xref: /linux/kernel/signal.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/config.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/smp_lock.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
19 #include <linux/fs.h>
20 #include <linux/tty.h>
21 #include <linux/binfmts.h>
22 #include <linux/security.h>
23 #include <linux/syscalls.h>
24 #include <linux/ptrace.h>
25 #include <linux/signal.h>
26 #include <linux/capability.h>
27 #include <asm/param.h>
28 #include <asm/uaccess.h>
29 #include <asm/unistd.h>
30 #include <asm/siginfo.h>
31 #include "audit.h"	/* audit_signal_info() */
32 
33 /*
34  * SLAB caches for signal bits.
35  */
36 
37 static kmem_cache_t *sigqueue_cachep;
38 
39 /*
40  * In POSIX a signal is sent either to a specific thread (Linux task)
41  * or to the process as a whole (Linux thread group).  How the signal
42  * is sent determines whether it's to one thread or the whole group,
43  * which determines which signal mask(s) are involved in blocking it
44  * from being delivered until later.  When the signal is delivered,
45  * either it's caught or ignored by a user handler or it has a default
46  * effect that applies to the whole thread group (POSIX process).
47  *
48  * The possible effects an unblocked signal set to SIG_DFL can have are:
49  *   ignore	- Nothing Happens
50  *   terminate	- kill the process, i.e. all threads in the group,
51  * 		  similar to exit_group.  The group leader (only) reports
52  *		  WIFSIGNALED status to its parent.
53  *   coredump	- write a core dump file describing all threads using
54  *		  the same mm and then kill all those threads
55  *   stop 	- stop all the threads in the group, i.e. TASK_STOPPED state
56  *
57  * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
58  * Other signals when not blocked and set to SIG_DFL behaves as follows.
59  * The job control signals also have other special effects.
60  *
61  *	+--------------------+------------------+
62  *	|  POSIX signal      |  default action  |
63  *	+--------------------+------------------+
64  *	|  SIGHUP            |  terminate	|
65  *	|  SIGINT            |	terminate	|
66  *	|  SIGQUIT           |	coredump 	|
67  *	|  SIGILL            |	coredump 	|
68  *	|  SIGTRAP           |	coredump 	|
69  *	|  SIGABRT/SIGIOT    |	coredump 	|
70  *	|  SIGBUS            |	coredump 	|
71  *	|  SIGFPE            |	coredump 	|
72  *	|  SIGKILL           |	terminate(+)	|
73  *	|  SIGUSR1           |	terminate	|
74  *	|  SIGSEGV           |	coredump 	|
75  *	|  SIGUSR2           |	terminate	|
76  *	|  SIGPIPE           |	terminate	|
77  *	|  SIGALRM           |	terminate	|
78  *	|  SIGTERM           |	terminate	|
79  *	|  SIGCHLD           |	ignore   	|
80  *	|  SIGCONT           |	ignore(*)	|
81  *	|  SIGSTOP           |	stop(*)(+)  	|
82  *	|  SIGTSTP           |	stop(*)  	|
83  *	|  SIGTTIN           |	stop(*)  	|
84  *	|  SIGTTOU           |	stop(*)  	|
85  *	|  SIGURG            |	ignore   	|
86  *	|  SIGXCPU           |	coredump 	|
87  *	|  SIGXFSZ           |	coredump 	|
88  *	|  SIGVTALRM         |	terminate	|
89  *	|  SIGPROF           |	terminate	|
90  *	|  SIGPOLL/SIGIO     |	terminate	|
91  *	|  SIGSYS/SIGUNUSED  |	coredump 	|
92  *	|  SIGSTKFLT         |	terminate	|
93  *	|  SIGWINCH          |	ignore   	|
94  *	|  SIGPWR            |	terminate	|
95  *	|  SIGRTMIN-SIGRTMAX |	terminate       |
96  *	+--------------------+------------------+
97  *	|  non-POSIX signal  |  default action  |
98  *	+--------------------+------------------+
99  *	|  SIGEMT            |  coredump	|
100  *	+--------------------+------------------+
101  *
102  * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
103  * (*) Special job control effects:
104  * When SIGCONT is sent, it resumes the process (all threads in the group)
105  * from TASK_STOPPED state and also clears any pending/queued stop signals
106  * (any of those marked with "stop(*)").  This happens regardless of blocking,
107  * catching, or ignoring SIGCONT.  When any stop signal is sent, it clears
108  * any pending/queued SIGCONT signals; this happens regardless of blocking,
109  * catching, or ignored the stop signal, though (except for SIGSTOP) the
110  * default action of stopping the process may happen later or never.
111  */
112 
113 #ifdef SIGEMT
114 #define M_SIGEMT	M(SIGEMT)
115 #else
116 #define M_SIGEMT	0
117 #endif
118 
119 #if SIGRTMIN > BITS_PER_LONG
120 #define M(sig) (1ULL << ((sig)-1))
121 #else
122 #define M(sig) (1UL << ((sig)-1))
123 #endif
124 #define T(sig, mask) (M(sig) & (mask))
125 
126 #define SIG_KERNEL_ONLY_MASK (\
127 	M(SIGKILL)   |  M(SIGSTOP)                                   )
128 
129 #define SIG_KERNEL_STOP_MASK (\
130 	M(SIGSTOP)   |  M(SIGTSTP)   |  M(SIGTTIN)   |  M(SIGTTOU)   )
131 
132 #define SIG_KERNEL_COREDUMP_MASK (\
133         M(SIGQUIT)   |  M(SIGILL)    |  M(SIGTRAP)   |  M(SIGABRT)   | \
134         M(SIGFPE)    |  M(SIGSEGV)   |  M(SIGBUS)    |  M(SIGSYS)    | \
135         M(SIGXCPU)   |  M(SIGXFSZ)   |  M_SIGEMT                     )
136 
137 #define SIG_KERNEL_IGNORE_MASK (\
138         M(SIGCONT)   |  M(SIGCHLD)   |  M(SIGWINCH)  |  M(SIGURG)    )
139 
140 #define sig_kernel_only(sig) \
141 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_ONLY_MASK))
142 #define sig_kernel_coredump(sig) \
143 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_COREDUMP_MASK))
144 #define sig_kernel_ignore(sig) \
145 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_IGNORE_MASK))
146 #define sig_kernel_stop(sig) \
147 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_STOP_MASK))
148 
149 #define sig_needs_tasklist(sig)	((sig) == SIGCONT)
150 
151 #define sig_user_defined(t, signr) \
152 	(((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) &&	\
153 	 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
154 
155 #define sig_fatal(t, signr) \
156 	(!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
157 	 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
158 
159 static int sig_ignored(struct task_struct *t, int sig)
160 {
161 	void __user * handler;
162 
163 	/*
164 	 * Tracers always want to know about signals..
165 	 */
166 	if (t->ptrace & PT_PTRACED)
167 		return 0;
168 
169 	/*
170 	 * Blocked signals are never ignored, since the
171 	 * signal handler may change by the time it is
172 	 * unblocked.
173 	 */
174 	if (sigismember(&t->blocked, sig))
175 		return 0;
176 
177 	/* Is it explicitly or implicitly ignored? */
178 	handler = t->sighand->action[sig-1].sa.sa_handler;
179 	return   handler == SIG_IGN ||
180 		(handler == SIG_DFL && sig_kernel_ignore(sig));
181 }
182 
183 /*
184  * Re-calculate pending state from the set of locally pending
185  * signals, globally pending signals, and blocked signals.
186  */
187 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
188 {
189 	unsigned long ready;
190 	long i;
191 
192 	switch (_NSIG_WORDS) {
193 	default:
194 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
195 			ready |= signal->sig[i] &~ blocked->sig[i];
196 		break;
197 
198 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
199 		ready |= signal->sig[2] &~ blocked->sig[2];
200 		ready |= signal->sig[1] &~ blocked->sig[1];
201 		ready |= signal->sig[0] &~ blocked->sig[0];
202 		break;
203 
204 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
205 		ready |= signal->sig[0] &~ blocked->sig[0];
206 		break;
207 
208 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
209 	}
210 	return ready !=	0;
211 }
212 
213 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
214 
215 fastcall void recalc_sigpending_tsk(struct task_struct *t)
216 {
217 	if (t->signal->group_stop_count > 0 ||
218 	    (freezing(t)) ||
219 	    PENDING(&t->pending, &t->blocked) ||
220 	    PENDING(&t->signal->shared_pending, &t->blocked))
221 		set_tsk_thread_flag(t, TIF_SIGPENDING);
222 	else
223 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
224 }
225 
226 void recalc_sigpending(void)
227 {
228 	recalc_sigpending_tsk(current);
229 }
230 
231 /* Given the mask, find the first available signal that should be serviced. */
232 
233 static int
234 next_signal(struct sigpending *pending, sigset_t *mask)
235 {
236 	unsigned long i, *s, *m, x;
237 	int sig = 0;
238 
239 	s = pending->signal.sig;
240 	m = mask->sig;
241 	switch (_NSIG_WORDS) {
242 	default:
243 		for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
244 			if ((x = *s &~ *m) != 0) {
245 				sig = ffz(~x) + i*_NSIG_BPW + 1;
246 				break;
247 			}
248 		break;
249 
250 	case 2: if ((x = s[0] &~ m[0]) != 0)
251 			sig = 1;
252 		else if ((x = s[1] &~ m[1]) != 0)
253 			sig = _NSIG_BPW + 1;
254 		else
255 			break;
256 		sig += ffz(~x);
257 		break;
258 
259 	case 1: if ((x = *s &~ *m) != 0)
260 			sig = ffz(~x) + 1;
261 		break;
262 	}
263 
264 	return sig;
265 }
266 
267 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
268 					 int override_rlimit)
269 {
270 	struct sigqueue *q = NULL;
271 
272 	atomic_inc(&t->user->sigpending);
273 	if (override_rlimit ||
274 	    atomic_read(&t->user->sigpending) <=
275 			t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
276 		q = kmem_cache_alloc(sigqueue_cachep, flags);
277 	if (unlikely(q == NULL)) {
278 		atomic_dec(&t->user->sigpending);
279 	} else {
280 		INIT_LIST_HEAD(&q->list);
281 		q->flags = 0;
282 		q->user = get_uid(t->user);
283 	}
284 	return(q);
285 }
286 
287 static void __sigqueue_free(struct sigqueue *q)
288 {
289 	if (q->flags & SIGQUEUE_PREALLOC)
290 		return;
291 	atomic_dec(&q->user->sigpending);
292 	free_uid(q->user);
293 	kmem_cache_free(sigqueue_cachep, q);
294 }
295 
296 void flush_sigqueue(struct sigpending *queue)
297 {
298 	struct sigqueue *q;
299 
300 	sigemptyset(&queue->signal);
301 	while (!list_empty(&queue->list)) {
302 		q = list_entry(queue->list.next, struct sigqueue , list);
303 		list_del_init(&q->list);
304 		__sigqueue_free(q);
305 	}
306 }
307 
308 /*
309  * Flush all pending signals for a task.
310  */
311 void flush_signals(struct task_struct *t)
312 {
313 	unsigned long flags;
314 
315 	spin_lock_irqsave(&t->sighand->siglock, flags);
316 	clear_tsk_thread_flag(t,TIF_SIGPENDING);
317 	flush_sigqueue(&t->pending);
318 	flush_sigqueue(&t->signal->shared_pending);
319 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
320 }
321 
322 /*
323  * Flush all handlers for a task.
324  */
325 
326 void
327 flush_signal_handlers(struct task_struct *t, int force_default)
328 {
329 	int i;
330 	struct k_sigaction *ka = &t->sighand->action[0];
331 	for (i = _NSIG ; i != 0 ; i--) {
332 		if (force_default || ka->sa.sa_handler != SIG_IGN)
333 			ka->sa.sa_handler = SIG_DFL;
334 		ka->sa.sa_flags = 0;
335 		sigemptyset(&ka->sa.sa_mask);
336 		ka++;
337 	}
338 }
339 
340 
341 /* Notify the system that a driver wants to block all signals for this
342  * process, and wants to be notified if any signals at all were to be
343  * sent/acted upon.  If the notifier routine returns non-zero, then the
344  * signal will be acted upon after all.  If the notifier routine returns 0,
345  * then then signal will be blocked.  Only one block per process is
346  * allowed.  priv is a pointer to private data that the notifier routine
347  * can use to determine if the signal should be blocked or not.  */
348 
349 void
350 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
351 {
352 	unsigned long flags;
353 
354 	spin_lock_irqsave(&current->sighand->siglock, flags);
355 	current->notifier_mask = mask;
356 	current->notifier_data = priv;
357 	current->notifier = notifier;
358 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
359 }
360 
361 /* Notify the system that blocking has ended. */
362 
363 void
364 unblock_all_signals(void)
365 {
366 	unsigned long flags;
367 
368 	spin_lock_irqsave(&current->sighand->siglock, flags);
369 	current->notifier = NULL;
370 	current->notifier_data = NULL;
371 	recalc_sigpending();
372 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
373 }
374 
375 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
376 {
377 	struct sigqueue *q, *first = NULL;
378 	int still_pending = 0;
379 
380 	if (unlikely(!sigismember(&list->signal, sig)))
381 		return 0;
382 
383 	/*
384 	 * Collect the siginfo appropriate to this signal.  Check if
385 	 * there is another siginfo for the same signal.
386 	*/
387 	list_for_each_entry(q, &list->list, list) {
388 		if (q->info.si_signo == sig) {
389 			if (first) {
390 				still_pending = 1;
391 				break;
392 			}
393 			first = q;
394 		}
395 	}
396 	if (first) {
397 		list_del_init(&first->list);
398 		copy_siginfo(info, &first->info);
399 		__sigqueue_free(first);
400 		if (!still_pending)
401 			sigdelset(&list->signal, sig);
402 	} else {
403 
404 		/* Ok, it wasn't in the queue.  This must be
405 		   a fast-pathed signal or we must have been
406 		   out of queue space.  So zero out the info.
407 		 */
408 		sigdelset(&list->signal, sig);
409 		info->si_signo = sig;
410 		info->si_errno = 0;
411 		info->si_code = 0;
412 		info->si_pid = 0;
413 		info->si_uid = 0;
414 	}
415 	return 1;
416 }
417 
418 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
419 			siginfo_t *info)
420 {
421 	int sig = 0;
422 
423 	sig = next_signal(pending, mask);
424 	if (sig) {
425 		if (current->notifier) {
426 			if (sigismember(current->notifier_mask, sig)) {
427 				if (!(current->notifier)(current->notifier_data)) {
428 					clear_thread_flag(TIF_SIGPENDING);
429 					return 0;
430 				}
431 			}
432 		}
433 
434 		if (!collect_signal(sig, pending, info))
435 			sig = 0;
436 
437 	}
438 	recalc_sigpending();
439 
440 	return sig;
441 }
442 
443 /*
444  * Dequeue a signal and return the element to the caller, which is
445  * expected to free it.
446  *
447  * All callers have to hold the siglock.
448  */
449 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
450 {
451 	int signr = __dequeue_signal(&tsk->pending, mask, info);
452 	if (!signr)
453 		signr = __dequeue_signal(&tsk->signal->shared_pending,
454 					 mask, info);
455  	if (signr && unlikely(sig_kernel_stop(signr))) {
456  		/*
457  		 * Set a marker that we have dequeued a stop signal.  Our
458  		 * caller might release the siglock and then the pending
459  		 * stop signal it is about to process is no longer in the
460  		 * pending bitmasks, but must still be cleared by a SIGCONT
461  		 * (and overruled by a SIGKILL).  So those cases clear this
462  		 * shared flag after we've set it.  Note that this flag may
463  		 * remain set after the signal we return is ignored or
464  		 * handled.  That doesn't matter because its only purpose
465  		 * is to alert stop-signal processing code when another
466  		 * processor has come along and cleared the flag.
467  		 */
468  		if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
469  			tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
470  	}
471 	if ( signr &&
472 	     ((info->si_code & __SI_MASK) == __SI_TIMER) &&
473 	     info->si_sys_private){
474 		/*
475 		 * Release the siglock to ensure proper locking order
476 		 * of timer locks outside of siglocks.  Note, we leave
477 		 * irqs disabled here, since the posix-timers code is
478 		 * about to disable them again anyway.
479 		 */
480 		spin_unlock(&tsk->sighand->siglock);
481 		do_schedule_next_timer(info);
482 		spin_lock(&tsk->sighand->siglock);
483 	}
484 	return signr;
485 }
486 
487 /*
488  * Tell a process that it has a new active signal..
489  *
490  * NOTE! we rely on the previous spin_lock to
491  * lock interrupts for us! We can only be called with
492  * "siglock" held, and the local interrupt must
493  * have been disabled when that got acquired!
494  *
495  * No need to set need_resched since signal event passing
496  * goes through ->blocked
497  */
498 void signal_wake_up(struct task_struct *t, int resume)
499 {
500 	unsigned int mask;
501 
502 	set_tsk_thread_flag(t, TIF_SIGPENDING);
503 
504 	/*
505 	 * For SIGKILL, we want to wake it up in the stopped/traced case.
506 	 * We don't check t->state here because there is a race with it
507 	 * executing another processor and just now entering stopped state.
508 	 * By using wake_up_state, we ensure the process will wake up and
509 	 * handle its death signal.
510 	 */
511 	mask = TASK_INTERRUPTIBLE;
512 	if (resume)
513 		mask |= TASK_STOPPED | TASK_TRACED;
514 	if (!wake_up_state(t, mask))
515 		kick_process(t);
516 }
517 
518 /*
519  * Remove signals in mask from the pending set and queue.
520  * Returns 1 if any signals were found.
521  *
522  * All callers must be holding the siglock.
523  *
524  * This version takes a sigset mask and looks at all signals,
525  * not just those in the first mask word.
526  */
527 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
528 {
529 	struct sigqueue *q, *n;
530 	sigset_t m;
531 
532 	sigandsets(&m, mask, &s->signal);
533 	if (sigisemptyset(&m))
534 		return 0;
535 
536 	signandsets(&s->signal, &s->signal, mask);
537 	list_for_each_entry_safe(q, n, &s->list, list) {
538 		if (sigismember(mask, q->info.si_signo)) {
539 			list_del_init(&q->list);
540 			__sigqueue_free(q);
541 		}
542 	}
543 	return 1;
544 }
545 /*
546  * Remove signals in mask from the pending set and queue.
547  * Returns 1 if any signals were found.
548  *
549  * All callers must be holding the siglock.
550  */
551 static int rm_from_queue(unsigned long mask, struct sigpending *s)
552 {
553 	struct sigqueue *q, *n;
554 
555 	if (!sigtestsetmask(&s->signal, mask))
556 		return 0;
557 
558 	sigdelsetmask(&s->signal, mask);
559 	list_for_each_entry_safe(q, n, &s->list, list) {
560 		if (q->info.si_signo < SIGRTMIN &&
561 		    (mask & sigmask(q->info.si_signo))) {
562 			list_del_init(&q->list);
563 			__sigqueue_free(q);
564 		}
565 	}
566 	return 1;
567 }
568 
569 /*
570  * Bad permissions for sending the signal
571  */
572 static int check_kill_permission(int sig, struct siginfo *info,
573 				 struct task_struct *t)
574 {
575 	int error = -EINVAL;
576 	if (!valid_signal(sig))
577 		return error;
578 	error = -EPERM;
579 	if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
580 	    && ((sig != SIGCONT) ||
581 		(current->signal->session != t->signal->session))
582 	    && (current->euid ^ t->suid) && (current->euid ^ t->uid)
583 	    && (current->uid ^ t->suid) && (current->uid ^ t->uid)
584 	    && !capable(CAP_KILL))
585 		return error;
586 
587 	error = security_task_kill(t, info, sig);
588 	if (!error)
589 		audit_signal_info(sig, t); /* Let audit system see the signal */
590 	return error;
591 }
592 
593 /* forward decl */
594 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
595 
596 /*
597  * Handle magic process-wide effects of stop/continue signals.
598  * Unlike the signal actions, these happen immediately at signal-generation
599  * time regardless of blocking, ignoring, or handling.  This does the
600  * actual continuing for SIGCONT, but not the actual stopping for stop
601  * signals.  The process stop is done as a signal action for SIG_DFL.
602  */
603 static void handle_stop_signal(int sig, struct task_struct *p)
604 {
605 	struct task_struct *t;
606 
607 	if (p->signal->flags & SIGNAL_GROUP_EXIT)
608 		/*
609 		 * The process is in the middle of dying already.
610 		 */
611 		return;
612 
613 	if (sig_kernel_stop(sig)) {
614 		/*
615 		 * This is a stop signal.  Remove SIGCONT from all queues.
616 		 */
617 		rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
618 		t = p;
619 		do {
620 			rm_from_queue(sigmask(SIGCONT), &t->pending);
621 			t = next_thread(t);
622 		} while (t != p);
623 	} else if (sig == SIGCONT) {
624 		/*
625 		 * Remove all stop signals from all queues,
626 		 * and wake all threads.
627 		 */
628 		if (unlikely(p->signal->group_stop_count > 0)) {
629 			/*
630 			 * There was a group stop in progress.  We'll
631 			 * pretend it finished before we got here.  We are
632 			 * obliged to report it to the parent: if the
633 			 * SIGSTOP happened "after" this SIGCONT, then it
634 			 * would have cleared this pending SIGCONT.  If it
635 			 * happened "before" this SIGCONT, then the parent
636 			 * got the SIGCHLD about the stop finishing before
637 			 * the continue happened.  We do the notification
638 			 * now, and it's as if the stop had finished and
639 			 * the SIGCHLD was pending on entry to this kill.
640 			 */
641 			p->signal->group_stop_count = 0;
642 			p->signal->flags = SIGNAL_STOP_CONTINUED;
643 			spin_unlock(&p->sighand->siglock);
644 			do_notify_parent_cldstop(p, CLD_STOPPED);
645 			spin_lock(&p->sighand->siglock);
646 		}
647 		rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
648 		t = p;
649 		do {
650 			unsigned int state;
651 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
652 
653 			/*
654 			 * If there is a handler for SIGCONT, we must make
655 			 * sure that no thread returns to user mode before
656 			 * we post the signal, in case it was the only
657 			 * thread eligible to run the signal handler--then
658 			 * it must not do anything between resuming and
659 			 * running the handler.  With the TIF_SIGPENDING
660 			 * flag set, the thread will pause and acquire the
661 			 * siglock that we hold now and until we've queued
662 			 * the pending signal.
663 			 *
664 			 * Wake up the stopped thread _after_ setting
665 			 * TIF_SIGPENDING
666 			 */
667 			state = TASK_STOPPED;
668 			if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
669 				set_tsk_thread_flag(t, TIF_SIGPENDING);
670 				state |= TASK_INTERRUPTIBLE;
671 			}
672 			wake_up_state(t, state);
673 
674 			t = next_thread(t);
675 		} while (t != p);
676 
677 		if (p->signal->flags & SIGNAL_STOP_STOPPED) {
678 			/*
679 			 * We were in fact stopped, and are now continued.
680 			 * Notify the parent with CLD_CONTINUED.
681 			 */
682 			p->signal->flags = SIGNAL_STOP_CONTINUED;
683 			p->signal->group_exit_code = 0;
684 			spin_unlock(&p->sighand->siglock);
685 			do_notify_parent_cldstop(p, CLD_CONTINUED);
686 			spin_lock(&p->sighand->siglock);
687 		} else {
688 			/*
689 			 * We are not stopped, but there could be a stop
690 			 * signal in the middle of being processed after
691 			 * being removed from the queue.  Clear that too.
692 			 */
693 			p->signal->flags = 0;
694 		}
695 	} else if (sig == SIGKILL) {
696 		/*
697 		 * Make sure that any pending stop signal already dequeued
698 		 * is undone by the wakeup for SIGKILL.
699 		 */
700 		p->signal->flags = 0;
701 	}
702 }
703 
704 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
705 			struct sigpending *signals)
706 {
707 	struct sigqueue * q = NULL;
708 	int ret = 0;
709 
710 	/*
711 	 * fast-pathed signals for kernel-internal things like SIGSTOP
712 	 * or SIGKILL.
713 	 */
714 	if (info == SEND_SIG_FORCED)
715 		goto out_set;
716 
717 	/* Real-time signals must be queued if sent by sigqueue, or
718 	   some other real-time mechanism.  It is implementation
719 	   defined whether kill() does so.  We attempt to do so, on
720 	   the principle of least surprise, but since kill is not
721 	   allowed to fail with EAGAIN when low on memory we just
722 	   make sure at least one signal gets delivered and don't
723 	   pass on the info struct.  */
724 
725 	q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
726 					     (is_si_special(info) ||
727 					      info->si_code >= 0)));
728 	if (q) {
729 		list_add_tail(&q->list, &signals->list);
730 		switch ((unsigned long) info) {
731 		case (unsigned long) SEND_SIG_NOINFO:
732 			q->info.si_signo = sig;
733 			q->info.si_errno = 0;
734 			q->info.si_code = SI_USER;
735 			q->info.si_pid = current->pid;
736 			q->info.si_uid = current->uid;
737 			break;
738 		case (unsigned long) SEND_SIG_PRIV:
739 			q->info.si_signo = sig;
740 			q->info.si_errno = 0;
741 			q->info.si_code = SI_KERNEL;
742 			q->info.si_pid = 0;
743 			q->info.si_uid = 0;
744 			break;
745 		default:
746 			copy_siginfo(&q->info, info);
747 			break;
748 		}
749 	} else if (!is_si_special(info)) {
750 		if (sig >= SIGRTMIN && info->si_code != SI_USER)
751 		/*
752 		 * Queue overflow, abort.  We may abort if the signal was rt
753 		 * and sent by user using something other than kill().
754 		 */
755 			return -EAGAIN;
756 	}
757 
758 out_set:
759 	sigaddset(&signals->signal, sig);
760 	return ret;
761 }
762 
763 #define LEGACY_QUEUE(sigptr, sig) \
764 	(((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
765 
766 
767 static int
768 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
769 {
770 	int ret = 0;
771 
772 	BUG_ON(!irqs_disabled());
773 	assert_spin_locked(&t->sighand->siglock);
774 
775 	/* Short-circuit ignored signals.  */
776 	if (sig_ignored(t, sig))
777 		goto out;
778 
779 	/* Support queueing exactly one non-rt signal, so that we
780 	   can get more detailed information about the cause of
781 	   the signal. */
782 	if (LEGACY_QUEUE(&t->pending, sig))
783 		goto out;
784 
785 	ret = send_signal(sig, info, t, &t->pending);
786 	if (!ret && !sigismember(&t->blocked, sig))
787 		signal_wake_up(t, sig == SIGKILL);
788 out:
789 	return ret;
790 }
791 
792 /*
793  * Force a signal that the process can't ignore: if necessary
794  * we unblock the signal and change any SIG_IGN to SIG_DFL.
795  */
796 
797 int
798 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
799 {
800 	unsigned long int flags;
801 	int ret;
802 
803 	spin_lock_irqsave(&t->sighand->siglock, flags);
804 	if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
805 		t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
806 	}
807 	if (sigismember(&t->blocked, sig)) {
808 		sigdelset(&t->blocked, sig);
809 	}
810 	recalc_sigpending_tsk(t);
811 	ret = specific_send_sig_info(sig, info, t);
812 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
813 
814 	return ret;
815 }
816 
817 void
818 force_sig_specific(int sig, struct task_struct *t)
819 {
820 	force_sig_info(sig, SEND_SIG_FORCED, t);
821 }
822 
823 /*
824  * Test if P wants to take SIG.  After we've checked all threads with this,
825  * it's equivalent to finding no threads not blocking SIG.  Any threads not
826  * blocking SIG were ruled out because they are not running and already
827  * have pending signals.  Such threads will dequeue from the shared queue
828  * as soon as they're available, so putting the signal on the shared queue
829  * will be equivalent to sending it to one such thread.
830  */
831 static inline int wants_signal(int sig, struct task_struct *p)
832 {
833 	if (sigismember(&p->blocked, sig))
834 		return 0;
835 	if (p->flags & PF_EXITING)
836 		return 0;
837 	if (sig == SIGKILL)
838 		return 1;
839 	if (p->state & (TASK_STOPPED | TASK_TRACED))
840 		return 0;
841 	return task_curr(p) || !signal_pending(p);
842 }
843 
844 static void
845 __group_complete_signal(int sig, struct task_struct *p)
846 {
847 	struct task_struct *t;
848 
849 	/*
850 	 * Now find a thread we can wake up to take the signal off the queue.
851 	 *
852 	 * If the main thread wants the signal, it gets first crack.
853 	 * Probably the least surprising to the average bear.
854 	 */
855 	if (wants_signal(sig, p))
856 		t = p;
857 	else if (thread_group_empty(p))
858 		/*
859 		 * There is just one thread and it does not need to be woken.
860 		 * It will dequeue unblocked signals before it runs again.
861 		 */
862 		return;
863 	else {
864 		/*
865 		 * Otherwise try to find a suitable thread.
866 		 */
867 		t = p->signal->curr_target;
868 		if (t == NULL)
869 			/* restart balancing at this thread */
870 			t = p->signal->curr_target = p;
871 
872 		while (!wants_signal(sig, t)) {
873 			t = next_thread(t);
874 			if (t == p->signal->curr_target)
875 				/*
876 				 * No thread needs to be woken.
877 				 * Any eligible threads will see
878 				 * the signal in the queue soon.
879 				 */
880 				return;
881 		}
882 		p->signal->curr_target = t;
883 	}
884 
885 	/*
886 	 * Found a killable thread.  If the signal will be fatal,
887 	 * then start taking the whole group down immediately.
888 	 */
889 	if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
890 	    !sigismember(&t->real_blocked, sig) &&
891 	    (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
892 		/*
893 		 * This signal will be fatal to the whole group.
894 		 */
895 		if (!sig_kernel_coredump(sig)) {
896 			/*
897 			 * Start a group exit and wake everybody up.
898 			 * This way we don't have other threads
899 			 * running and doing things after a slower
900 			 * thread has the fatal signal pending.
901 			 */
902 			p->signal->flags = SIGNAL_GROUP_EXIT;
903 			p->signal->group_exit_code = sig;
904 			p->signal->group_stop_count = 0;
905 			t = p;
906 			do {
907 				sigaddset(&t->pending.signal, SIGKILL);
908 				signal_wake_up(t, 1);
909 				t = next_thread(t);
910 			} while (t != p);
911 			return;
912 		}
913 
914 		/*
915 		 * There will be a core dump.  We make all threads other
916 		 * than the chosen one go into a group stop so that nothing
917 		 * happens until it gets scheduled, takes the signal off
918 		 * the shared queue, and does the core dump.  This is a
919 		 * little more complicated than strictly necessary, but it
920 		 * keeps the signal state that winds up in the core dump
921 		 * unchanged from the death state, e.g. which thread had
922 		 * the core-dump signal unblocked.
923 		 */
924 		rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
925 		rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
926 		p->signal->group_stop_count = 0;
927 		p->signal->group_exit_task = t;
928 		t = p;
929 		do {
930 			p->signal->group_stop_count++;
931 			signal_wake_up(t, 0);
932 			t = next_thread(t);
933 		} while (t != p);
934 		wake_up_process(p->signal->group_exit_task);
935 		return;
936 	}
937 
938 	/*
939 	 * The signal is already in the shared-pending queue.
940 	 * Tell the chosen thread to wake up and dequeue it.
941 	 */
942 	signal_wake_up(t, sig == SIGKILL);
943 	return;
944 }
945 
946 int
947 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
948 {
949 	int ret = 0;
950 
951 	assert_spin_locked(&p->sighand->siglock);
952 	handle_stop_signal(sig, p);
953 
954 	/* Short-circuit ignored signals.  */
955 	if (sig_ignored(p, sig))
956 		return ret;
957 
958 	if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
959 		/* This is a non-RT signal and we already have one queued.  */
960 		return ret;
961 
962 	/*
963 	 * Put this signal on the shared-pending queue, or fail with EAGAIN.
964 	 * We always use the shared queue for process-wide signals,
965 	 * to avoid several races.
966 	 */
967 	ret = send_signal(sig, info, p, &p->signal->shared_pending);
968 	if (unlikely(ret))
969 		return ret;
970 
971 	__group_complete_signal(sig, p);
972 	return 0;
973 }
974 
975 /*
976  * Nuke all other threads in the group.
977  */
978 void zap_other_threads(struct task_struct *p)
979 {
980 	struct task_struct *t;
981 
982 	p->signal->flags = SIGNAL_GROUP_EXIT;
983 	p->signal->group_stop_count = 0;
984 
985 	if (thread_group_empty(p))
986 		return;
987 
988 	for (t = next_thread(p); t != p; t = next_thread(t)) {
989 		/*
990 		 * Don't bother with already dead threads
991 		 */
992 		if (t->exit_state)
993 			continue;
994 
995 		/*
996 		 * We don't want to notify the parent, since we are
997 		 * killed as part of a thread group due to another
998 		 * thread doing an execve() or similar. So set the
999 		 * exit signal to -1 to allow immediate reaping of
1000 		 * the process.  But don't detach the thread group
1001 		 * leader.
1002 		 */
1003 		if (t != p->group_leader)
1004 			t->exit_signal = -1;
1005 
1006 		/* SIGKILL will be handled before any pending SIGSTOP */
1007 		sigaddset(&t->pending.signal, SIGKILL);
1008 		signal_wake_up(t, 1);
1009 	}
1010 }
1011 
1012 /*
1013  * Must be called under rcu_read_lock() or with tasklist_lock read-held.
1014  */
1015 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1016 {
1017 	struct sighand_struct *sighand;
1018 
1019 	for (;;) {
1020 		sighand = rcu_dereference(tsk->sighand);
1021 		if (unlikely(sighand == NULL))
1022 			break;
1023 
1024 		spin_lock_irqsave(&sighand->siglock, *flags);
1025 		if (likely(sighand == tsk->sighand))
1026 			break;
1027 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1028 	}
1029 
1030 	return sighand;
1031 }
1032 
1033 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1034 {
1035 	unsigned long flags;
1036 	int ret;
1037 
1038 	ret = check_kill_permission(sig, info, p);
1039 
1040 	if (!ret && sig) {
1041 		ret = -ESRCH;
1042 		if (lock_task_sighand(p, &flags)) {
1043 			ret = __group_send_sig_info(sig, info, p);
1044 			unlock_task_sighand(p, &flags);
1045 		}
1046 	}
1047 
1048 	return ret;
1049 }
1050 
1051 /*
1052  * kill_pg_info() sends a signal to a process group: this is what the tty
1053  * control characters do (^C, ^Z etc)
1054  */
1055 
1056 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1057 {
1058 	struct task_struct *p = NULL;
1059 	int retval, success;
1060 
1061 	if (pgrp <= 0)
1062 		return -EINVAL;
1063 
1064 	success = 0;
1065 	retval = -ESRCH;
1066 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1067 		int err = group_send_sig_info(sig, info, p);
1068 		success |= !err;
1069 		retval = err;
1070 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1071 	return success ? 0 : retval;
1072 }
1073 
1074 int
1075 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1076 {
1077 	int retval;
1078 
1079 	read_lock(&tasklist_lock);
1080 	retval = __kill_pg_info(sig, info, pgrp);
1081 	read_unlock(&tasklist_lock);
1082 
1083 	return retval;
1084 }
1085 
1086 int
1087 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1088 {
1089 	int error;
1090 	int acquired_tasklist_lock = 0;
1091 	struct task_struct *p;
1092 
1093 	rcu_read_lock();
1094 	if (unlikely(sig_needs_tasklist(sig))) {
1095 		read_lock(&tasklist_lock);
1096 		acquired_tasklist_lock = 1;
1097 	}
1098 	p = find_task_by_pid(pid);
1099 	error = -ESRCH;
1100 	if (p)
1101 		error = group_send_sig_info(sig, info, p);
1102 	if (unlikely(acquired_tasklist_lock))
1103 		read_unlock(&tasklist_lock);
1104 	rcu_read_unlock();
1105 	return error;
1106 }
1107 
1108 /* like kill_proc_info(), but doesn't use uid/euid of "current" */
1109 int kill_proc_info_as_uid(int sig, struct siginfo *info, pid_t pid,
1110 		      uid_t uid, uid_t euid)
1111 {
1112 	int ret = -EINVAL;
1113 	struct task_struct *p;
1114 
1115 	if (!valid_signal(sig))
1116 		return ret;
1117 
1118 	read_lock(&tasklist_lock);
1119 	p = find_task_by_pid(pid);
1120 	if (!p) {
1121 		ret = -ESRCH;
1122 		goto out_unlock;
1123 	}
1124 	if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1125 	    && (euid != p->suid) && (euid != p->uid)
1126 	    && (uid != p->suid) && (uid != p->uid)) {
1127 		ret = -EPERM;
1128 		goto out_unlock;
1129 	}
1130 	if (sig && p->sighand) {
1131 		unsigned long flags;
1132 		spin_lock_irqsave(&p->sighand->siglock, flags);
1133 		ret = __group_send_sig_info(sig, info, p);
1134 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1135 	}
1136 out_unlock:
1137 	read_unlock(&tasklist_lock);
1138 	return ret;
1139 }
1140 EXPORT_SYMBOL_GPL(kill_proc_info_as_uid);
1141 
1142 /*
1143  * kill_something_info() interprets pid in interesting ways just like kill(2).
1144  *
1145  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1146  * is probably wrong.  Should make it like BSD or SYSV.
1147  */
1148 
1149 static int kill_something_info(int sig, struct siginfo *info, int pid)
1150 {
1151 	if (!pid) {
1152 		return kill_pg_info(sig, info, process_group(current));
1153 	} else if (pid == -1) {
1154 		int retval = 0, count = 0;
1155 		struct task_struct * p;
1156 
1157 		read_lock(&tasklist_lock);
1158 		for_each_process(p) {
1159 			if (p->pid > 1 && p->tgid != current->tgid) {
1160 				int err = group_send_sig_info(sig, info, p);
1161 				++count;
1162 				if (err != -EPERM)
1163 					retval = err;
1164 			}
1165 		}
1166 		read_unlock(&tasklist_lock);
1167 		return count ? retval : -ESRCH;
1168 	} else if (pid < 0) {
1169 		return kill_pg_info(sig, info, -pid);
1170 	} else {
1171 		return kill_proc_info(sig, info, pid);
1172 	}
1173 }
1174 
1175 /*
1176  * These are for backward compatibility with the rest of the kernel source.
1177  */
1178 
1179 /*
1180  * These two are the most common entry points.  They send a signal
1181  * just to the specific thread.
1182  */
1183 int
1184 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1185 {
1186 	int ret;
1187 	unsigned long flags;
1188 
1189 	/*
1190 	 * Make sure legacy kernel users don't send in bad values
1191 	 * (normal paths check this in check_kill_permission).
1192 	 */
1193 	if (!valid_signal(sig))
1194 		return -EINVAL;
1195 
1196 	/*
1197 	 * We need the tasklist lock even for the specific
1198 	 * thread case (when we don't need to follow the group
1199 	 * lists) in order to avoid races with "p->sighand"
1200 	 * going away or changing from under us.
1201 	 */
1202 	read_lock(&tasklist_lock);
1203 	spin_lock_irqsave(&p->sighand->siglock, flags);
1204 	ret = specific_send_sig_info(sig, info, p);
1205 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
1206 	read_unlock(&tasklist_lock);
1207 	return ret;
1208 }
1209 
1210 #define __si_special(priv) \
1211 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1212 
1213 int
1214 send_sig(int sig, struct task_struct *p, int priv)
1215 {
1216 	return send_sig_info(sig, __si_special(priv), p);
1217 }
1218 
1219 /*
1220  * This is the entry point for "process-wide" signals.
1221  * They will go to an appropriate thread in the thread group.
1222  */
1223 int
1224 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1225 {
1226 	int ret;
1227 	read_lock(&tasklist_lock);
1228 	ret = group_send_sig_info(sig, info, p);
1229 	read_unlock(&tasklist_lock);
1230 	return ret;
1231 }
1232 
1233 void
1234 force_sig(int sig, struct task_struct *p)
1235 {
1236 	force_sig_info(sig, SEND_SIG_PRIV, p);
1237 }
1238 
1239 /*
1240  * When things go south during signal handling, we
1241  * will force a SIGSEGV. And if the signal that caused
1242  * the problem was already a SIGSEGV, we'll want to
1243  * make sure we don't even try to deliver the signal..
1244  */
1245 int
1246 force_sigsegv(int sig, struct task_struct *p)
1247 {
1248 	if (sig == SIGSEGV) {
1249 		unsigned long flags;
1250 		spin_lock_irqsave(&p->sighand->siglock, flags);
1251 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1252 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1253 	}
1254 	force_sig(SIGSEGV, p);
1255 	return 0;
1256 }
1257 
1258 int
1259 kill_pg(pid_t pgrp, int sig, int priv)
1260 {
1261 	return kill_pg_info(sig, __si_special(priv), pgrp);
1262 }
1263 
1264 int
1265 kill_proc(pid_t pid, int sig, int priv)
1266 {
1267 	return kill_proc_info(sig, __si_special(priv), pid);
1268 }
1269 
1270 /*
1271  * These functions support sending signals using preallocated sigqueue
1272  * structures.  This is needed "because realtime applications cannot
1273  * afford to lose notifications of asynchronous events, like timer
1274  * expirations or I/O completions".  In the case of Posix Timers
1275  * we allocate the sigqueue structure from the timer_create.  If this
1276  * allocation fails we are able to report the failure to the application
1277  * with an EAGAIN error.
1278  */
1279 
1280 struct sigqueue *sigqueue_alloc(void)
1281 {
1282 	struct sigqueue *q;
1283 
1284 	if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1285 		q->flags |= SIGQUEUE_PREALLOC;
1286 	return(q);
1287 }
1288 
1289 void sigqueue_free(struct sigqueue *q)
1290 {
1291 	unsigned long flags;
1292 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1293 	/*
1294 	 * If the signal is still pending remove it from the
1295 	 * pending queue.
1296 	 */
1297 	if (unlikely(!list_empty(&q->list))) {
1298 		spinlock_t *lock = &current->sighand->siglock;
1299 		read_lock(&tasklist_lock);
1300 		spin_lock_irqsave(lock, flags);
1301 		if (!list_empty(&q->list))
1302 			list_del_init(&q->list);
1303 		spin_unlock_irqrestore(lock, flags);
1304 		read_unlock(&tasklist_lock);
1305 	}
1306 	q->flags &= ~SIGQUEUE_PREALLOC;
1307 	__sigqueue_free(q);
1308 }
1309 
1310 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1311 {
1312 	unsigned long flags;
1313 	int ret = 0;
1314 
1315 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1316 
1317 	/*
1318 	 * The rcu based delayed sighand destroy makes it possible to
1319 	 * run this without tasklist lock held. The task struct itself
1320 	 * cannot go away as create_timer did get_task_struct().
1321 	 *
1322 	 * We return -1, when the task is marked exiting, so
1323 	 * posix_timer_event can redirect it to the group leader
1324 	 */
1325 	rcu_read_lock();
1326 
1327 	if (!likely(lock_task_sighand(p, &flags))) {
1328 		ret = -1;
1329 		goto out_err;
1330 	}
1331 
1332 	if (unlikely(!list_empty(&q->list))) {
1333 		/*
1334 		 * If an SI_TIMER entry is already queue just increment
1335 		 * the overrun count.
1336 		 */
1337 		BUG_ON(q->info.si_code != SI_TIMER);
1338 		q->info.si_overrun++;
1339 		goto out;
1340 	}
1341 	/* Short-circuit ignored signals.  */
1342 	if (sig_ignored(p, sig)) {
1343 		ret = 1;
1344 		goto out;
1345 	}
1346 
1347 	list_add_tail(&q->list, &p->pending.list);
1348 	sigaddset(&p->pending.signal, sig);
1349 	if (!sigismember(&p->blocked, sig))
1350 		signal_wake_up(p, sig == SIGKILL);
1351 
1352 out:
1353 	unlock_task_sighand(p, &flags);
1354 out_err:
1355 	rcu_read_unlock();
1356 
1357 	return ret;
1358 }
1359 
1360 int
1361 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1362 {
1363 	unsigned long flags;
1364 	int ret = 0;
1365 
1366 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1367 
1368 	read_lock(&tasklist_lock);
1369 	/* Since it_lock is held, p->sighand cannot be NULL. */
1370 	spin_lock_irqsave(&p->sighand->siglock, flags);
1371 	handle_stop_signal(sig, p);
1372 
1373 	/* Short-circuit ignored signals.  */
1374 	if (sig_ignored(p, sig)) {
1375 		ret = 1;
1376 		goto out;
1377 	}
1378 
1379 	if (unlikely(!list_empty(&q->list))) {
1380 		/*
1381 		 * If an SI_TIMER entry is already queue just increment
1382 		 * the overrun count.  Other uses should not try to
1383 		 * send the signal multiple times.
1384 		 */
1385 		BUG_ON(q->info.si_code != SI_TIMER);
1386 		q->info.si_overrun++;
1387 		goto out;
1388 	}
1389 
1390 	/*
1391 	 * Put this signal on the shared-pending queue.
1392 	 * We always use the shared queue for process-wide signals,
1393 	 * to avoid several races.
1394 	 */
1395 	list_add_tail(&q->list, &p->signal->shared_pending.list);
1396 	sigaddset(&p->signal->shared_pending.signal, sig);
1397 
1398 	__group_complete_signal(sig, p);
1399 out:
1400 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
1401 	read_unlock(&tasklist_lock);
1402 	return ret;
1403 }
1404 
1405 /*
1406  * Wake up any threads in the parent blocked in wait* syscalls.
1407  */
1408 static inline void __wake_up_parent(struct task_struct *p,
1409 				    struct task_struct *parent)
1410 {
1411 	wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1412 }
1413 
1414 /*
1415  * Let a parent know about the death of a child.
1416  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1417  */
1418 
1419 void do_notify_parent(struct task_struct *tsk, int sig)
1420 {
1421 	struct siginfo info;
1422 	unsigned long flags;
1423 	struct sighand_struct *psig;
1424 
1425 	BUG_ON(sig == -1);
1426 
1427  	/* do_notify_parent_cldstop should have been called instead.  */
1428  	BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1429 
1430 	BUG_ON(!tsk->ptrace &&
1431 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1432 
1433 	info.si_signo = sig;
1434 	info.si_errno = 0;
1435 	info.si_pid = tsk->pid;
1436 	info.si_uid = tsk->uid;
1437 
1438 	/* FIXME: find out whether or not this is supposed to be c*time. */
1439 	info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1440 						       tsk->signal->utime));
1441 	info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1442 						       tsk->signal->stime));
1443 
1444 	info.si_status = tsk->exit_code & 0x7f;
1445 	if (tsk->exit_code & 0x80)
1446 		info.si_code = CLD_DUMPED;
1447 	else if (tsk->exit_code & 0x7f)
1448 		info.si_code = CLD_KILLED;
1449 	else {
1450 		info.si_code = CLD_EXITED;
1451 		info.si_status = tsk->exit_code >> 8;
1452 	}
1453 
1454 	psig = tsk->parent->sighand;
1455 	spin_lock_irqsave(&psig->siglock, flags);
1456 	if (!tsk->ptrace && sig == SIGCHLD &&
1457 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1458 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1459 		/*
1460 		 * We are exiting and our parent doesn't care.  POSIX.1
1461 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1462 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1463 		 * automatically and not left for our parent's wait4 call.
1464 		 * Rather than having the parent do it as a magic kind of
1465 		 * signal handler, we just set this to tell do_exit that we
1466 		 * can be cleaned up without becoming a zombie.  Note that
1467 		 * we still call __wake_up_parent in this case, because a
1468 		 * blocked sys_wait4 might now return -ECHILD.
1469 		 *
1470 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1471 		 * is implementation-defined: we do (if you don't want
1472 		 * it, just use SIG_IGN instead).
1473 		 */
1474 		tsk->exit_signal = -1;
1475 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1476 			sig = 0;
1477 	}
1478 	if (valid_signal(sig) && sig > 0)
1479 		__group_send_sig_info(sig, &info, tsk->parent);
1480 	__wake_up_parent(tsk, tsk->parent);
1481 	spin_unlock_irqrestore(&psig->siglock, flags);
1482 }
1483 
1484 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1485 {
1486 	struct siginfo info;
1487 	unsigned long flags;
1488 	struct task_struct *parent;
1489 	struct sighand_struct *sighand;
1490 
1491 	if (tsk->ptrace & PT_PTRACED)
1492 		parent = tsk->parent;
1493 	else {
1494 		tsk = tsk->group_leader;
1495 		parent = tsk->real_parent;
1496 	}
1497 
1498 	info.si_signo = SIGCHLD;
1499 	info.si_errno = 0;
1500 	info.si_pid = tsk->pid;
1501 	info.si_uid = tsk->uid;
1502 
1503 	/* FIXME: find out whether or not this is supposed to be c*time. */
1504 	info.si_utime = cputime_to_jiffies(tsk->utime);
1505 	info.si_stime = cputime_to_jiffies(tsk->stime);
1506 
1507  	info.si_code = why;
1508  	switch (why) {
1509  	case CLD_CONTINUED:
1510  		info.si_status = SIGCONT;
1511  		break;
1512  	case CLD_STOPPED:
1513  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1514  		break;
1515  	case CLD_TRAPPED:
1516  		info.si_status = tsk->exit_code & 0x7f;
1517  		break;
1518  	default:
1519  		BUG();
1520  	}
1521 
1522 	sighand = parent->sighand;
1523 	spin_lock_irqsave(&sighand->siglock, flags);
1524 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1525 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1526 		__group_send_sig_info(SIGCHLD, &info, parent);
1527 	/*
1528 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1529 	 */
1530 	__wake_up_parent(tsk, parent);
1531 	spin_unlock_irqrestore(&sighand->siglock, flags);
1532 }
1533 
1534 /*
1535  * This must be called with current->sighand->siglock held.
1536  *
1537  * This should be the path for all ptrace stops.
1538  * We always set current->last_siginfo while stopped here.
1539  * That makes it a way to test a stopped process for
1540  * being ptrace-stopped vs being job-control-stopped.
1541  *
1542  * If we actually decide not to stop at all because the tracer is gone,
1543  * we leave nostop_code in current->exit_code.
1544  */
1545 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1546 {
1547 	/*
1548 	 * If there is a group stop in progress,
1549 	 * we must participate in the bookkeeping.
1550 	 */
1551 	if (current->signal->group_stop_count > 0)
1552 		--current->signal->group_stop_count;
1553 
1554 	current->last_siginfo = info;
1555 	current->exit_code = exit_code;
1556 
1557 	/* Let the debugger run.  */
1558 	set_current_state(TASK_TRACED);
1559 	spin_unlock_irq(&current->sighand->siglock);
1560 	try_to_freeze();
1561 	read_lock(&tasklist_lock);
1562 	if (likely(current->ptrace & PT_PTRACED) &&
1563 	    likely(current->parent != current->real_parent ||
1564 		   !(current->ptrace & PT_ATTACHED)) &&
1565 	    (likely(current->parent->signal != current->signal) ||
1566 	     !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) {
1567 		do_notify_parent_cldstop(current, CLD_TRAPPED);
1568 		read_unlock(&tasklist_lock);
1569 		schedule();
1570 	} else {
1571 		/*
1572 		 * By the time we got the lock, our tracer went away.
1573 		 * Don't stop here.
1574 		 */
1575 		read_unlock(&tasklist_lock);
1576 		set_current_state(TASK_RUNNING);
1577 		current->exit_code = nostop_code;
1578 	}
1579 
1580 	/*
1581 	 * We are back.  Now reacquire the siglock before touching
1582 	 * last_siginfo, so that we are sure to have synchronized with
1583 	 * any signal-sending on another CPU that wants to examine it.
1584 	 */
1585 	spin_lock_irq(&current->sighand->siglock);
1586 	current->last_siginfo = NULL;
1587 
1588 	/*
1589 	 * Queued signals ignored us while we were stopped for tracing.
1590 	 * So check for any that we should take before resuming user mode.
1591 	 */
1592 	recalc_sigpending();
1593 }
1594 
1595 void ptrace_notify(int exit_code)
1596 {
1597 	siginfo_t info;
1598 
1599 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1600 
1601 	memset(&info, 0, sizeof info);
1602 	info.si_signo = SIGTRAP;
1603 	info.si_code = exit_code;
1604 	info.si_pid = current->pid;
1605 	info.si_uid = current->uid;
1606 
1607 	/* Let the debugger run.  */
1608 	spin_lock_irq(&current->sighand->siglock);
1609 	ptrace_stop(exit_code, 0, &info);
1610 	spin_unlock_irq(&current->sighand->siglock);
1611 }
1612 
1613 static void
1614 finish_stop(int stop_count)
1615 {
1616 	/*
1617 	 * If there are no other threads in the group, or if there is
1618 	 * a group stop in progress and we are the last to stop,
1619 	 * report to the parent.  When ptraced, every thread reports itself.
1620 	 */
1621 	if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1622 		read_lock(&tasklist_lock);
1623 		do_notify_parent_cldstop(current, CLD_STOPPED);
1624 		read_unlock(&tasklist_lock);
1625 	}
1626 
1627 	schedule();
1628 	/*
1629 	 * Now we don't run again until continued.
1630 	 */
1631 	current->exit_code = 0;
1632 }
1633 
1634 /*
1635  * This performs the stopping for SIGSTOP and other stop signals.
1636  * We have to stop all threads in the thread group.
1637  * Returns nonzero if we've actually stopped and released the siglock.
1638  * Returns zero if we didn't stop and still hold the siglock.
1639  */
1640 static int do_signal_stop(int signr)
1641 {
1642 	struct signal_struct *sig = current->signal;
1643 	int stop_count;
1644 
1645 	if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1646 		return 0;
1647 
1648 	if (sig->group_stop_count > 0) {
1649 		/*
1650 		 * There is a group stop in progress.  We don't need to
1651 		 * start another one.
1652 		 */
1653 		stop_count = --sig->group_stop_count;
1654 	} else {
1655 		/*
1656 		 * There is no group stop already in progress.
1657 		 * We must initiate one now.
1658 		 */
1659 		struct task_struct *t;
1660 
1661 		sig->group_exit_code = signr;
1662 
1663 		stop_count = 0;
1664 		for (t = next_thread(current); t != current; t = next_thread(t))
1665 			/*
1666 			 * Setting state to TASK_STOPPED for a group
1667 			 * stop is always done with the siglock held,
1668 			 * so this check has no races.
1669 			 */
1670 			if (!t->exit_state &&
1671 			    !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1672 				stop_count++;
1673 				signal_wake_up(t, 0);
1674 			}
1675 		sig->group_stop_count = stop_count;
1676 	}
1677 
1678 	if (stop_count == 0)
1679 		sig->flags = SIGNAL_STOP_STOPPED;
1680 	current->exit_code = sig->group_exit_code;
1681 	__set_current_state(TASK_STOPPED);
1682 
1683 	spin_unlock_irq(&current->sighand->siglock);
1684 	finish_stop(stop_count);
1685 	return 1;
1686 }
1687 
1688 /*
1689  * Do appropriate magic when group_stop_count > 0.
1690  * We return nonzero if we stopped, after releasing the siglock.
1691  * We return zero if we still hold the siglock and should look
1692  * for another signal without checking group_stop_count again.
1693  */
1694 static int handle_group_stop(void)
1695 {
1696 	int stop_count;
1697 
1698 	if (current->signal->group_exit_task == current) {
1699 		/*
1700 		 * Group stop is so we can do a core dump,
1701 		 * We are the initiating thread, so get on with it.
1702 		 */
1703 		current->signal->group_exit_task = NULL;
1704 		return 0;
1705 	}
1706 
1707 	if (current->signal->flags & SIGNAL_GROUP_EXIT)
1708 		/*
1709 		 * Group stop is so another thread can do a core dump,
1710 		 * or else we are racing against a death signal.
1711 		 * Just punt the stop so we can get the next signal.
1712 		 */
1713 		return 0;
1714 
1715 	/*
1716 	 * There is a group stop in progress.  We stop
1717 	 * without any associated signal being in our queue.
1718 	 */
1719 	stop_count = --current->signal->group_stop_count;
1720 	if (stop_count == 0)
1721 		current->signal->flags = SIGNAL_STOP_STOPPED;
1722 	current->exit_code = current->signal->group_exit_code;
1723 	set_current_state(TASK_STOPPED);
1724 	spin_unlock_irq(&current->sighand->siglock);
1725 	finish_stop(stop_count);
1726 	return 1;
1727 }
1728 
1729 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1730 			  struct pt_regs *regs, void *cookie)
1731 {
1732 	sigset_t *mask = &current->blocked;
1733 	int signr = 0;
1734 
1735 	try_to_freeze();
1736 
1737 relock:
1738 	spin_lock_irq(&current->sighand->siglock);
1739 	for (;;) {
1740 		struct k_sigaction *ka;
1741 
1742 		if (unlikely(current->signal->group_stop_count > 0) &&
1743 		    handle_group_stop())
1744 			goto relock;
1745 
1746 		signr = dequeue_signal(current, mask, info);
1747 
1748 		if (!signr)
1749 			break; /* will return 0 */
1750 
1751 		if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1752 			ptrace_signal_deliver(regs, cookie);
1753 
1754 			/* Let the debugger run.  */
1755 			ptrace_stop(signr, signr, info);
1756 
1757 			/* We're back.  Did the debugger cancel the sig?  */
1758 			signr = current->exit_code;
1759 			if (signr == 0)
1760 				continue;
1761 
1762 			current->exit_code = 0;
1763 
1764 			/* Update the siginfo structure if the signal has
1765 			   changed.  If the debugger wanted something
1766 			   specific in the siginfo structure then it should
1767 			   have updated *info via PTRACE_SETSIGINFO.  */
1768 			if (signr != info->si_signo) {
1769 				info->si_signo = signr;
1770 				info->si_errno = 0;
1771 				info->si_code = SI_USER;
1772 				info->si_pid = current->parent->pid;
1773 				info->si_uid = current->parent->uid;
1774 			}
1775 
1776 			/* If the (new) signal is now blocked, requeue it.  */
1777 			if (sigismember(&current->blocked, signr)) {
1778 				specific_send_sig_info(signr, info, current);
1779 				continue;
1780 			}
1781 		}
1782 
1783 		ka = &current->sighand->action[signr-1];
1784 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
1785 			continue;
1786 		if (ka->sa.sa_handler != SIG_DFL) {
1787 			/* Run the handler.  */
1788 			*return_ka = *ka;
1789 
1790 			if (ka->sa.sa_flags & SA_ONESHOT)
1791 				ka->sa.sa_handler = SIG_DFL;
1792 
1793 			break; /* will return non-zero "signr" value */
1794 		}
1795 
1796 		/*
1797 		 * Now we are doing the default action for this signal.
1798 		 */
1799 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
1800 			continue;
1801 
1802 		/* Init gets no signals it doesn't want.  */
1803 		if (current == child_reaper)
1804 			continue;
1805 
1806 		if (sig_kernel_stop(signr)) {
1807 			/*
1808 			 * The default action is to stop all threads in
1809 			 * the thread group.  The job control signals
1810 			 * do nothing in an orphaned pgrp, but SIGSTOP
1811 			 * always works.  Note that siglock needs to be
1812 			 * dropped during the call to is_orphaned_pgrp()
1813 			 * because of lock ordering with tasklist_lock.
1814 			 * This allows an intervening SIGCONT to be posted.
1815 			 * We need to check for that and bail out if necessary.
1816 			 */
1817 			if (signr != SIGSTOP) {
1818 				spin_unlock_irq(&current->sighand->siglock);
1819 
1820 				/* signals can be posted during this window */
1821 
1822 				if (is_orphaned_pgrp(process_group(current)))
1823 					goto relock;
1824 
1825 				spin_lock_irq(&current->sighand->siglock);
1826 			}
1827 
1828 			if (likely(do_signal_stop(signr))) {
1829 				/* It released the siglock.  */
1830 				goto relock;
1831 			}
1832 
1833 			/*
1834 			 * We didn't actually stop, due to a race
1835 			 * with SIGCONT or something like that.
1836 			 */
1837 			continue;
1838 		}
1839 
1840 		spin_unlock_irq(&current->sighand->siglock);
1841 
1842 		/*
1843 		 * Anything else is fatal, maybe with a core dump.
1844 		 */
1845 		current->flags |= PF_SIGNALED;
1846 		if (sig_kernel_coredump(signr)) {
1847 			/*
1848 			 * If it was able to dump core, this kills all
1849 			 * other threads in the group and synchronizes with
1850 			 * their demise.  If we lost the race with another
1851 			 * thread getting here, it set group_exit_code
1852 			 * first and our do_group_exit call below will use
1853 			 * that value and ignore the one we pass it.
1854 			 */
1855 			do_coredump((long)signr, signr, regs);
1856 		}
1857 
1858 		/*
1859 		 * Death signals, no core dump.
1860 		 */
1861 		do_group_exit(signr);
1862 		/* NOTREACHED */
1863 	}
1864 	spin_unlock_irq(&current->sighand->siglock);
1865 	return signr;
1866 }
1867 
1868 EXPORT_SYMBOL(recalc_sigpending);
1869 EXPORT_SYMBOL_GPL(dequeue_signal);
1870 EXPORT_SYMBOL(flush_signals);
1871 EXPORT_SYMBOL(force_sig);
1872 EXPORT_SYMBOL(kill_pg);
1873 EXPORT_SYMBOL(kill_proc);
1874 EXPORT_SYMBOL(ptrace_notify);
1875 EXPORT_SYMBOL(send_sig);
1876 EXPORT_SYMBOL(send_sig_info);
1877 EXPORT_SYMBOL(sigprocmask);
1878 EXPORT_SYMBOL(block_all_signals);
1879 EXPORT_SYMBOL(unblock_all_signals);
1880 
1881 
1882 /*
1883  * System call entry points.
1884  */
1885 
1886 asmlinkage long sys_restart_syscall(void)
1887 {
1888 	struct restart_block *restart = &current_thread_info()->restart_block;
1889 	return restart->fn(restart);
1890 }
1891 
1892 long do_no_restart_syscall(struct restart_block *param)
1893 {
1894 	return -EINTR;
1895 }
1896 
1897 /*
1898  * We don't need to get the kernel lock - this is all local to this
1899  * particular thread.. (and that's good, because this is _heavily_
1900  * used by various programs)
1901  */
1902 
1903 /*
1904  * This is also useful for kernel threads that want to temporarily
1905  * (or permanently) block certain signals.
1906  *
1907  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1908  * interface happily blocks "unblockable" signals like SIGKILL
1909  * and friends.
1910  */
1911 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1912 {
1913 	int error;
1914 
1915 	spin_lock_irq(&current->sighand->siglock);
1916 	if (oldset)
1917 		*oldset = current->blocked;
1918 
1919 	error = 0;
1920 	switch (how) {
1921 	case SIG_BLOCK:
1922 		sigorsets(&current->blocked, &current->blocked, set);
1923 		break;
1924 	case SIG_UNBLOCK:
1925 		signandsets(&current->blocked, &current->blocked, set);
1926 		break;
1927 	case SIG_SETMASK:
1928 		current->blocked = *set;
1929 		break;
1930 	default:
1931 		error = -EINVAL;
1932 	}
1933 	recalc_sigpending();
1934 	spin_unlock_irq(&current->sighand->siglock);
1935 
1936 	return error;
1937 }
1938 
1939 asmlinkage long
1940 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
1941 {
1942 	int error = -EINVAL;
1943 	sigset_t old_set, new_set;
1944 
1945 	/* XXX: Don't preclude handling different sized sigset_t's.  */
1946 	if (sigsetsize != sizeof(sigset_t))
1947 		goto out;
1948 
1949 	if (set) {
1950 		error = -EFAULT;
1951 		if (copy_from_user(&new_set, set, sizeof(*set)))
1952 			goto out;
1953 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
1954 
1955 		error = sigprocmask(how, &new_set, &old_set);
1956 		if (error)
1957 			goto out;
1958 		if (oset)
1959 			goto set_old;
1960 	} else if (oset) {
1961 		spin_lock_irq(&current->sighand->siglock);
1962 		old_set = current->blocked;
1963 		spin_unlock_irq(&current->sighand->siglock);
1964 
1965 	set_old:
1966 		error = -EFAULT;
1967 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
1968 			goto out;
1969 	}
1970 	error = 0;
1971 out:
1972 	return error;
1973 }
1974 
1975 long do_sigpending(void __user *set, unsigned long sigsetsize)
1976 {
1977 	long error = -EINVAL;
1978 	sigset_t pending;
1979 
1980 	if (sigsetsize > sizeof(sigset_t))
1981 		goto out;
1982 
1983 	spin_lock_irq(&current->sighand->siglock);
1984 	sigorsets(&pending, &current->pending.signal,
1985 		  &current->signal->shared_pending.signal);
1986 	spin_unlock_irq(&current->sighand->siglock);
1987 
1988 	/* Outside the lock because only this thread touches it.  */
1989 	sigandsets(&pending, &current->blocked, &pending);
1990 
1991 	error = -EFAULT;
1992 	if (!copy_to_user(set, &pending, sigsetsize))
1993 		error = 0;
1994 
1995 out:
1996 	return error;
1997 }
1998 
1999 asmlinkage long
2000 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2001 {
2002 	return do_sigpending(set, sigsetsize);
2003 }
2004 
2005 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2006 
2007 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2008 {
2009 	int err;
2010 
2011 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2012 		return -EFAULT;
2013 	if (from->si_code < 0)
2014 		return __copy_to_user(to, from, sizeof(siginfo_t))
2015 			? -EFAULT : 0;
2016 	/*
2017 	 * If you change siginfo_t structure, please be sure
2018 	 * this code is fixed accordingly.
2019 	 * It should never copy any pad contained in the structure
2020 	 * to avoid security leaks, but must copy the generic
2021 	 * 3 ints plus the relevant union member.
2022 	 */
2023 	err = __put_user(from->si_signo, &to->si_signo);
2024 	err |= __put_user(from->si_errno, &to->si_errno);
2025 	err |= __put_user((short)from->si_code, &to->si_code);
2026 	switch (from->si_code & __SI_MASK) {
2027 	case __SI_KILL:
2028 		err |= __put_user(from->si_pid, &to->si_pid);
2029 		err |= __put_user(from->si_uid, &to->si_uid);
2030 		break;
2031 	case __SI_TIMER:
2032 		 err |= __put_user(from->si_tid, &to->si_tid);
2033 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2034 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2035 		break;
2036 	case __SI_POLL:
2037 		err |= __put_user(from->si_band, &to->si_band);
2038 		err |= __put_user(from->si_fd, &to->si_fd);
2039 		break;
2040 	case __SI_FAULT:
2041 		err |= __put_user(from->si_addr, &to->si_addr);
2042 #ifdef __ARCH_SI_TRAPNO
2043 		err |= __put_user(from->si_trapno, &to->si_trapno);
2044 #endif
2045 		break;
2046 	case __SI_CHLD:
2047 		err |= __put_user(from->si_pid, &to->si_pid);
2048 		err |= __put_user(from->si_uid, &to->si_uid);
2049 		err |= __put_user(from->si_status, &to->si_status);
2050 		err |= __put_user(from->si_utime, &to->si_utime);
2051 		err |= __put_user(from->si_stime, &to->si_stime);
2052 		break;
2053 	case __SI_RT: /* This is not generated by the kernel as of now. */
2054 	case __SI_MESGQ: /* But this is */
2055 		err |= __put_user(from->si_pid, &to->si_pid);
2056 		err |= __put_user(from->si_uid, &to->si_uid);
2057 		err |= __put_user(from->si_ptr, &to->si_ptr);
2058 		break;
2059 	default: /* this is just in case for now ... */
2060 		err |= __put_user(from->si_pid, &to->si_pid);
2061 		err |= __put_user(from->si_uid, &to->si_uid);
2062 		break;
2063 	}
2064 	return err;
2065 }
2066 
2067 #endif
2068 
2069 asmlinkage long
2070 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2071 		    siginfo_t __user *uinfo,
2072 		    const struct timespec __user *uts,
2073 		    size_t sigsetsize)
2074 {
2075 	int ret, sig;
2076 	sigset_t these;
2077 	struct timespec ts;
2078 	siginfo_t info;
2079 	long timeout = 0;
2080 
2081 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2082 	if (sigsetsize != sizeof(sigset_t))
2083 		return -EINVAL;
2084 
2085 	if (copy_from_user(&these, uthese, sizeof(these)))
2086 		return -EFAULT;
2087 
2088 	/*
2089 	 * Invert the set of allowed signals to get those we
2090 	 * want to block.
2091 	 */
2092 	sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2093 	signotset(&these);
2094 
2095 	if (uts) {
2096 		if (copy_from_user(&ts, uts, sizeof(ts)))
2097 			return -EFAULT;
2098 		if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2099 		    || ts.tv_sec < 0)
2100 			return -EINVAL;
2101 	}
2102 
2103 	spin_lock_irq(&current->sighand->siglock);
2104 	sig = dequeue_signal(current, &these, &info);
2105 	if (!sig) {
2106 		timeout = MAX_SCHEDULE_TIMEOUT;
2107 		if (uts)
2108 			timeout = (timespec_to_jiffies(&ts)
2109 				   + (ts.tv_sec || ts.tv_nsec));
2110 
2111 		if (timeout) {
2112 			/* None ready -- temporarily unblock those we're
2113 			 * interested while we are sleeping in so that we'll
2114 			 * be awakened when they arrive.  */
2115 			current->real_blocked = current->blocked;
2116 			sigandsets(&current->blocked, &current->blocked, &these);
2117 			recalc_sigpending();
2118 			spin_unlock_irq(&current->sighand->siglock);
2119 
2120 			timeout = schedule_timeout_interruptible(timeout);
2121 
2122 			spin_lock_irq(&current->sighand->siglock);
2123 			sig = dequeue_signal(current, &these, &info);
2124 			current->blocked = current->real_blocked;
2125 			siginitset(&current->real_blocked, 0);
2126 			recalc_sigpending();
2127 		}
2128 	}
2129 	spin_unlock_irq(&current->sighand->siglock);
2130 
2131 	if (sig) {
2132 		ret = sig;
2133 		if (uinfo) {
2134 			if (copy_siginfo_to_user(uinfo, &info))
2135 				ret = -EFAULT;
2136 		}
2137 	} else {
2138 		ret = -EAGAIN;
2139 		if (timeout)
2140 			ret = -EINTR;
2141 	}
2142 
2143 	return ret;
2144 }
2145 
2146 asmlinkage long
2147 sys_kill(int pid, int sig)
2148 {
2149 	struct siginfo info;
2150 
2151 	info.si_signo = sig;
2152 	info.si_errno = 0;
2153 	info.si_code = SI_USER;
2154 	info.si_pid = current->tgid;
2155 	info.si_uid = current->uid;
2156 
2157 	return kill_something_info(sig, &info, pid);
2158 }
2159 
2160 static int do_tkill(int tgid, int pid, int sig)
2161 {
2162 	int error;
2163 	struct siginfo info;
2164 	struct task_struct *p;
2165 
2166 	error = -ESRCH;
2167 	info.si_signo = sig;
2168 	info.si_errno = 0;
2169 	info.si_code = SI_TKILL;
2170 	info.si_pid = current->tgid;
2171 	info.si_uid = current->uid;
2172 
2173 	read_lock(&tasklist_lock);
2174 	p = find_task_by_pid(pid);
2175 	if (p && (tgid <= 0 || p->tgid == tgid)) {
2176 		error = check_kill_permission(sig, &info, p);
2177 		/*
2178 		 * The null signal is a permissions and process existence
2179 		 * probe.  No signal is actually delivered.
2180 		 */
2181 		if (!error && sig && p->sighand) {
2182 			spin_lock_irq(&p->sighand->siglock);
2183 			handle_stop_signal(sig, p);
2184 			error = specific_send_sig_info(sig, &info, p);
2185 			spin_unlock_irq(&p->sighand->siglock);
2186 		}
2187 	}
2188 	read_unlock(&tasklist_lock);
2189 
2190 	return error;
2191 }
2192 
2193 /**
2194  *  sys_tgkill - send signal to one specific thread
2195  *  @tgid: the thread group ID of the thread
2196  *  @pid: the PID of the thread
2197  *  @sig: signal to be sent
2198  *
2199  *  This syscall also checks the tgid and returns -ESRCH even if the PID
2200  *  exists but it's not belonging to the target process anymore. This
2201  *  method solves the problem of threads exiting and PIDs getting reused.
2202  */
2203 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2204 {
2205 	/* This is only valid for single tasks */
2206 	if (pid <= 0 || tgid <= 0)
2207 		return -EINVAL;
2208 
2209 	return do_tkill(tgid, pid, sig);
2210 }
2211 
2212 /*
2213  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2214  */
2215 asmlinkage long
2216 sys_tkill(int pid, int sig)
2217 {
2218 	/* This is only valid for single tasks */
2219 	if (pid <= 0)
2220 		return -EINVAL;
2221 
2222 	return do_tkill(0, pid, sig);
2223 }
2224 
2225 asmlinkage long
2226 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2227 {
2228 	siginfo_t info;
2229 
2230 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2231 		return -EFAULT;
2232 
2233 	/* Not even root can pretend to send signals from the kernel.
2234 	   Nor can they impersonate a kill(), which adds source info.  */
2235 	if (info.si_code >= 0)
2236 		return -EPERM;
2237 	info.si_signo = sig;
2238 
2239 	/* POSIX.1b doesn't mention process groups.  */
2240 	return kill_proc_info(sig, &info, pid);
2241 }
2242 
2243 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2244 {
2245 	struct k_sigaction *k;
2246 	sigset_t mask;
2247 
2248 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2249 		return -EINVAL;
2250 
2251 	k = &current->sighand->action[sig-1];
2252 
2253 	spin_lock_irq(&current->sighand->siglock);
2254 	if (signal_pending(current)) {
2255 		/*
2256 		 * If there might be a fatal signal pending on multiple
2257 		 * threads, make sure we take it before changing the action.
2258 		 */
2259 		spin_unlock_irq(&current->sighand->siglock);
2260 		return -ERESTARTNOINTR;
2261 	}
2262 
2263 	if (oact)
2264 		*oact = *k;
2265 
2266 	if (act) {
2267 		sigdelsetmask(&act->sa.sa_mask,
2268 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
2269 		*k = *act;
2270 		/*
2271 		 * POSIX 3.3.1.3:
2272 		 *  "Setting a signal action to SIG_IGN for a signal that is
2273 		 *   pending shall cause the pending signal to be discarded,
2274 		 *   whether or not it is blocked."
2275 		 *
2276 		 *  "Setting a signal action to SIG_DFL for a signal that is
2277 		 *   pending and whose default action is to ignore the signal
2278 		 *   (for example, SIGCHLD), shall cause the pending signal to
2279 		 *   be discarded, whether or not it is blocked"
2280 		 */
2281 		if (act->sa.sa_handler == SIG_IGN ||
2282 		   (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2283 			struct task_struct *t = current;
2284 			sigemptyset(&mask);
2285 			sigaddset(&mask, sig);
2286 			rm_from_queue_full(&mask, &t->signal->shared_pending);
2287 			do {
2288 				rm_from_queue_full(&mask, &t->pending);
2289 				recalc_sigpending_tsk(t);
2290 				t = next_thread(t);
2291 			} while (t != current);
2292 		}
2293 	}
2294 
2295 	spin_unlock_irq(&current->sighand->siglock);
2296 	return 0;
2297 }
2298 
2299 int
2300 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2301 {
2302 	stack_t oss;
2303 	int error;
2304 
2305 	if (uoss) {
2306 		oss.ss_sp = (void __user *) current->sas_ss_sp;
2307 		oss.ss_size = current->sas_ss_size;
2308 		oss.ss_flags = sas_ss_flags(sp);
2309 	}
2310 
2311 	if (uss) {
2312 		void __user *ss_sp;
2313 		size_t ss_size;
2314 		int ss_flags;
2315 
2316 		error = -EFAULT;
2317 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2318 		    || __get_user(ss_sp, &uss->ss_sp)
2319 		    || __get_user(ss_flags, &uss->ss_flags)
2320 		    || __get_user(ss_size, &uss->ss_size))
2321 			goto out;
2322 
2323 		error = -EPERM;
2324 		if (on_sig_stack(sp))
2325 			goto out;
2326 
2327 		error = -EINVAL;
2328 		/*
2329 		 *
2330 		 * Note - this code used to test ss_flags incorrectly
2331 		 *  	  old code may have been written using ss_flags==0
2332 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
2333 		 *	  way that worked) - this fix preserves that older
2334 		 *	  mechanism
2335 		 */
2336 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2337 			goto out;
2338 
2339 		if (ss_flags == SS_DISABLE) {
2340 			ss_size = 0;
2341 			ss_sp = NULL;
2342 		} else {
2343 			error = -ENOMEM;
2344 			if (ss_size < MINSIGSTKSZ)
2345 				goto out;
2346 		}
2347 
2348 		current->sas_ss_sp = (unsigned long) ss_sp;
2349 		current->sas_ss_size = ss_size;
2350 	}
2351 
2352 	if (uoss) {
2353 		error = -EFAULT;
2354 		if (copy_to_user(uoss, &oss, sizeof(oss)))
2355 			goto out;
2356 	}
2357 
2358 	error = 0;
2359 out:
2360 	return error;
2361 }
2362 
2363 #ifdef __ARCH_WANT_SYS_SIGPENDING
2364 
2365 asmlinkage long
2366 sys_sigpending(old_sigset_t __user *set)
2367 {
2368 	return do_sigpending(set, sizeof(*set));
2369 }
2370 
2371 #endif
2372 
2373 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2374 /* Some platforms have their own version with special arguments others
2375    support only sys_rt_sigprocmask.  */
2376 
2377 asmlinkage long
2378 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2379 {
2380 	int error;
2381 	old_sigset_t old_set, new_set;
2382 
2383 	if (set) {
2384 		error = -EFAULT;
2385 		if (copy_from_user(&new_set, set, sizeof(*set)))
2386 			goto out;
2387 		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2388 
2389 		spin_lock_irq(&current->sighand->siglock);
2390 		old_set = current->blocked.sig[0];
2391 
2392 		error = 0;
2393 		switch (how) {
2394 		default:
2395 			error = -EINVAL;
2396 			break;
2397 		case SIG_BLOCK:
2398 			sigaddsetmask(&current->blocked, new_set);
2399 			break;
2400 		case SIG_UNBLOCK:
2401 			sigdelsetmask(&current->blocked, new_set);
2402 			break;
2403 		case SIG_SETMASK:
2404 			current->blocked.sig[0] = new_set;
2405 			break;
2406 		}
2407 
2408 		recalc_sigpending();
2409 		spin_unlock_irq(&current->sighand->siglock);
2410 		if (error)
2411 			goto out;
2412 		if (oset)
2413 			goto set_old;
2414 	} else if (oset) {
2415 		old_set = current->blocked.sig[0];
2416 	set_old:
2417 		error = -EFAULT;
2418 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
2419 			goto out;
2420 	}
2421 	error = 0;
2422 out:
2423 	return error;
2424 }
2425 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2426 
2427 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2428 asmlinkage long
2429 sys_rt_sigaction(int sig,
2430 		 const struct sigaction __user *act,
2431 		 struct sigaction __user *oact,
2432 		 size_t sigsetsize)
2433 {
2434 	struct k_sigaction new_sa, old_sa;
2435 	int ret = -EINVAL;
2436 
2437 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2438 	if (sigsetsize != sizeof(sigset_t))
2439 		goto out;
2440 
2441 	if (act) {
2442 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2443 			return -EFAULT;
2444 	}
2445 
2446 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2447 
2448 	if (!ret && oact) {
2449 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2450 			return -EFAULT;
2451 	}
2452 out:
2453 	return ret;
2454 }
2455 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2456 
2457 #ifdef __ARCH_WANT_SYS_SGETMASK
2458 
2459 /*
2460  * For backwards compatibility.  Functionality superseded by sigprocmask.
2461  */
2462 asmlinkage long
2463 sys_sgetmask(void)
2464 {
2465 	/* SMP safe */
2466 	return current->blocked.sig[0];
2467 }
2468 
2469 asmlinkage long
2470 sys_ssetmask(int newmask)
2471 {
2472 	int old;
2473 
2474 	spin_lock_irq(&current->sighand->siglock);
2475 	old = current->blocked.sig[0];
2476 
2477 	siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2478 						  sigmask(SIGSTOP)));
2479 	recalc_sigpending();
2480 	spin_unlock_irq(&current->sighand->siglock);
2481 
2482 	return old;
2483 }
2484 #endif /* __ARCH_WANT_SGETMASK */
2485 
2486 #ifdef __ARCH_WANT_SYS_SIGNAL
2487 /*
2488  * For backwards compatibility.  Functionality superseded by sigaction.
2489  */
2490 asmlinkage unsigned long
2491 sys_signal(int sig, __sighandler_t handler)
2492 {
2493 	struct k_sigaction new_sa, old_sa;
2494 	int ret;
2495 
2496 	new_sa.sa.sa_handler = handler;
2497 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2498 	sigemptyset(&new_sa.sa.sa_mask);
2499 
2500 	ret = do_sigaction(sig, &new_sa, &old_sa);
2501 
2502 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2503 }
2504 #endif /* __ARCH_WANT_SYS_SIGNAL */
2505 
2506 #ifdef __ARCH_WANT_SYS_PAUSE
2507 
2508 asmlinkage long
2509 sys_pause(void)
2510 {
2511 	current->state = TASK_INTERRUPTIBLE;
2512 	schedule();
2513 	return -ERESTARTNOHAND;
2514 }
2515 
2516 #endif
2517 
2518 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2519 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2520 {
2521 	sigset_t newset;
2522 
2523 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2524 	if (sigsetsize != sizeof(sigset_t))
2525 		return -EINVAL;
2526 
2527 	if (copy_from_user(&newset, unewset, sizeof(newset)))
2528 		return -EFAULT;
2529 	sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2530 
2531 	spin_lock_irq(&current->sighand->siglock);
2532 	current->saved_sigmask = current->blocked;
2533 	current->blocked = newset;
2534 	recalc_sigpending();
2535 	spin_unlock_irq(&current->sighand->siglock);
2536 
2537 	current->state = TASK_INTERRUPTIBLE;
2538 	schedule();
2539 	set_thread_flag(TIF_RESTORE_SIGMASK);
2540 	return -ERESTARTNOHAND;
2541 }
2542 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2543 
2544 void __init signals_init(void)
2545 {
2546 	sigqueue_cachep =
2547 		kmem_cache_create("sigqueue",
2548 				  sizeof(struct sigqueue),
2549 				  __alignof__(struct sigqueue),
2550 				  SLAB_PANIC, NULL, NULL);
2551 }
2552