xref: /linux/kernel/signal.c (revision ed3174d93c342b8b2eeba6bbd124707d55304a7b)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/capability.h>
26 #include <linux/freezer.h>
27 #include <linux/pid_namespace.h>
28 #include <linux/nsproxy.h>
29 
30 #include <asm/param.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include <asm/siginfo.h>
34 #include "audit.h"	/* audit_signal_info() */
35 
36 /*
37  * SLAB caches for signal bits.
38  */
39 
40 static struct kmem_cache *sigqueue_cachep;
41 
42 
43 static int sig_ignored(struct task_struct *t, int sig)
44 {
45 	void __user * handler;
46 
47 	/*
48 	 * Tracers always want to know about signals..
49 	 */
50 	if (t->ptrace & PT_PTRACED)
51 		return 0;
52 
53 	/*
54 	 * Blocked signals are never ignored, since the
55 	 * signal handler may change by the time it is
56 	 * unblocked.
57 	 */
58 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
59 		return 0;
60 
61 	/* Is it explicitly or implicitly ignored? */
62 	handler = t->sighand->action[sig-1].sa.sa_handler;
63 	return   handler == SIG_IGN ||
64 		(handler == SIG_DFL && sig_kernel_ignore(sig));
65 }
66 
67 /*
68  * Re-calculate pending state from the set of locally pending
69  * signals, globally pending signals, and blocked signals.
70  */
71 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
72 {
73 	unsigned long ready;
74 	long i;
75 
76 	switch (_NSIG_WORDS) {
77 	default:
78 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
79 			ready |= signal->sig[i] &~ blocked->sig[i];
80 		break;
81 
82 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
83 		ready |= signal->sig[2] &~ blocked->sig[2];
84 		ready |= signal->sig[1] &~ blocked->sig[1];
85 		ready |= signal->sig[0] &~ blocked->sig[0];
86 		break;
87 
88 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
89 		ready |= signal->sig[0] &~ blocked->sig[0];
90 		break;
91 
92 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
93 	}
94 	return ready !=	0;
95 }
96 
97 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
98 
99 static int recalc_sigpending_tsk(struct task_struct *t)
100 {
101 	if (t->signal->group_stop_count > 0 ||
102 	    PENDING(&t->pending, &t->blocked) ||
103 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
104 		set_tsk_thread_flag(t, TIF_SIGPENDING);
105 		return 1;
106 	}
107 	/*
108 	 * We must never clear the flag in another thread, or in current
109 	 * when it's possible the current syscall is returning -ERESTART*.
110 	 * So we don't clear it here, and only callers who know they should do.
111 	 */
112 	return 0;
113 }
114 
115 /*
116  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
117  * This is superfluous when called on current, the wakeup is a harmless no-op.
118  */
119 void recalc_sigpending_and_wake(struct task_struct *t)
120 {
121 	if (recalc_sigpending_tsk(t))
122 		signal_wake_up(t, 0);
123 }
124 
125 void recalc_sigpending(void)
126 {
127 	if (!recalc_sigpending_tsk(current) && !freezing(current))
128 		clear_thread_flag(TIF_SIGPENDING);
129 
130 }
131 
132 /* Given the mask, find the first available signal that should be serviced. */
133 
134 int next_signal(struct sigpending *pending, sigset_t *mask)
135 {
136 	unsigned long i, *s, *m, x;
137 	int sig = 0;
138 
139 	s = pending->signal.sig;
140 	m = mask->sig;
141 	switch (_NSIG_WORDS) {
142 	default:
143 		for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
144 			if ((x = *s &~ *m) != 0) {
145 				sig = ffz(~x) + i*_NSIG_BPW + 1;
146 				break;
147 			}
148 		break;
149 
150 	case 2: if ((x = s[0] &~ m[0]) != 0)
151 			sig = 1;
152 		else if ((x = s[1] &~ m[1]) != 0)
153 			sig = _NSIG_BPW + 1;
154 		else
155 			break;
156 		sig += ffz(~x);
157 		break;
158 
159 	case 1: if ((x = *s &~ *m) != 0)
160 			sig = ffz(~x) + 1;
161 		break;
162 	}
163 
164 	return sig;
165 }
166 
167 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
168 					 int override_rlimit)
169 {
170 	struct sigqueue *q = NULL;
171 	struct user_struct *user;
172 
173 	/*
174 	 * In order to avoid problems with "switch_user()", we want to make
175 	 * sure that the compiler doesn't re-load "t->user"
176 	 */
177 	user = t->user;
178 	barrier();
179 	atomic_inc(&user->sigpending);
180 	if (override_rlimit ||
181 	    atomic_read(&user->sigpending) <=
182 			t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
183 		q = kmem_cache_alloc(sigqueue_cachep, flags);
184 	if (unlikely(q == NULL)) {
185 		atomic_dec(&user->sigpending);
186 	} else {
187 		INIT_LIST_HEAD(&q->list);
188 		q->flags = 0;
189 		q->user = get_uid(user);
190 	}
191 	return(q);
192 }
193 
194 static void __sigqueue_free(struct sigqueue *q)
195 {
196 	if (q->flags & SIGQUEUE_PREALLOC)
197 		return;
198 	atomic_dec(&q->user->sigpending);
199 	free_uid(q->user);
200 	kmem_cache_free(sigqueue_cachep, q);
201 }
202 
203 void flush_sigqueue(struct sigpending *queue)
204 {
205 	struct sigqueue *q;
206 
207 	sigemptyset(&queue->signal);
208 	while (!list_empty(&queue->list)) {
209 		q = list_entry(queue->list.next, struct sigqueue , list);
210 		list_del_init(&q->list);
211 		__sigqueue_free(q);
212 	}
213 }
214 
215 /*
216  * Flush all pending signals for a task.
217  */
218 void flush_signals(struct task_struct *t)
219 {
220 	unsigned long flags;
221 
222 	spin_lock_irqsave(&t->sighand->siglock, flags);
223 	clear_tsk_thread_flag(t,TIF_SIGPENDING);
224 	flush_sigqueue(&t->pending);
225 	flush_sigqueue(&t->signal->shared_pending);
226 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
227 }
228 
229 void ignore_signals(struct task_struct *t)
230 {
231 	int i;
232 
233 	for (i = 0; i < _NSIG; ++i)
234 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
235 
236 	flush_signals(t);
237 }
238 
239 /*
240  * Flush all handlers for a task.
241  */
242 
243 void
244 flush_signal_handlers(struct task_struct *t, int force_default)
245 {
246 	int i;
247 	struct k_sigaction *ka = &t->sighand->action[0];
248 	for (i = _NSIG ; i != 0 ; i--) {
249 		if (force_default || ka->sa.sa_handler != SIG_IGN)
250 			ka->sa.sa_handler = SIG_DFL;
251 		ka->sa.sa_flags = 0;
252 		sigemptyset(&ka->sa.sa_mask);
253 		ka++;
254 	}
255 }
256 
257 int unhandled_signal(struct task_struct *tsk, int sig)
258 {
259 	if (is_global_init(tsk))
260 		return 1;
261 	if (tsk->ptrace & PT_PTRACED)
262 		return 0;
263 	return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
264 		(tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
265 }
266 
267 
268 /* Notify the system that a driver wants to block all signals for this
269  * process, and wants to be notified if any signals at all were to be
270  * sent/acted upon.  If the notifier routine returns non-zero, then the
271  * signal will be acted upon after all.  If the notifier routine returns 0,
272  * then then signal will be blocked.  Only one block per process is
273  * allowed.  priv is a pointer to private data that the notifier routine
274  * can use to determine if the signal should be blocked or not.  */
275 
276 void
277 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
278 {
279 	unsigned long flags;
280 
281 	spin_lock_irqsave(&current->sighand->siglock, flags);
282 	current->notifier_mask = mask;
283 	current->notifier_data = priv;
284 	current->notifier = notifier;
285 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
286 }
287 
288 /* Notify the system that blocking has ended. */
289 
290 void
291 unblock_all_signals(void)
292 {
293 	unsigned long flags;
294 
295 	spin_lock_irqsave(&current->sighand->siglock, flags);
296 	current->notifier = NULL;
297 	current->notifier_data = NULL;
298 	recalc_sigpending();
299 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
300 }
301 
302 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
303 {
304 	struct sigqueue *q, *first = NULL;
305 	int still_pending = 0;
306 
307 	if (unlikely(!sigismember(&list->signal, sig)))
308 		return 0;
309 
310 	/*
311 	 * Collect the siginfo appropriate to this signal.  Check if
312 	 * there is another siginfo for the same signal.
313 	*/
314 	list_for_each_entry(q, &list->list, list) {
315 		if (q->info.si_signo == sig) {
316 			if (first) {
317 				still_pending = 1;
318 				break;
319 			}
320 			first = q;
321 		}
322 	}
323 	if (first) {
324 		list_del_init(&first->list);
325 		copy_siginfo(info, &first->info);
326 		__sigqueue_free(first);
327 		if (!still_pending)
328 			sigdelset(&list->signal, sig);
329 	} else {
330 
331 		/* Ok, it wasn't in the queue.  This must be
332 		   a fast-pathed signal or we must have been
333 		   out of queue space.  So zero out the info.
334 		 */
335 		sigdelset(&list->signal, sig);
336 		info->si_signo = sig;
337 		info->si_errno = 0;
338 		info->si_code = 0;
339 		info->si_pid = 0;
340 		info->si_uid = 0;
341 	}
342 	return 1;
343 }
344 
345 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
346 			siginfo_t *info)
347 {
348 	int sig = next_signal(pending, mask);
349 
350 	if (sig) {
351 		if (current->notifier) {
352 			if (sigismember(current->notifier_mask, sig)) {
353 				if (!(current->notifier)(current->notifier_data)) {
354 					clear_thread_flag(TIF_SIGPENDING);
355 					return 0;
356 				}
357 			}
358 		}
359 
360 		if (!collect_signal(sig, pending, info))
361 			sig = 0;
362 	}
363 
364 	return sig;
365 }
366 
367 /*
368  * Dequeue a signal and return the element to the caller, which is
369  * expected to free it.
370  *
371  * All callers have to hold the siglock.
372  */
373 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
374 {
375 	int signr = 0;
376 
377 	/* We only dequeue private signals from ourselves, we don't let
378 	 * signalfd steal them
379 	 */
380 	signr = __dequeue_signal(&tsk->pending, mask, info);
381 	if (!signr) {
382 		signr = __dequeue_signal(&tsk->signal->shared_pending,
383 					 mask, info);
384 		/*
385 		 * itimer signal ?
386 		 *
387 		 * itimers are process shared and we restart periodic
388 		 * itimers in the signal delivery path to prevent DoS
389 		 * attacks in the high resolution timer case. This is
390 		 * compliant with the old way of self restarting
391 		 * itimers, as the SIGALRM is a legacy signal and only
392 		 * queued once. Changing the restart behaviour to
393 		 * restart the timer in the signal dequeue path is
394 		 * reducing the timer noise on heavy loaded !highres
395 		 * systems too.
396 		 */
397 		if (unlikely(signr == SIGALRM)) {
398 			struct hrtimer *tmr = &tsk->signal->real_timer;
399 
400 			if (!hrtimer_is_queued(tmr) &&
401 			    tsk->signal->it_real_incr.tv64 != 0) {
402 				hrtimer_forward(tmr, tmr->base->get_time(),
403 						tsk->signal->it_real_incr);
404 				hrtimer_restart(tmr);
405 			}
406 		}
407 	}
408 	recalc_sigpending();
409 	if (signr && unlikely(sig_kernel_stop(signr))) {
410 		/*
411 		 * Set a marker that we have dequeued a stop signal.  Our
412 		 * caller might release the siglock and then the pending
413 		 * stop signal it is about to process is no longer in the
414 		 * pending bitmasks, but must still be cleared by a SIGCONT
415 		 * (and overruled by a SIGKILL).  So those cases clear this
416 		 * shared flag after we've set it.  Note that this flag may
417 		 * remain set after the signal we return is ignored or
418 		 * handled.  That doesn't matter because its only purpose
419 		 * is to alert stop-signal processing code when another
420 		 * processor has come along and cleared the flag.
421 		 */
422 		if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
423 			tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
424 	}
425 	if (signr &&
426 	     ((info->si_code & __SI_MASK) == __SI_TIMER) &&
427 	     info->si_sys_private){
428 		/*
429 		 * Release the siglock to ensure proper locking order
430 		 * of timer locks outside of siglocks.  Note, we leave
431 		 * irqs disabled here, since the posix-timers code is
432 		 * about to disable them again anyway.
433 		 */
434 		spin_unlock(&tsk->sighand->siglock);
435 		do_schedule_next_timer(info);
436 		spin_lock(&tsk->sighand->siglock);
437 	}
438 	return signr;
439 }
440 
441 /*
442  * Tell a process that it has a new active signal..
443  *
444  * NOTE! we rely on the previous spin_lock to
445  * lock interrupts for us! We can only be called with
446  * "siglock" held, and the local interrupt must
447  * have been disabled when that got acquired!
448  *
449  * No need to set need_resched since signal event passing
450  * goes through ->blocked
451  */
452 void signal_wake_up(struct task_struct *t, int resume)
453 {
454 	unsigned int mask;
455 
456 	set_tsk_thread_flag(t, TIF_SIGPENDING);
457 
458 	/*
459 	 * For SIGKILL, we want to wake it up in the stopped/traced/killable
460 	 * case. We don't check t->state here because there is a race with it
461 	 * executing another processor and just now entering stopped state.
462 	 * By using wake_up_state, we ensure the process will wake up and
463 	 * handle its death signal.
464 	 */
465 	mask = TASK_INTERRUPTIBLE;
466 	if (resume)
467 		mask |= TASK_WAKEKILL;
468 	if (!wake_up_state(t, mask))
469 		kick_process(t);
470 }
471 
472 /*
473  * Remove signals in mask from the pending set and queue.
474  * Returns 1 if any signals were found.
475  *
476  * All callers must be holding the siglock.
477  *
478  * This version takes a sigset mask and looks at all signals,
479  * not just those in the first mask word.
480  */
481 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
482 {
483 	struct sigqueue *q, *n;
484 	sigset_t m;
485 
486 	sigandsets(&m, mask, &s->signal);
487 	if (sigisemptyset(&m))
488 		return 0;
489 
490 	signandsets(&s->signal, &s->signal, mask);
491 	list_for_each_entry_safe(q, n, &s->list, list) {
492 		if (sigismember(mask, q->info.si_signo)) {
493 			list_del_init(&q->list);
494 			__sigqueue_free(q);
495 		}
496 	}
497 	return 1;
498 }
499 /*
500  * Remove signals in mask from the pending set and queue.
501  * Returns 1 if any signals were found.
502  *
503  * All callers must be holding the siglock.
504  */
505 static int rm_from_queue(unsigned long mask, struct sigpending *s)
506 {
507 	struct sigqueue *q, *n;
508 
509 	if (!sigtestsetmask(&s->signal, mask))
510 		return 0;
511 
512 	sigdelsetmask(&s->signal, mask);
513 	list_for_each_entry_safe(q, n, &s->list, list) {
514 		if (q->info.si_signo < SIGRTMIN &&
515 		    (mask & sigmask(q->info.si_signo))) {
516 			list_del_init(&q->list);
517 			__sigqueue_free(q);
518 		}
519 	}
520 	return 1;
521 }
522 
523 /*
524  * Bad permissions for sending the signal
525  */
526 static int check_kill_permission(int sig, struct siginfo *info,
527 				 struct task_struct *t)
528 {
529 	int error = -EINVAL;
530 	if (!valid_signal(sig))
531 		return error;
532 
533 	if (info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) {
534 		error = audit_signal_info(sig, t); /* Let audit system see the signal */
535 		if (error)
536 			return error;
537 		error = -EPERM;
538 		if (((sig != SIGCONT) ||
539 			(task_session_nr(current) != task_session_nr(t)))
540 		    && (current->euid ^ t->suid) && (current->euid ^ t->uid)
541 		    && (current->uid ^ t->suid) && (current->uid ^ t->uid)
542 		    && !capable(CAP_KILL))
543 		return error;
544 	}
545 
546 	return security_task_kill(t, info, sig, 0);
547 }
548 
549 /* forward decl */
550 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
551 
552 /*
553  * Handle magic process-wide effects of stop/continue signals.
554  * Unlike the signal actions, these happen immediately at signal-generation
555  * time regardless of blocking, ignoring, or handling.  This does the
556  * actual continuing for SIGCONT, but not the actual stopping for stop
557  * signals.  The process stop is done as a signal action for SIG_DFL.
558  */
559 static void handle_stop_signal(int sig, struct task_struct *p)
560 {
561 	struct task_struct *t;
562 
563 	if (p->signal->flags & SIGNAL_GROUP_EXIT)
564 		/*
565 		 * The process is in the middle of dying already.
566 		 */
567 		return;
568 
569 	if (sig_kernel_stop(sig)) {
570 		/*
571 		 * This is a stop signal.  Remove SIGCONT from all queues.
572 		 */
573 		rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
574 		t = p;
575 		do {
576 			rm_from_queue(sigmask(SIGCONT), &t->pending);
577 			t = next_thread(t);
578 		} while (t != p);
579 	} else if (sig == SIGCONT) {
580 		/*
581 		 * Remove all stop signals from all queues,
582 		 * and wake all threads.
583 		 */
584 		if (unlikely(p->signal->group_stop_count > 0)) {
585 			/*
586 			 * There was a group stop in progress.  We'll
587 			 * pretend it finished before we got here.  We are
588 			 * obliged to report it to the parent: if the
589 			 * SIGSTOP happened "after" this SIGCONT, then it
590 			 * would have cleared this pending SIGCONT.  If it
591 			 * happened "before" this SIGCONT, then the parent
592 			 * got the SIGCHLD about the stop finishing before
593 			 * the continue happened.  We do the notification
594 			 * now, and it's as if the stop had finished and
595 			 * the SIGCHLD was pending on entry to this kill.
596 			 */
597 			p->signal->group_stop_count = 0;
598 			p->signal->flags = SIGNAL_STOP_CONTINUED;
599 			spin_unlock(&p->sighand->siglock);
600 			do_notify_parent_cldstop(p, CLD_STOPPED);
601 			spin_lock(&p->sighand->siglock);
602 		}
603 		rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
604 		t = p;
605 		do {
606 			unsigned int state;
607 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
608 
609 			/*
610 			 * If there is a handler for SIGCONT, we must make
611 			 * sure that no thread returns to user mode before
612 			 * we post the signal, in case it was the only
613 			 * thread eligible to run the signal handler--then
614 			 * it must not do anything between resuming and
615 			 * running the handler.  With the TIF_SIGPENDING
616 			 * flag set, the thread will pause and acquire the
617 			 * siglock that we hold now and until we've queued
618 			 * the pending signal.
619 			 *
620 			 * Wake up the stopped thread _after_ setting
621 			 * TIF_SIGPENDING
622 			 */
623 			state = __TASK_STOPPED;
624 			if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
625 				set_tsk_thread_flag(t, TIF_SIGPENDING);
626 				state |= TASK_INTERRUPTIBLE;
627 			}
628 			wake_up_state(t, state);
629 
630 			t = next_thread(t);
631 		} while (t != p);
632 
633 		if (p->signal->flags & SIGNAL_STOP_STOPPED) {
634 			/*
635 			 * We were in fact stopped, and are now continued.
636 			 * Notify the parent with CLD_CONTINUED.
637 			 */
638 			p->signal->flags = SIGNAL_STOP_CONTINUED;
639 			p->signal->group_exit_code = 0;
640 			spin_unlock(&p->sighand->siglock);
641 			do_notify_parent_cldstop(p, CLD_CONTINUED);
642 			spin_lock(&p->sighand->siglock);
643 		} else {
644 			/*
645 			 * We are not stopped, but there could be a stop
646 			 * signal in the middle of being processed after
647 			 * being removed from the queue.  Clear that too.
648 			 */
649 			p->signal->flags = 0;
650 		}
651 	} else if (sig == SIGKILL) {
652 		/*
653 		 * Make sure that any pending stop signal already dequeued
654 		 * is undone by the wakeup for SIGKILL.
655 		 */
656 		p->signal->flags = 0;
657 	}
658 }
659 
660 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
661 			struct sigpending *signals)
662 {
663 	struct sigqueue * q = NULL;
664 	int ret = 0;
665 
666 	/*
667 	 * Deliver the signal to listening signalfds. This must be called
668 	 * with the sighand lock held.
669 	 */
670 	signalfd_notify(t, sig);
671 
672 	/*
673 	 * fast-pathed signals for kernel-internal things like SIGSTOP
674 	 * or SIGKILL.
675 	 */
676 	if (info == SEND_SIG_FORCED)
677 		goto out_set;
678 
679 	/* Real-time signals must be queued if sent by sigqueue, or
680 	   some other real-time mechanism.  It is implementation
681 	   defined whether kill() does so.  We attempt to do so, on
682 	   the principle of least surprise, but since kill is not
683 	   allowed to fail with EAGAIN when low on memory we just
684 	   make sure at least one signal gets delivered and don't
685 	   pass on the info struct.  */
686 
687 	q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
688 					     (is_si_special(info) ||
689 					      info->si_code >= 0)));
690 	if (q) {
691 		list_add_tail(&q->list, &signals->list);
692 		switch ((unsigned long) info) {
693 		case (unsigned long) SEND_SIG_NOINFO:
694 			q->info.si_signo = sig;
695 			q->info.si_errno = 0;
696 			q->info.si_code = SI_USER;
697 			q->info.si_pid = task_pid_vnr(current);
698 			q->info.si_uid = current->uid;
699 			break;
700 		case (unsigned long) SEND_SIG_PRIV:
701 			q->info.si_signo = sig;
702 			q->info.si_errno = 0;
703 			q->info.si_code = SI_KERNEL;
704 			q->info.si_pid = 0;
705 			q->info.si_uid = 0;
706 			break;
707 		default:
708 			copy_siginfo(&q->info, info);
709 			break;
710 		}
711 	} else if (!is_si_special(info)) {
712 		if (sig >= SIGRTMIN && info->si_code != SI_USER)
713 		/*
714 		 * Queue overflow, abort.  We may abort if the signal was rt
715 		 * and sent by user using something other than kill().
716 		 */
717 			return -EAGAIN;
718 	}
719 
720 out_set:
721 	sigaddset(&signals->signal, sig);
722 	return ret;
723 }
724 
725 #define LEGACY_QUEUE(sigptr, sig) \
726 	(((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
727 
728 int print_fatal_signals;
729 
730 static void print_fatal_signal(struct pt_regs *regs, int signr)
731 {
732 	printk("%s/%d: potentially unexpected fatal signal %d.\n",
733 		current->comm, task_pid_nr(current), signr);
734 
735 #if defined(__i386__) && !defined(__arch_um__)
736 	printk("code at %08lx: ", regs->ip);
737 	{
738 		int i;
739 		for (i = 0; i < 16; i++) {
740 			unsigned char insn;
741 
742 			__get_user(insn, (unsigned char *)(regs->ip + i));
743 			printk("%02x ", insn);
744 		}
745 	}
746 #endif
747 	printk("\n");
748 	show_regs(regs);
749 }
750 
751 static int __init setup_print_fatal_signals(char *str)
752 {
753 	get_option (&str, &print_fatal_signals);
754 
755 	return 1;
756 }
757 
758 __setup("print-fatal-signals=", setup_print_fatal_signals);
759 
760 static int
761 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
762 {
763 	int ret = 0;
764 
765 	BUG_ON(!irqs_disabled());
766 	assert_spin_locked(&t->sighand->siglock);
767 
768 	/* Short-circuit ignored signals.  */
769 	if (sig_ignored(t, sig))
770 		goto out;
771 
772 	/* Support queueing exactly one non-rt signal, so that we
773 	   can get more detailed information about the cause of
774 	   the signal. */
775 	if (LEGACY_QUEUE(&t->pending, sig))
776 		goto out;
777 
778 	ret = send_signal(sig, info, t, &t->pending);
779 	if (!ret && !sigismember(&t->blocked, sig))
780 		signal_wake_up(t, sig == SIGKILL);
781 out:
782 	return ret;
783 }
784 
785 /*
786  * Force a signal that the process can't ignore: if necessary
787  * we unblock the signal and change any SIG_IGN to SIG_DFL.
788  *
789  * Note: If we unblock the signal, we always reset it to SIG_DFL,
790  * since we do not want to have a signal handler that was blocked
791  * be invoked when user space had explicitly blocked it.
792  *
793  * We don't want to have recursive SIGSEGV's etc, for example.
794  */
795 int
796 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
797 {
798 	unsigned long int flags;
799 	int ret, blocked, ignored;
800 	struct k_sigaction *action;
801 
802 	spin_lock_irqsave(&t->sighand->siglock, flags);
803 	action = &t->sighand->action[sig-1];
804 	ignored = action->sa.sa_handler == SIG_IGN;
805 	blocked = sigismember(&t->blocked, sig);
806 	if (blocked || ignored) {
807 		action->sa.sa_handler = SIG_DFL;
808 		if (blocked) {
809 			sigdelset(&t->blocked, sig);
810 			recalc_sigpending_and_wake(t);
811 		}
812 	}
813 	ret = specific_send_sig_info(sig, info, t);
814 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
815 
816 	return ret;
817 }
818 
819 void
820 force_sig_specific(int sig, struct task_struct *t)
821 {
822 	force_sig_info(sig, SEND_SIG_FORCED, t);
823 }
824 
825 /*
826  * Test if P wants to take SIG.  After we've checked all threads with this,
827  * it's equivalent to finding no threads not blocking SIG.  Any threads not
828  * blocking SIG were ruled out because they are not running and already
829  * have pending signals.  Such threads will dequeue from the shared queue
830  * as soon as they're available, so putting the signal on the shared queue
831  * will be equivalent to sending it to one such thread.
832  */
833 static inline int wants_signal(int sig, struct task_struct *p)
834 {
835 	if (sigismember(&p->blocked, sig))
836 		return 0;
837 	if (p->flags & PF_EXITING)
838 		return 0;
839 	if (sig == SIGKILL)
840 		return 1;
841 	if (task_is_stopped_or_traced(p))
842 		return 0;
843 	return task_curr(p) || !signal_pending(p);
844 }
845 
846 static void
847 __group_complete_signal(int sig, struct task_struct *p)
848 {
849 	struct task_struct *t;
850 
851 	/*
852 	 * Now find a thread we can wake up to take the signal off the queue.
853 	 *
854 	 * If the main thread wants the signal, it gets first crack.
855 	 * Probably the least surprising to the average bear.
856 	 */
857 	if (wants_signal(sig, p))
858 		t = p;
859 	else if (thread_group_empty(p))
860 		/*
861 		 * There is just one thread and it does not need to be woken.
862 		 * It will dequeue unblocked signals before it runs again.
863 		 */
864 		return;
865 	else {
866 		/*
867 		 * Otherwise try to find a suitable thread.
868 		 */
869 		t = p->signal->curr_target;
870 		if (t == NULL)
871 			/* restart balancing at this thread */
872 			t = p->signal->curr_target = p;
873 
874 		while (!wants_signal(sig, t)) {
875 			t = next_thread(t);
876 			if (t == p->signal->curr_target)
877 				/*
878 				 * No thread needs to be woken.
879 				 * Any eligible threads will see
880 				 * the signal in the queue soon.
881 				 */
882 				return;
883 		}
884 		p->signal->curr_target = t;
885 	}
886 
887 	/*
888 	 * Found a killable thread.  If the signal will be fatal,
889 	 * then start taking the whole group down immediately.
890 	 */
891 	if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
892 	    !sigismember(&t->real_blocked, sig) &&
893 	    (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
894 		/*
895 		 * This signal will be fatal to the whole group.
896 		 */
897 		if (!sig_kernel_coredump(sig)) {
898 			/*
899 			 * Start a group exit and wake everybody up.
900 			 * This way we don't have other threads
901 			 * running and doing things after a slower
902 			 * thread has the fatal signal pending.
903 			 */
904 			p->signal->flags = SIGNAL_GROUP_EXIT;
905 			p->signal->group_exit_code = sig;
906 			p->signal->group_stop_count = 0;
907 			t = p;
908 			do {
909 				sigaddset(&t->pending.signal, SIGKILL);
910 				signal_wake_up(t, 1);
911 			} while_each_thread(p, t);
912 			return;
913 		}
914 	}
915 
916 	/*
917 	 * The signal is already in the shared-pending queue.
918 	 * Tell the chosen thread to wake up and dequeue it.
919 	 */
920 	signal_wake_up(t, sig == SIGKILL);
921 	return;
922 }
923 
924 int
925 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
926 {
927 	int ret = 0;
928 
929 	assert_spin_locked(&p->sighand->siglock);
930 	handle_stop_signal(sig, p);
931 
932 	/* Short-circuit ignored signals.  */
933 	if (sig_ignored(p, sig))
934 		return ret;
935 
936 	if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
937 		/* This is a non-RT signal and we already have one queued.  */
938 		return ret;
939 
940 	/*
941 	 * Put this signal on the shared-pending queue, or fail with EAGAIN.
942 	 * We always use the shared queue for process-wide signals,
943 	 * to avoid several races.
944 	 */
945 	ret = send_signal(sig, info, p, &p->signal->shared_pending);
946 	if (unlikely(ret))
947 		return ret;
948 
949 	__group_complete_signal(sig, p);
950 	return 0;
951 }
952 
953 /*
954  * Nuke all other threads in the group.
955  */
956 void zap_other_threads(struct task_struct *p)
957 {
958 	struct task_struct *t;
959 
960 	p->signal->group_stop_count = 0;
961 
962 	for (t = next_thread(p); t != p; t = next_thread(t)) {
963 		/*
964 		 * Don't bother with already dead threads
965 		 */
966 		if (t->exit_state)
967 			continue;
968 
969 		/* SIGKILL will be handled before any pending SIGSTOP */
970 		sigaddset(&t->pending.signal, SIGKILL);
971 		signal_wake_up(t, 1);
972 	}
973 }
974 
975 int fastcall __fatal_signal_pending(struct task_struct *tsk)
976 {
977 	return sigismember(&tsk->pending.signal, SIGKILL);
978 }
979 EXPORT_SYMBOL(__fatal_signal_pending);
980 
981 /*
982  * Must be called under rcu_read_lock() or with tasklist_lock read-held.
983  */
984 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
985 {
986 	struct sighand_struct *sighand;
987 
988 	for (;;) {
989 		sighand = rcu_dereference(tsk->sighand);
990 		if (unlikely(sighand == NULL))
991 			break;
992 
993 		spin_lock_irqsave(&sighand->siglock, *flags);
994 		if (likely(sighand == tsk->sighand))
995 			break;
996 		spin_unlock_irqrestore(&sighand->siglock, *flags);
997 	}
998 
999 	return sighand;
1000 }
1001 
1002 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1003 {
1004 	unsigned long flags;
1005 	int ret;
1006 
1007 	ret = check_kill_permission(sig, info, p);
1008 
1009 	if (!ret && sig) {
1010 		ret = -ESRCH;
1011 		if (lock_task_sighand(p, &flags)) {
1012 			ret = __group_send_sig_info(sig, info, p);
1013 			unlock_task_sighand(p, &flags);
1014 		}
1015 	}
1016 
1017 	return ret;
1018 }
1019 
1020 /*
1021  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1022  * control characters do (^C, ^Z etc)
1023  */
1024 
1025 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1026 {
1027 	struct task_struct *p = NULL;
1028 	int retval, success;
1029 
1030 	success = 0;
1031 	retval = -ESRCH;
1032 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1033 		int err = group_send_sig_info(sig, info, p);
1034 		success |= !err;
1035 		retval = err;
1036 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1037 	return success ? 0 : retval;
1038 }
1039 
1040 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1041 {
1042 	int error = -ESRCH;
1043 	struct task_struct *p;
1044 
1045 	rcu_read_lock();
1046 	if (unlikely(sig_needs_tasklist(sig)))
1047 		read_lock(&tasklist_lock);
1048 
1049 retry:
1050 	p = pid_task(pid, PIDTYPE_PID);
1051 	if (p) {
1052 		error = group_send_sig_info(sig, info, p);
1053 		if (unlikely(error == -ESRCH))
1054 			/*
1055 			 * The task was unhashed in between, try again.
1056 			 * If it is dead, pid_task() will return NULL,
1057 			 * if we race with de_thread() it will find the
1058 			 * new leader.
1059 			 */
1060 			goto retry;
1061 	}
1062 
1063 	if (unlikely(sig_needs_tasklist(sig)))
1064 		read_unlock(&tasklist_lock);
1065 	rcu_read_unlock();
1066 	return error;
1067 }
1068 
1069 int
1070 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1071 {
1072 	int error;
1073 	rcu_read_lock();
1074 	error = kill_pid_info(sig, info, find_vpid(pid));
1075 	rcu_read_unlock();
1076 	return error;
1077 }
1078 
1079 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1080 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1081 		      uid_t uid, uid_t euid, u32 secid)
1082 {
1083 	int ret = -EINVAL;
1084 	struct task_struct *p;
1085 
1086 	if (!valid_signal(sig))
1087 		return ret;
1088 
1089 	read_lock(&tasklist_lock);
1090 	p = pid_task(pid, PIDTYPE_PID);
1091 	if (!p) {
1092 		ret = -ESRCH;
1093 		goto out_unlock;
1094 	}
1095 	if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1096 	    && (euid != p->suid) && (euid != p->uid)
1097 	    && (uid != p->suid) && (uid != p->uid)) {
1098 		ret = -EPERM;
1099 		goto out_unlock;
1100 	}
1101 	ret = security_task_kill(p, info, sig, secid);
1102 	if (ret)
1103 		goto out_unlock;
1104 	if (sig && p->sighand) {
1105 		unsigned long flags;
1106 		spin_lock_irqsave(&p->sighand->siglock, flags);
1107 		ret = __group_send_sig_info(sig, info, p);
1108 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1109 	}
1110 out_unlock:
1111 	read_unlock(&tasklist_lock);
1112 	return ret;
1113 }
1114 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1115 
1116 /*
1117  * kill_something_info() interprets pid in interesting ways just like kill(2).
1118  *
1119  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1120  * is probably wrong.  Should make it like BSD or SYSV.
1121  */
1122 
1123 static int kill_something_info(int sig, struct siginfo *info, int pid)
1124 {
1125 	int ret;
1126 
1127 	if (pid > 0) {
1128 		rcu_read_lock();
1129 		ret = kill_pid_info(sig, info, find_vpid(pid));
1130 		rcu_read_unlock();
1131 		return ret;
1132 	}
1133 
1134 	read_lock(&tasklist_lock);
1135 	if (pid != -1) {
1136 		ret = __kill_pgrp_info(sig, info,
1137 				pid ? find_vpid(-pid) : task_pgrp(current));
1138 	} else {
1139 		int retval = 0, count = 0;
1140 		struct task_struct * p;
1141 
1142 		for_each_process(p) {
1143 			if (p->pid > 1 && !same_thread_group(p, current)) {
1144 				int err = group_send_sig_info(sig, info, p);
1145 				++count;
1146 				if (err != -EPERM)
1147 					retval = err;
1148 			}
1149 		}
1150 		ret = count ? retval : -ESRCH;
1151 	}
1152 	read_unlock(&tasklist_lock);
1153 
1154 	return ret;
1155 }
1156 
1157 /*
1158  * These are for backward compatibility with the rest of the kernel source.
1159  */
1160 
1161 /*
1162  * These two are the most common entry points.  They send a signal
1163  * just to the specific thread.
1164  */
1165 int
1166 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1167 {
1168 	int ret;
1169 	unsigned long flags;
1170 
1171 	/*
1172 	 * Make sure legacy kernel users don't send in bad values
1173 	 * (normal paths check this in check_kill_permission).
1174 	 */
1175 	if (!valid_signal(sig))
1176 		return -EINVAL;
1177 
1178 	/*
1179 	 * We need the tasklist lock even for the specific
1180 	 * thread case (when we don't need to follow the group
1181 	 * lists) in order to avoid races with "p->sighand"
1182 	 * going away or changing from under us.
1183 	 */
1184 	read_lock(&tasklist_lock);
1185 	spin_lock_irqsave(&p->sighand->siglock, flags);
1186 	ret = specific_send_sig_info(sig, info, p);
1187 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
1188 	read_unlock(&tasklist_lock);
1189 	return ret;
1190 }
1191 
1192 #define __si_special(priv) \
1193 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1194 
1195 int
1196 send_sig(int sig, struct task_struct *p, int priv)
1197 {
1198 	return send_sig_info(sig, __si_special(priv), p);
1199 }
1200 
1201 void
1202 force_sig(int sig, struct task_struct *p)
1203 {
1204 	force_sig_info(sig, SEND_SIG_PRIV, p);
1205 }
1206 
1207 /*
1208  * When things go south during signal handling, we
1209  * will force a SIGSEGV. And if the signal that caused
1210  * the problem was already a SIGSEGV, we'll want to
1211  * make sure we don't even try to deliver the signal..
1212  */
1213 int
1214 force_sigsegv(int sig, struct task_struct *p)
1215 {
1216 	if (sig == SIGSEGV) {
1217 		unsigned long flags;
1218 		spin_lock_irqsave(&p->sighand->siglock, flags);
1219 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1220 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1221 	}
1222 	force_sig(SIGSEGV, p);
1223 	return 0;
1224 }
1225 
1226 int kill_pgrp(struct pid *pid, int sig, int priv)
1227 {
1228 	int ret;
1229 
1230 	read_lock(&tasklist_lock);
1231 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1232 	read_unlock(&tasklist_lock);
1233 
1234 	return ret;
1235 }
1236 EXPORT_SYMBOL(kill_pgrp);
1237 
1238 int kill_pid(struct pid *pid, int sig, int priv)
1239 {
1240 	return kill_pid_info(sig, __si_special(priv), pid);
1241 }
1242 EXPORT_SYMBOL(kill_pid);
1243 
1244 int
1245 kill_proc(pid_t pid, int sig, int priv)
1246 {
1247 	int ret;
1248 
1249 	rcu_read_lock();
1250 	ret = kill_pid_info(sig, __si_special(priv), find_pid(pid));
1251 	rcu_read_unlock();
1252 	return ret;
1253 }
1254 
1255 /*
1256  * These functions support sending signals using preallocated sigqueue
1257  * structures.  This is needed "because realtime applications cannot
1258  * afford to lose notifications of asynchronous events, like timer
1259  * expirations or I/O completions".  In the case of Posix Timers
1260  * we allocate the sigqueue structure from the timer_create.  If this
1261  * allocation fails we are able to report the failure to the application
1262  * with an EAGAIN error.
1263  */
1264 
1265 struct sigqueue *sigqueue_alloc(void)
1266 {
1267 	struct sigqueue *q;
1268 
1269 	if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1270 		q->flags |= SIGQUEUE_PREALLOC;
1271 	return(q);
1272 }
1273 
1274 void sigqueue_free(struct sigqueue *q)
1275 {
1276 	unsigned long flags;
1277 	spinlock_t *lock = &current->sighand->siglock;
1278 
1279 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1280 	/*
1281 	 * If the signal is still pending remove it from the
1282 	 * pending queue. We must hold ->siglock while testing
1283 	 * q->list to serialize with collect_signal().
1284 	 */
1285 	spin_lock_irqsave(lock, flags);
1286 	if (!list_empty(&q->list))
1287 		list_del_init(&q->list);
1288 	spin_unlock_irqrestore(lock, flags);
1289 
1290 	q->flags &= ~SIGQUEUE_PREALLOC;
1291 	__sigqueue_free(q);
1292 }
1293 
1294 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1295 {
1296 	unsigned long flags;
1297 	int ret = 0;
1298 
1299 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1300 
1301 	/*
1302 	 * The rcu based delayed sighand destroy makes it possible to
1303 	 * run this without tasklist lock held. The task struct itself
1304 	 * cannot go away as create_timer did get_task_struct().
1305 	 *
1306 	 * We return -1, when the task is marked exiting, so
1307 	 * posix_timer_event can redirect it to the group leader
1308 	 */
1309 	rcu_read_lock();
1310 
1311 	if (!likely(lock_task_sighand(p, &flags))) {
1312 		ret = -1;
1313 		goto out_err;
1314 	}
1315 
1316 	if (unlikely(!list_empty(&q->list))) {
1317 		/*
1318 		 * If an SI_TIMER entry is already queue just increment
1319 		 * the overrun count.
1320 		 */
1321 		BUG_ON(q->info.si_code != SI_TIMER);
1322 		q->info.si_overrun++;
1323 		goto out;
1324 	}
1325 	/* Short-circuit ignored signals.  */
1326 	if (sig_ignored(p, sig)) {
1327 		ret = 1;
1328 		goto out;
1329 	}
1330 	/*
1331 	 * Deliver the signal to listening signalfds. This must be called
1332 	 * with the sighand lock held.
1333 	 */
1334 	signalfd_notify(p, sig);
1335 
1336 	list_add_tail(&q->list, &p->pending.list);
1337 	sigaddset(&p->pending.signal, sig);
1338 	if (!sigismember(&p->blocked, sig))
1339 		signal_wake_up(p, sig == SIGKILL);
1340 
1341 out:
1342 	unlock_task_sighand(p, &flags);
1343 out_err:
1344 	rcu_read_unlock();
1345 
1346 	return ret;
1347 }
1348 
1349 int
1350 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1351 {
1352 	unsigned long flags;
1353 	int ret = 0;
1354 
1355 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1356 
1357 	read_lock(&tasklist_lock);
1358 	/* Since it_lock is held, p->sighand cannot be NULL. */
1359 	spin_lock_irqsave(&p->sighand->siglock, flags);
1360 	handle_stop_signal(sig, p);
1361 
1362 	/* Short-circuit ignored signals.  */
1363 	if (sig_ignored(p, sig)) {
1364 		ret = 1;
1365 		goto out;
1366 	}
1367 
1368 	if (unlikely(!list_empty(&q->list))) {
1369 		/*
1370 		 * If an SI_TIMER entry is already queue just increment
1371 		 * the overrun count.  Other uses should not try to
1372 		 * send the signal multiple times.
1373 		 */
1374 		BUG_ON(q->info.si_code != SI_TIMER);
1375 		q->info.si_overrun++;
1376 		goto out;
1377 	}
1378 	/*
1379 	 * Deliver the signal to listening signalfds. This must be called
1380 	 * with the sighand lock held.
1381 	 */
1382 	signalfd_notify(p, sig);
1383 
1384 	/*
1385 	 * Put this signal on the shared-pending queue.
1386 	 * We always use the shared queue for process-wide signals,
1387 	 * to avoid several races.
1388 	 */
1389 	list_add_tail(&q->list, &p->signal->shared_pending.list);
1390 	sigaddset(&p->signal->shared_pending.signal, sig);
1391 
1392 	__group_complete_signal(sig, p);
1393 out:
1394 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
1395 	read_unlock(&tasklist_lock);
1396 	return ret;
1397 }
1398 
1399 /*
1400  * Wake up any threads in the parent blocked in wait* syscalls.
1401  */
1402 static inline void __wake_up_parent(struct task_struct *p,
1403 				    struct task_struct *parent)
1404 {
1405 	wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1406 }
1407 
1408 /*
1409  * Let a parent know about the death of a child.
1410  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1411  */
1412 
1413 void do_notify_parent(struct task_struct *tsk, int sig)
1414 {
1415 	struct siginfo info;
1416 	unsigned long flags;
1417 	struct sighand_struct *psig;
1418 
1419 	BUG_ON(sig == -1);
1420 
1421  	/* do_notify_parent_cldstop should have been called instead.  */
1422  	BUG_ON(task_is_stopped_or_traced(tsk));
1423 
1424 	BUG_ON(!tsk->ptrace &&
1425 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1426 
1427 	info.si_signo = sig;
1428 	info.si_errno = 0;
1429 	/*
1430 	 * we are under tasklist_lock here so our parent is tied to
1431 	 * us and cannot exit and release its namespace.
1432 	 *
1433 	 * the only it can is to switch its nsproxy with sys_unshare,
1434 	 * bu uncharing pid namespaces is not allowed, so we'll always
1435 	 * see relevant namespace
1436 	 *
1437 	 * write_lock() currently calls preempt_disable() which is the
1438 	 * same as rcu_read_lock(), but according to Oleg, this is not
1439 	 * correct to rely on this
1440 	 */
1441 	rcu_read_lock();
1442 	info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1443 	rcu_read_unlock();
1444 
1445 	info.si_uid = tsk->uid;
1446 
1447 	/* FIXME: find out whether or not this is supposed to be c*time. */
1448 	info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1449 						       tsk->signal->utime));
1450 	info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1451 						       tsk->signal->stime));
1452 
1453 	info.si_status = tsk->exit_code & 0x7f;
1454 	if (tsk->exit_code & 0x80)
1455 		info.si_code = CLD_DUMPED;
1456 	else if (tsk->exit_code & 0x7f)
1457 		info.si_code = CLD_KILLED;
1458 	else {
1459 		info.si_code = CLD_EXITED;
1460 		info.si_status = tsk->exit_code >> 8;
1461 	}
1462 
1463 	psig = tsk->parent->sighand;
1464 	spin_lock_irqsave(&psig->siglock, flags);
1465 	if (!tsk->ptrace && sig == SIGCHLD &&
1466 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1467 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1468 		/*
1469 		 * We are exiting and our parent doesn't care.  POSIX.1
1470 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1471 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1472 		 * automatically and not left for our parent's wait4 call.
1473 		 * Rather than having the parent do it as a magic kind of
1474 		 * signal handler, we just set this to tell do_exit that we
1475 		 * can be cleaned up without becoming a zombie.  Note that
1476 		 * we still call __wake_up_parent in this case, because a
1477 		 * blocked sys_wait4 might now return -ECHILD.
1478 		 *
1479 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1480 		 * is implementation-defined: we do (if you don't want
1481 		 * it, just use SIG_IGN instead).
1482 		 */
1483 		tsk->exit_signal = -1;
1484 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1485 			sig = 0;
1486 	}
1487 	if (valid_signal(sig) && sig > 0)
1488 		__group_send_sig_info(sig, &info, tsk->parent);
1489 	__wake_up_parent(tsk, tsk->parent);
1490 	spin_unlock_irqrestore(&psig->siglock, flags);
1491 }
1492 
1493 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1494 {
1495 	struct siginfo info;
1496 	unsigned long flags;
1497 	struct task_struct *parent;
1498 	struct sighand_struct *sighand;
1499 
1500 	if (tsk->ptrace & PT_PTRACED)
1501 		parent = tsk->parent;
1502 	else {
1503 		tsk = tsk->group_leader;
1504 		parent = tsk->real_parent;
1505 	}
1506 
1507 	info.si_signo = SIGCHLD;
1508 	info.si_errno = 0;
1509 	/*
1510 	 * see comment in do_notify_parent() abot the following 3 lines
1511 	 */
1512 	rcu_read_lock();
1513 	info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1514 	rcu_read_unlock();
1515 
1516 	info.si_uid = tsk->uid;
1517 
1518 	/* FIXME: find out whether or not this is supposed to be c*time. */
1519 	info.si_utime = cputime_to_jiffies(tsk->utime);
1520 	info.si_stime = cputime_to_jiffies(tsk->stime);
1521 
1522  	info.si_code = why;
1523  	switch (why) {
1524  	case CLD_CONTINUED:
1525  		info.si_status = SIGCONT;
1526  		break;
1527  	case CLD_STOPPED:
1528  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1529  		break;
1530  	case CLD_TRAPPED:
1531  		info.si_status = tsk->exit_code & 0x7f;
1532  		break;
1533  	default:
1534  		BUG();
1535  	}
1536 
1537 	sighand = parent->sighand;
1538 	spin_lock_irqsave(&sighand->siglock, flags);
1539 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1540 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1541 		__group_send_sig_info(SIGCHLD, &info, parent);
1542 	/*
1543 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1544 	 */
1545 	__wake_up_parent(tsk, parent);
1546 	spin_unlock_irqrestore(&sighand->siglock, flags);
1547 }
1548 
1549 static inline int may_ptrace_stop(void)
1550 {
1551 	if (!likely(current->ptrace & PT_PTRACED))
1552 		return 0;
1553 	/*
1554 	 * Are we in the middle of do_coredump?
1555 	 * If so and our tracer is also part of the coredump stopping
1556 	 * is a deadlock situation, and pointless because our tracer
1557 	 * is dead so don't allow us to stop.
1558 	 * If SIGKILL was already sent before the caller unlocked
1559 	 * ->siglock we must see ->core_waiters != 0. Otherwise it
1560 	 * is safe to enter schedule().
1561 	 */
1562 	if (unlikely(current->mm->core_waiters) &&
1563 	    unlikely(current->mm == current->parent->mm))
1564 		return 0;
1565 
1566 	return 1;
1567 }
1568 
1569 /*
1570  * Return nonzero if there is a SIGKILL that should be waking us up.
1571  * Called with the siglock held.
1572  */
1573 static int sigkill_pending(struct task_struct *tsk)
1574 {
1575 	return ((sigismember(&tsk->pending.signal, SIGKILL) ||
1576 		 sigismember(&tsk->signal->shared_pending.signal, SIGKILL)) &&
1577 		!unlikely(sigismember(&tsk->blocked, SIGKILL)));
1578 }
1579 
1580 /*
1581  * This must be called with current->sighand->siglock held.
1582  *
1583  * This should be the path for all ptrace stops.
1584  * We always set current->last_siginfo while stopped here.
1585  * That makes it a way to test a stopped process for
1586  * being ptrace-stopped vs being job-control-stopped.
1587  *
1588  * If we actually decide not to stop at all because the tracer
1589  * is gone, we keep current->exit_code unless clear_code.
1590  */
1591 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1592 {
1593 	int killed = 0;
1594 
1595 	if (arch_ptrace_stop_needed(exit_code, info)) {
1596 		/*
1597 		 * The arch code has something special to do before a
1598 		 * ptrace stop.  This is allowed to block, e.g. for faults
1599 		 * on user stack pages.  We can't keep the siglock while
1600 		 * calling arch_ptrace_stop, so we must release it now.
1601 		 * To preserve proper semantics, we must do this before
1602 		 * any signal bookkeeping like checking group_stop_count.
1603 		 * Meanwhile, a SIGKILL could come in before we retake the
1604 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1605 		 * So after regaining the lock, we must check for SIGKILL.
1606 		 */
1607 		spin_unlock_irq(&current->sighand->siglock);
1608 		arch_ptrace_stop(exit_code, info);
1609 		spin_lock_irq(&current->sighand->siglock);
1610 		killed = sigkill_pending(current);
1611 	}
1612 
1613 	/*
1614 	 * If there is a group stop in progress,
1615 	 * we must participate in the bookkeeping.
1616 	 */
1617 	if (current->signal->group_stop_count > 0)
1618 		--current->signal->group_stop_count;
1619 
1620 	current->last_siginfo = info;
1621 	current->exit_code = exit_code;
1622 
1623 	/* Let the debugger run.  */
1624 	__set_current_state(TASK_TRACED);
1625 	spin_unlock_irq(&current->sighand->siglock);
1626 	try_to_freeze();
1627 	read_lock(&tasklist_lock);
1628 	if (!unlikely(killed) && may_ptrace_stop()) {
1629 		do_notify_parent_cldstop(current, CLD_TRAPPED);
1630 		read_unlock(&tasklist_lock);
1631 		schedule();
1632 	} else {
1633 		/*
1634 		 * By the time we got the lock, our tracer went away.
1635 		 * Don't drop the lock yet, another tracer may come.
1636 		 */
1637 		__set_current_state(TASK_RUNNING);
1638 		if (clear_code)
1639 			current->exit_code = 0;
1640 		read_unlock(&tasklist_lock);
1641 	}
1642 
1643 	/*
1644 	 * We are back.  Now reacquire the siglock before touching
1645 	 * last_siginfo, so that we are sure to have synchronized with
1646 	 * any signal-sending on another CPU that wants to examine it.
1647 	 */
1648 	spin_lock_irq(&current->sighand->siglock);
1649 	current->last_siginfo = NULL;
1650 
1651 	/*
1652 	 * Queued signals ignored us while we were stopped for tracing.
1653 	 * So check for any that we should take before resuming user mode.
1654 	 * This sets TIF_SIGPENDING, but never clears it.
1655 	 */
1656 	recalc_sigpending_tsk(current);
1657 }
1658 
1659 void ptrace_notify(int exit_code)
1660 {
1661 	siginfo_t info;
1662 
1663 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1664 
1665 	memset(&info, 0, sizeof info);
1666 	info.si_signo = SIGTRAP;
1667 	info.si_code = exit_code;
1668 	info.si_pid = task_pid_vnr(current);
1669 	info.si_uid = current->uid;
1670 
1671 	/* Let the debugger run.  */
1672 	spin_lock_irq(&current->sighand->siglock);
1673 	ptrace_stop(exit_code, 1, &info);
1674 	spin_unlock_irq(&current->sighand->siglock);
1675 }
1676 
1677 static void
1678 finish_stop(int stop_count)
1679 {
1680 	/*
1681 	 * If there are no other threads in the group, or if there is
1682 	 * a group stop in progress and we are the last to stop,
1683 	 * report to the parent.  When ptraced, every thread reports itself.
1684 	 */
1685 	if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1686 		read_lock(&tasklist_lock);
1687 		do_notify_parent_cldstop(current, CLD_STOPPED);
1688 		read_unlock(&tasklist_lock);
1689 	}
1690 
1691 	do {
1692 		schedule();
1693 	} while (try_to_freeze());
1694 	/*
1695 	 * Now we don't run again until continued.
1696 	 */
1697 	current->exit_code = 0;
1698 }
1699 
1700 /*
1701  * This performs the stopping for SIGSTOP and other stop signals.
1702  * We have to stop all threads in the thread group.
1703  * Returns nonzero if we've actually stopped and released the siglock.
1704  * Returns zero if we didn't stop and still hold the siglock.
1705  */
1706 static int do_signal_stop(int signr)
1707 {
1708 	struct signal_struct *sig = current->signal;
1709 	int stop_count;
1710 
1711 	if (sig->group_stop_count > 0) {
1712 		/*
1713 		 * There is a group stop in progress.  We don't need to
1714 		 * start another one.
1715 		 */
1716 		stop_count = --sig->group_stop_count;
1717 	} else {
1718 		struct task_struct *t;
1719 
1720 		if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1721 		    unlikely(sig->group_exit_task))
1722 			return 0;
1723 		/*
1724 		 * There is no group stop already in progress.
1725 		 * We must initiate one now.
1726 		 */
1727 		sig->group_exit_code = signr;
1728 
1729 		stop_count = 0;
1730 		for (t = next_thread(current); t != current; t = next_thread(t))
1731 			/*
1732 			 * Setting state to TASK_STOPPED for a group
1733 			 * stop is always done with the siglock held,
1734 			 * so this check has no races.
1735 			 */
1736 			if (!(t->flags & PF_EXITING) &&
1737 			    !task_is_stopped_or_traced(t)) {
1738 				stop_count++;
1739 				signal_wake_up(t, 0);
1740 			}
1741 		sig->group_stop_count = stop_count;
1742 	}
1743 
1744 	if (stop_count == 0)
1745 		sig->flags = SIGNAL_STOP_STOPPED;
1746 	current->exit_code = sig->group_exit_code;
1747 	__set_current_state(TASK_STOPPED);
1748 
1749 	spin_unlock_irq(&current->sighand->siglock);
1750 	finish_stop(stop_count);
1751 	return 1;
1752 }
1753 
1754 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1755 			  struct pt_regs *regs, void *cookie)
1756 {
1757 	sigset_t *mask = &current->blocked;
1758 	int signr = 0;
1759 
1760 	try_to_freeze();
1761 
1762 relock:
1763 	spin_lock_irq(&current->sighand->siglock);
1764 	for (;;) {
1765 		struct k_sigaction *ka;
1766 
1767 		if (unlikely(current->signal->group_stop_count > 0) &&
1768 		    do_signal_stop(0))
1769 			goto relock;
1770 
1771 		signr = dequeue_signal(current, mask, info);
1772 
1773 		if (!signr)
1774 			break; /* will return 0 */
1775 
1776 		if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1777 			ptrace_signal_deliver(regs, cookie);
1778 
1779 			/* Let the debugger run.  */
1780 			ptrace_stop(signr, 0, info);
1781 
1782 			/* We're back.  Did the debugger cancel the sig?  */
1783 			signr = current->exit_code;
1784 			if (signr == 0)
1785 				continue;
1786 
1787 			current->exit_code = 0;
1788 
1789 			/* Update the siginfo structure if the signal has
1790 			   changed.  If the debugger wanted something
1791 			   specific in the siginfo structure then it should
1792 			   have updated *info via PTRACE_SETSIGINFO.  */
1793 			if (signr != info->si_signo) {
1794 				info->si_signo = signr;
1795 				info->si_errno = 0;
1796 				info->si_code = SI_USER;
1797 				info->si_pid = task_pid_vnr(current->parent);
1798 				info->si_uid = current->parent->uid;
1799 			}
1800 
1801 			/* If the (new) signal is now blocked, requeue it.  */
1802 			if (sigismember(&current->blocked, signr)) {
1803 				specific_send_sig_info(signr, info, current);
1804 				continue;
1805 			}
1806 		}
1807 
1808 		ka = &current->sighand->action[signr-1];
1809 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
1810 			continue;
1811 		if (ka->sa.sa_handler != SIG_DFL) {
1812 			/* Run the handler.  */
1813 			*return_ka = *ka;
1814 
1815 			if (ka->sa.sa_flags & SA_ONESHOT)
1816 				ka->sa.sa_handler = SIG_DFL;
1817 
1818 			break; /* will return non-zero "signr" value */
1819 		}
1820 
1821 		/*
1822 		 * Now we are doing the default action for this signal.
1823 		 */
1824 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
1825 			continue;
1826 
1827 		/*
1828 		 * Global init gets no signals it doesn't want.
1829 		 */
1830 		if (is_global_init(current))
1831 			continue;
1832 
1833 		if (sig_kernel_stop(signr)) {
1834 			/*
1835 			 * The default action is to stop all threads in
1836 			 * the thread group.  The job control signals
1837 			 * do nothing in an orphaned pgrp, but SIGSTOP
1838 			 * always works.  Note that siglock needs to be
1839 			 * dropped during the call to is_orphaned_pgrp()
1840 			 * because of lock ordering with tasklist_lock.
1841 			 * This allows an intervening SIGCONT to be posted.
1842 			 * We need to check for that and bail out if necessary.
1843 			 */
1844 			if (signr != SIGSTOP) {
1845 				spin_unlock_irq(&current->sighand->siglock);
1846 
1847 				/* signals can be posted during this window */
1848 
1849 				if (is_current_pgrp_orphaned())
1850 					goto relock;
1851 
1852 				spin_lock_irq(&current->sighand->siglock);
1853 			}
1854 
1855 			if (likely(do_signal_stop(signr))) {
1856 				/* It released the siglock.  */
1857 				goto relock;
1858 			}
1859 
1860 			/*
1861 			 * We didn't actually stop, due to a race
1862 			 * with SIGCONT or something like that.
1863 			 */
1864 			continue;
1865 		}
1866 
1867 		spin_unlock_irq(&current->sighand->siglock);
1868 
1869 		/*
1870 		 * Anything else is fatal, maybe with a core dump.
1871 		 */
1872 		current->flags |= PF_SIGNALED;
1873 		if ((signr != SIGKILL) && print_fatal_signals)
1874 			print_fatal_signal(regs, signr);
1875 		if (sig_kernel_coredump(signr)) {
1876 			/*
1877 			 * If it was able to dump core, this kills all
1878 			 * other threads in the group and synchronizes with
1879 			 * their demise.  If we lost the race with another
1880 			 * thread getting here, it set group_exit_code
1881 			 * first and our do_group_exit call below will use
1882 			 * that value and ignore the one we pass it.
1883 			 */
1884 			do_coredump((long)signr, signr, regs);
1885 		}
1886 
1887 		/*
1888 		 * Death signals, no core dump.
1889 		 */
1890 		do_group_exit(signr);
1891 		/* NOTREACHED */
1892 	}
1893 	spin_unlock_irq(&current->sighand->siglock);
1894 	return signr;
1895 }
1896 
1897 void exit_signals(struct task_struct *tsk)
1898 {
1899 	int group_stop = 0;
1900 	struct task_struct *t;
1901 
1902 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
1903 		tsk->flags |= PF_EXITING;
1904 		return;
1905 	}
1906 
1907 	spin_lock_irq(&tsk->sighand->siglock);
1908 	/*
1909 	 * From now this task is not visible for group-wide signals,
1910 	 * see wants_signal(), do_signal_stop().
1911 	 */
1912 	tsk->flags |= PF_EXITING;
1913 	if (!signal_pending(tsk))
1914 		goto out;
1915 
1916 	/* It could be that __group_complete_signal() choose us to
1917 	 * notify about group-wide signal. Another thread should be
1918 	 * woken now to take the signal since we will not.
1919 	 */
1920 	for (t = tsk; (t = next_thread(t)) != tsk; )
1921 		if (!signal_pending(t) && !(t->flags & PF_EXITING))
1922 			recalc_sigpending_and_wake(t);
1923 
1924 	if (unlikely(tsk->signal->group_stop_count) &&
1925 			!--tsk->signal->group_stop_count) {
1926 		tsk->signal->flags = SIGNAL_STOP_STOPPED;
1927 		group_stop = 1;
1928 	}
1929 out:
1930 	spin_unlock_irq(&tsk->sighand->siglock);
1931 
1932 	if (unlikely(group_stop)) {
1933 		read_lock(&tasklist_lock);
1934 		do_notify_parent_cldstop(tsk, CLD_STOPPED);
1935 		read_unlock(&tasklist_lock);
1936 	}
1937 }
1938 
1939 EXPORT_SYMBOL(recalc_sigpending);
1940 EXPORT_SYMBOL_GPL(dequeue_signal);
1941 EXPORT_SYMBOL(flush_signals);
1942 EXPORT_SYMBOL(force_sig);
1943 EXPORT_SYMBOL(kill_proc);
1944 EXPORT_SYMBOL(ptrace_notify);
1945 EXPORT_SYMBOL(send_sig);
1946 EXPORT_SYMBOL(send_sig_info);
1947 EXPORT_SYMBOL(sigprocmask);
1948 EXPORT_SYMBOL(block_all_signals);
1949 EXPORT_SYMBOL(unblock_all_signals);
1950 
1951 
1952 /*
1953  * System call entry points.
1954  */
1955 
1956 asmlinkage long sys_restart_syscall(void)
1957 {
1958 	struct restart_block *restart = &current_thread_info()->restart_block;
1959 	return restart->fn(restart);
1960 }
1961 
1962 long do_no_restart_syscall(struct restart_block *param)
1963 {
1964 	return -EINTR;
1965 }
1966 
1967 /*
1968  * We don't need to get the kernel lock - this is all local to this
1969  * particular thread.. (and that's good, because this is _heavily_
1970  * used by various programs)
1971  */
1972 
1973 /*
1974  * This is also useful for kernel threads that want to temporarily
1975  * (or permanently) block certain signals.
1976  *
1977  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1978  * interface happily blocks "unblockable" signals like SIGKILL
1979  * and friends.
1980  */
1981 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1982 {
1983 	int error;
1984 
1985 	spin_lock_irq(&current->sighand->siglock);
1986 	if (oldset)
1987 		*oldset = current->blocked;
1988 
1989 	error = 0;
1990 	switch (how) {
1991 	case SIG_BLOCK:
1992 		sigorsets(&current->blocked, &current->blocked, set);
1993 		break;
1994 	case SIG_UNBLOCK:
1995 		signandsets(&current->blocked, &current->blocked, set);
1996 		break;
1997 	case SIG_SETMASK:
1998 		current->blocked = *set;
1999 		break;
2000 	default:
2001 		error = -EINVAL;
2002 	}
2003 	recalc_sigpending();
2004 	spin_unlock_irq(&current->sighand->siglock);
2005 
2006 	return error;
2007 }
2008 
2009 asmlinkage long
2010 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2011 {
2012 	int error = -EINVAL;
2013 	sigset_t old_set, new_set;
2014 
2015 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2016 	if (sigsetsize != sizeof(sigset_t))
2017 		goto out;
2018 
2019 	if (set) {
2020 		error = -EFAULT;
2021 		if (copy_from_user(&new_set, set, sizeof(*set)))
2022 			goto out;
2023 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2024 
2025 		error = sigprocmask(how, &new_set, &old_set);
2026 		if (error)
2027 			goto out;
2028 		if (oset)
2029 			goto set_old;
2030 	} else if (oset) {
2031 		spin_lock_irq(&current->sighand->siglock);
2032 		old_set = current->blocked;
2033 		spin_unlock_irq(&current->sighand->siglock);
2034 
2035 	set_old:
2036 		error = -EFAULT;
2037 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
2038 			goto out;
2039 	}
2040 	error = 0;
2041 out:
2042 	return error;
2043 }
2044 
2045 long do_sigpending(void __user *set, unsigned long sigsetsize)
2046 {
2047 	long error = -EINVAL;
2048 	sigset_t pending;
2049 
2050 	if (sigsetsize > sizeof(sigset_t))
2051 		goto out;
2052 
2053 	spin_lock_irq(&current->sighand->siglock);
2054 	sigorsets(&pending, &current->pending.signal,
2055 		  &current->signal->shared_pending.signal);
2056 	spin_unlock_irq(&current->sighand->siglock);
2057 
2058 	/* Outside the lock because only this thread touches it.  */
2059 	sigandsets(&pending, &current->blocked, &pending);
2060 
2061 	error = -EFAULT;
2062 	if (!copy_to_user(set, &pending, sigsetsize))
2063 		error = 0;
2064 
2065 out:
2066 	return error;
2067 }
2068 
2069 asmlinkage long
2070 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2071 {
2072 	return do_sigpending(set, sigsetsize);
2073 }
2074 
2075 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2076 
2077 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2078 {
2079 	int err;
2080 
2081 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2082 		return -EFAULT;
2083 	if (from->si_code < 0)
2084 		return __copy_to_user(to, from, sizeof(siginfo_t))
2085 			? -EFAULT : 0;
2086 	/*
2087 	 * If you change siginfo_t structure, please be sure
2088 	 * this code is fixed accordingly.
2089 	 * Please remember to update the signalfd_copyinfo() function
2090 	 * inside fs/signalfd.c too, in case siginfo_t changes.
2091 	 * It should never copy any pad contained in the structure
2092 	 * to avoid security leaks, but must copy the generic
2093 	 * 3 ints plus the relevant union member.
2094 	 */
2095 	err = __put_user(from->si_signo, &to->si_signo);
2096 	err |= __put_user(from->si_errno, &to->si_errno);
2097 	err |= __put_user((short)from->si_code, &to->si_code);
2098 	switch (from->si_code & __SI_MASK) {
2099 	case __SI_KILL:
2100 		err |= __put_user(from->si_pid, &to->si_pid);
2101 		err |= __put_user(from->si_uid, &to->si_uid);
2102 		break;
2103 	case __SI_TIMER:
2104 		 err |= __put_user(from->si_tid, &to->si_tid);
2105 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2106 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2107 		break;
2108 	case __SI_POLL:
2109 		err |= __put_user(from->si_band, &to->si_band);
2110 		err |= __put_user(from->si_fd, &to->si_fd);
2111 		break;
2112 	case __SI_FAULT:
2113 		err |= __put_user(from->si_addr, &to->si_addr);
2114 #ifdef __ARCH_SI_TRAPNO
2115 		err |= __put_user(from->si_trapno, &to->si_trapno);
2116 #endif
2117 		break;
2118 	case __SI_CHLD:
2119 		err |= __put_user(from->si_pid, &to->si_pid);
2120 		err |= __put_user(from->si_uid, &to->si_uid);
2121 		err |= __put_user(from->si_status, &to->si_status);
2122 		err |= __put_user(from->si_utime, &to->si_utime);
2123 		err |= __put_user(from->si_stime, &to->si_stime);
2124 		break;
2125 	case __SI_RT: /* This is not generated by the kernel as of now. */
2126 	case __SI_MESGQ: /* But this is */
2127 		err |= __put_user(from->si_pid, &to->si_pid);
2128 		err |= __put_user(from->si_uid, &to->si_uid);
2129 		err |= __put_user(from->si_ptr, &to->si_ptr);
2130 		break;
2131 	default: /* this is just in case for now ... */
2132 		err |= __put_user(from->si_pid, &to->si_pid);
2133 		err |= __put_user(from->si_uid, &to->si_uid);
2134 		break;
2135 	}
2136 	return err;
2137 }
2138 
2139 #endif
2140 
2141 asmlinkage long
2142 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2143 		    siginfo_t __user *uinfo,
2144 		    const struct timespec __user *uts,
2145 		    size_t sigsetsize)
2146 {
2147 	int ret, sig;
2148 	sigset_t these;
2149 	struct timespec ts;
2150 	siginfo_t info;
2151 	long timeout = 0;
2152 
2153 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2154 	if (sigsetsize != sizeof(sigset_t))
2155 		return -EINVAL;
2156 
2157 	if (copy_from_user(&these, uthese, sizeof(these)))
2158 		return -EFAULT;
2159 
2160 	/*
2161 	 * Invert the set of allowed signals to get those we
2162 	 * want to block.
2163 	 */
2164 	sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2165 	signotset(&these);
2166 
2167 	if (uts) {
2168 		if (copy_from_user(&ts, uts, sizeof(ts)))
2169 			return -EFAULT;
2170 		if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2171 		    || ts.tv_sec < 0)
2172 			return -EINVAL;
2173 	}
2174 
2175 	spin_lock_irq(&current->sighand->siglock);
2176 	sig = dequeue_signal(current, &these, &info);
2177 	if (!sig) {
2178 		timeout = MAX_SCHEDULE_TIMEOUT;
2179 		if (uts)
2180 			timeout = (timespec_to_jiffies(&ts)
2181 				   + (ts.tv_sec || ts.tv_nsec));
2182 
2183 		if (timeout) {
2184 			/* None ready -- temporarily unblock those we're
2185 			 * interested while we are sleeping in so that we'll
2186 			 * be awakened when they arrive.  */
2187 			current->real_blocked = current->blocked;
2188 			sigandsets(&current->blocked, &current->blocked, &these);
2189 			recalc_sigpending();
2190 			spin_unlock_irq(&current->sighand->siglock);
2191 
2192 			timeout = schedule_timeout_interruptible(timeout);
2193 
2194 			spin_lock_irq(&current->sighand->siglock);
2195 			sig = dequeue_signal(current, &these, &info);
2196 			current->blocked = current->real_blocked;
2197 			siginitset(&current->real_blocked, 0);
2198 			recalc_sigpending();
2199 		}
2200 	}
2201 	spin_unlock_irq(&current->sighand->siglock);
2202 
2203 	if (sig) {
2204 		ret = sig;
2205 		if (uinfo) {
2206 			if (copy_siginfo_to_user(uinfo, &info))
2207 				ret = -EFAULT;
2208 		}
2209 	} else {
2210 		ret = -EAGAIN;
2211 		if (timeout)
2212 			ret = -EINTR;
2213 	}
2214 
2215 	return ret;
2216 }
2217 
2218 asmlinkage long
2219 sys_kill(int pid, int sig)
2220 {
2221 	struct siginfo info;
2222 
2223 	info.si_signo = sig;
2224 	info.si_errno = 0;
2225 	info.si_code = SI_USER;
2226 	info.si_pid = task_tgid_vnr(current);
2227 	info.si_uid = current->uid;
2228 
2229 	return kill_something_info(sig, &info, pid);
2230 }
2231 
2232 static int do_tkill(int tgid, int pid, int sig)
2233 {
2234 	int error;
2235 	struct siginfo info;
2236 	struct task_struct *p;
2237 
2238 	error = -ESRCH;
2239 	info.si_signo = sig;
2240 	info.si_errno = 0;
2241 	info.si_code = SI_TKILL;
2242 	info.si_pid = task_tgid_vnr(current);
2243 	info.si_uid = current->uid;
2244 
2245 	read_lock(&tasklist_lock);
2246 	p = find_task_by_vpid(pid);
2247 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2248 		error = check_kill_permission(sig, &info, p);
2249 		/*
2250 		 * The null signal is a permissions and process existence
2251 		 * probe.  No signal is actually delivered.
2252 		 */
2253 		if (!error && sig && p->sighand) {
2254 			spin_lock_irq(&p->sighand->siglock);
2255 			handle_stop_signal(sig, p);
2256 			error = specific_send_sig_info(sig, &info, p);
2257 			spin_unlock_irq(&p->sighand->siglock);
2258 		}
2259 	}
2260 	read_unlock(&tasklist_lock);
2261 
2262 	return error;
2263 }
2264 
2265 /**
2266  *  sys_tgkill - send signal to one specific thread
2267  *  @tgid: the thread group ID of the thread
2268  *  @pid: the PID of the thread
2269  *  @sig: signal to be sent
2270  *
2271  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2272  *  exists but it's not belonging to the target process anymore. This
2273  *  method solves the problem of threads exiting and PIDs getting reused.
2274  */
2275 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2276 {
2277 	/* This is only valid for single tasks */
2278 	if (pid <= 0 || tgid <= 0)
2279 		return -EINVAL;
2280 
2281 	return do_tkill(tgid, pid, sig);
2282 }
2283 
2284 /*
2285  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2286  */
2287 asmlinkage long
2288 sys_tkill(int pid, int sig)
2289 {
2290 	/* This is only valid for single tasks */
2291 	if (pid <= 0)
2292 		return -EINVAL;
2293 
2294 	return do_tkill(0, pid, sig);
2295 }
2296 
2297 asmlinkage long
2298 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2299 {
2300 	siginfo_t info;
2301 
2302 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2303 		return -EFAULT;
2304 
2305 	/* Not even root can pretend to send signals from the kernel.
2306 	   Nor can they impersonate a kill(), which adds source info.  */
2307 	if (info.si_code >= 0)
2308 		return -EPERM;
2309 	info.si_signo = sig;
2310 
2311 	/* POSIX.1b doesn't mention process groups.  */
2312 	return kill_proc_info(sig, &info, pid);
2313 }
2314 
2315 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2316 {
2317 	struct k_sigaction *k;
2318 	sigset_t mask;
2319 
2320 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2321 		return -EINVAL;
2322 
2323 	k = &current->sighand->action[sig-1];
2324 
2325 	spin_lock_irq(&current->sighand->siglock);
2326 	if (oact)
2327 		*oact = *k;
2328 
2329 	if (act) {
2330 		sigdelsetmask(&act->sa.sa_mask,
2331 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
2332 		*k = *act;
2333 		/*
2334 		 * POSIX 3.3.1.3:
2335 		 *  "Setting a signal action to SIG_IGN for a signal that is
2336 		 *   pending shall cause the pending signal to be discarded,
2337 		 *   whether or not it is blocked."
2338 		 *
2339 		 *  "Setting a signal action to SIG_DFL for a signal that is
2340 		 *   pending and whose default action is to ignore the signal
2341 		 *   (for example, SIGCHLD), shall cause the pending signal to
2342 		 *   be discarded, whether or not it is blocked"
2343 		 */
2344 		if (act->sa.sa_handler == SIG_IGN ||
2345 		   (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2346 			struct task_struct *t = current;
2347 			sigemptyset(&mask);
2348 			sigaddset(&mask, sig);
2349 			rm_from_queue_full(&mask, &t->signal->shared_pending);
2350 			do {
2351 				rm_from_queue_full(&mask, &t->pending);
2352 				t = next_thread(t);
2353 			} while (t != current);
2354 		}
2355 	}
2356 
2357 	spin_unlock_irq(&current->sighand->siglock);
2358 	return 0;
2359 }
2360 
2361 int
2362 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2363 {
2364 	stack_t oss;
2365 	int error;
2366 
2367 	if (uoss) {
2368 		oss.ss_sp = (void __user *) current->sas_ss_sp;
2369 		oss.ss_size = current->sas_ss_size;
2370 		oss.ss_flags = sas_ss_flags(sp);
2371 	}
2372 
2373 	if (uss) {
2374 		void __user *ss_sp;
2375 		size_t ss_size;
2376 		int ss_flags;
2377 
2378 		error = -EFAULT;
2379 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2380 		    || __get_user(ss_sp, &uss->ss_sp)
2381 		    || __get_user(ss_flags, &uss->ss_flags)
2382 		    || __get_user(ss_size, &uss->ss_size))
2383 			goto out;
2384 
2385 		error = -EPERM;
2386 		if (on_sig_stack(sp))
2387 			goto out;
2388 
2389 		error = -EINVAL;
2390 		/*
2391 		 *
2392 		 * Note - this code used to test ss_flags incorrectly
2393 		 *  	  old code may have been written using ss_flags==0
2394 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
2395 		 *	  way that worked) - this fix preserves that older
2396 		 *	  mechanism
2397 		 */
2398 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2399 			goto out;
2400 
2401 		if (ss_flags == SS_DISABLE) {
2402 			ss_size = 0;
2403 			ss_sp = NULL;
2404 		} else {
2405 			error = -ENOMEM;
2406 			if (ss_size < MINSIGSTKSZ)
2407 				goto out;
2408 		}
2409 
2410 		current->sas_ss_sp = (unsigned long) ss_sp;
2411 		current->sas_ss_size = ss_size;
2412 	}
2413 
2414 	if (uoss) {
2415 		error = -EFAULT;
2416 		if (copy_to_user(uoss, &oss, sizeof(oss)))
2417 			goto out;
2418 	}
2419 
2420 	error = 0;
2421 out:
2422 	return error;
2423 }
2424 
2425 #ifdef __ARCH_WANT_SYS_SIGPENDING
2426 
2427 asmlinkage long
2428 sys_sigpending(old_sigset_t __user *set)
2429 {
2430 	return do_sigpending(set, sizeof(*set));
2431 }
2432 
2433 #endif
2434 
2435 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2436 /* Some platforms have their own version with special arguments others
2437    support only sys_rt_sigprocmask.  */
2438 
2439 asmlinkage long
2440 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2441 {
2442 	int error;
2443 	old_sigset_t old_set, new_set;
2444 
2445 	if (set) {
2446 		error = -EFAULT;
2447 		if (copy_from_user(&new_set, set, sizeof(*set)))
2448 			goto out;
2449 		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2450 
2451 		spin_lock_irq(&current->sighand->siglock);
2452 		old_set = current->blocked.sig[0];
2453 
2454 		error = 0;
2455 		switch (how) {
2456 		default:
2457 			error = -EINVAL;
2458 			break;
2459 		case SIG_BLOCK:
2460 			sigaddsetmask(&current->blocked, new_set);
2461 			break;
2462 		case SIG_UNBLOCK:
2463 			sigdelsetmask(&current->blocked, new_set);
2464 			break;
2465 		case SIG_SETMASK:
2466 			current->blocked.sig[0] = new_set;
2467 			break;
2468 		}
2469 
2470 		recalc_sigpending();
2471 		spin_unlock_irq(&current->sighand->siglock);
2472 		if (error)
2473 			goto out;
2474 		if (oset)
2475 			goto set_old;
2476 	} else if (oset) {
2477 		old_set = current->blocked.sig[0];
2478 	set_old:
2479 		error = -EFAULT;
2480 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
2481 			goto out;
2482 	}
2483 	error = 0;
2484 out:
2485 	return error;
2486 }
2487 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2488 
2489 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2490 asmlinkage long
2491 sys_rt_sigaction(int sig,
2492 		 const struct sigaction __user *act,
2493 		 struct sigaction __user *oact,
2494 		 size_t sigsetsize)
2495 {
2496 	struct k_sigaction new_sa, old_sa;
2497 	int ret = -EINVAL;
2498 
2499 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2500 	if (sigsetsize != sizeof(sigset_t))
2501 		goto out;
2502 
2503 	if (act) {
2504 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2505 			return -EFAULT;
2506 	}
2507 
2508 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2509 
2510 	if (!ret && oact) {
2511 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2512 			return -EFAULT;
2513 	}
2514 out:
2515 	return ret;
2516 }
2517 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2518 
2519 #ifdef __ARCH_WANT_SYS_SGETMASK
2520 
2521 /*
2522  * For backwards compatibility.  Functionality superseded by sigprocmask.
2523  */
2524 asmlinkage long
2525 sys_sgetmask(void)
2526 {
2527 	/* SMP safe */
2528 	return current->blocked.sig[0];
2529 }
2530 
2531 asmlinkage long
2532 sys_ssetmask(int newmask)
2533 {
2534 	int old;
2535 
2536 	spin_lock_irq(&current->sighand->siglock);
2537 	old = current->blocked.sig[0];
2538 
2539 	siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2540 						  sigmask(SIGSTOP)));
2541 	recalc_sigpending();
2542 	spin_unlock_irq(&current->sighand->siglock);
2543 
2544 	return old;
2545 }
2546 #endif /* __ARCH_WANT_SGETMASK */
2547 
2548 #ifdef __ARCH_WANT_SYS_SIGNAL
2549 /*
2550  * For backwards compatibility.  Functionality superseded by sigaction.
2551  */
2552 asmlinkage unsigned long
2553 sys_signal(int sig, __sighandler_t handler)
2554 {
2555 	struct k_sigaction new_sa, old_sa;
2556 	int ret;
2557 
2558 	new_sa.sa.sa_handler = handler;
2559 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2560 	sigemptyset(&new_sa.sa.sa_mask);
2561 
2562 	ret = do_sigaction(sig, &new_sa, &old_sa);
2563 
2564 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2565 }
2566 #endif /* __ARCH_WANT_SYS_SIGNAL */
2567 
2568 #ifdef __ARCH_WANT_SYS_PAUSE
2569 
2570 asmlinkage long
2571 sys_pause(void)
2572 {
2573 	current->state = TASK_INTERRUPTIBLE;
2574 	schedule();
2575 	return -ERESTARTNOHAND;
2576 }
2577 
2578 #endif
2579 
2580 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2581 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2582 {
2583 	sigset_t newset;
2584 
2585 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2586 	if (sigsetsize != sizeof(sigset_t))
2587 		return -EINVAL;
2588 
2589 	if (copy_from_user(&newset, unewset, sizeof(newset)))
2590 		return -EFAULT;
2591 	sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2592 
2593 	spin_lock_irq(&current->sighand->siglock);
2594 	current->saved_sigmask = current->blocked;
2595 	current->blocked = newset;
2596 	recalc_sigpending();
2597 	spin_unlock_irq(&current->sighand->siglock);
2598 
2599 	current->state = TASK_INTERRUPTIBLE;
2600 	schedule();
2601 	set_thread_flag(TIF_RESTORE_SIGMASK);
2602 	return -ERESTARTNOHAND;
2603 }
2604 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2605 
2606 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2607 {
2608 	return NULL;
2609 }
2610 
2611 void __init signals_init(void)
2612 {
2613 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2614 }
2615