_KILLED;
2119 	else {
2120 		info.si_code = CLD_EXITED;
2121 		info.si_status = tsk->exit_code >> 8;
2122 	}
2123 
2124 	psig = tsk->parent->sighand;
2125 	spin_lock_irqsave(&psig->siglock, flags);
2126 	if (!tsk->ptrace && sig == SIGCHLD &&
2127 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2128 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2129 		/*
2130 		 * We are exiting and our parent doesn't care.  POSIX.1
2131 		 * defines special semantics for setting SIGCHLD to SIG_IGN
2132 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2133 		 * automatically and not left for our parent's wait4 call.
2134 		 * Rather than having the parent do it as a magic kind of
2135 		 * signal handler, we just set this to tell do_exit that we
2136 		 * can be cleaned up without becoming a zombie.  Note that
2137 		 * we still call __wake_up_parent in this case, because a
2138 		 * blocked sys_wait4 might now return -ECHILD.
2139 		 *
2140 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2141 		 * is implementation-defined: we do (if you don't want
2142 		 * it, just use SIG_IGN instead).
2143 		 */
2144 		autoreap = true;
2145 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2146 			sig = 0;
2147 	}
2148 	/*
2149 	 * Send with __send_signal as si_pid and si_uid are in the
2150 	 * parent's namespaces.
2151 	 */
2152 	if (valid_signal(sig) && sig)
2153 		__send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2154 	__wake_up_parent(tsk, tsk->parent);
2155 	spin_unlock_irqrestore(&psig->siglock, flags);
2156 
2157 	return autoreap;
2158 }
2159 
2160 /**
2161  * do_notify_parent_cldstop - notify parent of stopped/continued state change
2162  * @tsk: task reporting the state change
2163  * @for_ptracer: the notification is for ptracer
2164  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2165  *
2166  * Notify @tsk's parent that the stopped/continued state has changed.  If
2167  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2168  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2169  *
2170  * CONTEXT:
2171  * Must be called with tasklist_lock at least read locked.
2172  */
2173 static void do_notify_parent_cldstop(struct task_struct *tsk,
2174 				     bool for_ptracer, int why)
2175 {
2176 	struct kernel_siginfo info;
2177 	unsigned long flags;
2178 	struct task_struct *parent;
2179 	struct sighand_struct *sighand;
2180 	u64 utime, stime;
2181 
2182 	if (for_ptracer) {
2183 		parent = tsk->parent;
2184 	} else {
2185 		tsk = tsk->group_leader;
2186 		parent = tsk->real_parent;
2187 	}
2188 
2189 	clear_siginfo(&info);
2190 	info.si_signo = SIGCHLD;
2191 	info.si_errno = 0;
2192 	/*
2193 	 * see comment in do_notify_parent() about the following 4 lines
2194 	 */
2195 	rcu_read_lock();
2196 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2197 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2198 	rcu_read_unlock();
2199 
2200 	task_cputime(tsk, &utime, &stime);
2201 	info.si_utime = nsec_to_clock_t(utime);
2202 	info.si_stime = nsec_to_clock_t(stime);
2203 
2204  	info.si_code = why;
2205  	switch (why) {
2206  	case CLD_CONTINUED:
2207  		info.si_status = SIGCONT;
2208  		break;
2209  	case CLD_STOPPED:
2210  		info.si_status = tsk->signal->group_exit_code & 0x7f;
2211  		break;
2212  	case CLD_TRAPPED:
2213  		info.si_status = tsk->exit_code & 0x7f;
2214  		break;
2215  	default:
2216  		BUG();
2217  	}
2218 
2219 	sighand = parent->sighand;
2220 	spin_lock_irqsave(&sighand->siglock, flags);
2221 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2222 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2223 		send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2224 	/*
2225 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2226 	 */
2227 	__wake_up_parent(tsk, parent);
2228 	spin_unlock_irqrestore(&sighand->siglock, flags);
2229 }
2230 
2231 /*
2232  * This must be called with current->sighand->siglock held.
2233  *
2234  * This should be the path for all ptrace stops.
2235  * We always set current->last_siginfo while stopped here.
2236  * That makes it a way to test a stopped process for
2237  * being ptrace-stopped vs being job-control-stopped.
2238  *
2239  * Returns the signal the ptracer requested the code resume
2240  * with.  If the code did not stop because the tracer is gone,
2241  * the stop signal remains unchanged unless clear_code.
2242  */
2243 static int ptrace_stop(int exit_code, int why, unsigned long message,
2244 		       kernel_siginfo_t *info)
2245 	__releases(&current->sighand->siglock)
2246 	__acquires(&current->sighand->siglock)
2247 {
2248 	bool gstop_done = false;
2249 
2250 	if (arch_ptrace_stop_needed()) {
2251 		/*
2252 		 * The arch code has something special to do before a
2253 		 * ptrace stop.  This is allowed to block, e.g. for faults
2254 		 * on user stack pages.  We can't keep the siglock while
2255 		 * calling arch_ptrace_stop, so we must release it now.
2256 		 * To preserve proper semantics, we must do this before
2257 		 * any signal bookkeeping like checking group_stop_count.
2258 		 */
2259 		spin_unlock_irq(&current->sighand->siglock);
2260 		arch_ptrace_stop();
2261 		spin_lock_irq(&current->sighand->siglock);
2262 	}
2263 
2264 	/*
2265 	 * After this point ptrace_signal_wake_up or signal_wake_up
2266 	 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2267 	 * signal comes in.  Handle previous ptrace_unlinks and fatal
2268 	 * signals here to prevent ptrace_stop sleeping in schedule.
2269 	 */
2270 	if (!current->ptrace || __fatal_signal_pending(current))
2271 		return exit_code;
2272 
2273 	set_special_state(TASK_TRACED);
2274 	current->jobctl |= JOBCTL_TRACED;
2275 
2276 	/*
2277 	 * We're committing to trapping.  TRACED should be visible before
2278 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2279 	 * Also, transition to TRACED and updates to ->jobctl should be
2280 	 * atomic with respect to siglock and should be done after the arch
2281 	 * hook as siglock is released and regrabbed across it.
2282 	 *
2283 	 *     TRACER				    TRACEE
2284 	 *
2285 	 *     ptrace_attach()
2286 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2287 	 *     do_wait()
2288 	 *       set_current_state()                smp_wmb();
2289 	 *       ptrace_do_wait()
2290 	 *         wait_task_stopped()
2291 	 *           task_stopped_code()
2292 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2293 	 */
2294 	smp_wmb();
2295 
2296 	current->ptrace_message = message;
2297 	current->last_siginfo = info;
2298 	current->exit_code = exit_code;
2299 
2300 	/*
2301 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2302 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2303 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2304 	 * could be clear now.  We act as if SIGCONT is received after
2305 	 * TASK_TRACED is entered - ignore it.
2306 	 */
2307 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2308 		gstop_done = task_participate_group_stop(current);
2309 
2310 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2311 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2312 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2313 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2314 
2315 	/* entering a trap, clear TRAPPING */
2316 	task_clear_jobctl_trapping(current);
2317 
2318 	spin_unlock_irq(&current->sighand->siglock);
2319 	read_lock(&tasklist_lock);
2320 	/*
2321 	 * Notify parents of the stop.
2322 	 *
2323 	 * While ptraced, there are two parents - the ptracer and
2324 	 * the real_parent of the group_leader.  The ptracer should
2325 	 * know about every stop while the real parent is only
2326 	 * interested in the completion of group stop.  The states
2327 	 * for the two don't interact with each other.  Notify
2328 	 * separately unless they're gonna be duplicates.
2329 	 */
2330 	if (current->ptrace)
2331 		do_notify_parent_cldstop(current, true, why);
2332 	if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2333 		do_notify_parent_cldstop(current, false, why);
2334 
2335 	/*
2336 	 * Don't want to allow preemption here, because
2337 	 * sys_ptrace() needs this task to be inactive.
2338 	 *
2339 	 * XXX: implement read_unlock_no_resched().
2340 	 */
2341 	preempt_disable();
2342 	read_unlock(&tasklist_lock);
2343 	cgroup_enter_frozen();
2344 	preempt_enable_no_resched();
2345 	schedule();
2346 	cgroup_leave_frozen(true);
2347 
2348 	/*
2349 	 * We are back.  Now reacquire the siglock before touching
2350 	 * last_siginfo, so that we are sure to have synchronized with
2351 	 * any signal-sending on another CPU that wants to examine it.
2352 	 */
2353 	spin_lock_irq(&current->sighand->siglock);
2354 	exit_code = current->exit_code;
2355 	current->last_siginfo = NULL;
2356 	current->ptrace_message = 0;
2357 	current->exit_code = 0;
2358 
2359 	/* LISTENING can be set only during STOP traps, clear it */
2360 	current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2361 
2362 	/*
2363 	 * Queued signals ignored us while we were stopped for tracing.
2364 	 * So check for any that we should take before resuming user mode.
2365 	 * This sets TIF_SIGPENDING, but never clears it.
2366 	 */
2367 	recalc_sigpending_tsk(current);
2368 	return exit_code;
2369 }
2370 
2371 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2372 {
2373 	kernel_siginfo_t info;
2374 
2375 	clear_siginfo(&info);
2376 	info.si_signo = signr;
2377 	info.si_code = exit_code;
2378 	info.si_pid = task_pid_vnr(current);
2379 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2380 
2381 	/* Let the debugger run.  */
2382 	return ptrace_stop(exit_code, why, message, &info);
2383 }
2384 
2385 int ptrace_notify(int exit_code, unsigned long message)
2386 {
2387 	int signr;
2388 
2389 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2390 	if (unlikely(task_work_pending(current)))
2391 		task_work_run();
2392 
2393 	spin_lock_irq(&current->sighand->siglock);
2394 	signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2395 	spin_unlock_irq(&current->sighand->siglock);
2396 	return signr;
2397 }
2398 
2399 /**
2400  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2401  * @signr: signr causing group stop if initiating
2402  *
2403  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2404  * and participate in it.  If already set, participate in the existing
2405  * group stop.  If participated in a group stop (and thus slept), %true is
2406  * returned with siglock released.
2407  *
2408  * If ptraced, this function doesn't handle stop itself.  Instead,
2409  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2410  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2411  * places afterwards.
2412  *
2413  * CONTEXT:
2414  * Must be called with @current->sighand->siglock held, which is released
2415  * on %true return.
2416  *
2417  * RETURNS:
2418  * %false if group stop is already cancelled or ptrace trap is scheduled.
2419  * %true if participated in group stop.
2420  */
2421 static bool do_signal_stop(int signr)
2422 	__releases(&current->sighand->siglock)
2423 {
2424 	struct signal_struct *sig = current->signal;
2425 
2426 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2427 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2428 		struct task_struct *t;
2429 
2430 		/* signr will be recorded in task->jobctl for retries */
2431 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2432 
2433 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2434 		    unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2435 		    unlikely(sig->group_exec_task))
2436 			return false;
2437 		/*
2438 		 * There is no group stop already in progress.  We must
2439 		 * initiate one now.
2440 		 *
2441 		 * While ptraced, a task may be resumed while group stop is
2442 		 * still in effect and then receive a stop signal and
2443 		 * initiate another group stop.  This deviates from the
2444 		 * usual behavior as two consecutive stop signals can't
2445 		 * cause two group stops when !ptraced.  That is why we
2446 		 * also check !task_is_stopped(t) below.
2447 		 *
2448 		 * The condition can be distinguished by testing whether
2449 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2450 		 * group_exit_code in such case.
2451 		 *
2452 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2453 		 * an intervening stop signal is required to cause two
2454 		 * continued events regardless of ptrace.
2455 		 */
2456 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2457 			sig->group_exit_code = signr;
2458 
2459 		sig->group_stop_count = 0;
2460 
2461 		if (task_set_jobctl_pending(current, signr | gstop))
2462 			sig->group_stop_count++;
2463 
2464 		t = current;
2465 		while_each_thread(current, t) {
2466 			/*
2467 			 * Setting state to TASK_STOPPED for a group
2468 			 * stop is always done with the siglock held,
2469 			 * so this check has no races.
2470 			 */
2471 			if (!task_is_stopped(t) &&
2472 			    task_set_jobctl_pending(t, signr | gstop)) {
2473 				sig->group_stop_count++;
2474 				if (likely(!(t->ptrace & PT_SEIZED)))
2475 					signal_wake_up(t, 0);
2476 				else
2477 					ptrace_trap_notify(t);
2478 			}
2479 		}
2480 	}
2481 
2482 	if (likely(!current->ptrace)) {
2483 		int notify = 0;
2484 
2485 		/*
2486 		 * If there are no other threads in the group, or if there
2487 		 * is a group stop in progress and we are the last to stop,
2488 		 * report to the parent.
2489 		 */
2490 		if (task_participate_group_stop(current))
2491 			notify = CLD_STOPPED;
2492 
2493 		current->jobctl |= JOBCTL_STOPPED;
2494 		set_special_state(TASK_STOPPED);
2495 		spin_unlock_irq(&current->sighand->siglock);
2496 
2497 		/*
2498 		 * Notify the parent of the group stop completion.  Because
2499 		 * we're not holding either the siglock or tasklist_lock
2500 		 * here, ptracer may attach inbetween; however, this is for
2501 		 * group stop and should always be delivered to the real
2502 		 * parent of the group leader.  The new ptracer will get
2503 		 * its notification when this task transitions into
2504 		 * TASK_TRACED.
2505 		 */
2506 		if (notify) {
2507 			read_lock(&tasklist_lock);
2508 			do_notify_parent_cldstop(current, false, notify);
2509 			read_unlock(&tasklist_lock);
2510 		}
2511 
2512 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2513 		cgroup_enter_frozen();
2514 		schedule();
2515 		return true;
2516 	} else {
2517 		/*
2518 		 * While ptraced, group stop is handled by STOP trap.
2519 		 * Schedule it and let the caller deal with it.
2520 		 */
2521 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2522 		return false;
2523 	}
2524 }
2525 
2526 /**
2527  * do_jobctl_trap - take care of ptrace jobctl traps
2528  *
2529  * When PT_SEIZED, it's used for both group stop and explicit
2530  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2531  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2532  * the stop signal; otherwise, %SIGTRAP.
2533  *
2534  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2535  * number as exit_code and no siginfo.
2536  *
2537  * CONTEXT:
2538  * Must be called with @current->sighand->siglock held, which may be
2539  * released and re-acquired before returning with intervening sleep.
2540  */
2541 static void do_jobctl_trap(void)
2542 {
2543 	struct signal_struct *signal = current->signal;
2544 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2545 
2546 	if (current->ptrace & PT_SEIZED) {
2547 		if (!signal->group_stop_count &&
2548 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2549 			signr = SIGTRAP;
2550 		WARN_ON_ONCE(!signr);
2551 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2552 				 CLD_STOPPED, 0);
2553 	} else {
2554 		WARN_ON_ONCE(!signr);
2555 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2556 	}
2557 }
2558 
2559 /**
2560  * do_freezer_trap - handle the freezer jobctl trap
2561  *
2562  * Puts the task into frozen state, if only the task is not about to quit.
2563  * In this case it drops JOBCTL_TRAP_FREEZE.
2564  *
2565  * CONTEXT:
2566  * Must be called with @current->sighand->siglock held,
2567  * which is always released before returning.
2568  */
2569 static void do_freezer_trap(void)
2570 	__releases(&current->sighand->siglock)
2571 {
2572 	/*
2573 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2574 	 * let's make another loop to give it a chance to be handled.
2575 	 * In any case, we'll return back.
2576 	 */
2577 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2578 	     JOBCTL_TRAP_FREEZE) {
2579 		spin_unlock_irq(&current->sighand->siglock);
2580 		return;
2581 	}
2582 
2583 	/*
2584 	 * Now we're sure that there is no pending fatal signal and no
2585 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2586 	 * immediately (if there is a non-fatal signal pending), and
2587 	 * put the task into sleep.
2588 	 */
2589 	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2590 	clear_thread_flag(TIF_SIGPENDING);
2591 	spin_unlock_irq(&current->sighand->siglock);
2592 	cgroup_enter_frozen();
2593 	schedule();
2594 }
2595 
2596 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2597 {
2598 	/*
2599 	 * We do not check sig_kernel_stop(signr) but set this marker
2600 	 * unconditionally because we do not know whether debugger will
2601 	 * change signr. This flag has no meaning unless we are going
2602 	 * to stop after return from ptrace_stop(). In this case it will
2603 	 * be checked in do_signal_stop(), we should only stop if it was
2604 	 * not cleared by SIGCONT while we were sleeping. See also the
2605 	 * comment in dequeue_signal().
2606 	 */
2607 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2608 	signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2609 
2610 	/* We're back.  Did the debugger cancel the sig?  */
2611 	if (signr == 0)
2612 		return signr;
2613 
2614 	/*
2615 	 * Update the siginfo structure if the signal has
2616 	 * changed.  If the debugger wanted something
2617 	 * specific in the siginfo structure then it should
2618 	 * have updated *info via PTRACE_SETSIGINFO.
2619 	 */
2620 	if (signr != info->si_signo) {
2621 		clear_siginfo(info);
2622 		info->si_signo = signr;
2623 		info->si_errno = 0;
2624 		info->si_code = SI_USER;
2625 		rcu_read_lock();
2626 		info->si_pid = task_pid_vnr(current->parent);
2627 		info->si_uid = from_kuid_munged(current_user_ns(),
2628 						task_uid(current->parent));
2629 		rcu_read_unlock();
2630 	}
2631 
2632 	/* If the (new) signal is now blocked, requeue it.  */
2633 	if (sigismember(&current->blocked, signr) ||
2634 	    fatal_signal_pending(current)) {
2635 		send_signal_locked(signr, info, current, type);
2636 		signr = 0;
2637 	}
2638 
2639 	return signr;
2640 }
2641 
2642 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2643 {
2644 	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2645 	case SIL_FAULT:
2646 	case SIL_FAULT_TRAPNO:
2647 	case SIL_FAULT_MCEERR:
2648 	case SIL_FAULT_BNDERR:
2649 	case SIL_FAULT_PKUERR:
2650 	case SIL_FAULT_PERF_EVENT:
2651 		ksig->info.si_addr = arch_untagged_si_addr(
2652 			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2653 		break;
2654 	case SIL_KILL:
2655 	case SIL_TIMER:
2656 	case SIL_POLL:
2657 	case SIL_CHLD:
2658 	case SIL_RT:
2659 	case SIL_SYS:
2660 		break;
2661 	}
2662 }
2663 
2664 bool get_signal(struct ksignal *ksig)
2665 {
2666 	struct sighand_struct *sighand = current->sighand;
2667 	struct signal_struct *signal = current->signal;
2668 	int signr;
2669 
2670 	clear_notify_signal();
2671 	if (unlikely(task_work_pending(current)))
2672 		task_work_run();
2673 
2674 	if (!task_sigpending(current))
2675 		return false;
2676 
2677 	if (unlikely(uprobe_deny_signal()))
2678 		return false;
2679 
2680 	/*
2681 	 * Do this once, we can't return to user-mode if freezing() == T.
2682 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2683 	 * thus do not need another check after return.
2684 	 */
2685 	try_to_freeze();
2686 
2687 relock:
2688 	spin_lock_irq(&sighand->siglock);
2689 
2690 	/*
2691 	 * Every stopped thread goes here after wakeup. Check to see if
2692 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2693 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2694 	 */
2695 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2696 		int why;
2697 
2698 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2699 			why = CLD_CONTINUED;
2700 		else
2701 			why = CLD_STOPPED;
2702 
2703 		signal->flags &= ~SIGNAL_CLD_MASK;
2704 
2705 		spin_unlock_irq(&sighand->siglock);
2706 
2707 		/*
2708 		 * Notify the parent that we're continuing.  This event is
2709 		 * always per-process and doesn't make whole lot of sense
2710 		 * for ptracers, who shouldn't consume the state via
2711 		 * wait(2) either, but, for backward compatibility, notify
2712 		 * the ptracer of the group leader too unless it's gonna be
2713 		 * a duplicate.
2714 		 */
2715 		read_lock(&tasklist_lock);
2716 		do_notify_parent_cldstop(current, false, why);
2717 
2718 		if (ptrace_reparented(current->group_leader))
2719 			do_notify_parent_cldstop(current->group_leader,
2720 						true, why);
2721 		read_unlock(&tasklist_lock);
2722 
2723 		goto relock;
2724 	}
2725 
2726 	for (;;) {
2727 		struct k_sigaction *ka;
2728 		enum pid_type type;
2729 
2730 		/* Has this task already been marked for death? */
2731 		if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2732 		     signal->group_exec_task) {
2733 			clear_siginfo(&ksig->info);
2734 			ksig->info.si_signo = signr = SIGKILL;
2735 			sigdelset(&current->pending.signal, SIGKILL);
2736 			trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2737 				&sighand->action[SIGKILL - 1]);
2738 			recalc_sigpending();
2739 			goto fatal;
2740 		}
2741 
2742 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2743 		    do_signal_stop(0))
2744 			goto relock;
2745 
2746 		if (unlikely(current->jobctl &
2747 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2748 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2749 				do_jobctl_trap();
2750 				spin_unlock_irq(&sighand->siglock);
2751 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2752 				do_freezer_trap();
2753 
2754 			goto relock;
2755 		}
2756 
2757 		/*
2758 		 * If the task is leaving the frozen state, let's update
2759 		 * cgroup counters and reset the frozen bit.
2760 		 */
2761 		if (unlikely(cgroup_task_frozen(current))) {
2762 			spin_unlock_irq(&sighand->siglock);
2763 			cgroup_leave_frozen(false);
2764 			goto relock;
2765 		}
2766 
2767 		/*
2768 		 * Signals generated by the execution of an instruction
2769 		 * need to be delivered before any other pending signals
2770 		 * so that the instruction pointer in the signal stack
2771 		 * frame points to the faulting instruction.
2772 		 */
2773 		type = PIDTYPE_PID;
2774 		signr = dequeue_synchronous_signal(&ksig->info);
2775 		if (!signr)
2776 			signr = dequeue_signal(current, &current->blocked,
2777 					       &ksig->info, &type);
2778 
2779 		if (!signr)
2780 			break; /* will return 0 */
2781 
2782 		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2783 		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2784 			signr = ptrace_signal(signr, &ksig->info, type);
2785 			if (!signr)
2786 				continue;
2787 		}
2788 
2789 		ka = &sighand->action[signr-1];
2790 
2791 		/* Trace actually delivered signals. */
2792 		trace_signal_deliver(signr, &ksig->info, ka);
2793 
2794 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2795 			continue;
2796 		if (ka->sa.sa_handler != SIG_DFL) {
2797 			/* Run the handler.  */
2798 			ksig->ka = *ka;
2799 
2800 			if (ka->sa.sa_flags & SA_ONESHOT)
2801 				ka->sa.sa_handler = SIG_DFL;
2802 
2803 			break; /* will return non-zero "signr" value */
2804 		}
2805 
2806 		/*
2807 		 * Now we are doing the default action for this signal.
2808 		 */
2809 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2810 			continue;
2811 
2812 		/*
2813 		 * Global init gets no signals it doesn't want.
2814 		 * Container-init gets no signals it doesn't want from same
2815 		 * container.
2816 		 *
2817 		 * Note that if global/container-init sees a sig_kernel_only()
2818 		 * signal here, the signal must have been generated internally
2819 		 * or must have come from an ancestor namespace. In either
2820 		 * case, the signal cannot be dropped.
2821 		 */
2822 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2823 				!sig_kernel_only(signr))
2824 			continue;
2825 
2826 		if (sig_kernel_stop(signr)) {
2827 			/*
2828 			 * The default action is to stop all threads in
2829 			 * the thread group.  The job control signals
2830 			 * do nothing in an orphaned pgrp, but SIGSTOP
2831 			 * always works.  Note that siglock needs to be
2832 			 * dropped during the call to is_orphaned_pgrp()
2833 			 * because of lock ordering with tasklist_lock.
2834 			 * This allows an intervening SIGCONT to be posted.
2835 			 * We need to check for that and bail out if necessary.
2836 			 */
2837 			if (signr != SIGSTOP) {
2838 				spin_unlock_irq(&sighand->siglock);
2839 
2840 				/* signals can be posted during this window */
2841 
2842 				if (is_current_pgrp_orphaned())
2843 					goto relock;
2844 
2845 				spin_lock_irq(&sighand->siglock);
2846 			}
2847 
2848 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2849 				/* It released the siglock.  */
2850 				goto relock;
2851 			}
2852 
2853 			/*
2854 			 * We didn't actually stop, due to a race
2855 			 * with SIGCONT or something like that.
2856 			 */
2857 			continue;
2858 		}
2859 
2860 	fatal:
2861 		spin_unlock_irq(&sighand->siglock);
2862 		if (unlikely(cgroup_task_frozen(current)))
2863 			cgroup_leave_frozen(true);
2864 
2865 		/*
2866 		 * Anything else is fatal, maybe with a core dump.
2867 		 */
2868 		current->flags |= PF_SIGNALED;
2869 
2870 		if (sig_kernel_coredump(signr)) {
2871 			if (print_fatal_signals)
2872 				print_fatal_signal(ksig->info.si_signo);
2873 			proc_coredump_connector(current);
2874 			/*
2875 			 * If it was able to dump core, this kills all
2876 			 * other threads in the group and synchronizes with
2877 			 * their demise.  If we lost the race with another
2878 			 * thread getting here, it set group_exit_code
2879 			 * first and our do_group_exit call below will use
2880 			 * that value and ignore the one we pass it.
2881 			 */
2882 			do_coredump(&ksig->info);
2883 		}
2884 
2885 		/*
2886 		 * PF_USER_WORKER threads will catch and exit on fatal signals
2887 		 * themselves. They have cleanup that must be performed, so
2888 		 * we cannot call do_exit() on their behalf.
2889 		 */
2890 		if (current->flags & PF_USER_WORKER)
2891 			goto out;
2892 
2893 		/*
2894 		 * Death signals, no core dump.
2895 		 */
2896 		do_group_exit(ksig->info.si_signo);
2897 		/* NOTREACHED */
2898 	}
2899 	spin_unlock_irq(&sighand->siglock);
2900 out:
2901 	ksig->sig = signr;
2902 
2903 	if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2904 		hide_si_addr_tag_bits(ksig);
2905 
2906 	return ksig->sig > 0;
2907 }
2908 
2909 /**
2910  * signal_delivered - called after signal delivery to update blocked signals
2911  * @ksig:		kernel signal struct
2912  * @stepping:		nonzero if debugger single-step or block-step in use
2913  *
2914  * This function should be called when a signal has successfully been
2915  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2916  * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2917  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2918  */
2919 static void signal_delivered(struct ksignal *ksig, int stepping)
2920 {
2921 	sigset_t blocked;
2922 
2923 	/* A signal was successfully delivered, and the
2924 	   saved sigmask was stored on the signal frame,
2925 	   and will be restored by sigreturn.  So we can
2926 	   simply clear the restore sigmask flag.  */
2927 	clear_restore_sigmask();
2928 
2929 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2930 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2931 		sigaddset(&blocked, ksig->sig);
2932 	set_current_blocked(&blocked);
2933 	if (current->sas_ss_flags & SS_AUTODISARM)
2934 		sas_ss_reset(current);
2935 	if (stepping)
2936 		ptrace_notify(SIGTRAP, 0);
2937 }
2938 
2939 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2940 {
2941 	if (failed)
2942 		force_sigsegv(ksig->sig);
2943 	else
2944 		signal_delivered(ksig, stepping);
2945 }
2946 
2947 /*
2948  * It could be that complete_signal() picked us to notify about the
2949  * group-wide signal. Other threads should be notified now to take
2950  * the shared signals in @which since we will not.
2951  */
2952 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2953 {
2954 	sigset_t retarget;
2955 	struct task_struct *t;
2956 
2957 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2958 	if (sigisemptyset(&retarget))
2959 		return;
2960 
2961 	t = tsk;
2962 	while_each_thread(tsk, t) {
2963 		if (t->flags & PF_EXITING)
2964 			continue;
2965 
2966 		if (!has_pending_signals(&retarget, &t->blocked))
2967 			continue;
2968 		/* Remove the signals this thread can handle. */
2969 		sigandsets(&retarget, &retarget, &t->blocked);
2970 
2971 		if (!task_sigpending(t))
2972 			signal_wake_up(t, 0);
2973 
2974 		if (sigisemptyset(&retarget))
2975 			break;
2976 	}
2977 }
2978 
2979 void exit_signals(struct task_struct *tsk)
2980 {
2981 	int group_stop = 0;
2982 	sigset_t unblocked;
2983 
2984 	/*
2985 	 * @tsk is about to have PF_EXITING set - lock out users which
2986 	 * expect stable threadgroup.
2987 	 */
2988 	cgroup_threadgroup_change_begin(tsk);
2989 
2990 	if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
2991 		sched_mm_cid_exit_signals(tsk);
2992 		tsk->flags |= PF_EXITING;
2993 		cgroup_threadgroup_change_end(tsk);
2994 		return;
2995 	}
2996 
2997 	spin_lock_irq(&tsk->sighand->siglock);
2998 	/*
2999 	 * From now this task is not visible for group-wide signals,
3000 	 * see wants_signal(), do_signal_stop().
3001 	 */
3002 	sched_mm_cid_exit_signals(tsk);
3003 	tsk->flags |= PF_EXITING;
3004 
3005 	cgroup_threadgroup_change_end(tsk);
3006 
3007 	if (!task_sigpending(tsk))
3008 		goto out;
3009 
3010 	unblocked = tsk->blocked;
3011 	signotset(&unblocked);
3012 	retarget_shared_pending(tsk, &unblocked);
3013 
3014 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3015 	    task_participate_group_stop(tsk))
3016 		group_stop = CLD_STOPPED;
3017 out:
3018 	spin_unlock_irq(&tsk->sighand->siglock);
3019 
3020 	/*
3021 	 * If group stop has completed, deliver the notification.  This
3022 	 * should always go to the real parent of the group leader.
3023 	 */
3024 	if (unlikely(group_stop)) {
3025 		read_lock(&tasklist_lock);
3026 		do_notify_parent_cldstop(tsk, false, group_stop);
3027 		read_unlock(&tasklist_lock);
3028 	}
3029 }
3030 
3031 /*
3032  * System call entry points.
3033  */
3034 
3035 /**
3036  *  sys_restart_syscall - restart a system call
3037  */
3038 SYSCALL_DEFINE0(restart_syscall)
3039 {
3040 	struct restart_block *restart = &current->restart_block;
3041 	return restart->fn(restart);
3042 }
3043 
3044 long do_no_restart_syscall(struct restart_block *param)
3045 {
3046 	return -EINTR;
3047 }
3048 
3049 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3050 {
3051 	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3052 		sigset_t newblocked;
3053 		/* A set of now blocked but previously unblocked signals. */
3054 		sigandnsets(&newblocked, newset, &current->blocked);
3055 		retarget_shared_pending(tsk, &newblocked);
3056 	}
3057 	tsk->blocked = *newset;
3058 	recalc_sigpending();
3059 }
3060 
3061 /**
3062  * set_current_blocked - change current->blocked mask
3063  * @newset: new mask
3064  *
3065  * It is wrong to change ->blocked directly, this helper should be used
3066  * to ensure the process can't miss a shared signal we are going to block.
3067  */
3068 void set_current_blocked(sigset_t *newset)
3069 {
3070 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3071 	__set_current_blocked(newset);
3072 }
3073 
3074 void __set_current_blocked(const sigset_t *newset)
3075 {
3076 	struct task_struct *tsk = current;
3077 
3078 	/*
3079 	 * In case the signal mask hasn't changed, there is nothing we need
3080 	 * to do. The current->blocked shouldn't be modified by other task.
3081 	 */
3082 	if (sigequalsets(&tsk->blocked, newset))
3083 		return;
3084 
3085 	spin_lock_irq(&tsk->sighand->siglock);
3086 	__set_task_blocked(tsk, newset);
3087 	spin_unlock_irq(&tsk->sighand->siglock);
3088 }
3089 
3090 /*
3091  * This is also useful for kernel threads that want to temporarily
3092  * (or permanently) block certain signals.
3093  *
3094  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3095  * interface happily blocks "unblockable" signals like SIGKILL
3096  * and friends.
3097  */
3098 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3099 {
3100 	struct task_struct *tsk = current;
3101 	sigset_t newset;
3102 
3103 	/* Lockless, only current can change ->blocked, never from irq */
3104 	if (oldset)
3105 		*oldset = tsk->blocked;
3106 
3107 	switch (how) {
3108 	case SIG_BLOCK:
3109 		sigorsets(&newset, &tsk->blocked, set);
3110 		break;
3111 	case SIG_UNBLOCK:
3112 		sigandnsets(&newset, &tsk->blocked, set);
3113 		break;
3114 	case SIG_SETMASK:
3115 		newset = *set;
3116 		break;
3117 	default:
3118 		return -EINVAL;
3119 	}
3120 
3121 	__set_current_blocked(&newset);
3122 	return 0;
3123 }
3124 EXPORT_SYMBOL(sigprocmask);
3125 
3126 /*
3127  * The api helps set app-provided sigmasks.
3128  *
3129  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3130  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3131  *
3132  * Note that it does set_restore_sigmask() in advance, so it must be always
3133  * paired with restore_saved_sigmask_unless() before return from syscall.
3134  */
3135 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3136 {
3137 	sigset_t kmask;
3138 
3139 	if (!umask)
3140 		return 0;
3141 	if (sigsetsize != sizeof(sigset_t))
3142 		return -EINVAL;
3143 	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3144 		return -EFAULT;
3145 
3146 	set_restore_sigmask();
3147 	current->saved_sigmask = current->blocked;
3148 	set_current_blocked(&kmask);
3149 
3150 	return 0;
3151 }
3152 
3153 #ifdef CONFIG_COMPAT
3154 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3155 			    size_t sigsetsize)
3156 {
3157 	sigset_t kmask;
3158 
3159 	if (!umask)
3160 		return 0;
3161 	if (sigsetsize != sizeof(compat_sigset_t))
3162 		return -EINVAL;
3163 	if (get_compat_sigset(&kmask, umask))
3164 		return -EFAULT;
3165 
3166 	set_restore_sigmask();
3167 	current->saved_sigmask = current->blocked;
3168 	set_current_blocked(&kmask);
3169 
3170 	return 0;
3171 }
3172 #endif
3173 
3174 /**
3175  *  sys_rt_sigprocmask - change the list of currently blocked signals
3176  *  @how: whether to add, remove, or set signals
3177  *  @nset: stores pending signals
3178  *  @oset: previous value of signal mask if non-null
3179  *  @sigsetsize: size of sigset_t type
3180  */
3181 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3182 		sigset_t __user *, oset, size_t, sigsetsize)
3183 {
3184 	sigset_t old_set, new_set;
3185 	int error;
3186 
3187 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3188 	if (sigsetsize != sizeof(sigset_t))
3189 		return -EINVAL;
3190 
3191 	old_set = current->blocked;
3192 
3193 	if (nset) {
3194 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3195 			return -EFAULT;
3196 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3197 
3198 		error = sigprocmask(how, &new_set, NULL);
3199 		if (error)
3200 			return error;
3201 	}
3202 
3203 	if (oset) {
3204 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3205 			return -EFAULT;
3206 	}
3207 
3208 	return 0;
3209 }
3210 
3211 #ifdef CONFIG_COMPAT
3212 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3213 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3214 {
3215 	sigset_t old_set = current->blocked;
3216 
3217 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3218 	if (sigsetsize != sizeof(sigset_t))
3219 		return -EINVAL;
3220 
3221 	if (nset) {
3222 		sigset_t new_set;
3223 		int error;
3224 		if (get_compat_sigset(&new_set, nset))
3225 			return -EFAULT;
3226 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3227 
3228 		error = sigprocmask(how, &new_set, NULL);
3229 		if (error)
3230 			return error;
3231 	}
3232 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3233 }
3234 #endif
3235 
3236 static void do_sigpending(sigset_t *set)
3237 {
3238 	spin_lock_irq(&current->sighand->siglock);
3239 	sigorsets(set, &current->pending.signal,
3240 		  &current->signal->shared_pending.signal);
3241 	spin_unlock_irq(&current->sighand->siglock);
3242 
3243 	/* Outside the lock because only this thread touches it.  */
3244 	sigandsets(set, &current->blocked, set);
3245 }
3246 
3247 /**
3248  *  sys_rt_sigpending - examine a pending signal that has been raised
3249  *			while blocked
3250  *  @uset: stores pending signals
3251  *  @sigsetsize: size of sigset_t type or larger
3252  */
3253 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3254 {
3255 	sigset_t set;
3256 
3257 	if (sigsetsize > sizeof(*uset))
3258 		return -EINVAL;
3259 
3260 	do_sigpending(&set);
3261 
3262 	if (copy_to_user(uset, &set, sigsetsize))
3263 		return -EFAULT;
3264 
3265 	return 0;
3266 }
3267 
3268 #ifdef CONFIG_COMPAT
3269 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3270 		compat_size_t, sigsetsize)
3271 {
3272 	sigset_t set;
3273 
3274 	if (sigsetsize > sizeof(*uset))
3275 		return -EINVAL;
3276 
3277 	do_sigpending(&set);
3278 
3279 	return put_compat_sigset(uset, &set, sigsetsize);
3280 }
3281 #endif
3282 
3283 static const struct {
3284 	unsigned char limit, layout;
3285 } sig_sicodes[] = {
3286 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3287 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3288 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3289 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3290 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3291 #if defined(SIGEMT)
3292 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3293 #endif
3294 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3295 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3296 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3297 };
3298 
3299 static bool known_siginfo_layout(unsigned sig, int si_code)
3300 {
3301 	if (si_code == SI_KERNEL)
3302 		return true;
3303 	else if ((si_code > SI_USER)) {
3304 		if (sig_specific_sicodes(sig)) {
3305 			if (si_code <= sig_sicodes[sig].limit)
3306 				return true;
3307 		}
3308 		else if (si_code <= NSIGPOLL)
3309 			return true;
3310 	}
3311 	else if (si_code >= SI_DETHREAD)
3312 		return true;
3313 	else if (si_code == SI_ASYNCNL)
3314 		return true;
3315 	return false;
3316 }
3317 
3318 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3319 {
3320 	enum siginfo_layout layout = SIL_KILL;
3321 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3322 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3323 		    (si_code <= sig_sicodes[sig].limit)) {
3324 			layout = sig_sicodes[sig].layout;
3325 			/* Handle the exceptions */
3326 			if ((sig == SIGBUS) &&
3327 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3328 				layout = SIL_FAULT_MCEERR;
3329 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3330 				layout = SIL_FAULT_BNDERR;
3331 #ifdef SEGV_PKUERR
3332 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3333 				layout = SIL_FAULT_PKUERR;
3334 #endif
3335 			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3336 				layout = SIL_FAULT_PERF_EVENT;
3337 			else if (IS_ENABLED(CONFIG_SPARC) &&
3338 				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3339 				layout = SIL_FAULT_TRAPNO;
3340 			else if (IS_ENABLED(CONFIG_ALPHA) &&
3341 				 ((sig == SIGFPE) ||
3342 				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3343 				layout = SIL_FAULT_TRAPNO;
3344 		}
3345 		else if (si_code <= NSIGPOLL)
3346 			layout = SIL_POLL;
3347 	} else {
3348 		if (si_code == SI_TIMER)
3349 			layout = SIL_TIMER;
3350 		else if (si_code == SI_SIGIO)
3351 			layout = SIL_POLL;
3352 		else if (si_code < 0)
3353 			layout = SIL_RT;
3354 	}
3355 	return layout;
3356 }
3357 
3358 static inline char __user *si_expansion(const siginfo_t __user *info)
3359 {
3360 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3361 }
3362 
3363 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3364 {
3365 	char __user *expansion = si_expansion(to);
3366 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3367 		return -EFAULT;
3368 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3369 		return -EFAULT;
3370 	return 0;
3371 }
3372 
3373 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3374 				       const siginfo_t __user *from)
3375 {
3376 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3377 		char __user *expansion = si_expansion(from);
3378 		char buf[SI_EXPANSION_SIZE];
3379 		int i;
3380 		/*
3381 		 * An unknown si_code might need more than
3382 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3383 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3384 		 * will return this data to userspace exactly.
3385 		 */
3386 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3387 			return -EFAULT;
3388 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3389 			if (buf[i] != 0)
3390 				return -E2BIG;
3391 		}
3392 	}
3393 	return 0;
3394 }
3395 
3396 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3397 				    const siginfo_t __user *from)
3398 {
3399 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3400 		return -EFAULT;
3401 	to->si_signo = signo;
3402 	return post_copy_siginfo_from_user(to, from);
3403 }
3404 
3405 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3406 {
3407 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3408 		return -EFAULT;
3409 	return post_copy_siginfo_from_user(to, from);
3410 }
3411 
3412 #ifdef CONFIG_COMPAT
3413 /**
3414  * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3415  * @to: compat siginfo destination
3416  * @from: kernel siginfo source
3417  *
3418  * Note: This function does not work properly for the SIGCHLD on x32, but
3419  * fortunately it doesn't have to.  The only valid callers for this function are
3420  * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3421  * The latter does not care because SIGCHLD will never cause a coredump.
3422  */
3423 void copy_siginfo_to_external32(struct compat_siginfo *to,
3424 		const struct kernel_siginfo *from)
3425 {
3426 	memset(to, 0, sizeof(*to));
3427 
3428 	to->si_signo = from->si_signo;
3429 	to->si_errno = from->si_errno;
3430 	to->si_code  = from->si_code;
3431 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3432 	case SIL_KILL:
3433 		to->si_pid = from->si_pid;
3434 		to->si_uid = from->si_uid;
3435 		break;
3436 	case SIL_TIMER:
3437 		to->si_tid     = from->si_tid;
3438 		to->si_overrun = from->si_overrun;
3439 		to->si_int     = from->si_int;
3440 		break;
3441 	case SIL_POLL:
3442 		to->si_band = from->si_band;
3443 		to->si_fd   = from->si_fd;
3444 		break;
3445 	case SIL_FAULT:
3446 		to->si_addr = ptr_to_compat(from->si_addr);
3447 		break;
3448 	case SIL_FAULT_TRAPNO:
3449 		to->si_addr = ptr_to_compat(from->si_addr);
3450 		to->si_trapno = from->si_trapno;
3451 		break;
3452 	case SIL_FAULT_MCEERR:
3453 		to->si_addr = ptr_to_compat(from->si_addr);
3454 		to->si_addr_lsb = from->si_addr_lsb;
3455 		break;
3456 	case SIL_FAULT_BNDERR:
3457 		to->si_addr = ptr_to_compat(from->si_addr);
3458 		to->si_lower = ptr_to_compat(from->si_lower);
3459 		to->si_upper = ptr_to_compat(from->si_upper);
3460 		break;
3461 	case SIL_FAULT_PKUERR:
3462 		to->si_addr = ptr_to_compat(from->si_addr);
3463 		to->si_pkey = from->si_pkey;
3464 		break;
3465 	case SIL_FAULT_PERF_EVENT:
3466 		to->si_addr = ptr_to_compat(from->si_addr);
3467 		to->si_perf_data = from->si_perf_data;
3468 		to->si_perf_type = from->si_perf_type;
3469 		to->si_perf_flags = from->si_perf_flags;
3470 		break;
3471 	case SIL_CHLD:
3472 		to->si_pid = from->si_pid;
3473 		to->si_uid = from->si_uid;
3474 		to->si_status = from->si_status;
3475 		to->si_utime = from->si_utime;
3476 		to->si_stime = from->si_stime;
3477 		break;
3478 	case SIL_RT:
3479 		to->si_pid = from->si_pid;
3480 		to->si_uid = from->si_uid;
3481 		to->si_int = from->si_int;
3482 		break;
3483 	case SIL_SYS:
3484 		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3485 		to->si_syscall   = from->si_syscall;
3486 		to->si_arch      = from->si_arch;
3487 		break;
3488 	}
3489 }
3490 
3491 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3492 			   const struct kernel_siginfo *from)
3493 {
3494 	struct compat_siginfo new;
3495 
3496 	copy_siginfo_to_external32(&new, from);
3497 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3498 		return -EFAULT;
3499 	return 0;
3500 }
3501 
3502 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3503 					 const struct compat_siginfo *from)
3504 {
3505 	clear_siginfo(to);
3506 	to->si_signo = from->si_signo;
3507 	to->si_errno = from->si_errno;
3508 	to->si_code  = from->si_code;
3509 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3510 	case SIL_KILL:
3511 		to->si_pid = from->si_pid;
3512 		to->si_uid = from->si_uid;
3513 		break;
3514 	case SIL_TIMER:
3515 		to->si_tid     = from->si_tid;
3516 		to->si_overrun = from->si_overrun;
3517 		to->si_int     = from->si_int;
3518 		break;
3519 	case SIL_POLL:
3520 		to->si_band = from->si_band;
3521 		to->si_fd   = from->si_fd;
3522 		break;
3523 	case SIL_FAULT:
3524 		to->si_addr = compat_ptr(from->si_addr);
3525 		break;
3526 	case SIL_FAULT_TRAPNO:
3527 		to->si_addr = compat_ptr(from->si_addr);
3528 		to->si_trapno = from->si_trapno;
3529 		break;
3530 	case SIL_FAULT_MCEERR:
3531 		to->si_addr = compat_ptr(from->si_addr);
3532 		to->si_addr_lsb = from->si_addr_lsb;
3533 		break;
3534 	case SIL_FAULT_BNDERR:
3535 		to->si_addr = compat_ptr(from->si_addr);
3536 		to->si_lower = compat_ptr(from->si_lower);
3537 		to->si_upper = compat_ptr(from->si_upper);
3538 		break;
3539 	case SIL_FAULT_PKUERR:
3540 		to->si_addr = compat_ptr(from->si_addr);
3541 		to->si_pkey = from->si_pkey;
3542 		break;
3543 	case SIL_FAULT_PERF_EVENT:
3544 		to->si_addr = compat_ptr(from->si_addr);
3545 		to->si_perf_data = from->si_perf_data;
3546 		to->si_perf_type = from->si_perf_type;
3547 		to->si_perf_flags = from->si_perf_flags;
3548 		break;
3549 	case SIL_CHLD:
3550 		to->si_pid    = from->si_pid;
3551 		to->si_uid    = from->si_uid;
3552 		to->si_status = from->si_status;
3553 #ifdef CONFIG_X86_X32_ABI
3554 		if (in_x32_syscall()) {
3555 			to->si_utime = from->_sifields._sigchld_x32._utime;
3556 			to->si_stime = from->_sifields._sigchld_x32._stime;
3557 		} else
3558 #endif
3559 		{
3560 			to->si_utime = from->si_utime;
3561 			to->si_stime = from->si_stime;
3562 		}
3563 		break;
3564 	case SIL_RT:
3565 		to->si_pid = from->si_pid;
3566 		to->si_uid = from->si_uid;
3567 		to->si_int = from->si_int;
3568 		break;
3569 	case SIL_SYS:
3570 		to->si_call_addr = compat_ptr(from->si_call_addr);
3571 		to->si_syscall   = from->si_syscall;
3572 		to->si_arch      = from->si_arch;
3573 		break;
3574 	}
3575 	return 0;
3576 }
3577 
3578 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3579 				      const struct compat_siginfo __user *ufrom)
3580 {
3581 	struct compat_siginfo from;
3582 
3583 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3584 		return -EFAULT;
3585 
3586 	from.si_signo = signo;
3587 	return post_copy_siginfo_from_user32(to, &from);
3588 }
3589 
3590 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3591 			     const struct compat_siginfo __user *ufrom)
3592 {
3593 	struct compat_siginfo from;
3594 
3595 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3596 		return -EFAULT;
3597 
3598 	return post_copy_siginfo_from_user32(to, &from);
3599 }
3600 #endif /* CONFIG_COMPAT */
3601 
3602 /**
3603  *  do_sigtimedwait - wait for queued signals specified in @which
3604  *  @which: queued signals to wait for
3605  *  @info: if non-null, the signal's siginfo is returned here
3606  *  @ts: upper bound on process time suspension
3607  */
3608 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3609 		    const struct timespec64 *ts)
3610 {
3611 	ktime_t *to = NULL, timeout = KTIME_MAX;
3612 	struct task_struct *tsk = current;
3613 	sigset_t mask = *which;
3614 	enum pid_type type;
3615 	int sig, ret = 0;
3616 
3617 	if (ts) {
3618 		if (!timespec64_valid(ts))
3619 			return -EINVAL;
3620 		timeout = timespec64_to_ktime(*ts);
3621 		to = &timeout;
3622 	}
3623 
3624 	/*
3625 	 * Invert the set of allowed signals to get those we want to block.
3626 	 */
3627 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3628 	signotset(&mask);
3629 
3630 	spin_lock_irq(&tsk->sighand->siglock);
3631 	sig = dequeue_signal(tsk, &mask, info, &type);
3632 	if (!sig && timeout) {
3633 		/*
3634 		 * None ready, temporarily unblock those we're interested
3635 		 * while we are sleeping in so that we'll be awakened when
3636 		 * they arrive. Unblocking is always fine, we can avoid
3637 		 * set_current_blocked().
3638 		 */
3639 		tsk->real_blocked = tsk->blocked;
3640 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3641 		recalc_sigpending();
3642 		spin_unlock_irq(&tsk->sighand->siglock);
3643 
3644 		__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3645 		ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3646 					       HRTIMER_MODE_REL);
3647 		spin_lock_irq(&tsk->sighand->siglock);
3648 		__set_task_blocked(tsk, &tsk->real_blocked);
3649 		sigemptyset(&tsk->real_blocked);
3650 		sig = dequeue_signal(tsk, &mask, info, &type);
3651 	}
3652 	spin_unlock_irq(&tsk->sighand->siglock);
3653 
3654 	if (sig)
3655 		return sig;
3656 	return ret ? -EINTR : -EAGAIN;
3657 }
3658 
3659 /**
3660  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3661  *			in @uthese
3662  *  @uthese: queued signals to wait for
3663  *  @uinfo: if non-null, the signal's siginfo is returned here
3664  *  @uts: upper bound on process time suspension
3665  *  @sigsetsize: size of sigset_t type
3666  */
3667 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3668 		siginfo_t __user *, uinfo,
3669 		const struct __kernel_timespec __user *, uts,
3670 		size_t, sigsetsize)
3671 {
3672 	sigset_t these;
3673 	struct timespec64 ts;
3674 	kernel_siginfo_t info;
3675 	int ret;
3676 
3677 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3678 	if (sigsetsize != sizeof(sigset_t))
3679 		return -EINVAL;
3680 
3681 	if (copy_from_user(&these, uthese, sizeof(these)))
3682 		return -EFAULT;
3683 
3684 	if (uts) {
3685 		if (get_timespec64(&ts, uts))
3686 			return -EFAULT;
3687 	}
3688 
3689 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3690 
3691 	if (ret > 0 && uinfo) {
3692 		if (copy_siginfo_to_user(uinfo, &info))
3693 			ret = -EFAULT;
3694 	}
3695 
3696 	return ret;
3697 }
3698 
3699 #ifdef CONFIG_COMPAT_32BIT_TIME
3700 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3701 		siginfo_t __user *, uinfo,
3702 		const struct old_timespec32 __user *, uts,
3703 		size_t, sigsetsize)
3704 {
3705 	sigset_t these;
3706 	struct timespec64 ts;
3707 	kernel_siginfo_t info;
3708 	int ret;
3709 
3710 	if (sigsetsize != sizeof(sigset_t))
3711 		return -EINVAL;
3712 
3713 	if (copy_from_user(&these, uthese, sizeof(these)))
3714 		return -EFAULT;
3715 
3716 	if (uts) {
3717 		if (get_old_timespec32(&ts, uts))
3718 			return -EFAULT;
3719 	}
3720 
3721 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3722 
3723 	if (ret > 0 && uinfo) {
3724 		if (copy_siginfo_to_user(uinfo, &info))
3725 			ret = -EFAULT;
3726 	}
3727 
3728 	return ret;
3729 }
3730 #endif
3731 
3732 #ifdef CONFIG_COMPAT
3733 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3734 		struct compat_siginfo __user *, uinfo,
3735 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3736 {
3737 	sigset_t s;
3738 	struct timespec64 t;
3739 	kernel_siginfo_t info;
3740 	long ret;
3741 
3742 	if (sigsetsize != sizeof(sigset_t))
3743 		return -EINVAL;
3744 
3745 	if (get_compat_sigset(&s, uthese))
3746 		return -EFAULT;
3747 
3748 	if (uts) {
3749 		if (get_timespec64(&t, uts))
3750 			return -EFAULT;
3751 	}
3752 
3753 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3754 
3755 	if (ret > 0 && uinfo) {
3756 		if (copy_siginfo_to_user32(uinfo, &info))
3757 			ret = -EFAULT;
3758 	}
3759 
3760 	return ret;
3761 }
3762 
3763 #ifdef CONFIG_COMPAT_32BIT_TIME
3764 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3765 		struct compat_siginfo __user *, uinfo,
3766 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3767 {
3768 	sigset_t s;
3769 	struct timespec64 t;
3770 	kernel_siginfo_t info;
3771 	long ret;
3772 
3773 	if (sigsetsize != sizeof(sigset_t))
3774 		return -EINVAL;
3775 
3776 	if (get_compat_sigset(&s, uthese))
3777 		return -EFAULT;
3778 
3779 	if (uts) {
3780 		if (get_old_timespec32(&t, uts))
3781 			return -EFAULT;
3782 	}
3783 
3784 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3785 
3786 	if (ret > 0 && uinfo) {
3787 		if (copy_siginfo_to_user32(uinfo, &info))
3788 			ret = -EFAULT;
3789 	}
3790 
3791 	return ret;
3792 }
3793 #endif
3794 #endif
3795 
3796 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3797 {
3798 	clear_siginfo(info);
3799 	info->si_signo = sig;
3800 	info->si_errno = 0;
3801 	info->si_code = SI_USER;
3802 	info->si_pid = task_tgid_vnr(current);
3803 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3804 }
3805 
3806 /**
3807  *  sys_kill - send a signal to a process
3808  *  @pid: the PID of the process
3809  *  @sig: signal to be sent
3810  */
3811 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3812 {
3813 	struct kernel_siginfo info;
3814 
3815 	prepare_kill_siginfo(sig, &info);
3816 
3817 	return kill_something_info(sig, &info, pid);
3818 }
3819 
3820 /*
3821  * Verify that the signaler and signalee either are in the same pid namespace
3822  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3823  * namespace.
3824  */
3825 static bool access_pidfd_pidns(struct pid *pid)
3826 {
3827 	struct pid_namespace *active = task_active_pid_ns(current);
3828 	struct pid_namespace *p = ns_of_pid(pid);
3829 
3830 	for (;;) {
3831 		if (!p)
3832 			return false;
3833 		if (p == active)
3834 			break;
3835 		p = p->parent;
3836 	}
3837 
3838 	return true;
3839 }
3840 
3841 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3842 		siginfo_t __user *info)
3843 {
3844 #ifdef CONFIG_COMPAT
3845 	/*
3846 	 * Avoid hooking up compat syscalls and instead handle necessary
3847 	 * conversions here. Note, this is a stop-gap measure and should not be
3848 	 * considered a generic solution.
3849 	 */
3850 	if (in_compat_syscall())
3851 		return copy_siginfo_from_user32(
3852 			kinfo, (struct compat_siginfo __user *)info);
3853 #endif
3854 	return copy_siginfo_from_user(kinfo, info);
3855 }
3856 
3857 static struct pid *pidfd_to_pid(const struct file *file)
3858 {
3859 	struct pid *pid;
3860 
3861 	pid = pidfd_pid(file);
3862 	if (!IS_ERR(pid))
3863 		return pid;
3864 
3865 	return tgid_pidfd_to_pid(file);
3866 }
3867 
3868 /**
3869  * sys_pidfd_send_signal - Signal a process through a pidfd
3870  * @pidfd:  file descriptor of the process
3871  * @sig:    signal to send
3872  * @info:   signal info
3873  * @flags:  future flags
3874  *
3875  * The syscall currently only signals via PIDTYPE_PID which covers
3876  * kill(<positive-pid>, <signal>. It does not signal threads or process
3877  * groups.
3878  * In order to extend the syscall to threads and process groups the @flags
3879  * argument should be used. In essence, the @flags argument will determine
3880  * what is signaled and not the file descriptor itself. Put in other words,
3881  * grouping is a property of the flags argument not a property of the file
3882  * descriptor.
3883  *
3884  * Return: 0 on success, negative errno on failure
3885  */
3886 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3887 		siginfo_t __user *, info, unsigned int, flags)
3888 {
3889 	int ret;
3890 	struct fd f;
3891 	struct pid *pid;
3892 	kernel_siginfo_t kinfo;
3893 
3894 	/* Enforce flags be set to 0 until we add an extension. */
3895 	if (flags)
3896 		return -EINVAL;
3897 
3898 	f = fdget(pidfd);
3899 	if (!f.file)
3900 		return -EBADF;
3901 
3902 	/* Is this a pidfd? */
3903 	pid = pidfd_to_pid(f.file);
3904 	if (IS_ERR(pid)) {
3905 		ret = PTR_ERR(pid);
3906 		goto err;
3907 	}
3908 
3909 	ret = -EINVAL;
3910 	if (!access_pidfd_pidns(pid))
3911 		goto err;
3912 
3913 	if (info) {
3914 		ret = copy_siginfo_from_user_any(&kinfo, info);
3915 		if (unlikely(ret))
3916 			goto err;
3917 
3918 		ret = -EINVAL;
3919 		if (unlikely(sig != kinfo.si_signo))
3920 			goto err;
3921 
3922 		/* Only allow sending arbitrary signals to yourself. */
3923 		ret = -EPERM;
3924 		if ((task_pid(current) != pid) &&
3925 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3926 			goto err;
3927 	} else {
3928 		prepare_kill_siginfo(sig, &kinfo);
3929 	}
3930 
3931 	ret = kill_pid_info(sig, &kinfo, pid);
3932 
3933 err:
3934 	fdput(f);
3935 	return ret;
3936 }
3937 
3938 static int
3939 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3940 {
3941 	struct task_struct *p;
3942 	int error = -ESRCH;
3943 
3944 	rcu_read_lock();
3945 	p = find_task_by_vpid(pid);
3946 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3947 		error = check_kill_permission(sig, info, p);
3948 		/*
3949 		 * The null signal is a permissions and process existence
3950 		 * probe.  No signal is actually delivered.
3951 		 */
3952 		if (!error && sig) {
3953 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3954 			/*
3955 			 * If lock_task_sighand() failed we pretend the task
3956 			 * dies after receiving the signal. The window is tiny,
3957 			 * and the signal is private anyway.
3958 			 */
3959 			if (unlikely(error == -ESRCH))
3960 				error = 0;
3961 		}
3962 	}
3963 	rcu_read_unlock();
3964 
3965 	return error;
3966 }
3967 
3968 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3969 {
3970 	struct kernel_siginfo info;
3971 
3972 	clear_siginfo(&info);
3973 	info.si_signo = sig;
3974 	info.si_errno = 0;
3975 	info.si_code = SI_TKILL;
3976 	info.si_pid = task_tgid_vnr(current);
3977 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3978 
3979 	return do_send_specific(tgid, pid, sig, &info);
3980 }
3981 
3982 /**
3983  *  sys_tgkill - send signal to one specific thread
3984  *  @tgid: the thread group ID of the thread
3985  *  @pid: the PID of the thread
3986  *  @sig: signal to be sent
3987  *
3988  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3989  *  exists but it's not belonging to the target process anymore. This
3990  *  method solves the problem of threads exiting and PIDs getting reused.
3991  */
3992 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3993 {
3994 	/* This is only valid for single tasks */
3995 	if (pid <= 0 || tgid <= 0)
3996 		return -EINVAL;
3997 
3998 	return do_tkill(tgid, pid, sig);
3999 }
4000 
4001 /**
4002  *  sys_tkill - send signal to one specific task
4003  *  @pid: the PID of the task
4004  *  @sig: signal to be sent
4005  *
4006  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
4007  */
4008 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4009 {
4010 	/* This is only valid for single tasks */
4011 	if (pid <= 0)
4012 		return -EINVAL;
4013 
4014 	return do_tkill(0, pid, sig);
4015 }
4016 
4017 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4018 {
4019 	/* Not even root can pretend to send signals from the kernel.
4020 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4021 	 */
4022 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4023 	    (task_pid_vnr(current) != pid))
4024 		return -EPERM;
4025 
4026 	/* POSIX.1b doesn't mention process groups.  */
4027 	return kill_proc_info(sig, info, pid);
4028 }
4029 
4030 /**
4031  *  sys_rt_sigqueueinfo - send signal information to a signal
4032  *  @pid: the PID of the thread
4033  *  @sig: signal to be sent
4034  *  @uinfo: signal info to be sent
4035  */
4036 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4037 		siginfo_t __user *, uinfo)
4038 {
4039 	kernel_siginfo_t info;
4040 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4041 	if (unlikely(ret))
4042 		return ret;
4043 	return do_rt_sigqueueinfo(pid, sig, &info);
4044 }
4045 
4046 #ifdef CONFIG_COMPAT
4047 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4048 			compat_pid_t, pid,
4049 			int, sig,
4050 			struct compat_siginfo __user *, uinfo)
4051 {
4052 	kernel_siginfo_t info;
4053 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4054 	if (unlikely(ret))
4055 		return ret;
4056 	return do_rt_sigqueueinfo(pid, sig, &info);
4057 }
4058 #endif
4059 
4060 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4061 {
4062 	/* This is only valid for single tasks */
4063 	if (pid <= 0 || tgid <= 0)
4064 		return -EINVAL;
4065 
4066 	/* Not even root can pretend to send signals from the kernel.
4067 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4068 	 */
4069 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4070 	    (task_pid_vnr(current) != pid))
4071 		return -EPERM;
4072 
4073 	return do_send_specific(tgid, pid, sig, info);
4074 }
4075 
4076 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4077 		siginfo_t __user *, uinfo)
4078 {
4079 	kernel_siginfo_t info;
4080 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4081 	if (unlikely(ret))
4082 		return ret;
4083 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4084 }
4085 
4086 #ifdef CONFIG_COMPAT
4087 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4088 			compat_pid_t, tgid,
4089 			compat_pid_t, pid,
4090 			int, sig,
4091 			struct compat_siginfo __user *, uinfo)
4092 {
4093 	kernel_siginfo_t info;
4094 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4095 	if (unlikely(ret))
4096 		return ret;
4097 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4098 }
4099 #endif
4100 
4101 /*
4102  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4103  */
4104 void kernel_sigaction(int sig, __sighandler_t action)
4105 {
4106 	spin_lock_irq(&current->sighand->siglock);
4107 	current->sighand->action[sig - 1].sa.sa_handler = action;
4108 	if (action == SIG_IGN) {
4109 		sigset_t mask;
4110 
4111 		sigemptyset(&mask);
4112 		sigaddset(&mask, sig);
4113 
4114 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4115 		flush_sigqueue_mask(&mask, &current->pending);
4116 		recalc_sigpending();
4117 	}
4118 	spin_unlock_irq(&current->sighand->siglock);
4119 }
4120 EXPORT_SYMBOL(kernel_sigaction);
4121 
4122 void __weak sigaction_compat_abi(struct k_sigaction *act,
4123 		struct k_sigaction *oact)
4124 {
4125 }
4126 
4127 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4128 {
4129 	struct task_struct *p = current, *t;
4130 	struct k_sigaction *k;
4131 	sigset_t mask;
4132 
4133 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4134 		return -EINVAL;
4135 
4136 	k = &p->sighand->action[sig-1];
4137 
4138 	spin_lock_irq(&p->sighand->siglock);
4139 	if (k->sa.sa_flags & SA_IMMUTABLE) {
4140 		spin_unlock_irq(&p->sighand->siglock);
4141 		return -EINVAL;
4142 	}
4143 	if (oact)
4144 		*oact = *k;
4145 
4146 	/*
4147 	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4148 	 * e.g. by having an architecture use the bit in their uapi.
4149 	 */
4150 	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4151 
4152 	/*
4153 	 * Clear unknown flag bits in order to allow userspace to detect missing
4154 	 * support for flag bits and to allow the kernel to use non-uapi bits
4155 	 * internally.
4156 	 */
4157 	if (act)
4158 		act->sa.sa_flags &= UAPI_SA_FLAGS;
4159 	if (oact)
4160 		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4161 
4162 	sigaction_compat_abi(act, oact);
4163 
4164 	if (act) {
4165 		sigdelsetmask(&act->sa.sa_mask,
4166 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4167 		*k = *act;
4168 		/*
4169 		 * POSIX 3.3.1.3:
4170 		 *  "Setting a signal action to SIG_IGN for a signal that is
4171 		 *   pending shall cause the pending signal to be discarded,
4172 		 *   whether or not it is blocked."
4173 		 *
4174 		 *  "Setting a signal action to SIG_DFL for a signal that is
4175 		 *   pending and whose default action is to ignore the signal
4176 		 *   (for example, SIGCHLD), shall cause the pending signal to
4177 		 *   be discarded, whether or not it is blocked"
4178 		 */
4179 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4180 			sigemptyset(&mask);
4181 			sigaddset(&mask, sig);
4182 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4183 			for_each_thread(p, t)
4184 				flush_sigqueue_mask(&mask, &t->pending);
4185 		}
4186 	}
4187 
4188 	spin_unlock_irq(&p->sighand->siglock);
4189 	return 0;
4190 }
4191 
4192 #ifdef CONFIG_DYNAMIC_SIGFRAME
4193 static inline void sigaltstack_lock(void)
4194 	__acquires(&current->sighand->siglock)
4195 {
4196 	spin_lock_irq(&current->sighand->siglock);
4197 }
4198 
4199 static inline void sigaltstack_unlock(void)
4200 	__releases(&current->sighand->siglock)
4201 {
4202 	spin_unlock_irq(&current->sighand->siglock);
4203 }
4204 #else
4205 static inline void sigaltstack_lock(void) { }
4206 static inline void sigaltstack_unlock(void) { }
4207 #endif
4208 
4209 static int
4210 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4211 		size_t min_ss_size)
4212 {
4213 	struct task_struct *t = current;
4214 	int ret = 0;
4215 
4216 	if (oss) {
4217 		memset(oss, 0, sizeof(stack_t));
4218 		oss->ss_sp = (void __user *) t->sas_ss_sp;
4219 		oss->ss_size = t->sas_ss_size;
4220 		oss->ss_flags = sas_ss_flags(sp) |
4221 			(current->sas_ss_flags & SS_FLAG_BITS);
4222 	}
4223 
4224 	if (ss) {
4225 		void __user *ss_sp = ss->ss_sp;
4226 		size_t ss_size = ss->ss_size;
4227 		unsigned ss_flags = ss->ss_flags;
4228 		int ss_mode;
4229 
4230 		if (unlikely(on_sig_stack(sp)))
4231 			return -EPERM;
4232 
4233 		ss_mode = ss_flags & ~SS_FLAG_BITS;
4234 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4235 				ss_mode != 0))
4236 			return -EINVAL;
4237 
4238 		/*
4239 		 * Return before taking any locks if no actual
4240 		 * sigaltstack changes were requested.
4241 		 */
4242 		if (t->sas_ss_sp == (unsigned long)ss_sp &&
4243 		    t->sas_ss_size == ss_size &&
4244 		    t->sas_ss_flags == ss_flags)
4245 			return 0;
4246 
4247 		sigaltstack_lock();
4248 		if (ss_mode == SS_DISABLE) {
4249 			ss_size = 0;
4250 			ss_sp = NULL;
4251 		} else {
4252 			if (unlikely(ss_size < min_ss_size))
4253 				ret = -ENOMEM;
4254 			if (!sigaltstack_size_valid(ss_size))
4255 				ret = -ENOMEM;
4256 		}
4257 		if (!ret) {
4258 			t->sas_ss_sp = (unsigned long) ss_sp;
4259 			t->sas_ss_size = ss_size;
4260 			t->sas_ss_flags = ss_flags;
4261 		}
4262 		sigaltstack_unlock();
4263 	}
4264 	return ret;
4265 }
4266 
4267 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4268 {
4269 	stack_t new, old;
4270 	int err;
4271 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4272 		return -EFAULT;
4273 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4274 			      current_user_stack_pointer(),
4275 			      MINSIGSTKSZ);
4276 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4277 		err = -EFAULT;
4278 	return err;
4279 }
4280 
4281 int restore_altstack(const stack_t __user *uss)
4282 {
4283 	stack_t new;
4284 	if (copy_from_user(&new, uss, sizeof(stack_t)))
4285 		return -EFAULT;
4286 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4287 			     MINSIGSTKSZ);
4288 	/* squash all but EFAULT for now */
4289 	return 0;
4290 }
4291 
4292 int __save_altstack(stack_t __user *uss, unsigned long sp)
4293 {
4294 	struct task_struct *t = current;
4295 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4296 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4297 		__put_user(t->sas_ss_size, &uss->ss_size);
4298 	return err;
4299 }
4300 
4301 #ifdef CONFIG_COMPAT
4302 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4303 				 compat_stack_t __user *uoss_ptr)
4304 {
4305 	stack_t uss, uoss;
4306 	int ret;
4307 
4308 	if (uss_ptr) {
4309 		compat_stack_t uss32;
4310 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4311 			return -EFAULT;
4312 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4313 		uss.ss_flags = uss32.ss_flags;
4314 		uss.ss_size = uss32.ss_size;
4315 	}
4316 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4317 			     compat_user_stack_pointer(),
4318 			     COMPAT_MINSIGSTKSZ);
4319 	if (ret >= 0 && uoss_ptr)  {
4320 		compat_stack_t old;
4321 		memset(&old, 0, sizeof(old));
4322 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4323 		old.ss_flags = uoss.ss_flags;
4324 		old.ss_size = uoss.ss_size;
4325 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4326 			ret = -EFAULT;
4327 	}
4328 	return ret;
4329 }
4330 
4331 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4332 			const compat_stack_t __user *, uss_ptr,
4333 			compat_stack_t __user *, uoss_ptr)
4334 {
4335 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4336 }
4337 
4338 int compat_restore_altstack(const compat_stack_t __user *uss)
4339 {
4340 	int err = do_compat_sigaltstack(uss, NULL);
4341 	/* squash all but -EFAULT for now */
4342 	return err == -EFAULT ? err : 0;
4343 }
4344 
4345 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4346 {
4347 	int err;
4348 	struct task_struct *t = current;
4349 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4350 			 &uss->ss_sp) |
4351 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4352 		__put_user(t->sas_ss_size, &uss->ss_size);
4353 	return err;
4354 }
4355 #endif
4356 
4357 #ifdef __ARCH_WANT_SYS_SIGPENDING
4358 
4359 /**
4360  *  sys_sigpending - examine pending signals
4361  *  @uset: where mask of pending signal is returned
4362  */
4363 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4364 {
4365 	sigset_t set;
4366 
4367 	if (sizeof(old_sigset_t) > sizeof(*uset))
4368 		return -EINVAL;
4369 
4370 	do_sigpending(&set);
4371 
4372 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4373 		return -EFAULT;
4374 
4375 	return 0;
4376 }
4377 
4378 #ifdef CONFIG_COMPAT
4379 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4380 {
4381 	sigset_t set;
4382 
4383 	do_sigpending(&set);
4384 
4385 	return put_user(set.sig[0], set32);
4386 }
4387 #endif
4388 
4389 #endif
4390 
4391 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4392 /**
4393  *  sys_sigprocmask - examine and change blocked signals
4394  *  @how: whether to add, remove, or set signals
4395  *  @nset: signals to add or remove (if non-null)
4396  *  @oset: previous value of signal mask if non-null
4397  *
4398  * Some platforms have their own version with special arguments;
4399  * others support only sys_rt_sigprocmask.
4400  */
4401 
4402 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4403 		old_sigset_t __user *, oset)
4404 {
4405 	old_sigset_t old_set, new_set;
4406 	sigset_t new_blocked;
4407 
4408 	old_set = current->blocked.sig[0];
4409 
4410 	if (nset) {
4411 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4412 			return -EFAULT;
4413 
4414 		new_blocked = current->blocked;
4415 
4416 		switch (how) {
4417 		case SIG_BLOCK:
4418 			sigaddsetmask(&new_blocked, new_set);
4419 			break;
4420 		case SIG_UNBLOCK:
4421 			sigdelsetmask(&new_blocked, new_set);
4422 			break;
4423 		case SIG_SETMASK:
4424 			new_blocked.sig[0] = new_set;
4425 			break;
4426 		default:
4427 			return -EINVAL;
4428 		}
4429 
4430 		set_current_blocked(&new_blocked);
4431 	}
4432 
4433 	if (oset) {
4434 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4435 			return -EFAULT;
4436 	}
4437 
4438 	return 0;
4439 }
4440 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4441 
4442 #ifndef CONFIG_ODD_RT_SIGACTION
4443 /**
4444  *  sys_rt_sigaction - alter an action taken by a process
4445  *  @sig: signal to be sent
4446  *  @act: new sigaction
4447  *  @oact: used to save the previous sigaction
4448  *  @sigsetsize: size of sigset_t type
4449  */
4450 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4451 		const struct sigaction __user *, act,
4452 		struct sigaction __user *, oact,
4453 		size_t, sigsetsize)
4454 {
4455 	struct k_sigaction new_sa, old_sa;
4456 	int ret;
4457 
4458 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4459 	if (sigsetsize != sizeof(sigset_t))
4460 		return -EINVAL;
4461 
4462 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4463 		return -EFAULT;
4464 
4465 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4466 	if (ret)
4467 		return ret;
4468 
4469 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4470 		return -EFAULT;
4471 
4472 	return 0;
4473 }
4474 #ifdef CONFIG_COMPAT
4475 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4476 		const struct compat_sigaction __user *, act,
4477 		struct compat_sigaction __user *, oact,
4478 		compat_size_t, sigsetsize)
4479 {
4480 	struct k_sigaction new_ka, old_ka;
4481 #ifdef __ARCH_HAS_SA_RESTORER
4482 	compat_uptr_t restorer;
4483 #endif
4484 	int ret;
4485 
4486 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4487 	if (sigsetsize != sizeof(compat_sigset_t))
4488 		return -EINVAL;
4489 
4490 	if (act) {
4491 		compat_uptr_t handler;
4492 		ret = get_user(handler, &act->sa_handler);
4493 		new_ka.sa.sa_handler = compat_ptr(handler);
4494 #ifdef __ARCH_HAS_SA_RESTORER
4495 		ret |= get_user(restorer, &act->sa_restorer);
4496 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4497 #endif
4498 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4499 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4500 		if (ret)
4501 			return -EFAULT;
4502 	}
4503 
4504 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4505 	if (!ret && oact) {
4506 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4507 			       &oact->sa_handler);
4508 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4509 					 sizeof(oact->sa_mask));
4510 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4511 #ifdef __ARCH_HAS_SA_RESTORER
4512 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4513 				&oact->sa_restorer);
4514 #endif
4515 	}
4516 	return ret;
4517 }
4518 #endif
4519 #endif /* !CONFIG_ODD_RT_SIGACTION */
4520 
4521 #ifdef CONFIG_OLD_SIGACTION
4522 SYSCALL_DEFINE3(sigaction, int, sig,
4523 		const struct old_sigaction __user *, act,
4524 	        struct old_sigaction __user *, oact)
4525 {
4526 	struct k_sigaction new_ka, old_ka;
4527 	int ret;
4528 
4529 	if (act) {
4530 		old_sigset_t mask;
4531 		if (!access_ok(act, sizeof(*act)) ||
4532 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4533 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4534 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4535 		    __get_user(mask, &act->sa_mask))
4536 			return -EFAULT;
4537 #ifdef __ARCH_HAS_KA_RESTORER
4538 		new_ka.ka_restorer = NULL;
4539 #endif
4540 		siginitset(&new_ka.sa.sa_mask, mask);
4541 	}
4542 
4543 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4544 
4545 	if (!ret && oact) {
4546 		if (!access_ok(oact, sizeof(*oact)) ||
4547 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4548 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4549 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4550 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4551 			return -EFAULT;
4552 	}
4553 
4554 	return ret;
4555 }
4556 #endif
4557 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4558 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4559 		const struct compat_old_sigaction __user *, act,
4560 	        struct compat_old_sigaction __user *, oact)
4561 {
4562 	struct k_sigaction new_ka, old_ka;
4563 	int ret;
4564 	compat_old_sigset_t mask;
4565 	compat_uptr_t handler, restorer;
4566 
4567 	if (act) {
4568 		if (!access_ok(act, sizeof(*act)) ||
4569 		    __get_user(handler, &act->sa_handler) ||
4570 		    __get_user(restorer, &act->sa_restorer) ||
4571 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4572 		    __get_user(mask, &act->sa_mask))
4573 			return -EFAULT;
4574 
4575 #ifdef __ARCH_HAS_KA_RESTORER
4576 		new_ka.ka_restorer = NULL;
4577 #endif
4578 		new_ka.sa.sa_handler = compat_ptr(handler);
4579 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4580 		siginitset(&new_ka.sa.sa_mask, mask);
4581 	}
4582 
4583 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4584 
4585 	if (!ret && oact) {
4586 		if (!access_ok(oact, sizeof(*oact)) ||
4587 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4588 			       &oact->sa_handler) ||
4589 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4590 			       &oact->sa_restorer) ||
4591 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4592 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4593 			return -EFAULT;
4594 	}
4595 	return ret;
4596 }
4597 #endif
4598 
4599 #ifdef CONFIG_SGETMASK_SYSCALL
4600 
4601 /*
4602  * For backwards compatibility.  Functionality superseded by sigprocmask.
4603  */
4604 SYSCALL_DEFINE0(sgetmask)
4605 {
4606 	/* SMP safe */
4607 	return current->blocked.sig[0];
4608 }
4609 
4610 SYSCALL_DEFINE1(ssetmask, int, newmask)
4611 {
4612 	int old = current->blocked.sig[0];
4613 	sigset_t newset;
4614 
4615 	siginitset(&newset, newmask);
4616 	set_current_blocked(&newset);
4617 
4618 	return old;
4619 }
4620 #endif /* CONFIG_SGETMASK_SYSCALL */
4621 
4622 #ifdef __ARCH_WANT_SYS_SIGNAL
4623 /*
4624  * For backwards compatibility.  Functionality superseded by sigaction.
4625  */
4626 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4627 {
4628 	struct k_sigaction new_sa, old_sa;
4629 	int ret;
4630 
4631 	new_sa.sa.sa_handler = handler;
4632 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4633 	sigemptyset(&new_sa.sa.sa_mask);
4634 
4635 	ret = do_sigaction(sig, &new_sa, &old_sa);
4636 
4637 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4638 }
4639 #endif /* __ARCH_WANT_SYS_SIGNAL */
4640 
4641 #ifdef __ARCH_WANT_SYS_PAUSE
4642 
4643 SYSCALL_DEFINE0(pause)
4644 {
4645 	while (!signal_pending(current)) {
4646 		__set_current_state(TASK_INTERRUPTIBLE);
4647 		schedule();
4648 	}
4649 	return -ERESTARTNOHAND;
4650 }
4651 
4652 #endif
4653 
4654 static int sigsuspend(sigset_t *set)
4655 {
4656 	current->saved_sigmask = current->blocked;
4657 	set_current_blocked(set);
4658 
4659 	while (!signal_pending(current)) {
4660 		__set_current_state(TASK_INTERRUPTIBLE);
4661 		schedule();
4662 	}
4663 	set_restore_sigmask();
4664 	return -ERESTARTNOHAND;
4665 }
4666 
4667 /**
4668  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4669  *	@unewset value until a signal is received
4670  *  @unewset: new signal mask value
4671  *  @sigsetsize: size of sigset_t type
4672  */
4673 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4674 {
4675 	sigset_t newset;
4676 
4677 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4678 	if (sigsetsize != sizeof(sigset_t))
4679 		return -EINVAL;
4680 
4681 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4682 		return -EFAULT;
4683 	return sigsuspend(&newset);
4684 }
4685 
4686 #ifdef CONFIG_COMPAT
4687 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4688 {
4689 	sigset_t newset;
4690 
4691 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4692 	if (sigsetsize != sizeof(sigset_t))
4693 		return -EINVAL;
4694 
4695 	if (get_compat_sigset(&newset, unewset))
4696 		return -EFAULT;
4697 	return sigsuspend(&newset);
4698 }
4699 #endif
4700 
4701 #ifdef CONFIG_OLD_SIGSUSPEND
4702 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4703 {
4704 	sigset_t blocked;
4705 	siginitset(&blocked, mask);
4706 	return sigsuspend(&blocked);
4707 }
4708 #endif
4709 #ifdef CONFIG_OLD_SIGSUSPEND3
4710 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4711 {
4712 	sigset_t blocked;
4713 	siginitset(&blocked, mask);
4714 	return sigsuspend(&blocked);
4715 }
4716 #endif
4717 
4718 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4719 {
4720 	return NULL;
4721 }
4722 
4723 static inline void siginfo_buildtime_checks(void)
4724 {
4725 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4726 
4727 	/* Verify the offsets in the two siginfos match */
4728 #define CHECK_OFFSET(field) \
4729 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4730 
4731 	/* kill */
4732 	CHECK_OFFSET(si_pid);
4733 	CHECK_OFFSET(si_uid);
4734 
4735 	/* timer */
4736 	CHECK_OFFSET(si_tid);
4737 	CHECK_OFFSET(si_overrun);
4738 	CHECK_OFFSET(si_value);
4739 
4740 	/* rt */
4741 	CHECK_OFFSET(si_pid);
4742 	CHECK_OFFSET(si_uid);
4743 	CHECK_OFFSET(si_value);
4744 
4745 	/* sigchld */
4746 	CHECK_OFFSET(si_pid);
4747 	CHECK_OFFSET(si_uid);
4748 	CHECK_OFFSET(si_status);
4749 	CHECK_OFFSET(si_utime);
4750 	CHECK_OFFSET(si_stime);
4751 
4752 	/* sigfault */
4753 	CHECK_OFFSET(si_addr);
4754 	CHECK_OFFSET(si_trapno);
4755 	CHECK_OFFSET(si_addr_lsb);
4756 	CHECK_OFFSET(si_lower);
4757 	CHECK_OFFSET(si_upper);
4758 	CHECK_OFFSET(si_pkey);
4759 	CHECK_OFFSET(si_perf_data);
4760 	CHECK_OFFSET(si_perf_type);
4761 	CHECK_OFFSET(si_perf_flags);
4762 
4763 	/* sigpoll */
4764 	CHECK_OFFSET(si_band);
4765 	CHECK_OFFSET(si_fd);
4766 
4767 	/* sigsys */
4768 	CHECK_OFFSET(si_call_addr);
4769 	CHECK_OFFSET(si_syscall);
4770 	CHECK_OFFSET(si_arch);
4771 #undef CHECK_OFFSET
4772 
4773 	/* usb asyncio */
4774 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4775 		     offsetof(struct siginfo, si_addr));
4776 	if (sizeof(int) == sizeof(void __user *)) {
4777 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4778 			     sizeof(void __user *));
4779 	} else {
4780 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4781 			      sizeof_field(struct siginfo, si_uid)) !=
4782 			     sizeof(void __user *));
4783 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4784 			     offsetof(struct siginfo, si_uid));
4785 	}
4786 #ifdef CONFIG_COMPAT
4787 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4788 		     offsetof(struct compat_siginfo, si_addr));
4789 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4790 		     sizeof(compat_uptr_t));
4791 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4792 		     sizeof_field(struct siginfo, si_pid));
4793 #endif
4794 }
4795 
4796 #if defined(CONFIG_SYSCTL)
4797 static struct ctl_table signal_debug_table[] = {
4798 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4799 	{
4800 		.procname	= "exception-trace",
4801 		.data		= &show_unhandled_signals,
4802 		.maxlen		= sizeof(int),
4803 		.mode		= 0644,
4804 		.proc_handler	= proc_dointvec
4805 	},
4806 #endif
4807 	{ }
4808 };
4809 
4810 static int __init init_signal_sysctls(void)
4811 {
4812 	register_sysctl_init("debug", signal_debug_table);
4813 	return 0;
4814 }
4815 early_initcall(init_signal_sysctls);
4816 #endif /* CONFIG_SYSCTL */
4817 
4818 void __init signals_init(void)
4819 {
4820 	siginfo_buildtime_checks();
4821 
4822 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4823 }
4824 
4825 #ifdef CONFIG_KGDB_KDB
4826 #include <linux/kdb.h>
4827 /*
4828  * kdb_send_sig - Allows kdb to send signals without exposing
4829  * signal internals.  This function checks if the required locks are
4830  * available before calling the main signal code, to avoid kdb
4831  * deadlocks.
4832  */
4833 void kdb_send_sig(struct task_struct *t, int sig)
4834 {
4835 	static struct task_struct *kdb_prev_t;
4836 	int new_t, ret;
4837 	if (!spin_trylock(&t->sighand->siglock)) {
4838 		kdb_printf("Can't do kill command now.\n"
4839 			   "The sigmask lock is held somewhere else in "
4840 			   "kernel, try again later\n");
4841 		return;
4842 	}
4843 	new_t = kdb_prev_t != t;
4844 	kdb_prev_t = t;
4845 	if (!task_is_running(t) && new_t) {
4846 		spin_unlock(&t->sighand->siglock);
4847 		kdb_printf("Process is not RUNNING, sending a signal from "
4848 			   "kdb risks deadlock\n"
4849 			   "on the run queue locks. "
4850 			   "The signal has _not_ been sent.\n"
4851 			   "Reissue the kill command if you want to risk "
4852 			   "the deadlock.\n");
4853 		return;
4854 	}
4855 	ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4856 	spin_unlock(&t->sighand->siglock);
4857 	if (ret)
4858 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4859 			   sig, t->pid);
4860 	else
4861 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4862 }
4863 #endif	/* CONFIG_KGDB_KDB */
4864