xref: /linux/kernel/signal.c (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/signalfd.h>
26 #include <linux/ratelimit.h>
27 #include <linux/tracehook.h>
28 #include <linux/capability.h>
29 #include <linux/freezer.h>
30 #include <linux/pid_namespace.h>
31 #include <linux/nsproxy.h>
32 #include <linux/user_namespace.h>
33 #include <linux/uprobes.h>
34 #include <linux/compat.h>
35 #include <linux/cn_proc.h>
36 #include <linux/compiler.h>
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/signal.h>
40 
41 #include <asm/param.h>
42 #include <asm/uaccess.h>
43 #include <asm/unistd.h>
44 #include <asm/siginfo.h>
45 #include <asm/cacheflush.h>
46 #include "audit.h"	/* audit_signal_info() */
47 
48 /*
49  * SLAB caches for signal bits.
50  */
51 
52 static struct kmem_cache *sigqueue_cachep;
53 
54 int print_fatal_signals __read_mostly;
55 
56 static void __user *sig_handler(struct task_struct *t, int sig)
57 {
58 	return t->sighand->action[sig - 1].sa.sa_handler;
59 }
60 
61 static int sig_handler_ignored(void __user *handler, int sig)
62 {
63 	/* Is it explicitly or implicitly ignored? */
64 	return handler == SIG_IGN ||
65 		(handler == SIG_DFL && sig_kernel_ignore(sig));
66 }
67 
68 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
69 {
70 	void __user *handler;
71 
72 	handler = sig_handler(t, sig);
73 
74 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
75 			handler == SIG_DFL && !force)
76 		return 1;
77 
78 	return sig_handler_ignored(handler, sig);
79 }
80 
81 static int sig_ignored(struct task_struct *t, int sig, bool force)
82 {
83 	/*
84 	 * Blocked signals are never ignored, since the
85 	 * signal handler may change by the time it is
86 	 * unblocked.
87 	 */
88 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
89 		return 0;
90 
91 	if (!sig_task_ignored(t, sig, force))
92 		return 0;
93 
94 	/*
95 	 * Tracers may want to know about even ignored signals.
96 	 */
97 	return !t->ptrace;
98 }
99 
100 /*
101  * Re-calculate pending state from the set of locally pending
102  * signals, globally pending signals, and blocked signals.
103  */
104 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
105 {
106 	unsigned long ready;
107 	long i;
108 
109 	switch (_NSIG_WORDS) {
110 	default:
111 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
112 			ready |= signal->sig[i] &~ blocked->sig[i];
113 		break;
114 
115 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
116 		ready |= signal->sig[2] &~ blocked->sig[2];
117 		ready |= signal->sig[1] &~ blocked->sig[1];
118 		ready |= signal->sig[0] &~ blocked->sig[0];
119 		break;
120 
121 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
122 		ready |= signal->sig[0] &~ blocked->sig[0];
123 		break;
124 
125 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
126 	}
127 	return ready !=	0;
128 }
129 
130 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
131 
132 static int recalc_sigpending_tsk(struct task_struct *t)
133 {
134 	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
135 	    PENDING(&t->pending, &t->blocked) ||
136 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
137 		set_tsk_thread_flag(t, TIF_SIGPENDING);
138 		return 1;
139 	}
140 	/*
141 	 * We must never clear the flag in another thread, or in current
142 	 * when it's possible the current syscall is returning -ERESTART*.
143 	 * So we don't clear it here, and only callers who know they should do.
144 	 */
145 	return 0;
146 }
147 
148 /*
149  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
150  * This is superfluous when called on current, the wakeup is a harmless no-op.
151  */
152 void recalc_sigpending_and_wake(struct task_struct *t)
153 {
154 	if (recalc_sigpending_tsk(t))
155 		signal_wake_up(t, 0);
156 }
157 
158 void recalc_sigpending(void)
159 {
160 	if (!recalc_sigpending_tsk(current) && !freezing(current))
161 		clear_thread_flag(TIF_SIGPENDING);
162 
163 }
164 
165 /* Given the mask, find the first available signal that should be serviced. */
166 
167 #define SYNCHRONOUS_MASK \
168 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
169 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
170 
171 int next_signal(struct sigpending *pending, sigset_t *mask)
172 {
173 	unsigned long i, *s, *m, x;
174 	int sig = 0;
175 
176 	s = pending->signal.sig;
177 	m = mask->sig;
178 
179 	/*
180 	 * Handle the first word specially: it contains the
181 	 * synchronous signals that need to be dequeued first.
182 	 */
183 	x = *s &~ *m;
184 	if (x) {
185 		if (x & SYNCHRONOUS_MASK)
186 			x &= SYNCHRONOUS_MASK;
187 		sig = ffz(~x) + 1;
188 		return sig;
189 	}
190 
191 	switch (_NSIG_WORDS) {
192 	default:
193 		for (i = 1; i < _NSIG_WORDS; ++i) {
194 			x = *++s &~ *++m;
195 			if (!x)
196 				continue;
197 			sig = ffz(~x) + i*_NSIG_BPW + 1;
198 			break;
199 		}
200 		break;
201 
202 	case 2:
203 		x = s[1] &~ m[1];
204 		if (!x)
205 			break;
206 		sig = ffz(~x) + _NSIG_BPW + 1;
207 		break;
208 
209 	case 1:
210 		/* Nothing to do */
211 		break;
212 	}
213 
214 	return sig;
215 }
216 
217 static inline void print_dropped_signal(int sig)
218 {
219 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
220 
221 	if (!print_fatal_signals)
222 		return;
223 
224 	if (!__ratelimit(&ratelimit_state))
225 		return;
226 
227 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
228 				current->comm, current->pid, sig);
229 }
230 
231 /**
232  * task_set_jobctl_pending - set jobctl pending bits
233  * @task: target task
234  * @mask: pending bits to set
235  *
236  * Clear @mask from @task->jobctl.  @mask must be subset of
237  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
238  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
239  * cleared.  If @task is already being killed or exiting, this function
240  * becomes noop.
241  *
242  * CONTEXT:
243  * Must be called with @task->sighand->siglock held.
244  *
245  * RETURNS:
246  * %true if @mask is set, %false if made noop because @task was dying.
247  */
248 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
249 {
250 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
251 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
252 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
253 
254 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
255 		return false;
256 
257 	if (mask & JOBCTL_STOP_SIGMASK)
258 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
259 
260 	task->jobctl |= mask;
261 	return true;
262 }
263 
264 /**
265  * task_clear_jobctl_trapping - clear jobctl trapping bit
266  * @task: target task
267  *
268  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
269  * Clear it and wake up the ptracer.  Note that we don't need any further
270  * locking.  @task->siglock guarantees that @task->parent points to the
271  * ptracer.
272  *
273  * CONTEXT:
274  * Must be called with @task->sighand->siglock held.
275  */
276 void task_clear_jobctl_trapping(struct task_struct *task)
277 {
278 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
279 		task->jobctl &= ~JOBCTL_TRAPPING;
280 		smp_mb();	/* advised by wake_up_bit() */
281 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
282 	}
283 }
284 
285 /**
286  * task_clear_jobctl_pending - clear jobctl pending bits
287  * @task: target task
288  * @mask: pending bits to clear
289  *
290  * Clear @mask from @task->jobctl.  @mask must be subset of
291  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
292  * STOP bits are cleared together.
293  *
294  * If clearing of @mask leaves no stop or trap pending, this function calls
295  * task_clear_jobctl_trapping().
296  *
297  * CONTEXT:
298  * Must be called with @task->sighand->siglock held.
299  */
300 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
301 {
302 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
303 
304 	if (mask & JOBCTL_STOP_PENDING)
305 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
306 
307 	task->jobctl &= ~mask;
308 
309 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
310 		task_clear_jobctl_trapping(task);
311 }
312 
313 /**
314  * task_participate_group_stop - participate in a group stop
315  * @task: task participating in a group stop
316  *
317  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
318  * Group stop states are cleared and the group stop count is consumed if
319  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
320  * stop, the appropriate %SIGNAL_* flags are set.
321  *
322  * CONTEXT:
323  * Must be called with @task->sighand->siglock held.
324  *
325  * RETURNS:
326  * %true if group stop completion should be notified to the parent, %false
327  * otherwise.
328  */
329 static bool task_participate_group_stop(struct task_struct *task)
330 {
331 	struct signal_struct *sig = task->signal;
332 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
333 
334 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
335 
336 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
337 
338 	if (!consume)
339 		return false;
340 
341 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
342 		sig->group_stop_count--;
343 
344 	/*
345 	 * Tell the caller to notify completion iff we are entering into a
346 	 * fresh group stop.  Read comment in do_signal_stop() for details.
347 	 */
348 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
349 		sig->flags = SIGNAL_STOP_STOPPED;
350 		return true;
351 	}
352 	return false;
353 }
354 
355 /*
356  * allocate a new signal queue record
357  * - this may be called without locks if and only if t == current, otherwise an
358  *   appropriate lock must be held to stop the target task from exiting
359  */
360 static struct sigqueue *
361 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
362 {
363 	struct sigqueue *q = NULL;
364 	struct user_struct *user;
365 
366 	/*
367 	 * Protect access to @t credentials. This can go away when all
368 	 * callers hold rcu read lock.
369 	 */
370 	rcu_read_lock();
371 	user = get_uid(__task_cred(t)->user);
372 	atomic_inc(&user->sigpending);
373 	rcu_read_unlock();
374 
375 	if (override_rlimit ||
376 	    atomic_read(&user->sigpending) <=
377 			task_rlimit(t, RLIMIT_SIGPENDING)) {
378 		q = kmem_cache_alloc(sigqueue_cachep, flags);
379 	} else {
380 		print_dropped_signal(sig);
381 	}
382 
383 	if (unlikely(q == NULL)) {
384 		atomic_dec(&user->sigpending);
385 		free_uid(user);
386 	} else {
387 		INIT_LIST_HEAD(&q->list);
388 		q->flags = 0;
389 		q->user = user;
390 	}
391 
392 	return q;
393 }
394 
395 static void __sigqueue_free(struct sigqueue *q)
396 {
397 	if (q->flags & SIGQUEUE_PREALLOC)
398 		return;
399 	atomic_dec(&q->user->sigpending);
400 	free_uid(q->user);
401 	kmem_cache_free(sigqueue_cachep, q);
402 }
403 
404 void flush_sigqueue(struct sigpending *queue)
405 {
406 	struct sigqueue *q;
407 
408 	sigemptyset(&queue->signal);
409 	while (!list_empty(&queue->list)) {
410 		q = list_entry(queue->list.next, struct sigqueue , list);
411 		list_del_init(&q->list);
412 		__sigqueue_free(q);
413 	}
414 }
415 
416 /*
417  * Flush all pending signals for this kthread.
418  */
419 void flush_signals(struct task_struct *t)
420 {
421 	unsigned long flags;
422 
423 	spin_lock_irqsave(&t->sighand->siglock, flags);
424 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
425 	flush_sigqueue(&t->pending);
426 	flush_sigqueue(&t->signal->shared_pending);
427 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
428 }
429 
430 static void __flush_itimer_signals(struct sigpending *pending)
431 {
432 	sigset_t signal, retain;
433 	struct sigqueue *q, *n;
434 
435 	signal = pending->signal;
436 	sigemptyset(&retain);
437 
438 	list_for_each_entry_safe(q, n, &pending->list, list) {
439 		int sig = q->info.si_signo;
440 
441 		if (likely(q->info.si_code != SI_TIMER)) {
442 			sigaddset(&retain, sig);
443 		} else {
444 			sigdelset(&signal, sig);
445 			list_del_init(&q->list);
446 			__sigqueue_free(q);
447 		}
448 	}
449 
450 	sigorsets(&pending->signal, &signal, &retain);
451 }
452 
453 void flush_itimer_signals(void)
454 {
455 	struct task_struct *tsk = current;
456 	unsigned long flags;
457 
458 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
459 	__flush_itimer_signals(&tsk->pending);
460 	__flush_itimer_signals(&tsk->signal->shared_pending);
461 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
462 }
463 
464 void ignore_signals(struct task_struct *t)
465 {
466 	int i;
467 
468 	for (i = 0; i < _NSIG; ++i)
469 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
470 
471 	flush_signals(t);
472 }
473 
474 /*
475  * Flush all handlers for a task.
476  */
477 
478 void
479 flush_signal_handlers(struct task_struct *t, int force_default)
480 {
481 	int i;
482 	struct k_sigaction *ka = &t->sighand->action[0];
483 	for (i = _NSIG ; i != 0 ; i--) {
484 		if (force_default || ka->sa.sa_handler != SIG_IGN)
485 			ka->sa.sa_handler = SIG_DFL;
486 		ka->sa.sa_flags = 0;
487 #ifdef __ARCH_HAS_SA_RESTORER
488 		ka->sa.sa_restorer = NULL;
489 #endif
490 		sigemptyset(&ka->sa.sa_mask);
491 		ka++;
492 	}
493 }
494 
495 int unhandled_signal(struct task_struct *tsk, int sig)
496 {
497 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
498 	if (is_global_init(tsk))
499 		return 1;
500 	if (handler != SIG_IGN && handler != SIG_DFL)
501 		return 0;
502 	/* if ptraced, let the tracer determine */
503 	return !tsk->ptrace;
504 }
505 
506 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
507 {
508 	struct sigqueue *q, *first = NULL;
509 
510 	/*
511 	 * Collect the siginfo appropriate to this signal.  Check if
512 	 * there is another siginfo for the same signal.
513 	*/
514 	list_for_each_entry(q, &list->list, list) {
515 		if (q->info.si_signo == sig) {
516 			if (first)
517 				goto still_pending;
518 			first = q;
519 		}
520 	}
521 
522 	sigdelset(&list->signal, sig);
523 
524 	if (first) {
525 still_pending:
526 		list_del_init(&first->list);
527 		copy_siginfo(info, &first->info);
528 		__sigqueue_free(first);
529 	} else {
530 		/*
531 		 * Ok, it wasn't in the queue.  This must be
532 		 * a fast-pathed signal or we must have been
533 		 * out of queue space.  So zero out the info.
534 		 */
535 		info->si_signo = sig;
536 		info->si_errno = 0;
537 		info->si_code = SI_USER;
538 		info->si_pid = 0;
539 		info->si_uid = 0;
540 	}
541 }
542 
543 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
544 			siginfo_t *info)
545 {
546 	int sig = next_signal(pending, mask);
547 
548 	if (sig)
549 		collect_signal(sig, pending, info);
550 	return sig;
551 }
552 
553 /*
554  * Dequeue a signal and return the element to the caller, which is
555  * expected to free it.
556  *
557  * All callers have to hold the siglock.
558  */
559 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
560 {
561 	int signr;
562 
563 	/* We only dequeue private signals from ourselves, we don't let
564 	 * signalfd steal them
565 	 */
566 	signr = __dequeue_signal(&tsk->pending, mask, info);
567 	if (!signr) {
568 		signr = __dequeue_signal(&tsk->signal->shared_pending,
569 					 mask, info);
570 		/*
571 		 * itimer signal ?
572 		 *
573 		 * itimers are process shared and we restart periodic
574 		 * itimers in the signal delivery path to prevent DoS
575 		 * attacks in the high resolution timer case. This is
576 		 * compliant with the old way of self-restarting
577 		 * itimers, as the SIGALRM is a legacy signal and only
578 		 * queued once. Changing the restart behaviour to
579 		 * restart the timer in the signal dequeue path is
580 		 * reducing the timer noise on heavy loaded !highres
581 		 * systems too.
582 		 */
583 		if (unlikely(signr == SIGALRM)) {
584 			struct hrtimer *tmr = &tsk->signal->real_timer;
585 
586 			if (!hrtimer_is_queued(tmr) &&
587 			    tsk->signal->it_real_incr.tv64 != 0) {
588 				hrtimer_forward(tmr, tmr->base->get_time(),
589 						tsk->signal->it_real_incr);
590 				hrtimer_restart(tmr);
591 			}
592 		}
593 	}
594 
595 	recalc_sigpending();
596 	if (!signr)
597 		return 0;
598 
599 	if (unlikely(sig_kernel_stop(signr))) {
600 		/*
601 		 * Set a marker that we have dequeued a stop signal.  Our
602 		 * caller might release the siglock and then the pending
603 		 * stop signal it is about to process is no longer in the
604 		 * pending bitmasks, but must still be cleared by a SIGCONT
605 		 * (and overruled by a SIGKILL).  So those cases clear this
606 		 * shared flag after we've set it.  Note that this flag may
607 		 * remain set after the signal we return is ignored or
608 		 * handled.  That doesn't matter because its only purpose
609 		 * is to alert stop-signal processing code when another
610 		 * processor has come along and cleared the flag.
611 		 */
612 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
613 	}
614 	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
615 		/*
616 		 * Release the siglock to ensure proper locking order
617 		 * of timer locks outside of siglocks.  Note, we leave
618 		 * irqs disabled here, since the posix-timers code is
619 		 * about to disable them again anyway.
620 		 */
621 		spin_unlock(&tsk->sighand->siglock);
622 		do_schedule_next_timer(info);
623 		spin_lock(&tsk->sighand->siglock);
624 	}
625 	return signr;
626 }
627 
628 /*
629  * Tell a process that it has a new active signal..
630  *
631  * NOTE! we rely on the previous spin_lock to
632  * lock interrupts for us! We can only be called with
633  * "siglock" held, and the local interrupt must
634  * have been disabled when that got acquired!
635  *
636  * No need to set need_resched since signal event passing
637  * goes through ->blocked
638  */
639 void signal_wake_up_state(struct task_struct *t, unsigned int state)
640 {
641 	set_tsk_thread_flag(t, TIF_SIGPENDING);
642 	/*
643 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
644 	 * case. We don't check t->state here because there is a race with it
645 	 * executing another processor and just now entering stopped state.
646 	 * By using wake_up_state, we ensure the process will wake up and
647 	 * handle its death signal.
648 	 */
649 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
650 		kick_process(t);
651 }
652 
653 /*
654  * Remove signals in mask from the pending set and queue.
655  * Returns 1 if any signals were found.
656  *
657  * All callers must be holding the siglock.
658  */
659 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
660 {
661 	struct sigqueue *q, *n;
662 	sigset_t m;
663 
664 	sigandsets(&m, mask, &s->signal);
665 	if (sigisemptyset(&m))
666 		return 0;
667 
668 	sigandnsets(&s->signal, &s->signal, mask);
669 	list_for_each_entry_safe(q, n, &s->list, list) {
670 		if (sigismember(mask, q->info.si_signo)) {
671 			list_del_init(&q->list);
672 			__sigqueue_free(q);
673 		}
674 	}
675 	return 1;
676 }
677 
678 static inline int is_si_special(const struct siginfo *info)
679 {
680 	return info <= SEND_SIG_FORCED;
681 }
682 
683 static inline bool si_fromuser(const struct siginfo *info)
684 {
685 	return info == SEND_SIG_NOINFO ||
686 		(!is_si_special(info) && SI_FROMUSER(info));
687 }
688 
689 /*
690  * called with RCU read lock from check_kill_permission()
691  */
692 static int kill_ok_by_cred(struct task_struct *t)
693 {
694 	const struct cred *cred = current_cred();
695 	const struct cred *tcred = __task_cred(t);
696 
697 	if (uid_eq(cred->euid, tcred->suid) ||
698 	    uid_eq(cred->euid, tcred->uid)  ||
699 	    uid_eq(cred->uid,  tcred->suid) ||
700 	    uid_eq(cred->uid,  tcred->uid))
701 		return 1;
702 
703 	if (ns_capable(tcred->user_ns, CAP_KILL))
704 		return 1;
705 
706 	return 0;
707 }
708 
709 /*
710  * Bad permissions for sending the signal
711  * - the caller must hold the RCU read lock
712  */
713 static int check_kill_permission(int sig, struct siginfo *info,
714 				 struct task_struct *t)
715 {
716 	struct pid *sid;
717 	int error;
718 
719 	if (!valid_signal(sig))
720 		return -EINVAL;
721 
722 	if (!si_fromuser(info))
723 		return 0;
724 
725 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
726 	if (error)
727 		return error;
728 
729 	if (!same_thread_group(current, t) &&
730 	    !kill_ok_by_cred(t)) {
731 		switch (sig) {
732 		case SIGCONT:
733 			sid = task_session(t);
734 			/*
735 			 * We don't return the error if sid == NULL. The
736 			 * task was unhashed, the caller must notice this.
737 			 */
738 			if (!sid || sid == task_session(current))
739 				break;
740 		default:
741 			return -EPERM;
742 		}
743 	}
744 
745 	return security_task_kill(t, info, sig, 0);
746 }
747 
748 /**
749  * ptrace_trap_notify - schedule trap to notify ptracer
750  * @t: tracee wanting to notify tracer
751  *
752  * This function schedules sticky ptrace trap which is cleared on the next
753  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
754  * ptracer.
755  *
756  * If @t is running, STOP trap will be taken.  If trapped for STOP and
757  * ptracer is listening for events, tracee is woken up so that it can
758  * re-trap for the new event.  If trapped otherwise, STOP trap will be
759  * eventually taken without returning to userland after the existing traps
760  * are finished by PTRACE_CONT.
761  *
762  * CONTEXT:
763  * Must be called with @task->sighand->siglock held.
764  */
765 static void ptrace_trap_notify(struct task_struct *t)
766 {
767 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
768 	assert_spin_locked(&t->sighand->siglock);
769 
770 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
771 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
772 }
773 
774 /*
775  * Handle magic process-wide effects of stop/continue signals. Unlike
776  * the signal actions, these happen immediately at signal-generation
777  * time regardless of blocking, ignoring, or handling.  This does the
778  * actual continuing for SIGCONT, but not the actual stopping for stop
779  * signals. The process stop is done as a signal action for SIG_DFL.
780  *
781  * Returns true if the signal should be actually delivered, otherwise
782  * it should be dropped.
783  */
784 static bool prepare_signal(int sig, struct task_struct *p, bool force)
785 {
786 	struct signal_struct *signal = p->signal;
787 	struct task_struct *t;
788 	sigset_t flush;
789 
790 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
791 		if (!(signal->flags & SIGNAL_GROUP_EXIT))
792 			return sig == SIGKILL;
793 		/*
794 		 * The process is in the middle of dying, nothing to do.
795 		 */
796 	} else if (sig_kernel_stop(sig)) {
797 		/*
798 		 * This is a stop signal.  Remove SIGCONT from all queues.
799 		 */
800 		siginitset(&flush, sigmask(SIGCONT));
801 		flush_sigqueue_mask(&flush, &signal->shared_pending);
802 		for_each_thread(p, t)
803 			flush_sigqueue_mask(&flush, &t->pending);
804 	} else if (sig == SIGCONT) {
805 		unsigned int why;
806 		/*
807 		 * Remove all stop signals from all queues, wake all threads.
808 		 */
809 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
810 		flush_sigqueue_mask(&flush, &signal->shared_pending);
811 		for_each_thread(p, t) {
812 			flush_sigqueue_mask(&flush, &t->pending);
813 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
814 			if (likely(!(t->ptrace & PT_SEIZED)))
815 				wake_up_state(t, __TASK_STOPPED);
816 			else
817 				ptrace_trap_notify(t);
818 		}
819 
820 		/*
821 		 * Notify the parent with CLD_CONTINUED if we were stopped.
822 		 *
823 		 * If we were in the middle of a group stop, we pretend it
824 		 * was already finished, and then continued. Since SIGCHLD
825 		 * doesn't queue we report only CLD_STOPPED, as if the next
826 		 * CLD_CONTINUED was dropped.
827 		 */
828 		why = 0;
829 		if (signal->flags & SIGNAL_STOP_STOPPED)
830 			why |= SIGNAL_CLD_CONTINUED;
831 		else if (signal->group_stop_count)
832 			why |= SIGNAL_CLD_STOPPED;
833 
834 		if (why) {
835 			/*
836 			 * The first thread which returns from do_signal_stop()
837 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
838 			 * notify its parent. See get_signal_to_deliver().
839 			 */
840 			signal->flags = why | SIGNAL_STOP_CONTINUED;
841 			signal->group_stop_count = 0;
842 			signal->group_exit_code = 0;
843 		}
844 	}
845 
846 	return !sig_ignored(p, sig, force);
847 }
848 
849 /*
850  * Test if P wants to take SIG.  After we've checked all threads with this,
851  * it's equivalent to finding no threads not blocking SIG.  Any threads not
852  * blocking SIG were ruled out because they are not running and already
853  * have pending signals.  Such threads will dequeue from the shared queue
854  * as soon as they're available, so putting the signal on the shared queue
855  * will be equivalent to sending it to one such thread.
856  */
857 static inline int wants_signal(int sig, struct task_struct *p)
858 {
859 	if (sigismember(&p->blocked, sig))
860 		return 0;
861 	if (p->flags & PF_EXITING)
862 		return 0;
863 	if (sig == SIGKILL)
864 		return 1;
865 	if (task_is_stopped_or_traced(p))
866 		return 0;
867 	return task_curr(p) || !signal_pending(p);
868 }
869 
870 static void complete_signal(int sig, struct task_struct *p, int group)
871 {
872 	struct signal_struct *signal = p->signal;
873 	struct task_struct *t;
874 
875 	/*
876 	 * Now find a thread we can wake up to take the signal off the queue.
877 	 *
878 	 * If the main thread wants the signal, it gets first crack.
879 	 * Probably the least surprising to the average bear.
880 	 */
881 	if (wants_signal(sig, p))
882 		t = p;
883 	else if (!group || thread_group_empty(p))
884 		/*
885 		 * There is just one thread and it does not need to be woken.
886 		 * It will dequeue unblocked signals before it runs again.
887 		 */
888 		return;
889 	else {
890 		/*
891 		 * Otherwise try to find a suitable thread.
892 		 */
893 		t = signal->curr_target;
894 		while (!wants_signal(sig, t)) {
895 			t = next_thread(t);
896 			if (t == signal->curr_target)
897 				/*
898 				 * No thread needs to be woken.
899 				 * Any eligible threads will see
900 				 * the signal in the queue soon.
901 				 */
902 				return;
903 		}
904 		signal->curr_target = t;
905 	}
906 
907 	/*
908 	 * Found a killable thread.  If the signal will be fatal,
909 	 * then start taking the whole group down immediately.
910 	 */
911 	if (sig_fatal(p, sig) &&
912 	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
913 	    !sigismember(&t->real_blocked, sig) &&
914 	    (sig == SIGKILL || !t->ptrace)) {
915 		/*
916 		 * This signal will be fatal to the whole group.
917 		 */
918 		if (!sig_kernel_coredump(sig)) {
919 			/*
920 			 * Start a group exit and wake everybody up.
921 			 * This way we don't have other threads
922 			 * running and doing things after a slower
923 			 * thread has the fatal signal pending.
924 			 */
925 			signal->flags = SIGNAL_GROUP_EXIT;
926 			signal->group_exit_code = sig;
927 			signal->group_stop_count = 0;
928 			t = p;
929 			do {
930 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
931 				sigaddset(&t->pending.signal, SIGKILL);
932 				signal_wake_up(t, 1);
933 			} while_each_thread(p, t);
934 			return;
935 		}
936 	}
937 
938 	/*
939 	 * The signal is already in the shared-pending queue.
940 	 * Tell the chosen thread to wake up and dequeue it.
941 	 */
942 	signal_wake_up(t, sig == SIGKILL);
943 	return;
944 }
945 
946 static inline int legacy_queue(struct sigpending *signals, int sig)
947 {
948 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
949 }
950 
951 #ifdef CONFIG_USER_NS
952 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
953 {
954 	if (current_user_ns() == task_cred_xxx(t, user_ns))
955 		return;
956 
957 	if (SI_FROMKERNEL(info))
958 		return;
959 
960 	rcu_read_lock();
961 	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
962 					make_kuid(current_user_ns(), info->si_uid));
963 	rcu_read_unlock();
964 }
965 #else
966 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
967 {
968 	return;
969 }
970 #endif
971 
972 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
973 			int group, int from_ancestor_ns)
974 {
975 	struct sigpending *pending;
976 	struct sigqueue *q;
977 	int override_rlimit;
978 	int ret = 0, result;
979 
980 	assert_spin_locked(&t->sighand->siglock);
981 
982 	result = TRACE_SIGNAL_IGNORED;
983 	if (!prepare_signal(sig, t,
984 			from_ancestor_ns || (info == SEND_SIG_FORCED)))
985 		goto ret;
986 
987 	pending = group ? &t->signal->shared_pending : &t->pending;
988 	/*
989 	 * Short-circuit ignored signals and support queuing
990 	 * exactly one non-rt signal, so that we can get more
991 	 * detailed information about the cause of the signal.
992 	 */
993 	result = TRACE_SIGNAL_ALREADY_PENDING;
994 	if (legacy_queue(pending, sig))
995 		goto ret;
996 
997 	result = TRACE_SIGNAL_DELIVERED;
998 	/*
999 	 * fast-pathed signals for kernel-internal things like SIGSTOP
1000 	 * or SIGKILL.
1001 	 */
1002 	if (info == SEND_SIG_FORCED)
1003 		goto out_set;
1004 
1005 	/*
1006 	 * Real-time signals must be queued if sent by sigqueue, or
1007 	 * some other real-time mechanism.  It is implementation
1008 	 * defined whether kill() does so.  We attempt to do so, on
1009 	 * the principle of least surprise, but since kill is not
1010 	 * allowed to fail with EAGAIN when low on memory we just
1011 	 * make sure at least one signal gets delivered and don't
1012 	 * pass on the info struct.
1013 	 */
1014 	if (sig < SIGRTMIN)
1015 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1016 	else
1017 		override_rlimit = 0;
1018 
1019 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1020 		override_rlimit);
1021 	if (q) {
1022 		list_add_tail(&q->list, &pending->list);
1023 		switch ((unsigned long) info) {
1024 		case (unsigned long) SEND_SIG_NOINFO:
1025 			q->info.si_signo = sig;
1026 			q->info.si_errno = 0;
1027 			q->info.si_code = SI_USER;
1028 			q->info.si_pid = task_tgid_nr_ns(current,
1029 							task_active_pid_ns(t));
1030 			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1031 			break;
1032 		case (unsigned long) SEND_SIG_PRIV:
1033 			q->info.si_signo = sig;
1034 			q->info.si_errno = 0;
1035 			q->info.si_code = SI_KERNEL;
1036 			q->info.si_pid = 0;
1037 			q->info.si_uid = 0;
1038 			break;
1039 		default:
1040 			copy_siginfo(&q->info, info);
1041 			if (from_ancestor_ns)
1042 				q->info.si_pid = 0;
1043 			break;
1044 		}
1045 
1046 		userns_fixup_signal_uid(&q->info, t);
1047 
1048 	} else if (!is_si_special(info)) {
1049 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1050 			/*
1051 			 * Queue overflow, abort.  We may abort if the
1052 			 * signal was rt and sent by user using something
1053 			 * other than kill().
1054 			 */
1055 			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1056 			ret = -EAGAIN;
1057 			goto ret;
1058 		} else {
1059 			/*
1060 			 * This is a silent loss of information.  We still
1061 			 * send the signal, but the *info bits are lost.
1062 			 */
1063 			result = TRACE_SIGNAL_LOSE_INFO;
1064 		}
1065 	}
1066 
1067 out_set:
1068 	signalfd_notify(t, sig);
1069 	sigaddset(&pending->signal, sig);
1070 	complete_signal(sig, t, group);
1071 ret:
1072 	trace_signal_generate(sig, info, t, group, result);
1073 	return ret;
1074 }
1075 
1076 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1077 			int group)
1078 {
1079 	int from_ancestor_ns = 0;
1080 
1081 #ifdef CONFIG_PID_NS
1082 	from_ancestor_ns = si_fromuser(info) &&
1083 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1084 #endif
1085 
1086 	return __send_signal(sig, info, t, group, from_ancestor_ns);
1087 }
1088 
1089 static void print_fatal_signal(int signr)
1090 {
1091 	struct pt_regs *regs = signal_pt_regs();
1092 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1093 
1094 #if defined(__i386__) && !defined(__arch_um__)
1095 	pr_info("code at %08lx: ", regs->ip);
1096 	{
1097 		int i;
1098 		for (i = 0; i < 16; i++) {
1099 			unsigned char insn;
1100 
1101 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1102 				break;
1103 			pr_cont("%02x ", insn);
1104 		}
1105 	}
1106 	pr_cont("\n");
1107 #endif
1108 	preempt_disable();
1109 	show_regs(regs);
1110 	preempt_enable();
1111 }
1112 
1113 static int __init setup_print_fatal_signals(char *str)
1114 {
1115 	get_option (&str, &print_fatal_signals);
1116 
1117 	return 1;
1118 }
1119 
1120 __setup("print-fatal-signals=", setup_print_fatal_signals);
1121 
1122 int
1123 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1124 {
1125 	return send_signal(sig, info, p, 1);
1126 }
1127 
1128 static int
1129 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1130 {
1131 	return send_signal(sig, info, t, 0);
1132 }
1133 
1134 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1135 			bool group)
1136 {
1137 	unsigned long flags;
1138 	int ret = -ESRCH;
1139 
1140 	if (lock_task_sighand(p, &flags)) {
1141 		ret = send_signal(sig, info, p, group);
1142 		unlock_task_sighand(p, &flags);
1143 	}
1144 
1145 	return ret;
1146 }
1147 
1148 /*
1149  * Force a signal that the process can't ignore: if necessary
1150  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1151  *
1152  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1153  * since we do not want to have a signal handler that was blocked
1154  * be invoked when user space had explicitly blocked it.
1155  *
1156  * We don't want to have recursive SIGSEGV's etc, for example,
1157  * that is why we also clear SIGNAL_UNKILLABLE.
1158  */
1159 int
1160 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1161 {
1162 	unsigned long int flags;
1163 	int ret, blocked, ignored;
1164 	struct k_sigaction *action;
1165 
1166 	spin_lock_irqsave(&t->sighand->siglock, flags);
1167 	action = &t->sighand->action[sig-1];
1168 	ignored = action->sa.sa_handler == SIG_IGN;
1169 	blocked = sigismember(&t->blocked, sig);
1170 	if (blocked || ignored) {
1171 		action->sa.sa_handler = SIG_DFL;
1172 		if (blocked) {
1173 			sigdelset(&t->blocked, sig);
1174 			recalc_sigpending_and_wake(t);
1175 		}
1176 	}
1177 	if (action->sa.sa_handler == SIG_DFL)
1178 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1179 	ret = specific_send_sig_info(sig, info, t);
1180 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1181 
1182 	return ret;
1183 }
1184 
1185 /*
1186  * Nuke all other threads in the group.
1187  */
1188 int zap_other_threads(struct task_struct *p)
1189 {
1190 	struct task_struct *t = p;
1191 	int count = 0;
1192 
1193 	p->signal->group_stop_count = 0;
1194 
1195 	while_each_thread(p, t) {
1196 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1197 		count++;
1198 
1199 		/* Don't bother with already dead threads */
1200 		if (t->exit_state)
1201 			continue;
1202 		sigaddset(&t->pending.signal, SIGKILL);
1203 		signal_wake_up(t, 1);
1204 	}
1205 
1206 	return count;
1207 }
1208 
1209 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1210 					   unsigned long *flags)
1211 {
1212 	struct sighand_struct *sighand;
1213 
1214 	for (;;) {
1215 		/*
1216 		 * Disable interrupts early to avoid deadlocks.
1217 		 * See rcu_read_unlock() comment header for details.
1218 		 */
1219 		local_irq_save(*flags);
1220 		rcu_read_lock();
1221 		sighand = rcu_dereference(tsk->sighand);
1222 		if (unlikely(sighand == NULL)) {
1223 			rcu_read_unlock();
1224 			local_irq_restore(*flags);
1225 			break;
1226 		}
1227 		/*
1228 		 * This sighand can be already freed and even reused, but
1229 		 * we rely on SLAB_DESTROY_BY_RCU and sighand_ctor() which
1230 		 * initializes ->siglock: this slab can't go away, it has
1231 		 * the same object type, ->siglock can't be reinitialized.
1232 		 *
1233 		 * We need to ensure that tsk->sighand is still the same
1234 		 * after we take the lock, we can race with de_thread() or
1235 		 * __exit_signal(). In the latter case the next iteration
1236 		 * must see ->sighand == NULL.
1237 		 */
1238 		spin_lock(&sighand->siglock);
1239 		if (likely(sighand == tsk->sighand)) {
1240 			rcu_read_unlock();
1241 			break;
1242 		}
1243 		spin_unlock(&sighand->siglock);
1244 		rcu_read_unlock();
1245 		local_irq_restore(*flags);
1246 	}
1247 
1248 	return sighand;
1249 }
1250 
1251 /*
1252  * send signal info to all the members of a group
1253  */
1254 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1255 {
1256 	int ret;
1257 
1258 	rcu_read_lock();
1259 	ret = check_kill_permission(sig, info, p);
1260 	rcu_read_unlock();
1261 
1262 	if (!ret && sig)
1263 		ret = do_send_sig_info(sig, info, p, true);
1264 
1265 	return ret;
1266 }
1267 
1268 /*
1269  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1270  * control characters do (^C, ^Z etc)
1271  * - the caller must hold at least a readlock on tasklist_lock
1272  */
1273 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1274 {
1275 	struct task_struct *p = NULL;
1276 	int retval, success;
1277 
1278 	success = 0;
1279 	retval = -ESRCH;
1280 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1281 		int err = group_send_sig_info(sig, info, p);
1282 		success |= !err;
1283 		retval = err;
1284 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1285 	return success ? 0 : retval;
1286 }
1287 
1288 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1289 {
1290 	int error = -ESRCH;
1291 	struct task_struct *p;
1292 
1293 	for (;;) {
1294 		rcu_read_lock();
1295 		p = pid_task(pid, PIDTYPE_PID);
1296 		if (p)
1297 			error = group_send_sig_info(sig, info, p);
1298 		rcu_read_unlock();
1299 		if (likely(!p || error != -ESRCH))
1300 			return error;
1301 
1302 		/*
1303 		 * The task was unhashed in between, try again.  If it
1304 		 * is dead, pid_task() will return NULL, if we race with
1305 		 * de_thread() it will find the new leader.
1306 		 */
1307 	}
1308 }
1309 
1310 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1311 {
1312 	int error;
1313 	rcu_read_lock();
1314 	error = kill_pid_info(sig, info, find_vpid(pid));
1315 	rcu_read_unlock();
1316 	return error;
1317 }
1318 
1319 static int kill_as_cred_perm(const struct cred *cred,
1320 			     struct task_struct *target)
1321 {
1322 	const struct cred *pcred = __task_cred(target);
1323 	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1324 	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1325 		return 0;
1326 	return 1;
1327 }
1328 
1329 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1330 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1331 			 const struct cred *cred, u32 secid)
1332 {
1333 	int ret = -EINVAL;
1334 	struct task_struct *p;
1335 	unsigned long flags;
1336 
1337 	if (!valid_signal(sig))
1338 		return ret;
1339 
1340 	rcu_read_lock();
1341 	p = pid_task(pid, PIDTYPE_PID);
1342 	if (!p) {
1343 		ret = -ESRCH;
1344 		goto out_unlock;
1345 	}
1346 	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1347 		ret = -EPERM;
1348 		goto out_unlock;
1349 	}
1350 	ret = security_task_kill(p, info, sig, secid);
1351 	if (ret)
1352 		goto out_unlock;
1353 
1354 	if (sig) {
1355 		if (lock_task_sighand(p, &flags)) {
1356 			ret = __send_signal(sig, info, p, 1, 0);
1357 			unlock_task_sighand(p, &flags);
1358 		} else
1359 			ret = -ESRCH;
1360 	}
1361 out_unlock:
1362 	rcu_read_unlock();
1363 	return ret;
1364 }
1365 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1366 
1367 /*
1368  * kill_something_info() interprets pid in interesting ways just like kill(2).
1369  *
1370  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1371  * is probably wrong.  Should make it like BSD or SYSV.
1372  */
1373 
1374 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1375 {
1376 	int ret;
1377 
1378 	if (pid > 0) {
1379 		rcu_read_lock();
1380 		ret = kill_pid_info(sig, info, find_vpid(pid));
1381 		rcu_read_unlock();
1382 		return ret;
1383 	}
1384 
1385 	read_lock(&tasklist_lock);
1386 	if (pid != -1) {
1387 		ret = __kill_pgrp_info(sig, info,
1388 				pid ? find_vpid(-pid) : task_pgrp(current));
1389 	} else {
1390 		int retval = 0, count = 0;
1391 		struct task_struct * p;
1392 
1393 		for_each_process(p) {
1394 			if (task_pid_vnr(p) > 1 &&
1395 					!same_thread_group(p, current)) {
1396 				int err = group_send_sig_info(sig, info, p);
1397 				++count;
1398 				if (err != -EPERM)
1399 					retval = err;
1400 			}
1401 		}
1402 		ret = count ? retval : -ESRCH;
1403 	}
1404 	read_unlock(&tasklist_lock);
1405 
1406 	return ret;
1407 }
1408 
1409 /*
1410  * These are for backward compatibility with the rest of the kernel source.
1411  */
1412 
1413 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1414 {
1415 	/*
1416 	 * Make sure legacy kernel users don't send in bad values
1417 	 * (normal paths check this in check_kill_permission).
1418 	 */
1419 	if (!valid_signal(sig))
1420 		return -EINVAL;
1421 
1422 	return do_send_sig_info(sig, info, p, false);
1423 }
1424 
1425 #define __si_special(priv) \
1426 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1427 
1428 int
1429 send_sig(int sig, struct task_struct *p, int priv)
1430 {
1431 	return send_sig_info(sig, __si_special(priv), p);
1432 }
1433 
1434 void
1435 force_sig(int sig, struct task_struct *p)
1436 {
1437 	force_sig_info(sig, SEND_SIG_PRIV, p);
1438 }
1439 
1440 /*
1441  * When things go south during signal handling, we
1442  * will force a SIGSEGV. And if the signal that caused
1443  * the problem was already a SIGSEGV, we'll want to
1444  * make sure we don't even try to deliver the signal..
1445  */
1446 int
1447 force_sigsegv(int sig, struct task_struct *p)
1448 {
1449 	if (sig == SIGSEGV) {
1450 		unsigned long flags;
1451 		spin_lock_irqsave(&p->sighand->siglock, flags);
1452 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1453 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1454 	}
1455 	force_sig(SIGSEGV, p);
1456 	return 0;
1457 }
1458 
1459 int kill_pgrp(struct pid *pid, int sig, int priv)
1460 {
1461 	int ret;
1462 
1463 	read_lock(&tasklist_lock);
1464 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1465 	read_unlock(&tasklist_lock);
1466 
1467 	return ret;
1468 }
1469 EXPORT_SYMBOL(kill_pgrp);
1470 
1471 int kill_pid(struct pid *pid, int sig, int priv)
1472 {
1473 	return kill_pid_info(sig, __si_special(priv), pid);
1474 }
1475 EXPORT_SYMBOL(kill_pid);
1476 
1477 /*
1478  * These functions support sending signals using preallocated sigqueue
1479  * structures.  This is needed "because realtime applications cannot
1480  * afford to lose notifications of asynchronous events, like timer
1481  * expirations or I/O completions".  In the case of POSIX Timers
1482  * we allocate the sigqueue structure from the timer_create.  If this
1483  * allocation fails we are able to report the failure to the application
1484  * with an EAGAIN error.
1485  */
1486 struct sigqueue *sigqueue_alloc(void)
1487 {
1488 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1489 
1490 	if (q)
1491 		q->flags |= SIGQUEUE_PREALLOC;
1492 
1493 	return q;
1494 }
1495 
1496 void sigqueue_free(struct sigqueue *q)
1497 {
1498 	unsigned long flags;
1499 	spinlock_t *lock = &current->sighand->siglock;
1500 
1501 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1502 	/*
1503 	 * We must hold ->siglock while testing q->list
1504 	 * to serialize with collect_signal() or with
1505 	 * __exit_signal()->flush_sigqueue().
1506 	 */
1507 	spin_lock_irqsave(lock, flags);
1508 	q->flags &= ~SIGQUEUE_PREALLOC;
1509 	/*
1510 	 * If it is queued it will be freed when dequeued,
1511 	 * like the "regular" sigqueue.
1512 	 */
1513 	if (!list_empty(&q->list))
1514 		q = NULL;
1515 	spin_unlock_irqrestore(lock, flags);
1516 
1517 	if (q)
1518 		__sigqueue_free(q);
1519 }
1520 
1521 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1522 {
1523 	int sig = q->info.si_signo;
1524 	struct sigpending *pending;
1525 	unsigned long flags;
1526 	int ret, result;
1527 
1528 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1529 
1530 	ret = -1;
1531 	if (!likely(lock_task_sighand(t, &flags)))
1532 		goto ret;
1533 
1534 	ret = 1; /* the signal is ignored */
1535 	result = TRACE_SIGNAL_IGNORED;
1536 	if (!prepare_signal(sig, t, false))
1537 		goto out;
1538 
1539 	ret = 0;
1540 	if (unlikely(!list_empty(&q->list))) {
1541 		/*
1542 		 * If an SI_TIMER entry is already queue just increment
1543 		 * the overrun count.
1544 		 */
1545 		BUG_ON(q->info.si_code != SI_TIMER);
1546 		q->info.si_overrun++;
1547 		result = TRACE_SIGNAL_ALREADY_PENDING;
1548 		goto out;
1549 	}
1550 	q->info.si_overrun = 0;
1551 
1552 	signalfd_notify(t, sig);
1553 	pending = group ? &t->signal->shared_pending : &t->pending;
1554 	list_add_tail(&q->list, &pending->list);
1555 	sigaddset(&pending->signal, sig);
1556 	complete_signal(sig, t, group);
1557 	result = TRACE_SIGNAL_DELIVERED;
1558 out:
1559 	trace_signal_generate(sig, &q->info, t, group, result);
1560 	unlock_task_sighand(t, &flags);
1561 ret:
1562 	return ret;
1563 }
1564 
1565 /*
1566  * Let a parent know about the death of a child.
1567  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1568  *
1569  * Returns true if our parent ignored us and so we've switched to
1570  * self-reaping.
1571  */
1572 bool do_notify_parent(struct task_struct *tsk, int sig)
1573 {
1574 	struct siginfo info;
1575 	unsigned long flags;
1576 	struct sighand_struct *psig;
1577 	bool autoreap = false;
1578 	cputime_t utime, stime;
1579 
1580 	BUG_ON(sig == -1);
1581 
1582  	/* do_notify_parent_cldstop should have been called instead.  */
1583  	BUG_ON(task_is_stopped_or_traced(tsk));
1584 
1585 	BUG_ON(!tsk->ptrace &&
1586 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1587 
1588 	if (sig != SIGCHLD) {
1589 		/*
1590 		 * This is only possible if parent == real_parent.
1591 		 * Check if it has changed security domain.
1592 		 */
1593 		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1594 			sig = SIGCHLD;
1595 	}
1596 
1597 	info.si_signo = sig;
1598 	info.si_errno = 0;
1599 	/*
1600 	 * We are under tasklist_lock here so our parent is tied to
1601 	 * us and cannot change.
1602 	 *
1603 	 * task_active_pid_ns will always return the same pid namespace
1604 	 * until a task passes through release_task.
1605 	 *
1606 	 * write_lock() currently calls preempt_disable() which is the
1607 	 * same as rcu_read_lock(), but according to Oleg, this is not
1608 	 * correct to rely on this
1609 	 */
1610 	rcu_read_lock();
1611 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1612 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1613 				       task_uid(tsk));
1614 	rcu_read_unlock();
1615 
1616 	task_cputime(tsk, &utime, &stime);
1617 	info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1618 	info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1619 
1620 	info.si_status = tsk->exit_code & 0x7f;
1621 	if (tsk->exit_code & 0x80)
1622 		info.si_code = CLD_DUMPED;
1623 	else if (tsk->exit_code & 0x7f)
1624 		info.si_code = CLD_KILLED;
1625 	else {
1626 		info.si_code = CLD_EXITED;
1627 		info.si_status = tsk->exit_code >> 8;
1628 	}
1629 
1630 	psig = tsk->parent->sighand;
1631 	spin_lock_irqsave(&psig->siglock, flags);
1632 	if (!tsk->ptrace && sig == SIGCHLD &&
1633 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1634 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1635 		/*
1636 		 * We are exiting and our parent doesn't care.  POSIX.1
1637 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1638 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1639 		 * automatically and not left for our parent's wait4 call.
1640 		 * Rather than having the parent do it as a magic kind of
1641 		 * signal handler, we just set this to tell do_exit that we
1642 		 * can be cleaned up without becoming a zombie.  Note that
1643 		 * we still call __wake_up_parent in this case, because a
1644 		 * blocked sys_wait4 might now return -ECHILD.
1645 		 *
1646 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1647 		 * is implementation-defined: we do (if you don't want
1648 		 * it, just use SIG_IGN instead).
1649 		 */
1650 		autoreap = true;
1651 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1652 			sig = 0;
1653 	}
1654 	if (valid_signal(sig) && sig)
1655 		__group_send_sig_info(sig, &info, tsk->parent);
1656 	__wake_up_parent(tsk, tsk->parent);
1657 	spin_unlock_irqrestore(&psig->siglock, flags);
1658 
1659 	return autoreap;
1660 }
1661 
1662 /**
1663  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1664  * @tsk: task reporting the state change
1665  * @for_ptracer: the notification is for ptracer
1666  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1667  *
1668  * Notify @tsk's parent that the stopped/continued state has changed.  If
1669  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1670  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1671  *
1672  * CONTEXT:
1673  * Must be called with tasklist_lock at least read locked.
1674  */
1675 static void do_notify_parent_cldstop(struct task_struct *tsk,
1676 				     bool for_ptracer, int why)
1677 {
1678 	struct siginfo info;
1679 	unsigned long flags;
1680 	struct task_struct *parent;
1681 	struct sighand_struct *sighand;
1682 	cputime_t utime, stime;
1683 
1684 	if (for_ptracer) {
1685 		parent = tsk->parent;
1686 	} else {
1687 		tsk = tsk->group_leader;
1688 		parent = tsk->real_parent;
1689 	}
1690 
1691 	info.si_signo = SIGCHLD;
1692 	info.si_errno = 0;
1693 	/*
1694 	 * see comment in do_notify_parent() about the following 4 lines
1695 	 */
1696 	rcu_read_lock();
1697 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1698 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1699 	rcu_read_unlock();
1700 
1701 	task_cputime(tsk, &utime, &stime);
1702 	info.si_utime = cputime_to_clock_t(utime);
1703 	info.si_stime = cputime_to_clock_t(stime);
1704 
1705  	info.si_code = why;
1706  	switch (why) {
1707  	case CLD_CONTINUED:
1708  		info.si_status = SIGCONT;
1709  		break;
1710  	case CLD_STOPPED:
1711  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1712  		break;
1713  	case CLD_TRAPPED:
1714  		info.si_status = tsk->exit_code & 0x7f;
1715  		break;
1716  	default:
1717  		BUG();
1718  	}
1719 
1720 	sighand = parent->sighand;
1721 	spin_lock_irqsave(&sighand->siglock, flags);
1722 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1723 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1724 		__group_send_sig_info(SIGCHLD, &info, parent);
1725 	/*
1726 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1727 	 */
1728 	__wake_up_parent(tsk, parent);
1729 	spin_unlock_irqrestore(&sighand->siglock, flags);
1730 }
1731 
1732 static inline int may_ptrace_stop(void)
1733 {
1734 	if (!likely(current->ptrace))
1735 		return 0;
1736 	/*
1737 	 * Are we in the middle of do_coredump?
1738 	 * If so and our tracer is also part of the coredump stopping
1739 	 * is a deadlock situation, and pointless because our tracer
1740 	 * is dead so don't allow us to stop.
1741 	 * If SIGKILL was already sent before the caller unlocked
1742 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1743 	 * is safe to enter schedule().
1744 	 *
1745 	 * This is almost outdated, a task with the pending SIGKILL can't
1746 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1747 	 * after SIGKILL was already dequeued.
1748 	 */
1749 	if (unlikely(current->mm->core_state) &&
1750 	    unlikely(current->mm == current->parent->mm))
1751 		return 0;
1752 
1753 	return 1;
1754 }
1755 
1756 /*
1757  * Return non-zero if there is a SIGKILL that should be waking us up.
1758  * Called with the siglock held.
1759  */
1760 static int sigkill_pending(struct task_struct *tsk)
1761 {
1762 	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1763 		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1764 }
1765 
1766 /*
1767  * This must be called with current->sighand->siglock held.
1768  *
1769  * This should be the path for all ptrace stops.
1770  * We always set current->last_siginfo while stopped here.
1771  * That makes it a way to test a stopped process for
1772  * being ptrace-stopped vs being job-control-stopped.
1773  *
1774  * If we actually decide not to stop at all because the tracer
1775  * is gone, we keep current->exit_code unless clear_code.
1776  */
1777 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1778 	__releases(&current->sighand->siglock)
1779 	__acquires(&current->sighand->siglock)
1780 {
1781 	bool gstop_done = false;
1782 
1783 	if (arch_ptrace_stop_needed(exit_code, info)) {
1784 		/*
1785 		 * The arch code has something special to do before a
1786 		 * ptrace stop.  This is allowed to block, e.g. for faults
1787 		 * on user stack pages.  We can't keep the siglock while
1788 		 * calling arch_ptrace_stop, so we must release it now.
1789 		 * To preserve proper semantics, we must do this before
1790 		 * any signal bookkeeping like checking group_stop_count.
1791 		 * Meanwhile, a SIGKILL could come in before we retake the
1792 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1793 		 * So after regaining the lock, we must check for SIGKILL.
1794 		 */
1795 		spin_unlock_irq(&current->sighand->siglock);
1796 		arch_ptrace_stop(exit_code, info);
1797 		spin_lock_irq(&current->sighand->siglock);
1798 		if (sigkill_pending(current))
1799 			return;
1800 	}
1801 
1802 	/*
1803 	 * We're committing to trapping.  TRACED should be visible before
1804 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1805 	 * Also, transition to TRACED and updates to ->jobctl should be
1806 	 * atomic with respect to siglock and should be done after the arch
1807 	 * hook as siglock is released and regrabbed across it.
1808 	 */
1809 	set_current_state(TASK_TRACED);
1810 
1811 	current->last_siginfo = info;
1812 	current->exit_code = exit_code;
1813 
1814 	/*
1815 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1816 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1817 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1818 	 * could be clear now.  We act as if SIGCONT is received after
1819 	 * TASK_TRACED is entered - ignore it.
1820 	 */
1821 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1822 		gstop_done = task_participate_group_stop(current);
1823 
1824 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1825 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1826 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1827 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1828 
1829 	/* entering a trap, clear TRAPPING */
1830 	task_clear_jobctl_trapping(current);
1831 
1832 	spin_unlock_irq(&current->sighand->siglock);
1833 	read_lock(&tasklist_lock);
1834 	if (may_ptrace_stop()) {
1835 		/*
1836 		 * Notify parents of the stop.
1837 		 *
1838 		 * While ptraced, there are two parents - the ptracer and
1839 		 * the real_parent of the group_leader.  The ptracer should
1840 		 * know about every stop while the real parent is only
1841 		 * interested in the completion of group stop.  The states
1842 		 * for the two don't interact with each other.  Notify
1843 		 * separately unless they're gonna be duplicates.
1844 		 */
1845 		do_notify_parent_cldstop(current, true, why);
1846 		if (gstop_done && ptrace_reparented(current))
1847 			do_notify_parent_cldstop(current, false, why);
1848 
1849 		/*
1850 		 * Don't want to allow preemption here, because
1851 		 * sys_ptrace() needs this task to be inactive.
1852 		 *
1853 		 * XXX: implement read_unlock_no_resched().
1854 		 */
1855 		preempt_disable();
1856 		read_unlock(&tasklist_lock);
1857 		preempt_enable_no_resched();
1858 		freezable_schedule();
1859 	} else {
1860 		/*
1861 		 * By the time we got the lock, our tracer went away.
1862 		 * Don't drop the lock yet, another tracer may come.
1863 		 *
1864 		 * If @gstop_done, the ptracer went away between group stop
1865 		 * completion and here.  During detach, it would have set
1866 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1867 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1868 		 * the real parent of the group stop completion is enough.
1869 		 */
1870 		if (gstop_done)
1871 			do_notify_parent_cldstop(current, false, why);
1872 
1873 		/* tasklist protects us from ptrace_freeze_traced() */
1874 		__set_current_state(TASK_RUNNING);
1875 		if (clear_code)
1876 			current->exit_code = 0;
1877 		read_unlock(&tasklist_lock);
1878 	}
1879 
1880 	/*
1881 	 * We are back.  Now reacquire the siglock before touching
1882 	 * last_siginfo, so that we are sure to have synchronized with
1883 	 * any signal-sending on another CPU that wants to examine it.
1884 	 */
1885 	spin_lock_irq(&current->sighand->siglock);
1886 	current->last_siginfo = NULL;
1887 
1888 	/* LISTENING can be set only during STOP traps, clear it */
1889 	current->jobctl &= ~JOBCTL_LISTENING;
1890 
1891 	/*
1892 	 * Queued signals ignored us while we were stopped for tracing.
1893 	 * So check for any that we should take before resuming user mode.
1894 	 * This sets TIF_SIGPENDING, but never clears it.
1895 	 */
1896 	recalc_sigpending_tsk(current);
1897 }
1898 
1899 static void ptrace_do_notify(int signr, int exit_code, int why)
1900 {
1901 	siginfo_t info;
1902 
1903 	memset(&info, 0, sizeof info);
1904 	info.si_signo = signr;
1905 	info.si_code = exit_code;
1906 	info.si_pid = task_pid_vnr(current);
1907 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1908 
1909 	/* Let the debugger run.  */
1910 	ptrace_stop(exit_code, why, 1, &info);
1911 }
1912 
1913 void ptrace_notify(int exit_code)
1914 {
1915 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1916 	if (unlikely(current->task_works))
1917 		task_work_run();
1918 
1919 	spin_lock_irq(&current->sighand->siglock);
1920 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1921 	spin_unlock_irq(&current->sighand->siglock);
1922 }
1923 
1924 /**
1925  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1926  * @signr: signr causing group stop if initiating
1927  *
1928  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1929  * and participate in it.  If already set, participate in the existing
1930  * group stop.  If participated in a group stop (and thus slept), %true is
1931  * returned with siglock released.
1932  *
1933  * If ptraced, this function doesn't handle stop itself.  Instead,
1934  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1935  * untouched.  The caller must ensure that INTERRUPT trap handling takes
1936  * places afterwards.
1937  *
1938  * CONTEXT:
1939  * Must be called with @current->sighand->siglock held, which is released
1940  * on %true return.
1941  *
1942  * RETURNS:
1943  * %false if group stop is already cancelled or ptrace trap is scheduled.
1944  * %true if participated in group stop.
1945  */
1946 static bool do_signal_stop(int signr)
1947 	__releases(&current->sighand->siglock)
1948 {
1949 	struct signal_struct *sig = current->signal;
1950 
1951 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1952 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1953 		struct task_struct *t;
1954 
1955 		/* signr will be recorded in task->jobctl for retries */
1956 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
1957 
1958 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
1959 		    unlikely(signal_group_exit(sig)))
1960 			return false;
1961 		/*
1962 		 * There is no group stop already in progress.  We must
1963 		 * initiate one now.
1964 		 *
1965 		 * While ptraced, a task may be resumed while group stop is
1966 		 * still in effect and then receive a stop signal and
1967 		 * initiate another group stop.  This deviates from the
1968 		 * usual behavior as two consecutive stop signals can't
1969 		 * cause two group stops when !ptraced.  That is why we
1970 		 * also check !task_is_stopped(t) below.
1971 		 *
1972 		 * The condition can be distinguished by testing whether
1973 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
1974 		 * group_exit_code in such case.
1975 		 *
1976 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
1977 		 * an intervening stop signal is required to cause two
1978 		 * continued events regardless of ptrace.
1979 		 */
1980 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
1981 			sig->group_exit_code = signr;
1982 
1983 		sig->group_stop_count = 0;
1984 
1985 		if (task_set_jobctl_pending(current, signr | gstop))
1986 			sig->group_stop_count++;
1987 
1988 		t = current;
1989 		while_each_thread(current, t) {
1990 			/*
1991 			 * Setting state to TASK_STOPPED for a group
1992 			 * stop is always done with the siglock held,
1993 			 * so this check has no races.
1994 			 */
1995 			if (!task_is_stopped(t) &&
1996 			    task_set_jobctl_pending(t, signr | gstop)) {
1997 				sig->group_stop_count++;
1998 				if (likely(!(t->ptrace & PT_SEIZED)))
1999 					signal_wake_up(t, 0);
2000 				else
2001 					ptrace_trap_notify(t);
2002 			}
2003 		}
2004 	}
2005 
2006 	if (likely(!current->ptrace)) {
2007 		int notify = 0;
2008 
2009 		/*
2010 		 * If there are no other threads in the group, or if there
2011 		 * is a group stop in progress and we are the last to stop,
2012 		 * report to the parent.
2013 		 */
2014 		if (task_participate_group_stop(current))
2015 			notify = CLD_STOPPED;
2016 
2017 		__set_current_state(TASK_STOPPED);
2018 		spin_unlock_irq(&current->sighand->siglock);
2019 
2020 		/*
2021 		 * Notify the parent of the group stop completion.  Because
2022 		 * we're not holding either the siglock or tasklist_lock
2023 		 * here, ptracer may attach inbetween; however, this is for
2024 		 * group stop and should always be delivered to the real
2025 		 * parent of the group leader.  The new ptracer will get
2026 		 * its notification when this task transitions into
2027 		 * TASK_TRACED.
2028 		 */
2029 		if (notify) {
2030 			read_lock(&tasklist_lock);
2031 			do_notify_parent_cldstop(current, false, notify);
2032 			read_unlock(&tasklist_lock);
2033 		}
2034 
2035 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2036 		freezable_schedule();
2037 		return true;
2038 	} else {
2039 		/*
2040 		 * While ptraced, group stop is handled by STOP trap.
2041 		 * Schedule it and let the caller deal with it.
2042 		 */
2043 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2044 		return false;
2045 	}
2046 }
2047 
2048 /**
2049  * do_jobctl_trap - take care of ptrace jobctl traps
2050  *
2051  * When PT_SEIZED, it's used for both group stop and explicit
2052  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2053  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2054  * the stop signal; otherwise, %SIGTRAP.
2055  *
2056  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2057  * number as exit_code and no siginfo.
2058  *
2059  * CONTEXT:
2060  * Must be called with @current->sighand->siglock held, which may be
2061  * released and re-acquired before returning with intervening sleep.
2062  */
2063 static void do_jobctl_trap(void)
2064 {
2065 	struct signal_struct *signal = current->signal;
2066 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2067 
2068 	if (current->ptrace & PT_SEIZED) {
2069 		if (!signal->group_stop_count &&
2070 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2071 			signr = SIGTRAP;
2072 		WARN_ON_ONCE(!signr);
2073 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2074 				 CLD_STOPPED);
2075 	} else {
2076 		WARN_ON_ONCE(!signr);
2077 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2078 		current->exit_code = 0;
2079 	}
2080 }
2081 
2082 static int ptrace_signal(int signr, siginfo_t *info)
2083 {
2084 	ptrace_signal_deliver();
2085 	/*
2086 	 * We do not check sig_kernel_stop(signr) but set this marker
2087 	 * unconditionally because we do not know whether debugger will
2088 	 * change signr. This flag has no meaning unless we are going
2089 	 * to stop after return from ptrace_stop(). In this case it will
2090 	 * be checked in do_signal_stop(), we should only stop if it was
2091 	 * not cleared by SIGCONT while we were sleeping. See also the
2092 	 * comment in dequeue_signal().
2093 	 */
2094 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2095 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2096 
2097 	/* We're back.  Did the debugger cancel the sig?  */
2098 	signr = current->exit_code;
2099 	if (signr == 0)
2100 		return signr;
2101 
2102 	current->exit_code = 0;
2103 
2104 	/*
2105 	 * Update the siginfo structure if the signal has
2106 	 * changed.  If the debugger wanted something
2107 	 * specific in the siginfo structure then it should
2108 	 * have updated *info via PTRACE_SETSIGINFO.
2109 	 */
2110 	if (signr != info->si_signo) {
2111 		info->si_signo = signr;
2112 		info->si_errno = 0;
2113 		info->si_code = SI_USER;
2114 		rcu_read_lock();
2115 		info->si_pid = task_pid_vnr(current->parent);
2116 		info->si_uid = from_kuid_munged(current_user_ns(),
2117 						task_uid(current->parent));
2118 		rcu_read_unlock();
2119 	}
2120 
2121 	/* If the (new) signal is now blocked, requeue it.  */
2122 	if (sigismember(&current->blocked, signr)) {
2123 		specific_send_sig_info(signr, info, current);
2124 		signr = 0;
2125 	}
2126 
2127 	return signr;
2128 }
2129 
2130 int get_signal(struct ksignal *ksig)
2131 {
2132 	struct sighand_struct *sighand = current->sighand;
2133 	struct signal_struct *signal = current->signal;
2134 	int signr;
2135 
2136 	if (unlikely(current->task_works))
2137 		task_work_run();
2138 
2139 	if (unlikely(uprobe_deny_signal()))
2140 		return 0;
2141 
2142 	/*
2143 	 * Do this once, we can't return to user-mode if freezing() == T.
2144 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2145 	 * thus do not need another check after return.
2146 	 */
2147 	try_to_freeze();
2148 
2149 relock:
2150 	spin_lock_irq(&sighand->siglock);
2151 	/*
2152 	 * Every stopped thread goes here after wakeup. Check to see if
2153 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2154 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2155 	 */
2156 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2157 		int why;
2158 
2159 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2160 			why = CLD_CONTINUED;
2161 		else
2162 			why = CLD_STOPPED;
2163 
2164 		signal->flags &= ~SIGNAL_CLD_MASK;
2165 
2166 		spin_unlock_irq(&sighand->siglock);
2167 
2168 		/*
2169 		 * Notify the parent that we're continuing.  This event is
2170 		 * always per-process and doesn't make whole lot of sense
2171 		 * for ptracers, who shouldn't consume the state via
2172 		 * wait(2) either, but, for backward compatibility, notify
2173 		 * the ptracer of the group leader too unless it's gonna be
2174 		 * a duplicate.
2175 		 */
2176 		read_lock(&tasklist_lock);
2177 		do_notify_parent_cldstop(current, false, why);
2178 
2179 		if (ptrace_reparented(current->group_leader))
2180 			do_notify_parent_cldstop(current->group_leader,
2181 						true, why);
2182 		read_unlock(&tasklist_lock);
2183 
2184 		goto relock;
2185 	}
2186 
2187 	for (;;) {
2188 		struct k_sigaction *ka;
2189 
2190 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2191 		    do_signal_stop(0))
2192 			goto relock;
2193 
2194 		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2195 			do_jobctl_trap();
2196 			spin_unlock_irq(&sighand->siglock);
2197 			goto relock;
2198 		}
2199 
2200 		signr = dequeue_signal(current, &current->blocked, &ksig->info);
2201 
2202 		if (!signr)
2203 			break; /* will return 0 */
2204 
2205 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2206 			signr = ptrace_signal(signr, &ksig->info);
2207 			if (!signr)
2208 				continue;
2209 		}
2210 
2211 		ka = &sighand->action[signr-1];
2212 
2213 		/* Trace actually delivered signals. */
2214 		trace_signal_deliver(signr, &ksig->info, ka);
2215 
2216 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2217 			continue;
2218 		if (ka->sa.sa_handler != SIG_DFL) {
2219 			/* Run the handler.  */
2220 			ksig->ka = *ka;
2221 
2222 			if (ka->sa.sa_flags & SA_ONESHOT)
2223 				ka->sa.sa_handler = SIG_DFL;
2224 
2225 			break; /* will return non-zero "signr" value */
2226 		}
2227 
2228 		/*
2229 		 * Now we are doing the default action for this signal.
2230 		 */
2231 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2232 			continue;
2233 
2234 		/*
2235 		 * Global init gets no signals it doesn't want.
2236 		 * Container-init gets no signals it doesn't want from same
2237 		 * container.
2238 		 *
2239 		 * Note that if global/container-init sees a sig_kernel_only()
2240 		 * signal here, the signal must have been generated internally
2241 		 * or must have come from an ancestor namespace. In either
2242 		 * case, the signal cannot be dropped.
2243 		 */
2244 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2245 				!sig_kernel_only(signr))
2246 			continue;
2247 
2248 		if (sig_kernel_stop(signr)) {
2249 			/*
2250 			 * The default action is to stop all threads in
2251 			 * the thread group.  The job control signals
2252 			 * do nothing in an orphaned pgrp, but SIGSTOP
2253 			 * always works.  Note that siglock needs to be
2254 			 * dropped during the call to is_orphaned_pgrp()
2255 			 * because of lock ordering with tasklist_lock.
2256 			 * This allows an intervening SIGCONT to be posted.
2257 			 * We need to check for that and bail out if necessary.
2258 			 */
2259 			if (signr != SIGSTOP) {
2260 				spin_unlock_irq(&sighand->siglock);
2261 
2262 				/* signals can be posted during this window */
2263 
2264 				if (is_current_pgrp_orphaned())
2265 					goto relock;
2266 
2267 				spin_lock_irq(&sighand->siglock);
2268 			}
2269 
2270 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2271 				/* It released the siglock.  */
2272 				goto relock;
2273 			}
2274 
2275 			/*
2276 			 * We didn't actually stop, due to a race
2277 			 * with SIGCONT or something like that.
2278 			 */
2279 			continue;
2280 		}
2281 
2282 		spin_unlock_irq(&sighand->siglock);
2283 
2284 		/*
2285 		 * Anything else is fatal, maybe with a core dump.
2286 		 */
2287 		current->flags |= PF_SIGNALED;
2288 
2289 		if (sig_kernel_coredump(signr)) {
2290 			if (print_fatal_signals)
2291 				print_fatal_signal(ksig->info.si_signo);
2292 			proc_coredump_connector(current);
2293 			/*
2294 			 * If it was able to dump core, this kills all
2295 			 * other threads in the group and synchronizes with
2296 			 * their demise.  If we lost the race with another
2297 			 * thread getting here, it set group_exit_code
2298 			 * first and our do_group_exit call below will use
2299 			 * that value and ignore the one we pass it.
2300 			 */
2301 			do_coredump(&ksig->info);
2302 		}
2303 
2304 		/*
2305 		 * Death signals, no core dump.
2306 		 */
2307 		do_group_exit(ksig->info.si_signo);
2308 		/* NOTREACHED */
2309 	}
2310 	spin_unlock_irq(&sighand->siglock);
2311 
2312 	ksig->sig = signr;
2313 	return ksig->sig > 0;
2314 }
2315 
2316 /**
2317  * signal_delivered -
2318  * @ksig:		kernel signal struct
2319  * @stepping:		nonzero if debugger single-step or block-step in use
2320  *
2321  * This function should be called when a signal has successfully been
2322  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2323  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2324  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2325  */
2326 static void signal_delivered(struct ksignal *ksig, int stepping)
2327 {
2328 	sigset_t blocked;
2329 
2330 	/* A signal was successfully delivered, and the
2331 	   saved sigmask was stored on the signal frame,
2332 	   and will be restored by sigreturn.  So we can
2333 	   simply clear the restore sigmask flag.  */
2334 	clear_restore_sigmask();
2335 
2336 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2337 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2338 		sigaddset(&blocked, ksig->sig);
2339 	set_current_blocked(&blocked);
2340 	tracehook_signal_handler(stepping);
2341 }
2342 
2343 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2344 {
2345 	if (failed)
2346 		force_sigsegv(ksig->sig, current);
2347 	else
2348 		signal_delivered(ksig, stepping);
2349 }
2350 
2351 /*
2352  * It could be that complete_signal() picked us to notify about the
2353  * group-wide signal. Other threads should be notified now to take
2354  * the shared signals in @which since we will not.
2355  */
2356 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2357 {
2358 	sigset_t retarget;
2359 	struct task_struct *t;
2360 
2361 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2362 	if (sigisemptyset(&retarget))
2363 		return;
2364 
2365 	t = tsk;
2366 	while_each_thread(tsk, t) {
2367 		if (t->flags & PF_EXITING)
2368 			continue;
2369 
2370 		if (!has_pending_signals(&retarget, &t->blocked))
2371 			continue;
2372 		/* Remove the signals this thread can handle. */
2373 		sigandsets(&retarget, &retarget, &t->blocked);
2374 
2375 		if (!signal_pending(t))
2376 			signal_wake_up(t, 0);
2377 
2378 		if (sigisemptyset(&retarget))
2379 			break;
2380 	}
2381 }
2382 
2383 void exit_signals(struct task_struct *tsk)
2384 {
2385 	int group_stop = 0;
2386 	sigset_t unblocked;
2387 
2388 	/*
2389 	 * @tsk is about to have PF_EXITING set - lock out users which
2390 	 * expect stable threadgroup.
2391 	 */
2392 	threadgroup_change_begin(tsk);
2393 
2394 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2395 		tsk->flags |= PF_EXITING;
2396 		threadgroup_change_end(tsk);
2397 		return;
2398 	}
2399 
2400 	spin_lock_irq(&tsk->sighand->siglock);
2401 	/*
2402 	 * From now this task is not visible for group-wide signals,
2403 	 * see wants_signal(), do_signal_stop().
2404 	 */
2405 	tsk->flags |= PF_EXITING;
2406 
2407 	threadgroup_change_end(tsk);
2408 
2409 	if (!signal_pending(tsk))
2410 		goto out;
2411 
2412 	unblocked = tsk->blocked;
2413 	signotset(&unblocked);
2414 	retarget_shared_pending(tsk, &unblocked);
2415 
2416 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2417 	    task_participate_group_stop(tsk))
2418 		group_stop = CLD_STOPPED;
2419 out:
2420 	spin_unlock_irq(&tsk->sighand->siglock);
2421 
2422 	/*
2423 	 * If group stop has completed, deliver the notification.  This
2424 	 * should always go to the real parent of the group leader.
2425 	 */
2426 	if (unlikely(group_stop)) {
2427 		read_lock(&tasklist_lock);
2428 		do_notify_parent_cldstop(tsk, false, group_stop);
2429 		read_unlock(&tasklist_lock);
2430 	}
2431 }
2432 
2433 EXPORT_SYMBOL(recalc_sigpending);
2434 EXPORT_SYMBOL_GPL(dequeue_signal);
2435 EXPORT_SYMBOL(flush_signals);
2436 EXPORT_SYMBOL(force_sig);
2437 EXPORT_SYMBOL(send_sig);
2438 EXPORT_SYMBOL(send_sig_info);
2439 EXPORT_SYMBOL(sigprocmask);
2440 
2441 /*
2442  * System call entry points.
2443  */
2444 
2445 /**
2446  *  sys_restart_syscall - restart a system call
2447  */
2448 SYSCALL_DEFINE0(restart_syscall)
2449 {
2450 	struct restart_block *restart = &current->restart_block;
2451 	return restart->fn(restart);
2452 }
2453 
2454 long do_no_restart_syscall(struct restart_block *param)
2455 {
2456 	return -EINTR;
2457 }
2458 
2459 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2460 {
2461 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2462 		sigset_t newblocked;
2463 		/* A set of now blocked but previously unblocked signals. */
2464 		sigandnsets(&newblocked, newset, &current->blocked);
2465 		retarget_shared_pending(tsk, &newblocked);
2466 	}
2467 	tsk->blocked = *newset;
2468 	recalc_sigpending();
2469 }
2470 
2471 /**
2472  * set_current_blocked - change current->blocked mask
2473  * @newset: new mask
2474  *
2475  * It is wrong to change ->blocked directly, this helper should be used
2476  * to ensure the process can't miss a shared signal we are going to block.
2477  */
2478 void set_current_blocked(sigset_t *newset)
2479 {
2480 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2481 	__set_current_blocked(newset);
2482 }
2483 
2484 void __set_current_blocked(const sigset_t *newset)
2485 {
2486 	struct task_struct *tsk = current;
2487 
2488 	spin_lock_irq(&tsk->sighand->siglock);
2489 	__set_task_blocked(tsk, newset);
2490 	spin_unlock_irq(&tsk->sighand->siglock);
2491 }
2492 
2493 /*
2494  * This is also useful for kernel threads that want to temporarily
2495  * (or permanently) block certain signals.
2496  *
2497  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2498  * interface happily blocks "unblockable" signals like SIGKILL
2499  * and friends.
2500  */
2501 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2502 {
2503 	struct task_struct *tsk = current;
2504 	sigset_t newset;
2505 
2506 	/* Lockless, only current can change ->blocked, never from irq */
2507 	if (oldset)
2508 		*oldset = tsk->blocked;
2509 
2510 	switch (how) {
2511 	case SIG_BLOCK:
2512 		sigorsets(&newset, &tsk->blocked, set);
2513 		break;
2514 	case SIG_UNBLOCK:
2515 		sigandnsets(&newset, &tsk->blocked, set);
2516 		break;
2517 	case SIG_SETMASK:
2518 		newset = *set;
2519 		break;
2520 	default:
2521 		return -EINVAL;
2522 	}
2523 
2524 	__set_current_blocked(&newset);
2525 	return 0;
2526 }
2527 
2528 /**
2529  *  sys_rt_sigprocmask - change the list of currently blocked signals
2530  *  @how: whether to add, remove, or set signals
2531  *  @nset: stores pending signals
2532  *  @oset: previous value of signal mask if non-null
2533  *  @sigsetsize: size of sigset_t type
2534  */
2535 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2536 		sigset_t __user *, oset, size_t, sigsetsize)
2537 {
2538 	sigset_t old_set, new_set;
2539 	int error;
2540 
2541 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2542 	if (sigsetsize != sizeof(sigset_t))
2543 		return -EINVAL;
2544 
2545 	old_set = current->blocked;
2546 
2547 	if (nset) {
2548 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2549 			return -EFAULT;
2550 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2551 
2552 		error = sigprocmask(how, &new_set, NULL);
2553 		if (error)
2554 			return error;
2555 	}
2556 
2557 	if (oset) {
2558 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2559 			return -EFAULT;
2560 	}
2561 
2562 	return 0;
2563 }
2564 
2565 #ifdef CONFIG_COMPAT
2566 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2567 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2568 {
2569 #ifdef __BIG_ENDIAN
2570 	sigset_t old_set = current->blocked;
2571 
2572 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2573 	if (sigsetsize != sizeof(sigset_t))
2574 		return -EINVAL;
2575 
2576 	if (nset) {
2577 		compat_sigset_t new32;
2578 		sigset_t new_set;
2579 		int error;
2580 		if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2581 			return -EFAULT;
2582 
2583 		sigset_from_compat(&new_set, &new32);
2584 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2585 
2586 		error = sigprocmask(how, &new_set, NULL);
2587 		if (error)
2588 			return error;
2589 	}
2590 	if (oset) {
2591 		compat_sigset_t old32;
2592 		sigset_to_compat(&old32, &old_set);
2593 		if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2594 			return -EFAULT;
2595 	}
2596 	return 0;
2597 #else
2598 	return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2599 				  (sigset_t __user *)oset, sigsetsize);
2600 #endif
2601 }
2602 #endif
2603 
2604 static int do_sigpending(void *set, unsigned long sigsetsize)
2605 {
2606 	if (sigsetsize > sizeof(sigset_t))
2607 		return -EINVAL;
2608 
2609 	spin_lock_irq(&current->sighand->siglock);
2610 	sigorsets(set, &current->pending.signal,
2611 		  &current->signal->shared_pending.signal);
2612 	spin_unlock_irq(&current->sighand->siglock);
2613 
2614 	/* Outside the lock because only this thread touches it.  */
2615 	sigandsets(set, &current->blocked, set);
2616 	return 0;
2617 }
2618 
2619 /**
2620  *  sys_rt_sigpending - examine a pending signal that has been raised
2621  *			while blocked
2622  *  @uset: stores pending signals
2623  *  @sigsetsize: size of sigset_t type or larger
2624  */
2625 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2626 {
2627 	sigset_t set;
2628 	int err = do_sigpending(&set, sigsetsize);
2629 	if (!err && copy_to_user(uset, &set, sigsetsize))
2630 		err = -EFAULT;
2631 	return err;
2632 }
2633 
2634 #ifdef CONFIG_COMPAT
2635 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2636 		compat_size_t, sigsetsize)
2637 {
2638 #ifdef __BIG_ENDIAN
2639 	sigset_t set;
2640 	int err = do_sigpending(&set, sigsetsize);
2641 	if (!err) {
2642 		compat_sigset_t set32;
2643 		sigset_to_compat(&set32, &set);
2644 		/* we can get here only if sigsetsize <= sizeof(set) */
2645 		if (copy_to_user(uset, &set32, sigsetsize))
2646 			err = -EFAULT;
2647 	}
2648 	return err;
2649 #else
2650 	return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2651 #endif
2652 }
2653 #endif
2654 
2655 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2656 
2657 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2658 {
2659 	int err;
2660 
2661 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2662 		return -EFAULT;
2663 	if (from->si_code < 0)
2664 		return __copy_to_user(to, from, sizeof(siginfo_t))
2665 			? -EFAULT : 0;
2666 	/*
2667 	 * If you change siginfo_t structure, please be sure
2668 	 * this code is fixed accordingly.
2669 	 * Please remember to update the signalfd_copyinfo() function
2670 	 * inside fs/signalfd.c too, in case siginfo_t changes.
2671 	 * It should never copy any pad contained in the structure
2672 	 * to avoid security leaks, but must copy the generic
2673 	 * 3 ints plus the relevant union member.
2674 	 */
2675 	err = __put_user(from->si_signo, &to->si_signo);
2676 	err |= __put_user(from->si_errno, &to->si_errno);
2677 	err |= __put_user((short)from->si_code, &to->si_code);
2678 	switch (from->si_code & __SI_MASK) {
2679 	case __SI_KILL:
2680 		err |= __put_user(from->si_pid, &to->si_pid);
2681 		err |= __put_user(from->si_uid, &to->si_uid);
2682 		break;
2683 	case __SI_TIMER:
2684 		 err |= __put_user(from->si_tid, &to->si_tid);
2685 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2686 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2687 		break;
2688 	case __SI_POLL:
2689 		err |= __put_user(from->si_band, &to->si_band);
2690 		err |= __put_user(from->si_fd, &to->si_fd);
2691 		break;
2692 	case __SI_FAULT:
2693 		err |= __put_user(from->si_addr, &to->si_addr);
2694 #ifdef __ARCH_SI_TRAPNO
2695 		err |= __put_user(from->si_trapno, &to->si_trapno);
2696 #endif
2697 #ifdef BUS_MCEERR_AO
2698 		/*
2699 		 * Other callers might not initialize the si_lsb field,
2700 		 * so check explicitly for the right codes here.
2701 		 */
2702 		if (from->si_signo == SIGBUS &&
2703 		    (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
2704 			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2705 #endif
2706 #ifdef SEGV_BNDERR
2707 		if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2708 			err |= __put_user(from->si_lower, &to->si_lower);
2709 			err |= __put_user(from->si_upper, &to->si_upper);
2710 		}
2711 #endif
2712 #ifdef SEGV_PKUERR
2713 		if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR)
2714 			err |= __put_user(from->si_pkey, &to->si_pkey);
2715 #endif
2716 		break;
2717 	case __SI_CHLD:
2718 		err |= __put_user(from->si_pid, &to->si_pid);
2719 		err |= __put_user(from->si_uid, &to->si_uid);
2720 		err |= __put_user(from->si_status, &to->si_status);
2721 		err |= __put_user(from->si_utime, &to->si_utime);
2722 		err |= __put_user(from->si_stime, &to->si_stime);
2723 		break;
2724 	case __SI_RT: /* This is not generated by the kernel as of now. */
2725 	case __SI_MESGQ: /* But this is */
2726 		err |= __put_user(from->si_pid, &to->si_pid);
2727 		err |= __put_user(from->si_uid, &to->si_uid);
2728 		err |= __put_user(from->si_ptr, &to->si_ptr);
2729 		break;
2730 #ifdef __ARCH_SIGSYS
2731 	case __SI_SYS:
2732 		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2733 		err |= __put_user(from->si_syscall, &to->si_syscall);
2734 		err |= __put_user(from->si_arch, &to->si_arch);
2735 		break;
2736 #endif
2737 	default: /* this is just in case for now ... */
2738 		err |= __put_user(from->si_pid, &to->si_pid);
2739 		err |= __put_user(from->si_uid, &to->si_uid);
2740 		break;
2741 	}
2742 	return err;
2743 }
2744 
2745 #endif
2746 
2747 /**
2748  *  do_sigtimedwait - wait for queued signals specified in @which
2749  *  @which: queued signals to wait for
2750  *  @info: if non-null, the signal's siginfo is returned here
2751  *  @ts: upper bound on process time suspension
2752  */
2753 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2754 		    const struct timespec *ts)
2755 {
2756 	ktime_t *to = NULL, timeout = { .tv64 = KTIME_MAX };
2757 	struct task_struct *tsk = current;
2758 	sigset_t mask = *which;
2759 	int sig, ret = 0;
2760 
2761 	if (ts) {
2762 		if (!timespec_valid(ts))
2763 			return -EINVAL;
2764 		timeout = timespec_to_ktime(*ts);
2765 		to = &timeout;
2766 	}
2767 
2768 	/*
2769 	 * Invert the set of allowed signals to get those we want to block.
2770 	 */
2771 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2772 	signotset(&mask);
2773 
2774 	spin_lock_irq(&tsk->sighand->siglock);
2775 	sig = dequeue_signal(tsk, &mask, info);
2776 	if (!sig && timeout.tv64) {
2777 		/*
2778 		 * None ready, temporarily unblock those we're interested
2779 		 * while we are sleeping in so that we'll be awakened when
2780 		 * they arrive. Unblocking is always fine, we can avoid
2781 		 * set_current_blocked().
2782 		 */
2783 		tsk->real_blocked = tsk->blocked;
2784 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2785 		recalc_sigpending();
2786 		spin_unlock_irq(&tsk->sighand->siglock);
2787 
2788 		__set_current_state(TASK_INTERRUPTIBLE);
2789 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
2790 							 HRTIMER_MODE_REL);
2791 		spin_lock_irq(&tsk->sighand->siglock);
2792 		__set_task_blocked(tsk, &tsk->real_blocked);
2793 		sigemptyset(&tsk->real_blocked);
2794 		sig = dequeue_signal(tsk, &mask, info);
2795 	}
2796 	spin_unlock_irq(&tsk->sighand->siglock);
2797 
2798 	if (sig)
2799 		return sig;
2800 	return ret ? -EINTR : -EAGAIN;
2801 }
2802 
2803 /**
2804  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2805  *			in @uthese
2806  *  @uthese: queued signals to wait for
2807  *  @uinfo: if non-null, the signal's siginfo is returned here
2808  *  @uts: upper bound on process time suspension
2809  *  @sigsetsize: size of sigset_t type
2810  */
2811 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2812 		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2813 		size_t, sigsetsize)
2814 {
2815 	sigset_t these;
2816 	struct timespec ts;
2817 	siginfo_t info;
2818 	int ret;
2819 
2820 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2821 	if (sigsetsize != sizeof(sigset_t))
2822 		return -EINVAL;
2823 
2824 	if (copy_from_user(&these, uthese, sizeof(these)))
2825 		return -EFAULT;
2826 
2827 	if (uts) {
2828 		if (copy_from_user(&ts, uts, sizeof(ts)))
2829 			return -EFAULT;
2830 	}
2831 
2832 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2833 
2834 	if (ret > 0 && uinfo) {
2835 		if (copy_siginfo_to_user(uinfo, &info))
2836 			ret = -EFAULT;
2837 	}
2838 
2839 	return ret;
2840 }
2841 
2842 /**
2843  *  sys_kill - send a signal to a process
2844  *  @pid: the PID of the process
2845  *  @sig: signal to be sent
2846  */
2847 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2848 {
2849 	struct siginfo info;
2850 
2851 	info.si_signo = sig;
2852 	info.si_errno = 0;
2853 	info.si_code = SI_USER;
2854 	info.si_pid = task_tgid_vnr(current);
2855 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2856 
2857 	return kill_something_info(sig, &info, pid);
2858 }
2859 
2860 static int
2861 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2862 {
2863 	struct task_struct *p;
2864 	int error = -ESRCH;
2865 
2866 	rcu_read_lock();
2867 	p = find_task_by_vpid(pid);
2868 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2869 		error = check_kill_permission(sig, info, p);
2870 		/*
2871 		 * The null signal is a permissions and process existence
2872 		 * probe.  No signal is actually delivered.
2873 		 */
2874 		if (!error && sig) {
2875 			error = do_send_sig_info(sig, info, p, false);
2876 			/*
2877 			 * If lock_task_sighand() failed we pretend the task
2878 			 * dies after receiving the signal. The window is tiny,
2879 			 * and the signal is private anyway.
2880 			 */
2881 			if (unlikely(error == -ESRCH))
2882 				error = 0;
2883 		}
2884 	}
2885 	rcu_read_unlock();
2886 
2887 	return error;
2888 }
2889 
2890 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2891 {
2892 	struct siginfo info = {};
2893 
2894 	info.si_signo = sig;
2895 	info.si_errno = 0;
2896 	info.si_code = SI_TKILL;
2897 	info.si_pid = task_tgid_vnr(current);
2898 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2899 
2900 	return do_send_specific(tgid, pid, sig, &info);
2901 }
2902 
2903 /**
2904  *  sys_tgkill - send signal to one specific thread
2905  *  @tgid: the thread group ID of the thread
2906  *  @pid: the PID of the thread
2907  *  @sig: signal to be sent
2908  *
2909  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2910  *  exists but it's not belonging to the target process anymore. This
2911  *  method solves the problem of threads exiting and PIDs getting reused.
2912  */
2913 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2914 {
2915 	/* This is only valid for single tasks */
2916 	if (pid <= 0 || tgid <= 0)
2917 		return -EINVAL;
2918 
2919 	return do_tkill(tgid, pid, sig);
2920 }
2921 
2922 /**
2923  *  sys_tkill - send signal to one specific task
2924  *  @pid: the PID of the task
2925  *  @sig: signal to be sent
2926  *
2927  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2928  */
2929 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2930 {
2931 	/* This is only valid for single tasks */
2932 	if (pid <= 0)
2933 		return -EINVAL;
2934 
2935 	return do_tkill(0, pid, sig);
2936 }
2937 
2938 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
2939 {
2940 	/* Not even root can pretend to send signals from the kernel.
2941 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2942 	 */
2943 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
2944 	    (task_pid_vnr(current) != pid))
2945 		return -EPERM;
2946 
2947 	info->si_signo = sig;
2948 
2949 	/* POSIX.1b doesn't mention process groups.  */
2950 	return kill_proc_info(sig, info, pid);
2951 }
2952 
2953 /**
2954  *  sys_rt_sigqueueinfo - send signal information to a signal
2955  *  @pid: the PID of the thread
2956  *  @sig: signal to be sent
2957  *  @uinfo: signal info to be sent
2958  */
2959 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2960 		siginfo_t __user *, uinfo)
2961 {
2962 	siginfo_t info;
2963 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2964 		return -EFAULT;
2965 	return do_rt_sigqueueinfo(pid, sig, &info);
2966 }
2967 
2968 #ifdef CONFIG_COMPAT
2969 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
2970 			compat_pid_t, pid,
2971 			int, sig,
2972 			struct compat_siginfo __user *, uinfo)
2973 {
2974 	siginfo_t info = {};
2975 	int ret = copy_siginfo_from_user32(&info, uinfo);
2976 	if (unlikely(ret))
2977 		return ret;
2978 	return do_rt_sigqueueinfo(pid, sig, &info);
2979 }
2980 #endif
2981 
2982 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2983 {
2984 	/* This is only valid for single tasks */
2985 	if (pid <= 0 || tgid <= 0)
2986 		return -EINVAL;
2987 
2988 	/* Not even root can pretend to send signals from the kernel.
2989 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2990 	 */
2991 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
2992 	    (task_pid_vnr(current) != pid))
2993 		return -EPERM;
2994 
2995 	info->si_signo = sig;
2996 
2997 	return do_send_specific(tgid, pid, sig, info);
2998 }
2999 
3000 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3001 		siginfo_t __user *, uinfo)
3002 {
3003 	siginfo_t info;
3004 
3005 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3006 		return -EFAULT;
3007 
3008 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3009 }
3010 
3011 #ifdef CONFIG_COMPAT
3012 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3013 			compat_pid_t, tgid,
3014 			compat_pid_t, pid,
3015 			int, sig,
3016 			struct compat_siginfo __user *, uinfo)
3017 {
3018 	siginfo_t info = {};
3019 
3020 	if (copy_siginfo_from_user32(&info, uinfo))
3021 		return -EFAULT;
3022 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3023 }
3024 #endif
3025 
3026 /*
3027  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3028  */
3029 void kernel_sigaction(int sig, __sighandler_t action)
3030 {
3031 	spin_lock_irq(&current->sighand->siglock);
3032 	current->sighand->action[sig - 1].sa.sa_handler = action;
3033 	if (action == SIG_IGN) {
3034 		sigset_t mask;
3035 
3036 		sigemptyset(&mask);
3037 		sigaddset(&mask, sig);
3038 
3039 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3040 		flush_sigqueue_mask(&mask, &current->pending);
3041 		recalc_sigpending();
3042 	}
3043 	spin_unlock_irq(&current->sighand->siglock);
3044 }
3045 EXPORT_SYMBOL(kernel_sigaction);
3046 
3047 void __weak sigaction_compat_abi(struct k_sigaction *act,
3048 		struct k_sigaction *oact)
3049 {
3050 }
3051 
3052 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3053 {
3054 	struct task_struct *p = current, *t;
3055 	struct k_sigaction *k;
3056 	sigset_t mask;
3057 
3058 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3059 		return -EINVAL;
3060 
3061 	k = &p->sighand->action[sig-1];
3062 
3063 	spin_lock_irq(&p->sighand->siglock);
3064 	if (oact)
3065 		*oact = *k;
3066 
3067 	sigaction_compat_abi(act, oact);
3068 
3069 	if (act) {
3070 		sigdelsetmask(&act->sa.sa_mask,
3071 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3072 		*k = *act;
3073 		/*
3074 		 * POSIX 3.3.1.3:
3075 		 *  "Setting a signal action to SIG_IGN for a signal that is
3076 		 *   pending shall cause the pending signal to be discarded,
3077 		 *   whether or not it is blocked."
3078 		 *
3079 		 *  "Setting a signal action to SIG_DFL for a signal that is
3080 		 *   pending and whose default action is to ignore the signal
3081 		 *   (for example, SIGCHLD), shall cause the pending signal to
3082 		 *   be discarded, whether or not it is blocked"
3083 		 */
3084 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3085 			sigemptyset(&mask);
3086 			sigaddset(&mask, sig);
3087 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3088 			for_each_thread(p, t)
3089 				flush_sigqueue_mask(&mask, &t->pending);
3090 		}
3091 	}
3092 
3093 	spin_unlock_irq(&p->sighand->siglock);
3094 	return 0;
3095 }
3096 
3097 static int
3098 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3099 {
3100 	stack_t oss;
3101 	int error;
3102 
3103 	oss.ss_sp = (void __user *) current->sas_ss_sp;
3104 	oss.ss_size = current->sas_ss_size;
3105 	oss.ss_flags = sas_ss_flags(sp) |
3106 		(current->sas_ss_flags & SS_FLAG_BITS);
3107 
3108 	if (uss) {
3109 		void __user *ss_sp;
3110 		size_t ss_size;
3111 		unsigned ss_flags;
3112 		int ss_mode;
3113 
3114 		error = -EFAULT;
3115 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3116 			goto out;
3117 		error = __get_user(ss_sp, &uss->ss_sp) |
3118 			__get_user(ss_flags, &uss->ss_flags) |
3119 			__get_user(ss_size, &uss->ss_size);
3120 		if (error)
3121 			goto out;
3122 
3123 		error = -EPERM;
3124 		if (on_sig_stack(sp))
3125 			goto out;
3126 
3127 		ss_mode = ss_flags & ~SS_FLAG_BITS;
3128 		error = -EINVAL;
3129 		if (ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3130 				ss_mode != 0)
3131 			goto out;
3132 
3133 		if (ss_mode == SS_DISABLE) {
3134 			ss_size = 0;
3135 			ss_sp = NULL;
3136 		} else {
3137 			error = -ENOMEM;
3138 			if (ss_size < MINSIGSTKSZ)
3139 				goto out;
3140 		}
3141 
3142 		current->sas_ss_sp = (unsigned long) ss_sp;
3143 		current->sas_ss_size = ss_size;
3144 		current->sas_ss_flags = ss_flags;
3145 	}
3146 
3147 	error = 0;
3148 	if (uoss) {
3149 		error = -EFAULT;
3150 		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3151 			goto out;
3152 		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3153 			__put_user(oss.ss_size, &uoss->ss_size) |
3154 			__put_user(oss.ss_flags, &uoss->ss_flags);
3155 	}
3156 
3157 out:
3158 	return error;
3159 }
3160 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3161 {
3162 	return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3163 }
3164 
3165 int restore_altstack(const stack_t __user *uss)
3166 {
3167 	int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3168 	/* squash all but EFAULT for now */
3169 	return err == -EFAULT ? err : 0;
3170 }
3171 
3172 int __save_altstack(stack_t __user *uss, unsigned long sp)
3173 {
3174 	struct task_struct *t = current;
3175 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3176 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3177 		__put_user(t->sas_ss_size, &uss->ss_size);
3178 	if (err)
3179 		return err;
3180 	if (t->sas_ss_flags & SS_AUTODISARM)
3181 		sas_ss_reset(t);
3182 	return 0;
3183 }
3184 
3185 #ifdef CONFIG_COMPAT
3186 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3187 			const compat_stack_t __user *, uss_ptr,
3188 			compat_stack_t __user *, uoss_ptr)
3189 {
3190 	stack_t uss, uoss;
3191 	int ret;
3192 	mm_segment_t seg;
3193 
3194 	if (uss_ptr) {
3195 		compat_stack_t uss32;
3196 
3197 		memset(&uss, 0, sizeof(stack_t));
3198 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3199 			return -EFAULT;
3200 		uss.ss_sp = compat_ptr(uss32.ss_sp);
3201 		uss.ss_flags = uss32.ss_flags;
3202 		uss.ss_size = uss32.ss_size;
3203 	}
3204 	seg = get_fs();
3205 	set_fs(KERNEL_DS);
3206 	ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3207 			     (stack_t __force __user *) &uoss,
3208 			     compat_user_stack_pointer());
3209 	set_fs(seg);
3210 	if (ret >= 0 && uoss_ptr)  {
3211 		if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3212 		    __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3213 		    __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3214 		    __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3215 			ret = -EFAULT;
3216 	}
3217 	return ret;
3218 }
3219 
3220 int compat_restore_altstack(const compat_stack_t __user *uss)
3221 {
3222 	int err = compat_sys_sigaltstack(uss, NULL);
3223 	/* squash all but -EFAULT for now */
3224 	return err == -EFAULT ? err : 0;
3225 }
3226 
3227 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3228 {
3229 	struct task_struct *t = current;
3230 	return  __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3231 		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
3232 		__put_user(t->sas_ss_size, &uss->ss_size);
3233 }
3234 #endif
3235 
3236 #ifdef __ARCH_WANT_SYS_SIGPENDING
3237 
3238 /**
3239  *  sys_sigpending - examine pending signals
3240  *  @set: where mask of pending signal is returned
3241  */
3242 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3243 {
3244 	return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t));
3245 }
3246 
3247 #endif
3248 
3249 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3250 /**
3251  *  sys_sigprocmask - examine and change blocked signals
3252  *  @how: whether to add, remove, or set signals
3253  *  @nset: signals to add or remove (if non-null)
3254  *  @oset: previous value of signal mask if non-null
3255  *
3256  * Some platforms have their own version with special arguments;
3257  * others support only sys_rt_sigprocmask.
3258  */
3259 
3260 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3261 		old_sigset_t __user *, oset)
3262 {
3263 	old_sigset_t old_set, new_set;
3264 	sigset_t new_blocked;
3265 
3266 	old_set = current->blocked.sig[0];
3267 
3268 	if (nset) {
3269 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3270 			return -EFAULT;
3271 
3272 		new_blocked = current->blocked;
3273 
3274 		switch (how) {
3275 		case SIG_BLOCK:
3276 			sigaddsetmask(&new_blocked, new_set);
3277 			break;
3278 		case SIG_UNBLOCK:
3279 			sigdelsetmask(&new_blocked, new_set);
3280 			break;
3281 		case SIG_SETMASK:
3282 			new_blocked.sig[0] = new_set;
3283 			break;
3284 		default:
3285 			return -EINVAL;
3286 		}
3287 
3288 		set_current_blocked(&new_blocked);
3289 	}
3290 
3291 	if (oset) {
3292 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3293 			return -EFAULT;
3294 	}
3295 
3296 	return 0;
3297 }
3298 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3299 
3300 #ifndef CONFIG_ODD_RT_SIGACTION
3301 /**
3302  *  sys_rt_sigaction - alter an action taken by a process
3303  *  @sig: signal to be sent
3304  *  @act: new sigaction
3305  *  @oact: used to save the previous sigaction
3306  *  @sigsetsize: size of sigset_t type
3307  */
3308 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3309 		const struct sigaction __user *, act,
3310 		struct sigaction __user *, oact,
3311 		size_t, sigsetsize)
3312 {
3313 	struct k_sigaction new_sa, old_sa;
3314 	int ret = -EINVAL;
3315 
3316 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3317 	if (sigsetsize != sizeof(sigset_t))
3318 		goto out;
3319 
3320 	if (act) {
3321 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3322 			return -EFAULT;
3323 	}
3324 
3325 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3326 
3327 	if (!ret && oact) {
3328 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3329 			return -EFAULT;
3330 	}
3331 out:
3332 	return ret;
3333 }
3334 #ifdef CONFIG_COMPAT
3335 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3336 		const struct compat_sigaction __user *, act,
3337 		struct compat_sigaction __user *, oact,
3338 		compat_size_t, sigsetsize)
3339 {
3340 	struct k_sigaction new_ka, old_ka;
3341 	compat_sigset_t mask;
3342 #ifdef __ARCH_HAS_SA_RESTORER
3343 	compat_uptr_t restorer;
3344 #endif
3345 	int ret;
3346 
3347 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3348 	if (sigsetsize != sizeof(compat_sigset_t))
3349 		return -EINVAL;
3350 
3351 	if (act) {
3352 		compat_uptr_t handler;
3353 		ret = get_user(handler, &act->sa_handler);
3354 		new_ka.sa.sa_handler = compat_ptr(handler);
3355 #ifdef __ARCH_HAS_SA_RESTORER
3356 		ret |= get_user(restorer, &act->sa_restorer);
3357 		new_ka.sa.sa_restorer = compat_ptr(restorer);
3358 #endif
3359 		ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3360 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3361 		if (ret)
3362 			return -EFAULT;
3363 		sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3364 	}
3365 
3366 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3367 	if (!ret && oact) {
3368 		sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3369 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3370 			       &oact->sa_handler);
3371 		ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3372 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3373 #ifdef __ARCH_HAS_SA_RESTORER
3374 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3375 				&oact->sa_restorer);
3376 #endif
3377 	}
3378 	return ret;
3379 }
3380 #endif
3381 #endif /* !CONFIG_ODD_RT_SIGACTION */
3382 
3383 #ifdef CONFIG_OLD_SIGACTION
3384 SYSCALL_DEFINE3(sigaction, int, sig,
3385 		const struct old_sigaction __user *, act,
3386 	        struct old_sigaction __user *, oact)
3387 {
3388 	struct k_sigaction new_ka, old_ka;
3389 	int ret;
3390 
3391 	if (act) {
3392 		old_sigset_t mask;
3393 		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3394 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3395 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3396 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3397 		    __get_user(mask, &act->sa_mask))
3398 			return -EFAULT;
3399 #ifdef __ARCH_HAS_KA_RESTORER
3400 		new_ka.ka_restorer = NULL;
3401 #endif
3402 		siginitset(&new_ka.sa.sa_mask, mask);
3403 	}
3404 
3405 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3406 
3407 	if (!ret && oact) {
3408 		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3409 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3410 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3411 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3412 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3413 			return -EFAULT;
3414 	}
3415 
3416 	return ret;
3417 }
3418 #endif
3419 #ifdef CONFIG_COMPAT_OLD_SIGACTION
3420 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3421 		const struct compat_old_sigaction __user *, act,
3422 	        struct compat_old_sigaction __user *, oact)
3423 {
3424 	struct k_sigaction new_ka, old_ka;
3425 	int ret;
3426 	compat_old_sigset_t mask;
3427 	compat_uptr_t handler, restorer;
3428 
3429 	if (act) {
3430 		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3431 		    __get_user(handler, &act->sa_handler) ||
3432 		    __get_user(restorer, &act->sa_restorer) ||
3433 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3434 		    __get_user(mask, &act->sa_mask))
3435 			return -EFAULT;
3436 
3437 #ifdef __ARCH_HAS_KA_RESTORER
3438 		new_ka.ka_restorer = NULL;
3439 #endif
3440 		new_ka.sa.sa_handler = compat_ptr(handler);
3441 		new_ka.sa.sa_restorer = compat_ptr(restorer);
3442 		siginitset(&new_ka.sa.sa_mask, mask);
3443 	}
3444 
3445 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3446 
3447 	if (!ret && oact) {
3448 		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3449 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3450 			       &oact->sa_handler) ||
3451 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3452 			       &oact->sa_restorer) ||
3453 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3454 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3455 			return -EFAULT;
3456 	}
3457 	return ret;
3458 }
3459 #endif
3460 
3461 #ifdef CONFIG_SGETMASK_SYSCALL
3462 
3463 /*
3464  * For backwards compatibility.  Functionality superseded by sigprocmask.
3465  */
3466 SYSCALL_DEFINE0(sgetmask)
3467 {
3468 	/* SMP safe */
3469 	return current->blocked.sig[0];
3470 }
3471 
3472 SYSCALL_DEFINE1(ssetmask, int, newmask)
3473 {
3474 	int old = current->blocked.sig[0];
3475 	sigset_t newset;
3476 
3477 	siginitset(&newset, newmask);
3478 	set_current_blocked(&newset);
3479 
3480 	return old;
3481 }
3482 #endif /* CONFIG_SGETMASK_SYSCALL */
3483 
3484 #ifdef __ARCH_WANT_SYS_SIGNAL
3485 /*
3486  * For backwards compatibility.  Functionality superseded by sigaction.
3487  */
3488 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3489 {
3490 	struct k_sigaction new_sa, old_sa;
3491 	int ret;
3492 
3493 	new_sa.sa.sa_handler = handler;
3494 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3495 	sigemptyset(&new_sa.sa.sa_mask);
3496 
3497 	ret = do_sigaction(sig, &new_sa, &old_sa);
3498 
3499 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3500 }
3501 #endif /* __ARCH_WANT_SYS_SIGNAL */
3502 
3503 #ifdef __ARCH_WANT_SYS_PAUSE
3504 
3505 SYSCALL_DEFINE0(pause)
3506 {
3507 	while (!signal_pending(current)) {
3508 		__set_current_state(TASK_INTERRUPTIBLE);
3509 		schedule();
3510 	}
3511 	return -ERESTARTNOHAND;
3512 }
3513 
3514 #endif
3515 
3516 static int sigsuspend(sigset_t *set)
3517 {
3518 	current->saved_sigmask = current->blocked;
3519 	set_current_blocked(set);
3520 
3521 	while (!signal_pending(current)) {
3522 		__set_current_state(TASK_INTERRUPTIBLE);
3523 		schedule();
3524 	}
3525 	set_restore_sigmask();
3526 	return -ERESTARTNOHAND;
3527 }
3528 
3529 /**
3530  *  sys_rt_sigsuspend - replace the signal mask for a value with the
3531  *	@unewset value until a signal is received
3532  *  @unewset: new signal mask value
3533  *  @sigsetsize: size of sigset_t type
3534  */
3535 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3536 {
3537 	sigset_t newset;
3538 
3539 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3540 	if (sigsetsize != sizeof(sigset_t))
3541 		return -EINVAL;
3542 
3543 	if (copy_from_user(&newset, unewset, sizeof(newset)))
3544 		return -EFAULT;
3545 	return sigsuspend(&newset);
3546 }
3547 
3548 #ifdef CONFIG_COMPAT
3549 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3550 {
3551 #ifdef __BIG_ENDIAN
3552 	sigset_t newset;
3553 	compat_sigset_t newset32;
3554 
3555 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3556 	if (sigsetsize != sizeof(sigset_t))
3557 		return -EINVAL;
3558 
3559 	if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3560 		return -EFAULT;
3561 	sigset_from_compat(&newset, &newset32);
3562 	return sigsuspend(&newset);
3563 #else
3564 	/* on little-endian bitmaps don't care about granularity */
3565 	return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3566 #endif
3567 }
3568 #endif
3569 
3570 #ifdef CONFIG_OLD_SIGSUSPEND
3571 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3572 {
3573 	sigset_t blocked;
3574 	siginitset(&blocked, mask);
3575 	return sigsuspend(&blocked);
3576 }
3577 #endif
3578 #ifdef CONFIG_OLD_SIGSUSPEND3
3579 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3580 {
3581 	sigset_t blocked;
3582 	siginitset(&blocked, mask);
3583 	return sigsuspend(&blocked);
3584 }
3585 #endif
3586 
3587 __weak const char *arch_vma_name(struct vm_area_struct *vma)
3588 {
3589 	return NULL;
3590 }
3591 
3592 void __init signals_init(void)
3593 {
3594 	/* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
3595 	BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
3596 		!= offsetof(struct siginfo, _sifields._pad));
3597 
3598 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3599 }
3600 
3601 #ifdef CONFIG_KGDB_KDB
3602 #include <linux/kdb.h>
3603 /*
3604  * kdb_send_sig_info - Allows kdb to send signals without exposing
3605  * signal internals.  This function checks if the required locks are
3606  * available before calling the main signal code, to avoid kdb
3607  * deadlocks.
3608  */
3609 void
3610 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3611 {
3612 	static struct task_struct *kdb_prev_t;
3613 	int sig, new_t;
3614 	if (!spin_trylock(&t->sighand->siglock)) {
3615 		kdb_printf("Can't do kill command now.\n"
3616 			   "The sigmask lock is held somewhere else in "
3617 			   "kernel, try again later\n");
3618 		return;
3619 	}
3620 	spin_unlock(&t->sighand->siglock);
3621 	new_t = kdb_prev_t != t;
3622 	kdb_prev_t = t;
3623 	if (t->state != TASK_RUNNING && new_t) {
3624 		kdb_printf("Process is not RUNNING, sending a signal from "
3625 			   "kdb risks deadlock\n"
3626 			   "on the run queue locks. "
3627 			   "The signal has _not_ been sent.\n"
3628 			   "Reissue the kill command if you want to risk "
3629 			   "the deadlock.\n");
3630 		return;
3631 	}
3632 	sig = info->si_signo;
3633 	if (send_sig_info(sig, info, t))
3634 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3635 			   sig, t->pid);
3636 	else
3637 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3638 }
3639 #endif	/* CONFIG_KGDB_KDB */
3640