xref: /linux/kernel/signal.c (revision f8324e20f8289dffc646d64366332e05eaacab25)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/ratelimit.h>
26 #include <linux/tracehook.h>
27 #include <linux/capability.h>
28 #include <linux/freezer.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/nsproxy.h>
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/signal.h>
33 
34 #include <asm/param.h>
35 #include <asm/uaccess.h>
36 #include <asm/unistd.h>
37 #include <asm/siginfo.h>
38 #include "audit.h"	/* audit_signal_info() */
39 
40 /*
41  * SLAB caches for signal bits.
42  */
43 
44 static struct kmem_cache *sigqueue_cachep;
45 
46 int print_fatal_signals __read_mostly;
47 
48 static void __user *sig_handler(struct task_struct *t, int sig)
49 {
50 	return t->sighand->action[sig - 1].sa.sa_handler;
51 }
52 
53 static int sig_handler_ignored(void __user *handler, int sig)
54 {
55 	/* Is it explicitly or implicitly ignored? */
56 	return handler == SIG_IGN ||
57 		(handler == SIG_DFL && sig_kernel_ignore(sig));
58 }
59 
60 static int sig_task_ignored(struct task_struct *t, int sig,
61 		int from_ancestor_ns)
62 {
63 	void __user *handler;
64 
65 	handler = sig_handler(t, sig);
66 
67 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
68 			handler == SIG_DFL && !from_ancestor_ns)
69 		return 1;
70 
71 	return sig_handler_ignored(handler, sig);
72 }
73 
74 static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns)
75 {
76 	/*
77 	 * Blocked signals are never ignored, since the
78 	 * signal handler may change by the time it is
79 	 * unblocked.
80 	 */
81 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
82 		return 0;
83 
84 	if (!sig_task_ignored(t, sig, from_ancestor_ns))
85 		return 0;
86 
87 	/*
88 	 * Tracers may want to know about even ignored signals.
89 	 */
90 	return !tracehook_consider_ignored_signal(t, sig);
91 }
92 
93 /*
94  * Re-calculate pending state from the set of locally pending
95  * signals, globally pending signals, and blocked signals.
96  */
97 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
98 {
99 	unsigned long ready;
100 	long i;
101 
102 	switch (_NSIG_WORDS) {
103 	default:
104 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
105 			ready |= signal->sig[i] &~ blocked->sig[i];
106 		break;
107 
108 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
109 		ready |= signal->sig[2] &~ blocked->sig[2];
110 		ready |= signal->sig[1] &~ blocked->sig[1];
111 		ready |= signal->sig[0] &~ blocked->sig[0];
112 		break;
113 
114 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
115 		ready |= signal->sig[0] &~ blocked->sig[0];
116 		break;
117 
118 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
119 	}
120 	return ready !=	0;
121 }
122 
123 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
124 
125 static int recalc_sigpending_tsk(struct task_struct *t)
126 {
127 	if (t->signal->group_stop_count > 0 ||
128 	    PENDING(&t->pending, &t->blocked) ||
129 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
130 		set_tsk_thread_flag(t, TIF_SIGPENDING);
131 		return 1;
132 	}
133 	/*
134 	 * We must never clear the flag in another thread, or in current
135 	 * when it's possible the current syscall is returning -ERESTART*.
136 	 * So we don't clear it here, and only callers who know they should do.
137 	 */
138 	return 0;
139 }
140 
141 /*
142  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
143  * This is superfluous when called on current, the wakeup is a harmless no-op.
144  */
145 void recalc_sigpending_and_wake(struct task_struct *t)
146 {
147 	if (recalc_sigpending_tsk(t))
148 		signal_wake_up(t, 0);
149 }
150 
151 void recalc_sigpending(void)
152 {
153 	if (unlikely(tracehook_force_sigpending()))
154 		set_thread_flag(TIF_SIGPENDING);
155 	else if (!recalc_sigpending_tsk(current) && !freezing(current))
156 		clear_thread_flag(TIF_SIGPENDING);
157 
158 }
159 
160 /* Given the mask, find the first available signal that should be serviced. */
161 
162 #define SYNCHRONOUS_MASK \
163 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
164 	 sigmask(SIGTRAP) | sigmask(SIGFPE))
165 
166 int next_signal(struct sigpending *pending, sigset_t *mask)
167 {
168 	unsigned long i, *s, *m, x;
169 	int sig = 0;
170 
171 	s = pending->signal.sig;
172 	m = mask->sig;
173 
174 	/*
175 	 * Handle the first word specially: it contains the
176 	 * synchronous signals that need to be dequeued first.
177 	 */
178 	x = *s &~ *m;
179 	if (x) {
180 		if (x & SYNCHRONOUS_MASK)
181 			x &= SYNCHRONOUS_MASK;
182 		sig = ffz(~x) + 1;
183 		return sig;
184 	}
185 
186 	switch (_NSIG_WORDS) {
187 	default:
188 		for (i = 1; i < _NSIG_WORDS; ++i) {
189 			x = *++s &~ *++m;
190 			if (!x)
191 				continue;
192 			sig = ffz(~x) + i*_NSIG_BPW + 1;
193 			break;
194 		}
195 		break;
196 
197 	case 2:
198 		x = s[1] &~ m[1];
199 		if (!x)
200 			break;
201 		sig = ffz(~x) + _NSIG_BPW + 1;
202 		break;
203 
204 	case 1:
205 		/* Nothing to do */
206 		break;
207 	}
208 
209 	return sig;
210 }
211 
212 static inline void print_dropped_signal(int sig)
213 {
214 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
215 
216 	if (!print_fatal_signals)
217 		return;
218 
219 	if (!__ratelimit(&ratelimit_state))
220 		return;
221 
222 	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
223 				current->comm, current->pid, sig);
224 }
225 
226 /*
227  * allocate a new signal queue record
228  * - this may be called without locks if and only if t == current, otherwise an
229  *   appopriate lock must be held to stop the target task from exiting
230  */
231 static struct sigqueue *
232 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
233 {
234 	struct sigqueue *q = NULL;
235 	struct user_struct *user;
236 
237 	/*
238 	 * Protect access to @t credentials. This can go away when all
239 	 * callers hold rcu read lock.
240 	 */
241 	rcu_read_lock();
242 	user = get_uid(__task_cred(t)->user);
243 	atomic_inc(&user->sigpending);
244 	rcu_read_unlock();
245 
246 	if (override_rlimit ||
247 	    atomic_read(&user->sigpending) <=
248 			task_rlimit(t, RLIMIT_SIGPENDING)) {
249 		q = kmem_cache_alloc(sigqueue_cachep, flags);
250 	} else {
251 		print_dropped_signal(sig);
252 	}
253 
254 	if (unlikely(q == NULL)) {
255 		atomic_dec(&user->sigpending);
256 		free_uid(user);
257 	} else {
258 		INIT_LIST_HEAD(&q->list);
259 		q->flags = 0;
260 		q->user = user;
261 	}
262 
263 	return q;
264 }
265 
266 static void __sigqueue_free(struct sigqueue *q)
267 {
268 	if (q->flags & SIGQUEUE_PREALLOC)
269 		return;
270 	atomic_dec(&q->user->sigpending);
271 	free_uid(q->user);
272 	kmem_cache_free(sigqueue_cachep, q);
273 }
274 
275 void flush_sigqueue(struct sigpending *queue)
276 {
277 	struct sigqueue *q;
278 
279 	sigemptyset(&queue->signal);
280 	while (!list_empty(&queue->list)) {
281 		q = list_entry(queue->list.next, struct sigqueue , list);
282 		list_del_init(&q->list);
283 		__sigqueue_free(q);
284 	}
285 }
286 
287 /*
288  * Flush all pending signals for a task.
289  */
290 void __flush_signals(struct task_struct *t)
291 {
292 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
293 	flush_sigqueue(&t->pending);
294 	flush_sigqueue(&t->signal->shared_pending);
295 }
296 
297 void flush_signals(struct task_struct *t)
298 {
299 	unsigned long flags;
300 
301 	spin_lock_irqsave(&t->sighand->siglock, flags);
302 	__flush_signals(t);
303 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
304 }
305 
306 static void __flush_itimer_signals(struct sigpending *pending)
307 {
308 	sigset_t signal, retain;
309 	struct sigqueue *q, *n;
310 
311 	signal = pending->signal;
312 	sigemptyset(&retain);
313 
314 	list_for_each_entry_safe(q, n, &pending->list, list) {
315 		int sig = q->info.si_signo;
316 
317 		if (likely(q->info.si_code != SI_TIMER)) {
318 			sigaddset(&retain, sig);
319 		} else {
320 			sigdelset(&signal, sig);
321 			list_del_init(&q->list);
322 			__sigqueue_free(q);
323 		}
324 	}
325 
326 	sigorsets(&pending->signal, &signal, &retain);
327 }
328 
329 void flush_itimer_signals(void)
330 {
331 	struct task_struct *tsk = current;
332 	unsigned long flags;
333 
334 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
335 	__flush_itimer_signals(&tsk->pending);
336 	__flush_itimer_signals(&tsk->signal->shared_pending);
337 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
338 }
339 
340 void ignore_signals(struct task_struct *t)
341 {
342 	int i;
343 
344 	for (i = 0; i < _NSIG; ++i)
345 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
346 
347 	flush_signals(t);
348 }
349 
350 /*
351  * Flush all handlers for a task.
352  */
353 
354 void
355 flush_signal_handlers(struct task_struct *t, int force_default)
356 {
357 	int i;
358 	struct k_sigaction *ka = &t->sighand->action[0];
359 	for (i = _NSIG ; i != 0 ; i--) {
360 		if (force_default || ka->sa.sa_handler != SIG_IGN)
361 			ka->sa.sa_handler = SIG_DFL;
362 		ka->sa.sa_flags = 0;
363 		sigemptyset(&ka->sa.sa_mask);
364 		ka++;
365 	}
366 }
367 
368 int unhandled_signal(struct task_struct *tsk, int sig)
369 {
370 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
371 	if (is_global_init(tsk))
372 		return 1;
373 	if (handler != SIG_IGN && handler != SIG_DFL)
374 		return 0;
375 	return !tracehook_consider_fatal_signal(tsk, sig);
376 }
377 
378 
379 /* Notify the system that a driver wants to block all signals for this
380  * process, and wants to be notified if any signals at all were to be
381  * sent/acted upon.  If the notifier routine returns non-zero, then the
382  * signal will be acted upon after all.  If the notifier routine returns 0,
383  * then then signal will be blocked.  Only one block per process is
384  * allowed.  priv is a pointer to private data that the notifier routine
385  * can use to determine if the signal should be blocked or not.  */
386 
387 void
388 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
389 {
390 	unsigned long flags;
391 
392 	spin_lock_irqsave(&current->sighand->siglock, flags);
393 	current->notifier_mask = mask;
394 	current->notifier_data = priv;
395 	current->notifier = notifier;
396 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
397 }
398 
399 /* Notify the system that blocking has ended. */
400 
401 void
402 unblock_all_signals(void)
403 {
404 	unsigned long flags;
405 
406 	spin_lock_irqsave(&current->sighand->siglock, flags);
407 	current->notifier = NULL;
408 	current->notifier_data = NULL;
409 	recalc_sigpending();
410 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
411 }
412 
413 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
414 {
415 	struct sigqueue *q, *first = NULL;
416 
417 	/*
418 	 * Collect the siginfo appropriate to this signal.  Check if
419 	 * there is another siginfo for the same signal.
420 	*/
421 	list_for_each_entry(q, &list->list, list) {
422 		if (q->info.si_signo == sig) {
423 			if (first)
424 				goto still_pending;
425 			first = q;
426 		}
427 	}
428 
429 	sigdelset(&list->signal, sig);
430 
431 	if (first) {
432 still_pending:
433 		list_del_init(&first->list);
434 		copy_siginfo(info, &first->info);
435 		__sigqueue_free(first);
436 	} else {
437 		/* Ok, it wasn't in the queue.  This must be
438 		   a fast-pathed signal or we must have been
439 		   out of queue space.  So zero out the info.
440 		 */
441 		info->si_signo = sig;
442 		info->si_errno = 0;
443 		info->si_code = SI_USER;
444 		info->si_pid = 0;
445 		info->si_uid = 0;
446 	}
447 }
448 
449 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
450 			siginfo_t *info)
451 {
452 	int sig = next_signal(pending, mask);
453 
454 	if (sig) {
455 		if (current->notifier) {
456 			if (sigismember(current->notifier_mask, sig)) {
457 				if (!(current->notifier)(current->notifier_data)) {
458 					clear_thread_flag(TIF_SIGPENDING);
459 					return 0;
460 				}
461 			}
462 		}
463 
464 		collect_signal(sig, pending, info);
465 	}
466 
467 	return sig;
468 }
469 
470 /*
471  * Dequeue a signal and return the element to the caller, which is
472  * expected to free it.
473  *
474  * All callers have to hold the siglock.
475  */
476 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
477 {
478 	int signr;
479 
480 	/* We only dequeue private signals from ourselves, we don't let
481 	 * signalfd steal them
482 	 */
483 	signr = __dequeue_signal(&tsk->pending, mask, info);
484 	if (!signr) {
485 		signr = __dequeue_signal(&tsk->signal->shared_pending,
486 					 mask, info);
487 		/*
488 		 * itimer signal ?
489 		 *
490 		 * itimers are process shared and we restart periodic
491 		 * itimers in the signal delivery path to prevent DoS
492 		 * attacks in the high resolution timer case. This is
493 		 * compliant with the old way of self restarting
494 		 * itimers, as the SIGALRM is a legacy signal and only
495 		 * queued once. Changing the restart behaviour to
496 		 * restart the timer in the signal dequeue path is
497 		 * reducing the timer noise on heavy loaded !highres
498 		 * systems too.
499 		 */
500 		if (unlikely(signr == SIGALRM)) {
501 			struct hrtimer *tmr = &tsk->signal->real_timer;
502 
503 			if (!hrtimer_is_queued(tmr) &&
504 			    tsk->signal->it_real_incr.tv64 != 0) {
505 				hrtimer_forward(tmr, tmr->base->get_time(),
506 						tsk->signal->it_real_incr);
507 				hrtimer_restart(tmr);
508 			}
509 		}
510 	}
511 
512 	recalc_sigpending();
513 	if (!signr)
514 		return 0;
515 
516 	if (unlikely(sig_kernel_stop(signr))) {
517 		/*
518 		 * Set a marker that we have dequeued a stop signal.  Our
519 		 * caller might release the siglock and then the pending
520 		 * stop signal it is about to process is no longer in the
521 		 * pending bitmasks, but must still be cleared by a SIGCONT
522 		 * (and overruled by a SIGKILL).  So those cases clear this
523 		 * shared flag after we've set it.  Note that this flag may
524 		 * remain set after the signal we return is ignored or
525 		 * handled.  That doesn't matter because its only purpose
526 		 * is to alert stop-signal processing code when another
527 		 * processor has come along and cleared the flag.
528 		 */
529 		tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
530 	}
531 	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
532 		/*
533 		 * Release the siglock to ensure proper locking order
534 		 * of timer locks outside of siglocks.  Note, we leave
535 		 * irqs disabled here, since the posix-timers code is
536 		 * about to disable them again anyway.
537 		 */
538 		spin_unlock(&tsk->sighand->siglock);
539 		do_schedule_next_timer(info);
540 		spin_lock(&tsk->sighand->siglock);
541 	}
542 	return signr;
543 }
544 
545 /*
546  * Tell a process that it has a new active signal..
547  *
548  * NOTE! we rely on the previous spin_lock to
549  * lock interrupts for us! We can only be called with
550  * "siglock" held, and the local interrupt must
551  * have been disabled when that got acquired!
552  *
553  * No need to set need_resched since signal event passing
554  * goes through ->blocked
555  */
556 void signal_wake_up(struct task_struct *t, int resume)
557 {
558 	unsigned int mask;
559 
560 	set_tsk_thread_flag(t, TIF_SIGPENDING);
561 
562 	/*
563 	 * For SIGKILL, we want to wake it up in the stopped/traced/killable
564 	 * case. We don't check t->state here because there is a race with it
565 	 * executing another processor and just now entering stopped state.
566 	 * By using wake_up_state, we ensure the process will wake up and
567 	 * handle its death signal.
568 	 */
569 	mask = TASK_INTERRUPTIBLE;
570 	if (resume)
571 		mask |= TASK_WAKEKILL;
572 	if (!wake_up_state(t, mask))
573 		kick_process(t);
574 }
575 
576 /*
577  * Remove signals in mask from the pending set and queue.
578  * Returns 1 if any signals were found.
579  *
580  * All callers must be holding the siglock.
581  *
582  * This version takes a sigset mask and looks at all signals,
583  * not just those in the first mask word.
584  */
585 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
586 {
587 	struct sigqueue *q, *n;
588 	sigset_t m;
589 
590 	sigandsets(&m, mask, &s->signal);
591 	if (sigisemptyset(&m))
592 		return 0;
593 
594 	signandsets(&s->signal, &s->signal, mask);
595 	list_for_each_entry_safe(q, n, &s->list, list) {
596 		if (sigismember(mask, q->info.si_signo)) {
597 			list_del_init(&q->list);
598 			__sigqueue_free(q);
599 		}
600 	}
601 	return 1;
602 }
603 /*
604  * Remove signals in mask from the pending set and queue.
605  * Returns 1 if any signals were found.
606  *
607  * All callers must be holding the siglock.
608  */
609 static int rm_from_queue(unsigned long mask, struct sigpending *s)
610 {
611 	struct sigqueue *q, *n;
612 
613 	if (!sigtestsetmask(&s->signal, mask))
614 		return 0;
615 
616 	sigdelsetmask(&s->signal, mask);
617 	list_for_each_entry_safe(q, n, &s->list, list) {
618 		if (q->info.si_signo < SIGRTMIN &&
619 		    (mask & sigmask(q->info.si_signo))) {
620 			list_del_init(&q->list);
621 			__sigqueue_free(q);
622 		}
623 	}
624 	return 1;
625 }
626 
627 static inline int is_si_special(const struct siginfo *info)
628 {
629 	return info <= SEND_SIG_FORCED;
630 }
631 
632 static inline bool si_fromuser(const struct siginfo *info)
633 {
634 	return info == SEND_SIG_NOINFO ||
635 		(!is_si_special(info) && SI_FROMUSER(info));
636 }
637 
638 /*
639  * Bad permissions for sending the signal
640  * - the caller must hold at least the RCU read lock
641  */
642 static int check_kill_permission(int sig, struct siginfo *info,
643 				 struct task_struct *t)
644 {
645 	const struct cred *cred, *tcred;
646 	struct pid *sid;
647 	int error;
648 
649 	if (!valid_signal(sig))
650 		return -EINVAL;
651 
652 	if (!si_fromuser(info))
653 		return 0;
654 
655 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
656 	if (error)
657 		return error;
658 
659 	cred = current_cred();
660 	tcred = __task_cred(t);
661 	if (!same_thread_group(current, t) &&
662 	    (cred->euid ^ tcred->suid) &&
663 	    (cred->euid ^ tcred->uid) &&
664 	    (cred->uid  ^ tcred->suid) &&
665 	    (cred->uid  ^ tcred->uid) &&
666 	    !capable(CAP_KILL)) {
667 		switch (sig) {
668 		case SIGCONT:
669 			sid = task_session(t);
670 			/*
671 			 * We don't return the error if sid == NULL. The
672 			 * task was unhashed, the caller must notice this.
673 			 */
674 			if (!sid || sid == task_session(current))
675 				break;
676 		default:
677 			return -EPERM;
678 		}
679 	}
680 
681 	return security_task_kill(t, info, sig, 0);
682 }
683 
684 /*
685  * Handle magic process-wide effects of stop/continue signals. Unlike
686  * the signal actions, these happen immediately at signal-generation
687  * time regardless of blocking, ignoring, or handling.  This does the
688  * actual continuing for SIGCONT, but not the actual stopping for stop
689  * signals. The process stop is done as a signal action for SIG_DFL.
690  *
691  * Returns true if the signal should be actually delivered, otherwise
692  * it should be dropped.
693  */
694 static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns)
695 {
696 	struct signal_struct *signal = p->signal;
697 	struct task_struct *t;
698 
699 	if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
700 		/*
701 		 * The process is in the middle of dying, nothing to do.
702 		 */
703 	} else if (sig_kernel_stop(sig)) {
704 		/*
705 		 * This is a stop signal.  Remove SIGCONT from all queues.
706 		 */
707 		rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
708 		t = p;
709 		do {
710 			rm_from_queue(sigmask(SIGCONT), &t->pending);
711 		} while_each_thread(p, t);
712 	} else if (sig == SIGCONT) {
713 		unsigned int why;
714 		/*
715 		 * Remove all stop signals from all queues,
716 		 * and wake all threads.
717 		 */
718 		rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
719 		t = p;
720 		do {
721 			unsigned int state;
722 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
723 			/*
724 			 * If there is a handler for SIGCONT, we must make
725 			 * sure that no thread returns to user mode before
726 			 * we post the signal, in case it was the only
727 			 * thread eligible to run the signal handler--then
728 			 * it must not do anything between resuming and
729 			 * running the handler.  With the TIF_SIGPENDING
730 			 * flag set, the thread will pause and acquire the
731 			 * siglock that we hold now and until we've queued
732 			 * the pending signal.
733 			 *
734 			 * Wake up the stopped thread _after_ setting
735 			 * TIF_SIGPENDING
736 			 */
737 			state = __TASK_STOPPED;
738 			if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
739 				set_tsk_thread_flag(t, TIF_SIGPENDING);
740 				state |= TASK_INTERRUPTIBLE;
741 			}
742 			wake_up_state(t, state);
743 		} while_each_thread(p, t);
744 
745 		/*
746 		 * Notify the parent with CLD_CONTINUED if we were stopped.
747 		 *
748 		 * If we were in the middle of a group stop, we pretend it
749 		 * was already finished, and then continued. Since SIGCHLD
750 		 * doesn't queue we report only CLD_STOPPED, as if the next
751 		 * CLD_CONTINUED was dropped.
752 		 */
753 		why = 0;
754 		if (signal->flags & SIGNAL_STOP_STOPPED)
755 			why |= SIGNAL_CLD_CONTINUED;
756 		else if (signal->group_stop_count)
757 			why |= SIGNAL_CLD_STOPPED;
758 
759 		if (why) {
760 			/*
761 			 * The first thread which returns from do_signal_stop()
762 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
763 			 * notify its parent. See get_signal_to_deliver().
764 			 */
765 			signal->flags = why | SIGNAL_STOP_CONTINUED;
766 			signal->group_stop_count = 0;
767 			signal->group_exit_code = 0;
768 		} else {
769 			/*
770 			 * We are not stopped, but there could be a stop
771 			 * signal in the middle of being processed after
772 			 * being removed from the queue.  Clear that too.
773 			 */
774 			signal->flags &= ~SIGNAL_STOP_DEQUEUED;
775 		}
776 	}
777 
778 	return !sig_ignored(p, sig, from_ancestor_ns);
779 }
780 
781 /*
782  * Test if P wants to take SIG.  After we've checked all threads with this,
783  * it's equivalent to finding no threads not blocking SIG.  Any threads not
784  * blocking SIG were ruled out because they are not running and already
785  * have pending signals.  Such threads will dequeue from the shared queue
786  * as soon as they're available, so putting the signal on the shared queue
787  * will be equivalent to sending it to one such thread.
788  */
789 static inline int wants_signal(int sig, struct task_struct *p)
790 {
791 	if (sigismember(&p->blocked, sig))
792 		return 0;
793 	if (p->flags & PF_EXITING)
794 		return 0;
795 	if (sig == SIGKILL)
796 		return 1;
797 	if (task_is_stopped_or_traced(p))
798 		return 0;
799 	return task_curr(p) || !signal_pending(p);
800 }
801 
802 static void complete_signal(int sig, struct task_struct *p, int group)
803 {
804 	struct signal_struct *signal = p->signal;
805 	struct task_struct *t;
806 
807 	/*
808 	 * Now find a thread we can wake up to take the signal off the queue.
809 	 *
810 	 * If the main thread wants the signal, it gets first crack.
811 	 * Probably the least surprising to the average bear.
812 	 */
813 	if (wants_signal(sig, p))
814 		t = p;
815 	else if (!group || thread_group_empty(p))
816 		/*
817 		 * There is just one thread and it does not need to be woken.
818 		 * It will dequeue unblocked signals before it runs again.
819 		 */
820 		return;
821 	else {
822 		/*
823 		 * Otherwise try to find a suitable thread.
824 		 */
825 		t = signal->curr_target;
826 		while (!wants_signal(sig, t)) {
827 			t = next_thread(t);
828 			if (t == signal->curr_target)
829 				/*
830 				 * No thread needs to be woken.
831 				 * Any eligible threads will see
832 				 * the signal in the queue soon.
833 				 */
834 				return;
835 		}
836 		signal->curr_target = t;
837 	}
838 
839 	/*
840 	 * Found a killable thread.  If the signal will be fatal,
841 	 * then start taking the whole group down immediately.
842 	 */
843 	if (sig_fatal(p, sig) &&
844 	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
845 	    !sigismember(&t->real_blocked, sig) &&
846 	    (sig == SIGKILL ||
847 	     !tracehook_consider_fatal_signal(t, sig))) {
848 		/*
849 		 * This signal will be fatal to the whole group.
850 		 */
851 		if (!sig_kernel_coredump(sig)) {
852 			/*
853 			 * Start a group exit and wake everybody up.
854 			 * This way we don't have other threads
855 			 * running and doing things after a slower
856 			 * thread has the fatal signal pending.
857 			 */
858 			signal->flags = SIGNAL_GROUP_EXIT;
859 			signal->group_exit_code = sig;
860 			signal->group_stop_count = 0;
861 			t = p;
862 			do {
863 				sigaddset(&t->pending.signal, SIGKILL);
864 				signal_wake_up(t, 1);
865 			} while_each_thread(p, t);
866 			return;
867 		}
868 	}
869 
870 	/*
871 	 * The signal is already in the shared-pending queue.
872 	 * Tell the chosen thread to wake up and dequeue it.
873 	 */
874 	signal_wake_up(t, sig == SIGKILL);
875 	return;
876 }
877 
878 static inline int legacy_queue(struct sigpending *signals, int sig)
879 {
880 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
881 }
882 
883 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
884 			int group, int from_ancestor_ns)
885 {
886 	struct sigpending *pending;
887 	struct sigqueue *q;
888 	int override_rlimit;
889 
890 	trace_signal_generate(sig, info, t);
891 
892 	assert_spin_locked(&t->sighand->siglock);
893 
894 	if (!prepare_signal(sig, t, from_ancestor_ns))
895 		return 0;
896 
897 	pending = group ? &t->signal->shared_pending : &t->pending;
898 	/*
899 	 * Short-circuit ignored signals and support queuing
900 	 * exactly one non-rt signal, so that we can get more
901 	 * detailed information about the cause of the signal.
902 	 */
903 	if (legacy_queue(pending, sig))
904 		return 0;
905 	/*
906 	 * fast-pathed signals for kernel-internal things like SIGSTOP
907 	 * or SIGKILL.
908 	 */
909 	if (info == SEND_SIG_FORCED)
910 		goto out_set;
911 
912 	/* Real-time signals must be queued if sent by sigqueue, or
913 	   some other real-time mechanism.  It is implementation
914 	   defined whether kill() does so.  We attempt to do so, on
915 	   the principle of least surprise, but since kill is not
916 	   allowed to fail with EAGAIN when low on memory we just
917 	   make sure at least one signal gets delivered and don't
918 	   pass on the info struct.  */
919 
920 	if (sig < SIGRTMIN)
921 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
922 	else
923 		override_rlimit = 0;
924 
925 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
926 		override_rlimit);
927 	if (q) {
928 		list_add_tail(&q->list, &pending->list);
929 		switch ((unsigned long) info) {
930 		case (unsigned long) SEND_SIG_NOINFO:
931 			q->info.si_signo = sig;
932 			q->info.si_errno = 0;
933 			q->info.si_code = SI_USER;
934 			q->info.si_pid = task_tgid_nr_ns(current,
935 							task_active_pid_ns(t));
936 			q->info.si_uid = current_uid();
937 			break;
938 		case (unsigned long) SEND_SIG_PRIV:
939 			q->info.si_signo = sig;
940 			q->info.si_errno = 0;
941 			q->info.si_code = SI_KERNEL;
942 			q->info.si_pid = 0;
943 			q->info.si_uid = 0;
944 			break;
945 		default:
946 			copy_siginfo(&q->info, info);
947 			if (from_ancestor_ns)
948 				q->info.si_pid = 0;
949 			break;
950 		}
951 	} else if (!is_si_special(info)) {
952 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
953 			/*
954 			 * Queue overflow, abort.  We may abort if the
955 			 * signal was rt and sent by user using something
956 			 * other than kill().
957 			 */
958 			trace_signal_overflow_fail(sig, group, info);
959 			return -EAGAIN;
960 		} else {
961 			/*
962 			 * This is a silent loss of information.  We still
963 			 * send the signal, but the *info bits are lost.
964 			 */
965 			trace_signal_lose_info(sig, group, info);
966 		}
967 	}
968 
969 out_set:
970 	signalfd_notify(t, sig);
971 	sigaddset(&pending->signal, sig);
972 	complete_signal(sig, t, group);
973 	return 0;
974 }
975 
976 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
977 			int group)
978 {
979 	int from_ancestor_ns = 0;
980 
981 #ifdef CONFIG_PID_NS
982 	from_ancestor_ns = si_fromuser(info) &&
983 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
984 #endif
985 
986 	return __send_signal(sig, info, t, group, from_ancestor_ns);
987 }
988 
989 static void print_fatal_signal(struct pt_regs *regs, int signr)
990 {
991 	printk("%s/%d: potentially unexpected fatal signal %d.\n",
992 		current->comm, task_pid_nr(current), signr);
993 
994 #if defined(__i386__) && !defined(__arch_um__)
995 	printk("code at %08lx: ", regs->ip);
996 	{
997 		int i;
998 		for (i = 0; i < 16; i++) {
999 			unsigned char insn;
1000 
1001 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1002 				break;
1003 			printk("%02x ", insn);
1004 		}
1005 	}
1006 #endif
1007 	printk("\n");
1008 	preempt_disable();
1009 	show_regs(regs);
1010 	preempt_enable();
1011 }
1012 
1013 static int __init setup_print_fatal_signals(char *str)
1014 {
1015 	get_option (&str, &print_fatal_signals);
1016 
1017 	return 1;
1018 }
1019 
1020 __setup("print-fatal-signals=", setup_print_fatal_signals);
1021 
1022 int
1023 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1024 {
1025 	return send_signal(sig, info, p, 1);
1026 }
1027 
1028 static int
1029 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1030 {
1031 	return send_signal(sig, info, t, 0);
1032 }
1033 
1034 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1035 			bool group)
1036 {
1037 	unsigned long flags;
1038 	int ret = -ESRCH;
1039 
1040 	if (lock_task_sighand(p, &flags)) {
1041 		ret = send_signal(sig, info, p, group);
1042 		unlock_task_sighand(p, &flags);
1043 	}
1044 
1045 	return ret;
1046 }
1047 
1048 /*
1049  * Force a signal that the process can't ignore: if necessary
1050  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1051  *
1052  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1053  * since we do not want to have a signal handler that was blocked
1054  * be invoked when user space had explicitly blocked it.
1055  *
1056  * We don't want to have recursive SIGSEGV's etc, for example,
1057  * that is why we also clear SIGNAL_UNKILLABLE.
1058  */
1059 int
1060 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1061 {
1062 	unsigned long int flags;
1063 	int ret, blocked, ignored;
1064 	struct k_sigaction *action;
1065 
1066 	spin_lock_irqsave(&t->sighand->siglock, flags);
1067 	action = &t->sighand->action[sig-1];
1068 	ignored = action->sa.sa_handler == SIG_IGN;
1069 	blocked = sigismember(&t->blocked, sig);
1070 	if (blocked || ignored) {
1071 		action->sa.sa_handler = SIG_DFL;
1072 		if (blocked) {
1073 			sigdelset(&t->blocked, sig);
1074 			recalc_sigpending_and_wake(t);
1075 		}
1076 	}
1077 	if (action->sa.sa_handler == SIG_DFL)
1078 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1079 	ret = specific_send_sig_info(sig, info, t);
1080 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1081 
1082 	return ret;
1083 }
1084 
1085 /*
1086  * Nuke all other threads in the group.
1087  */
1088 int zap_other_threads(struct task_struct *p)
1089 {
1090 	struct task_struct *t = p;
1091 	int count = 0;
1092 
1093 	p->signal->group_stop_count = 0;
1094 
1095 	while_each_thread(p, t) {
1096 		count++;
1097 
1098 		/* Don't bother with already dead threads */
1099 		if (t->exit_state)
1100 			continue;
1101 		sigaddset(&t->pending.signal, SIGKILL);
1102 		signal_wake_up(t, 1);
1103 	}
1104 
1105 	return count;
1106 }
1107 
1108 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1109 {
1110 	struct sighand_struct *sighand;
1111 
1112 	rcu_read_lock();
1113 	for (;;) {
1114 		sighand = rcu_dereference(tsk->sighand);
1115 		if (unlikely(sighand == NULL))
1116 			break;
1117 
1118 		spin_lock_irqsave(&sighand->siglock, *flags);
1119 		if (likely(sighand == tsk->sighand))
1120 			break;
1121 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1122 	}
1123 	rcu_read_unlock();
1124 
1125 	return sighand;
1126 }
1127 
1128 /*
1129  * send signal info to all the members of a group
1130  * - the caller must hold the RCU read lock at least
1131  */
1132 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1133 {
1134 	int ret = check_kill_permission(sig, info, p);
1135 
1136 	if (!ret && sig)
1137 		ret = do_send_sig_info(sig, info, p, true);
1138 
1139 	return ret;
1140 }
1141 
1142 /*
1143  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1144  * control characters do (^C, ^Z etc)
1145  * - the caller must hold at least a readlock on tasklist_lock
1146  */
1147 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1148 {
1149 	struct task_struct *p = NULL;
1150 	int retval, success;
1151 
1152 	success = 0;
1153 	retval = -ESRCH;
1154 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1155 		int err = group_send_sig_info(sig, info, p);
1156 		success |= !err;
1157 		retval = err;
1158 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1159 	return success ? 0 : retval;
1160 }
1161 
1162 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1163 {
1164 	int error = -ESRCH;
1165 	struct task_struct *p;
1166 
1167 	rcu_read_lock();
1168 retry:
1169 	p = pid_task(pid, PIDTYPE_PID);
1170 	if (p) {
1171 		error = group_send_sig_info(sig, info, p);
1172 		if (unlikely(error == -ESRCH))
1173 			/*
1174 			 * The task was unhashed in between, try again.
1175 			 * If it is dead, pid_task() will return NULL,
1176 			 * if we race with de_thread() it will find the
1177 			 * new leader.
1178 			 */
1179 			goto retry;
1180 	}
1181 	rcu_read_unlock();
1182 
1183 	return error;
1184 }
1185 
1186 int
1187 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1188 {
1189 	int error;
1190 	rcu_read_lock();
1191 	error = kill_pid_info(sig, info, find_vpid(pid));
1192 	rcu_read_unlock();
1193 	return error;
1194 }
1195 
1196 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1197 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1198 		      uid_t uid, uid_t euid, u32 secid)
1199 {
1200 	int ret = -EINVAL;
1201 	struct task_struct *p;
1202 	const struct cred *pcred;
1203 	unsigned long flags;
1204 
1205 	if (!valid_signal(sig))
1206 		return ret;
1207 
1208 	rcu_read_lock();
1209 	p = pid_task(pid, PIDTYPE_PID);
1210 	if (!p) {
1211 		ret = -ESRCH;
1212 		goto out_unlock;
1213 	}
1214 	pcred = __task_cred(p);
1215 	if (si_fromuser(info) &&
1216 	    euid != pcred->suid && euid != pcred->uid &&
1217 	    uid  != pcred->suid && uid  != pcred->uid) {
1218 		ret = -EPERM;
1219 		goto out_unlock;
1220 	}
1221 	ret = security_task_kill(p, info, sig, secid);
1222 	if (ret)
1223 		goto out_unlock;
1224 
1225 	if (sig) {
1226 		if (lock_task_sighand(p, &flags)) {
1227 			ret = __send_signal(sig, info, p, 1, 0);
1228 			unlock_task_sighand(p, &flags);
1229 		} else
1230 			ret = -ESRCH;
1231 	}
1232 out_unlock:
1233 	rcu_read_unlock();
1234 	return ret;
1235 }
1236 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1237 
1238 /*
1239  * kill_something_info() interprets pid in interesting ways just like kill(2).
1240  *
1241  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1242  * is probably wrong.  Should make it like BSD or SYSV.
1243  */
1244 
1245 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1246 {
1247 	int ret;
1248 
1249 	if (pid > 0) {
1250 		rcu_read_lock();
1251 		ret = kill_pid_info(sig, info, find_vpid(pid));
1252 		rcu_read_unlock();
1253 		return ret;
1254 	}
1255 
1256 	read_lock(&tasklist_lock);
1257 	if (pid != -1) {
1258 		ret = __kill_pgrp_info(sig, info,
1259 				pid ? find_vpid(-pid) : task_pgrp(current));
1260 	} else {
1261 		int retval = 0, count = 0;
1262 		struct task_struct * p;
1263 
1264 		for_each_process(p) {
1265 			if (task_pid_vnr(p) > 1 &&
1266 					!same_thread_group(p, current)) {
1267 				int err = group_send_sig_info(sig, info, p);
1268 				++count;
1269 				if (err != -EPERM)
1270 					retval = err;
1271 			}
1272 		}
1273 		ret = count ? retval : -ESRCH;
1274 	}
1275 	read_unlock(&tasklist_lock);
1276 
1277 	return ret;
1278 }
1279 
1280 /*
1281  * These are for backward compatibility with the rest of the kernel source.
1282  */
1283 
1284 int
1285 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1286 {
1287 	/*
1288 	 * Make sure legacy kernel users don't send in bad values
1289 	 * (normal paths check this in check_kill_permission).
1290 	 */
1291 	if (!valid_signal(sig))
1292 		return -EINVAL;
1293 
1294 	return do_send_sig_info(sig, info, p, false);
1295 }
1296 
1297 #define __si_special(priv) \
1298 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1299 
1300 int
1301 send_sig(int sig, struct task_struct *p, int priv)
1302 {
1303 	return send_sig_info(sig, __si_special(priv), p);
1304 }
1305 
1306 void
1307 force_sig(int sig, struct task_struct *p)
1308 {
1309 	force_sig_info(sig, SEND_SIG_PRIV, p);
1310 }
1311 
1312 /*
1313  * When things go south during signal handling, we
1314  * will force a SIGSEGV. And if the signal that caused
1315  * the problem was already a SIGSEGV, we'll want to
1316  * make sure we don't even try to deliver the signal..
1317  */
1318 int
1319 force_sigsegv(int sig, struct task_struct *p)
1320 {
1321 	if (sig == SIGSEGV) {
1322 		unsigned long flags;
1323 		spin_lock_irqsave(&p->sighand->siglock, flags);
1324 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1325 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1326 	}
1327 	force_sig(SIGSEGV, p);
1328 	return 0;
1329 }
1330 
1331 int kill_pgrp(struct pid *pid, int sig, int priv)
1332 {
1333 	int ret;
1334 
1335 	read_lock(&tasklist_lock);
1336 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1337 	read_unlock(&tasklist_lock);
1338 
1339 	return ret;
1340 }
1341 EXPORT_SYMBOL(kill_pgrp);
1342 
1343 int kill_pid(struct pid *pid, int sig, int priv)
1344 {
1345 	return kill_pid_info(sig, __si_special(priv), pid);
1346 }
1347 EXPORT_SYMBOL(kill_pid);
1348 
1349 /*
1350  * These functions support sending signals using preallocated sigqueue
1351  * structures.  This is needed "because realtime applications cannot
1352  * afford to lose notifications of asynchronous events, like timer
1353  * expirations or I/O completions".  In the case of Posix Timers
1354  * we allocate the sigqueue structure from the timer_create.  If this
1355  * allocation fails we are able to report the failure to the application
1356  * with an EAGAIN error.
1357  */
1358 struct sigqueue *sigqueue_alloc(void)
1359 {
1360 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1361 
1362 	if (q)
1363 		q->flags |= SIGQUEUE_PREALLOC;
1364 
1365 	return q;
1366 }
1367 
1368 void sigqueue_free(struct sigqueue *q)
1369 {
1370 	unsigned long flags;
1371 	spinlock_t *lock = &current->sighand->siglock;
1372 
1373 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1374 	/*
1375 	 * We must hold ->siglock while testing q->list
1376 	 * to serialize with collect_signal() or with
1377 	 * __exit_signal()->flush_sigqueue().
1378 	 */
1379 	spin_lock_irqsave(lock, flags);
1380 	q->flags &= ~SIGQUEUE_PREALLOC;
1381 	/*
1382 	 * If it is queued it will be freed when dequeued,
1383 	 * like the "regular" sigqueue.
1384 	 */
1385 	if (!list_empty(&q->list))
1386 		q = NULL;
1387 	spin_unlock_irqrestore(lock, flags);
1388 
1389 	if (q)
1390 		__sigqueue_free(q);
1391 }
1392 
1393 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1394 {
1395 	int sig = q->info.si_signo;
1396 	struct sigpending *pending;
1397 	unsigned long flags;
1398 	int ret;
1399 
1400 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1401 
1402 	ret = -1;
1403 	if (!likely(lock_task_sighand(t, &flags)))
1404 		goto ret;
1405 
1406 	ret = 1; /* the signal is ignored */
1407 	if (!prepare_signal(sig, t, 0))
1408 		goto out;
1409 
1410 	ret = 0;
1411 	if (unlikely(!list_empty(&q->list))) {
1412 		/*
1413 		 * If an SI_TIMER entry is already queue just increment
1414 		 * the overrun count.
1415 		 */
1416 		BUG_ON(q->info.si_code != SI_TIMER);
1417 		q->info.si_overrun++;
1418 		goto out;
1419 	}
1420 	q->info.si_overrun = 0;
1421 
1422 	signalfd_notify(t, sig);
1423 	pending = group ? &t->signal->shared_pending : &t->pending;
1424 	list_add_tail(&q->list, &pending->list);
1425 	sigaddset(&pending->signal, sig);
1426 	complete_signal(sig, t, group);
1427 out:
1428 	unlock_task_sighand(t, &flags);
1429 ret:
1430 	return ret;
1431 }
1432 
1433 /*
1434  * Let a parent know about the death of a child.
1435  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1436  *
1437  * Returns -1 if our parent ignored us and so we've switched to
1438  * self-reaping, or else @sig.
1439  */
1440 int do_notify_parent(struct task_struct *tsk, int sig)
1441 {
1442 	struct siginfo info;
1443 	unsigned long flags;
1444 	struct sighand_struct *psig;
1445 	int ret = sig;
1446 
1447 	BUG_ON(sig == -1);
1448 
1449  	/* do_notify_parent_cldstop should have been called instead.  */
1450  	BUG_ON(task_is_stopped_or_traced(tsk));
1451 
1452 	BUG_ON(!task_ptrace(tsk) &&
1453 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1454 
1455 	info.si_signo = sig;
1456 	info.si_errno = 0;
1457 	/*
1458 	 * we are under tasklist_lock here so our parent is tied to
1459 	 * us and cannot exit and release its namespace.
1460 	 *
1461 	 * the only it can is to switch its nsproxy with sys_unshare,
1462 	 * bu uncharing pid namespaces is not allowed, so we'll always
1463 	 * see relevant namespace
1464 	 *
1465 	 * write_lock() currently calls preempt_disable() which is the
1466 	 * same as rcu_read_lock(), but according to Oleg, this is not
1467 	 * correct to rely on this
1468 	 */
1469 	rcu_read_lock();
1470 	info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1471 	info.si_uid = __task_cred(tsk)->uid;
1472 	rcu_read_unlock();
1473 
1474 	info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime,
1475 				tsk->signal->utime));
1476 	info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime,
1477 				tsk->signal->stime));
1478 
1479 	info.si_status = tsk->exit_code & 0x7f;
1480 	if (tsk->exit_code & 0x80)
1481 		info.si_code = CLD_DUMPED;
1482 	else if (tsk->exit_code & 0x7f)
1483 		info.si_code = CLD_KILLED;
1484 	else {
1485 		info.si_code = CLD_EXITED;
1486 		info.si_status = tsk->exit_code >> 8;
1487 	}
1488 
1489 	psig = tsk->parent->sighand;
1490 	spin_lock_irqsave(&psig->siglock, flags);
1491 	if (!task_ptrace(tsk) && sig == SIGCHLD &&
1492 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1493 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1494 		/*
1495 		 * We are exiting and our parent doesn't care.  POSIX.1
1496 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1497 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1498 		 * automatically and not left for our parent's wait4 call.
1499 		 * Rather than having the parent do it as a magic kind of
1500 		 * signal handler, we just set this to tell do_exit that we
1501 		 * can be cleaned up without becoming a zombie.  Note that
1502 		 * we still call __wake_up_parent in this case, because a
1503 		 * blocked sys_wait4 might now return -ECHILD.
1504 		 *
1505 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1506 		 * is implementation-defined: we do (if you don't want
1507 		 * it, just use SIG_IGN instead).
1508 		 */
1509 		ret = tsk->exit_signal = -1;
1510 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1511 			sig = -1;
1512 	}
1513 	if (valid_signal(sig) && sig > 0)
1514 		__group_send_sig_info(sig, &info, tsk->parent);
1515 	__wake_up_parent(tsk, tsk->parent);
1516 	spin_unlock_irqrestore(&psig->siglock, flags);
1517 
1518 	return ret;
1519 }
1520 
1521 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1522 {
1523 	struct siginfo info;
1524 	unsigned long flags;
1525 	struct task_struct *parent;
1526 	struct sighand_struct *sighand;
1527 
1528 	if (task_ptrace(tsk))
1529 		parent = tsk->parent;
1530 	else {
1531 		tsk = tsk->group_leader;
1532 		parent = tsk->real_parent;
1533 	}
1534 
1535 	info.si_signo = SIGCHLD;
1536 	info.si_errno = 0;
1537 	/*
1538 	 * see comment in do_notify_parent() abot the following 3 lines
1539 	 */
1540 	rcu_read_lock();
1541 	info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1542 	info.si_uid = __task_cred(tsk)->uid;
1543 	rcu_read_unlock();
1544 
1545 	info.si_utime = cputime_to_clock_t(tsk->utime);
1546 	info.si_stime = cputime_to_clock_t(tsk->stime);
1547 
1548  	info.si_code = why;
1549  	switch (why) {
1550  	case CLD_CONTINUED:
1551  		info.si_status = SIGCONT;
1552  		break;
1553  	case CLD_STOPPED:
1554  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1555  		break;
1556  	case CLD_TRAPPED:
1557  		info.si_status = tsk->exit_code & 0x7f;
1558  		break;
1559  	default:
1560  		BUG();
1561  	}
1562 
1563 	sighand = parent->sighand;
1564 	spin_lock_irqsave(&sighand->siglock, flags);
1565 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1566 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1567 		__group_send_sig_info(SIGCHLD, &info, parent);
1568 	/*
1569 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1570 	 */
1571 	__wake_up_parent(tsk, parent);
1572 	spin_unlock_irqrestore(&sighand->siglock, flags);
1573 }
1574 
1575 static inline int may_ptrace_stop(void)
1576 {
1577 	if (!likely(task_ptrace(current)))
1578 		return 0;
1579 	/*
1580 	 * Are we in the middle of do_coredump?
1581 	 * If so and our tracer is also part of the coredump stopping
1582 	 * is a deadlock situation, and pointless because our tracer
1583 	 * is dead so don't allow us to stop.
1584 	 * If SIGKILL was already sent before the caller unlocked
1585 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1586 	 * is safe to enter schedule().
1587 	 */
1588 	if (unlikely(current->mm->core_state) &&
1589 	    unlikely(current->mm == current->parent->mm))
1590 		return 0;
1591 
1592 	return 1;
1593 }
1594 
1595 /*
1596  * Return nonzero if there is a SIGKILL that should be waking us up.
1597  * Called with the siglock held.
1598  */
1599 static int sigkill_pending(struct task_struct *tsk)
1600 {
1601 	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1602 		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1603 }
1604 
1605 /*
1606  * This must be called with current->sighand->siglock held.
1607  *
1608  * This should be the path for all ptrace stops.
1609  * We always set current->last_siginfo while stopped here.
1610  * That makes it a way to test a stopped process for
1611  * being ptrace-stopped vs being job-control-stopped.
1612  *
1613  * If we actually decide not to stop at all because the tracer
1614  * is gone, we keep current->exit_code unless clear_code.
1615  */
1616 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1617 {
1618 	if (arch_ptrace_stop_needed(exit_code, info)) {
1619 		/*
1620 		 * The arch code has something special to do before a
1621 		 * ptrace stop.  This is allowed to block, e.g. for faults
1622 		 * on user stack pages.  We can't keep the siglock while
1623 		 * calling arch_ptrace_stop, so we must release it now.
1624 		 * To preserve proper semantics, we must do this before
1625 		 * any signal bookkeeping like checking group_stop_count.
1626 		 * Meanwhile, a SIGKILL could come in before we retake the
1627 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1628 		 * So after regaining the lock, we must check for SIGKILL.
1629 		 */
1630 		spin_unlock_irq(&current->sighand->siglock);
1631 		arch_ptrace_stop(exit_code, info);
1632 		spin_lock_irq(&current->sighand->siglock);
1633 		if (sigkill_pending(current))
1634 			return;
1635 	}
1636 
1637 	/*
1638 	 * If there is a group stop in progress,
1639 	 * we must participate in the bookkeeping.
1640 	 */
1641 	if (current->signal->group_stop_count > 0)
1642 		--current->signal->group_stop_count;
1643 
1644 	current->last_siginfo = info;
1645 	current->exit_code = exit_code;
1646 
1647 	/* Let the debugger run.  */
1648 	__set_current_state(TASK_TRACED);
1649 	spin_unlock_irq(&current->sighand->siglock);
1650 	read_lock(&tasklist_lock);
1651 	if (may_ptrace_stop()) {
1652 		do_notify_parent_cldstop(current, CLD_TRAPPED);
1653 		/*
1654 		 * Don't want to allow preemption here, because
1655 		 * sys_ptrace() needs this task to be inactive.
1656 		 *
1657 		 * XXX: implement read_unlock_no_resched().
1658 		 */
1659 		preempt_disable();
1660 		read_unlock(&tasklist_lock);
1661 		preempt_enable_no_resched();
1662 		schedule();
1663 	} else {
1664 		/*
1665 		 * By the time we got the lock, our tracer went away.
1666 		 * Don't drop the lock yet, another tracer may come.
1667 		 */
1668 		__set_current_state(TASK_RUNNING);
1669 		if (clear_code)
1670 			current->exit_code = 0;
1671 		read_unlock(&tasklist_lock);
1672 	}
1673 
1674 	/*
1675 	 * While in TASK_TRACED, we were considered "frozen enough".
1676 	 * Now that we woke up, it's crucial if we're supposed to be
1677 	 * frozen that we freeze now before running anything substantial.
1678 	 */
1679 	try_to_freeze();
1680 
1681 	/*
1682 	 * We are back.  Now reacquire the siglock before touching
1683 	 * last_siginfo, so that we are sure to have synchronized with
1684 	 * any signal-sending on another CPU that wants to examine it.
1685 	 */
1686 	spin_lock_irq(&current->sighand->siglock);
1687 	current->last_siginfo = NULL;
1688 
1689 	/*
1690 	 * Queued signals ignored us while we were stopped for tracing.
1691 	 * So check for any that we should take before resuming user mode.
1692 	 * This sets TIF_SIGPENDING, but never clears it.
1693 	 */
1694 	recalc_sigpending_tsk(current);
1695 }
1696 
1697 void ptrace_notify(int exit_code)
1698 {
1699 	siginfo_t info;
1700 
1701 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1702 
1703 	memset(&info, 0, sizeof info);
1704 	info.si_signo = SIGTRAP;
1705 	info.si_code = exit_code;
1706 	info.si_pid = task_pid_vnr(current);
1707 	info.si_uid = current_uid();
1708 
1709 	/* Let the debugger run.  */
1710 	spin_lock_irq(&current->sighand->siglock);
1711 	ptrace_stop(exit_code, 1, &info);
1712 	spin_unlock_irq(&current->sighand->siglock);
1713 }
1714 
1715 /*
1716  * This performs the stopping for SIGSTOP and other stop signals.
1717  * We have to stop all threads in the thread group.
1718  * Returns nonzero if we've actually stopped and released the siglock.
1719  * Returns zero if we didn't stop and still hold the siglock.
1720  */
1721 static int do_signal_stop(int signr)
1722 {
1723 	struct signal_struct *sig = current->signal;
1724 	int notify;
1725 
1726 	if (!sig->group_stop_count) {
1727 		struct task_struct *t;
1728 
1729 		if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1730 		    unlikely(signal_group_exit(sig)))
1731 			return 0;
1732 		/*
1733 		 * There is no group stop already in progress.
1734 		 * We must initiate one now.
1735 		 */
1736 		sig->group_exit_code = signr;
1737 
1738 		sig->group_stop_count = 1;
1739 		for (t = next_thread(current); t != current; t = next_thread(t))
1740 			/*
1741 			 * Setting state to TASK_STOPPED for a group
1742 			 * stop is always done with the siglock held,
1743 			 * so this check has no races.
1744 			 */
1745 			if (!(t->flags & PF_EXITING) &&
1746 			    !task_is_stopped_or_traced(t)) {
1747 				sig->group_stop_count++;
1748 				signal_wake_up(t, 0);
1749 			}
1750 	}
1751 	/*
1752 	 * If there are no other threads in the group, or if there is
1753 	 * a group stop in progress and we are the last to stop, report
1754 	 * to the parent.  When ptraced, every thread reports itself.
1755 	 */
1756 	notify = sig->group_stop_count == 1 ? CLD_STOPPED : 0;
1757 	notify = tracehook_notify_jctl(notify, CLD_STOPPED);
1758 	/*
1759 	 * tracehook_notify_jctl() can drop and reacquire siglock, so
1760 	 * we keep ->group_stop_count != 0 before the call. If SIGCONT
1761 	 * or SIGKILL comes in between ->group_stop_count == 0.
1762 	 */
1763 	if (sig->group_stop_count) {
1764 		if (!--sig->group_stop_count)
1765 			sig->flags = SIGNAL_STOP_STOPPED;
1766 		current->exit_code = sig->group_exit_code;
1767 		__set_current_state(TASK_STOPPED);
1768 	}
1769 	spin_unlock_irq(&current->sighand->siglock);
1770 
1771 	if (notify) {
1772 		read_lock(&tasklist_lock);
1773 		do_notify_parent_cldstop(current, notify);
1774 		read_unlock(&tasklist_lock);
1775 	}
1776 
1777 	/* Now we don't run again until woken by SIGCONT or SIGKILL */
1778 	do {
1779 		schedule();
1780 	} while (try_to_freeze());
1781 
1782 	tracehook_finish_jctl();
1783 	current->exit_code = 0;
1784 
1785 	return 1;
1786 }
1787 
1788 static int ptrace_signal(int signr, siginfo_t *info,
1789 			 struct pt_regs *regs, void *cookie)
1790 {
1791 	if (!task_ptrace(current))
1792 		return signr;
1793 
1794 	ptrace_signal_deliver(regs, cookie);
1795 
1796 	/* Let the debugger run.  */
1797 	ptrace_stop(signr, 0, info);
1798 
1799 	/* We're back.  Did the debugger cancel the sig?  */
1800 	signr = current->exit_code;
1801 	if (signr == 0)
1802 		return signr;
1803 
1804 	current->exit_code = 0;
1805 
1806 	/* Update the siginfo structure if the signal has
1807 	   changed.  If the debugger wanted something
1808 	   specific in the siginfo structure then it should
1809 	   have updated *info via PTRACE_SETSIGINFO.  */
1810 	if (signr != info->si_signo) {
1811 		info->si_signo = signr;
1812 		info->si_errno = 0;
1813 		info->si_code = SI_USER;
1814 		info->si_pid = task_pid_vnr(current->parent);
1815 		info->si_uid = task_uid(current->parent);
1816 	}
1817 
1818 	/* If the (new) signal is now blocked, requeue it.  */
1819 	if (sigismember(&current->blocked, signr)) {
1820 		specific_send_sig_info(signr, info, current);
1821 		signr = 0;
1822 	}
1823 
1824 	return signr;
1825 }
1826 
1827 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1828 			  struct pt_regs *regs, void *cookie)
1829 {
1830 	struct sighand_struct *sighand = current->sighand;
1831 	struct signal_struct *signal = current->signal;
1832 	int signr;
1833 
1834 relock:
1835 	/*
1836 	 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1837 	 * While in TASK_STOPPED, we were considered "frozen enough".
1838 	 * Now that we woke up, it's crucial if we're supposed to be
1839 	 * frozen that we freeze now before running anything substantial.
1840 	 */
1841 	try_to_freeze();
1842 
1843 	spin_lock_irq(&sighand->siglock);
1844 	/*
1845 	 * Every stopped thread goes here after wakeup. Check to see if
1846 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
1847 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
1848 	 */
1849 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
1850 		int why = (signal->flags & SIGNAL_STOP_CONTINUED)
1851 				? CLD_CONTINUED : CLD_STOPPED;
1852 		signal->flags &= ~SIGNAL_CLD_MASK;
1853 
1854 		why = tracehook_notify_jctl(why, CLD_CONTINUED);
1855 		spin_unlock_irq(&sighand->siglock);
1856 
1857 		if (why) {
1858 			read_lock(&tasklist_lock);
1859 			do_notify_parent_cldstop(current->group_leader, why);
1860 			read_unlock(&tasklist_lock);
1861 		}
1862 		goto relock;
1863 	}
1864 
1865 	for (;;) {
1866 		struct k_sigaction *ka;
1867 		/*
1868 		 * Tracing can induce an artifical signal and choose sigaction.
1869 		 * The return value in @signr determines the default action,
1870 		 * but @info->si_signo is the signal number we will report.
1871 		 */
1872 		signr = tracehook_get_signal(current, regs, info, return_ka);
1873 		if (unlikely(signr < 0))
1874 			goto relock;
1875 		if (unlikely(signr != 0))
1876 			ka = return_ka;
1877 		else {
1878 			if (unlikely(signal->group_stop_count > 0) &&
1879 			    do_signal_stop(0))
1880 				goto relock;
1881 
1882 			signr = dequeue_signal(current, &current->blocked,
1883 					       info);
1884 
1885 			if (!signr)
1886 				break; /* will return 0 */
1887 
1888 			if (signr != SIGKILL) {
1889 				signr = ptrace_signal(signr, info,
1890 						      regs, cookie);
1891 				if (!signr)
1892 					continue;
1893 			}
1894 
1895 			ka = &sighand->action[signr-1];
1896 		}
1897 
1898 		/* Trace actually delivered signals. */
1899 		trace_signal_deliver(signr, info, ka);
1900 
1901 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
1902 			continue;
1903 		if (ka->sa.sa_handler != SIG_DFL) {
1904 			/* Run the handler.  */
1905 			*return_ka = *ka;
1906 
1907 			if (ka->sa.sa_flags & SA_ONESHOT)
1908 				ka->sa.sa_handler = SIG_DFL;
1909 
1910 			break; /* will return non-zero "signr" value */
1911 		}
1912 
1913 		/*
1914 		 * Now we are doing the default action for this signal.
1915 		 */
1916 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
1917 			continue;
1918 
1919 		/*
1920 		 * Global init gets no signals it doesn't want.
1921 		 * Container-init gets no signals it doesn't want from same
1922 		 * container.
1923 		 *
1924 		 * Note that if global/container-init sees a sig_kernel_only()
1925 		 * signal here, the signal must have been generated internally
1926 		 * or must have come from an ancestor namespace. In either
1927 		 * case, the signal cannot be dropped.
1928 		 */
1929 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
1930 				!sig_kernel_only(signr))
1931 			continue;
1932 
1933 		if (sig_kernel_stop(signr)) {
1934 			/*
1935 			 * The default action is to stop all threads in
1936 			 * the thread group.  The job control signals
1937 			 * do nothing in an orphaned pgrp, but SIGSTOP
1938 			 * always works.  Note that siglock needs to be
1939 			 * dropped during the call to is_orphaned_pgrp()
1940 			 * because of lock ordering with tasklist_lock.
1941 			 * This allows an intervening SIGCONT to be posted.
1942 			 * We need to check for that and bail out if necessary.
1943 			 */
1944 			if (signr != SIGSTOP) {
1945 				spin_unlock_irq(&sighand->siglock);
1946 
1947 				/* signals can be posted during this window */
1948 
1949 				if (is_current_pgrp_orphaned())
1950 					goto relock;
1951 
1952 				spin_lock_irq(&sighand->siglock);
1953 			}
1954 
1955 			if (likely(do_signal_stop(info->si_signo))) {
1956 				/* It released the siglock.  */
1957 				goto relock;
1958 			}
1959 
1960 			/*
1961 			 * We didn't actually stop, due to a race
1962 			 * with SIGCONT or something like that.
1963 			 */
1964 			continue;
1965 		}
1966 
1967 		spin_unlock_irq(&sighand->siglock);
1968 
1969 		/*
1970 		 * Anything else is fatal, maybe with a core dump.
1971 		 */
1972 		current->flags |= PF_SIGNALED;
1973 
1974 		if (sig_kernel_coredump(signr)) {
1975 			if (print_fatal_signals)
1976 				print_fatal_signal(regs, info->si_signo);
1977 			/*
1978 			 * If it was able to dump core, this kills all
1979 			 * other threads in the group and synchronizes with
1980 			 * their demise.  If we lost the race with another
1981 			 * thread getting here, it set group_exit_code
1982 			 * first and our do_group_exit call below will use
1983 			 * that value and ignore the one we pass it.
1984 			 */
1985 			do_coredump(info->si_signo, info->si_signo, regs);
1986 		}
1987 
1988 		/*
1989 		 * Death signals, no core dump.
1990 		 */
1991 		do_group_exit(info->si_signo);
1992 		/* NOTREACHED */
1993 	}
1994 	spin_unlock_irq(&sighand->siglock);
1995 	return signr;
1996 }
1997 
1998 void exit_signals(struct task_struct *tsk)
1999 {
2000 	int group_stop = 0;
2001 	struct task_struct *t;
2002 
2003 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2004 		tsk->flags |= PF_EXITING;
2005 		return;
2006 	}
2007 
2008 	spin_lock_irq(&tsk->sighand->siglock);
2009 	/*
2010 	 * From now this task is not visible for group-wide signals,
2011 	 * see wants_signal(), do_signal_stop().
2012 	 */
2013 	tsk->flags |= PF_EXITING;
2014 	if (!signal_pending(tsk))
2015 		goto out;
2016 
2017 	/* It could be that __group_complete_signal() choose us to
2018 	 * notify about group-wide signal. Another thread should be
2019 	 * woken now to take the signal since we will not.
2020 	 */
2021 	for (t = tsk; (t = next_thread(t)) != tsk; )
2022 		if (!signal_pending(t) && !(t->flags & PF_EXITING))
2023 			recalc_sigpending_and_wake(t);
2024 
2025 	if (unlikely(tsk->signal->group_stop_count) &&
2026 			!--tsk->signal->group_stop_count) {
2027 		tsk->signal->flags = SIGNAL_STOP_STOPPED;
2028 		group_stop = tracehook_notify_jctl(CLD_STOPPED, CLD_STOPPED);
2029 	}
2030 out:
2031 	spin_unlock_irq(&tsk->sighand->siglock);
2032 
2033 	if (unlikely(group_stop)) {
2034 		read_lock(&tasklist_lock);
2035 		do_notify_parent_cldstop(tsk, group_stop);
2036 		read_unlock(&tasklist_lock);
2037 	}
2038 }
2039 
2040 EXPORT_SYMBOL(recalc_sigpending);
2041 EXPORT_SYMBOL_GPL(dequeue_signal);
2042 EXPORT_SYMBOL(flush_signals);
2043 EXPORT_SYMBOL(force_sig);
2044 EXPORT_SYMBOL(send_sig);
2045 EXPORT_SYMBOL(send_sig_info);
2046 EXPORT_SYMBOL(sigprocmask);
2047 EXPORT_SYMBOL(block_all_signals);
2048 EXPORT_SYMBOL(unblock_all_signals);
2049 
2050 
2051 /*
2052  * System call entry points.
2053  */
2054 
2055 SYSCALL_DEFINE0(restart_syscall)
2056 {
2057 	struct restart_block *restart = &current_thread_info()->restart_block;
2058 	return restart->fn(restart);
2059 }
2060 
2061 long do_no_restart_syscall(struct restart_block *param)
2062 {
2063 	return -EINTR;
2064 }
2065 
2066 /*
2067  * We don't need to get the kernel lock - this is all local to this
2068  * particular thread.. (and that's good, because this is _heavily_
2069  * used by various programs)
2070  */
2071 
2072 /*
2073  * This is also useful for kernel threads that want to temporarily
2074  * (or permanently) block certain signals.
2075  *
2076  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2077  * interface happily blocks "unblockable" signals like SIGKILL
2078  * and friends.
2079  */
2080 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2081 {
2082 	int error;
2083 
2084 	spin_lock_irq(&current->sighand->siglock);
2085 	if (oldset)
2086 		*oldset = current->blocked;
2087 
2088 	error = 0;
2089 	switch (how) {
2090 	case SIG_BLOCK:
2091 		sigorsets(&current->blocked, &current->blocked, set);
2092 		break;
2093 	case SIG_UNBLOCK:
2094 		signandsets(&current->blocked, &current->blocked, set);
2095 		break;
2096 	case SIG_SETMASK:
2097 		current->blocked = *set;
2098 		break;
2099 	default:
2100 		error = -EINVAL;
2101 	}
2102 	recalc_sigpending();
2103 	spin_unlock_irq(&current->sighand->siglock);
2104 
2105 	return error;
2106 }
2107 
2108 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, set,
2109 		sigset_t __user *, oset, size_t, sigsetsize)
2110 {
2111 	int error = -EINVAL;
2112 	sigset_t old_set, new_set;
2113 
2114 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2115 	if (sigsetsize != sizeof(sigset_t))
2116 		goto out;
2117 
2118 	if (set) {
2119 		error = -EFAULT;
2120 		if (copy_from_user(&new_set, set, sizeof(*set)))
2121 			goto out;
2122 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2123 
2124 		error = sigprocmask(how, &new_set, &old_set);
2125 		if (error)
2126 			goto out;
2127 		if (oset)
2128 			goto set_old;
2129 	} else if (oset) {
2130 		spin_lock_irq(&current->sighand->siglock);
2131 		old_set = current->blocked;
2132 		spin_unlock_irq(&current->sighand->siglock);
2133 
2134 	set_old:
2135 		error = -EFAULT;
2136 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
2137 			goto out;
2138 	}
2139 	error = 0;
2140 out:
2141 	return error;
2142 }
2143 
2144 long do_sigpending(void __user *set, unsigned long sigsetsize)
2145 {
2146 	long error = -EINVAL;
2147 	sigset_t pending;
2148 
2149 	if (sigsetsize > sizeof(sigset_t))
2150 		goto out;
2151 
2152 	spin_lock_irq(&current->sighand->siglock);
2153 	sigorsets(&pending, &current->pending.signal,
2154 		  &current->signal->shared_pending.signal);
2155 	spin_unlock_irq(&current->sighand->siglock);
2156 
2157 	/* Outside the lock because only this thread touches it.  */
2158 	sigandsets(&pending, &current->blocked, &pending);
2159 
2160 	error = -EFAULT;
2161 	if (!copy_to_user(set, &pending, sigsetsize))
2162 		error = 0;
2163 
2164 out:
2165 	return error;
2166 }
2167 
2168 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2169 {
2170 	return do_sigpending(set, sigsetsize);
2171 }
2172 
2173 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2174 
2175 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2176 {
2177 	int err;
2178 
2179 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2180 		return -EFAULT;
2181 	if (from->si_code < 0)
2182 		return __copy_to_user(to, from, sizeof(siginfo_t))
2183 			? -EFAULT : 0;
2184 	/*
2185 	 * If you change siginfo_t structure, please be sure
2186 	 * this code is fixed accordingly.
2187 	 * Please remember to update the signalfd_copyinfo() function
2188 	 * inside fs/signalfd.c too, in case siginfo_t changes.
2189 	 * It should never copy any pad contained in the structure
2190 	 * to avoid security leaks, but must copy the generic
2191 	 * 3 ints plus the relevant union member.
2192 	 */
2193 	err = __put_user(from->si_signo, &to->si_signo);
2194 	err |= __put_user(from->si_errno, &to->si_errno);
2195 	err |= __put_user((short)from->si_code, &to->si_code);
2196 	switch (from->si_code & __SI_MASK) {
2197 	case __SI_KILL:
2198 		err |= __put_user(from->si_pid, &to->si_pid);
2199 		err |= __put_user(from->si_uid, &to->si_uid);
2200 		break;
2201 	case __SI_TIMER:
2202 		 err |= __put_user(from->si_tid, &to->si_tid);
2203 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2204 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2205 		break;
2206 	case __SI_POLL:
2207 		err |= __put_user(from->si_band, &to->si_band);
2208 		err |= __put_user(from->si_fd, &to->si_fd);
2209 		break;
2210 	case __SI_FAULT:
2211 		err |= __put_user(from->si_addr, &to->si_addr);
2212 #ifdef __ARCH_SI_TRAPNO
2213 		err |= __put_user(from->si_trapno, &to->si_trapno);
2214 #endif
2215 		break;
2216 	case __SI_CHLD:
2217 		err |= __put_user(from->si_pid, &to->si_pid);
2218 		err |= __put_user(from->si_uid, &to->si_uid);
2219 		err |= __put_user(from->si_status, &to->si_status);
2220 		err |= __put_user(from->si_utime, &to->si_utime);
2221 		err |= __put_user(from->si_stime, &to->si_stime);
2222 		break;
2223 	case __SI_RT: /* This is not generated by the kernel as of now. */
2224 	case __SI_MESGQ: /* But this is */
2225 		err |= __put_user(from->si_pid, &to->si_pid);
2226 		err |= __put_user(from->si_uid, &to->si_uid);
2227 		err |= __put_user(from->si_ptr, &to->si_ptr);
2228 		break;
2229 	default: /* this is just in case for now ... */
2230 		err |= __put_user(from->si_pid, &to->si_pid);
2231 		err |= __put_user(from->si_uid, &to->si_uid);
2232 		break;
2233 	}
2234 	return err;
2235 }
2236 
2237 #endif
2238 
2239 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2240 		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2241 		size_t, sigsetsize)
2242 {
2243 	int ret, sig;
2244 	sigset_t these;
2245 	struct timespec ts;
2246 	siginfo_t info;
2247 	long timeout = 0;
2248 
2249 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2250 	if (sigsetsize != sizeof(sigset_t))
2251 		return -EINVAL;
2252 
2253 	if (copy_from_user(&these, uthese, sizeof(these)))
2254 		return -EFAULT;
2255 
2256 	/*
2257 	 * Invert the set of allowed signals to get those we
2258 	 * want to block.
2259 	 */
2260 	sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2261 	signotset(&these);
2262 
2263 	if (uts) {
2264 		if (copy_from_user(&ts, uts, sizeof(ts)))
2265 			return -EFAULT;
2266 		if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2267 		    || ts.tv_sec < 0)
2268 			return -EINVAL;
2269 	}
2270 
2271 	spin_lock_irq(&current->sighand->siglock);
2272 	sig = dequeue_signal(current, &these, &info);
2273 	if (!sig) {
2274 		timeout = MAX_SCHEDULE_TIMEOUT;
2275 		if (uts)
2276 			timeout = (timespec_to_jiffies(&ts)
2277 				   + (ts.tv_sec || ts.tv_nsec));
2278 
2279 		if (timeout) {
2280 			/* None ready -- temporarily unblock those we're
2281 			 * interested while we are sleeping in so that we'll
2282 			 * be awakened when they arrive.  */
2283 			current->real_blocked = current->blocked;
2284 			sigandsets(&current->blocked, &current->blocked, &these);
2285 			recalc_sigpending();
2286 			spin_unlock_irq(&current->sighand->siglock);
2287 
2288 			timeout = schedule_timeout_interruptible(timeout);
2289 
2290 			spin_lock_irq(&current->sighand->siglock);
2291 			sig = dequeue_signal(current, &these, &info);
2292 			current->blocked = current->real_blocked;
2293 			siginitset(&current->real_blocked, 0);
2294 			recalc_sigpending();
2295 		}
2296 	}
2297 	spin_unlock_irq(&current->sighand->siglock);
2298 
2299 	if (sig) {
2300 		ret = sig;
2301 		if (uinfo) {
2302 			if (copy_siginfo_to_user(uinfo, &info))
2303 				ret = -EFAULT;
2304 		}
2305 	} else {
2306 		ret = -EAGAIN;
2307 		if (timeout)
2308 			ret = -EINTR;
2309 	}
2310 
2311 	return ret;
2312 }
2313 
2314 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2315 {
2316 	struct siginfo info;
2317 
2318 	info.si_signo = sig;
2319 	info.si_errno = 0;
2320 	info.si_code = SI_USER;
2321 	info.si_pid = task_tgid_vnr(current);
2322 	info.si_uid = current_uid();
2323 
2324 	return kill_something_info(sig, &info, pid);
2325 }
2326 
2327 static int
2328 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2329 {
2330 	struct task_struct *p;
2331 	int error = -ESRCH;
2332 
2333 	rcu_read_lock();
2334 	p = find_task_by_vpid(pid);
2335 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2336 		error = check_kill_permission(sig, info, p);
2337 		/*
2338 		 * The null signal is a permissions and process existence
2339 		 * probe.  No signal is actually delivered.
2340 		 */
2341 		if (!error && sig) {
2342 			error = do_send_sig_info(sig, info, p, false);
2343 			/*
2344 			 * If lock_task_sighand() failed we pretend the task
2345 			 * dies after receiving the signal. The window is tiny,
2346 			 * and the signal is private anyway.
2347 			 */
2348 			if (unlikely(error == -ESRCH))
2349 				error = 0;
2350 		}
2351 	}
2352 	rcu_read_unlock();
2353 
2354 	return error;
2355 }
2356 
2357 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2358 {
2359 	struct siginfo info;
2360 
2361 	info.si_signo = sig;
2362 	info.si_errno = 0;
2363 	info.si_code = SI_TKILL;
2364 	info.si_pid = task_tgid_vnr(current);
2365 	info.si_uid = current_uid();
2366 
2367 	return do_send_specific(tgid, pid, sig, &info);
2368 }
2369 
2370 /**
2371  *  sys_tgkill - send signal to one specific thread
2372  *  @tgid: the thread group ID of the thread
2373  *  @pid: the PID of the thread
2374  *  @sig: signal to be sent
2375  *
2376  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2377  *  exists but it's not belonging to the target process anymore. This
2378  *  method solves the problem of threads exiting and PIDs getting reused.
2379  */
2380 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2381 {
2382 	/* This is only valid for single tasks */
2383 	if (pid <= 0 || tgid <= 0)
2384 		return -EINVAL;
2385 
2386 	return do_tkill(tgid, pid, sig);
2387 }
2388 
2389 /*
2390  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2391  */
2392 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2393 {
2394 	/* This is only valid for single tasks */
2395 	if (pid <= 0)
2396 		return -EINVAL;
2397 
2398 	return do_tkill(0, pid, sig);
2399 }
2400 
2401 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2402 		siginfo_t __user *, uinfo)
2403 {
2404 	siginfo_t info;
2405 
2406 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2407 		return -EFAULT;
2408 
2409 	/* Not even root can pretend to send signals from the kernel.
2410 	   Nor can they impersonate a kill(), which adds source info.  */
2411 	if (info.si_code >= 0)
2412 		return -EPERM;
2413 	info.si_signo = sig;
2414 
2415 	/* POSIX.1b doesn't mention process groups.  */
2416 	return kill_proc_info(sig, &info, pid);
2417 }
2418 
2419 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2420 {
2421 	/* This is only valid for single tasks */
2422 	if (pid <= 0 || tgid <= 0)
2423 		return -EINVAL;
2424 
2425 	/* Not even root can pretend to send signals from the kernel.
2426 	   Nor can they impersonate a kill(), which adds source info.  */
2427 	if (info->si_code >= 0)
2428 		return -EPERM;
2429 	info->si_signo = sig;
2430 
2431 	return do_send_specific(tgid, pid, sig, info);
2432 }
2433 
2434 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2435 		siginfo_t __user *, uinfo)
2436 {
2437 	siginfo_t info;
2438 
2439 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2440 		return -EFAULT;
2441 
2442 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2443 }
2444 
2445 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2446 {
2447 	struct task_struct *t = current;
2448 	struct k_sigaction *k;
2449 	sigset_t mask;
2450 
2451 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2452 		return -EINVAL;
2453 
2454 	k = &t->sighand->action[sig-1];
2455 
2456 	spin_lock_irq(&current->sighand->siglock);
2457 	if (oact)
2458 		*oact = *k;
2459 
2460 	if (act) {
2461 		sigdelsetmask(&act->sa.sa_mask,
2462 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
2463 		*k = *act;
2464 		/*
2465 		 * POSIX 3.3.1.3:
2466 		 *  "Setting a signal action to SIG_IGN for a signal that is
2467 		 *   pending shall cause the pending signal to be discarded,
2468 		 *   whether or not it is blocked."
2469 		 *
2470 		 *  "Setting a signal action to SIG_DFL for a signal that is
2471 		 *   pending and whose default action is to ignore the signal
2472 		 *   (for example, SIGCHLD), shall cause the pending signal to
2473 		 *   be discarded, whether or not it is blocked"
2474 		 */
2475 		if (sig_handler_ignored(sig_handler(t, sig), sig)) {
2476 			sigemptyset(&mask);
2477 			sigaddset(&mask, sig);
2478 			rm_from_queue_full(&mask, &t->signal->shared_pending);
2479 			do {
2480 				rm_from_queue_full(&mask, &t->pending);
2481 				t = next_thread(t);
2482 			} while (t != current);
2483 		}
2484 	}
2485 
2486 	spin_unlock_irq(&current->sighand->siglock);
2487 	return 0;
2488 }
2489 
2490 int
2491 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2492 {
2493 	stack_t oss;
2494 	int error;
2495 
2496 	oss.ss_sp = (void __user *) current->sas_ss_sp;
2497 	oss.ss_size = current->sas_ss_size;
2498 	oss.ss_flags = sas_ss_flags(sp);
2499 
2500 	if (uss) {
2501 		void __user *ss_sp;
2502 		size_t ss_size;
2503 		int ss_flags;
2504 
2505 		error = -EFAULT;
2506 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
2507 			goto out;
2508 		error = __get_user(ss_sp, &uss->ss_sp) |
2509 			__get_user(ss_flags, &uss->ss_flags) |
2510 			__get_user(ss_size, &uss->ss_size);
2511 		if (error)
2512 			goto out;
2513 
2514 		error = -EPERM;
2515 		if (on_sig_stack(sp))
2516 			goto out;
2517 
2518 		error = -EINVAL;
2519 		/*
2520 		 *
2521 		 * Note - this code used to test ss_flags incorrectly
2522 		 *  	  old code may have been written using ss_flags==0
2523 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
2524 		 *	  way that worked) - this fix preserves that older
2525 		 *	  mechanism
2526 		 */
2527 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2528 			goto out;
2529 
2530 		if (ss_flags == SS_DISABLE) {
2531 			ss_size = 0;
2532 			ss_sp = NULL;
2533 		} else {
2534 			error = -ENOMEM;
2535 			if (ss_size < MINSIGSTKSZ)
2536 				goto out;
2537 		}
2538 
2539 		current->sas_ss_sp = (unsigned long) ss_sp;
2540 		current->sas_ss_size = ss_size;
2541 	}
2542 
2543 	error = 0;
2544 	if (uoss) {
2545 		error = -EFAULT;
2546 		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
2547 			goto out;
2548 		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
2549 			__put_user(oss.ss_size, &uoss->ss_size) |
2550 			__put_user(oss.ss_flags, &uoss->ss_flags);
2551 	}
2552 
2553 out:
2554 	return error;
2555 }
2556 
2557 #ifdef __ARCH_WANT_SYS_SIGPENDING
2558 
2559 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
2560 {
2561 	return do_sigpending(set, sizeof(*set));
2562 }
2563 
2564 #endif
2565 
2566 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2567 /* Some platforms have their own version with special arguments others
2568    support only sys_rt_sigprocmask.  */
2569 
2570 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, set,
2571 		old_sigset_t __user *, oset)
2572 {
2573 	int error;
2574 	old_sigset_t old_set, new_set;
2575 
2576 	if (set) {
2577 		error = -EFAULT;
2578 		if (copy_from_user(&new_set, set, sizeof(*set)))
2579 			goto out;
2580 		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2581 
2582 		spin_lock_irq(&current->sighand->siglock);
2583 		old_set = current->blocked.sig[0];
2584 
2585 		error = 0;
2586 		switch (how) {
2587 		default:
2588 			error = -EINVAL;
2589 			break;
2590 		case SIG_BLOCK:
2591 			sigaddsetmask(&current->blocked, new_set);
2592 			break;
2593 		case SIG_UNBLOCK:
2594 			sigdelsetmask(&current->blocked, new_set);
2595 			break;
2596 		case SIG_SETMASK:
2597 			current->blocked.sig[0] = new_set;
2598 			break;
2599 		}
2600 
2601 		recalc_sigpending();
2602 		spin_unlock_irq(&current->sighand->siglock);
2603 		if (error)
2604 			goto out;
2605 		if (oset)
2606 			goto set_old;
2607 	} else if (oset) {
2608 		old_set = current->blocked.sig[0];
2609 	set_old:
2610 		error = -EFAULT;
2611 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
2612 			goto out;
2613 	}
2614 	error = 0;
2615 out:
2616 	return error;
2617 }
2618 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2619 
2620 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2621 SYSCALL_DEFINE4(rt_sigaction, int, sig,
2622 		const struct sigaction __user *, act,
2623 		struct sigaction __user *, oact,
2624 		size_t, sigsetsize)
2625 {
2626 	struct k_sigaction new_sa, old_sa;
2627 	int ret = -EINVAL;
2628 
2629 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2630 	if (sigsetsize != sizeof(sigset_t))
2631 		goto out;
2632 
2633 	if (act) {
2634 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2635 			return -EFAULT;
2636 	}
2637 
2638 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2639 
2640 	if (!ret && oact) {
2641 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2642 			return -EFAULT;
2643 	}
2644 out:
2645 	return ret;
2646 }
2647 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2648 
2649 #ifdef __ARCH_WANT_SYS_SGETMASK
2650 
2651 /*
2652  * For backwards compatibility.  Functionality superseded by sigprocmask.
2653  */
2654 SYSCALL_DEFINE0(sgetmask)
2655 {
2656 	/* SMP safe */
2657 	return current->blocked.sig[0];
2658 }
2659 
2660 SYSCALL_DEFINE1(ssetmask, int, newmask)
2661 {
2662 	int old;
2663 
2664 	spin_lock_irq(&current->sighand->siglock);
2665 	old = current->blocked.sig[0];
2666 
2667 	siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2668 						  sigmask(SIGSTOP)));
2669 	recalc_sigpending();
2670 	spin_unlock_irq(&current->sighand->siglock);
2671 
2672 	return old;
2673 }
2674 #endif /* __ARCH_WANT_SGETMASK */
2675 
2676 #ifdef __ARCH_WANT_SYS_SIGNAL
2677 /*
2678  * For backwards compatibility.  Functionality superseded by sigaction.
2679  */
2680 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
2681 {
2682 	struct k_sigaction new_sa, old_sa;
2683 	int ret;
2684 
2685 	new_sa.sa.sa_handler = handler;
2686 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2687 	sigemptyset(&new_sa.sa.sa_mask);
2688 
2689 	ret = do_sigaction(sig, &new_sa, &old_sa);
2690 
2691 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2692 }
2693 #endif /* __ARCH_WANT_SYS_SIGNAL */
2694 
2695 #ifdef __ARCH_WANT_SYS_PAUSE
2696 
2697 SYSCALL_DEFINE0(pause)
2698 {
2699 	current->state = TASK_INTERRUPTIBLE;
2700 	schedule();
2701 	return -ERESTARTNOHAND;
2702 }
2703 
2704 #endif
2705 
2706 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2707 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
2708 {
2709 	sigset_t newset;
2710 
2711 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2712 	if (sigsetsize != sizeof(sigset_t))
2713 		return -EINVAL;
2714 
2715 	if (copy_from_user(&newset, unewset, sizeof(newset)))
2716 		return -EFAULT;
2717 	sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2718 
2719 	spin_lock_irq(&current->sighand->siglock);
2720 	current->saved_sigmask = current->blocked;
2721 	current->blocked = newset;
2722 	recalc_sigpending();
2723 	spin_unlock_irq(&current->sighand->siglock);
2724 
2725 	current->state = TASK_INTERRUPTIBLE;
2726 	schedule();
2727 	set_restore_sigmask();
2728 	return -ERESTARTNOHAND;
2729 }
2730 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2731 
2732 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2733 {
2734 	return NULL;
2735 }
2736 
2737 void __init signals_init(void)
2738 {
2739 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2740 }
2741 
2742 #ifdef CONFIG_KGDB_KDB
2743 #include <linux/kdb.h>
2744 /*
2745  * kdb_send_sig_info - Allows kdb to send signals without exposing
2746  * signal internals.  This function checks if the required locks are
2747  * available before calling the main signal code, to avoid kdb
2748  * deadlocks.
2749  */
2750 void
2751 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
2752 {
2753 	static struct task_struct *kdb_prev_t;
2754 	int sig, new_t;
2755 	if (!spin_trylock(&t->sighand->siglock)) {
2756 		kdb_printf("Can't do kill command now.\n"
2757 			   "The sigmask lock is held somewhere else in "
2758 			   "kernel, try again later\n");
2759 		return;
2760 	}
2761 	spin_unlock(&t->sighand->siglock);
2762 	new_t = kdb_prev_t != t;
2763 	kdb_prev_t = t;
2764 	if (t->state != TASK_RUNNING && new_t) {
2765 		kdb_printf("Process is not RUNNING, sending a signal from "
2766 			   "kdb risks deadlock\n"
2767 			   "on the run queue locks. "
2768 			   "The signal has _not_ been sent.\n"
2769 			   "Reissue the kill command if you want to risk "
2770 			   "the deadlock.\n");
2771 		return;
2772 	}
2773 	sig = info->si_signo;
2774 	if (send_sig_info(sig, info, t))
2775 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
2776 			   sig, t->pid);
2777 	else
2778 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
2779 }
2780 #endif	/* CONFIG_KGDB_KDB */
2781