xref: /linux/kernel/signal.c (revision f37130533f68711fd6bae2c79950b8e72002bad6)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/signalfd.h>
26 #include <linux/ratelimit.h>
27 #include <linux/tracehook.h>
28 #include <linux/capability.h>
29 #include <linux/freezer.h>
30 #include <linux/pid_namespace.h>
31 #include <linux/nsproxy.h>
32 #include <linux/user_namespace.h>
33 #include <linux/uprobes.h>
34 #include <linux/compat.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/signal.h>
37 
38 #include <asm/param.h>
39 #include <asm/uaccess.h>
40 #include <asm/unistd.h>
41 #include <asm/siginfo.h>
42 #include <asm/cacheflush.h>
43 #include "audit.h"	/* audit_signal_info() */
44 
45 /*
46  * SLAB caches for signal bits.
47  */
48 
49 static struct kmem_cache *sigqueue_cachep;
50 
51 int print_fatal_signals __read_mostly;
52 
53 static void __user *sig_handler(struct task_struct *t, int sig)
54 {
55 	return t->sighand->action[sig - 1].sa.sa_handler;
56 }
57 
58 static int sig_handler_ignored(void __user *handler, int sig)
59 {
60 	/* Is it explicitly or implicitly ignored? */
61 	return handler == SIG_IGN ||
62 		(handler == SIG_DFL && sig_kernel_ignore(sig));
63 }
64 
65 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
66 {
67 	void __user *handler;
68 
69 	handler = sig_handler(t, sig);
70 
71 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
72 			handler == SIG_DFL && !force)
73 		return 1;
74 
75 	return sig_handler_ignored(handler, sig);
76 }
77 
78 static int sig_ignored(struct task_struct *t, int sig, bool force)
79 {
80 	/*
81 	 * Blocked signals are never ignored, since the
82 	 * signal handler may change by the time it is
83 	 * unblocked.
84 	 */
85 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
86 		return 0;
87 
88 	if (!sig_task_ignored(t, sig, force))
89 		return 0;
90 
91 	/*
92 	 * Tracers may want to know about even ignored signals.
93 	 */
94 	return !t->ptrace;
95 }
96 
97 /*
98  * Re-calculate pending state from the set of locally pending
99  * signals, globally pending signals, and blocked signals.
100  */
101 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
102 {
103 	unsigned long ready;
104 	long i;
105 
106 	switch (_NSIG_WORDS) {
107 	default:
108 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
109 			ready |= signal->sig[i] &~ blocked->sig[i];
110 		break;
111 
112 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
113 		ready |= signal->sig[2] &~ blocked->sig[2];
114 		ready |= signal->sig[1] &~ blocked->sig[1];
115 		ready |= signal->sig[0] &~ blocked->sig[0];
116 		break;
117 
118 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
119 		ready |= signal->sig[0] &~ blocked->sig[0];
120 		break;
121 
122 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
123 	}
124 	return ready !=	0;
125 }
126 
127 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
128 
129 static int recalc_sigpending_tsk(struct task_struct *t)
130 {
131 	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
132 	    PENDING(&t->pending, &t->blocked) ||
133 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
134 		set_tsk_thread_flag(t, TIF_SIGPENDING);
135 		return 1;
136 	}
137 	/*
138 	 * We must never clear the flag in another thread, or in current
139 	 * when it's possible the current syscall is returning -ERESTART*.
140 	 * So we don't clear it here, and only callers who know they should do.
141 	 */
142 	return 0;
143 }
144 
145 /*
146  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
147  * This is superfluous when called on current, the wakeup is a harmless no-op.
148  */
149 void recalc_sigpending_and_wake(struct task_struct *t)
150 {
151 	if (recalc_sigpending_tsk(t))
152 		signal_wake_up(t, 0);
153 }
154 
155 void recalc_sigpending(void)
156 {
157 	if (!recalc_sigpending_tsk(current) && !freezing(current))
158 		clear_thread_flag(TIF_SIGPENDING);
159 
160 }
161 
162 /* Given the mask, find the first available signal that should be serviced. */
163 
164 #define SYNCHRONOUS_MASK \
165 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
166 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
167 
168 int next_signal(struct sigpending *pending, sigset_t *mask)
169 {
170 	unsigned long i, *s, *m, x;
171 	int sig = 0;
172 
173 	s = pending->signal.sig;
174 	m = mask->sig;
175 
176 	/*
177 	 * Handle the first word specially: it contains the
178 	 * synchronous signals that need to be dequeued first.
179 	 */
180 	x = *s &~ *m;
181 	if (x) {
182 		if (x & SYNCHRONOUS_MASK)
183 			x &= SYNCHRONOUS_MASK;
184 		sig = ffz(~x) + 1;
185 		return sig;
186 	}
187 
188 	switch (_NSIG_WORDS) {
189 	default:
190 		for (i = 1; i < _NSIG_WORDS; ++i) {
191 			x = *++s &~ *++m;
192 			if (!x)
193 				continue;
194 			sig = ffz(~x) + i*_NSIG_BPW + 1;
195 			break;
196 		}
197 		break;
198 
199 	case 2:
200 		x = s[1] &~ m[1];
201 		if (!x)
202 			break;
203 		sig = ffz(~x) + _NSIG_BPW + 1;
204 		break;
205 
206 	case 1:
207 		/* Nothing to do */
208 		break;
209 	}
210 
211 	return sig;
212 }
213 
214 static inline void print_dropped_signal(int sig)
215 {
216 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
217 
218 	if (!print_fatal_signals)
219 		return;
220 
221 	if (!__ratelimit(&ratelimit_state))
222 		return;
223 
224 	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
225 				current->comm, current->pid, sig);
226 }
227 
228 /**
229  * task_set_jobctl_pending - set jobctl pending bits
230  * @task: target task
231  * @mask: pending bits to set
232  *
233  * Clear @mask from @task->jobctl.  @mask must be subset of
234  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
235  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
236  * cleared.  If @task is already being killed or exiting, this function
237  * becomes noop.
238  *
239  * CONTEXT:
240  * Must be called with @task->sighand->siglock held.
241  *
242  * RETURNS:
243  * %true if @mask is set, %false if made noop because @task was dying.
244  */
245 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
246 {
247 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
248 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
249 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
250 
251 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
252 		return false;
253 
254 	if (mask & JOBCTL_STOP_SIGMASK)
255 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
256 
257 	task->jobctl |= mask;
258 	return true;
259 }
260 
261 /**
262  * task_clear_jobctl_trapping - clear jobctl trapping bit
263  * @task: target task
264  *
265  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
266  * Clear it and wake up the ptracer.  Note that we don't need any further
267  * locking.  @task->siglock guarantees that @task->parent points to the
268  * ptracer.
269  *
270  * CONTEXT:
271  * Must be called with @task->sighand->siglock held.
272  */
273 void task_clear_jobctl_trapping(struct task_struct *task)
274 {
275 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
276 		task->jobctl &= ~JOBCTL_TRAPPING;
277 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
278 	}
279 }
280 
281 /**
282  * task_clear_jobctl_pending - clear jobctl pending bits
283  * @task: target task
284  * @mask: pending bits to clear
285  *
286  * Clear @mask from @task->jobctl.  @mask must be subset of
287  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
288  * STOP bits are cleared together.
289  *
290  * If clearing of @mask leaves no stop or trap pending, this function calls
291  * task_clear_jobctl_trapping().
292  *
293  * CONTEXT:
294  * Must be called with @task->sighand->siglock held.
295  */
296 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
297 {
298 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
299 
300 	if (mask & JOBCTL_STOP_PENDING)
301 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
302 
303 	task->jobctl &= ~mask;
304 
305 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
306 		task_clear_jobctl_trapping(task);
307 }
308 
309 /**
310  * task_participate_group_stop - participate in a group stop
311  * @task: task participating in a group stop
312  *
313  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
314  * Group stop states are cleared and the group stop count is consumed if
315  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
316  * stop, the appropriate %SIGNAL_* flags are set.
317  *
318  * CONTEXT:
319  * Must be called with @task->sighand->siglock held.
320  *
321  * RETURNS:
322  * %true if group stop completion should be notified to the parent, %false
323  * otherwise.
324  */
325 static bool task_participate_group_stop(struct task_struct *task)
326 {
327 	struct signal_struct *sig = task->signal;
328 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
329 
330 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
331 
332 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
333 
334 	if (!consume)
335 		return false;
336 
337 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
338 		sig->group_stop_count--;
339 
340 	/*
341 	 * Tell the caller to notify completion iff we are entering into a
342 	 * fresh group stop.  Read comment in do_signal_stop() for details.
343 	 */
344 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
345 		sig->flags = SIGNAL_STOP_STOPPED;
346 		return true;
347 	}
348 	return false;
349 }
350 
351 /*
352  * allocate a new signal queue record
353  * - this may be called without locks if and only if t == current, otherwise an
354  *   appropriate lock must be held to stop the target task from exiting
355  */
356 static struct sigqueue *
357 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
358 {
359 	struct sigqueue *q = NULL;
360 	struct user_struct *user;
361 
362 	/*
363 	 * Protect access to @t credentials. This can go away when all
364 	 * callers hold rcu read lock.
365 	 */
366 	rcu_read_lock();
367 	user = get_uid(__task_cred(t)->user);
368 	atomic_inc(&user->sigpending);
369 	rcu_read_unlock();
370 
371 	if (override_rlimit ||
372 	    atomic_read(&user->sigpending) <=
373 			task_rlimit(t, RLIMIT_SIGPENDING)) {
374 		q = kmem_cache_alloc(sigqueue_cachep, flags);
375 	} else {
376 		print_dropped_signal(sig);
377 	}
378 
379 	if (unlikely(q == NULL)) {
380 		atomic_dec(&user->sigpending);
381 		free_uid(user);
382 	} else {
383 		INIT_LIST_HEAD(&q->list);
384 		q->flags = 0;
385 		q->user = user;
386 	}
387 
388 	return q;
389 }
390 
391 static void __sigqueue_free(struct sigqueue *q)
392 {
393 	if (q->flags & SIGQUEUE_PREALLOC)
394 		return;
395 	atomic_dec(&q->user->sigpending);
396 	free_uid(q->user);
397 	kmem_cache_free(sigqueue_cachep, q);
398 }
399 
400 void flush_sigqueue(struct sigpending *queue)
401 {
402 	struct sigqueue *q;
403 
404 	sigemptyset(&queue->signal);
405 	while (!list_empty(&queue->list)) {
406 		q = list_entry(queue->list.next, struct sigqueue , list);
407 		list_del_init(&q->list);
408 		__sigqueue_free(q);
409 	}
410 }
411 
412 /*
413  * Flush all pending signals for a task.
414  */
415 void __flush_signals(struct task_struct *t)
416 {
417 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
418 	flush_sigqueue(&t->pending);
419 	flush_sigqueue(&t->signal->shared_pending);
420 }
421 
422 void flush_signals(struct task_struct *t)
423 {
424 	unsigned long flags;
425 
426 	spin_lock_irqsave(&t->sighand->siglock, flags);
427 	__flush_signals(t);
428 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
429 }
430 
431 static void __flush_itimer_signals(struct sigpending *pending)
432 {
433 	sigset_t signal, retain;
434 	struct sigqueue *q, *n;
435 
436 	signal = pending->signal;
437 	sigemptyset(&retain);
438 
439 	list_for_each_entry_safe(q, n, &pending->list, list) {
440 		int sig = q->info.si_signo;
441 
442 		if (likely(q->info.si_code != SI_TIMER)) {
443 			sigaddset(&retain, sig);
444 		} else {
445 			sigdelset(&signal, sig);
446 			list_del_init(&q->list);
447 			__sigqueue_free(q);
448 		}
449 	}
450 
451 	sigorsets(&pending->signal, &signal, &retain);
452 }
453 
454 void flush_itimer_signals(void)
455 {
456 	struct task_struct *tsk = current;
457 	unsigned long flags;
458 
459 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
460 	__flush_itimer_signals(&tsk->pending);
461 	__flush_itimer_signals(&tsk->signal->shared_pending);
462 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
463 }
464 
465 void ignore_signals(struct task_struct *t)
466 {
467 	int i;
468 
469 	for (i = 0; i < _NSIG; ++i)
470 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
471 
472 	flush_signals(t);
473 }
474 
475 /*
476  * Flush all handlers for a task.
477  */
478 
479 void
480 flush_signal_handlers(struct task_struct *t, int force_default)
481 {
482 	int i;
483 	struct k_sigaction *ka = &t->sighand->action[0];
484 	for (i = _NSIG ; i != 0 ; i--) {
485 		if (force_default || ka->sa.sa_handler != SIG_IGN)
486 			ka->sa.sa_handler = SIG_DFL;
487 		ka->sa.sa_flags = 0;
488 		sigemptyset(&ka->sa.sa_mask);
489 		ka++;
490 	}
491 }
492 
493 int unhandled_signal(struct task_struct *tsk, int sig)
494 {
495 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
496 	if (is_global_init(tsk))
497 		return 1;
498 	if (handler != SIG_IGN && handler != SIG_DFL)
499 		return 0;
500 	/* if ptraced, let the tracer determine */
501 	return !tsk->ptrace;
502 }
503 
504 /*
505  * Notify the system that a driver wants to block all signals for this
506  * process, and wants to be notified if any signals at all were to be
507  * sent/acted upon.  If the notifier routine returns non-zero, then the
508  * signal will be acted upon after all.  If the notifier routine returns 0,
509  * then then signal will be blocked.  Only one block per process is
510  * allowed.  priv is a pointer to private data that the notifier routine
511  * can use to determine if the signal should be blocked or not.
512  */
513 void
514 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
515 {
516 	unsigned long flags;
517 
518 	spin_lock_irqsave(&current->sighand->siglock, flags);
519 	current->notifier_mask = mask;
520 	current->notifier_data = priv;
521 	current->notifier = notifier;
522 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
523 }
524 
525 /* Notify the system that blocking has ended. */
526 
527 void
528 unblock_all_signals(void)
529 {
530 	unsigned long flags;
531 
532 	spin_lock_irqsave(&current->sighand->siglock, flags);
533 	current->notifier = NULL;
534 	current->notifier_data = NULL;
535 	recalc_sigpending();
536 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
537 }
538 
539 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
540 {
541 	struct sigqueue *q, *first = NULL;
542 
543 	/*
544 	 * Collect the siginfo appropriate to this signal.  Check if
545 	 * there is another siginfo for the same signal.
546 	*/
547 	list_for_each_entry(q, &list->list, list) {
548 		if (q->info.si_signo == sig) {
549 			if (first)
550 				goto still_pending;
551 			first = q;
552 		}
553 	}
554 
555 	sigdelset(&list->signal, sig);
556 
557 	if (first) {
558 still_pending:
559 		list_del_init(&first->list);
560 		copy_siginfo(info, &first->info);
561 		__sigqueue_free(first);
562 	} else {
563 		/*
564 		 * Ok, it wasn't in the queue.  This must be
565 		 * a fast-pathed signal or we must have been
566 		 * out of queue space.  So zero out the info.
567 		 */
568 		info->si_signo = sig;
569 		info->si_errno = 0;
570 		info->si_code = SI_USER;
571 		info->si_pid = 0;
572 		info->si_uid = 0;
573 	}
574 }
575 
576 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
577 			siginfo_t *info)
578 {
579 	int sig = next_signal(pending, mask);
580 
581 	if (sig) {
582 		if (current->notifier) {
583 			if (sigismember(current->notifier_mask, sig)) {
584 				if (!(current->notifier)(current->notifier_data)) {
585 					clear_thread_flag(TIF_SIGPENDING);
586 					return 0;
587 				}
588 			}
589 		}
590 
591 		collect_signal(sig, pending, info);
592 	}
593 
594 	return sig;
595 }
596 
597 /*
598  * Dequeue a signal and return the element to the caller, which is
599  * expected to free it.
600  *
601  * All callers have to hold the siglock.
602  */
603 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
604 {
605 	int signr;
606 
607 	/* We only dequeue private signals from ourselves, we don't let
608 	 * signalfd steal them
609 	 */
610 	signr = __dequeue_signal(&tsk->pending, mask, info);
611 	if (!signr) {
612 		signr = __dequeue_signal(&tsk->signal->shared_pending,
613 					 mask, info);
614 		/*
615 		 * itimer signal ?
616 		 *
617 		 * itimers are process shared and we restart periodic
618 		 * itimers in the signal delivery path to prevent DoS
619 		 * attacks in the high resolution timer case. This is
620 		 * compliant with the old way of self-restarting
621 		 * itimers, as the SIGALRM is a legacy signal and only
622 		 * queued once. Changing the restart behaviour to
623 		 * restart the timer in the signal dequeue path is
624 		 * reducing the timer noise on heavy loaded !highres
625 		 * systems too.
626 		 */
627 		if (unlikely(signr == SIGALRM)) {
628 			struct hrtimer *tmr = &tsk->signal->real_timer;
629 
630 			if (!hrtimer_is_queued(tmr) &&
631 			    tsk->signal->it_real_incr.tv64 != 0) {
632 				hrtimer_forward(tmr, tmr->base->get_time(),
633 						tsk->signal->it_real_incr);
634 				hrtimer_restart(tmr);
635 			}
636 		}
637 	}
638 
639 	recalc_sigpending();
640 	if (!signr)
641 		return 0;
642 
643 	if (unlikely(sig_kernel_stop(signr))) {
644 		/*
645 		 * Set a marker that we have dequeued a stop signal.  Our
646 		 * caller might release the siglock and then the pending
647 		 * stop signal it is about to process is no longer in the
648 		 * pending bitmasks, but must still be cleared by a SIGCONT
649 		 * (and overruled by a SIGKILL).  So those cases clear this
650 		 * shared flag after we've set it.  Note that this flag may
651 		 * remain set after the signal we return is ignored or
652 		 * handled.  That doesn't matter because its only purpose
653 		 * is to alert stop-signal processing code when another
654 		 * processor has come along and cleared the flag.
655 		 */
656 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
657 	}
658 	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
659 		/*
660 		 * Release the siglock to ensure proper locking order
661 		 * of timer locks outside of siglocks.  Note, we leave
662 		 * irqs disabled here, since the posix-timers code is
663 		 * about to disable them again anyway.
664 		 */
665 		spin_unlock(&tsk->sighand->siglock);
666 		do_schedule_next_timer(info);
667 		spin_lock(&tsk->sighand->siglock);
668 	}
669 	return signr;
670 }
671 
672 /*
673  * Tell a process that it has a new active signal..
674  *
675  * NOTE! we rely on the previous spin_lock to
676  * lock interrupts for us! We can only be called with
677  * "siglock" held, and the local interrupt must
678  * have been disabled when that got acquired!
679  *
680  * No need to set need_resched since signal event passing
681  * goes through ->blocked
682  */
683 void signal_wake_up_state(struct task_struct *t, unsigned int state)
684 {
685 	set_tsk_thread_flag(t, TIF_SIGPENDING);
686 	/*
687 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
688 	 * case. We don't check t->state here because there is a race with it
689 	 * executing another processor and just now entering stopped state.
690 	 * By using wake_up_state, we ensure the process will wake up and
691 	 * handle its death signal.
692 	 */
693 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
694 		kick_process(t);
695 }
696 
697 /*
698  * Remove signals in mask from the pending set and queue.
699  * Returns 1 if any signals were found.
700  *
701  * All callers must be holding the siglock.
702  *
703  * This version takes a sigset mask and looks at all signals,
704  * not just those in the first mask word.
705  */
706 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
707 {
708 	struct sigqueue *q, *n;
709 	sigset_t m;
710 
711 	sigandsets(&m, mask, &s->signal);
712 	if (sigisemptyset(&m))
713 		return 0;
714 
715 	sigandnsets(&s->signal, &s->signal, mask);
716 	list_for_each_entry_safe(q, n, &s->list, list) {
717 		if (sigismember(mask, q->info.si_signo)) {
718 			list_del_init(&q->list);
719 			__sigqueue_free(q);
720 		}
721 	}
722 	return 1;
723 }
724 /*
725  * Remove signals in mask from the pending set and queue.
726  * Returns 1 if any signals were found.
727  *
728  * All callers must be holding the siglock.
729  */
730 static int rm_from_queue(unsigned long mask, struct sigpending *s)
731 {
732 	struct sigqueue *q, *n;
733 
734 	if (!sigtestsetmask(&s->signal, mask))
735 		return 0;
736 
737 	sigdelsetmask(&s->signal, mask);
738 	list_for_each_entry_safe(q, n, &s->list, list) {
739 		if (q->info.si_signo < SIGRTMIN &&
740 		    (mask & sigmask(q->info.si_signo))) {
741 			list_del_init(&q->list);
742 			__sigqueue_free(q);
743 		}
744 	}
745 	return 1;
746 }
747 
748 static inline int is_si_special(const struct siginfo *info)
749 {
750 	return info <= SEND_SIG_FORCED;
751 }
752 
753 static inline bool si_fromuser(const struct siginfo *info)
754 {
755 	return info == SEND_SIG_NOINFO ||
756 		(!is_si_special(info) && SI_FROMUSER(info));
757 }
758 
759 /*
760  * called with RCU read lock from check_kill_permission()
761  */
762 static int kill_ok_by_cred(struct task_struct *t)
763 {
764 	const struct cred *cred = current_cred();
765 	const struct cred *tcred = __task_cred(t);
766 
767 	if (uid_eq(cred->euid, tcred->suid) ||
768 	    uid_eq(cred->euid, tcred->uid)  ||
769 	    uid_eq(cred->uid,  tcred->suid) ||
770 	    uid_eq(cred->uid,  tcred->uid))
771 		return 1;
772 
773 	if (ns_capable(tcred->user_ns, CAP_KILL))
774 		return 1;
775 
776 	return 0;
777 }
778 
779 /*
780  * Bad permissions for sending the signal
781  * - the caller must hold the RCU read lock
782  */
783 static int check_kill_permission(int sig, struct siginfo *info,
784 				 struct task_struct *t)
785 {
786 	struct pid *sid;
787 	int error;
788 
789 	if (!valid_signal(sig))
790 		return -EINVAL;
791 
792 	if (!si_fromuser(info))
793 		return 0;
794 
795 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
796 	if (error)
797 		return error;
798 
799 	if (!same_thread_group(current, t) &&
800 	    !kill_ok_by_cred(t)) {
801 		switch (sig) {
802 		case SIGCONT:
803 			sid = task_session(t);
804 			/*
805 			 * We don't return the error if sid == NULL. The
806 			 * task was unhashed, the caller must notice this.
807 			 */
808 			if (!sid || sid == task_session(current))
809 				break;
810 		default:
811 			return -EPERM;
812 		}
813 	}
814 
815 	return security_task_kill(t, info, sig, 0);
816 }
817 
818 /**
819  * ptrace_trap_notify - schedule trap to notify ptracer
820  * @t: tracee wanting to notify tracer
821  *
822  * This function schedules sticky ptrace trap which is cleared on the next
823  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
824  * ptracer.
825  *
826  * If @t is running, STOP trap will be taken.  If trapped for STOP and
827  * ptracer is listening for events, tracee is woken up so that it can
828  * re-trap for the new event.  If trapped otherwise, STOP trap will be
829  * eventually taken without returning to userland after the existing traps
830  * are finished by PTRACE_CONT.
831  *
832  * CONTEXT:
833  * Must be called with @task->sighand->siglock held.
834  */
835 static void ptrace_trap_notify(struct task_struct *t)
836 {
837 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
838 	assert_spin_locked(&t->sighand->siglock);
839 
840 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
841 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
842 }
843 
844 /*
845  * Handle magic process-wide effects of stop/continue signals. Unlike
846  * the signal actions, these happen immediately at signal-generation
847  * time regardless of blocking, ignoring, or handling.  This does the
848  * actual continuing for SIGCONT, but not the actual stopping for stop
849  * signals. The process stop is done as a signal action for SIG_DFL.
850  *
851  * Returns true if the signal should be actually delivered, otherwise
852  * it should be dropped.
853  */
854 static int prepare_signal(int sig, struct task_struct *p, bool force)
855 {
856 	struct signal_struct *signal = p->signal;
857 	struct task_struct *t;
858 
859 	if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
860 		/*
861 		 * The process is in the middle of dying, nothing to do.
862 		 */
863 	} else if (sig_kernel_stop(sig)) {
864 		/*
865 		 * This is a stop signal.  Remove SIGCONT from all queues.
866 		 */
867 		rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
868 		t = p;
869 		do {
870 			rm_from_queue(sigmask(SIGCONT), &t->pending);
871 		} while_each_thread(p, t);
872 	} else if (sig == SIGCONT) {
873 		unsigned int why;
874 		/*
875 		 * Remove all stop signals from all queues, wake all threads.
876 		 */
877 		rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
878 		t = p;
879 		do {
880 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
881 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
882 			if (likely(!(t->ptrace & PT_SEIZED)))
883 				wake_up_state(t, __TASK_STOPPED);
884 			else
885 				ptrace_trap_notify(t);
886 		} while_each_thread(p, t);
887 
888 		/*
889 		 * Notify the parent with CLD_CONTINUED if we were stopped.
890 		 *
891 		 * If we were in the middle of a group stop, we pretend it
892 		 * was already finished, and then continued. Since SIGCHLD
893 		 * doesn't queue we report only CLD_STOPPED, as if the next
894 		 * CLD_CONTINUED was dropped.
895 		 */
896 		why = 0;
897 		if (signal->flags & SIGNAL_STOP_STOPPED)
898 			why |= SIGNAL_CLD_CONTINUED;
899 		else if (signal->group_stop_count)
900 			why |= SIGNAL_CLD_STOPPED;
901 
902 		if (why) {
903 			/*
904 			 * The first thread which returns from do_signal_stop()
905 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
906 			 * notify its parent. See get_signal_to_deliver().
907 			 */
908 			signal->flags = why | SIGNAL_STOP_CONTINUED;
909 			signal->group_stop_count = 0;
910 			signal->group_exit_code = 0;
911 		}
912 	}
913 
914 	return !sig_ignored(p, sig, force);
915 }
916 
917 /*
918  * Test if P wants to take SIG.  After we've checked all threads with this,
919  * it's equivalent to finding no threads not blocking SIG.  Any threads not
920  * blocking SIG were ruled out because they are not running and already
921  * have pending signals.  Such threads will dequeue from the shared queue
922  * as soon as they're available, so putting the signal on the shared queue
923  * will be equivalent to sending it to one such thread.
924  */
925 static inline int wants_signal(int sig, struct task_struct *p)
926 {
927 	if (sigismember(&p->blocked, sig))
928 		return 0;
929 	if (p->flags & PF_EXITING)
930 		return 0;
931 	if (sig == SIGKILL)
932 		return 1;
933 	if (task_is_stopped_or_traced(p))
934 		return 0;
935 	return task_curr(p) || !signal_pending(p);
936 }
937 
938 static void complete_signal(int sig, struct task_struct *p, int group)
939 {
940 	struct signal_struct *signal = p->signal;
941 	struct task_struct *t;
942 
943 	/*
944 	 * Now find a thread we can wake up to take the signal off the queue.
945 	 *
946 	 * If the main thread wants the signal, it gets first crack.
947 	 * Probably the least surprising to the average bear.
948 	 */
949 	if (wants_signal(sig, p))
950 		t = p;
951 	else if (!group || thread_group_empty(p))
952 		/*
953 		 * There is just one thread and it does not need to be woken.
954 		 * It will dequeue unblocked signals before it runs again.
955 		 */
956 		return;
957 	else {
958 		/*
959 		 * Otherwise try to find a suitable thread.
960 		 */
961 		t = signal->curr_target;
962 		while (!wants_signal(sig, t)) {
963 			t = next_thread(t);
964 			if (t == signal->curr_target)
965 				/*
966 				 * No thread needs to be woken.
967 				 * Any eligible threads will see
968 				 * the signal in the queue soon.
969 				 */
970 				return;
971 		}
972 		signal->curr_target = t;
973 	}
974 
975 	/*
976 	 * Found a killable thread.  If the signal will be fatal,
977 	 * then start taking the whole group down immediately.
978 	 */
979 	if (sig_fatal(p, sig) &&
980 	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
981 	    !sigismember(&t->real_blocked, sig) &&
982 	    (sig == SIGKILL || !t->ptrace)) {
983 		/*
984 		 * This signal will be fatal to the whole group.
985 		 */
986 		if (!sig_kernel_coredump(sig)) {
987 			/*
988 			 * Start a group exit and wake everybody up.
989 			 * This way we don't have other threads
990 			 * running and doing things after a slower
991 			 * thread has the fatal signal pending.
992 			 */
993 			signal->flags = SIGNAL_GROUP_EXIT;
994 			signal->group_exit_code = sig;
995 			signal->group_stop_count = 0;
996 			t = p;
997 			do {
998 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
999 				sigaddset(&t->pending.signal, SIGKILL);
1000 				signal_wake_up(t, 1);
1001 			} while_each_thread(p, t);
1002 			return;
1003 		}
1004 	}
1005 
1006 	/*
1007 	 * The signal is already in the shared-pending queue.
1008 	 * Tell the chosen thread to wake up and dequeue it.
1009 	 */
1010 	signal_wake_up(t, sig == SIGKILL);
1011 	return;
1012 }
1013 
1014 static inline int legacy_queue(struct sigpending *signals, int sig)
1015 {
1016 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1017 }
1018 
1019 #ifdef CONFIG_USER_NS
1020 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1021 {
1022 	if (current_user_ns() == task_cred_xxx(t, user_ns))
1023 		return;
1024 
1025 	if (SI_FROMKERNEL(info))
1026 		return;
1027 
1028 	rcu_read_lock();
1029 	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1030 					make_kuid(current_user_ns(), info->si_uid));
1031 	rcu_read_unlock();
1032 }
1033 #else
1034 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1035 {
1036 	return;
1037 }
1038 #endif
1039 
1040 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1041 			int group, int from_ancestor_ns)
1042 {
1043 	struct sigpending *pending;
1044 	struct sigqueue *q;
1045 	int override_rlimit;
1046 	int ret = 0, result;
1047 
1048 	assert_spin_locked(&t->sighand->siglock);
1049 
1050 	result = TRACE_SIGNAL_IGNORED;
1051 	if (!prepare_signal(sig, t,
1052 			from_ancestor_ns || (info == SEND_SIG_FORCED)))
1053 		goto ret;
1054 
1055 	pending = group ? &t->signal->shared_pending : &t->pending;
1056 	/*
1057 	 * Short-circuit ignored signals and support queuing
1058 	 * exactly one non-rt signal, so that we can get more
1059 	 * detailed information about the cause of the signal.
1060 	 */
1061 	result = TRACE_SIGNAL_ALREADY_PENDING;
1062 	if (legacy_queue(pending, sig))
1063 		goto ret;
1064 
1065 	result = TRACE_SIGNAL_DELIVERED;
1066 	/*
1067 	 * fast-pathed signals for kernel-internal things like SIGSTOP
1068 	 * or SIGKILL.
1069 	 */
1070 	if (info == SEND_SIG_FORCED)
1071 		goto out_set;
1072 
1073 	/*
1074 	 * Real-time signals must be queued if sent by sigqueue, or
1075 	 * some other real-time mechanism.  It is implementation
1076 	 * defined whether kill() does so.  We attempt to do so, on
1077 	 * the principle of least surprise, but since kill is not
1078 	 * allowed to fail with EAGAIN when low on memory we just
1079 	 * make sure at least one signal gets delivered and don't
1080 	 * pass on the info struct.
1081 	 */
1082 	if (sig < SIGRTMIN)
1083 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1084 	else
1085 		override_rlimit = 0;
1086 
1087 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1088 		override_rlimit);
1089 	if (q) {
1090 		list_add_tail(&q->list, &pending->list);
1091 		switch ((unsigned long) info) {
1092 		case (unsigned long) SEND_SIG_NOINFO:
1093 			q->info.si_signo = sig;
1094 			q->info.si_errno = 0;
1095 			q->info.si_code = SI_USER;
1096 			q->info.si_pid = task_tgid_nr_ns(current,
1097 							task_active_pid_ns(t));
1098 			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1099 			break;
1100 		case (unsigned long) SEND_SIG_PRIV:
1101 			q->info.si_signo = sig;
1102 			q->info.si_errno = 0;
1103 			q->info.si_code = SI_KERNEL;
1104 			q->info.si_pid = 0;
1105 			q->info.si_uid = 0;
1106 			break;
1107 		default:
1108 			copy_siginfo(&q->info, info);
1109 			if (from_ancestor_ns)
1110 				q->info.si_pid = 0;
1111 			break;
1112 		}
1113 
1114 		userns_fixup_signal_uid(&q->info, t);
1115 
1116 	} else if (!is_si_special(info)) {
1117 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1118 			/*
1119 			 * Queue overflow, abort.  We may abort if the
1120 			 * signal was rt and sent by user using something
1121 			 * other than kill().
1122 			 */
1123 			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1124 			ret = -EAGAIN;
1125 			goto ret;
1126 		} else {
1127 			/*
1128 			 * This is a silent loss of information.  We still
1129 			 * send the signal, but the *info bits are lost.
1130 			 */
1131 			result = TRACE_SIGNAL_LOSE_INFO;
1132 		}
1133 	}
1134 
1135 out_set:
1136 	signalfd_notify(t, sig);
1137 	sigaddset(&pending->signal, sig);
1138 	complete_signal(sig, t, group);
1139 ret:
1140 	trace_signal_generate(sig, info, t, group, result);
1141 	return ret;
1142 }
1143 
1144 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1145 			int group)
1146 {
1147 	int from_ancestor_ns = 0;
1148 
1149 #ifdef CONFIG_PID_NS
1150 	from_ancestor_ns = si_fromuser(info) &&
1151 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1152 #endif
1153 
1154 	return __send_signal(sig, info, t, group, from_ancestor_ns);
1155 }
1156 
1157 static void print_fatal_signal(int signr)
1158 {
1159 	struct pt_regs *regs = signal_pt_regs();
1160 	printk("%s/%d: potentially unexpected fatal signal %d.\n",
1161 		current->comm, task_pid_nr(current), signr);
1162 
1163 #if defined(__i386__) && !defined(__arch_um__)
1164 	printk("code at %08lx: ", regs->ip);
1165 	{
1166 		int i;
1167 		for (i = 0; i < 16; i++) {
1168 			unsigned char insn;
1169 
1170 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1171 				break;
1172 			printk("%02x ", insn);
1173 		}
1174 	}
1175 #endif
1176 	printk("\n");
1177 	preempt_disable();
1178 	show_regs(regs);
1179 	preempt_enable();
1180 }
1181 
1182 static int __init setup_print_fatal_signals(char *str)
1183 {
1184 	get_option (&str, &print_fatal_signals);
1185 
1186 	return 1;
1187 }
1188 
1189 __setup("print-fatal-signals=", setup_print_fatal_signals);
1190 
1191 int
1192 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1193 {
1194 	return send_signal(sig, info, p, 1);
1195 }
1196 
1197 static int
1198 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1199 {
1200 	return send_signal(sig, info, t, 0);
1201 }
1202 
1203 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1204 			bool group)
1205 {
1206 	unsigned long flags;
1207 	int ret = -ESRCH;
1208 
1209 	if (lock_task_sighand(p, &flags)) {
1210 		ret = send_signal(sig, info, p, group);
1211 		unlock_task_sighand(p, &flags);
1212 	}
1213 
1214 	return ret;
1215 }
1216 
1217 /*
1218  * Force a signal that the process can't ignore: if necessary
1219  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1220  *
1221  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1222  * since we do not want to have a signal handler that was blocked
1223  * be invoked when user space had explicitly blocked it.
1224  *
1225  * We don't want to have recursive SIGSEGV's etc, for example,
1226  * that is why we also clear SIGNAL_UNKILLABLE.
1227  */
1228 int
1229 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1230 {
1231 	unsigned long int flags;
1232 	int ret, blocked, ignored;
1233 	struct k_sigaction *action;
1234 
1235 	spin_lock_irqsave(&t->sighand->siglock, flags);
1236 	action = &t->sighand->action[sig-1];
1237 	ignored = action->sa.sa_handler == SIG_IGN;
1238 	blocked = sigismember(&t->blocked, sig);
1239 	if (blocked || ignored) {
1240 		action->sa.sa_handler = SIG_DFL;
1241 		if (blocked) {
1242 			sigdelset(&t->blocked, sig);
1243 			recalc_sigpending_and_wake(t);
1244 		}
1245 	}
1246 	if (action->sa.sa_handler == SIG_DFL)
1247 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1248 	ret = specific_send_sig_info(sig, info, t);
1249 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1250 
1251 	return ret;
1252 }
1253 
1254 /*
1255  * Nuke all other threads in the group.
1256  */
1257 int zap_other_threads(struct task_struct *p)
1258 {
1259 	struct task_struct *t = p;
1260 	int count = 0;
1261 
1262 	p->signal->group_stop_count = 0;
1263 
1264 	while_each_thread(p, t) {
1265 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1266 		count++;
1267 
1268 		/* Don't bother with already dead threads */
1269 		if (t->exit_state)
1270 			continue;
1271 		sigaddset(&t->pending.signal, SIGKILL);
1272 		signal_wake_up(t, 1);
1273 	}
1274 
1275 	return count;
1276 }
1277 
1278 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1279 					   unsigned long *flags)
1280 {
1281 	struct sighand_struct *sighand;
1282 
1283 	for (;;) {
1284 		local_irq_save(*flags);
1285 		rcu_read_lock();
1286 		sighand = rcu_dereference(tsk->sighand);
1287 		if (unlikely(sighand == NULL)) {
1288 			rcu_read_unlock();
1289 			local_irq_restore(*flags);
1290 			break;
1291 		}
1292 
1293 		spin_lock(&sighand->siglock);
1294 		if (likely(sighand == tsk->sighand)) {
1295 			rcu_read_unlock();
1296 			break;
1297 		}
1298 		spin_unlock(&sighand->siglock);
1299 		rcu_read_unlock();
1300 		local_irq_restore(*flags);
1301 	}
1302 
1303 	return sighand;
1304 }
1305 
1306 /*
1307  * send signal info to all the members of a group
1308  */
1309 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1310 {
1311 	int ret;
1312 
1313 	rcu_read_lock();
1314 	ret = check_kill_permission(sig, info, p);
1315 	rcu_read_unlock();
1316 
1317 	if (!ret && sig)
1318 		ret = do_send_sig_info(sig, info, p, true);
1319 
1320 	return ret;
1321 }
1322 
1323 /*
1324  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1325  * control characters do (^C, ^Z etc)
1326  * - the caller must hold at least a readlock on tasklist_lock
1327  */
1328 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1329 {
1330 	struct task_struct *p = NULL;
1331 	int retval, success;
1332 
1333 	success = 0;
1334 	retval = -ESRCH;
1335 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1336 		int err = group_send_sig_info(sig, info, p);
1337 		success |= !err;
1338 		retval = err;
1339 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1340 	return success ? 0 : retval;
1341 }
1342 
1343 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1344 {
1345 	int error = -ESRCH;
1346 	struct task_struct *p;
1347 
1348 	rcu_read_lock();
1349 retry:
1350 	p = pid_task(pid, PIDTYPE_PID);
1351 	if (p) {
1352 		error = group_send_sig_info(sig, info, p);
1353 		if (unlikely(error == -ESRCH))
1354 			/*
1355 			 * The task was unhashed in between, try again.
1356 			 * If it is dead, pid_task() will return NULL,
1357 			 * if we race with de_thread() it will find the
1358 			 * new leader.
1359 			 */
1360 			goto retry;
1361 	}
1362 	rcu_read_unlock();
1363 
1364 	return error;
1365 }
1366 
1367 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1368 {
1369 	int error;
1370 	rcu_read_lock();
1371 	error = kill_pid_info(sig, info, find_vpid(pid));
1372 	rcu_read_unlock();
1373 	return error;
1374 }
1375 
1376 static int kill_as_cred_perm(const struct cred *cred,
1377 			     struct task_struct *target)
1378 {
1379 	const struct cred *pcred = __task_cred(target);
1380 	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1381 	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1382 		return 0;
1383 	return 1;
1384 }
1385 
1386 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1387 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1388 			 const struct cred *cred, u32 secid)
1389 {
1390 	int ret = -EINVAL;
1391 	struct task_struct *p;
1392 	unsigned long flags;
1393 
1394 	if (!valid_signal(sig))
1395 		return ret;
1396 
1397 	rcu_read_lock();
1398 	p = pid_task(pid, PIDTYPE_PID);
1399 	if (!p) {
1400 		ret = -ESRCH;
1401 		goto out_unlock;
1402 	}
1403 	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1404 		ret = -EPERM;
1405 		goto out_unlock;
1406 	}
1407 	ret = security_task_kill(p, info, sig, secid);
1408 	if (ret)
1409 		goto out_unlock;
1410 
1411 	if (sig) {
1412 		if (lock_task_sighand(p, &flags)) {
1413 			ret = __send_signal(sig, info, p, 1, 0);
1414 			unlock_task_sighand(p, &flags);
1415 		} else
1416 			ret = -ESRCH;
1417 	}
1418 out_unlock:
1419 	rcu_read_unlock();
1420 	return ret;
1421 }
1422 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1423 
1424 /*
1425  * kill_something_info() interprets pid in interesting ways just like kill(2).
1426  *
1427  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1428  * is probably wrong.  Should make it like BSD or SYSV.
1429  */
1430 
1431 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1432 {
1433 	int ret;
1434 
1435 	if (pid > 0) {
1436 		rcu_read_lock();
1437 		ret = kill_pid_info(sig, info, find_vpid(pid));
1438 		rcu_read_unlock();
1439 		return ret;
1440 	}
1441 
1442 	read_lock(&tasklist_lock);
1443 	if (pid != -1) {
1444 		ret = __kill_pgrp_info(sig, info,
1445 				pid ? find_vpid(-pid) : task_pgrp(current));
1446 	} else {
1447 		int retval = 0, count = 0;
1448 		struct task_struct * p;
1449 
1450 		for_each_process(p) {
1451 			if (task_pid_vnr(p) > 1 &&
1452 					!same_thread_group(p, current)) {
1453 				int err = group_send_sig_info(sig, info, p);
1454 				++count;
1455 				if (err != -EPERM)
1456 					retval = err;
1457 			}
1458 		}
1459 		ret = count ? retval : -ESRCH;
1460 	}
1461 	read_unlock(&tasklist_lock);
1462 
1463 	return ret;
1464 }
1465 
1466 /*
1467  * These are for backward compatibility with the rest of the kernel source.
1468  */
1469 
1470 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1471 {
1472 	/*
1473 	 * Make sure legacy kernel users don't send in bad values
1474 	 * (normal paths check this in check_kill_permission).
1475 	 */
1476 	if (!valid_signal(sig))
1477 		return -EINVAL;
1478 
1479 	return do_send_sig_info(sig, info, p, false);
1480 }
1481 
1482 #define __si_special(priv) \
1483 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1484 
1485 int
1486 send_sig(int sig, struct task_struct *p, int priv)
1487 {
1488 	return send_sig_info(sig, __si_special(priv), p);
1489 }
1490 
1491 void
1492 force_sig(int sig, struct task_struct *p)
1493 {
1494 	force_sig_info(sig, SEND_SIG_PRIV, p);
1495 }
1496 
1497 /*
1498  * When things go south during signal handling, we
1499  * will force a SIGSEGV. And if the signal that caused
1500  * the problem was already a SIGSEGV, we'll want to
1501  * make sure we don't even try to deliver the signal..
1502  */
1503 int
1504 force_sigsegv(int sig, struct task_struct *p)
1505 {
1506 	if (sig == SIGSEGV) {
1507 		unsigned long flags;
1508 		spin_lock_irqsave(&p->sighand->siglock, flags);
1509 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1510 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1511 	}
1512 	force_sig(SIGSEGV, p);
1513 	return 0;
1514 }
1515 
1516 int kill_pgrp(struct pid *pid, int sig, int priv)
1517 {
1518 	int ret;
1519 
1520 	read_lock(&tasklist_lock);
1521 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1522 	read_unlock(&tasklist_lock);
1523 
1524 	return ret;
1525 }
1526 EXPORT_SYMBOL(kill_pgrp);
1527 
1528 int kill_pid(struct pid *pid, int sig, int priv)
1529 {
1530 	return kill_pid_info(sig, __si_special(priv), pid);
1531 }
1532 EXPORT_SYMBOL(kill_pid);
1533 
1534 /*
1535  * These functions support sending signals using preallocated sigqueue
1536  * structures.  This is needed "because realtime applications cannot
1537  * afford to lose notifications of asynchronous events, like timer
1538  * expirations or I/O completions".  In the case of POSIX Timers
1539  * we allocate the sigqueue structure from the timer_create.  If this
1540  * allocation fails we are able to report the failure to the application
1541  * with an EAGAIN error.
1542  */
1543 struct sigqueue *sigqueue_alloc(void)
1544 {
1545 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1546 
1547 	if (q)
1548 		q->flags |= SIGQUEUE_PREALLOC;
1549 
1550 	return q;
1551 }
1552 
1553 void sigqueue_free(struct sigqueue *q)
1554 {
1555 	unsigned long flags;
1556 	spinlock_t *lock = &current->sighand->siglock;
1557 
1558 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1559 	/*
1560 	 * We must hold ->siglock while testing q->list
1561 	 * to serialize with collect_signal() or with
1562 	 * __exit_signal()->flush_sigqueue().
1563 	 */
1564 	spin_lock_irqsave(lock, flags);
1565 	q->flags &= ~SIGQUEUE_PREALLOC;
1566 	/*
1567 	 * If it is queued it will be freed when dequeued,
1568 	 * like the "regular" sigqueue.
1569 	 */
1570 	if (!list_empty(&q->list))
1571 		q = NULL;
1572 	spin_unlock_irqrestore(lock, flags);
1573 
1574 	if (q)
1575 		__sigqueue_free(q);
1576 }
1577 
1578 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1579 {
1580 	int sig = q->info.si_signo;
1581 	struct sigpending *pending;
1582 	unsigned long flags;
1583 	int ret, result;
1584 
1585 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1586 
1587 	ret = -1;
1588 	if (!likely(lock_task_sighand(t, &flags)))
1589 		goto ret;
1590 
1591 	ret = 1; /* the signal is ignored */
1592 	result = TRACE_SIGNAL_IGNORED;
1593 	if (!prepare_signal(sig, t, false))
1594 		goto out;
1595 
1596 	ret = 0;
1597 	if (unlikely(!list_empty(&q->list))) {
1598 		/*
1599 		 * If an SI_TIMER entry is already queue just increment
1600 		 * the overrun count.
1601 		 */
1602 		BUG_ON(q->info.si_code != SI_TIMER);
1603 		q->info.si_overrun++;
1604 		result = TRACE_SIGNAL_ALREADY_PENDING;
1605 		goto out;
1606 	}
1607 	q->info.si_overrun = 0;
1608 
1609 	signalfd_notify(t, sig);
1610 	pending = group ? &t->signal->shared_pending : &t->pending;
1611 	list_add_tail(&q->list, &pending->list);
1612 	sigaddset(&pending->signal, sig);
1613 	complete_signal(sig, t, group);
1614 	result = TRACE_SIGNAL_DELIVERED;
1615 out:
1616 	trace_signal_generate(sig, &q->info, t, group, result);
1617 	unlock_task_sighand(t, &flags);
1618 ret:
1619 	return ret;
1620 }
1621 
1622 /*
1623  * Let a parent know about the death of a child.
1624  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1625  *
1626  * Returns true if our parent ignored us and so we've switched to
1627  * self-reaping.
1628  */
1629 bool do_notify_parent(struct task_struct *tsk, int sig)
1630 {
1631 	struct siginfo info;
1632 	unsigned long flags;
1633 	struct sighand_struct *psig;
1634 	bool autoreap = false;
1635 	cputime_t utime, stime;
1636 
1637 	BUG_ON(sig == -1);
1638 
1639  	/* do_notify_parent_cldstop should have been called instead.  */
1640  	BUG_ON(task_is_stopped_or_traced(tsk));
1641 
1642 	BUG_ON(!tsk->ptrace &&
1643 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1644 
1645 	if (sig != SIGCHLD) {
1646 		/*
1647 		 * This is only possible if parent == real_parent.
1648 		 * Check if it has changed security domain.
1649 		 */
1650 		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1651 			sig = SIGCHLD;
1652 	}
1653 
1654 	info.si_signo = sig;
1655 	info.si_errno = 0;
1656 	/*
1657 	 * We are under tasklist_lock here so our parent is tied to
1658 	 * us and cannot change.
1659 	 *
1660 	 * task_active_pid_ns will always return the same pid namespace
1661 	 * until a task passes through release_task.
1662 	 *
1663 	 * write_lock() currently calls preempt_disable() which is the
1664 	 * same as rcu_read_lock(), but according to Oleg, this is not
1665 	 * correct to rely on this
1666 	 */
1667 	rcu_read_lock();
1668 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1669 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1670 				       task_uid(tsk));
1671 	rcu_read_unlock();
1672 
1673 	task_cputime(tsk, &utime, &stime);
1674 	info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1675 	info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1676 
1677 	info.si_status = tsk->exit_code & 0x7f;
1678 	if (tsk->exit_code & 0x80)
1679 		info.si_code = CLD_DUMPED;
1680 	else if (tsk->exit_code & 0x7f)
1681 		info.si_code = CLD_KILLED;
1682 	else {
1683 		info.si_code = CLD_EXITED;
1684 		info.si_status = tsk->exit_code >> 8;
1685 	}
1686 
1687 	psig = tsk->parent->sighand;
1688 	spin_lock_irqsave(&psig->siglock, flags);
1689 	if (!tsk->ptrace && sig == SIGCHLD &&
1690 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1691 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1692 		/*
1693 		 * We are exiting and our parent doesn't care.  POSIX.1
1694 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1695 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1696 		 * automatically and not left for our parent's wait4 call.
1697 		 * Rather than having the parent do it as a magic kind of
1698 		 * signal handler, we just set this to tell do_exit that we
1699 		 * can be cleaned up without becoming a zombie.  Note that
1700 		 * we still call __wake_up_parent in this case, because a
1701 		 * blocked sys_wait4 might now return -ECHILD.
1702 		 *
1703 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1704 		 * is implementation-defined: we do (if you don't want
1705 		 * it, just use SIG_IGN instead).
1706 		 */
1707 		autoreap = true;
1708 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1709 			sig = 0;
1710 	}
1711 	if (valid_signal(sig) && sig)
1712 		__group_send_sig_info(sig, &info, tsk->parent);
1713 	__wake_up_parent(tsk, tsk->parent);
1714 	spin_unlock_irqrestore(&psig->siglock, flags);
1715 
1716 	return autoreap;
1717 }
1718 
1719 /**
1720  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1721  * @tsk: task reporting the state change
1722  * @for_ptracer: the notification is for ptracer
1723  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1724  *
1725  * Notify @tsk's parent that the stopped/continued state has changed.  If
1726  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1727  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1728  *
1729  * CONTEXT:
1730  * Must be called with tasklist_lock at least read locked.
1731  */
1732 static void do_notify_parent_cldstop(struct task_struct *tsk,
1733 				     bool for_ptracer, int why)
1734 {
1735 	struct siginfo info;
1736 	unsigned long flags;
1737 	struct task_struct *parent;
1738 	struct sighand_struct *sighand;
1739 	cputime_t utime, stime;
1740 
1741 	if (for_ptracer) {
1742 		parent = tsk->parent;
1743 	} else {
1744 		tsk = tsk->group_leader;
1745 		parent = tsk->real_parent;
1746 	}
1747 
1748 	info.si_signo = SIGCHLD;
1749 	info.si_errno = 0;
1750 	/*
1751 	 * see comment in do_notify_parent() about the following 4 lines
1752 	 */
1753 	rcu_read_lock();
1754 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1755 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1756 	rcu_read_unlock();
1757 
1758 	task_cputime(tsk, &utime, &stime);
1759 	info.si_utime = cputime_to_clock_t(utime);
1760 	info.si_stime = cputime_to_clock_t(stime);
1761 
1762  	info.si_code = why;
1763  	switch (why) {
1764  	case CLD_CONTINUED:
1765  		info.si_status = SIGCONT;
1766  		break;
1767  	case CLD_STOPPED:
1768  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1769  		break;
1770  	case CLD_TRAPPED:
1771  		info.si_status = tsk->exit_code & 0x7f;
1772  		break;
1773  	default:
1774  		BUG();
1775  	}
1776 
1777 	sighand = parent->sighand;
1778 	spin_lock_irqsave(&sighand->siglock, flags);
1779 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1780 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1781 		__group_send_sig_info(SIGCHLD, &info, parent);
1782 	/*
1783 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1784 	 */
1785 	__wake_up_parent(tsk, parent);
1786 	spin_unlock_irqrestore(&sighand->siglock, flags);
1787 }
1788 
1789 static inline int may_ptrace_stop(void)
1790 {
1791 	if (!likely(current->ptrace))
1792 		return 0;
1793 	/*
1794 	 * Are we in the middle of do_coredump?
1795 	 * If so and our tracer is also part of the coredump stopping
1796 	 * is a deadlock situation, and pointless because our tracer
1797 	 * is dead so don't allow us to stop.
1798 	 * If SIGKILL was already sent before the caller unlocked
1799 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1800 	 * is safe to enter schedule().
1801 	 *
1802 	 * This is almost outdated, a task with the pending SIGKILL can't
1803 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1804 	 * after SIGKILL was already dequeued.
1805 	 */
1806 	if (unlikely(current->mm->core_state) &&
1807 	    unlikely(current->mm == current->parent->mm))
1808 		return 0;
1809 
1810 	return 1;
1811 }
1812 
1813 /*
1814  * Return non-zero if there is a SIGKILL that should be waking us up.
1815  * Called with the siglock held.
1816  */
1817 static int sigkill_pending(struct task_struct *tsk)
1818 {
1819 	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1820 		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1821 }
1822 
1823 /*
1824  * This must be called with current->sighand->siglock held.
1825  *
1826  * This should be the path for all ptrace stops.
1827  * We always set current->last_siginfo while stopped here.
1828  * That makes it a way to test a stopped process for
1829  * being ptrace-stopped vs being job-control-stopped.
1830  *
1831  * If we actually decide not to stop at all because the tracer
1832  * is gone, we keep current->exit_code unless clear_code.
1833  */
1834 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1835 	__releases(&current->sighand->siglock)
1836 	__acquires(&current->sighand->siglock)
1837 {
1838 	bool gstop_done = false;
1839 
1840 	if (arch_ptrace_stop_needed(exit_code, info)) {
1841 		/*
1842 		 * The arch code has something special to do before a
1843 		 * ptrace stop.  This is allowed to block, e.g. for faults
1844 		 * on user stack pages.  We can't keep the siglock while
1845 		 * calling arch_ptrace_stop, so we must release it now.
1846 		 * To preserve proper semantics, we must do this before
1847 		 * any signal bookkeeping like checking group_stop_count.
1848 		 * Meanwhile, a SIGKILL could come in before we retake the
1849 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1850 		 * So after regaining the lock, we must check for SIGKILL.
1851 		 */
1852 		spin_unlock_irq(&current->sighand->siglock);
1853 		arch_ptrace_stop(exit_code, info);
1854 		spin_lock_irq(&current->sighand->siglock);
1855 		if (sigkill_pending(current))
1856 			return;
1857 	}
1858 
1859 	/*
1860 	 * We're committing to trapping.  TRACED should be visible before
1861 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1862 	 * Also, transition to TRACED and updates to ->jobctl should be
1863 	 * atomic with respect to siglock and should be done after the arch
1864 	 * hook as siglock is released and regrabbed across it.
1865 	 */
1866 	set_current_state(TASK_TRACED);
1867 
1868 	current->last_siginfo = info;
1869 	current->exit_code = exit_code;
1870 
1871 	/*
1872 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1873 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1874 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1875 	 * could be clear now.  We act as if SIGCONT is received after
1876 	 * TASK_TRACED is entered - ignore it.
1877 	 */
1878 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1879 		gstop_done = task_participate_group_stop(current);
1880 
1881 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1882 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1883 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1884 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1885 
1886 	/* entering a trap, clear TRAPPING */
1887 	task_clear_jobctl_trapping(current);
1888 
1889 	spin_unlock_irq(&current->sighand->siglock);
1890 	read_lock(&tasklist_lock);
1891 	if (may_ptrace_stop()) {
1892 		/*
1893 		 * Notify parents of the stop.
1894 		 *
1895 		 * While ptraced, there are two parents - the ptracer and
1896 		 * the real_parent of the group_leader.  The ptracer should
1897 		 * know about every stop while the real parent is only
1898 		 * interested in the completion of group stop.  The states
1899 		 * for the two don't interact with each other.  Notify
1900 		 * separately unless they're gonna be duplicates.
1901 		 */
1902 		do_notify_parent_cldstop(current, true, why);
1903 		if (gstop_done && ptrace_reparented(current))
1904 			do_notify_parent_cldstop(current, false, why);
1905 
1906 		/*
1907 		 * Don't want to allow preemption here, because
1908 		 * sys_ptrace() needs this task to be inactive.
1909 		 *
1910 		 * XXX: implement read_unlock_no_resched().
1911 		 */
1912 		preempt_disable();
1913 		read_unlock(&tasklist_lock);
1914 		preempt_enable_no_resched();
1915 		freezable_schedule();
1916 	} else {
1917 		/*
1918 		 * By the time we got the lock, our tracer went away.
1919 		 * Don't drop the lock yet, another tracer may come.
1920 		 *
1921 		 * If @gstop_done, the ptracer went away between group stop
1922 		 * completion and here.  During detach, it would have set
1923 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1924 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1925 		 * the real parent of the group stop completion is enough.
1926 		 */
1927 		if (gstop_done)
1928 			do_notify_parent_cldstop(current, false, why);
1929 
1930 		/* tasklist protects us from ptrace_freeze_traced() */
1931 		__set_current_state(TASK_RUNNING);
1932 		if (clear_code)
1933 			current->exit_code = 0;
1934 		read_unlock(&tasklist_lock);
1935 	}
1936 
1937 	/*
1938 	 * We are back.  Now reacquire the siglock before touching
1939 	 * last_siginfo, so that we are sure to have synchronized with
1940 	 * any signal-sending on another CPU that wants to examine it.
1941 	 */
1942 	spin_lock_irq(&current->sighand->siglock);
1943 	current->last_siginfo = NULL;
1944 
1945 	/* LISTENING can be set only during STOP traps, clear it */
1946 	current->jobctl &= ~JOBCTL_LISTENING;
1947 
1948 	/*
1949 	 * Queued signals ignored us while we were stopped for tracing.
1950 	 * So check for any that we should take before resuming user mode.
1951 	 * This sets TIF_SIGPENDING, but never clears it.
1952 	 */
1953 	recalc_sigpending_tsk(current);
1954 }
1955 
1956 static void ptrace_do_notify(int signr, int exit_code, int why)
1957 {
1958 	siginfo_t info;
1959 
1960 	memset(&info, 0, sizeof info);
1961 	info.si_signo = signr;
1962 	info.si_code = exit_code;
1963 	info.si_pid = task_pid_vnr(current);
1964 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1965 
1966 	/* Let the debugger run.  */
1967 	ptrace_stop(exit_code, why, 1, &info);
1968 }
1969 
1970 void ptrace_notify(int exit_code)
1971 {
1972 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1973 	if (unlikely(current->task_works))
1974 		task_work_run();
1975 
1976 	spin_lock_irq(&current->sighand->siglock);
1977 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1978 	spin_unlock_irq(&current->sighand->siglock);
1979 }
1980 
1981 /**
1982  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1983  * @signr: signr causing group stop if initiating
1984  *
1985  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1986  * and participate in it.  If already set, participate in the existing
1987  * group stop.  If participated in a group stop (and thus slept), %true is
1988  * returned with siglock released.
1989  *
1990  * If ptraced, this function doesn't handle stop itself.  Instead,
1991  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1992  * untouched.  The caller must ensure that INTERRUPT trap handling takes
1993  * places afterwards.
1994  *
1995  * CONTEXT:
1996  * Must be called with @current->sighand->siglock held, which is released
1997  * on %true return.
1998  *
1999  * RETURNS:
2000  * %false if group stop is already cancelled or ptrace trap is scheduled.
2001  * %true if participated in group stop.
2002  */
2003 static bool do_signal_stop(int signr)
2004 	__releases(&current->sighand->siglock)
2005 {
2006 	struct signal_struct *sig = current->signal;
2007 
2008 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2009 		unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2010 		struct task_struct *t;
2011 
2012 		/* signr will be recorded in task->jobctl for retries */
2013 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2014 
2015 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2016 		    unlikely(signal_group_exit(sig)))
2017 			return false;
2018 		/*
2019 		 * There is no group stop already in progress.  We must
2020 		 * initiate one now.
2021 		 *
2022 		 * While ptraced, a task may be resumed while group stop is
2023 		 * still in effect and then receive a stop signal and
2024 		 * initiate another group stop.  This deviates from the
2025 		 * usual behavior as two consecutive stop signals can't
2026 		 * cause two group stops when !ptraced.  That is why we
2027 		 * also check !task_is_stopped(t) below.
2028 		 *
2029 		 * The condition can be distinguished by testing whether
2030 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2031 		 * group_exit_code in such case.
2032 		 *
2033 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2034 		 * an intervening stop signal is required to cause two
2035 		 * continued events regardless of ptrace.
2036 		 */
2037 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2038 			sig->group_exit_code = signr;
2039 
2040 		sig->group_stop_count = 0;
2041 
2042 		if (task_set_jobctl_pending(current, signr | gstop))
2043 			sig->group_stop_count++;
2044 
2045 		for (t = next_thread(current); t != current;
2046 		     t = next_thread(t)) {
2047 			/*
2048 			 * Setting state to TASK_STOPPED for a group
2049 			 * stop is always done with the siglock held,
2050 			 * so this check has no races.
2051 			 */
2052 			if (!task_is_stopped(t) &&
2053 			    task_set_jobctl_pending(t, signr | gstop)) {
2054 				sig->group_stop_count++;
2055 				if (likely(!(t->ptrace & PT_SEIZED)))
2056 					signal_wake_up(t, 0);
2057 				else
2058 					ptrace_trap_notify(t);
2059 			}
2060 		}
2061 	}
2062 
2063 	if (likely(!current->ptrace)) {
2064 		int notify = 0;
2065 
2066 		/*
2067 		 * If there are no other threads in the group, or if there
2068 		 * is a group stop in progress and we are the last to stop,
2069 		 * report to the parent.
2070 		 */
2071 		if (task_participate_group_stop(current))
2072 			notify = CLD_STOPPED;
2073 
2074 		__set_current_state(TASK_STOPPED);
2075 		spin_unlock_irq(&current->sighand->siglock);
2076 
2077 		/*
2078 		 * Notify the parent of the group stop completion.  Because
2079 		 * we're not holding either the siglock or tasklist_lock
2080 		 * here, ptracer may attach inbetween; however, this is for
2081 		 * group stop and should always be delivered to the real
2082 		 * parent of the group leader.  The new ptracer will get
2083 		 * its notification when this task transitions into
2084 		 * TASK_TRACED.
2085 		 */
2086 		if (notify) {
2087 			read_lock(&tasklist_lock);
2088 			do_notify_parent_cldstop(current, false, notify);
2089 			read_unlock(&tasklist_lock);
2090 		}
2091 
2092 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2093 		freezable_schedule();
2094 		return true;
2095 	} else {
2096 		/*
2097 		 * While ptraced, group stop is handled by STOP trap.
2098 		 * Schedule it and let the caller deal with it.
2099 		 */
2100 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2101 		return false;
2102 	}
2103 }
2104 
2105 /**
2106  * do_jobctl_trap - take care of ptrace jobctl traps
2107  *
2108  * When PT_SEIZED, it's used for both group stop and explicit
2109  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2110  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2111  * the stop signal; otherwise, %SIGTRAP.
2112  *
2113  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2114  * number as exit_code and no siginfo.
2115  *
2116  * CONTEXT:
2117  * Must be called with @current->sighand->siglock held, which may be
2118  * released and re-acquired before returning with intervening sleep.
2119  */
2120 static void do_jobctl_trap(void)
2121 {
2122 	struct signal_struct *signal = current->signal;
2123 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2124 
2125 	if (current->ptrace & PT_SEIZED) {
2126 		if (!signal->group_stop_count &&
2127 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2128 			signr = SIGTRAP;
2129 		WARN_ON_ONCE(!signr);
2130 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2131 				 CLD_STOPPED);
2132 	} else {
2133 		WARN_ON_ONCE(!signr);
2134 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2135 		current->exit_code = 0;
2136 	}
2137 }
2138 
2139 static int ptrace_signal(int signr, siginfo_t *info)
2140 {
2141 	ptrace_signal_deliver();
2142 	/*
2143 	 * We do not check sig_kernel_stop(signr) but set this marker
2144 	 * unconditionally because we do not know whether debugger will
2145 	 * change signr. This flag has no meaning unless we are going
2146 	 * to stop after return from ptrace_stop(). In this case it will
2147 	 * be checked in do_signal_stop(), we should only stop if it was
2148 	 * not cleared by SIGCONT while we were sleeping. See also the
2149 	 * comment in dequeue_signal().
2150 	 */
2151 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2152 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2153 
2154 	/* We're back.  Did the debugger cancel the sig?  */
2155 	signr = current->exit_code;
2156 	if (signr == 0)
2157 		return signr;
2158 
2159 	current->exit_code = 0;
2160 
2161 	/*
2162 	 * Update the siginfo structure if the signal has
2163 	 * changed.  If the debugger wanted something
2164 	 * specific in the siginfo structure then it should
2165 	 * have updated *info via PTRACE_SETSIGINFO.
2166 	 */
2167 	if (signr != info->si_signo) {
2168 		info->si_signo = signr;
2169 		info->si_errno = 0;
2170 		info->si_code = SI_USER;
2171 		rcu_read_lock();
2172 		info->si_pid = task_pid_vnr(current->parent);
2173 		info->si_uid = from_kuid_munged(current_user_ns(),
2174 						task_uid(current->parent));
2175 		rcu_read_unlock();
2176 	}
2177 
2178 	/* If the (new) signal is now blocked, requeue it.  */
2179 	if (sigismember(&current->blocked, signr)) {
2180 		specific_send_sig_info(signr, info, current);
2181 		signr = 0;
2182 	}
2183 
2184 	return signr;
2185 }
2186 
2187 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2188 			  struct pt_regs *regs, void *cookie)
2189 {
2190 	struct sighand_struct *sighand = current->sighand;
2191 	struct signal_struct *signal = current->signal;
2192 	int signr;
2193 
2194 	if (unlikely(current->task_works))
2195 		task_work_run();
2196 
2197 	if (unlikely(uprobe_deny_signal()))
2198 		return 0;
2199 
2200 	/*
2201 	 * Do this once, we can't return to user-mode if freezing() == T.
2202 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2203 	 * thus do not need another check after return.
2204 	 */
2205 	try_to_freeze();
2206 
2207 relock:
2208 	spin_lock_irq(&sighand->siglock);
2209 	/*
2210 	 * Every stopped thread goes here after wakeup. Check to see if
2211 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2212 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2213 	 */
2214 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2215 		int why;
2216 
2217 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2218 			why = CLD_CONTINUED;
2219 		else
2220 			why = CLD_STOPPED;
2221 
2222 		signal->flags &= ~SIGNAL_CLD_MASK;
2223 
2224 		spin_unlock_irq(&sighand->siglock);
2225 
2226 		/*
2227 		 * Notify the parent that we're continuing.  This event is
2228 		 * always per-process and doesn't make whole lot of sense
2229 		 * for ptracers, who shouldn't consume the state via
2230 		 * wait(2) either, but, for backward compatibility, notify
2231 		 * the ptracer of the group leader too unless it's gonna be
2232 		 * a duplicate.
2233 		 */
2234 		read_lock(&tasklist_lock);
2235 		do_notify_parent_cldstop(current, false, why);
2236 
2237 		if (ptrace_reparented(current->group_leader))
2238 			do_notify_parent_cldstop(current->group_leader,
2239 						true, why);
2240 		read_unlock(&tasklist_lock);
2241 
2242 		goto relock;
2243 	}
2244 
2245 	for (;;) {
2246 		struct k_sigaction *ka;
2247 
2248 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2249 		    do_signal_stop(0))
2250 			goto relock;
2251 
2252 		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2253 			do_jobctl_trap();
2254 			spin_unlock_irq(&sighand->siglock);
2255 			goto relock;
2256 		}
2257 
2258 		signr = dequeue_signal(current, &current->blocked, info);
2259 
2260 		if (!signr)
2261 			break; /* will return 0 */
2262 
2263 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2264 			signr = ptrace_signal(signr, info);
2265 			if (!signr)
2266 				continue;
2267 		}
2268 
2269 		ka = &sighand->action[signr-1];
2270 
2271 		/* Trace actually delivered signals. */
2272 		trace_signal_deliver(signr, info, ka);
2273 
2274 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2275 			continue;
2276 		if (ka->sa.sa_handler != SIG_DFL) {
2277 			/* Run the handler.  */
2278 			*return_ka = *ka;
2279 
2280 			if (ka->sa.sa_flags & SA_ONESHOT)
2281 				ka->sa.sa_handler = SIG_DFL;
2282 
2283 			break; /* will return non-zero "signr" value */
2284 		}
2285 
2286 		/*
2287 		 * Now we are doing the default action for this signal.
2288 		 */
2289 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2290 			continue;
2291 
2292 		/*
2293 		 * Global init gets no signals it doesn't want.
2294 		 * Container-init gets no signals it doesn't want from same
2295 		 * container.
2296 		 *
2297 		 * Note that if global/container-init sees a sig_kernel_only()
2298 		 * signal here, the signal must have been generated internally
2299 		 * or must have come from an ancestor namespace. In either
2300 		 * case, the signal cannot be dropped.
2301 		 */
2302 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2303 				!sig_kernel_only(signr))
2304 			continue;
2305 
2306 		if (sig_kernel_stop(signr)) {
2307 			/*
2308 			 * The default action is to stop all threads in
2309 			 * the thread group.  The job control signals
2310 			 * do nothing in an orphaned pgrp, but SIGSTOP
2311 			 * always works.  Note that siglock needs to be
2312 			 * dropped during the call to is_orphaned_pgrp()
2313 			 * because of lock ordering with tasklist_lock.
2314 			 * This allows an intervening SIGCONT to be posted.
2315 			 * We need to check for that and bail out if necessary.
2316 			 */
2317 			if (signr != SIGSTOP) {
2318 				spin_unlock_irq(&sighand->siglock);
2319 
2320 				/* signals can be posted during this window */
2321 
2322 				if (is_current_pgrp_orphaned())
2323 					goto relock;
2324 
2325 				spin_lock_irq(&sighand->siglock);
2326 			}
2327 
2328 			if (likely(do_signal_stop(info->si_signo))) {
2329 				/* It released the siglock.  */
2330 				goto relock;
2331 			}
2332 
2333 			/*
2334 			 * We didn't actually stop, due to a race
2335 			 * with SIGCONT or something like that.
2336 			 */
2337 			continue;
2338 		}
2339 
2340 		spin_unlock_irq(&sighand->siglock);
2341 
2342 		/*
2343 		 * Anything else is fatal, maybe with a core dump.
2344 		 */
2345 		current->flags |= PF_SIGNALED;
2346 
2347 		if (sig_kernel_coredump(signr)) {
2348 			if (print_fatal_signals)
2349 				print_fatal_signal(info->si_signo);
2350 			/*
2351 			 * If it was able to dump core, this kills all
2352 			 * other threads in the group and synchronizes with
2353 			 * their demise.  If we lost the race with another
2354 			 * thread getting here, it set group_exit_code
2355 			 * first and our do_group_exit call below will use
2356 			 * that value and ignore the one we pass it.
2357 			 */
2358 			do_coredump(info);
2359 		}
2360 
2361 		/*
2362 		 * Death signals, no core dump.
2363 		 */
2364 		do_group_exit(info->si_signo);
2365 		/* NOTREACHED */
2366 	}
2367 	spin_unlock_irq(&sighand->siglock);
2368 	return signr;
2369 }
2370 
2371 /**
2372  * signal_delivered -
2373  * @sig:		number of signal being delivered
2374  * @info:		siginfo_t of signal being delivered
2375  * @ka:			sigaction setting that chose the handler
2376  * @regs:		user register state
2377  * @stepping:		nonzero if debugger single-step or block-step in use
2378  *
2379  * This function should be called when a signal has succesfully been
2380  * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask
2381  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2382  * is set in @ka->sa.sa_flags.  Tracing is notified.
2383  */
2384 void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka,
2385 			struct pt_regs *regs, int stepping)
2386 {
2387 	sigset_t blocked;
2388 
2389 	/* A signal was successfully delivered, and the
2390 	   saved sigmask was stored on the signal frame,
2391 	   and will be restored by sigreturn.  So we can
2392 	   simply clear the restore sigmask flag.  */
2393 	clear_restore_sigmask();
2394 
2395 	sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2396 	if (!(ka->sa.sa_flags & SA_NODEFER))
2397 		sigaddset(&blocked, sig);
2398 	set_current_blocked(&blocked);
2399 	tracehook_signal_handler(sig, info, ka, regs, stepping);
2400 }
2401 
2402 /*
2403  * It could be that complete_signal() picked us to notify about the
2404  * group-wide signal. Other threads should be notified now to take
2405  * the shared signals in @which since we will not.
2406  */
2407 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2408 {
2409 	sigset_t retarget;
2410 	struct task_struct *t;
2411 
2412 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2413 	if (sigisemptyset(&retarget))
2414 		return;
2415 
2416 	t = tsk;
2417 	while_each_thread(tsk, t) {
2418 		if (t->flags & PF_EXITING)
2419 			continue;
2420 
2421 		if (!has_pending_signals(&retarget, &t->blocked))
2422 			continue;
2423 		/* Remove the signals this thread can handle. */
2424 		sigandsets(&retarget, &retarget, &t->blocked);
2425 
2426 		if (!signal_pending(t))
2427 			signal_wake_up(t, 0);
2428 
2429 		if (sigisemptyset(&retarget))
2430 			break;
2431 	}
2432 }
2433 
2434 void exit_signals(struct task_struct *tsk)
2435 {
2436 	int group_stop = 0;
2437 	sigset_t unblocked;
2438 
2439 	/*
2440 	 * @tsk is about to have PF_EXITING set - lock out users which
2441 	 * expect stable threadgroup.
2442 	 */
2443 	threadgroup_change_begin(tsk);
2444 
2445 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2446 		tsk->flags |= PF_EXITING;
2447 		threadgroup_change_end(tsk);
2448 		return;
2449 	}
2450 
2451 	spin_lock_irq(&tsk->sighand->siglock);
2452 	/*
2453 	 * From now this task is not visible for group-wide signals,
2454 	 * see wants_signal(), do_signal_stop().
2455 	 */
2456 	tsk->flags |= PF_EXITING;
2457 
2458 	threadgroup_change_end(tsk);
2459 
2460 	if (!signal_pending(tsk))
2461 		goto out;
2462 
2463 	unblocked = tsk->blocked;
2464 	signotset(&unblocked);
2465 	retarget_shared_pending(tsk, &unblocked);
2466 
2467 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2468 	    task_participate_group_stop(tsk))
2469 		group_stop = CLD_STOPPED;
2470 out:
2471 	spin_unlock_irq(&tsk->sighand->siglock);
2472 
2473 	/*
2474 	 * If group stop has completed, deliver the notification.  This
2475 	 * should always go to the real parent of the group leader.
2476 	 */
2477 	if (unlikely(group_stop)) {
2478 		read_lock(&tasklist_lock);
2479 		do_notify_parent_cldstop(tsk, false, group_stop);
2480 		read_unlock(&tasklist_lock);
2481 	}
2482 }
2483 
2484 EXPORT_SYMBOL(recalc_sigpending);
2485 EXPORT_SYMBOL_GPL(dequeue_signal);
2486 EXPORT_SYMBOL(flush_signals);
2487 EXPORT_SYMBOL(force_sig);
2488 EXPORT_SYMBOL(send_sig);
2489 EXPORT_SYMBOL(send_sig_info);
2490 EXPORT_SYMBOL(sigprocmask);
2491 EXPORT_SYMBOL(block_all_signals);
2492 EXPORT_SYMBOL(unblock_all_signals);
2493 
2494 
2495 /*
2496  * System call entry points.
2497  */
2498 
2499 /**
2500  *  sys_restart_syscall - restart a system call
2501  */
2502 SYSCALL_DEFINE0(restart_syscall)
2503 {
2504 	struct restart_block *restart = &current_thread_info()->restart_block;
2505 	return restart->fn(restart);
2506 }
2507 
2508 long do_no_restart_syscall(struct restart_block *param)
2509 {
2510 	return -EINTR;
2511 }
2512 
2513 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2514 {
2515 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2516 		sigset_t newblocked;
2517 		/* A set of now blocked but previously unblocked signals. */
2518 		sigandnsets(&newblocked, newset, &current->blocked);
2519 		retarget_shared_pending(tsk, &newblocked);
2520 	}
2521 	tsk->blocked = *newset;
2522 	recalc_sigpending();
2523 }
2524 
2525 /**
2526  * set_current_blocked - change current->blocked mask
2527  * @newset: new mask
2528  *
2529  * It is wrong to change ->blocked directly, this helper should be used
2530  * to ensure the process can't miss a shared signal we are going to block.
2531  */
2532 void set_current_blocked(sigset_t *newset)
2533 {
2534 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2535 	__set_current_blocked(newset);
2536 }
2537 
2538 void __set_current_blocked(const sigset_t *newset)
2539 {
2540 	struct task_struct *tsk = current;
2541 
2542 	spin_lock_irq(&tsk->sighand->siglock);
2543 	__set_task_blocked(tsk, newset);
2544 	spin_unlock_irq(&tsk->sighand->siglock);
2545 }
2546 
2547 /*
2548  * This is also useful for kernel threads that want to temporarily
2549  * (or permanently) block certain signals.
2550  *
2551  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2552  * interface happily blocks "unblockable" signals like SIGKILL
2553  * and friends.
2554  */
2555 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2556 {
2557 	struct task_struct *tsk = current;
2558 	sigset_t newset;
2559 
2560 	/* Lockless, only current can change ->blocked, never from irq */
2561 	if (oldset)
2562 		*oldset = tsk->blocked;
2563 
2564 	switch (how) {
2565 	case SIG_BLOCK:
2566 		sigorsets(&newset, &tsk->blocked, set);
2567 		break;
2568 	case SIG_UNBLOCK:
2569 		sigandnsets(&newset, &tsk->blocked, set);
2570 		break;
2571 	case SIG_SETMASK:
2572 		newset = *set;
2573 		break;
2574 	default:
2575 		return -EINVAL;
2576 	}
2577 
2578 	__set_current_blocked(&newset);
2579 	return 0;
2580 }
2581 
2582 /**
2583  *  sys_rt_sigprocmask - change the list of currently blocked signals
2584  *  @how: whether to add, remove, or set signals
2585  *  @nset: stores pending signals
2586  *  @oset: previous value of signal mask if non-null
2587  *  @sigsetsize: size of sigset_t type
2588  */
2589 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2590 		sigset_t __user *, oset, size_t, sigsetsize)
2591 {
2592 	sigset_t old_set, new_set;
2593 	int error;
2594 
2595 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2596 	if (sigsetsize != sizeof(sigset_t))
2597 		return -EINVAL;
2598 
2599 	old_set = current->blocked;
2600 
2601 	if (nset) {
2602 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2603 			return -EFAULT;
2604 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2605 
2606 		error = sigprocmask(how, &new_set, NULL);
2607 		if (error)
2608 			return error;
2609 	}
2610 
2611 	if (oset) {
2612 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2613 			return -EFAULT;
2614 	}
2615 
2616 	return 0;
2617 }
2618 
2619 long do_sigpending(void __user *set, unsigned long sigsetsize)
2620 {
2621 	long error = -EINVAL;
2622 	sigset_t pending;
2623 
2624 	if (sigsetsize > sizeof(sigset_t))
2625 		goto out;
2626 
2627 	spin_lock_irq(&current->sighand->siglock);
2628 	sigorsets(&pending, &current->pending.signal,
2629 		  &current->signal->shared_pending.signal);
2630 	spin_unlock_irq(&current->sighand->siglock);
2631 
2632 	/* Outside the lock because only this thread touches it.  */
2633 	sigandsets(&pending, &current->blocked, &pending);
2634 
2635 	error = -EFAULT;
2636 	if (!copy_to_user(set, &pending, sigsetsize))
2637 		error = 0;
2638 
2639 out:
2640 	return error;
2641 }
2642 
2643 /**
2644  *  sys_rt_sigpending - examine a pending signal that has been raised
2645  *			while blocked
2646  *  @set: stores pending signals
2647  *  @sigsetsize: size of sigset_t type or larger
2648  */
2649 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2650 {
2651 	return do_sigpending(set, sigsetsize);
2652 }
2653 
2654 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2655 
2656 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2657 {
2658 	int err;
2659 
2660 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2661 		return -EFAULT;
2662 	if (from->si_code < 0)
2663 		return __copy_to_user(to, from, sizeof(siginfo_t))
2664 			? -EFAULT : 0;
2665 	/*
2666 	 * If you change siginfo_t structure, please be sure
2667 	 * this code is fixed accordingly.
2668 	 * Please remember to update the signalfd_copyinfo() function
2669 	 * inside fs/signalfd.c too, in case siginfo_t changes.
2670 	 * It should never copy any pad contained in the structure
2671 	 * to avoid security leaks, but must copy the generic
2672 	 * 3 ints plus the relevant union member.
2673 	 */
2674 	err = __put_user(from->si_signo, &to->si_signo);
2675 	err |= __put_user(from->si_errno, &to->si_errno);
2676 	err |= __put_user((short)from->si_code, &to->si_code);
2677 	switch (from->si_code & __SI_MASK) {
2678 	case __SI_KILL:
2679 		err |= __put_user(from->si_pid, &to->si_pid);
2680 		err |= __put_user(from->si_uid, &to->si_uid);
2681 		break;
2682 	case __SI_TIMER:
2683 		 err |= __put_user(from->si_tid, &to->si_tid);
2684 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2685 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2686 		break;
2687 	case __SI_POLL:
2688 		err |= __put_user(from->si_band, &to->si_band);
2689 		err |= __put_user(from->si_fd, &to->si_fd);
2690 		break;
2691 	case __SI_FAULT:
2692 		err |= __put_user(from->si_addr, &to->si_addr);
2693 #ifdef __ARCH_SI_TRAPNO
2694 		err |= __put_user(from->si_trapno, &to->si_trapno);
2695 #endif
2696 #ifdef BUS_MCEERR_AO
2697 		/*
2698 		 * Other callers might not initialize the si_lsb field,
2699 		 * so check explicitly for the right codes here.
2700 		 */
2701 		if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2702 			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2703 #endif
2704 		break;
2705 	case __SI_CHLD:
2706 		err |= __put_user(from->si_pid, &to->si_pid);
2707 		err |= __put_user(from->si_uid, &to->si_uid);
2708 		err |= __put_user(from->si_status, &to->si_status);
2709 		err |= __put_user(from->si_utime, &to->si_utime);
2710 		err |= __put_user(from->si_stime, &to->si_stime);
2711 		break;
2712 	case __SI_RT: /* This is not generated by the kernel as of now. */
2713 	case __SI_MESGQ: /* But this is */
2714 		err |= __put_user(from->si_pid, &to->si_pid);
2715 		err |= __put_user(from->si_uid, &to->si_uid);
2716 		err |= __put_user(from->si_ptr, &to->si_ptr);
2717 		break;
2718 #ifdef __ARCH_SIGSYS
2719 	case __SI_SYS:
2720 		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2721 		err |= __put_user(from->si_syscall, &to->si_syscall);
2722 		err |= __put_user(from->si_arch, &to->si_arch);
2723 		break;
2724 #endif
2725 	default: /* this is just in case for now ... */
2726 		err |= __put_user(from->si_pid, &to->si_pid);
2727 		err |= __put_user(from->si_uid, &to->si_uid);
2728 		break;
2729 	}
2730 	return err;
2731 }
2732 
2733 #endif
2734 
2735 /**
2736  *  do_sigtimedwait - wait for queued signals specified in @which
2737  *  @which: queued signals to wait for
2738  *  @info: if non-null, the signal's siginfo is returned here
2739  *  @ts: upper bound on process time suspension
2740  */
2741 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2742 			const struct timespec *ts)
2743 {
2744 	struct task_struct *tsk = current;
2745 	long timeout = MAX_SCHEDULE_TIMEOUT;
2746 	sigset_t mask = *which;
2747 	int sig;
2748 
2749 	if (ts) {
2750 		if (!timespec_valid(ts))
2751 			return -EINVAL;
2752 		timeout = timespec_to_jiffies(ts);
2753 		/*
2754 		 * We can be close to the next tick, add another one
2755 		 * to ensure we will wait at least the time asked for.
2756 		 */
2757 		if (ts->tv_sec || ts->tv_nsec)
2758 			timeout++;
2759 	}
2760 
2761 	/*
2762 	 * Invert the set of allowed signals to get those we want to block.
2763 	 */
2764 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2765 	signotset(&mask);
2766 
2767 	spin_lock_irq(&tsk->sighand->siglock);
2768 	sig = dequeue_signal(tsk, &mask, info);
2769 	if (!sig && timeout) {
2770 		/*
2771 		 * None ready, temporarily unblock those we're interested
2772 		 * while we are sleeping in so that we'll be awakened when
2773 		 * they arrive. Unblocking is always fine, we can avoid
2774 		 * set_current_blocked().
2775 		 */
2776 		tsk->real_blocked = tsk->blocked;
2777 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2778 		recalc_sigpending();
2779 		spin_unlock_irq(&tsk->sighand->siglock);
2780 
2781 		timeout = schedule_timeout_interruptible(timeout);
2782 
2783 		spin_lock_irq(&tsk->sighand->siglock);
2784 		__set_task_blocked(tsk, &tsk->real_blocked);
2785 		siginitset(&tsk->real_blocked, 0);
2786 		sig = dequeue_signal(tsk, &mask, info);
2787 	}
2788 	spin_unlock_irq(&tsk->sighand->siglock);
2789 
2790 	if (sig)
2791 		return sig;
2792 	return timeout ? -EINTR : -EAGAIN;
2793 }
2794 
2795 /**
2796  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2797  *			in @uthese
2798  *  @uthese: queued signals to wait for
2799  *  @uinfo: if non-null, the signal's siginfo is returned here
2800  *  @uts: upper bound on process time suspension
2801  *  @sigsetsize: size of sigset_t type
2802  */
2803 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2804 		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2805 		size_t, sigsetsize)
2806 {
2807 	sigset_t these;
2808 	struct timespec ts;
2809 	siginfo_t info;
2810 	int ret;
2811 
2812 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2813 	if (sigsetsize != sizeof(sigset_t))
2814 		return -EINVAL;
2815 
2816 	if (copy_from_user(&these, uthese, sizeof(these)))
2817 		return -EFAULT;
2818 
2819 	if (uts) {
2820 		if (copy_from_user(&ts, uts, sizeof(ts)))
2821 			return -EFAULT;
2822 	}
2823 
2824 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2825 
2826 	if (ret > 0 && uinfo) {
2827 		if (copy_siginfo_to_user(uinfo, &info))
2828 			ret = -EFAULT;
2829 	}
2830 
2831 	return ret;
2832 }
2833 
2834 /**
2835  *  sys_kill - send a signal to a process
2836  *  @pid: the PID of the process
2837  *  @sig: signal to be sent
2838  */
2839 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2840 {
2841 	struct siginfo info;
2842 
2843 	info.si_signo = sig;
2844 	info.si_errno = 0;
2845 	info.si_code = SI_USER;
2846 	info.si_pid = task_tgid_vnr(current);
2847 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2848 
2849 	return kill_something_info(sig, &info, pid);
2850 }
2851 
2852 static int
2853 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2854 {
2855 	struct task_struct *p;
2856 	int error = -ESRCH;
2857 
2858 	rcu_read_lock();
2859 	p = find_task_by_vpid(pid);
2860 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2861 		error = check_kill_permission(sig, info, p);
2862 		/*
2863 		 * The null signal is a permissions and process existence
2864 		 * probe.  No signal is actually delivered.
2865 		 */
2866 		if (!error && sig) {
2867 			error = do_send_sig_info(sig, info, p, false);
2868 			/*
2869 			 * If lock_task_sighand() failed we pretend the task
2870 			 * dies after receiving the signal. The window is tiny,
2871 			 * and the signal is private anyway.
2872 			 */
2873 			if (unlikely(error == -ESRCH))
2874 				error = 0;
2875 		}
2876 	}
2877 	rcu_read_unlock();
2878 
2879 	return error;
2880 }
2881 
2882 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2883 {
2884 	struct siginfo info;
2885 
2886 	info.si_signo = sig;
2887 	info.si_errno = 0;
2888 	info.si_code = SI_TKILL;
2889 	info.si_pid = task_tgid_vnr(current);
2890 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2891 
2892 	return do_send_specific(tgid, pid, sig, &info);
2893 }
2894 
2895 /**
2896  *  sys_tgkill - send signal to one specific thread
2897  *  @tgid: the thread group ID of the thread
2898  *  @pid: the PID of the thread
2899  *  @sig: signal to be sent
2900  *
2901  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2902  *  exists but it's not belonging to the target process anymore. This
2903  *  method solves the problem of threads exiting and PIDs getting reused.
2904  */
2905 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2906 {
2907 	/* This is only valid for single tasks */
2908 	if (pid <= 0 || tgid <= 0)
2909 		return -EINVAL;
2910 
2911 	return do_tkill(tgid, pid, sig);
2912 }
2913 
2914 /**
2915  *  sys_tkill - send signal to one specific task
2916  *  @pid: the PID of the task
2917  *  @sig: signal to be sent
2918  *
2919  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2920  */
2921 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2922 {
2923 	/* This is only valid for single tasks */
2924 	if (pid <= 0)
2925 		return -EINVAL;
2926 
2927 	return do_tkill(0, pid, sig);
2928 }
2929 
2930 /**
2931  *  sys_rt_sigqueueinfo - send signal information to a signal
2932  *  @pid: the PID of the thread
2933  *  @sig: signal to be sent
2934  *  @uinfo: signal info to be sent
2935  */
2936 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2937 		siginfo_t __user *, uinfo)
2938 {
2939 	siginfo_t info;
2940 
2941 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2942 		return -EFAULT;
2943 
2944 	/* Not even root can pretend to send signals from the kernel.
2945 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2946 	 */
2947 	if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2948 		/* We used to allow any < 0 si_code */
2949 		WARN_ON_ONCE(info.si_code < 0);
2950 		return -EPERM;
2951 	}
2952 	info.si_signo = sig;
2953 
2954 	/* POSIX.1b doesn't mention process groups.  */
2955 	return kill_proc_info(sig, &info, pid);
2956 }
2957 
2958 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2959 {
2960 	/* This is only valid for single tasks */
2961 	if (pid <= 0 || tgid <= 0)
2962 		return -EINVAL;
2963 
2964 	/* Not even root can pretend to send signals from the kernel.
2965 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2966 	 */
2967 	if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2968 		/* We used to allow any < 0 si_code */
2969 		WARN_ON_ONCE(info->si_code < 0);
2970 		return -EPERM;
2971 	}
2972 	info->si_signo = sig;
2973 
2974 	return do_send_specific(tgid, pid, sig, info);
2975 }
2976 
2977 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2978 		siginfo_t __user *, uinfo)
2979 {
2980 	siginfo_t info;
2981 
2982 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2983 		return -EFAULT;
2984 
2985 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2986 }
2987 
2988 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2989 {
2990 	struct task_struct *t = current;
2991 	struct k_sigaction *k;
2992 	sigset_t mask;
2993 
2994 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2995 		return -EINVAL;
2996 
2997 	k = &t->sighand->action[sig-1];
2998 
2999 	spin_lock_irq(&current->sighand->siglock);
3000 	if (oact)
3001 		*oact = *k;
3002 
3003 	if (act) {
3004 		sigdelsetmask(&act->sa.sa_mask,
3005 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3006 		*k = *act;
3007 		/*
3008 		 * POSIX 3.3.1.3:
3009 		 *  "Setting a signal action to SIG_IGN for a signal that is
3010 		 *   pending shall cause the pending signal to be discarded,
3011 		 *   whether or not it is blocked."
3012 		 *
3013 		 *  "Setting a signal action to SIG_DFL for a signal that is
3014 		 *   pending and whose default action is to ignore the signal
3015 		 *   (for example, SIGCHLD), shall cause the pending signal to
3016 		 *   be discarded, whether or not it is blocked"
3017 		 */
3018 		if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3019 			sigemptyset(&mask);
3020 			sigaddset(&mask, sig);
3021 			rm_from_queue_full(&mask, &t->signal->shared_pending);
3022 			do {
3023 				rm_from_queue_full(&mask, &t->pending);
3024 				t = next_thread(t);
3025 			} while (t != current);
3026 		}
3027 	}
3028 
3029 	spin_unlock_irq(&current->sighand->siglock);
3030 	return 0;
3031 }
3032 
3033 int
3034 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3035 {
3036 	stack_t oss;
3037 	int error;
3038 
3039 	oss.ss_sp = (void __user *) current->sas_ss_sp;
3040 	oss.ss_size = current->sas_ss_size;
3041 	oss.ss_flags = sas_ss_flags(sp);
3042 
3043 	if (uss) {
3044 		void __user *ss_sp;
3045 		size_t ss_size;
3046 		int ss_flags;
3047 
3048 		error = -EFAULT;
3049 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3050 			goto out;
3051 		error = __get_user(ss_sp, &uss->ss_sp) |
3052 			__get_user(ss_flags, &uss->ss_flags) |
3053 			__get_user(ss_size, &uss->ss_size);
3054 		if (error)
3055 			goto out;
3056 
3057 		error = -EPERM;
3058 		if (on_sig_stack(sp))
3059 			goto out;
3060 
3061 		error = -EINVAL;
3062 		/*
3063 		 * Note - this code used to test ss_flags incorrectly:
3064 		 *  	  old code may have been written using ss_flags==0
3065 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
3066 		 *	  way that worked) - this fix preserves that older
3067 		 *	  mechanism.
3068 		 */
3069 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3070 			goto out;
3071 
3072 		if (ss_flags == SS_DISABLE) {
3073 			ss_size = 0;
3074 			ss_sp = NULL;
3075 		} else {
3076 			error = -ENOMEM;
3077 			if (ss_size < MINSIGSTKSZ)
3078 				goto out;
3079 		}
3080 
3081 		current->sas_ss_sp = (unsigned long) ss_sp;
3082 		current->sas_ss_size = ss_size;
3083 	}
3084 
3085 	error = 0;
3086 	if (uoss) {
3087 		error = -EFAULT;
3088 		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3089 			goto out;
3090 		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3091 			__put_user(oss.ss_size, &uoss->ss_size) |
3092 			__put_user(oss.ss_flags, &uoss->ss_flags);
3093 	}
3094 
3095 out:
3096 	return error;
3097 }
3098 #ifdef CONFIG_GENERIC_SIGALTSTACK
3099 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3100 {
3101 	return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3102 }
3103 #endif
3104 
3105 int restore_altstack(const stack_t __user *uss)
3106 {
3107 	int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3108 	/* squash all but EFAULT for now */
3109 	return err == -EFAULT ? err : 0;
3110 }
3111 
3112 int __save_altstack(stack_t __user *uss, unsigned long sp)
3113 {
3114 	struct task_struct *t = current;
3115 	return  __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3116 		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
3117 		__put_user(t->sas_ss_size, &uss->ss_size);
3118 }
3119 
3120 #ifdef CONFIG_COMPAT
3121 #ifdef CONFIG_GENERIC_SIGALTSTACK
3122 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3123 			const compat_stack_t __user *, uss_ptr,
3124 			compat_stack_t __user *, uoss_ptr)
3125 {
3126 	stack_t uss, uoss;
3127 	int ret;
3128 	mm_segment_t seg;
3129 
3130 	if (uss_ptr) {
3131 		compat_stack_t uss32;
3132 
3133 		memset(&uss, 0, sizeof(stack_t));
3134 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3135 			return -EFAULT;
3136 		uss.ss_sp = compat_ptr(uss32.ss_sp);
3137 		uss.ss_flags = uss32.ss_flags;
3138 		uss.ss_size = uss32.ss_size;
3139 	}
3140 	seg = get_fs();
3141 	set_fs(KERNEL_DS);
3142 	ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3143 			     (stack_t __force __user *) &uoss,
3144 			     compat_user_stack_pointer());
3145 	set_fs(seg);
3146 	if (ret >= 0 && uoss_ptr)  {
3147 		if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3148 		    __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3149 		    __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3150 		    __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3151 			ret = -EFAULT;
3152 	}
3153 	return ret;
3154 }
3155 
3156 int compat_restore_altstack(const compat_stack_t __user *uss)
3157 {
3158 	int err = compat_sys_sigaltstack(uss, NULL);
3159 	/* squash all but -EFAULT for now */
3160 	return err == -EFAULT ? err : 0;
3161 }
3162 
3163 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3164 {
3165 	struct task_struct *t = current;
3166 	return  __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3167 		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
3168 		__put_user(t->sas_ss_size, &uss->ss_size);
3169 }
3170 #endif
3171 #endif
3172 
3173 #ifdef __ARCH_WANT_SYS_SIGPENDING
3174 
3175 /**
3176  *  sys_sigpending - examine pending signals
3177  *  @set: where mask of pending signal is returned
3178  */
3179 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3180 {
3181 	return do_sigpending(set, sizeof(*set));
3182 }
3183 
3184 #endif
3185 
3186 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3187 /**
3188  *  sys_sigprocmask - examine and change blocked signals
3189  *  @how: whether to add, remove, or set signals
3190  *  @nset: signals to add or remove (if non-null)
3191  *  @oset: previous value of signal mask if non-null
3192  *
3193  * Some platforms have their own version with special arguments;
3194  * others support only sys_rt_sigprocmask.
3195  */
3196 
3197 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3198 		old_sigset_t __user *, oset)
3199 {
3200 	old_sigset_t old_set, new_set;
3201 	sigset_t new_blocked;
3202 
3203 	old_set = current->blocked.sig[0];
3204 
3205 	if (nset) {
3206 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3207 			return -EFAULT;
3208 
3209 		new_blocked = current->blocked;
3210 
3211 		switch (how) {
3212 		case SIG_BLOCK:
3213 			sigaddsetmask(&new_blocked, new_set);
3214 			break;
3215 		case SIG_UNBLOCK:
3216 			sigdelsetmask(&new_blocked, new_set);
3217 			break;
3218 		case SIG_SETMASK:
3219 			new_blocked.sig[0] = new_set;
3220 			break;
3221 		default:
3222 			return -EINVAL;
3223 		}
3224 
3225 		set_current_blocked(&new_blocked);
3226 	}
3227 
3228 	if (oset) {
3229 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3230 			return -EFAULT;
3231 	}
3232 
3233 	return 0;
3234 }
3235 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3236 
3237 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
3238 /**
3239  *  sys_rt_sigaction - alter an action taken by a process
3240  *  @sig: signal to be sent
3241  *  @act: new sigaction
3242  *  @oact: used to save the previous sigaction
3243  *  @sigsetsize: size of sigset_t type
3244  */
3245 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3246 		const struct sigaction __user *, act,
3247 		struct sigaction __user *, oact,
3248 		size_t, sigsetsize)
3249 {
3250 	struct k_sigaction new_sa, old_sa;
3251 	int ret = -EINVAL;
3252 
3253 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3254 	if (sigsetsize != sizeof(sigset_t))
3255 		goto out;
3256 
3257 	if (act) {
3258 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3259 			return -EFAULT;
3260 	}
3261 
3262 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3263 
3264 	if (!ret && oact) {
3265 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3266 			return -EFAULT;
3267 	}
3268 out:
3269 	return ret;
3270 }
3271 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
3272 
3273 #ifdef __ARCH_WANT_SYS_SGETMASK
3274 
3275 /*
3276  * For backwards compatibility.  Functionality superseded by sigprocmask.
3277  */
3278 SYSCALL_DEFINE0(sgetmask)
3279 {
3280 	/* SMP safe */
3281 	return current->blocked.sig[0];
3282 }
3283 
3284 SYSCALL_DEFINE1(ssetmask, int, newmask)
3285 {
3286 	int old = current->blocked.sig[0];
3287 	sigset_t newset;
3288 
3289 	siginitset(&newset, newmask);
3290 	set_current_blocked(&newset);
3291 
3292 	return old;
3293 }
3294 #endif /* __ARCH_WANT_SGETMASK */
3295 
3296 #ifdef __ARCH_WANT_SYS_SIGNAL
3297 /*
3298  * For backwards compatibility.  Functionality superseded by sigaction.
3299  */
3300 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3301 {
3302 	struct k_sigaction new_sa, old_sa;
3303 	int ret;
3304 
3305 	new_sa.sa.sa_handler = handler;
3306 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3307 	sigemptyset(&new_sa.sa.sa_mask);
3308 
3309 	ret = do_sigaction(sig, &new_sa, &old_sa);
3310 
3311 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3312 }
3313 #endif /* __ARCH_WANT_SYS_SIGNAL */
3314 
3315 #ifdef __ARCH_WANT_SYS_PAUSE
3316 
3317 SYSCALL_DEFINE0(pause)
3318 {
3319 	while (!signal_pending(current)) {
3320 		current->state = TASK_INTERRUPTIBLE;
3321 		schedule();
3322 	}
3323 	return -ERESTARTNOHAND;
3324 }
3325 
3326 #endif
3327 
3328 int sigsuspend(sigset_t *set)
3329 {
3330 	current->saved_sigmask = current->blocked;
3331 	set_current_blocked(set);
3332 
3333 	current->state = TASK_INTERRUPTIBLE;
3334 	schedule();
3335 	set_restore_sigmask();
3336 	return -ERESTARTNOHAND;
3337 }
3338 
3339 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
3340 /**
3341  *  sys_rt_sigsuspend - replace the signal mask for a value with the
3342  *	@unewset value until a signal is received
3343  *  @unewset: new signal mask value
3344  *  @sigsetsize: size of sigset_t type
3345  */
3346 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3347 {
3348 	sigset_t newset;
3349 
3350 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3351 	if (sigsetsize != sizeof(sigset_t))
3352 		return -EINVAL;
3353 
3354 	if (copy_from_user(&newset, unewset, sizeof(newset)))
3355 		return -EFAULT;
3356 	return sigsuspend(&newset);
3357 }
3358 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
3359 
3360 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3361 {
3362 	return NULL;
3363 }
3364 
3365 void __init signals_init(void)
3366 {
3367 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3368 }
3369 
3370 #ifdef CONFIG_KGDB_KDB
3371 #include <linux/kdb.h>
3372 /*
3373  * kdb_send_sig_info - Allows kdb to send signals without exposing
3374  * signal internals.  This function checks if the required locks are
3375  * available before calling the main signal code, to avoid kdb
3376  * deadlocks.
3377  */
3378 void
3379 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3380 {
3381 	static struct task_struct *kdb_prev_t;
3382 	int sig, new_t;
3383 	if (!spin_trylock(&t->sighand->siglock)) {
3384 		kdb_printf("Can't do kill command now.\n"
3385 			   "The sigmask lock is held somewhere else in "
3386 			   "kernel, try again later\n");
3387 		return;
3388 	}
3389 	spin_unlock(&t->sighand->siglock);
3390 	new_t = kdb_prev_t != t;
3391 	kdb_prev_t = t;
3392 	if (t->state != TASK_RUNNING && new_t) {
3393 		kdb_printf("Process is not RUNNING, sending a signal from "
3394 			   "kdb risks deadlock\n"
3395 			   "on the run queue locks. "
3396 			   "The signal has _not_ been sent.\n"
3397 			   "Reissue the kill command if you want to risk "
3398 			   "the deadlock.\n");
3399 		return;
3400 	}
3401 	sig = info->si_signo;
3402 	if (send_sig_info(sig, info, t))
3403 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3404 			   sig, t->pid);
3405 	else
3406 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3407 }
3408 #endif	/* CONFIG_KGDB_KDB */
3409