1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/config.h> 14 #include <linux/slab.h> 15 #include <linux/module.h> 16 #include <linux/smp_lock.h> 17 #include <linux/init.h> 18 #include <linux/sched.h> 19 #include <linux/fs.h> 20 #include <linux/tty.h> 21 #include <linux/binfmts.h> 22 #include <linux/security.h> 23 #include <linux/syscalls.h> 24 #include <linux/ptrace.h> 25 #include <linux/signal.h> 26 #include <linux/capability.h> 27 #include <asm/param.h> 28 #include <asm/uaccess.h> 29 #include <asm/unistd.h> 30 #include <asm/siginfo.h> 31 #include "audit.h" /* audit_signal_info() */ 32 33 /* 34 * SLAB caches for signal bits. 35 */ 36 37 static kmem_cache_t *sigqueue_cachep; 38 39 /* 40 * In POSIX a signal is sent either to a specific thread (Linux task) 41 * or to the process as a whole (Linux thread group). How the signal 42 * is sent determines whether it's to one thread or the whole group, 43 * which determines which signal mask(s) are involved in blocking it 44 * from being delivered until later. When the signal is delivered, 45 * either it's caught or ignored by a user handler or it has a default 46 * effect that applies to the whole thread group (POSIX process). 47 * 48 * The possible effects an unblocked signal set to SIG_DFL can have are: 49 * ignore - Nothing Happens 50 * terminate - kill the process, i.e. all threads in the group, 51 * similar to exit_group. The group leader (only) reports 52 * WIFSIGNALED status to its parent. 53 * coredump - write a core dump file describing all threads using 54 * the same mm and then kill all those threads 55 * stop - stop all the threads in the group, i.e. TASK_STOPPED state 56 * 57 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored. 58 * Other signals when not blocked and set to SIG_DFL behaves as follows. 59 * The job control signals also have other special effects. 60 * 61 * +--------------------+------------------+ 62 * | POSIX signal | default action | 63 * +--------------------+------------------+ 64 * | SIGHUP | terminate | 65 * | SIGINT | terminate | 66 * | SIGQUIT | coredump | 67 * | SIGILL | coredump | 68 * | SIGTRAP | coredump | 69 * | SIGABRT/SIGIOT | coredump | 70 * | SIGBUS | coredump | 71 * | SIGFPE | coredump | 72 * | SIGKILL | terminate(+) | 73 * | SIGUSR1 | terminate | 74 * | SIGSEGV | coredump | 75 * | SIGUSR2 | terminate | 76 * | SIGPIPE | terminate | 77 * | SIGALRM | terminate | 78 * | SIGTERM | terminate | 79 * | SIGCHLD | ignore | 80 * | SIGCONT | ignore(*) | 81 * | SIGSTOP | stop(*)(+) | 82 * | SIGTSTP | stop(*) | 83 * | SIGTTIN | stop(*) | 84 * | SIGTTOU | stop(*) | 85 * | SIGURG | ignore | 86 * | SIGXCPU | coredump | 87 * | SIGXFSZ | coredump | 88 * | SIGVTALRM | terminate | 89 * | SIGPROF | terminate | 90 * | SIGPOLL/SIGIO | terminate | 91 * | SIGSYS/SIGUNUSED | coredump | 92 * | SIGSTKFLT | terminate | 93 * | SIGWINCH | ignore | 94 * | SIGPWR | terminate | 95 * | SIGRTMIN-SIGRTMAX | terminate | 96 * +--------------------+------------------+ 97 * | non-POSIX signal | default action | 98 * +--------------------+------------------+ 99 * | SIGEMT | coredump | 100 * +--------------------+------------------+ 101 * 102 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default". 103 * (*) Special job control effects: 104 * When SIGCONT is sent, it resumes the process (all threads in the group) 105 * from TASK_STOPPED state and also clears any pending/queued stop signals 106 * (any of those marked with "stop(*)"). This happens regardless of blocking, 107 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears 108 * any pending/queued SIGCONT signals; this happens regardless of blocking, 109 * catching, or ignored the stop signal, though (except for SIGSTOP) the 110 * default action of stopping the process may happen later or never. 111 */ 112 113 #ifdef SIGEMT 114 #define M_SIGEMT M(SIGEMT) 115 #else 116 #define M_SIGEMT 0 117 #endif 118 119 #if SIGRTMIN > BITS_PER_LONG 120 #define M(sig) (1ULL << ((sig)-1)) 121 #else 122 #define M(sig) (1UL << ((sig)-1)) 123 #endif 124 #define T(sig, mask) (M(sig) & (mask)) 125 126 #define SIG_KERNEL_ONLY_MASK (\ 127 M(SIGKILL) | M(SIGSTOP) ) 128 129 #define SIG_KERNEL_STOP_MASK (\ 130 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) ) 131 132 #define SIG_KERNEL_COREDUMP_MASK (\ 133 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \ 134 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \ 135 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT ) 136 137 #define SIG_KERNEL_IGNORE_MASK (\ 138 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) ) 139 140 #define sig_kernel_only(sig) \ 141 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK)) 142 #define sig_kernel_coredump(sig) \ 143 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK)) 144 #define sig_kernel_ignore(sig) \ 145 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK)) 146 #define sig_kernel_stop(sig) \ 147 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK)) 148 149 #define sig_needs_tasklist(sig) ((sig) == SIGCONT) 150 151 #define sig_user_defined(t, signr) \ 152 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \ 153 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN)) 154 155 #define sig_fatal(t, signr) \ 156 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \ 157 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL) 158 159 static int sig_ignored(struct task_struct *t, int sig) 160 { 161 void __user * handler; 162 163 /* 164 * Tracers always want to know about signals.. 165 */ 166 if (t->ptrace & PT_PTRACED) 167 return 0; 168 169 /* 170 * Blocked signals are never ignored, since the 171 * signal handler may change by the time it is 172 * unblocked. 173 */ 174 if (sigismember(&t->blocked, sig)) 175 return 0; 176 177 /* Is it explicitly or implicitly ignored? */ 178 handler = t->sighand->action[sig-1].sa.sa_handler; 179 return handler == SIG_IGN || 180 (handler == SIG_DFL && sig_kernel_ignore(sig)); 181 } 182 183 /* 184 * Re-calculate pending state from the set of locally pending 185 * signals, globally pending signals, and blocked signals. 186 */ 187 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 188 { 189 unsigned long ready; 190 long i; 191 192 switch (_NSIG_WORDS) { 193 default: 194 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 195 ready |= signal->sig[i] &~ blocked->sig[i]; 196 break; 197 198 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 199 ready |= signal->sig[2] &~ blocked->sig[2]; 200 ready |= signal->sig[1] &~ blocked->sig[1]; 201 ready |= signal->sig[0] &~ blocked->sig[0]; 202 break; 203 204 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 205 ready |= signal->sig[0] &~ blocked->sig[0]; 206 break; 207 208 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 209 } 210 return ready != 0; 211 } 212 213 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 214 215 fastcall void recalc_sigpending_tsk(struct task_struct *t) 216 { 217 if (t->signal->group_stop_count > 0 || 218 (freezing(t)) || 219 PENDING(&t->pending, &t->blocked) || 220 PENDING(&t->signal->shared_pending, &t->blocked)) 221 set_tsk_thread_flag(t, TIF_SIGPENDING); 222 else 223 clear_tsk_thread_flag(t, TIF_SIGPENDING); 224 } 225 226 void recalc_sigpending(void) 227 { 228 recalc_sigpending_tsk(current); 229 } 230 231 /* Given the mask, find the first available signal that should be serviced. */ 232 233 static int 234 next_signal(struct sigpending *pending, sigset_t *mask) 235 { 236 unsigned long i, *s, *m, x; 237 int sig = 0; 238 239 s = pending->signal.sig; 240 m = mask->sig; 241 switch (_NSIG_WORDS) { 242 default: 243 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m) 244 if ((x = *s &~ *m) != 0) { 245 sig = ffz(~x) + i*_NSIG_BPW + 1; 246 break; 247 } 248 break; 249 250 case 2: if ((x = s[0] &~ m[0]) != 0) 251 sig = 1; 252 else if ((x = s[1] &~ m[1]) != 0) 253 sig = _NSIG_BPW + 1; 254 else 255 break; 256 sig += ffz(~x); 257 break; 258 259 case 1: if ((x = *s &~ *m) != 0) 260 sig = ffz(~x) + 1; 261 break; 262 } 263 264 return sig; 265 } 266 267 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags, 268 int override_rlimit) 269 { 270 struct sigqueue *q = NULL; 271 272 atomic_inc(&t->user->sigpending); 273 if (override_rlimit || 274 atomic_read(&t->user->sigpending) <= 275 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur) 276 q = kmem_cache_alloc(sigqueue_cachep, flags); 277 if (unlikely(q == NULL)) { 278 atomic_dec(&t->user->sigpending); 279 } else { 280 INIT_LIST_HEAD(&q->list); 281 q->flags = 0; 282 q->user = get_uid(t->user); 283 } 284 return(q); 285 } 286 287 static void __sigqueue_free(struct sigqueue *q) 288 { 289 if (q->flags & SIGQUEUE_PREALLOC) 290 return; 291 atomic_dec(&q->user->sigpending); 292 free_uid(q->user); 293 kmem_cache_free(sigqueue_cachep, q); 294 } 295 296 void flush_sigqueue(struct sigpending *queue) 297 { 298 struct sigqueue *q; 299 300 sigemptyset(&queue->signal); 301 while (!list_empty(&queue->list)) { 302 q = list_entry(queue->list.next, struct sigqueue , list); 303 list_del_init(&q->list); 304 __sigqueue_free(q); 305 } 306 } 307 308 /* 309 * Flush all pending signals for a task. 310 */ 311 void flush_signals(struct task_struct *t) 312 { 313 unsigned long flags; 314 315 spin_lock_irqsave(&t->sighand->siglock, flags); 316 clear_tsk_thread_flag(t,TIF_SIGPENDING); 317 flush_sigqueue(&t->pending); 318 flush_sigqueue(&t->signal->shared_pending); 319 spin_unlock_irqrestore(&t->sighand->siglock, flags); 320 } 321 322 /* 323 * Flush all handlers for a task. 324 */ 325 326 void 327 flush_signal_handlers(struct task_struct *t, int force_default) 328 { 329 int i; 330 struct k_sigaction *ka = &t->sighand->action[0]; 331 for (i = _NSIG ; i != 0 ; i--) { 332 if (force_default || ka->sa.sa_handler != SIG_IGN) 333 ka->sa.sa_handler = SIG_DFL; 334 ka->sa.sa_flags = 0; 335 sigemptyset(&ka->sa.sa_mask); 336 ka++; 337 } 338 } 339 340 341 /* Notify the system that a driver wants to block all signals for this 342 * process, and wants to be notified if any signals at all were to be 343 * sent/acted upon. If the notifier routine returns non-zero, then the 344 * signal will be acted upon after all. If the notifier routine returns 0, 345 * then then signal will be blocked. Only one block per process is 346 * allowed. priv is a pointer to private data that the notifier routine 347 * can use to determine if the signal should be blocked or not. */ 348 349 void 350 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) 351 { 352 unsigned long flags; 353 354 spin_lock_irqsave(¤t->sighand->siglock, flags); 355 current->notifier_mask = mask; 356 current->notifier_data = priv; 357 current->notifier = notifier; 358 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 359 } 360 361 /* Notify the system that blocking has ended. */ 362 363 void 364 unblock_all_signals(void) 365 { 366 unsigned long flags; 367 368 spin_lock_irqsave(¤t->sighand->siglock, flags); 369 current->notifier = NULL; 370 current->notifier_data = NULL; 371 recalc_sigpending(); 372 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 373 } 374 375 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info) 376 { 377 struct sigqueue *q, *first = NULL; 378 int still_pending = 0; 379 380 if (unlikely(!sigismember(&list->signal, sig))) 381 return 0; 382 383 /* 384 * Collect the siginfo appropriate to this signal. Check if 385 * there is another siginfo for the same signal. 386 */ 387 list_for_each_entry(q, &list->list, list) { 388 if (q->info.si_signo == sig) { 389 if (first) { 390 still_pending = 1; 391 break; 392 } 393 first = q; 394 } 395 } 396 if (first) { 397 list_del_init(&first->list); 398 copy_siginfo(info, &first->info); 399 __sigqueue_free(first); 400 if (!still_pending) 401 sigdelset(&list->signal, sig); 402 } else { 403 404 /* Ok, it wasn't in the queue. This must be 405 a fast-pathed signal or we must have been 406 out of queue space. So zero out the info. 407 */ 408 sigdelset(&list->signal, sig); 409 info->si_signo = sig; 410 info->si_errno = 0; 411 info->si_code = 0; 412 info->si_pid = 0; 413 info->si_uid = 0; 414 } 415 return 1; 416 } 417 418 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 419 siginfo_t *info) 420 { 421 int sig = 0; 422 423 sig = next_signal(pending, mask); 424 if (sig) { 425 if (current->notifier) { 426 if (sigismember(current->notifier_mask, sig)) { 427 if (!(current->notifier)(current->notifier_data)) { 428 clear_thread_flag(TIF_SIGPENDING); 429 return 0; 430 } 431 } 432 } 433 434 if (!collect_signal(sig, pending, info)) 435 sig = 0; 436 437 } 438 recalc_sigpending(); 439 440 return sig; 441 } 442 443 /* 444 * Dequeue a signal and return the element to the caller, which is 445 * expected to free it. 446 * 447 * All callers have to hold the siglock. 448 */ 449 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 450 { 451 int signr = __dequeue_signal(&tsk->pending, mask, info); 452 if (!signr) 453 signr = __dequeue_signal(&tsk->signal->shared_pending, 454 mask, info); 455 if (signr && unlikely(sig_kernel_stop(signr))) { 456 /* 457 * Set a marker that we have dequeued a stop signal. Our 458 * caller might release the siglock and then the pending 459 * stop signal it is about to process is no longer in the 460 * pending bitmasks, but must still be cleared by a SIGCONT 461 * (and overruled by a SIGKILL). So those cases clear this 462 * shared flag after we've set it. Note that this flag may 463 * remain set after the signal we return is ignored or 464 * handled. That doesn't matter because its only purpose 465 * is to alert stop-signal processing code when another 466 * processor has come along and cleared the flag. 467 */ 468 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) 469 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED; 470 } 471 if ( signr && 472 ((info->si_code & __SI_MASK) == __SI_TIMER) && 473 info->si_sys_private){ 474 /* 475 * Release the siglock to ensure proper locking order 476 * of timer locks outside of siglocks. Note, we leave 477 * irqs disabled here, since the posix-timers code is 478 * about to disable them again anyway. 479 */ 480 spin_unlock(&tsk->sighand->siglock); 481 do_schedule_next_timer(info); 482 spin_lock(&tsk->sighand->siglock); 483 } 484 return signr; 485 } 486 487 /* 488 * Tell a process that it has a new active signal.. 489 * 490 * NOTE! we rely on the previous spin_lock to 491 * lock interrupts for us! We can only be called with 492 * "siglock" held, and the local interrupt must 493 * have been disabled when that got acquired! 494 * 495 * No need to set need_resched since signal event passing 496 * goes through ->blocked 497 */ 498 void signal_wake_up(struct task_struct *t, int resume) 499 { 500 unsigned int mask; 501 502 set_tsk_thread_flag(t, TIF_SIGPENDING); 503 504 /* 505 * For SIGKILL, we want to wake it up in the stopped/traced case. 506 * We don't check t->state here because there is a race with it 507 * executing another processor and just now entering stopped state. 508 * By using wake_up_state, we ensure the process will wake up and 509 * handle its death signal. 510 */ 511 mask = TASK_INTERRUPTIBLE; 512 if (resume) 513 mask |= TASK_STOPPED | TASK_TRACED; 514 if (!wake_up_state(t, mask)) 515 kick_process(t); 516 } 517 518 /* 519 * Remove signals in mask from the pending set and queue. 520 * Returns 1 if any signals were found. 521 * 522 * All callers must be holding the siglock. 523 * 524 * This version takes a sigset mask and looks at all signals, 525 * not just those in the first mask word. 526 */ 527 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s) 528 { 529 struct sigqueue *q, *n; 530 sigset_t m; 531 532 sigandsets(&m, mask, &s->signal); 533 if (sigisemptyset(&m)) 534 return 0; 535 536 signandsets(&s->signal, &s->signal, mask); 537 list_for_each_entry_safe(q, n, &s->list, list) { 538 if (sigismember(mask, q->info.si_signo)) { 539 list_del_init(&q->list); 540 __sigqueue_free(q); 541 } 542 } 543 return 1; 544 } 545 /* 546 * Remove signals in mask from the pending set and queue. 547 * Returns 1 if any signals were found. 548 * 549 * All callers must be holding the siglock. 550 */ 551 static int rm_from_queue(unsigned long mask, struct sigpending *s) 552 { 553 struct sigqueue *q, *n; 554 555 if (!sigtestsetmask(&s->signal, mask)) 556 return 0; 557 558 sigdelsetmask(&s->signal, mask); 559 list_for_each_entry_safe(q, n, &s->list, list) { 560 if (q->info.si_signo < SIGRTMIN && 561 (mask & sigmask(q->info.si_signo))) { 562 list_del_init(&q->list); 563 __sigqueue_free(q); 564 } 565 } 566 return 1; 567 } 568 569 /* 570 * Bad permissions for sending the signal 571 */ 572 static int check_kill_permission(int sig, struct siginfo *info, 573 struct task_struct *t) 574 { 575 int error = -EINVAL; 576 if (!valid_signal(sig)) 577 return error; 578 error = -EPERM; 579 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) 580 && ((sig != SIGCONT) || 581 (current->signal->session != t->signal->session)) 582 && (current->euid ^ t->suid) && (current->euid ^ t->uid) 583 && (current->uid ^ t->suid) && (current->uid ^ t->uid) 584 && !capable(CAP_KILL)) 585 return error; 586 587 error = security_task_kill(t, info, sig); 588 if (!error) 589 audit_signal_info(sig, t); /* Let audit system see the signal */ 590 return error; 591 } 592 593 /* forward decl */ 594 static void do_notify_parent_cldstop(struct task_struct *tsk, int why); 595 596 /* 597 * Handle magic process-wide effects of stop/continue signals. 598 * Unlike the signal actions, these happen immediately at signal-generation 599 * time regardless of blocking, ignoring, or handling. This does the 600 * actual continuing for SIGCONT, but not the actual stopping for stop 601 * signals. The process stop is done as a signal action for SIG_DFL. 602 */ 603 static void handle_stop_signal(int sig, struct task_struct *p) 604 { 605 struct task_struct *t; 606 607 if (p->signal->flags & SIGNAL_GROUP_EXIT) 608 /* 609 * The process is in the middle of dying already. 610 */ 611 return; 612 613 if (sig_kernel_stop(sig)) { 614 /* 615 * This is a stop signal. Remove SIGCONT from all queues. 616 */ 617 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending); 618 t = p; 619 do { 620 rm_from_queue(sigmask(SIGCONT), &t->pending); 621 t = next_thread(t); 622 } while (t != p); 623 } else if (sig == SIGCONT) { 624 /* 625 * Remove all stop signals from all queues, 626 * and wake all threads. 627 */ 628 if (unlikely(p->signal->group_stop_count > 0)) { 629 /* 630 * There was a group stop in progress. We'll 631 * pretend it finished before we got here. We are 632 * obliged to report it to the parent: if the 633 * SIGSTOP happened "after" this SIGCONT, then it 634 * would have cleared this pending SIGCONT. If it 635 * happened "before" this SIGCONT, then the parent 636 * got the SIGCHLD about the stop finishing before 637 * the continue happened. We do the notification 638 * now, and it's as if the stop had finished and 639 * the SIGCHLD was pending on entry to this kill. 640 */ 641 p->signal->group_stop_count = 0; 642 p->signal->flags = SIGNAL_STOP_CONTINUED; 643 spin_unlock(&p->sighand->siglock); 644 do_notify_parent_cldstop(p, CLD_STOPPED); 645 spin_lock(&p->sighand->siglock); 646 } 647 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); 648 t = p; 649 do { 650 unsigned int state; 651 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 652 653 /* 654 * If there is a handler for SIGCONT, we must make 655 * sure that no thread returns to user mode before 656 * we post the signal, in case it was the only 657 * thread eligible to run the signal handler--then 658 * it must not do anything between resuming and 659 * running the handler. With the TIF_SIGPENDING 660 * flag set, the thread will pause and acquire the 661 * siglock that we hold now and until we've queued 662 * the pending signal. 663 * 664 * Wake up the stopped thread _after_ setting 665 * TIF_SIGPENDING 666 */ 667 state = TASK_STOPPED; 668 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) { 669 set_tsk_thread_flag(t, TIF_SIGPENDING); 670 state |= TASK_INTERRUPTIBLE; 671 } 672 wake_up_state(t, state); 673 674 t = next_thread(t); 675 } while (t != p); 676 677 if (p->signal->flags & SIGNAL_STOP_STOPPED) { 678 /* 679 * We were in fact stopped, and are now continued. 680 * Notify the parent with CLD_CONTINUED. 681 */ 682 p->signal->flags = SIGNAL_STOP_CONTINUED; 683 p->signal->group_exit_code = 0; 684 spin_unlock(&p->sighand->siglock); 685 do_notify_parent_cldstop(p, CLD_CONTINUED); 686 spin_lock(&p->sighand->siglock); 687 } else { 688 /* 689 * We are not stopped, but there could be a stop 690 * signal in the middle of being processed after 691 * being removed from the queue. Clear that too. 692 */ 693 p->signal->flags = 0; 694 } 695 } else if (sig == SIGKILL) { 696 /* 697 * Make sure that any pending stop signal already dequeued 698 * is undone by the wakeup for SIGKILL. 699 */ 700 p->signal->flags = 0; 701 } 702 } 703 704 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 705 struct sigpending *signals) 706 { 707 struct sigqueue * q = NULL; 708 int ret = 0; 709 710 /* 711 * fast-pathed signals for kernel-internal things like SIGSTOP 712 * or SIGKILL. 713 */ 714 if (info == SEND_SIG_FORCED) 715 goto out_set; 716 717 /* Real-time signals must be queued if sent by sigqueue, or 718 some other real-time mechanism. It is implementation 719 defined whether kill() does so. We attempt to do so, on 720 the principle of least surprise, but since kill is not 721 allowed to fail with EAGAIN when low on memory we just 722 make sure at least one signal gets delivered and don't 723 pass on the info struct. */ 724 725 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN && 726 (is_si_special(info) || 727 info->si_code >= 0))); 728 if (q) { 729 list_add_tail(&q->list, &signals->list); 730 switch ((unsigned long) info) { 731 case (unsigned long) SEND_SIG_NOINFO: 732 q->info.si_signo = sig; 733 q->info.si_errno = 0; 734 q->info.si_code = SI_USER; 735 q->info.si_pid = current->pid; 736 q->info.si_uid = current->uid; 737 break; 738 case (unsigned long) SEND_SIG_PRIV: 739 q->info.si_signo = sig; 740 q->info.si_errno = 0; 741 q->info.si_code = SI_KERNEL; 742 q->info.si_pid = 0; 743 q->info.si_uid = 0; 744 break; 745 default: 746 copy_siginfo(&q->info, info); 747 break; 748 } 749 } else if (!is_si_special(info)) { 750 if (sig >= SIGRTMIN && info->si_code != SI_USER) 751 /* 752 * Queue overflow, abort. We may abort if the signal was rt 753 * and sent by user using something other than kill(). 754 */ 755 return -EAGAIN; 756 } 757 758 out_set: 759 sigaddset(&signals->signal, sig); 760 return ret; 761 } 762 763 #define LEGACY_QUEUE(sigptr, sig) \ 764 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig))) 765 766 767 static int 768 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 769 { 770 int ret = 0; 771 772 BUG_ON(!irqs_disabled()); 773 assert_spin_locked(&t->sighand->siglock); 774 775 /* Short-circuit ignored signals. */ 776 if (sig_ignored(t, sig)) 777 goto out; 778 779 /* Support queueing exactly one non-rt signal, so that we 780 can get more detailed information about the cause of 781 the signal. */ 782 if (LEGACY_QUEUE(&t->pending, sig)) 783 goto out; 784 785 ret = send_signal(sig, info, t, &t->pending); 786 if (!ret && !sigismember(&t->blocked, sig)) 787 signal_wake_up(t, sig == SIGKILL); 788 out: 789 return ret; 790 } 791 792 /* 793 * Force a signal that the process can't ignore: if necessary 794 * we unblock the signal and change any SIG_IGN to SIG_DFL. 795 */ 796 797 int 798 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 799 { 800 unsigned long int flags; 801 int ret; 802 803 spin_lock_irqsave(&t->sighand->siglock, flags); 804 if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) { 805 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL; 806 } 807 if (sigismember(&t->blocked, sig)) { 808 sigdelset(&t->blocked, sig); 809 } 810 recalc_sigpending_tsk(t); 811 ret = specific_send_sig_info(sig, info, t); 812 spin_unlock_irqrestore(&t->sighand->siglock, flags); 813 814 return ret; 815 } 816 817 void 818 force_sig_specific(int sig, struct task_struct *t) 819 { 820 force_sig_info(sig, SEND_SIG_FORCED, t); 821 } 822 823 /* 824 * Test if P wants to take SIG. After we've checked all threads with this, 825 * it's equivalent to finding no threads not blocking SIG. Any threads not 826 * blocking SIG were ruled out because they are not running and already 827 * have pending signals. Such threads will dequeue from the shared queue 828 * as soon as they're available, so putting the signal on the shared queue 829 * will be equivalent to sending it to one such thread. 830 */ 831 static inline int wants_signal(int sig, struct task_struct *p) 832 { 833 if (sigismember(&p->blocked, sig)) 834 return 0; 835 if (p->flags & PF_EXITING) 836 return 0; 837 if (sig == SIGKILL) 838 return 1; 839 if (p->state & (TASK_STOPPED | TASK_TRACED)) 840 return 0; 841 return task_curr(p) || !signal_pending(p); 842 } 843 844 static void 845 __group_complete_signal(int sig, struct task_struct *p) 846 { 847 struct task_struct *t; 848 849 /* 850 * Now find a thread we can wake up to take the signal off the queue. 851 * 852 * If the main thread wants the signal, it gets first crack. 853 * Probably the least surprising to the average bear. 854 */ 855 if (wants_signal(sig, p)) 856 t = p; 857 else if (thread_group_empty(p)) 858 /* 859 * There is just one thread and it does not need to be woken. 860 * It will dequeue unblocked signals before it runs again. 861 */ 862 return; 863 else { 864 /* 865 * Otherwise try to find a suitable thread. 866 */ 867 t = p->signal->curr_target; 868 if (t == NULL) 869 /* restart balancing at this thread */ 870 t = p->signal->curr_target = p; 871 872 while (!wants_signal(sig, t)) { 873 t = next_thread(t); 874 if (t == p->signal->curr_target) 875 /* 876 * No thread needs to be woken. 877 * Any eligible threads will see 878 * the signal in the queue soon. 879 */ 880 return; 881 } 882 p->signal->curr_target = t; 883 } 884 885 /* 886 * Found a killable thread. If the signal will be fatal, 887 * then start taking the whole group down immediately. 888 */ 889 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) && 890 !sigismember(&t->real_blocked, sig) && 891 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) { 892 /* 893 * This signal will be fatal to the whole group. 894 */ 895 if (!sig_kernel_coredump(sig)) { 896 /* 897 * Start a group exit and wake everybody up. 898 * This way we don't have other threads 899 * running and doing things after a slower 900 * thread has the fatal signal pending. 901 */ 902 p->signal->flags = SIGNAL_GROUP_EXIT; 903 p->signal->group_exit_code = sig; 904 p->signal->group_stop_count = 0; 905 t = p; 906 do { 907 sigaddset(&t->pending.signal, SIGKILL); 908 signal_wake_up(t, 1); 909 t = next_thread(t); 910 } while (t != p); 911 return; 912 } 913 914 /* 915 * There will be a core dump. We make all threads other 916 * than the chosen one go into a group stop so that nothing 917 * happens until it gets scheduled, takes the signal off 918 * the shared queue, and does the core dump. This is a 919 * little more complicated than strictly necessary, but it 920 * keeps the signal state that winds up in the core dump 921 * unchanged from the death state, e.g. which thread had 922 * the core-dump signal unblocked. 923 */ 924 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 925 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); 926 p->signal->group_stop_count = 0; 927 p->signal->group_exit_task = t; 928 t = p; 929 do { 930 p->signal->group_stop_count++; 931 signal_wake_up(t, 0); 932 t = next_thread(t); 933 } while (t != p); 934 wake_up_process(p->signal->group_exit_task); 935 return; 936 } 937 938 /* 939 * The signal is already in the shared-pending queue. 940 * Tell the chosen thread to wake up and dequeue it. 941 */ 942 signal_wake_up(t, sig == SIGKILL); 943 return; 944 } 945 946 int 947 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 948 { 949 int ret = 0; 950 951 assert_spin_locked(&p->sighand->siglock); 952 handle_stop_signal(sig, p); 953 954 /* Short-circuit ignored signals. */ 955 if (sig_ignored(p, sig)) 956 return ret; 957 958 if (LEGACY_QUEUE(&p->signal->shared_pending, sig)) 959 /* This is a non-RT signal and we already have one queued. */ 960 return ret; 961 962 /* 963 * Put this signal on the shared-pending queue, or fail with EAGAIN. 964 * We always use the shared queue for process-wide signals, 965 * to avoid several races. 966 */ 967 ret = send_signal(sig, info, p, &p->signal->shared_pending); 968 if (unlikely(ret)) 969 return ret; 970 971 __group_complete_signal(sig, p); 972 return 0; 973 } 974 975 /* 976 * Nuke all other threads in the group. 977 */ 978 void zap_other_threads(struct task_struct *p) 979 { 980 struct task_struct *t; 981 982 p->signal->flags = SIGNAL_GROUP_EXIT; 983 p->signal->group_stop_count = 0; 984 985 if (thread_group_empty(p)) 986 return; 987 988 for (t = next_thread(p); t != p; t = next_thread(t)) { 989 /* 990 * Don't bother with already dead threads 991 */ 992 if (t->exit_state) 993 continue; 994 995 /* 996 * We don't want to notify the parent, since we are 997 * killed as part of a thread group due to another 998 * thread doing an execve() or similar. So set the 999 * exit signal to -1 to allow immediate reaping of 1000 * the process. But don't detach the thread group 1001 * leader. 1002 */ 1003 if (t != p->group_leader) 1004 t->exit_signal = -1; 1005 1006 /* SIGKILL will be handled before any pending SIGSTOP */ 1007 sigaddset(&t->pending.signal, SIGKILL); 1008 signal_wake_up(t, 1); 1009 } 1010 } 1011 1012 /* 1013 * Must be called under rcu_read_lock() or with tasklist_lock read-held. 1014 */ 1015 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags) 1016 { 1017 struct sighand_struct *sighand; 1018 1019 for (;;) { 1020 sighand = rcu_dereference(tsk->sighand); 1021 if (unlikely(sighand == NULL)) 1022 break; 1023 1024 spin_lock_irqsave(&sighand->siglock, *flags); 1025 if (likely(sighand == tsk->sighand)) 1026 break; 1027 spin_unlock_irqrestore(&sighand->siglock, *flags); 1028 } 1029 1030 return sighand; 1031 } 1032 1033 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1034 { 1035 unsigned long flags; 1036 int ret; 1037 1038 ret = check_kill_permission(sig, info, p); 1039 1040 if (!ret && sig) { 1041 ret = -ESRCH; 1042 if (lock_task_sighand(p, &flags)) { 1043 ret = __group_send_sig_info(sig, info, p); 1044 unlock_task_sighand(p, &flags); 1045 } 1046 } 1047 1048 return ret; 1049 } 1050 1051 /* 1052 * kill_pg_info() sends a signal to a process group: this is what the tty 1053 * control characters do (^C, ^Z etc) 1054 */ 1055 1056 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp) 1057 { 1058 struct task_struct *p = NULL; 1059 int retval, success; 1060 1061 if (pgrp <= 0) 1062 return -EINVAL; 1063 1064 success = 0; 1065 retval = -ESRCH; 1066 do_each_task_pid(pgrp, PIDTYPE_PGID, p) { 1067 int err = group_send_sig_info(sig, info, p); 1068 success |= !err; 1069 retval = err; 1070 } while_each_task_pid(pgrp, PIDTYPE_PGID, p); 1071 return success ? 0 : retval; 1072 } 1073 1074 int 1075 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp) 1076 { 1077 int retval; 1078 1079 read_lock(&tasklist_lock); 1080 retval = __kill_pg_info(sig, info, pgrp); 1081 read_unlock(&tasklist_lock); 1082 1083 return retval; 1084 } 1085 1086 int 1087 kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1088 { 1089 int error; 1090 int acquired_tasklist_lock = 0; 1091 struct task_struct *p; 1092 1093 rcu_read_lock(); 1094 if (unlikely(sig_needs_tasklist(sig))) { 1095 read_lock(&tasklist_lock); 1096 acquired_tasklist_lock = 1; 1097 } 1098 p = find_task_by_pid(pid); 1099 error = -ESRCH; 1100 if (p) 1101 error = group_send_sig_info(sig, info, p); 1102 if (unlikely(acquired_tasklist_lock)) 1103 read_unlock(&tasklist_lock); 1104 rcu_read_unlock(); 1105 return error; 1106 } 1107 1108 /* like kill_proc_info(), but doesn't use uid/euid of "current" */ 1109 int kill_proc_info_as_uid(int sig, struct siginfo *info, pid_t pid, 1110 uid_t uid, uid_t euid) 1111 { 1112 int ret = -EINVAL; 1113 struct task_struct *p; 1114 1115 if (!valid_signal(sig)) 1116 return ret; 1117 1118 read_lock(&tasklist_lock); 1119 p = find_task_by_pid(pid); 1120 if (!p) { 1121 ret = -ESRCH; 1122 goto out_unlock; 1123 } 1124 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) 1125 && (euid != p->suid) && (euid != p->uid) 1126 && (uid != p->suid) && (uid != p->uid)) { 1127 ret = -EPERM; 1128 goto out_unlock; 1129 } 1130 if (sig && p->sighand) { 1131 unsigned long flags; 1132 spin_lock_irqsave(&p->sighand->siglock, flags); 1133 ret = __group_send_sig_info(sig, info, p); 1134 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1135 } 1136 out_unlock: 1137 read_unlock(&tasklist_lock); 1138 return ret; 1139 } 1140 EXPORT_SYMBOL_GPL(kill_proc_info_as_uid); 1141 1142 /* 1143 * kill_something_info() interprets pid in interesting ways just like kill(2). 1144 * 1145 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1146 * is probably wrong. Should make it like BSD or SYSV. 1147 */ 1148 1149 static int kill_something_info(int sig, struct siginfo *info, int pid) 1150 { 1151 if (!pid) { 1152 return kill_pg_info(sig, info, process_group(current)); 1153 } else if (pid == -1) { 1154 int retval = 0, count = 0; 1155 struct task_struct * p; 1156 1157 read_lock(&tasklist_lock); 1158 for_each_process(p) { 1159 if (p->pid > 1 && p->tgid != current->tgid) { 1160 int err = group_send_sig_info(sig, info, p); 1161 ++count; 1162 if (err != -EPERM) 1163 retval = err; 1164 } 1165 } 1166 read_unlock(&tasklist_lock); 1167 return count ? retval : -ESRCH; 1168 } else if (pid < 0) { 1169 return kill_pg_info(sig, info, -pid); 1170 } else { 1171 return kill_proc_info(sig, info, pid); 1172 } 1173 } 1174 1175 /* 1176 * These are for backward compatibility with the rest of the kernel source. 1177 */ 1178 1179 /* 1180 * These two are the most common entry points. They send a signal 1181 * just to the specific thread. 1182 */ 1183 int 1184 send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1185 { 1186 int ret; 1187 unsigned long flags; 1188 1189 /* 1190 * Make sure legacy kernel users don't send in bad values 1191 * (normal paths check this in check_kill_permission). 1192 */ 1193 if (!valid_signal(sig)) 1194 return -EINVAL; 1195 1196 /* 1197 * We need the tasklist lock even for the specific 1198 * thread case (when we don't need to follow the group 1199 * lists) in order to avoid races with "p->sighand" 1200 * going away or changing from under us. 1201 */ 1202 read_lock(&tasklist_lock); 1203 spin_lock_irqsave(&p->sighand->siglock, flags); 1204 ret = specific_send_sig_info(sig, info, p); 1205 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1206 read_unlock(&tasklist_lock); 1207 return ret; 1208 } 1209 1210 #define __si_special(priv) \ 1211 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1212 1213 int 1214 send_sig(int sig, struct task_struct *p, int priv) 1215 { 1216 return send_sig_info(sig, __si_special(priv), p); 1217 } 1218 1219 /* 1220 * This is the entry point for "process-wide" signals. 1221 * They will go to an appropriate thread in the thread group. 1222 */ 1223 int 1224 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1225 { 1226 int ret; 1227 read_lock(&tasklist_lock); 1228 ret = group_send_sig_info(sig, info, p); 1229 read_unlock(&tasklist_lock); 1230 return ret; 1231 } 1232 1233 void 1234 force_sig(int sig, struct task_struct *p) 1235 { 1236 force_sig_info(sig, SEND_SIG_PRIV, p); 1237 } 1238 1239 /* 1240 * When things go south during signal handling, we 1241 * will force a SIGSEGV. And if the signal that caused 1242 * the problem was already a SIGSEGV, we'll want to 1243 * make sure we don't even try to deliver the signal.. 1244 */ 1245 int 1246 force_sigsegv(int sig, struct task_struct *p) 1247 { 1248 if (sig == SIGSEGV) { 1249 unsigned long flags; 1250 spin_lock_irqsave(&p->sighand->siglock, flags); 1251 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1252 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1253 } 1254 force_sig(SIGSEGV, p); 1255 return 0; 1256 } 1257 1258 int 1259 kill_pg(pid_t pgrp, int sig, int priv) 1260 { 1261 return kill_pg_info(sig, __si_special(priv), pgrp); 1262 } 1263 1264 int 1265 kill_proc(pid_t pid, int sig, int priv) 1266 { 1267 return kill_proc_info(sig, __si_special(priv), pid); 1268 } 1269 1270 /* 1271 * These functions support sending signals using preallocated sigqueue 1272 * structures. This is needed "because realtime applications cannot 1273 * afford to lose notifications of asynchronous events, like timer 1274 * expirations or I/O completions". In the case of Posix Timers 1275 * we allocate the sigqueue structure from the timer_create. If this 1276 * allocation fails we are able to report the failure to the application 1277 * with an EAGAIN error. 1278 */ 1279 1280 struct sigqueue *sigqueue_alloc(void) 1281 { 1282 struct sigqueue *q; 1283 1284 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0))) 1285 q->flags |= SIGQUEUE_PREALLOC; 1286 return(q); 1287 } 1288 1289 void sigqueue_free(struct sigqueue *q) 1290 { 1291 unsigned long flags; 1292 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1293 /* 1294 * If the signal is still pending remove it from the 1295 * pending queue. 1296 */ 1297 if (unlikely(!list_empty(&q->list))) { 1298 spinlock_t *lock = ¤t->sighand->siglock; 1299 read_lock(&tasklist_lock); 1300 spin_lock_irqsave(lock, flags); 1301 if (!list_empty(&q->list)) 1302 list_del_init(&q->list); 1303 spin_unlock_irqrestore(lock, flags); 1304 read_unlock(&tasklist_lock); 1305 } 1306 q->flags &= ~SIGQUEUE_PREALLOC; 1307 __sigqueue_free(q); 1308 } 1309 1310 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) 1311 { 1312 unsigned long flags; 1313 int ret = 0; 1314 1315 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1316 1317 /* 1318 * The rcu based delayed sighand destroy makes it possible to 1319 * run this without tasklist lock held. The task struct itself 1320 * cannot go away as create_timer did get_task_struct(). 1321 * 1322 * We return -1, when the task is marked exiting, so 1323 * posix_timer_event can redirect it to the group leader 1324 */ 1325 rcu_read_lock(); 1326 1327 if (!likely(lock_task_sighand(p, &flags))) { 1328 ret = -1; 1329 goto out_err; 1330 } 1331 1332 if (unlikely(!list_empty(&q->list))) { 1333 /* 1334 * If an SI_TIMER entry is already queue just increment 1335 * the overrun count. 1336 */ 1337 BUG_ON(q->info.si_code != SI_TIMER); 1338 q->info.si_overrun++; 1339 goto out; 1340 } 1341 /* Short-circuit ignored signals. */ 1342 if (sig_ignored(p, sig)) { 1343 ret = 1; 1344 goto out; 1345 } 1346 1347 list_add_tail(&q->list, &p->pending.list); 1348 sigaddset(&p->pending.signal, sig); 1349 if (!sigismember(&p->blocked, sig)) 1350 signal_wake_up(p, sig == SIGKILL); 1351 1352 out: 1353 unlock_task_sighand(p, &flags); 1354 out_err: 1355 rcu_read_unlock(); 1356 1357 return ret; 1358 } 1359 1360 int 1361 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) 1362 { 1363 unsigned long flags; 1364 int ret = 0; 1365 1366 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1367 1368 read_lock(&tasklist_lock); 1369 /* Since it_lock is held, p->sighand cannot be NULL. */ 1370 spin_lock_irqsave(&p->sighand->siglock, flags); 1371 handle_stop_signal(sig, p); 1372 1373 /* Short-circuit ignored signals. */ 1374 if (sig_ignored(p, sig)) { 1375 ret = 1; 1376 goto out; 1377 } 1378 1379 if (unlikely(!list_empty(&q->list))) { 1380 /* 1381 * If an SI_TIMER entry is already queue just increment 1382 * the overrun count. Other uses should not try to 1383 * send the signal multiple times. 1384 */ 1385 BUG_ON(q->info.si_code != SI_TIMER); 1386 q->info.si_overrun++; 1387 goto out; 1388 } 1389 1390 /* 1391 * Put this signal on the shared-pending queue. 1392 * We always use the shared queue for process-wide signals, 1393 * to avoid several races. 1394 */ 1395 list_add_tail(&q->list, &p->signal->shared_pending.list); 1396 sigaddset(&p->signal->shared_pending.signal, sig); 1397 1398 __group_complete_signal(sig, p); 1399 out: 1400 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1401 read_unlock(&tasklist_lock); 1402 return ret; 1403 } 1404 1405 /* 1406 * Wake up any threads in the parent blocked in wait* syscalls. 1407 */ 1408 static inline void __wake_up_parent(struct task_struct *p, 1409 struct task_struct *parent) 1410 { 1411 wake_up_interruptible_sync(&parent->signal->wait_chldexit); 1412 } 1413 1414 /* 1415 * Let a parent know about the death of a child. 1416 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1417 */ 1418 1419 void do_notify_parent(struct task_struct *tsk, int sig) 1420 { 1421 struct siginfo info; 1422 unsigned long flags; 1423 struct sighand_struct *psig; 1424 1425 BUG_ON(sig == -1); 1426 1427 /* do_notify_parent_cldstop should have been called instead. */ 1428 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED)); 1429 1430 BUG_ON(!tsk->ptrace && 1431 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1432 1433 info.si_signo = sig; 1434 info.si_errno = 0; 1435 info.si_pid = tsk->pid; 1436 info.si_uid = tsk->uid; 1437 1438 /* FIXME: find out whether or not this is supposed to be c*time. */ 1439 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime, 1440 tsk->signal->utime)); 1441 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime, 1442 tsk->signal->stime)); 1443 1444 info.si_status = tsk->exit_code & 0x7f; 1445 if (tsk->exit_code & 0x80) 1446 info.si_code = CLD_DUMPED; 1447 else if (tsk->exit_code & 0x7f) 1448 info.si_code = CLD_KILLED; 1449 else { 1450 info.si_code = CLD_EXITED; 1451 info.si_status = tsk->exit_code >> 8; 1452 } 1453 1454 psig = tsk->parent->sighand; 1455 spin_lock_irqsave(&psig->siglock, flags); 1456 if (!tsk->ptrace && sig == SIGCHLD && 1457 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1458 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1459 /* 1460 * We are exiting and our parent doesn't care. POSIX.1 1461 * defines special semantics for setting SIGCHLD to SIG_IGN 1462 * or setting the SA_NOCLDWAIT flag: we should be reaped 1463 * automatically and not left for our parent's wait4 call. 1464 * Rather than having the parent do it as a magic kind of 1465 * signal handler, we just set this to tell do_exit that we 1466 * can be cleaned up without becoming a zombie. Note that 1467 * we still call __wake_up_parent in this case, because a 1468 * blocked sys_wait4 might now return -ECHILD. 1469 * 1470 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1471 * is implementation-defined: we do (if you don't want 1472 * it, just use SIG_IGN instead). 1473 */ 1474 tsk->exit_signal = -1; 1475 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1476 sig = 0; 1477 } 1478 if (valid_signal(sig) && sig > 0) 1479 __group_send_sig_info(sig, &info, tsk->parent); 1480 __wake_up_parent(tsk, tsk->parent); 1481 spin_unlock_irqrestore(&psig->siglock, flags); 1482 } 1483 1484 static void do_notify_parent_cldstop(struct task_struct *tsk, int why) 1485 { 1486 struct siginfo info; 1487 unsigned long flags; 1488 struct task_struct *parent; 1489 struct sighand_struct *sighand; 1490 1491 if (tsk->ptrace & PT_PTRACED) 1492 parent = tsk->parent; 1493 else { 1494 tsk = tsk->group_leader; 1495 parent = tsk->real_parent; 1496 } 1497 1498 info.si_signo = SIGCHLD; 1499 info.si_errno = 0; 1500 info.si_pid = tsk->pid; 1501 info.si_uid = tsk->uid; 1502 1503 /* FIXME: find out whether or not this is supposed to be c*time. */ 1504 info.si_utime = cputime_to_jiffies(tsk->utime); 1505 info.si_stime = cputime_to_jiffies(tsk->stime); 1506 1507 info.si_code = why; 1508 switch (why) { 1509 case CLD_CONTINUED: 1510 info.si_status = SIGCONT; 1511 break; 1512 case CLD_STOPPED: 1513 info.si_status = tsk->signal->group_exit_code & 0x7f; 1514 break; 1515 case CLD_TRAPPED: 1516 info.si_status = tsk->exit_code & 0x7f; 1517 break; 1518 default: 1519 BUG(); 1520 } 1521 1522 sighand = parent->sighand; 1523 spin_lock_irqsave(&sighand->siglock, flags); 1524 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1525 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1526 __group_send_sig_info(SIGCHLD, &info, parent); 1527 /* 1528 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1529 */ 1530 __wake_up_parent(tsk, parent); 1531 spin_unlock_irqrestore(&sighand->siglock, flags); 1532 } 1533 1534 /* 1535 * This must be called with current->sighand->siglock held. 1536 * 1537 * This should be the path for all ptrace stops. 1538 * We always set current->last_siginfo while stopped here. 1539 * That makes it a way to test a stopped process for 1540 * being ptrace-stopped vs being job-control-stopped. 1541 * 1542 * If we actually decide not to stop at all because the tracer is gone, 1543 * we leave nostop_code in current->exit_code. 1544 */ 1545 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info) 1546 { 1547 /* 1548 * If there is a group stop in progress, 1549 * we must participate in the bookkeeping. 1550 */ 1551 if (current->signal->group_stop_count > 0) 1552 --current->signal->group_stop_count; 1553 1554 current->last_siginfo = info; 1555 current->exit_code = exit_code; 1556 1557 /* Let the debugger run. */ 1558 set_current_state(TASK_TRACED); 1559 spin_unlock_irq(¤t->sighand->siglock); 1560 try_to_freeze(); 1561 read_lock(&tasklist_lock); 1562 if (likely(current->ptrace & PT_PTRACED) && 1563 likely(current->parent != current->real_parent || 1564 !(current->ptrace & PT_ATTACHED)) && 1565 (likely(current->parent->signal != current->signal) || 1566 !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) { 1567 do_notify_parent_cldstop(current, CLD_TRAPPED); 1568 read_unlock(&tasklist_lock); 1569 schedule(); 1570 } else { 1571 /* 1572 * By the time we got the lock, our tracer went away. 1573 * Don't stop here. 1574 */ 1575 read_unlock(&tasklist_lock); 1576 set_current_state(TASK_RUNNING); 1577 current->exit_code = nostop_code; 1578 } 1579 1580 /* 1581 * We are back. Now reacquire the siglock before touching 1582 * last_siginfo, so that we are sure to have synchronized with 1583 * any signal-sending on another CPU that wants to examine it. 1584 */ 1585 spin_lock_irq(¤t->sighand->siglock); 1586 current->last_siginfo = NULL; 1587 1588 /* 1589 * Queued signals ignored us while we were stopped for tracing. 1590 * So check for any that we should take before resuming user mode. 1591 */ 1592 recalc_sigpending(); 1593 } 1594 1595 void ptrace_notify(int exit_code) 1596 { 1597 siginfo_t info; 1598 1599 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1600 1601 memset(&info, 0, sizeof info); 1602 info.si_signo = SIGTRAP; 1603 info.si_code = exit_code; 1604 info.si_pid = current->pid; 1605 info.si_uid = current->uid; 1606 1607 /* Let the debugger run. */ 1608 spin_lock_irq(¤t->sighand->siglock); 1609 ptrace_stop(exit_code, 0, &info); 1610 spin_unlock_irq(¤t->sighand->siglock); 1611 } 1612 1613 static void 1614 finish_stop(int stop_count) 1615 { 1616 /* 1617 * If there are no other threads in the group, or if there is 1618 * a group stop in progress and we are the last to stop, 1619 * report to the parent. When ptraced, every thread reports itself. 1620 */ 1621 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) { 1622 read_lock(&tasklist_lock); 1623 do_notify_parent_cldstop(current, CLD_STOPPED); 1624 read_unlock(&tasklist_lock); 1625 } 1626 1627 schedule(); 1628 /* 1629 * Now we don't run again until continued. 1630 */ 1631 current->exit_code = 0; 1632 } 1633 1634 /* 1635 * This performs the stopping for SIGSTOP and other stop signals. 1636 * We have to stop all threads in the thread group. 1637 * Returns nonzero if we've actually stopped and released the siglock. 1638 * Returns zero if we didn't stop and still hold the siglock. 1639 */ 1640 static int do_signal_stop(int signr) 1641 { 1642 struct signal_struct *sig = current->signal; 1643 int stop_count; 1644 1645 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) 1646 return 0; 1647 1648 if (sig->group_stop_count > 0) { 1649 /* 1650 * There is a group stop in progress. We don't need to 1651 * start another one. 1652 */ 1653 stop_count = --sig->group_stop_count; 1654 } else { 1655 /* 1656 * There is no group stop already in progress. 1657 * We must initiate one now. 1658 */ 1659 struct task_struct *t; 1660 1661 sig->group_exit_code = signr; 1662 1663 stop_count = 0; 1664 for (t = next_thread(current); t != current; t = next_thread(t)) 1665 /* 1666 * Setting state to TASK_STOPPED for a group 1667 * stop is always done with the siglock held, 1668 * so this check has no races. 1669 */ 1670 if (!t->exit_state && 1671 !(t->state & (TASK_STOPPED|TASK_TRACED))) { 1672 stop_count++; 1673 signal_wake_up(t, 0); 1674 } 1675 sig->group_stop_count = stop_count; 1676 } 1677 1678 if (stop_count == 0) 1679 sig->flags = SIGNAL_STOP_STOPPED; 1680 current->exit_code = sig->group_exit_code; 1681 __set_current_state(TASK_STOPPED); 1682 1683 spin_unlock_irq(¤t->sighand->siglock); 1684 finish_stop(stop_count); 1685 return 1; 1686 } 1687 1688 /* 1689 * Do appropriate magic when group_stop_count > 0. 1690 * We return nonzero if we stopped, after releasing the siglock. 1691 * We return zero if we still hold the siglock and should look 1692 * for another signal without checking group_stop_count again. 1693 */ 1694 static int handle_group_stop(void) 1695 { 1696 int stop_count; 1697 1698 if (current->signal->group_exit_task == current) { 1699 /* 1700 * Group stop is so we can do a core dump, 1701 * We are the initiating thread, so get on with it. 1702 */ 1703 current->signal->group_exit_task = NULL; 1704 return 0; 1705 } 1706 1707 if (current->signal->flags & SIGNAL_GROUP_EXIT) 1708 /* 1709 * Group stop is so another thread can do a core dump, 1710 * or else we are racing against a death signal. 1711 * Just punt the stop so we can get the next signal. 1712 */ 1713 return 0; 1714 1715 /* 1716 * There is a group stop in progress. We stop 1717 * without any associated signal being in our queue. 1718 */ 1719 stop_count = --current->signal->group_stop_count; 1720 if (stop_count == 0) 1721 current->signal->flags = SIGNAL_STOP_STOPPED; 1722 current->exit_code = current->signal->group_exit_code; 1723 set_current_state(TASK_STOPPED); 1724 spin_unlock_irq(¤t->sighand->siglock); 1725 finish_stop(stop_count); 1726 return 1; 1727 } 1728 1729 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, 1730 struct pt_regs *regs, void *cookie) 1731 { 1732 sigset_t *mask = ¤t->blocked; 1733 int signr = 0; 1734 1735 try_to_freeze(); 1736 1737 relock: 1738 spin_lock_irq(¤t->sighand->siglock); 1739 for (;;) { 1740 struct k_sigaction *ka; 1741 1742 if (unlikely(current->signal->group_stop_count > 0) && 1743 handle_group_stop()) 1744 goto relock; 1745 1746 signr = dequeue_signal(current, mask, info); 1747 1748 if (!signr) 1749 break; /* will return 0 */ 1750 1751 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) { 1752 ptrace_signal_deliver(regs, cookie); 1753 1754 /* Let the debugger run. */ 1755 ptrace_stop(signr, signr, info); 1756 1757 /* We're back. Did the debugger cancel the sig? */ 1758 signr = current->exit_code; 1759 if (signr == 0) 1760 continue; 1761 1762 current->exit_code = 0; 1763 1764 /* Update the siginfo structure if the signal has 1765 changed. If the debugger wanted something 1766 specific in the siginfo structure then it should 1767 have updated *info via PTRACE_SETSIGINFO. */ 1768 if (signr != info->si_signo) { 1769 info->si_signo = signr; 1770 info->si_errno = 0; 1771 info->si_code = SI_USER; 1772 info->si_pid = current->parent->pid; 1773 info->si_uid = current->parent->uid; 1774 } 1775 1776 /* If the (new) signal is now blocked, requeue it. */ 1777 if (sigismember(¤t->blocked, signr)) { 1778 specific_send_sig_info(signr, info, current); 1779 continue; 1780 } 1781 } 1782 1783 ka = ¤t->sighand->action[signr-1]; 1784 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 1785 continue; 1786 if (ka->sa.sa_handler != SIG_DFL) { 1787 /* Run the handler. */ 1788 *return_ka = *ka; 1789 1790 if (ka->sa.sa_flags & SA_ONESHOT) 1791 ka->sa.sa_handler = SIG_DFL; 1792 1793 break; /* will return non-zero "signr" value */ 1794 } 1795 1796 /* 1797 * Now we are doing the default action for this signal. 1798 */ 1799 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 1800 continue; 1801 1802 /* Init gets no signals it doesn't want. */ 1803 if (current == child_reaper) 1804 continue; 1805 1806 if (sig_kernel_stop(signr)) { 1807 /* 1808 * The default action is to stop all threads in 1809 * the thread group. The job control signals 1810 * do nothing in an orphaned pgrp, but SIGSTOP 1811 * always works. Note that siglock needs to be 1812 * dropped during the call to is_orphaned_pgrp() 1813 * because of lock ordering with tasklist_lock. 1814 * This allows an intervening SIGCONT to be posted. 1815 * We need to check for that and bail out if necessary. 1816 */ 1817 if (signr != SIGSTOP) { 1818 spin_unlock_irq(¤t->sighand->siglock); 1819 1820 /* signals can be posted during this window */ 1821 1822 if (is_orphaned_pgrp(process_group(current))) 1823 goto relock; 1824 1825 spin_lock_irq(¤t->sighand->siglock); 1826 } 1827 1828 if (likely(do_signal_stop(signr))) { 1829 /* It released the siglock. */ 1830 goto relock; 1831 } 1832 1833 /* 1834 * We didn't actually stop, due to a race 1835 * with SIGCONT or something like that. 1836 */ 1837 continue; 1838 } 1839 1840 spin_unlock_irq(¤t->sighand->siglock); 1841 1842 /* 1843 * Anything else is fatal, maybe with a core dump. 1844 */ 1845 current->flags |= PF_SIGNALED; 1846 if (sig_kernel_coredump(signr)) { 1847 /* 1848 * If it was able to dump core, this kills all 1849 * other threads in the group and synchronizes with 1850 * their demise. If we lost the race with another 1851 * thread getting here, it set group_exit_code 1852 * first and our do_group_exit call below will use 1853 * that value and ignore the one we pass it. 1854 */ 1855 do_coredump((long)signr, signr, regs); 1856 } 1857 1858 /* 1859 * Death signals, no core dump. 1860 */ 1861 do_group_exit(signr); 1862 /* NOTREACHED */ 1863 } 1864 spin_unlock_irq(¤t->sighand->siglock); 1865 return signr; 1866 } 1867 1868 EXPORT_SYMBOL(recalc_sigpending); 1869 EXPORT_SYMBOL_GPL(dequeue_signal); 1870 EXPORT_SYMBOL(flush_signals); 1871 EXPORT_SYMBOL(force_sig); 1872 EXPORT_SYMBOL(kill_pg); 1873 EXPORT_SYMBOL(kill_proc); 1874 EXPORT_SYMBOL(ptrace_notify); 1875 EXPORT_SYMBOL(send_sig); 1876 EXPORT_SYMBOL(send_sig_info); 1877 EXPORT_SYMBOL(sigprocmask); 1878 EXPORT_SYMBOL(block_all_signals); 1879 EXPORT_SYMBOL(unblock_all_signals); 1880 1881 1882 /* 1883 * System call entry points. 1884 */ 1885 1886 asmlinkage long sys_restart_syscall(void) 1887 { 1888 struct restart_block *restart = ¤t_thread_info()->restart_block; 1889 return restart->fn(restart); 1890 } 1891 1892 long do_no_restart_syscall(struct restart_block *param) 1893 { 1894 return -EINTR; 1895 } 1896 1897 /* 1898 * We don't need to get the kernel lock - this is all local to this 1899 * particular thread.. (and that's good, because this is _heavily_ 1900 * used by various programs) 1901 */ 1902 1903 /* 1904 * This is also useful for kernel threads that want to temporarily 1905 * (or permanently) block certain signals. 1906 * 1907 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 1908 * interface happily blocks "unblockable" signals like SIGKILL 1909 * and friends. 1910 */ 1911 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 1912 { 1913 int error; 1914 1915 spin_lock_irq(¤t->sighand->siglock); 1916 if (oldset) 1917 *oldset = current->blocked; 1918 1919 error = 0; 1920 switch (how) { 1921 case SIG_BLOCK: 1922 sigorsets(¤t->blocked, ¤t->blocked, set); 1923 break; 1924 case SIG_UNBLOCK: 1925 signandsets(¤t->blocked, ¤t->blocked, set); 1926 break; 1927 case SIG_SETMASK: 1928 current->blocked = *set; 1929 break; 1930 default: 1931 error = -EINVAL; 1932 } 1933 recalc_sigpending(); 1934 spin_unlock_irq(¤t->sighand->siglock); 1935 1936 return error; 1937 } 1938 1939 asmlinkage long 1940 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize) 1941 { 1942 int error = -EINVAL; 1943 sigset_t old_set, new_set; 1944 1945 /* XXX: Don't preclude handling different sized sigset_t's. */ 1946 if (sigsetsize != sizeof(sigset_t)) 1947 goto out; 1948 1949 if (set) { 1950 error = -EFAULT; 1951 if (copy_from_user(&new_set, set, sizeof(*set))) 1952 goto out; 1953 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 1954 1955 error = sigprocmask(how, &new_set, &old_set); 1956 if (error) 1957 goto out; 1958 if (oset) 1959 goto set_old; 1960 } else if (oset) { 1961 spin_lock_irq(¤t->sighand->siglock); 1962 old_set = current->blocked; 1963 spin_unlock_irq(¤t->sighand->siglock); 1964 1965 set_old: 1966 error = -EFAULT; 1967 if (copy_to_user(oset, &old_set, sizeof(*oset))) 1968 goto out; 1969 } 1970 error = 0; 1971 out: 1972 return error; 1973 } 1974 1975 long do_sigpending(void __user *set, unsigned long sigsetsize) 1976 { 1977 long error = -EINVAL; 1978 sigset_t pending; 1979 1980 if (sigsetsize > sizeof(sigset_t)) 1981 goto out; 1982 1983 spin_lock_irq(¤t->sighand->siglock); 1984 sigorsets(&pending, ¤t->pending.signal, 1985 ¤t->signal->shared_pending.signal); 1986 spin_unlock_irq(¤t->sighand->siglock); 1987 1988 /* Outside the lock because only this thread touches it. */ 1989 sigandsets(&pending, ¤t->blocked, &pending); 1990 1991 error = -EFAULT; 1992 if (!copy_to_user(set, &pending, sigsetsize)) 1993 error = 0; 1994 1995 out: 1996 return error; 1997 } 1998 1999 asmlinkage long 2000 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize) 2001 { 2002 return do_sigpending(set, sigsetsize); 2003 } 2004 2005 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2006 2007 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) 2008 { 2009 int err; 2010 2011 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2012 return -EFAULT; 2013 if (from->si_code < 0) 2014 return __copy_to_user(to, from, sizeof(siginfo_t)) 2015 ? -EFAULT : 0; 2016 /* 2017 * If you change siginfo_t structure, please be sure 2018 * this code is fixed accordingly. 2019 * It should never copy any pad contained in the structure 2020 * to avoid security leaks, but must copy the generic 2021 * 3 ints plus the relevant union member. 2022 */ 2023 err = __put_user(from->si_signo, &to->si_signo); 2024 err |= __put_user(from->si_errno, &to->si_errno); 2025 err |= __put_user((short)from->si_code, &to->si_code); 2026 switch (from->si_code & __SI_MASK) { 2027 case __SI_KILL: 2028 err |= __put_user(from->si_pid, &to->si_pid); 2029 err |= __put_user(from->si_uid, &to->si_uid); 2030 break; 2031 case __SI_TIMER: 2032 err |= __put_user(from->si_tid, &to->si_tid); 2033 err |= __put_user(from->si_overrun, &to->si_overrun); 2034 err |= __put_user(from->si_ptr, &to->si_ptr); 2035 break; 2036 case __SI_POLL: 2037 err |= __put_user(from->si_band, &to->si_band); 2038 err |= __put_user(from->si_fd, &to->si_fd); 2039 break; 2040 case __SI_FAULT: 2041 err |= __put_user(from->si_addr, &to->si_addr); 2042 #ifdef __ARCH_SI_TRAPNO 2043 err |= __put_user(from->si_trapno, &to->si_trapno); 2044 #endif 2045 break; 2046 case __SI_CHLD: 2047 err |= __put_user(from->si_pid, &to->si_pid); 2048 err |= __put_user(from->si_uid, &to->si_uid); 2049 err |= __put_user(from->si_status, &to->si_status); 2050 err |= __put_user(from->si_utime, &to->si_utime); 2051 err |= __put_user(from->si_stime, &to->si_stime); 2052 break; 2053 case __SI_RT: /* This is not generated by the kernel as of now. */ 2054 case __SI_MESGQ: /* But this is */ 2055 err |= __put_user(from->si_pid, &to->si_pid); 2056 err |= __put_user(from->si_uid, &to->si_uid); 2057 err |= __put_user(from->si_ptr, &to->si_ptr); 2058 break; 2059 default: /* this is just in case for now ... */ 2060 err |= __put_user(from->si_pid, &to->si_pid); 2061 err |= __put_user(from->si_uid, &to->si_uid); 2062 break; 2063 } 2064 return err; 2065 } 2066 2067 #endif 2068 2069 asmlinkage long 2070 sys_rt_sigtimedwait(const sigset_t __user *uthese, 2071 siginfo_t __user *uinfo, 2072 const struct timespec __user *uts, 2073 size_t sigsetsize) 2074 { 2075 int ret, sig; 2076 sigset_t these; 2077 struct timespec ts; 2078 siginfo_t info; 2079 long timeout = 0; 2080 2081 /* XXX: Don't preclude handling different sized sigset_t's. */ 2082 if (sigsetsize != sizeof(sigset_t)) 2083 return -EINVAL; 2084 2085 if (copy_from_user(&these, uthese, sizeof(these))) 2086 return -EFAULT; 2087 2088 /* 2089 * Invert the set of allowed signals to get those we 2090 * want to block. 2091 */ 2092 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2093 signotset(&these); 2094 2095 if (uts) { 2096 if (copy_from_user(&ts, uts, sizeof(ts))) 2097 return -EFAULT; 2098 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0 2099 || ts.tv_sec < 0) 2100 return -EINVAL; 2101 } 2102 2103 spin_lock_irq(¤t->sighand->siglock); 2104 sig = dequeue_signal(current, &these, &info); 2105 if (!sig) { 2106 timeout = MAX_SCHEDULE_TIMEOUT; 2107 if (uts) 2108 timeout = (timespec_to_jiffies(&ts) 2109 + (ts.tv_sec || ts.tv_nsec)); 2110 2111 if (timeout) { 2112 /* None ready -- temporarily unblock those we're 2113 * interested while we are sleeping in so that we'll 2114 * be awakened when they arrive. */ 2115 current->real_blocked = current->blocked; 2116 sigandsets(¤t->blocked, ¤t->blocked, &these); 2117 recalc_sigpending(); 2118 spin_unlock_irq(¤t->sighand->siglock); 2119 2120 timeout = schedule_timeout_interruptible(timeout); 2121 2122 spin_lock_irq(¤t->sighand->siglock); 2123 sig = dequeue_signal(current, &these, &info); 2124 current->blocked = current->real_blocked; 2125 siginitset(¤t->real_blocked, 0); 2126 recalc_sigpending(); 2127 } 2128 } 2129 spin_unlock_irq(¤t->sighand->siglock); 2130 2131 if (sig) { 2132 ret = sig; 2133 if (uinfo) { 2134 if (copy_siginfo_to_user(uinfo, &info)) 2135 ret = -EFAULT; 2136 } 2137 } else { 2138 ret = -EAGAIN; 2139 if (timeout) 2140 ret = -EINTR; 2141 } 2142 2143 return ret; 2144 } 2145 2146 asmlinkage long 2147 sys_kill(int pid, int sig) 2148 { 2149 struct siginfo info; 2150 2151 info.si_signo = sig; 2152 info.si_errno = 0; 2153 info.si_code = SI_USER; 2154 info.si_pid = current->tgid; 2155 info.si_uid = current->uid; 2156 2157 return kill_something_info(sig, &info, pid); 2158 } 2159 2160 static int do_tkill(int tgid, int pid, int sig) 2161 { 2162 int error; 2163 struct siginfo info; 2164 struct task_struct *p; 2165 2166 error = -ESRCH; 2167 info.si_signo = sig; 2168 info.si_errno = 0; 2169 info.si_code = SI_TKILL; 2170 info.si_pid = current->tgid; 2171 info.si_uid = current->uid; 2172 2173 read_lock(&tasklist_lock); 2174 p = find_task_by_pid(pid); 2175 if (p && (tgid <= 0 || p->tgid == tgid)) { 2176 error = check_kill_permission(sig, &info, p); 2177 /* 2178 * The null signal is a permissions and process existence 2179 * probe. No signal is actually delivered. 2180 */ 2181 if (!error && sig && p->sighand) { 2182 spin_lock_irq(&p->sighand->siglock); 2183 handle_stop_signal(sig, p); 2184 error = specific_send_sig_info(sig, &info, p); 2185 spin_unlock_irq(&p->sighand->siglock); 2186 } 2187 } 2188 read_unlock(&tasklist_lock); 2189 2190 return error; 2191 } 2192 2193 /** 2194 * sys_tgkill - send signal to one specific thread 2195 * @tgid: the thread group ID of the thread 2196 * @pid: the PID of the thread 2197 * @sig: signal to be sent 2198 * 2199 * This syscall also checks the tgid and returns -ESRCH even if the PID 2200 * exists but it's not belonging to the target process anymore. This 2201 * method solves the problem of threads exiting and PIDs getting reused. 2202 */ 2203 asmlinkage long sys_tgkill(int tgid, int pid, int sig) 2204 { 2205 /* This is only valid for single tasks */ 2206 if (pid <= 0 || tgid <= 0) 2207 return -EINVAL; 2208 2209 return do_tkill(tgid, pid, sig); 2210 } 2211 2212 /* 2213 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2214 */ 2215 asmlinkage long 2216 sys_tkill(int pid, int sig) 2217 { 2218 /* This is only valid for single tasks */ 2219 if (pid <= 0) 2220 return -EINVAL; 2221 2222 return do_tkill(0, pid, sig); 2223 } 2224 2225 asmlinkage long 2226 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo) 2227 { 2228 siginfo_t info; 2229 2230 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2231 return -EFAULT; 2232 2233 /* Not even root can pretend to send signals from the kernel. 2234 Nor can they impersonate a kill(), which adds source info. */ 2235 if (info.si_code >= 0) 2236 return -EPERM; 2237 info.si_signo = sig; 2238 2239 /* POSIX.1b doesn't mention process groups. */ 2240 return kill_proc_info(sig, &info, pid); 2241 } 2242 2243 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 2244 { 2245 struct k_sigaction *k; 2246 sigset_t mask; 2247 2248 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 2249 return -EINVAL; 2250 2251 k = ¤t->sighand->action[sig-1]; 2252 2253 spin_lock_irq(¤t->sighand->siglock); 2254 if (signal_pending(current)) { 2255 /* 2256 * If there might be a fatal signal pending on multiple 2257 * threads, make sure we take it before changing the action. 2258 */ 2259 spin_unlock_irq(¤t->sighand->siglock); 2260 return -ERESTARTNOINTR; 2261 } 2262 2263 if (oact) 2264 *oact = *k; 2265 2266 if (act) { 2267 sigdelsetmask(&act->sa.sa_mask, 2268 sigmask(SIGKILL) | sigmask(SIGSTOP)); 2269 *k = *act; 2270 /* 2271 * POSIX 3.3.1.3: 2272 * "Setting a signal action to SIG_IGN for a signal that is 2273 * pending shall cause the pending signal to be discarded, 2274 * whether or not it is blocked." 2275 * 2276 * "Setting a signal action to SIG_DFL for a signal that is 2277 * pending and whose default action is to ignore the signal 2278 * (for example, SIGCHLD), shall cause the pending signal to 2279 * be discarded, whether or not it is blocked" 2280 */ 2281 if (act->sa.sa_handler == SIG_IGN || 2282 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) { 2283 struct task_struct *t = current; 2284 sigemptyset(&mask); 2285 sigaddset(&mask, sig); 2286 rm_from_queue_full(&mask, &t->signal->shared_pending); 2287 do { 2288 rm_from_queue_full(&mask, &t->pending); 2289 recalc_sigpending_tsk(t); 2290 t = next_thread(t); 2291 } while (t != current); 2292 } 2293 } 2294 2295 spin_unlock_irq(¤t->sighand->siglock); 2296 return 0; 2297 } 2298 2299 int 2300 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 2301 { 2302 stack_t oss; 2303 int error; 2304 2305 if (uoss) { 2306 oss.ss_sp = (void __user *) current->sas_ss_sp; 2307 oss.ss_size = current->sas_ss_size; 2308 oss.ss_flags = sas_ss_flags(sp); 2309 } 2310 2311 if (uss) { 2312 void __user *ss_sp; 2313 size_t ss_size; 2314 int ss_flags; 2315 2316 error = -EFAULT; 2317 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)) 2318 || __get_user(ss_sp, &uss->ss_sp) 2319 || __get_user(ss_flags, &uss->ss_flags) 2320 || __get_user(ss_size, &uss->ss_size)) 2321 goto out; 2322 2323 error = -EPERM; 2324 if (on_sig_stack(sp)) 2325 goto out; 2326 2327 error = -EINVAL; 2328 /* 2329 * 2330 * Note - this code used to test ss_flags incorrectly 2331 * old code may have been written using ss_flags==0 2332 * to mean ss_flags==SS_ONSTACK (as this was the only 2333 * way that worked) - this fix preserves that older 2334 * mechanism 2335 */ 2336 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) 2337 goto out; 2338 2339 if (ss_flags == SS_DISABLE) { 2340 ss_size = 0; 2341 ss_sp = NULL; 2342 } else { 2343 error = -ENOMEM; 2344 if (ss_size < MINSIGSTKSZ) 2345 goto out; 2346 } 2347 2348 current->sas_ss_sp = (unsigned long) ss_sp; 2349 current->sas_ss_size = ss_size; 2350 } 2351 2352 if (uoss) { 2353 error = -EFAULT; 2354 if (copy_to_user(uoss, &oss, sizeof(oss))) 2355 goto out; 2356 } 2357 2358 error = 0; 2359 out: 2360 return error; 2361 } 2362 2363 #ifdef __ARCH_WANT_SYS_SIGPENDING 2364 2365 asmlinkage long 2366 sys_sigpending(old_sigset_t __user *set) 2367 { 2368 return do_sigpending(set, sizeof(*set)); 2369 } 2370 2371 #endif 2372 2373 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 2374 /* Some platforms have their own version with special arguments others 2375 support only sys_rt_sigprocmask. */ 2376 2377 asmlinkage long 2378 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset) 2379 { 2380 int error; 2381 old_sigset_t old_set, new_set; 2382 2383 if (set) { 2384 error = -EFAULT; 2385 if (copy_from_user(&new_set, set, sizeof(*set))) 2386 goto out; 2387 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP)); 2388 2389 spin_lock_irq(¤t->sighand->siglock); 2390 old_set = current->blocked.sig[0]; 2391 2392 error = 0; 2393 switch (how) { 2394 default: 2395 error = -EINVAL; 2396 break; 2397 case SIG_BLOCK: 2398 sigaddsetmask(¤t->blocked, new_set); 2399 break; 2400 case SIG_UNBLOCK: 2401 sigdelsetmask(¤t->blocked, new_set); 2402 break; 2403 case SIG_SETMASK: 2404 current->blocked.sig[0] = new_set; 2405 break; 2406 } 2407 2408 recalc_sigpending(); 2409 spin_unlock_irq(¤t->sighand->siglock); 2410 if (error) 2411 goto out; 2412 if (oset) 2413 goto set_old; 2414 } else if (oset) { 2415 old_set = current->blocked.sig[0]; 2416 set_old: 2417 error = -EFAULT; 2418 if (copy_to_user(oset, &old_set, sizeof(*oset))) 2419 goto out; 2420 } 2421 error = 0; 2422 out: 2423 return error; 2424 } 2425 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 2426 2427 #ifdef __ARCH_WANT_SYS_RT_SIGACTION 2428 asmlinkage long 2429 sys_rt_sigaction(int sig, 2430 const struct sigaction __user *act, 2431 struct sigaction __user *oact, 2432 size_t sigsetsize) 2433 { 2434 struct k_sigaction new_sa, old_sa; 2435 int ret = -EINVAL; 2436 2437 /* XXX: Don't preclude handling different sized sigset_t's. */ 2438 if (sigsetsize != sizeof(sigset_t)) 2439 goto out; 2440 2441 if (act) { 2442 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 2443 return -EFAULT; 2444 } 2445 2446 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 2447 2448 if (!ret && oact) { 2449 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 2450 return -EFAULT; 2451 } 2452 out: 2453 return ret; 2454 } 2455 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */ 2456 2457 #ifdef __ARCH_WANT_SYS_SGETMASK 2458 2459 /* 2460 * For backwards compatibility. Functionality superseded by sigprocmask. 2461 */ 2462 asmlinkage long 2463 sys_sgetmask(void) 2464 { 2465 /* SMP safe */ 2466 return current->blocked.sig[0]; 2467 } 2468 2469 asmlinkage long 2470 sys_ssetmask(int newmask) 2471 { 2472 int old; 2473 2474 spin_lock_irq(¤t->sighand->siglock); 2475 old = current->blocked.sig[0]; 2476 2477 siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)| 2478 sigmask(SIGSTOP))); 2479 recalc_sigpending(); 2480 spin_unlock_irq(¤t->sighand->siglock); 2481 2482 return old; 2483 } 2484 #endif /* __ARCH_WANT_SGETMASK */ 2485 2486 #ifdef __ARCH_WANT_SYS_SIGNAL 2487 /* 2488 * For backwards compatibility. Functionality superseded by sigaction. 2489 */ 2490 asmlinkage unsigned long 2491 sys_signal(int sig, __sighandler_t handler) 2492 { 2493 struct k_sigaction new_sa, old_sa; 2494 int ret; 2495 2496 new_sa.sa.sa_handler = handler; 2497 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 2498 sigemptyset(&new_sa.sa.sa_mask); 2499 2500 ret = do_sigaction(sig, &new_sa, &old_sa); 2501 2502 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 2503 } 2504 #endif /* __ARCH_WANT_SYS_SIGNAL */ 2505 2506 #ifdef __ARCH_WANT_SYS_PAUSE 2507 2508 asmlinkage long 2509 sys_pause(void) 2510 { 2511 current->state = TASK_INTERRUPTIBLE; 2512 schedule(); 2513 return -ERESTARTNOHAND; 2514 } 2515 2516 #endif 2517 2518 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND 2519 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize) 2520 { 2521 sigset_t newset; 2522 2523 /* XXX: Don't preclude handling different sized sigset_t's. */ 2524 if (sigsetsize != sizeof(sigset_t)) 2525 return -EINVAL; 2526 2527 if (copy_from_user(&newset, unewset, sizeof(newset))) 2528 return -EFAULT; 2529 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2530 2531 spin_lock_irq(¤t->sighand->siglock); 2532 current->saved_sigmask = current->blocked; 2533 current->blocked = newset; 2534 recalc_sigpending(); 2535 spin_unlock_irq(¤t->sighand->siglock); 2536 2537 current->state = TASK_INTERRUPTIBLE; 2538 schedule(); 2539 set_thread_flag(TIF_RESTORE_SIGMASK); 2540 return -ERESTARTNOHAND; 2541 } 2542 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */ 2543 2544 void __init signals_init(void) 2545 { 2546 sigqueue_cachep = 2547 kmem_cache_create("sigqueue", 2548 sizeof(struct sigqueue), 2549 __alignof__(struct sigqueue), 2550 SLAB_PANIC, NULL, NULL); 2551 } 2552