1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/export.h> 15 #include <linux/init.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/tty.h> 19 #include <linux/binfmts.h> 20 #include <linux/coredump.h> 21 #include <linux/security.h> 22 #include <linux/syscalls.h> 23 #include <linux/ptrace.h> 24 #include <linux/signal.h> 25 #include <linux/signalfd.h> 26 #include <linux/ratelimit.h> 27 #include <linux/tracehook.h> 28 #include <linux/capability.h> 29 #include <linux/freezer.h> 30 #include <linux/pid_namespace.h> 31 #include <linux/nsproxy.h> 32 #include <linux/user_namespace.h> 33 #include <linux/uprobes.h> 34 #include <linux/compat.h> 35 #include <linux/cn_proc.h> 36 #include <linux/compiler.h> 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/signal.h> 40 41 #include <asm/param.h> 42 #include <asm/uaccess.h> 43 #include <asm/unistd.h> 44 #include <asm/siginfo.h> 45 #include <asm/cacheflush.h> 46 #include "audit.h" /* audit_signal_info() */ 47 48 /* 49 * SLAB caches for signal bits. 50 */ 51 52 static struct kmem_cache *sigqueue_cachep; 53 54 int print_fatal_signals __read_mostly; 55 56 static void __user *sig_handler(struct task_struct *t, int sig) 57 { 58 return t->sighand->action[sig - 1].sa.sa_handler; 59 } 60 61 static int sig_handler_ignored(void __user *handler, int sig) 62 { 63 /* Is it explicitly or implicitly ignored? */ 64 return handler == SIG_IGN || 65 (handler == SIG_DFL && sig_kernel_ignore(sig)); 66 } 67 68 static int sig_task_ignored(struct task_struct *t, int sig, bool force) 69 { 70 void __user *handler; 71 72 handler = sig_handler(t, sig); 73 74 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 75 handler == SIG_DFL && !force) 76 return 1; 77 78 return sig_handler_ignored(handler, sig); 79 } 80 81 static int sig_ignored(struct task_struct *t, int sig, bool force) 82 { 83 /* 84 * Blocked signals are never ignored, since the 85 * signal handler may change by the time it is 86 * unblocked. 87 */ 88 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 89 return 0; 90 91 if (!sig_task_ignored(t, sig, force)) 92 return 0; 93 94 /* 95 * Tracers may want to know about even ignored signals. 96 */ 97 return !t->ptrace; 98 } 99 100 /* 101 * Re-calculate pending state from the set of locally pending 102 * signals, globally pending signals, and blocked signals. 103 */ 104 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 105 { 106 unsigned long ready; 107 long i; 108 109 switch (_NSIG_WORDS) { 110 default: 111 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 112 ready |= signal->sig[i] &~ blocked->sig[i]; 113 break; 114 115 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 116 ready |= signal->sig[2] &~ blocked->sig[2]; 117 ready |= signal->sig[1] &~ blocked->sig[1]; 118 ready |= signal->sig[0] &~ blocked->sig[0]; 119 break; 120 121 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 122 ready |= signal->sig[0] &~ blocked->sig[0]; 123 break; 124 125 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 126 } 127 return ready != 0; 128 } 129 130 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 131 132 static int recalc_sigpending_tsk(struct task_struct *t) 133 { 134 if ((t->jobctl & JOBCTL_PENDING_MASK) || 135 PENDING(&t->pending, &t->blocked) || 136 PENDING(&t->signal->shared_pending, &t->blocked)) { 137 set_tsk_thread_flag(t, TIF_SIGPENDING); 138 return 1; 139 } 140 /* 141 * We must never clear the flag in another thread, or in current 142 * when it's possible the current syscall is returning -ERESTART*. 143 * So we don't clear it here, and only callers who know they should do. 144 */ 145 return 0; 146 } 147 148 /* 149 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 150 * This is superfluous when called on current, the wakeup is a harmless no-op. 151 */ 152 void recalc_sigpending_and_wake(struct task_struct *t) 153 { 154 if (recalc_sigpending_tsk(t)) 155 signal_wake_up(t, 0); 156 } 157 158 void recalc_sigpending(void) 159 { 160 if (!recalc_sigpending_tsk(current) && !freezing(current)) 161 clear_thread_flag(TIF_SIGPENDING); 162 163 } 164 165 /* Given the mask, find the first available signal that should be serviced. */ 166 167 #define SYNCHRONOUS_MASK \ 168 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 169 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 170 171 int next_signal(struct sigpending *pending, sigset_t *mask) 172 { 173 unsigned long i, *s, *m, x; 174 int sig = 0; 175 176 s = pending->signal.sig; 177 m = mask->sig; 178 179 /* 180 * Handle the first word specially: it contains the 181 * synchronous signals that need to be dequeued first. 182 */ 183 x = *s &~ *m; 184 if (x) { 185 if (x & SYNCHRONOUS_MASK) 186 x &= SYNCHRONOUS_MASK; 187 sig = ffz(~x) + 1; 188 return sig; 189 } 190 191 switch (_NSIG_WORDS) { 192 default: 193 for (i = 1; i < _NSIG_WORDS; ++i) { 194 x = *++s &~ *++m; 195 if (!x) 196 continue; 197 sig = ffz(~x) + i*_NSIG_BPW + 1; 198 break; 199 } 200 break; 201 202 case 2: 203 x = s[1] &~ m[1]; 204 if (!x) 205 break; 206 sig = ffz(~x) + _NSIG_BPW + 1; 207 break; 208 209 case 1: 210 /* Nothing to do */ 211 break; 212 } 213 214 return sig; 215 } 216 217 static inline void print_dropped_signal(int sig) 218 { 219 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 220 221 if (!print_fatal_signals) 222 return; 223 224 if (!__ratelimit(&ratelimit_state)) 225 return; 226 227 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 228 current->comm, current->pid, sig); 229 } 230 231 /** 232 * task_set_jobctl_pending - set jobctl pending bits 233 * @task: target task 234 * @mask: pending bits to set 235 * 236 * Clear @mask from @task->jobctl. @mask must be subset of 237 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 238 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 239 * cleared. If @task is already being killed or exiting, this function 240 * becomes noop. 241 * 242 * CONTEXT: 243 * Must be called with @task->sighand->siglock held. 244 * 245 * RETURNS: 246 * %true if @mask is set, %false if made noop because @task was dying. 247 */ 248 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 249 { 250 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 251 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 252 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 253 254 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 255 return false; 256 257 if (mask & JOBCTL_STOP_SIGMASK) 258 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 259 260 task->jobctl |= mask; 261 return true; 262 } 263 264 /** 265 * task_clear_jobctl_trapping - clear jobctl trapping bit 266 * @task: target task 267 * 268 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 269 * Clear it and wake up the ptracer. Note that we don't need any further 270 * locking. @task->siglock guarantees that @task->parent points to the 271 * ptracer. 272 * 273 * CONTEXT: 274 * Must be called with @task->sighand->siglock held. 275 */ 276 void task_clear_jobctl_trapping(struct task_struct *task) 277 { 278 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 279 task->jobctl &= ~JOBCTL_TRAPPING; 280 smp_mb(); /* advised by wake_up_bit() */ 281 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 282 } 283 } 284 285 /** 286 * task_clear_jobctl_pending - clear jobctl pending bits 287 * @task: target task 288 * @mask: pending bits to clear 289 * 290 * Clear @mask from @task->jobctl. @mask must be subset of 291 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 292 * STOP bits are cleared together. 293 * 294 * If clearing of @mask leaves no stop or trap pending, this function calls 295 * task_clear_jobctl_trapping(). 296 * 297 * CONTEXT: 298 * Must be called with @task->sighand->siglock held. 299 */ 300 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 301 { 302 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 303 304 if (mask & JOBCTL_STOP_PENDING) 305 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 306 307 task->jobctl &= ~mask; 308 309 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 310 task_clear_jobctl_trapping(task); 311 } 312 313 /** 314 * task_participate_group_stop - participate in a group stop 315 * @task: task participating in a group stop 316 * 317 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 318 * Group stop states are cleared and the group stop count is consumed if 319 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 320 * stop, the appropriate %SIGNAL_* flags are set. 321 * 322 * CONTEXT: 323 * Must be called with @task->sighand->siglock held. 324 * 325 * RETURNS: 326 * %true if group stop completion should be notified to the parent, %false 327 * otherwise. 328 */ 329 static bool task_participate_group_stop(struct task_struct *task) 330 { 331 struct signal_struct *sig = task->signal; 332 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 333 334 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 335 336 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 337 338 if (!consume) 339 return false; 340 341 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 342 sig->group_stop_count--; 343 344 /* 345 * Tell the caller to notify completion iff we are entering into a 346 * fresh group stop. Read comment in do_signal_stop() for details. 347 */ 348 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 349 sig->flags = SIGNAL_STOP_STOPPED; 350 return true; 351 } 352 return false; 353 } 354 355 /* 356 * allocate a new signal queue record 357 * - this may be called without locks if and only if t == current, otherwise an 358 * appropriate lock must be held to stop the target task from exiting 359 */ 360 static struct sigqueue * 361 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) 362 { 363 struct sigqueue *q = NULL; 364 struct user_struct *user; 365 366 /* 367 * Protect access to @t credentials. This can go away when all 368 * callers hold rcu read lock. 369 */ 370 rcu_read_lock(); 371 user = get_uid(__task_cred(t)->user); 372 atomic_inc(&user->sigpending); 373 rcu_read_unlock(); 374 375 if (override_rlimit || 376 atomic_read(&user->sigpending) <= 377 task_rlimit(t, RLIMIT_SIGPENDING)) { 378 q = kmem_cache_alloc(sigqueue_cachep, flags); 379 } else { 380 print_dropped_signal(sig); 381 } 382 383 if (unlikely(q == NULL)) { 384 atomic_dec(&user->sigpending); 385 free_uid(user); 386 } else { 387 INIT_LIST_HEAD(&q->list); 388 q->flags = 0; 389 q->user = user; 390 } 391 392 return q; 393 } 394 395 static void __sigqueue_free(struct sigqueue *q) 396 { 397 if (q->flags & SIGQUEUE_PREALLOC) 398 return; 399 atomic_dec(&q->user->sigpending); 400 free_uid(q->user); 401 kmem_cache_free(sigqueue_cachep, q); 402 } 403 404 void flush_sigqueue(struct sigpending *queue) 405 { 406 struct sigqueue *q; 407 408 sigemptyset(&queue->signal); 409 while (!list_empty(&queue->list)) { 410 q = list_entry(queue->list.next, struct sigqueue , list); 411 list_del_init(&q->list); 412 __sigqueue_free(q); 413 } 414 } 415 416 /* 417 * Flush all pending signals for this kthread. 418 */ 419 void flush_signals(struct task_struct *t) 420 { 421 unsigned long flags; 422 423 spin_lock_irqsave(&t->sighand->siglock, flags); 424 clear_tsk_thread_flag(t, TIF_SIGPENDING); 425 flush_sigqueue(&t->pending); 426 flush_sigqueue(&t->signal->shared_pending); 427 spin_unlock_irqrestore(&t->sighand->siglock, flags); 428 } 429 430 static void __flush_itimer_signals(struct sigpending *pending) 431 { 432 sigset_t signal, retain; 433 struct sigqueue *q, *n; 434 435 signal = pending->signal; 436 sigemptyset(&retain); 437 438 list_for_each_entry_safe(q, n, &pending->list, list) { 439 int sig = q->info.si_signo; 440 441 if (likely(q->info.si_code != SI_TIMER)) { 442 sigaddset(&retain, sig); 443 } else { 444 sigdelset(&signal, sig); 445 list_del_init(&q->list); 446 __sigqueue_free(q); 447 } 448 } 449 450 sigorsets(&pending->signal, &signal, &retain); 451 } 452 453 void flush_itimer_signals(void) 454 { 455 struct task_struct *tsk = current; 456 unsigned long flags; 457 458 spin_lock_irqsave(&tsk->sighand->siglock, flags); 459 __flush_itimer_signals(&tsk->pending); 460 __flush_itimer_signals(&tsk->signal->shared_pending); 461 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 462 } 463 464 void ignore_signals(struct task_struct *t) 465 { 466 int i; 467 468 for (i = 0; i < _NSIG; ++i) 469 t->sighand->action[i].sa.sa_handler = SIG_IGN; 470 471 flush_signals(t); 472 } 473 474 /* 475 * Flush all handlers for a task. 476 */ 477 478 void 479 flush_signal_handlers(struct task_struct *t, int force_default) 480 { 481 int i; 482 struct k_sigaction *ka = &t->sighand->action[0]; 483 for (i = _NSIG ; i != 0 ; i--) { 484 if (force_default || ka->sa.sa_handler != SIG_IGN) 485 ka->sa.sa_handler = SIG_DFL; 486 ka->sa.sa_flags = 0; 487 #ifdef __ARCH_HAS_SA_RESTORER 488 ka->sa.sa_restorer = NULL; 489 #endif 490 sigemptyset(&ka->sa.sa_mask); 491 ka++; 492 } 493 } 494 495 int unhandled_signal(struct task_struct *tsk, int sig) 496 { 497 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 498 if (is_global_init(tsk)) 499 return 1; 500 if (handler != SIG_IGN && handler != SIG_DFL) 501 return 0; 502 /* if ptraced, let the tracer determine */ 503 return !tsk->ptrace; 504 } 505 506 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info) 507 { 508 struct sigqueue *q, *first = NULL; 509 510 /* 511 * Collect the siginfo appropriate to this signal. Check if 512 * there is another siginfo for the same signal. 513 */ 514 list_for_each_entry(q, &list->list, list) { 515 if (q->info.si_signo == sig) { 516 if (first) 517 goto still_pending; 518 first = q; 519 } 520 } 521 522 sigdelset(&list->signal, sig); 523 524 if (first) { 525 still_pending: 526 list_del_init(&first->list); 527 copy_siginfo(info, &first->info); 528 __sigqueue_free(first); 529 } else { 530 /* 531 * Ok, it wasn't in the queue. This must be 532 * a fast-pathed signal or we must have been 533 * out of queue space. So zero out the info. 534 */ 535 info->si_signo = sig; 536 info->si_errno = 0; 537 info->si_code = SI_USER; 538 info->si_pid = 0; 539 info->si_uid = 0; 540 } 541 } 542 543 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 544 siginfo_t *info) 545 { 546 int sig = next_signal(pending, mask); 547 548 if (sig) 549 collect_signal(sig, pending, info); 550 return sig; 551 } 552 553 /* 554 * Dequeue a signal and return the element to the caller, which is 555 * expected to free it. 556 * 557 * All callers have to hold the siglock. 558 */ 559 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 560 { 561 int signr; 562 563 /* We only dequeue private signals from ourselves, we don't let 564 * signalfd steal them 565 */ 566 signr = __dequeue_signal(&tsk->pending, mask, info); 567 if (!signr) { 568 signr = __dequeue_signal(&tsk->signal->shared_pending, 569 mask, info); 570 /* 571 * itimer signal ? 572 * 573 * itimers are process shared and we restart periodic 574 * itimers in the signal delivery path to prevent DoS 575 * attacks in the high resolution timer case. This is 576 * compliant with the old way of self-restarting 577 * itimers, as the SIGALRM is a legacy signal and only 578 * queued once. Changing the restart behaviour to 579 * restart the timer in the signal dequeue path is 580 * reducing the timer noise on heavy loaded !highres 581 * systems too. 582 */ 583 if (unlikely(signr == SIGALRM)) { 584 struct hrtimer *tmr = &tsk->signal->real_timer; 585 586 if (!hrtimer_is_queued(tmr) && 587 tsk->signal->it_real_incr.tv64 != 0) { 588 hrtimer_forward(tmr, tmr->base->get_time(), 589 tsk->signal->it_real_incr); 590 hrtimer_restart(tmr); 591 } 592 } 593 } 594 595 recalc_sigpending(); 596 if (!signr) 597 return 0; 598 599 if (unlikely(sig_kernel_stop(signr))) { 600 /* 601 * Set a marker that we have dequeued a stop signal. Our 602 * caller might release the siglock and then the pending 603 * stop signal it is about to process is no longer in the 604 * pending bitmasks, but must still be cleared by a SIGCONT 605 * (and overruled by a SIGKILL). So those cases clear this 606 * shared flag after we've set it. Note that this flag may 607 * remain set after the signal we return is ignored or 608 * handled. That doesn't matter because its only purpose 609 * is to alert stop-signal processing code when another 610 * processor has come along and cleared the flag. 611 */ 612 current->jobctl |= JOBCTL_STOP_DEQUEUED; 613 } 614 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) { 615 /* 616 * Release the siglock to ensure proper locking order 617 * of timer locks outside of siglocks. Note, we leave 618 * irqs disabled here, since the posix-timers code is 619 * about to disable them again anyway. 620 */ 621 spin_unlock(&tsk->sighand->siglock); 622 do_schedule_next_timer(info); 623 spin_lock(&tsk->sighand->siglock); 624 } 625 return signr; 626 } 627 628 /* 629 * Tell a process that it has a new active signal.. 630 * 631 * NOTE! we rely on the previous spin_lock to 632 * lock interrupts for us! We can only be called with 633 * "siglock" held, and the local interrupt must 634 * have been disabled when that got acquired! 635 * 636 * No need to set need_resched since signal event passing 637 * goes through ->blocked 638 */ 639 void signal_wake_up_state(struct task_struct *t, unsigned int state) 640 { 641 set_tsk_thread_flag(t, TIF_SIGPENDING); 642 /* 643 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 644 * case. We don't check t->state here because there is a race with it 645 * executing another processor and just now entering stopped state. 646 * By using wake_up_state, we ensure the process will wake up and 647 * handle its death signal. 648 */ 649 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 650 kick_process(t); 651 } 652 653 /* 654 * Remove signals in mask from the pending set and queue. 655 * Returns 1 if any signals were found. 656 * 657 * All callers must be holding the siglock. 658 */ 659 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 660 { 661 struct sigqueue *q, *n; 662 sigset_t m; 663 664 sigandsets(&m, mask, &s->signal); 665 if (sigisemptyset(&m)) 666 return 0; 667 668 sigandnsets(&s->signal, &s->signal, mask); 669 list_for_each_entry_safe(q, n, &s->list, list) { 670 if (sigismember(mask, q->info.si_signo)) { 671 list_del_init(&q->list); 672 __sigqueue_free(q); 673 } 674 } 675 return 1; 676 } 677 678 static inline int is_si_special(const struct siginfo *info) 679 { 680 return info <= SEND_SIG_FORCED; 681 } 682 683 static inline bool si_fromuser(const struct siginfo *info) 684 { 685 return info == SEND_SIG_NOINFO || 686 (!is_si_special(info) && SI_FROMUSER(info)); 687 } 688 689 /* 690 * called with RCU read lock from check_kill_permission() 691 */ 692 static int kill_ok_by_cred(struct task_struct *t) 693 { 694 const struct cred *cred = current_cred(); 695 const struct cred *tcred = __task_cred(t); 696 697 if (uid_eq(cred->euid, tcred->suid) || 698 uid_eq(cred->euid, tcred->uid) || 699 uid_eq(cred->uid, tcred->suid) || 700 uid_eq(cred->uid, tcred->uid)) 701 return 1; 702 703 if (ns_capable(tcred->user_ns, CAP_KILL)) 704 return 1; 705 706 return 0; 707 } 708 709 /* 710 * Bad permissions for sending the signal 711 * - the caller must hold the RCU read lock 712 */ 713 static int check_kill_permission(int sig, struct siginfo *info, 714 struct task_struct *t) 715 { 716 struct pid *sid; 717 int error; 718 719 if (!valid_signal(sig)) 720 return -EINVAL; 721 722 if (!si_fromuser(info)) 723 return 0; 724 725 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 726 if (error) 727 return error; 728 729 if (!same_thread_group(current, t) && 730 !kill_ok_by_cred(t)) { 731 switch (sig) { 732 case SIGCONT: 733 sid = task_session(t); 734 /* 735 * We don't return the error if sid == NULL. The 736 * task was unhashed, the caller must notice this. 737 */ 738 if (!sid || sid == task_session(current)) 739 break; 740 default: 741 return -EPERM; 742 } 743 } 744 745 return security_task_kill(t, info, sig, 0); 746 } 747 748 /** 749 * ptrace_trap_notify - schedule trap to notify ptracer 750 * @t: tracee wanting to notify tracer 751 * 752 * This function schedules sticky ptrace trap which is cleared on the next 753 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 754 * ptracer. 755 * 756 * If @t is running, STOP trap will be taken. If trapped for STOP and 757 * ptracer is listening for events, tracee is woken up so that it can 758 * re-trap for the new event. If trapped otherwise, STOP trap will be 759 * eventually taken without returning to userland after the existing traps 760 * are finished by PTRACE_CONT. 761 * 762 * CONTEXT: 763 * Must be called with @task->sighand->siglock held. 764 */ 765 static void ptrace_trap_notify(struct task_struct *t) 766 { 767 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 768 assert_spin_locked(&t->sighand->siglock); 769 770 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 771 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 772 } 773 774 /* 775 * Handle magic process-wide effects of stop/continue signals. Unlike 776 * the signal actions, these happen immediately at signal-generation 777 * time regardless of blocking, ignoring, or handling. This does the 778 * actual continuing for SIGCONT, but not the actual stopping for stop 779 * signals. The process stop is done as a signal action for SIG_DFL. 780 * 781 * Returns true if the signal should be actually delivered, otherwise 782 * it should be dropped. 783 */ 784 static bool prepare_signal(int sig, struct task_struct *p, bool force) 785 { 786 struct signal_struct *signal = p->signal; 787 struct task_struct *t; 788 sigset_t flush; 789 790 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) { 791 if (!(signal->flags & SIGNAL_GROUP_EXIT)) 792 return sig == SIGKILL; 793 /* 794 * The process is in the middle of dying, nothing to do. 795 */ 796 } else if (sig_kernel_stop(sig)) { 797 /* 798 * This is a stop signal. Remove SIGCONT from all queues. 799 */ 800 siginitset(&flush, sigmask(SIGCONT)); 801 flush_sigqueue_mask(&flush, &signal->shared_pending); 802 for_each_thread(p, t) 803 flush_sigqueue_mask(&flush, &t->pending); 804 } else if (sig == SIGCONT) { 805 unsigned int why; 806 /* 807 * Remove all stop signals from all queues, wake all threads. 808 */ 809 siginitset(&flush, SIG_KERNEL_STOP_MASK); 810 flush_sigqueue_mask(&flush, &signal->shared_pending); 811 for_each_thread(p, t) { 812 flush_sigqueue_mask(&flush, &t->pending); 813 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 814 if (likely(!(t->ptrace & PT_SEIZED))) 815 wake_up_state(t, __TASK_STOPPED); 816 else 817 ptrace_trap_notify(t); 818 } 819 820 /* 821 * Notify the parent with CLD_CONTINUED if we were stopped. 822 * 823 * If we were in the middle of a group stop, we pretend it 824 * was already finished, and then continued. Since SIGCHLD 825 * doesn't queue we report only CLD_STOPPED, as if the next 826 * CLD_CONTINUED was dropped. 827 */ 828 why = 0; 829 if (signal->flags & SIGNAL_STOP_STOPPED) 830 why |= SIGNAL_CLD_CONTINUED; 831 else if (signal->group_stop_count) 832 why |= SIGNAL_CLD_STOPPED; 833 834 if (why) { 835 /* 836 * The first thread which returns from do_signal_stop() 837 * will take ->siglock, notice SIGNAL_CLD_MASK, and 838 * notify its parent. See get_signal_to_deliver(). 839 */ 840 signal->flags = why | SIGNAL_STOP_CONTINUED; 841 signal->group_stop_count = 0; 842 signal->group_exit_code = 0; 843 } 844 } 845 846 return !sig_ignored(p, sig, force); 847 } 848 849 /* 850 * Test if P wants to take SIG. After we've checked all threads with this, 851 * it's equivalent to finding no threads not blocking SIG. Any threads not 852 * blocking SIG were ruled out because they are not running and already 853 * have pending signals. Such threads will dequeue from the shared queue 854 * as soon as they're available, so putting the signal on the shared queue 855 * will be equivalent to sending it to one such thread. 856 */ 857 static inline int wants_signal(int sig, struct task_struct *p) 858 { 859 if (sigismember(&p->blocked, sig)) 860 return 0; 861 if (p->flags & PF_EXITING) 862 return 0; 863 if (sig == SIGKILL) 864 return 1; 865 if (task_is_stopped_or_traced(p)) 866 return 0; 867 return task_curr(p) || !signal_pending(p); 868 } 869 870 static void complete_signal(int sig, struct task_struct *p, int group) 871 { 872 struct signal_struct *signal = p->signal; 873 struct task_struct *t; 874 875 /* 876 * Now find a thread we can wake up to take the signal off the queue. 877 * 878 * If the main thread wants the signal, it gets first crack. 879 * Probably the least surprising to the average bear. 880 */ 881 if (wants_signal(sig, p)) 882 t = p; 883 else if (!group || thread_group_empty(p)) 884 /* 885 * There is just one thread and it does not need to be woken. 886 * It will dequeue unblocked signals before it runs again. 887 */ 888 return; 889 else { 890 /* 891 * Otherwise try to find a suitable thread. 892 */ 893 t = signal->curr_target; 894 while (!wants_signal(sig, t)) { 895 t = next_thread(t); 896 if (t == signal->curr_target) 897 /* 898 * No thread needs to be woken. 899 * Any eligible threads will see 900 * the signal in the queue soon. 901 */ 902 return; 903 } 904 signal->curr_target = t; 905 } 906 907 /* 908 * Found a killable thread. If the signal will be fatal, 909 * then start taking the whole group down immediately. 910 */ 911 if (sig_fatal(p, sig) && 912 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) && 913 !sigismember(&t->real_blocked, sig) && 914 (sig == SIGKILL || !t->ptrace)) { 915 /* 916 * This signal will be fatal to the whole group. 917 */ 918 if (!sig_kernel_coredump(sig)) { 919 /* 920 * Start a group exit and wake everybody up. 921 * This way we don't have other threads 922 * running and doing things after a slower 923 * thread has the fatal signal pending. 924 */ 925 signal->flags = SIGNAL_GROUP_EXIT; 926 signal->group_exit_code = sig; 927 signal->group_stop_count = 0; 928 t = p; 929 do { 930 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 931 sigaddset(&t->pending.signal, SIGKILL); 932 signal_wake_up(t, 1); 933 } while_each_thread(p, t); 934 return; 935 } 936 } 937 938 /* 939 * The signal is already in the shared-pending queue. 940 * Tell the chosen thread to wake up and dequeue it. 941 */ 942 signal_wake_up(t, sig == SIGKILL); 943 return; 944 } 945 946 static inline int legacy_queue(struct sigpending *signals, int sig) 947 { 948 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 949 } 950 951 #ifdef CONFIG_USER_NS 952 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 953 { 954 if (current_user_ns() == task_cred_xxx(t, user_ns)) 955 return; 956 957 if (SI_FROMKERNEL(info)) 958 return; 959 960 rcu_read_lock(); 961 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns), 962 make_kuid(current_user_ns(), info->si_uid)); 963 rcu_read_unlock(); 964 } 965 #else 966 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 967 { 968 return; 969 } 970 #endif 971 972 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t, 973 int group, int from_ancestor_ns) 974 { 975 struct sigpending *pending; 976 struct sigqueue *q; 977 int override_rlimit; 978 int ret = 0, result; 979 980 assert_spin_locked(&t->sighand->siglock); 981 982 result = TRACE_SIGNAL_IGNORED; 983 if (!prepare_signal(sig, t, 984 from_ancestor_ns || (info == SEND_SIG_FORCED))) 985 goto ret; 986 987 pending = group ? &t->signal->shared_pending : &t->pending; 988 /* 989 * Short-circuit ignored signals and support queuing 990 * exactly one non-rt signal, so that we can get more 991 * detailed information about the cause of the signal. 992 */ 993 result = TRACE_SIGNAL_ALREADY_PENDING; 994 if (legacy_queue(pending, sig)) 995 goto ret; 996 997 result = TRACE_SIGNAL_DELIVERED; 998 /* 999 * fast-pathed signals for kernel-internal things like SIGSTOP 1000 * or SIGKILL. 1001 */ 1002 if (info == SEND_SIG_FORCED) 1003 goto out_set; 1004 1005 /* 1006 * Real-time signals must be queued if sent by sigqueue, or 1007 * some other real-time mechanism. It is implementation 1008 * defined whether kill() does so. We attempt to do so, on 1009 * the principle of least surprise, but since kill is not 1010 * allowed to fail with EAGAIN when low on memory we just 1011 * make sure at least one signal gets delivered and don't 1012 * pass on the info struct. 1013 */ 1014 if (sig < SIGRTMIN) 1015 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1016 else 1017 override_rlimit = 0; 1018 1019 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE, 1020 override_rlimit); 1021 if (q) { 1022 list_add_tail(&q->list, &pending->list); 1023 switch ((unsigned long) info) { 1024 case (unsigned long) SEND_SIG_NOINFO: 1025 q->info.si_signo = sig; 1026 q->info.si_errno = 0; 1027 q->info.si_code = SI_USER; 1028 q->info.si_pid = task_tgid_nr_ns(current, 1029 task_active_pid_ns(t)); 1030 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1031 break; 1032 case (unsigned long) SEND_SIG_PRIV: 1033 q->info.si_signo = sig; 1034 q->info.si_errno = 0; 1035 q->info.si_code = SI_KERNEL; 1036 q->info.si_pid = 0; 1037 q->info.si_uid = 0; 1038 break; 1039 default: 1040 copy_siginfo(&q->info, info); 1041 if (from_ancestor_ns) 1042 q->info.si_pid = 0; 1043 break; 1044 } 1045 1046 userns_fixup_signal_uid(&q->info, t); 1047 1048 } else if (!is_si_special(info)) { 1049 if (sig >= SIGRTMIN && info->si_code != SI_USER) { 1050 /* 1051 * Queue overflow, abort. We may abort if the 1052 * signal was rt and sent by user using something 1053 * other than kill(). 1054 */ 1055 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1056 ret = -EAGAIN; 1057 goto ret; 1058 } else { 1059 /* 1060 * This is a silent loss of information. We still 1061 * send the signal, but the *info bits are lost. 1062 */ 1063 result = TRACE_SIGNAL_LOSE_INFO; 1064 } 1065 } 1066 1067 out_set: 1068 signalfd_notify(t, sig); 1069 sigaddset(&pending->signal, sig); 1070 complete_signal(sig, t, group); 1071 ret: 1072 trace_signal_generate(sig, info, t, group, result); 1073 return ret; 1074 } 1075 1076 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 1077 int group) 1078 { 1079 int from_ancestor_ns = 0; 1080 1081 #ifdef CONFIG_PID_NS 1082 from_ancestor_ns = si_fromuser(info) && 1083 !task_pid_nr_ns(current, task_active_pid_ns(t)); 1084 #endif 1085 1086 return __send_signal(sig, info, t, group, from_ancestor_ns); 1087 } 1088 1089 static void print_fatal_signal(int signr) 1090 { 1091 struct pt_regs *regs = signal_pt_regs(); 1092 pr_info("potentially unexpected fatal signal %d.\n", signr); 1093 1094 #if defined(__i386__) && !defined(__arch_um__) 1095 pr_info("code at %08lx: ", regs->ip); 1096 { 1097 int i; 1098 for (i = 0; i < 16; i++) { 1099 unsigned char insn; 1100 1101 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1102 break; 1103 pr_cont("%02x ", insn); 1104 } 1105 } 1106 pr_cont("\n"); 1107 #endif 1108 preempt_disable(); 1109 show_regs(regs); 1110 preempt_enable(); 1111 } 1112 1113 static int __init setup_print_fatal_signals(char *str) 1114 { 1115 get_option (&str, &print_fatal_signals); 1116 1117 return 1; 1118 } 1119 1120 __setup("print-fatal-signals=", setup_print_fatal_signals); 1121 1122 int 1123 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1124 { 1125 return send_signal(sig, info, p, 1); 1126 } 1127 1128 static int 1129 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1130 { 1131 return send_signal(sig, info, t, 0); 1132 } 1133 1134 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p, 1135 bool group) 1136 { 1137 unsigned long flags; 1138 int ret = -ESRCH; 1139 1140 if (lock_task_sighand(p, &flags)) { 1141 ret = send_signal(sig, info, p, group); 1142 unlock_task_sighand(p, &flags); 1143 } 1144 1145 return ret; 1146 } 1147 1148 /* 1149 * Force a signal that the process can't ignore: if necessary 1150 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1151 * 1152 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1153 * since we do not want to have a signal handler that was blocked 1154 * be invoked when user space had explicitly blocked it. 1155 * 1156 * We don't want to have recursive SIGSEGV's etc, for example, 1157 * that is why we also clear SIGNAL_UNKILLABLE. 1158 */ 1159 int 1160 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1161 { 1162 unsigned long int flags; 1163 int ret, blocked, ignored; 1164 struct k_sigaction *action; 1165 1166 spin_lock_irqsave(&t->sighand->siglock, flags); 1167 action = &t->sighand->action[sig-1]; 1168 ignored = action->sa.sa_handler == SIG_IGN; 1169 blocked = sigismember(&t->blocked, sig); 1170 if (blocked || ignored) { 1171 action->sa.sa_handler = SIG_DFL; 1172 if (blocked) { 1173 sigdelset(&t->blocked, sig); 1174 recalc_sigpending_and_wake(t); 1175 } 1176 } 1177 if (action->sa.sa_handler == SIG_DFL) 1178 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1179 ret = specific_send_sig_info(sig, info, t); 1180 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1181 1182 return ret; 1183 } 1184 1185 /* 1186 * Nuke all other threads in the group. 1187 */ 1188 int zap_other_threads(struct task_struct *p) 1189 { 1190 struct task_struct *t = p; 1191 int count = 0; 1192 1193 p->signal->group_stop_count = 0; 1194 1195 while_each_thread(p, t) { 1196 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1197 count++; 1198 1199 /* Don't bother with already dead threads */ 1200 if (t->exit_state) 1201 continue; 1202 sigaddset(&t->pending.signal, SIGKILL); 1203 signal_wake_up(t, 1); 1204 } 1205 1206 return count; 1207 } 1208 1209 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1210 unsigned long *flags) 1211 { 1212 struct sighand_struct *sighand; 1213 1214 for (;;) { 1215 /* 1216 * Disable interrupts early to avoid deadlocks. 1217 * See rcu_read_unlock() comment header for details. 1218 */ 1219 local_irq_save(*flags); 1220 rcu_read_lock(); 1221 sighand = rcu_dereference(tsk->sighand); 1222 if (unlikely(sighand == NULL)) { 1223 rcu_read_unlock(); 1224 local_irq_restore(*flags); 1225 break; 1226 } 1227 /* 1228 * This sighand can be already freed and even reused, but 1229 * we rely on SLAB_DESTROY_BY_RCU and sighand_ctor() which 1230 * initializes ->siglock: this slab can't go away, it has 1231 * the same object type, ->siglock can't be reinitialized. 1232 * 1233 * We need to ensure that tsk->sighand is still the same 1234 * after we take the lock, we can race with de_thread() or 1235 * __exit_signal(). In the latter case the next iteration 1236 * must see ->sighand == NULL. 1237 */ 1238 spin_lock(&sighand->siglock); 1239 if (likely(sighand == tsk->sighand)) { 1240 rcu_read_unlock(); 1241 break; 1242 } 1243 spin_unlock(&sighand->siglock); 1244 rcu_read_unlock(); 1245 local_irq_restore(*flags); 1246 } 1247 1248 return sighand; 1249 } 1250 1251 /* 1252 * send signal info to all the members of a group 1253 */ 1254 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1255 { 1256 int ret; 1257 1258 rcu_read_lock(); 1259 ret = check_kill_permission(sig, info, p); 1260 rcu_read_unlock(); 1261 1262 if (!ret && sig) 1263 ret = do_send_sig_info(sig, info, p, true); 1264 1265 return ret; 1266 } 1267 1268 /* 1269 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1270 * control characters do (^C, ^Z etc) 1271 * - the caller must hold at least a readlock on tasklist_lock 1272 */ 1273 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1274 { 1275 struct task_struct *p = NULL; 1276 int retval, success; 1277 1278 success = 0; 1279 retval = -ESRCH; 1280 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1281 int err = group_send_sig_info(sig, info, p); 1282 success |= !err; 1283 retval = err; 1284 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1285 return success ? 0 : retval; 1286 } 1287 1288 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) 1289 { 1290 int error = -ESRCH; 1291 struct task_struct *p; 1292 1293 for (;;) { 1294 rcu_read_lock(); 1295 p = pid_task(pid, PIDTYPE_PID); 1296 if (p) 1297 error = group_send_sig_info(sig, info, p); 1298 rcu_read_unlock(); 1299 if (likely(!p || error != -ESRCH)) 1300 return error; 1301 1302 /* 1303 * The task was unhashed in between, try again. If it 1304 * is dead, pid_task() will return NULL, if we race with 1305 * de_thread() it will find the new leader. 1306 */ 1307 } 1308 } 1309 1310 int kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1311 { 1312 int error; 1313 rcu_read_lock(); 1314 error = kill_pid_info(sig, info, find_vpid(pid)); 1315 rcu_read_unlock(); 1316 return error; 1317 } 1318 1319 static int kill_as_cred_perm(const struct cred *cred, 1320 struct task_struct *target) 1321 { 1322 const struct cred *pcred = __task_cred(target); 1323 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) && 1324 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid)) 1325 return 0; 1326 return 1; 1327 } 1328 1329 /* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1330 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid, 1331 const struct cred *cred, u32 secid) 1332 { 1333 int ret = -EINVAL; 1334 struct task_struct *p; 1335 unsigned long flags; 1336 1337 if (!valid_signal(sig)) 1338 return ret; 1339 1340 rcu_read_lock(); 1341 p = pid_task(pid, PIDTYPE_PID); 1342 if (!p) { 1343 ret = -ESRCH; 1344 goto out_unlock; 1345 } 1346 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) { 1347 ret = -EPERM; 1348 goto out_unlock; 1349 } 1350 ret = security_task_kill(p, info, sig, secid); 1351 if (ret) 1352 goto out_unlock; 1353 1354 if (sig) { 1355 if (lock_task_sighand(p, &flags)) { 1356 ret = __send_signal(sig, info, p, 1, 0); 1357 unlock_task_sighand(p, &flags); 1358 } else 1359 ret = -ESRCH; 1360 } 1361 out_unlock: 1362 rcu_read_unlock(); 1363 return ret; 1364 } 1365 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred); 1366 1367 /* 1368 * kill_something_info() interprets pid in interesting ways just like kill(2). 1369 * 1370 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1371 * is probably wrong. Should make it like BSD or SYSV. 1372 */ 1373 1374 static int kill_something_info(int sig, struct siginfo *info, pid_t pid) 1375 { 1376 int ret; 1377 1378 if (pid > 0) { 1379 rcu_read_lock(); 1380 ret = kill_pid_info(sig, info, find_vpid(pid)); 1381 rcu_read_unlock(); 1382 return ret; 1383 } 1384 1385 read_lock(&tasklist_lock); 1386 if (pid != -1) { 1387 ret = __kill_pgrp_info(sig, info, 1388 pid ? find_vpid(-pid) : task_pgrp(current)); 1389 } else { 1390 int retval = 0, count = 0; 1391 struct task_struct * p; 1392 1393 for_each_process(p) { 1394 if (task_pid_vnr(p) > 1 && 1395 !same_thread_group(p, current)) { 1396 int err = group_send_sig_info(sig, info, p); 1397 ++count; 1398 if (err != -EPERM) 1399 retval = err; 1400 } 1401 } 1402 ret = count ? retval : -ESRCH; 1403 } 1404 read_unlock(&tasklist_lock); 1405 1406 return ret; 1407 } 1408 1409 /* 1410 * These are for backward compatibility with the rest of the kernel source. 1411 */ 1412 1413 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1414 { 1415 /* 1416 * Make sure legacy kernel users don't send in bad values 1417 * (normal paths check this in check_kill_permission). 1418 */ 1419 if (!valid_signal(sig)) 1420 return -EINVAL; 1421 1422 return do_send_sig_info(sig, info, p, false); 1423 } 1424 1425 #define __si_special(priv) \ 1426 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1427 1428 int 1429 send_sig(int sig, struct task_struct *p, int priv) 1430 { 1431 return send_sig_info(sig, __si_special(priv), p); 1432 } 1433 1434 void 1435 force_sig(int sig, struct task_struct *p) 1436 { 1437 force_sig_info(sig, SEND_SIG_PRIV, p); 1438 } 1439 1440 /* 1441 * When things go south during signal handling, we 1442 * will force a SIGSEGV. And if the signal that caused 1443 * the problem was already a SIGSEGV, we'll want to 1444 * make sure we don't even try to deliver the signal.. 1445 */ 1446 int 1447 force_sigsegv(int sig, struct task_struct *p) 1448 { 1449 if (sig == SIGSEGV) { 1450 unsigned long flags; 1451 spin_lock_irqsave(&p->sighand->siglock, flags); 1452 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1453 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1454 } 1455 force_sig(SIGSEGV, p); 1456 return 0; 1457 } 1458 1459 int kill_pgrp(struct pid *pid, int sig, int priv) 1460 { 1461 int ret; 1462 1463 read_lock(&tasklist_lock); 1464 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1465 read_unlock(&tasklist_lock); 1466 1467 return ret; 1468 } 1469 EXPORT_SYMBOL(kill_pgrp); 1470 1471 int kill_pid(struct pid *pid, int sig, int priv) 1472 { 1473 return kill_pid_info(sig, __si_special(priv), pid); 1474 } 1475 EXPORT_SYMBOL(kill_pid); 1476 1477 /* 1478 * These functions support sending signals using preallocated sigqueue 1479 * structures. This is needed "because realtime applications cannot 1480 * afford to lose notifications of asynchronous events, like timer 1481 * expirations or I/O completions". In the case of POSIX Timers 1482 * we allocate the sigqueue structure from the timer_create. If this 1483 * allocation fails we are able to report the failure to the application 1484 * with an EAGAIN error. 1485 */ 1486 struct sigqueue *sigqueue_alloc(void) 1487 { 1488 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); 1489 1490 if (q) 1491 q->flags |= SIGQUEUE_PREALLOC; 1492 1493 return q; 1494 } 1495 1496 void sigqueue_free(struct sigqueue *q) 1497 { 1498 unsigned long flags; 1499 spinlock_t *lock = ¤t->sighand->siglock; 1500 1501 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1502 /* 1503 * We must hold ->siglock while testing q->list 1504 * to serialize with collect_signal() or with 1505 * __exit_signal()->flush_sigqueue(). 1506 */ 1507 spin_lock_irqsave(lock, flags); 1508 q->flags &= ~SIGQUEUE_PREALLOC; 1509 /* 1510 * If it is queued it will be freed when dequeued, 1511 * like the "regular" sigqueue. 1512 */ 1513 if (!list_empty(&q->list)) 1514 q = NULL; 1515 spin_unlock_irqrestore(lock, flags); 1516 1517 if (q) 1518 __sigqueue_free(q); 1519 } 1520 1521 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) 1522 { 1523 int sig = q->info.si_signo; 1524 struct sigpending *pending; 1525 unsigned long flags; 1526 int ret, result; 1527 1528 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1529 1530 ret = -1; 1531 if (!likely(lock_task_sighand(t, &flags))) 1532 goto ret; 1533 1534 ret = 1; /* the signal is ignored */ 1535 result = TRACE_SIGNAL_IGNORED; 1536 if (!prepare_signal(sig, t, false)) 1537 goto out; 1538 1539 ret = 0; 1540 if (unlikely(!list_empty(&q->list))) { 1541 /* 1542 * If an SI_TIMER entry is already queue just increment 1543 * the overrun count. 1544 */ 1545 BUG_ON(q->info.si_code != SI_TIMER); 1546 q->info.si_overrun++; 1547 result = TRACE_SIGNAL_ALREADY_PENDING; 1548 goto out; 1549 } 1550 q->info.si_overrun = 0; 1551 1552 signalfd_notify(t, sig); 1553 pending = group ? &t->signal->shared_pending : &t->pending; 1554 list_add_tail(&q->list, &pending->list); 1555 sigaddset(&pending->signal, sig); 1556 complete_signal(sig, t, group); 1557 result = TRACE_SIGNAL_DELIVERED; 1558 out: 1559 trace_signal_generate(sig, &q->info, t, group, result); 1560 unlock_task_sighand(t, &flags); 1561 ret: 1562 return ret; 1563 } 1564 1565 /* 1566 * Let a parent know about the death of a child. 1567 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1568 * 1569 * Returns true if our parent ignored us and so we've switched to 1570 * self-reaping. 1571 */ 1572 bool do_notify_parent(struct task_struct *tsk, int sig) 1573 { 1574 struct siginfo info; 1575 unsigned long flags; 1576 struct sighand_struct *psig; 1577 bool autoreap = false; 1578 cputime_t utime, stime; 1579 1580 BUG_ON(sig == -1); 1581 1582 /* do_notify_parent_cldstop should have been called instead. */ 1583 BUG_ON(task_is_stopped_or_traced(tsk)); 1584 1585 BUG_ON(!tsk->ptrace && 1586 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1587 1588 if (sig != SIGCHLD) { 1589 /* 1590 * This is only possible if parent == real_parent. 1591 * Check if it has changed security domain. 1592 */ 1593 if (tsk->parent_exec_id != tsk->parent->self_exec_id) 1594 sig = SIGCHLD; 1595 } 1596 1597 info.si_signo = sig; 1598 info.si_errno = 0; 1599 /* 1600 * We are under tasklist_lock here so our parent is tied to 1601 * us and cannot change. 1602 * 1603 * task_active_pid_ns will always return the same pid namespace 1604 * until a task passes through release_task. 1605 * 1606 * write_lock() currently calls preempt_disable() which is the 1607 * same as rcu_read_lock(), but according to Oleg, this is not 1608 * correct to rely on this 1609 */ 1610 rcu_read_lock(); 1611 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 1612 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 1613 task_uid(tsk)); 1614 rcu_read_unlock(); 1615 1616 task_cputime(tsk, &utime, &stime); 1617 info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime); 1618 info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime); 1619 1620 info.si_status = tsk->exit_code & 0x7f; 1621 if (tsk->exit_code & 0x80) 1622 info.si_code = CLD_DUMPED; 1623 else if (tsk->exit_code & 0x7f) 1624 info.si_code = CLD_KILLED; 1625 else { 1626 info.si_code = CLD_EXITED; 1627 info.si_status = tsk->exit_code >> 8; 1628 } 1629 1630 psig = tsk->parent->sighand; 1631 spin_lock_irqsave(&psig->siglock, flags); 1632 if (!tsk->ptrace && sig == SIGCHLD && 1633 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1634 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1635 /* 1636 * We are exiting and our parent doesn't care. POSIX.1 1637 * defines special semantics for setting SIGCHLD to SIG_IGN 1638 * or setting the SA_NOCLDWAIT flag: we should be reaped 1639 * automatically and not left for our parent's wait4 call. 1640 * Rather than having the parent do it as a magic kind of 1641 * signal handler, we just set this to tell do_exit that we 1642 * can be cleaned up without becoming a zombie. Note that 1643 * we still call __wake_up_parent in this case, because a 1644 * blocked sys_wait4 might now return -ECHILD. 1645 * 1646 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1647 * is implementation-defined: we do (if you don't want 1648 * it, just use SIG_IGN instead). 1649 */ 1650 autoreap = true; 1651 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1652 sig = 0; 1653 } 1654 if (valid_signal(sig) && sig) 1655 __group_send_sig_info(sig, &info, tsk->parent); 1656 __wake_up_parent(tsk, tsk->parent); 1657 spin_unlock_irqrestore(&psig->siglock, flags); 1658 1659 return autoreap; 1660 } 1661 1662 /** 1663 * do_notify_parent_cldstop - notify parent of stopped/continued state change 1664 * @tsk: task reporting the state change 1665 * @for_ptracer: the notification is for ptracer 1666 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 1667 * 1668 * Notify @tsk's parent that the stopped/continued state has changed. If 1669 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 1670 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 1671 * 1672 * CONTEXT: 1673 * Must be called with tasklist_lock at least read locked. 1674 */ 1675 static void do_notify_parent_cldstop(struct task_struct *tsk, 1676 bool for_ptracer, int why) 1677 { 1678 struct siginfo info; 1679 unsigned long flags; 1680 struct task_struct *parent; 1681 struct sighand_struct *sighand; 1682 cputime_t utime, stime; 1683 1684 if (for_ptracer) { 1685 parent = tsk->parent; 1686 } else { 1687 tsk = tsk->group_leader; 1688 parent = tsk->real_parent; 1689 } 1690 1691 info.si_signo = SIGCHLD; 1692 info.si_errno = 0; 1693 /* 1694 * see comment in do_notify_parent() about the following 4 lines 1695 */ 1696 rcu_read_lock(); 1697 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 1698 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 1699 rcu_read_unlock(); 1700 1701 task_cputime(tsk, &utime, &stime); 1702 info.si_utime = cputime_to_clock_t(utime); 1703 info.si_stime = cputime_to_clock_t(stime); 1704 1705 info.si_code = why; 1706 switch (why) { 1707 case CLD_CONTINUED: 1708 info.si_status = SIGCONT; 1709 break; 1710 case CLD_STOPPED: 1711 info.si_status = tsk->signal->group_exit_code & 0x7f; 1712 break; 1713 case CLD_TRAPPED: 1714 info.si_status = tsk->exit_code & 0x7f; 1715 break; 1716 default: 1717 BUG(); 1718 } 1719 1720 sighand = parent->sighand; 1721 spin_lock_irqsave(&sighand->siglock, flags); 1722 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1723 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1724 __group_send_sig_info(SIGCHLD, &info, parent); 1725 /* 1726 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1727 */ 1728 __wake_up_parent(tsk, parent); 1729 spin_unlock_irqrestore(&sighand->siglock, flags); 1730 } 1731 1732 static inline int may_ptrace_stop(void) 1733 { 1734 if (!likely(current->ptrace)) 1735 return 0; 1736 /* 1737 * Are we in the middle of do_coredump? 1738 * If so and our tracer is also part of the coredump stopping 1739 * is a deadlock situation, and pointless because our tracer 1740 * is dead so don't allow us to stop. 1741 * If SIGKILL was already sent before the caller unlocked 1742 * ->siglock we must see ->core_state != NULL. Otherwise it 1743 * is safe to enter schedule(). 1744 * 1745 * This is almost outdated, a task with the pending SIGKILL can't 1746 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported 1747 * after SIGKILL was already dequeued. 1748 */ 1749 if (unlikely(current->mm->core_state) && 1750 unlikely(current->mm == current->parent->mm)) 1751 return 0; 1752 1753 return 1; 1754 } 1755 1756 /* 1757 * Return non-zero if there is a SIGKILL that should be waking us up. 1758 * Called with the siglock held. 1759 */ 1760 static int sigkill_pending(struct task_struct *tsk) 1761 { 1762 return sigismember(&tsk->pending.signal, SIGKILL) || 1763 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 1764 } 1765 1766 /* 1767 * This must be called with current->sighand->siglock held. 1768 * 1769 * This should be the path for all ptrace stops. 1770 * We always set current->last_siginfo while stopped here. 1771 * That makes it a way to test a stopped process for 1772 * being ptrace-stopped vs being job-control-stopped. 1773 * 1774 * If we actually decide not to stop at all because the tracer 1775 * is gone, we keep current->exit_code unless clear_code. 1776 */ 1777 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info) 1778 __releases(¤t->sighand->siglock) 1779 __acquires(¤t->sighand->siglock) 1780 { 1781 bool gstop_done = false; 1782 1783 if (arch_ptrace_stop_needed(exit_code, info)) { 1784 /* 1785 * The arch code has something special to do before a 1786 * ptrace stop. This is allowed to block, e.g. for faults 1787 * on user stack pages. We can't keep the siglock while 1788 * calling arch_ptrace_stop, so we must release it now. 1789 * To preserve proper semantics, we must do this before 1790 * any signal bookkeeping like checking group_stop_count. 1791 * Meanwhile, a SIGKILL could come in before we retake the 1792 * siglock. That must prevent us from sleeping in TASK_TRACED. 1793 * So after regaining the lock, we must check for SIGKILL. 1794 */ 1795 spin_unlock_irq(¤t->sighand->siglock); 1796 arch_ptrace_stop(exit_code, info); 1797 spin_lock_irq(¤t->sighand->siglock); 1798 if (sigkill_pending(current)) 1799 return; 1800 } 1801 1802 /* 1803 * We're committing to trapping. TRACED should be visible before 1804 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 1805 * Also, transition to TRACED and updates to ->jobctl should be 1806 * atomic with respect to siglock and should be done after the arch 1807 * hook as siglock is released and regrabbed across it. 1808 */ 1809 set_current_state(TASK_TRACED); 1810 1811 current->last_siginfo = info; 1812 current->exit_code = exit_code; 1813 1814 /* 1815 * If @why is CLD_STOPPED, we're trapping to participate in a group 1816 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 1817 * across siglock relocks since INTERRUPT was scheduled, PENDING 1818 * could be clear now. We act as if SIGCONT is received after 1819 * TASK_TRACED is entered - ignore it. 1820 */ 1821 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 1822 gstop_done = task_participate_group_stop(current); 1823 1824 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 1825 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 1826 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 1827 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 1828 1829 /* entering a trap, clear TRAPPING */ 1830 task_clear_jobctl_trapping(current); 1831 1832 spin_unlock_irq(¤t->sighand->siglock); 1833 read_lock(&tasklist_lock); 1834 if (may_ptrace_stop()) { 1835 /* 1836 * Notify parents of the stop. 1837 * 1838 * While ptraced, there are two parents - the ptracer and 1839 * the real_parent of the group_leader. The ptracer should 1840 * know about every stop while the real parent is only 1841 * interested in the completion of group stop. The states 1842 * for the two don't interact with each other. Notify 1843 * separately unless they're gonna be duplicates. 1844 */ 1845 do_notify_parent_cldstop(current, true, why); 1846 if (gstop_done && ptrace_reparented(current)) 1847 do_notify_parent_cldstop(current, false, why); 1848 1849 /* 1850 * Don't want to allow preemption here, because 1851 * sys_ptrace() needs this task to be inactive. 1852 * 1853 * XXX: implement read_unlock_no_resched(). 1854 */ 1855 preempt_disable(); 1856 read_unlock(&tasklist_lock); 1857 preempt_enable_no_resched(); 1858 freezable_schedule(); 1859 } else { 1860 /* 1861 * By the time we got the lock, our tracer went away. 1862 * Don't drop the lock yet, another tracer may come. 1863 * 1864 * If @gstop_done, the ptracer went away between group stop 1865 * completion and here. During detach, it would have set 1866 * JOBCTL_STOP_PENDING on us and we'll re-enter 1867 * TASK_STOPPED in do_signal_stop() on return, so notifying 1868 * the real parent of the group stop completion is enough. 1869 */ 1870 if (gstop_done) 1871 do_notify_parent_cldstop(current, false, why); 1872 1873 /* tasklist protects us from ptrace_freeze_traced() */ 1874 __set_current_state(TASK_RUNNING); 1875 if (clear_code) 1876 current->exit_code = 0; 1877 read_unlock(&tasklist_lock); 1878 } 1879 1880 /* 1881 * We are back. Now reacquire the siglock before touching 1882 * last_siginfo, so that we are sure to have synchronized with 1883 * any signal-sending on another CPU that wants to examine it. 1884 */ 1885 spin_lock_irq(¤t->sighand->siglock); 1886 current->last_siginfo = NULL; 1887 1888 /* LISTENING can be set only during STOP traps, clear it */ 1889 current->jobctl &= ~JOBCTL_LISTENING; 1890 1891 /* 1892 * Queued signals ignored us while we were stopped for tracing. 1893 * So check for any that we should take before resuming user mode. 1894 * This sets TIF_SIGPENDING, but never clears it. 1895 */ 1896 recalc_sigpending_tsk(current); 1897 } 1898 1899 static void ptrace_do_notify(int signr, int exit_code, int why) 1900 { 1901 siginfo_t info; 1902 1903 memset(&info, 0, sizeof info); 1904 info.si_signo = signr; 1905 info.si_code = exit_code; 1906 info.si_pid = task_pid_vnr(current); 1907 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1908 1909 /* Let the debugger run. */ 1910 ptrace_stop(exit_code, why, 1, &info); 1911 } 1912 1913 void ptrace_notify(int exit_code) 1914 { 1915 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1916 if (unlikely(current->task_works)) 1917 task_work_run(); 1918 1919 spin_lock_irq(¤t->sighand->siglock); 1920 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 1921 spin_unlock_irq(¤t->sighand->siglock); 1922 } 1923 1924 /** 1925 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 1926 * @signr: signr causing group stop if initiating 1927 * 1928 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 1929 * and participate in it. If already set, participate in the existing 1930 * group stop. If participated in a group stop (and thus slept), %true is 1931 * returned with siglock released. 1932 * 1933 * If ptraced, this function doesn't handle stop itself. Instead, 1934 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 1935 * untouched. The caller must ensure that INTERRUPT trap handling takes 1936 * places afterwards. 1937 * 1938 * CONTEXT: 1939 * Must be called with @current->sighand->siglock held, which is released 1940 * on %true return. 1941 * 1942 * RETURNS: 1943 * %false if group stop is already cancelled or ptrace trap is scheduled. 1944 * %true if participated in group stop. 1945 */ 1946 static bool do_signal_stop(int signr) 1947 __releases(¤t->sighand->siglock) 1948 { 1949 struct signal_struct *sig = current->signal; 1950 1951 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 1952 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 1953 struct task_struct *t; 1954 1955 /* signr will be recorded in task->jobctl for retries */ 1956 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 1957 1958 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 1959 unlikely(signal_group_exit(sig))) 1960 return false; 1961 /* 1962 * There is no group stop already in progress. We must 1963 * initiate one now. 1964 * 1965 * While ptraced, a task may be resumed while group stop is 1966 * still in effect and then receive a stop signal and 1967 * initiate another group stop. This deviates from the 1968 * usual behavior as two consecutive stop signals can't 1969 * cause two group stops when !ptraced. That is why we 1970 * also check !task_is_stopped(t) below. 1971 * 1972 * The condition can be distinguished by testing whether 1973 * SIGNAL_STOP_STOPPED is already set. Don't generate 1974 * group_exit_code in such case. 1975 * 1976 * This is not necessary for SIGNAL_STOP_CONTINUED because 1977 * an intervening stop signal is required to cause two 1978 * continued events regardless of ptrace. 1979 */ 1980 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 1981 sig->group_exit_code = signr; 1982 1983 sig->group_stop_count = 0; 1984 1985 if (task_set_jobctl_pending(current, signr | gstop)) 1986 sig->group_stop_count++; 1987 1988 t = current; 1989 while_each_thread(current, t) { 1990 /* 1991 * Setting state to TASK_STOPPED for a group 1992 * stop is always done with the siglock held, 1993 * so this check has no races. 1994 */ 1995 if (!task_is_stopped(t) && 1996 task_set_jobctl_pending(t, signr | gstop)) { 1997 sig->group_stop_count++; 1998 if (likely(!(t->ptrace & PT_SEIZED))) 1999 signal_wake_up(t, 0); 2000 else 2001 ptrace_trap_notify(t); 2002 } 2003 } 2004 } 2005 2006 if (likely(!current->ptrace)) { 2007 int notify = 0; 2008 2009 /* 2010 * If there are no other threads in the group, or if there 2011 * is a group stop in progress and we are the last to stop, 2012 * report to the parent. 2013 */ 2014 if (task_participate_group_stop(current)) 2015 notify = CLD_STOPPED; 2016 2017 __set_current_state(TASK_STOPPED); 2018 spin_unlock_irq(¤t->sighand->siglock); 2019 2020 /* 2021 * Notify the parent of the group stop completion. Because 2022 * we're not holding either the siglock or tasklist_lock 2023 * here, ptracer may attach inbetween; however, this is for 2024 * group stop and should always be delivered to the real 2025 * parent of the group leader. The new ptracer will get 2026 * its notification when this task transitions into 2027 * TASK_TRACED. 2028 */ 2029 if (notify) { 2030 read_lock(&tasklist_lock); 2031 do_notify_parent_cldstop(current, false, notify); 2032 read_unlock(&tasklist_lock); 2033 } 2034 2035 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2036 freezable_schedule(); 2037 return true; 2038 } else { 2039 /* 2040 * While ptraced, group stop is handled by STOP trap. 2041 * Schedule it and let the caller deal with it. 2042 */ 2043 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2044 return false; 2045 } 2046 } 2047 2048 /** 2049 * do_jobctl_trap - take care of ptrace jobctl traps 2050 * 2051 * When PT_SEIZED, it's used for both group stop and explicit 2052 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2053 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2054 * the stop signal; otherwise, %SIGTRAP. 2055 * 2056 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2057 * number as exit_code and no siginfo. 2058 * 2059 * CONTEXT: 2060 * Must be called with @current->sighand->siglock held, which may be 2061 * released and re-acquired before returning with intervening sleep. 2062 */ 2063 static void do_jobctl_trap(void) 2064 { 2065 struct signal_struct *signal = current->signal; 2066 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2067 2068 if (current->ptrace & PT_SEIZED) { 2069 if (!signal->group_stop_count && 2070 !(signal->flags & SIGNAL_STOP_STOPPED)) 2071 signr = SIGTRAP; 2072 WARN_ON_ONCE(!signr); 2073 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2074 CLD_STOPPED); 2075 } else { 2076 WARN_ON_ONCE(!signr); 2077 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2078 current->exit_code = 0; 2079 } 2080 } 2081 2082 static int ptrace_signal(int signr, siginfo_t *info) 2083 { 2084 ptrace_signal_deliver(); 2085 /* 2086 * We do not check sig_kernel_stop(signr) but set this marker 2087 * unconditionally because we do not know whether debugger will 2088 * change signr. This flag has no meaning unless we are going 2089 * to stop after return from ptrace_stop(). In this case it will 2090 * be checked in do_signal_stop(), we should only stop if it was 2091 * not cleared by SIGCONT while we were sleeping. See also the 2092 * comment in dequeue_signal(). 2093 */ 2094 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2095 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2096 2097 /* We're back. Did the debugger cancel the sig? */ 2098 signr = current->exit_code; 2099 if (signr == 0) 2100 return signr; 2101 2102 current->exit_code = 0; 2103 2104 /* 2105 * Update the siginfo structure if the signal has 2106 * changed. If the debugger wanted something 2107 * specific in the siginfo structure then it should 2108 * have updated *info via PTRACE_SETSIGINFO. 2109 */ 2110 if (signr != info->si_signo) { 2111 info->si_signo = signr; 2112 info->si_errno = 0; 2113 info->si_code = SI_USER; 2114 rcu_read_lock(); 2115 info->si_pid = task_pid_vnr(current->parent); 2116 info->si_uid = from_kuid_munged(current_user_ns(), 2117 task_uid(current->parent)); 2118 rcu_read_unlock(); 2119 } 2120 2121 /* If the (new) signal is now blocked, requeue it. */ 2122 if (sigismember(¤t->blocked, signr)) { 2123 specific_send_sig_info(signr, info, current); 2124 signr = 0; 2125 } 2126 2127 return signr; 2128 } 2129 2130 int get_signal(struct ksignal *ksig) 2131 { 2132 struct sighand_struct *sighand = current->sighand; 2133 struct signal_struct *signal = current->signal; 2134 int signr; 2135 2136 if (unlikely(current->task_works)) 2137 task_work_run(); 2138 2139 if (unlikely(uprobe_deny_signal())) 2140 return 0; 2141 2142 /* 2143 * Do this once, we can't return to user-mode if freezing() == T. 2144 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2145 * thus do not need another check after return. 2146 */ 2147 try_to_freeze(); 2148 2149 relock: 2150 spin_lock_irq(&sighand->siglock); 2151 /* 2152 * Every stopped thread goes here after wakeup. Check to see if 2153 * we should notify the parent, prepare_signal(SIGCONT) encodes 2154 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2155 */ 2156 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2157 int why; 2158 2159 if (signal->flags & SIGNAL_CLD_CONTINUED) 2160 why = CLD_CONTINUED; 2161 else 2162 why = CLD_STOPPED; 2163 2164 signal->flags &= ~SIGNAL_CLD_MASK; 2165 2166 spin_unlock_irq(&sighand->siglock); 2167 2168 /* 2169 * Notify the parent that we're continuing. This event is 2170 * always per-process and doesn't make whole lot of sense 2171 * for ptracers, who shouldn't consume the state via 2172 * wait(2) either, but, for backward compatibility, notify 2173 * the ptracer of the group leader too unless it's gonna be 2174 * a duplicate. 2175 */ 2176 read_lock(&tasklist_lock); 2177 do_notify_parent_cldstop(current, false, why); 2178 2179 if (ptrace_reparented(current->group_leader)) 2180 do_notify_parent_cldstop(current->group_leader, 2181 true, why); 2182 read_unlock(&tasklist_lock); 2183 2184 goto relock; 2185 } 2186 2187 for (;;) { 2188 struct k_sigaction *ka; 2189 2190 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2191 do_signal_stop(0)) 2192 goto relock; 2193 2194 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) { 2195 do_jobctl_trap(); 2196 spin_unlock_irq(&sighand->siglock); 2197 goto relock; 2198 } 2199 2200 signr = dequeue_signal(current, ¤t->blocked, &ksig->info); 2201 2202 if (!signr) 2203 break; /* will return 0 */ 2204 2205 if (unlikely(current->ptrace) && signr != SIGKILL) { 2206 signr = ptrace_signal(signr, &ksig->info); 2207 if (!signr) 2208 continue; 2209 } 2210 2211 ka = &sighand->action[signr-1]; 2212 2213 /* Trace actually delivered signals. */ 2214 trace_signal_deliver(signr, &ksig->info, ka); 2215 2216 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2217 continue; 2218 if (ka->sa.sa_handler != SIG_DFL) { 2219 /* Run the handler. */ 2220 ksig->ka = *ka; 2221 2222 if (ka->sa.sa_flags & SA_ONESHOT) 2223 ka->sa.sa_handler = SIG_DFL; 2224 2225 break; /* will return non-zero "signr" value */ 2226 } 2227 2228 /* 2229 * Now we are doing the default action for this signal. 2230 */ 2231 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2232 continue; 2233 2234 /* 2235 * Global init gets no signals it doesn't want. 2236 * Container-init gets no signals it doesn't want from same 2237 * container. 2238 * 2239 * Note that if global/container-init sees a sig_kernel_only() 2240 * signal here, the signal must have been generated internally 2241 * or must have come from an ancestor namespace. In either 2242 * case, the signal cannot be dropped. 2243 */ 2244 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2245 !sig_kernel_only(signr)) 2246 continue; 2247 2248 if (sig_kernel_stop(signr)) { 2249 /* 2250 * The default action is to stop all threads in 2251 * the thread group. The job control signals 2252 * do nothing in an orphaned pgrp, but SIGSTOP 2253 * always works. Note that siglock needs to be 2254 * dropped during the call to is_orphaned_pgrp() 2255 * because of lock ordering with tasklist_lock. 2256 * This allows an intervening SIGCONT to be posted. 2257 * We need to check for that and bail out if necessary. 2258 */ 2259 if (signr != SIGSTOP) { 2260 spin_unlock_irq(&sighand->siglock); 2261 2262 /* signals can be posted during this window */ 2263 2264 if (is_current_pgrp_orphaned()) 2265 goto relock; 2266 2267 spin_lock_irq(&sighand->siglock); 2268 } 2269 2270 if (likely(do_signal_stop(ksig->info.si_signo))) { 2271 /* It released the siglock. */ 2272 goto relock; 2273 } 2274 2275 /* 2276 * We didn't actually stop, due to a race 2277 * with SIGCONT or something like that. 2278 */ 2279 continue; 2280 } 2281 2282 spin_unlock_irq(&sighand->siglock); 2283 2284 /* 2285 * Anything else is fatal, maybe with a core dump. 2286 */ 2287 current->flags |= PF_SIGNALED; 2288 2289 if (sig_kernel_coredump(signr)) { 2290 if (print_fatal_signals) 2291 print_fatal_signal(ksig->info.si_signo); 2292 proc_coredump_connector(current); 2293 /* 2294 * If it was able to dump core, this kills all 2295 * other threads in the group and synchronizes with 2296 * their demise. If we lost the race with another 2297 * thread getting here, it set group_exit_code 2298 * first and our do_group_exit call below will use 2299 * that value and ignore the one we pass it. 2300 */ 2301 do_coredump(&ksig->info); 2302 } 2303 2304 /* 2305 * Death signals, no core dump. 2306 */ 2307 do_group_exit(ksig->info.si_signo); 2308 /* NOTREACHED */ 2309 } 2310 spin_unlock_irq(&sighand->siglock); 2311 2312 ksig->sig = signr; 2313 return ksig->sig > 0; 2314 } 2315 2316 /** 2317 * signal_delivered - 2318 * @ksig: kernel signal struct 2319 * @stepping: nonzero if debugger single-step or block-step in use 2320 * 2321 * This function should be called when a signal has successfully been 2322 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2323 * is always blocked, and the signal itself is blocked unless %SA_NODEFER 2324 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2325 */ 2326 static void signal_delivered(struct ksignal *ksig, int stepping) 2327 { 2328 sigset_t blocked; 2329 2330 /* A signal was successfully delivered, and the 2331 saved sigmask was stored on the signal frame, 2332 and will be restored by sigreturn. So we can 2333 simply clear the restore sigmask flag. */ 2334 clear_restore_sigmask(); 2335 2336 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2337 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2338 sigaddset(&blocked, ksig->sig); 2339 set_current_blocked(&blocked); 2340 tracehook_signal_handler(stepping); 2341 } 2342 2343 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2344 { 2345 if (failed) 2346 force_sigsegv(ksig->sig, current); 2347 else 2348 signal_delivered(ksig, stepping); 2349 } 2350 2351 /* 2352 * It could be that complete_signal() picked us to notify about the 2353 * group-wide signal. Other threads should be notified now to take 2354 * the shared signals in @which since we will not. 2355 */ 2356 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2357 { 2358 sigset_t retarget; 2359 struct task_struct *t; 2360 2361 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2362 if (sigisemptyset(&retarget)) 2363 return; 2364 2365 t = tsk; 2366 while_each_thread(tsk, t) { 2367 if (t->flags & PF_EXITING) 2368 continue; 2369 2370 if (!has_pending_signals(&retarget, &t->blocked)) 2371 continue; 2372 /* Remove the signals this thread can handle. */ 2373 sigandsets(&retarget, &retarget, &t->blocked); 2374 2375 if (!signal_pending(t)) 2376 signal_wake_up(t, 0); 2377 2378 if (sigisemptyset(&retarget)) 2379 break; 2380 } 2381 } 2382 2383 void exit_signals(struct task_struct *tsk) 2384 { 2385 int group_stop = 0; 2386 sigset_t unblocked; 2387 2388 /* 2389 * @tsk is about to have PF_EXITING set - lock out users which 2390 * expect stable threadgroup. 2391 */ 2392 threadgroup_change_begin(tsk); 2393 2394 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 2395 tsk->flags |= PF_EXITING; 2396 threadgroup_change_end(tsk); 2397 return; 2398 } 2399 2400 spin_lock_irq(&tsk->sighand->siglock); 2401 /* 2402 * From now this task is not visible for group-wide signals, 2403 * see wants_signal(), do_signal_stop(). 2404 */ 2405 tsk->flags |= PF_EXITING; 2406 2407 threadgroup_change_end(tsk); 2408 2409 if (!signal_pending(tsk)) 2410 goto out; 2411 2412 unblocked = tsk->blocked; 2413 signotset(&unblocked); 2414 retarget_shared_pending(tsk, &unblocked); 2415 2416 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2417 task_participate_group_stop(tsk)) 2418 group_stop = CLD_STOPPED; 2419 out: 2420 spin_unlock_irq(&tsk->sighand->siglock); 2421 2422 /* 2423 * If group stop has completed, deliver the notification. This 2424 * should always go to the real parent of the group leader. 2425 */ 2426 if (unlikely(group_stop)) { 2427 read_lock(&tasklist_lock); 2428 do_notify_parent_cldstop(tsk, false, group_stop); 2429 read_unlock(&tasklist_lock); 2430 } 2431 } 2432 2433 EXPORT_SYMBOL(recalc_sigpending); 2434 EXPORT_SYMBOL_GPL(dequeue_signal); 2435 EXPORT_SYMBOL(flush_signals); 2436 EXPORT_SYMBOL(force_sig); 2437 EXPORT_SYMBOL(send_sig); 2438 EXPORT_SYMBOL(send_sig_info); 2439 EXPORT_SYMBOL(sigprocmask); 2440 2441 /* 2442 * System call entry points. 2443 */ 2444 2445 /** 2446 * sys_restart_syscall - restart a system call 2447 */ 2448 SYSCALL_DEFINE0(restart_syscall) 2449 { 2450 struct restart_block *restart = ¤t->restart_block; 2451 return restart->fn(restart); 2452 } 2453 2454 long do_no_restart_syscall(struct restart_block *param) 2455 { 2456 return -EINTR; 2457 } 2458 2459 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 2460 { 2461 if (signal_pending(tsk) && !thread_group_empty(tsk)) { 2462 sigset_t newblocked; 2463 /* A set of now blocked but previously unblocked signals. */ 2464 sigandnsets(&newblocked, newset, ¤t->blocked); 2465 retarget_shared_pending(tsk, &newblocked); 2466 } 2467 tsk->blocked = *newset; 2468 recalc_sigpending(); 2469 } 2470 2471 /** 2472 * set_current_blocked - change current->blocked mask 2473 * @newset: new mask 2474 * 2475 * It is wrong to change ->blocked directly, this helper should be used 2476 * to ensure the process can't miss a shared signal we are going to block. 2477 */ 2478 void set_current_blocked(sigset_t *newset) 2479 { 2480 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2481 __set_current_blocked(newset); 2482 } 2483 2484 void __set_current_blocked(const sigset_t *newset) 2485 { 2486 struct task_struct *tsk = current; 2487 2488 spin_lock_irq(&tsk->sighand->siglock); 2489 __set_task_blocked(tsk, newset); 2490 spin_unlock_irq(&tsk->sighand->siglock); 2491 } 2492 2493 /* 2494 * This is also useful for kernel threads that want to temporarily 2495 * (or permanently) block certain signals. 2496 * 2497 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2498 * interface happily blocks "unblockable" signals like SIGKILL 2499 * and friends. 2500 */ 2501 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2502 { 2503 struct task_struct *tsk = current; 2504 sigset_t newset; 2505 2506 /* Lockless, only current can change ->blocked, never from irq */ 2507 if (oldset) 2508 *oldset = tsk->blocked; 2509 2510 switch (how) { 2511 case SIG_BLOCK: 2512 sigorsets(&newset, &tsk->blocked, set); 2513 break; 2514 case SIG_UNBLOCK: 2515 sigandnsets(&newset, &tsk->blocked, set); 2516 break; 2517 case SIG_SETMASK: 2518 newset = *set; 2519 break; 2520 default: 2521 return -EINVAL; 2522 } 2523 2524 __set_current_blocked(&newset); 2525 return 0; 2526 } 2527 2528 /** 2529 * sys_rt_sigprocmask - change the list of currently blocked signals 2530 * @how: whether to add, remove, or set signals 2531 * @nset: stores pending signals 2532 * @oset: previous value of signal mask if non-null 2533 * @sigsetsize: size of sigset_t type 2534 */ 2535 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 2536 sigset_t __user *, oset, size_t, sigsetsize) 2537 { 2538 sigset_t old_set, new_set; 2539 int error; 2540 2541 /* XXX: Don't preclude handling different sized sigset_t's. */ 2542 if (sigsetsize != sizeof(sigset_t)) 2543 return -EINVAL; 2544 2545 old_set = current->blocked; 2546 2547 if (nset) { 2548 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 2549 return -EFAULT; 2550 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2551 2552 error = sigprocmask(how, &new_set, NULL); 2553 if (error) 2554 return error; 2555 } 2556 2557 if (oset) { 2558 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 2559 return -EFAULT; 2560 } 2561 2562 return 0; 2563 } 2564 2565 #ifdef CONFIG_COMPAT 2566 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 2567 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 2568 { 2569 #ifdef __BIG_ENDIAN 2570 sigset_t old_set = current->blocked; 2571 2572 /* XXX: Don't preclude handling different sized sigset_t's. */ 2573 if (sigsetsize != sizeof(sigset_t)) 2574 return -EINVAL; 2575 2576 if (nset) { 2577 compat_sigset_t new32; 2578 sigset_t new_set; 2579 int error; 2580 if (copy_from_user(&new32, nset, sizeof(compat_sigset_t))) 2581 return -EFAULT; 2582 2583 sigset_from_compat(&new_set, &new32); 2584 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2585 2586 error = sigprocmask(how, &new_set, NULL); 2587 if (error) 2588 return error; 2589 } 2590 if (oset) { 2591 compat_sigset_t old32; 2592 sigset_to_compat(&old32, &old_set); 2593 if (copy_to_user(oset, &old32, sizeof(compat_sigset_t))) 2594 return -EFAULT; 2595 } 2596 return 0; 2597 #else 2598 return sys_rt_sigprocmask(how, (sigset_t __user *)nset, 2599 (sigset_t __user *)oset, sigsetsize); 2600 #endif 2601 } 2602 #endif 2603 2604 static int do_sigpending(void *set, unsigned long sigsetsize) 2605 { 2606 if (sigsetsize > sizeof(sigset_t)) 2607 return -EINVAL; 2608 2609 spin_lock_irq(¤t->sighand->siglock); 2610 sigorsets(set, ¤t->pending.signal, 2611 ¤t->signal->shared_pending.signal); 2612 spin_unlock_irq(¤t->sighand->siglock); 2613 2614 /* Outside the lock because only this thread touches it. */ 2615 sigandsets(set, ¤t->blocked, set); 2616 return 0; 2617 } 2618 2619 /** 2620 * sys_rt_sigpending - examine a pending signal that has been raised 2621 * while blocked 2622 * @uset: stores pending signals 2623 * @sigsetsize: size of sigset_t type or larger 2624 */ 2625 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 2626 { 2627 sigset_t set; 2628 int err = do_sigpending(&set, sigsetsize); 2629 if (!err && copy_to_user(uset, &set, sigsetsize)) 2630 err = -EFAULT; 2631 return err; 2632 } 2633 2634 #ifdef CONFIG_COMPAT 2635 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 2636 compat_size_t, sigsetsize) 2637 { 2638 #ifdef __BIG_ENDIAN 2639 sigset_t set; 2640 int err = do_sigpending(&set, sigsetsize); 2641 if (!err) { 2642 compat_sigset_t set32; 2643 sigset_to_compat(&set32, &set); 2644 /* we can get here only if sigsetsize <= sizeof(set) */ 2645 if (copy_to_user(uset, &set32, sigsetsize)) 2646 err = -EFAULT; 2647 } 2648 return err; 2649 #else 2650 return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize); 2651 #endif 2652 } 2653 #endif 2654 2655 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2656 2657 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from) 2658 { 2659 int err; 2660 2661 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2662 return -EFAULT; 2663 if (from->si_code < 0) 2664 return __copy_to_user(to, from, sizeof(siginfo_t)) 2665 ? -EFAULT : 0; 2666 /* 2667 * If you change siginfo_t structure, please be sure 2668 * this code is fixed accordingly. 2669 * Please remember to update the signalfd_copyinfo() function 2670 * inside fs/signalfd.c too, in case siginfo_t changes. 2671 * It should never copy any pad contained in the structure 2672 * to avoid security leaks, but must copy the generic 2673 * 3 ints plus the relevant union member. 2674 */ 2675 err = __put_user(from->si_signo, &to->si_signo); 2676 err |= __put_user(from->si_errno, &to->si_errno); 2677 err |= __put_user((short)from->si_code, &to->si_code); 2678 switch (from->si_code & __SI_MASK) { 2679 case __SI_KILL: 2680 err |= __put_user(from->si_pid, &to->si_pid); 2681 err |= __put_user(from->si_uid, &to->si_uid); 2682 break; 2683 case __SI_TIMER: 2684 err |= __put_user(from->si_tid, &to->si_tid); 2685 err |= __put_user(from->si_overrun, &to->si_overrun); 2686 err |= __put_user(from->si_ptr, &to->si_ptr); 2687 break; 2688 case __SI_POLL: 2689 err |= __put_user(from->si_band, &to->si_band); 2690 err |= __put_user(from->si_fd, &to->si_fd); 2691 break; 2692 case __SI_FAULT: 2693 err |= __put_user(from->si_addr, &to->si_addr); 2694 #ifdef __ARCH_SI_TRAPNO 2695 err |= __put_user(from->si_trapno, &to->si_trapno); 2696 #endif 2697 #ifdef BUS_MCEERR_AO 2698 /* 2699 * Other callers might not initialize the si_lsb field, 2700 * so check explicitly for the right codes here. 2701 */ 2702 if (from->si_signo == SIGBUS && 2703 (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)) 2704 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb); 2705 #endif 2706 #ifdef SEGV_BNDERR 2707 if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) { 2708 err |= __put_user(from->si_lower, &to->si_lower); 2709 err |= __put_user(from->si_upper, &to->si_upper); 2710 } 2711 #endif 2712 #ifdef SEGV_PKUERR 2713 if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR) 2714 err |= __put_user(from->si_pkey, &to->si_pkey); 2715 #endif 2716 break; 2717 case __SI_CHLD: 2718 err |= __put_user(from->si_pid, &to->si_pid); 2719 err |= __put_user(from->si_uid, &to->si_uid); 2720 err |= __put_user(from->si_status, &to->si_status); 2721 err |= __put_user(from->si_utime, &to->si_utime); 2722 err |= __put_user(from->si_stime, &to->si_stime); 2723 break; 2724 case __SI_RT: /* This is not generated by the kernel as of now. */ 2725 case __SI_MESGQ: /* But this is */ 2726 err |= __put_user(from->si_pid, &to->si_pid); 2727 err |= __put_user(from->si_uid, &to->si_uid); 2728 err |= __put_user(from->si_ptr, &to->si_ptr); 2729 break; 2730 #ifdef __ARCH_SIGSYS 2731 case __SI_SYS: 2732 err |= __put_user(from->si_call_addr, &to->si_call_addr); 2733 err |= __put_user(from->si_syscall, &to->si_syscall); 2734 err |= __put_user(from->si_arch, &to->si_arch); 2735 break; 2736 #endif 2737 default: /* this is just in case for now ... */ 2738 err |= __put_user(from->si_pid, &to->si_pid); 2739 err |= __put_user(from->si_uid, &to->si_uid); 2740 break; 2741 } 2742 return err; 2743 } 2744 2745 #endif 2746 2747 /** 2748 * do_sigtimedwait - wait for queued signals specified in @which 2749 * @which: queued signals to wait for 2750 * @info: if non-null, the signal's siginfo is returned here 2751 * @ts: upper bound on process time suspension 2752 */ 2753 int do_sigtimedwait(const sigset_t *which, siginfo_t *info, 2754 const struct timespec *ts) 2755 { 2756 ktime_t *to = NULL, timeout = { .tv64 = KTIME_MAX }; 2757 struct task_struct *tsk = current; 2758 sigset_t mask = *which; 2759 int sig, ret = 0; 2760 2761 if (ts) { 2762 if (!timespec_valid(ts)) 2763 return -EINVAL; 2764 timeout = timespec_to_ktime(*ts); 2765 to = &timeout; 2766 } 2767 2768 /* 2769 * Invert the set of allowed signals to get those we want to block. 2770 */ 2771 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2772 signotset(&mask); 2773 2774 spin_lock_irq(&tsk->sighand->siglock); 2775 sig = dequeue_signal(tsk, &mask, info); 2776 if (!sig && timeout.tv64) { 2777 /* 2778 * None ready, temporarily unblock those we're interested 2779 * while we are sleeping in so that we'll be awakened when 2780 * they arrive. Unblocking is always fine, we can avoid 2781 * set_current_blocked(). 2782 */ 2783 tsk->real_blocked = tsk->blocked; 2784 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 2785 recalc_sigpending(); 2786 spin_unlock_irq(&tsk->sighand->siglock); 2787 2788 __set_current_state(TASK_INTERRUPTIBLE); 2789 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns, 2790 HRTIMER_MODE_REL); 2791 spin_lock_irq(&tsk->sighand->siglock); 2792 __set_task_blocked(tsk, &tsk->real_blocked); 2793 sigemptyset(&tsk->real_blocked); 2794 sig = dequeue_signal(tsk, &mask, info); 2795 } 2796 spin_unlock_irq(&tsk->sighand->siglock); 2797 2798 if (sig) 2799 return sig; 2800 return ret ? -EINTR : -EAGAIN; 2801 } 2802 2803 /** 2804 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 2805 * in @uthese 2806 * @uthese: queued signals to wait for 2807 * @uinfo: if non-null, the signal's siginfo is returned here 2808 * @uts: upper bound on process time suspension 2809 * @sigsetsize: size of sigset_t type 2810 */ 2811 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 2812 siginfo_t __user *, uinfo, const struct timespec __user *, uts, 2813 size_t, sigsetsize) 2814 { 2815 sigset_t these; 2816 struct timespec ts; 2817 siginfo_t info; 2818 int ret; 2819 2820 /* XXX: Don't preclude handling different sized sigset_t's. */ 2821 if (sigsetsize != sizeof(sigset_t)) 2822 return -EINVAL; 2823 2824 if (copy_from_user(&these, uthese, sizeof(these))) 2825 return -EFAULT; 2826 2827 if (uts) { 2828 if (copy_from_user(&ts, uts, sizeof(ts))) 2829 return -EFAULT; 2830 } 2831 2832 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 2833 2834 if (ret > 0 && uinfo) { 2835 if (copy_siginfo_to_user(uinfo, &info)) 2836 ret = -EFAULT; 2837 } 2838 2839 return ret; 2840 } 2841 2842 /** 2843 * sys_kill - send a signal to a process 2844 * @pid: the PID of the process 2845 * @sig: signal to be sent 2846 */ 2847 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 2848 { 2849 struct siginfo info; 2850 2851 info.si_signo = sig; 2852 info.si_errno = 0; 2853 info.si_code = SI_USER; 2854 info.si_pid = task_tgid_vnr(current); 2855 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2856 2857 return kill_something_info(sig, &info, pid); 2858 } 2859 2860 static int 2861 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) 2862 { 2863 struct task_struct *p; 2864 int error = -ESRCH; 2865 2866 rcu_read_lock(); 2867 p = find_task_by_vpid(pid); 2868 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 2869 error = check_kill_permission(sig, info, p); 2870 /* 2871 * The null signal is a permissions and process existence 2872 * probe. No signal is actually delivered. 2873 */ 2874 if (!error && sig) { 2875 error = do_send_sig_info(sig, info, p, false); 2876 /* 2877 * If lock_task_sighand() failed we pretend the task 2878 * dies after receiving the signal. The window is tiny, 2879 * and the signal is private anyway. 2880 */ 2881 if (unlikely(error == -ESRCH)) 2882 error = 0; 2883 } 2884 } 2885 rcu_read_unlock(); 2886 2887 return error; 2888 } 2889 2890 static int do_tkill(pid_t tgid, pid_t pid, int sig) 2891 { 2892 struct siginfo info = {}; 2893 2894 info.si_signo = sig; 2895 info.si_errno = 0; 2896 info.si_code = SI_TKILL; 2897 info.si_pid = task_tgid_vnr(current); 2898 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2899 2900 return do_send_specific(tgid, pid, sig, &info); 2901 } 2902 2903 /** 2904 * sys_tgkill - send signal to one specific thread 2905 * @tgid: the thread group ID of the thread 2906 * @pid: the PID of the thread 2907 * @sig: signal to be sent 2908 * 2909 * This syscall also checks the @tgid and returns -ESRCH even if the PID 2910 * exists but it's not belonging to the target process anymore. This 2911 * method solves the problem of threads exiting and PIDs getting reused. 2912 */ 2913 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 2914 { 2915 /* This is only valid for single tasks */ 2916 if (pid <= 0 || tgid <= 0) 2917 return -EINVAL; 2918 2919 return do_tkill(tgid, pid, sig); 2920 } 2921 2922 /** 2923 * sys_tkill - send signal to one specific task 2924 * @pid: the PID of the task 2925 * @sig: signal to be sent 2926 * 2927 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2928 */ 2929 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 2930 { 2931 /* This is only valid for single tasks */ 2932 if (pid <= 0) 2933 return -EINVAL; 2934 2935 return do_tkill(0, pid, sig); 2936 } 2937 2938 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info) 2939 { 2940 /* Not even root can pretend to send signals from the kernel. 2941 * Nor can they impersonate a kill()/tgkill(), which adds source info. 2942 */ 2943 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 2944 (task_pid_vnr(current) != pid)) 2945 return -EPERM; 2946 2947 info->si_signo = sig; 2948 2949 /* POSIX.1b doesn't mention process groups. */ 2950 return kill_proc_info(sig, info, pid); 2951 } 2952 2953 /** 2954 * sys_rt_sigqueueinfo - send signal information to a signal 2955 * @pid: the PID of the thread 2956 * @sig: signal to be sent 2957 * @uinfo: signal info to be sent 2958 */ 2959 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 2960 siginfo_t __user *, uinfo) 2961 { 2962 siginfo_t info; 2963 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2964 return -EFAULT; 2965 return do_rt_sigqueueinfo(pid, sig, &info); 2966 } 2967 2968 #ifdef CONFIG_COMPAT 2969 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 2970 compat_pid_t, pid, 2971 int, sig, 2972 struct compat_siginfo __user *, uinfo) 2973 { 2974 siginfo_t info = {}; 2975 int ret = copy_siginfo_from_user32(&info, uinfo); 2976 if (unlikely(ret)) 2977 return ret; 2978 return do_rt_sigqueueinfo(pid, sig, &info); 2979 } 2980 #endif 2981 2982 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info) 2983 { 2984 /* This is only valid for single tasks */ 2985 if (pid <= 0 || tgid <= 0) 2986 return -EINVAL; 2987 2988 /* Not even root can pretend to send signals from the kernel. 2989 * Nor can they impersonate a kill()/tgkill(), which adds source info. 2990 */ 2991 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 2992 (task_pid_vnr(current) != pid)) 2993 return -EPERM; 2994 2995 info->si_signo = sig; 2996 2997 return do_send_specific(tgid, pid, sig, info); 2998 } 2999 3000 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 3001 siginfo_t __user *, uinfo) 3002 { 3003 siginfo_t info; 3004 3005 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 3006 return -EFAULT; 3007 3008 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3009 } 3010 3011 #ifdef CONFIG_COMPAT 3012 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 3013 compat_pid_t, tgid, 3014 compat_pid_t, pid, 3015 int, sig, 3016 struct compat_siginfo __user *, uinfo) 3017 { 3018 siginfo_t info = {}; 3019 3020 if (copy_siginfo_from_user32(&info, uinfo)) 3021 return -EFAULT; 3022 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3023 } 3024 #endif 3025 3026 /* 3027 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 3028 */ 3029 void kernel_sigaction(int sig, __sighandler_t action) 3030 { 3031 spin_lock_irq(¤t->sighand->siglock); 3032 current->sighand->action[sig - 1].sa.sa_handler = action; 3033 if (action == SIG_IGN) { 3034 sigset_t mask; 3035 3036 sigemptyset(&mask); 3037 sigaddset(&mask, sig); 3038 3039 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 3040 flush_sigqueue_mask(&mask, ¤t->pending); 3041 recalc_sigpending(); 3042 } 3043 spin_unlock_irq(¤t->sighand->siglock); 3044 } 3045 EXPORT_SYMBOL(kernel_sigaction); 3046 3047 void __weak sigaction_compat_abi(struct k_sigaction *act, 3048 struct k_sigaction *oact) 3049 { 3050 } 3051 3052 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 3053 { 3054 struct task_struct *p = current, *t; 3055 struct k_sigaction *k; 3056 sigset_t mask; 3057 3058 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 3059 return -EINVAL; 3060 3061 k = &p->sighand->action[sig-1]; 3062 3063 spin_lock_irq(&p->sighand->siglock); 3064 if (oact) 3065 *oact = *k; 3066 3067 sigaction_compat_abi(act, oact); 3068 3069 if (act) { 3070 sigdelsetmask(&act->sa.sa_mask, 3071 sigmask(SIGKILL) | sigmask(SIGSTOP)); 3072 *k = *act; 3073 /* 3074 * POSIX 3.3.1.3: 3075 * "Setting a signal action to SIG_IGN for a signal that is 3076 * pending shall cause the pending signal to be discarded, 3077 * whether or not it is blocked." 3078 * 3079 * "Setting a signal action to SIG_DFL for a signal that is 3080 * pending and whose default action is to ignore the signal 3081 * (for example, SIGCHLD), shall cause the pending signal to 3082 * be discarded, whether or not it is blocked" 3083 */ 3084 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 3085 sigemptyset(&mask); 3086 sigaddset(&mask, sig); 3087 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 3088 for_each_thread(p, t) 3089 flush_sigqueue_mask(&mask, &t->pending); 3090 } 3091 } 3092 3093 spin_unlock_irq(&p->sighand->siglock); 3094 return 0; 3095 } 3096 3097 static int 3098 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 3099 { 3100 stack_t oss; 3101 int error; 3102 3103 oss.ss_sp = (void __user *) current->sas_ss_sp; 3104 oss.ss_size = current->sas_ss_size; 3105 oss.ss_flags = sas_ss_flags(sp) | 3106 (current->sas_ss_flags & SS_FLAG_BITS); 3107 3108 if (uss) { 3109 void __user *ss_sp; 3110 size_t ss_size; 3111 unsigned ss_flags; 3112 int ss_mode; 3113 3114 error = -EFAULT; 3115 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))) 3116 goto out; 3117 error = __get_user(ss_sp, &uss->ss_sp) | 3118 __get_user(ss_flags, &uss->ss_flags) | 3119 __get_user(ss_size, &uss->ss_size); 3120 if (error) 3121 goto out; 3122 3123 error = -EPERM; 3124 if (on_sig_stack(sp)) 3125 goto out; 3126 3127 ss_mode = ss_flags & ~SS_FLAG_BITS; 3128 error = -EINVAL; 3129 if (ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 3130 ss_mode != 0) 3131 goto out; 3132 3133 if (ss_mode == SS_DISABLE) { 3134 ss_size = 0; 3135 ss_sp = NULL; 3136 } else { 3137 error = -ENOMEM; 3138 if (ss_size < MINSIGSTKSZ) 3139 goto out; 3140 } 3141 3142 current->sas_ss_sp = (unsigned long) ss_sp; 3143 current->sas_ss_size = ss_size; 3144 current->sas_ss_flags = ss_flags; 3145 } 3146 3147 error = 0; 3148 if (uoss) { 3149 error = -EFAULT; 3150 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss))) 3151 goto out; 3152 error = __put_user(oss.ss_sp, &uoss->ss_sp) | 3153 __put_user(oss.ss_size, &uoss->ss_size) | 3154 __put_user(oss.ss_flags, &uoss->ss_flags); 3155 } 3156 3157 out: 3158 return error; 3159 } 3160 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 3161 { 3162 return do_sigaltstack(uss, uoss, current_user_stack_pointer()); 3163 } 3164 3165 int restore_altstack(const stack_t __user *uss) 3166 { 3167 int err = do_sigaltstack(uss, NULL, current_user_stack_pointer()); 3168 /* squash all but EFAULT for now */ 3169 return err == -EFAULT ? err : 0; 3170 } 3171 3172 int __save_altstack(stack_t __user *uss, unsigned long sp) 3173 { 3174 struct task_struct *t = current; 3175 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 3176 __put_user(t->sas_ss_flags, &uss->ss_flags) | 3177 __put_user(t->sas_ss_size, &uss->ss_size); 3178 if (err) 3179 return err; 3180 if (t->sas_ss_flags & SS_AUTODISARM) 3181 sas_ss_reset(t); 3182 return 0; 3183 } 3184 3185 #ifdef CONFIG_COMPAT 3186 COMPAT_SYSCALL_DEFINE2(sigaltstack, 3187 const compat_stack_t __user *, uss_ptr, 3188 compat_stack_t __user *, uoss_ptr) 3189 { 3190 stack_t uss, uoss; 3191 int ret; 3192 mm_segment_t seg; 3193 3194 if (uss_ptr) { 3195 compat_stack_t uss32; 3196 3197 memset(&uss, 0, sizeof(stack_t)); 3198 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 3199 return -EFAULT; 3200 uss.ss_sp = compat_ptr(uss32.ss_sp); 3201 uss.ss_flags = uss32.ss_flags; 3202 uss.ss_size = uss32.ss_size; 3203 } 3204 seg = get_fs(); 3205 set_fs(KERNEL_DS); 3206 ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL), 3207 (stack_t __force __user *) &uoss, 3208 compat_user_stack_pointer()); 3209 set_fs(seg); 3210 if (ret >= 0 && uoss_ptr) { 3211 if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) || 3212 __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) || 3213 __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) || 3214 __put_user(uoss.ss_size, &uoss_ptr->ss_size)) 3215 ret = -EFAULT; 3216 } 3217 return ret; 3218 } 3219 3220 int compat_restore_altstack(const compat_stack_t __user *uss) 3221 { 3222 int err = compat_sys_sigaltstack(uss, NULL); 3223 /* squash all but -EFAULT for now */ 3224 return err == -EFAULT ? err : 0; 3225 } 3226 3227 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 3228 { 3229 struct task_struct *t = current; 3230 return __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) | 3231 __put_user(sas_ss_flags(sp), &uss->ss_flags) | 3232 __put_user(t->sas_ss_size, &uss->ss_size); 3233 } 3234 #endif 3235 3236 #ifdef __ARCH_WANT_SYS_SIGPENDING 3237 3238 /** 3239 * sys_sigpending - examine pending signals 3240 * @set: where mask of pending signal is returned 3241 */ 3242 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set) 3243 { 3244 return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t)); 3245 } 3246 3247 #endif 3248 3249 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 3250 /** 3251 * sys_sigprocmask - examine and change blocked signals 3252 * @how: whether to add, remove, or set signals 3253 * @nset: signals to add or remove (if non-null) 3254 * @oset: previous value of signal mask if non-null 3255 * 3256 * Some platforms have their own version with special arguments; 3257 * others support only sys_rt_sigprocmask. 3258 */ 3259 3260 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 3261 old_sigset_t __user *, oset) 3262 { 3263 old_sigset_t old_set, new_set; 3264 sigset_t new_blocked; 3265 3266 old_set = current->blocked.sig[0]; 3267 3268 if (nset) { 3269 if (copy_from_user(&new_set, nset, sizeof(*nset))) 3270 return -EFAULT; 3271 3272 new_blocked = current->blocked; 3273 3274 switch (how) { 3275 case SIG_BLOCK: 3276 sigaddsetmask(&new_blocked, new_set); 3277 break; 3278 case SIG_UNBLOCK: 3279 sigdelsetmask(&new_blocked, new_set); 3280 break; 3281 case SIG_SETMASK: 3282 new_blocked.sig[0] = new_set; 3283 break; 3284 default: 3285 return -EINVAL; 3286 } 3287 3288 set_current_blocked(&new_blocked); 3289 } 3290 3291 if (oset) { 3292 if (copy_to_user(oset, &old_set, sizeof(*oset))) 3293 return -EFAULT; 3294 } 3295 3296 return 0; 3297 } 3298 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 3299 3300 #ifndef CONFIG_ODD_RT_SIGACTION 3301 /** 3302 * sys_rt_sigaction - alter an action taken by a process 3303 * @sig: signal to be sent 3304 * @act: new sigaction 3305 * @oact: used to save the previous sigaction 3306 * @sigsetsize: size of sigset_t type 3307 */ 3308 SYSCALL_DEFINE4(rt_sigaction, int, sig, 3309 const struct sigaction __user *, act, 3310 struct sigaction __user *, oact, 3311 size_t, sigsetsize) 3312 { 3313 struct k_sigaction new_sa, old_sa; 3314 int ret = -EINVAL; 3315 3316 /* XXX: Don't preclude handling different sized sigset_t's. */ 3317 if (sigsetsize != sizeof(sigset_t)) 3318 goto out; 3319 3320 if (act) { 3321 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 3322 return -EFAULT; 3323 } 3324 3325 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 3326 3327 if (!ret && oact) { 3328 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 3329 return -EFAULT; 3330 } 3331 out: 3332 return ret; 3333 } 3334 #ifdef CONFIG_COMPAT 3335 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 3336 const struct compat_sigaction __user *, act, 3337 struct compat_sigaction __user *, oact, 3338 compat_size_t, sigsetsize) 3339 { 3340 struct k_sigaction new_ka, old_ka; 3341 compat_sigset_t mask; 3342 #ifdef __ARCH_HAS_SA_RESTORER 3343 compat_uptr_t restorer; 3344 #endif 3345 int ret; 3346 3347 /* XXX: Don't preclude handling different sized sigset_t's. */ 3348 if (sigsetsize != sizeof(compat_sigset_t)) 3349 return -EINVAL; 3350 3351 if (act) { 3352 compat_uptr_t handler; 3353 ret = get_user(handler, &act->sa_handler); 3354 new_ka.sa.sa_handler = compat_ptr(handler); 3355 #ifdef __ARCH_HAS_SA_RESTORER 3356 ret |= get_user(restorer, &act->sa_restorer); 3357 new_ka.sa.sa_restorer = compat_ptr(restorer); 3358 #endif 3359 ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask)); 3360 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 3361 if (ret) 3362 return -EFAULT; 3363 sigset_from_compat(&new_ka.sa.sa_mask, &mask); 3364 } 3365 3366 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3367 if (!ret && oact) { 3368 sigset_to_compat(&mask, &old_ka.sa.sa_mask); 3369 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 3370 &oact->sa_handler); 3371 ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask)); 3372 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 3373 #ifdef __ARCH_HAS_SA_RESTORER 3374 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 3375 &oact->sa_restorer); 3376 #endif 3377 } 3378 return ret; 3379 } 3380 #endif 3381 #endif /* !CONFIG_ODD_RT_SIGACTION */ 3382 3383 #ifdef CONFIG_OLD_SIGACTION 3384 SYSCALL_DEFINE3(sigaction, int, sig, 3385 const struct old_sigaction __user *, act, 3386 struct old_sigaction __user *, oact) 3387 { 3388 struct k_sigaction new_ka, old_ka; 3389 int ret; 3390 3391 if (act) { 3392 old_sigset_t mask; 3393 if (!access_ok(VERIFY_READ, act, sizeof(*act)) || 3394 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 3395 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 3396 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 3397 __get_user(mask, &act->sa_mask)) 3398 return -EFAULT; 3399 #ifdef __ARCH_HAS_KA_RESTORER 3400 new_ka.ka_restorer = NULL; 3401 #endif 3402 siginitset(&new_ka.sa.sa_mask, mask); 3403 } 3404 3405 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3406 3407 if (!ret && oact) { 3408 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) || 3409 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 3410 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 3411 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 3412 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 3413 return -EFAULT; 3414 } 3415 3416 return ret; 3417 } 3418 #endif 3419 #ifdef CONFIG_COMPAT_OLD_SIGACTION 3420 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 3421 const struct compat_old_sigaction __user *, act, 3422 struct compat_old_sigaction __user *, oact) 3423 { 3424 struct k_sigaction new_ka, old_ka; 3425 int ret; 3426 compat_old_sigset_t mask; 3427 compat_uptr_t handler, restorer; 3428 3429 if (act) { 3430 if (!access_ok(VERIFY_READ, act, sizeof(*act)) || 3431 __get_user(handler, &act->sa_handler) || 3432 __get_user(restorer, &act->sa_restorer) || 3433 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 3434 __get_user(mask, &act->sa_mask)) 3435 return -EFAULT; 3436 3437 #ifdef __ARCH_HAS_KA_RESTORER 3438 new_ka.ka_restorer = NULL; 3439 #endif 3440 new_ka.sa.sa_handler = compat_ptr(handler); 3441 new_ka.sa.sa_restorer = compat_ptr(restorer); 3442 siginitset(&new_ka.sa.sa_mask, mask); 3443 } 3444 3445 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3446 3447 if (!ret && oact) { 3448 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) || 3449 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 3450 &oact->sa_handler) || 3451 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 3452 &oact->sa_restorer) || 3453 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 3454 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 3455 return -EFAULT; 3456 } 3457 return ret; 3458 } 3459 #endif 3460 3461 #ifdef CONFIG_SGETMASK_SYSCALL 3462 3463 /* 3464 * For backwards compatibility. Functionality superseded by sigprocmask. 3465 */ 3466 SYSCALL_DEFINE0(sgetmask) 3467 { 3468 /* SMP safe */ 3469 return current->blocked.sig[0]; 3470 } 3471 3472 SYSCALL_DEFINE1(ssetmask, int, newmask) 3473 { 3474 int old = current->blocked.sig[0]; 3475 sigset_t newset; 3476 3477 siginitset(&newset, newmask); 3478 set_current_blocked(&newset); 3479 3480 return old; 3481 } 3482 #endif /* CONFIG_SGETMASK_SYSCALL */ 3483 3484 #ifdef __ARCH_WANT_SYS_SIGNAL 3485 /* 3486 * For backwards compatibility. Functionality superseded by sigaction. 3487 */ 3488 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 3489 { 3490 struct k_sigaction new_sa, old_sa; 3491 int ret; 3492 3493 new_sa.sa.sa_handler = handler; 3494 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 3495 sigemptyset(&new_sa.sa.sa_mask); 3496 3497 ret = do_sigaction(sig, &new_sa, &old_sa); 3498 3499 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 3500 } 3501 #endif /* __ARCH_WANT_SYS_SIGNAL */ 3502 3503 #ifdef __ARCH_WANT_SYS_PAUSE 3504 3505 SYSCALL_DEFINE0(pause) 3506 { 3507 while (!signal_pending(current)) { 3508 __set_current_state(TASK_INTERRUPTIBLE); 3509 schedule(); 3510 } 3511 return -ERESTARTNOHAND; 3512 } 3513 3514 #endif 3515 3516 static int sigsuspend(sigset_t *set) 3517 { 3518 current->saved_sigmask = current->blocked; 3519 set_current_blocked(set); 3520 3521 while (!signal_pending(current)) { 3522 __set_current_state(TASK_INTERRUPTIBLE); 3523 schedule(); 3524 } 3525 set_restore_sigmask(); 3526 return -ERESTARTNOHAND; 3527 } 3528 3529 /** 3530 * sys_rt_sigsuspend - replace the signal mask for a value with the 3531 * @unewset value until a signal is received 3532 * @unewset: new signal mask value 3533 * @sigsetsize: size of sigset_t type 3534 */ 3535 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 3536 { 3537 sigset_t newset; 3538 3539 /* XXX: Don't preclude handling different sized sigset_t's. */ 3540 if (sigsetsize != sizeof(sigset_t)) 3541 return -EINVAL; 3542 3543 if (copy_from_user(&newset, unewset, sizeof(newset))) 3544 return -EFAULT; 3545 return sigsuspend(&newset); 3546 } 3547 3548 #ifdef CONFIG_COMPAT 3549 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 3550 { 3551 #ifdef __BIG_ENDIAN 3552 sigset_t newset; 3553 compat_sigset_t newset32; 3554 3555 /* XXX: Don't preclude handling different sized sigset_t's. */ 3556 if (sigsetsize != sizeof(sigset_t)) 3557 return -EINVAL; 3558 3559 if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t))) 3560 return -EFAULT; 3561 sigset_from_compat(&newset, &newset32); 3562 return sigsuspend(&newset); 3563 #else 3564 /* on little-endian bitmaps don't care about granularity */ 3565 return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize); 3566 #endif 3567 } 3568 #endif 3569 3570 #ifdef CONFIG_OLD_SIGSUSPEND 3571 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 3572 { 3573 sigset_t blocked; 3574 siginitset(&blocked, mask); 3575 return sigsuspend(&blocked); 3576 } 3577 #endif 3578 #ifdef CONFIG_OLD_SIGSUSPEND3 3579 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 3580 { 3581 sigset_t blocked; 3582 siginitset(&blocked, mask); 3583 return sigsuspend(&blocked); 3584 } 3585 #endif 3586 3587 __weak const char *arch_vma_name(struct vm_area_struct *vma) 3588 { 3589 return NULL; 3590 } 3591 3592 void __init signals_init(void) 3593 { 3594 /* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */ 3595 BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE 3596 != offsetof(struct siginfo, _sifields._pad)); 3597 3598 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 3599 } 3600 3601 #ifdef CONFIG_KGDB_KDB 3602 #include <linux/kdb.h> 3603 /* 3604 * kdb_send_sig_info - Allows kdb to send signals without exposing 3605 * signal internals. This function checks if the required locks are 3606 * available before calling the main signal code, to avoid kdb 3607 * deadlocks. 3608 */ 3609 void 3610 kdb_send_sig_info(struct task_struct *t, struct siginfo *info) 3611 { 3612 static struct task_struct *kdb_prev_t; 3613 int sig, new_t; 3614 if (!spin_trylock(&t->sighand->siglock)) { 3615 kdb_printf("Can't do kill command now.\n" 3616 "The sigmask lock is held somewhere else in " 3617 "kernel, try again later\n"); 3618 return; 3619 } 3620 spin_unlock(&t->sighand->siglock); 3621 new_t = kdb_prev_t != t; 3622 kdb_prev_t = t; 3623 if (t->state != TASK_RUNNING && new_t) { 3624 kdb_printf("Process is not RUNNING, sending a signal from " 3625 "kdb risks deadlock\n" 3626 "on the run queue locks. " 3627 "The signal has _not_ been sent.\n" 3628 "Reissue the kill command if you want to risk " 3629 "the deadlock.\n"); 3630 return; 3631 } 3632 sig = info->si_signo; 3633 if (send_sig_info(sig, info, t)) 3634 kdb_printf("Fail to deliver Signal %d to process %d.\n", 3635 sig, t->pid); 3636 else 3637 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 3638 } 3639 #endif /* CONFIG_KGDB_KDB */ 3640