xref: /linux/kernel/signal.c (revision ec2212088c42ff7d1362629ec26dda4f3e8bdad3)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/ratelimit.h>
26 #include <linux/tracehook.h>
27 #include <linux/capability.h>
28 #include <linux/freezer.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/nsproxy.h>
31 #include <linux/user_namespace.h>
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/signal.h>
34 
35 #include <asm/param.h>
36 #include <asm/uaccess.h>
37 #include <asm/unistd.h>
38 #include <asm/siginfo.h>
39 #include "audit.h"	/* audit_signal_info() */
40 
41 /*
42  * SLAB caches for signal bits.
43  */
44 
45 static struct kmem_cache *sigqueue_cachep;
46 
47 int print_fatal_signals __read_mostly;
48 
49 static void __user *sig_handler(struct task_struct *t, int sig)
50 {
51 	return t->sighand->action[sig - 1].sa.sa_handler;
52 }
53 
54 static int sig_handler_ignored(void __user *handler, int sig)
55 {
56 	/* Is it explicitly or implicitly ignored? */
57 	return handler == SIG_IGN ||
58 		(handler == SIG_DFL && sig_kernel_ignore(sig));
59 }
60 
61 static int sig_task_ignored(struct task_struct *t, int sig,
62 		int from_ancestor_ns)
63 {
64 	void __user *handler;
65 
66 	handler = sig_handler(t, sig);
67 
68 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
69 			handler == SIG_DFL && !from_ancestor_ns)
70 		return 1;
71 
72 	return sig_handler_ignored(handler, sig);
73 }
74 
75 static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns)
76 {
77 	/*
78 	 * Blocked signals are never ignored, since the
79 	 * signal handler may change by the time it is
80 	 * unblocked.
81 	 */
82 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
83 		return 0;
84 
85 	if (!sig_task_ignored(t, sig, from_ancestor_ns))
86 		return 0;
87 
88 	/*
89 	 * Tracers may want to know about even ignored signals.
90 	 */
91 	return !t->ptrace;
92 }
93 
94 /*
95  * Re-calculate pending state from the set of locally pending
96  * signals, globally pending signals, and blocked signals.
97  */
98 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
99 {
100 	unsigned long ready;
101 	long i;
102 
103 	switch (_NSIG_WORDS) {
104 	default:
105 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
106 			ready |= signal->sig[i] &~ blocked->sig[i];
107 		break;
108 
109 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
110 		ready |= signal->sig[2] &~ blocked->sig[2];
111 		ready |= signal->sig[1] &~ blocked->sig[1];
112 		ready |= signal->sig[0] &~ blocked->sig[0];
113 		break;
114 
115 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
116 		ready |= signal->sig[0] &~ blocked->sig[0];
117 		break;
118 
119 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
120 	}
121 	return ready !=	0;
122 }
123 
124 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
125 
126 static int recalc_sigpending_tsk(struct task_struct *t)
127 {
128 	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
129 	    PENDING(&t->pending, &t->blocked) ||
130 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
131 		set_tsk_thread_flag(t, TIF_SIGPENDING);
132 		return 1;
133 	}
134 	/*
135 	 * We must never clear the flag in another thread, or in current
136 	 * when it's possible the current syscall is returning -ERESTART*.
137 	 * So we don't clear it here, and only callers who know they should do.
138 	 */
139 	return 0;
140 }
141 
142 /*
143  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
144  * This is superfluous when called on current, the wakeup is a harmless no-op.
145  */
146 void recalc_sigpending_and_wake(struct task_struct *t)
147 {
148 	if (recalc_sigpending_tsk(t))
149 		signal_wake_up(t, 0);
150 }
151 
152 void recalc_sigpending(void)
153 {
154 	if (!recalc_sigpending_tsk(current) && !freezing(current))
155 		clear_thread_flag(TIF_SIGPENDING);
156 
157 }
158 
159 /* Given the mask, find the first available signal that should be serviced. */
160 
161 #define SYNCHRONOUS_MASK \
162 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
163 	 sigmask(SIGTRAP) | sigmask(SIGFPE))
164 
165 int next_signal(struct sigpending *pending, sigset_t *mask)
166 {
167 	unsigned long i, *s, *m, x;
168 	int sig = 0;
169 
170 	s = pending->signal.sig;
171 	m = mask->sig;
172 
173 	/*
174 	 * Handle the first word specially: it contains the
175 	 * synchronous signals that need to be dequeued first.
176 	 */
177 	x = *s &~ *m;
178 	if (x) {
179 		if (x & SYNCHRONOUS_MASK)
180 			x &= SYNCHRONOUS_MASK;
181 		sig = ffz(~x) + 1;
182 		return sig;
183 	}
184 
185 	switch (_NSIG_WORDS) {
186 	default:
187 		for (i = 1; i < _NSIG_WORDS; ++i) {
188 			x = *++s &~ *++m;
189 			if (!x)
190 				continue;
191 			sig = ffz(~x) + i*_NSIG_BPW + 1;
192 			break;
193 		}
194 		break;
195 
196 	case 2:
197 		x = s[1] &~ m[1];
198 		if (!x)
199 			break;
200 		sig = ffz(~x) + _NSIG_BPW + 1;
201 		break;
202 
203 	case 1:
204 		/* Nothing to do */
205 		break;
206 	}
207 
208 	return sig;
209 }
210 
211 static inline void print_dropped_signal(int sig)
212 {
213 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
214 
215 	if (!print_fatal_signals)
216 		return;
217 
218 	if (!__ratelimit(&ratelimit_state))
219 		return;
220 
221 	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
222 				current->comm, current->pid, sig);
223 }
224 
225 /**
226  * task_set_jobctl_pending - set jobctl pending bits
227  * @task: target task
228  * @mask: pending bits to set
229  *
230  * Clear @mask from @task->jobctl.  @mask must be subset of
231  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
232  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
233  * cleared.  If @task is already being killed or exiting, this function
234  * becomes noop.
235  *
236  * CONTEXT:
237  * Must be called with @task->sighand->siglock held.
238  *
239  * RETURNS:
240  * %true if @mask is set, %false if made noop because @task was dying.
241  */
242 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
243 {
244 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
245 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
246 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
247 
248 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
249 		return false;
250 
251 	if (mask & JOBCTL_STOP_SIGMASK)
252 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
253 
254 	task->jobctl |= mask;
255 	return true;
256 }
257 
258 /**
259  * task_clear_jobctl_trapping - clear jobctl trapping bit
260  * @task: target task
261  *
262  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
263  * Clear it and wake up the ptracer.  Note that we don't need any further
264  * locking.  @task->siglock guarantees that @task->parent points to the
265  * ptracer.
266  *
267  * CONTEXT:
268  * Must be called with @task->sighand->siglock held.
269  */
270 void task_clear_jobctl_trapping(struct task_struct *task)
271 {
272 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
273 		task->jobctl &= ~JOBCTL_TRAPPING;
274 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
275 	}
276 }
277 
278 /**
279  * task_clear_jobctl_pending - clear jobctl pending bits
280  * @task: target task
281  * @mask: pending bits to clear
282  *
283  * Clear @mask from @task->jobctl.  @mask must be subset of
284  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
285  * STOP bits are cleared together.
286  *
287  * If clearing of @mask leaves no stop or trap pending, this function calls
288  * task_clear_jobctl_trapping().
289  *
290  * CONTEXT:
291  * Must be called with @task->sighand->siglock held.
292  */
293 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
294 {
295 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
296 
297 	if (mask & JOBCTL_STOP_PENDING)
298 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
299 
300 	task->jobctl &= ~mask;
301 
302 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
303 		task_clear_jobctl_trapping(task);
304 }
305 
306 /**
307  * task_participate_group_stop - participate in a group stop
308  * @task: task participating in a group stop
309  *
310  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
311  * Group stop states are cleared and the group stop count is consumed if
312  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
313  * stop, the appropriate %SIGNAL_* flags are set.
314  *
315  * CONTEXT:
316  * Must be called with @task->sighand->siglock held.
317  *
318  * RETURNS:
319  * %true if group stop completion should be notified to the parent, %false
320  * otherwise.
321  */
322 static bool task_participate_group_stop(struct task_struct *task)
323 {
324 	struct signal_struct *sig = task->signal;
325 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
326 
327 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
328 
329 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
330 
331 	if (!consume)
332 		return false;
333 
334 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
335 		sig->group_stop_count--;
336 
337 	/*
338 	 * Tell the caller to notify completion iff we are entering into a
339 	 * fresh group stop.  Read comment in do_signal_stop() for details.
340 	 */
341 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
342 		sig->flags = SIGNAL_STOP_STOPPED;
343 		return true;
344 	}
345 	return false;
346 }
347 
348 /*
349  * allocate a new signal queue record
350  * - this may be called without locks if and only if t == current, otherwise an
351  *   appropriate lock must be held to stop the target task from exiting
352  */
353 static struct sigqueue *
354 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
355 {
356 	struct sigqueue *q = NULL;
357 	struct user_struct *user;
358 
359 	/*
360 	 * Protect access to @t credentials. This can go away when all
361 	 * callers hold rcu read lock.
362 	 */
363 	rcu_read_lock();
364 	user = get_uid(__task_cred(t)->user);
365 	atomic_inc(&user->sigpending);
366 	rcu_read_unlock();
367 
368 	if (override_rlimit ||
369 	    atomic_read(&user->sigpending) <=
370 			task_rlimit(t, RLIMIT_SIGPENDING)) {
371 		q = kmem_cache_alloc(sigqueue_cachep, flags);
372 	} else {
373 		print_dropped_signal(sig);
374 	}
375 
376 	if (unlikely(q == NULL)) {
377 		atomic_dec(&user->sigpending);
378 		free_uid(user);
379 	} else {
380 		INIT_LIST_HEAD(&q->list);
381 		q->flags = 0;
382 		q->user = user;
383 	}
384 
385 	return q;
386 }
387 
388 static void __sigqueue_free(struct sigqueue *q)
389 {
390 	if (q->flags & SIGQUEUE_PREALLOC)
391 		return;
392 	atomic_dec(&q->user->sigpending);
393 	free_uid(q->user);
394 	kmem_cache_free(sigqueue_cachep, q);
395 }
396 
397 void flush_sigqueue(struct sigpending *queue)
398 {
399 	struct sigqueue *q;
400 
401 	sigemptyset(&queue->signal);
402 	while (!list_empty(&queue->list)) {
403 		q = list_entry(queue->list.next, struct sigqueue , list);
404 		list_del_init(&q->list);
405 		__sigqueue_free(q);
406 	}
407 }
408 
409 /*
410  * Flush all pending signals for a task.
411  */
412 void __flush_signals(struct task_struct *t)
413 {
414 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
415 	flush_sigqueue(&t->pending);
416 	flush_sigqueue(&t->signal->shared_pending);
417 }
418 
419 void flush_signals(struct task_struct *t)
420 {
421 	unsigned long flags;
422 
423 	spin_lock_irqsave(&t->sighand->siglock, flags);
424 	__flush_signals(t);
425 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
426 }
427 
428 static void __flush_itimer_signals(struct sigpending *pending)
429 {
430 	sigset_t signal, retain;
431 	struct sigqueue *q, *n;
432 
433 	signal = pending->signal;
434 	sigemptyset(&retain);
435 
436 	list_for_each_entry_safe(q, n, &pending->list, list) {
437 		int sig = q->info.si_signo;
438 
439 		if (likely(q->info.si_code != SI_TIMER)) {
440 			sigaddset(&retain, sig);
441 		} else {
442 			sigdelset(&signal, sig);
443 			list_del_init(&q->list);
444 			__sigqueue_free(q);
445 		}
446 	}
447 
448 	sigorsets(&pending->signal, &signal, &retain);
449 }
450 
451 void flush_itimer_signals(void)
452 {
453 	struct task_struct *tsk = current;
454 	unsigned long flags;
455 
456 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
457 	__flush_itimer_signals(&tsk->pending);
458 	__flush_itimer_signals(&tsk->signal->shared_pending);
459 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
460 }
461 
462 void ignore_signals(struct task_struct *t)
463 {
464 	int i;
465 
466 	for (i = 0; i < _NSIG; ++i)
467 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
468 
469 	flush_signals(t);
470 }
471 
472 /*
473  * Flush all handlers for a task.
474  */
475 
476 void
477 flush_signal_handlers(struct task_struct *t, int force_default)
478 {
479 	int i;
480 	struct k_sigaction *ka = &t->sighand->action[0];
481 	for (i = _NSIG ; i != 0 ; i--) {
482 		if (force_default || ka->sa.sa_handler != SIG_IGN)
483 			ka->sa.sa_handler = SIG_DFL;
484 		ka->sa.sa_flags = 0;
485 		sigemptyset(&ka->sa.sa_mask);
486 		ka++;
487 	}
488 }
489 
490 int unhandled_signal(struct task_struct *tsk, int sig)
491 {
492 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
493 	if (is_global_init(tsk))
494 		return 1;
495 	if (handler != SIG_IGN && handler != SIG_DFL)
496 		return 0;
497 	/* if ptraced, let the tracer determine */
498 	return !tsk->ptrace;
499 }
500 
501 /*
502  * Notify the system that a driver wants to block all signals for this
503  * process, and wants to be notified if any signals at all were to be
504  * sent/acted upon.  If the notifier routine returns non-zero, then the
505  * signal will be acted upon after all.  If the notifier routine returns 0,
506  * then then signal will be blocked.  Only one block per process is
507  * allowed.  priv is a pointer to private data that the notifier routine
508  * can use to determine if the signal should be blocked or not.
509  */
510 void
511 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
512 {
513 	unsigned long flags;
514 
515 	spin_lock_irqsave(&current->sighand->siglock, flags);
516 	current->notifier_mask = mask;
517 	current->notifier_data = priv;
518 	current->notifier = notifier;
519 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
520 }
521 
522 /* Notify the system that blocking has ended. */
523 
524 void
525 unblock_all_signals(void)
526 {
527 	unsigned long flags;
528 
529 	spin_lock_irqsave(&current->sighand->siglock, flags);
530 	current->notifier = NULL;
531 	current->notifier_data = NULL;
532 	recalc_sigpending();
533 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
534 }
535 
536 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
537 {
538 	struct sigqueue *q, *first = NULL;
539 
540 	/*
541 	 * Collect the siginfo appropriate to this signal.  Check if
542 	 * there is another siginfo for the same signal.
543 	*/
544 	list_for_each_entry(q, &list->list, list) {
545 		if (q->info.si_signo == sig) {
546 			if (first)
547 				goto still_pending;
548 			first = q;
549 		}
550 	}
551 
552 	sigdelset(&list->signal, sig);
553 
554 	if (first) {
555 still_pending:
556 		list_del_init(&first->list);
557 		copy_siginfo(info, &first->info);
558 		__sigqueue_free(first);
559 	} else {
560 		/*
561 		 * Ok, it wasn't in the queue.  This must be
562 		 * a fast-pathed signal or we must have been
563 		 * out of queue space.  So zero out the info.
564 		 */
565 		info->si_signo = sig;
566 		info->si_errno = 0;
567 		info->si_code = SI_USER;
568 		info->si_pid = 0;
569 		info->si_uid = 0;
570 	}
571 }
572 
573 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
574 			siginfo_t *info)
575 {
576 	int sig = next_signal(pending, mask);
577 
578 	if (sig) {
579 		if (current->notifier) {
580 			if (sigismember(current->notifier_mask, sig)) {
581 				if (!(current->notifier)(current->notifier_data)) {
582 					clear_thread_flag(TIF_SIGPENDING);
583 					return 0;
584 				}
585 			}
586 		}
587 
588 		collect_signal(sig, pending, info);
589 	}
590 
591 	return sig;
592 }
593 
594 /*
595  * Dequeue a signal and return the element to the caller, which is
596  * expected to free it.
597  *
598  * All callers have to hold the siglock.
599  */
600 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
601 {
602 	int signr;
603 
604 	/* We only dequeue private signals from ourselves, we don't let
605 	 * signalfd steal them
606 	 */
607 	signr = __dequeue_signal(&tsk->pending, mask, info);
608 	if (!signr) {
609 		signr = __dequeue_signal(&tsk->signal->shared_pending,
610 					 mask, info);
611 		/*
612 		 * itimer signal ?
613 		 *
614 		 * itimers are process shared and we restart periodic
615 		 * itimers in the signal delivery path to prevent DoS
616 		 * attacks in the high resolution timer case. This is
617 		 * compliant with the old way of self-restarting
618 		 * itimers, as the SIGALRM is a legacy signal and only
619 		 * queued once. Changing the restart behaviour to
620 		 * restart the timer in the signal dequeue path is
621 		 * reducing the timer noise on heavy loaded !highres
622 		 * systems too.
623 		 */
624 		if (unlikely(signr == SIGALRM)) {
625 			struct hrtimer *tmr = &tsk->signal->real_timer;
626 
627 			if (!hrtimer_is_queued(tmr) &&
628 			    tsk->signal->it_real_incr.tv64 != 0) {
629 				hrtimer_forward(tmr, tmr->base->get_time(),
630 						tsk->signal->it_real_incr);
631 				hrtimer_restart(tmr);
632 			}
633 		}
634 	}
635 
636 	recalc_sigpending();
637 	if (!signr)
638 		return 0;
639 
640 	if (unlikely(sig_kernel_stop(signr))) {
641 		/*
642 		 * Set a marker that we have dequeued a stop signal.  Our
643 		 * caller might release the siglock and then the pending
644 		 * stop signal it is about to process is no longer in the
645 		 * pending bitmasks, but must still be cleared by a SIGCONT
646 		 * (and overruled by a SIGKILL).  So those cases clear this
647 		 * shared flag after we've set it.  Note that this flag may
648 		 * remain set after the signal we return is ignored or
649 		 * handled.  That doesn't matter because its only purpose
650 		 * is to alert stop-signal processing code when another
651 		 * processor has come along and cleared the flag.
652 		 */
653 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
654 	}
655 	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
656 		/*
657 		 * Release the siglock to ensure proper locking order
658 		 * of timer locks outside of siglocks.  Note, we leave
659 		 * irqs disabled here, since the posix-timers code is
660 		 * about to disable them again anyway.
661 		 */
662 		spin_unlock(&tsk->sighand->siglock);
663 		do_schedule_next_timer(info);
664 		spin_lock(&tsk->sighand->siglock);
665 	}
666 	return signr;
667 }
668 
669 /*
670  * Tell a process that it has a new active signal..
671  *
672  * NOTE! we rely on the previous spin_lock to
673  * lock interrupts for us! We can only be called with
674  * "siglock" held, and the local interrupt must
675  * have been disabled when that got acquired!
676  *
677  * No need to set need_resched since signal event passing
678  * goes through ->blocked
679  */
680 void signal_wake_up(struct task_struct *t, int resume)
681 {
682 	unsigned int mask;
683 
684 	set_tsk_thread_flag(t, TIF_SIGPENDING);
685 
686 	/*
687 	 * For SIGKILL, we want to wake it up in the stopped/traced/killable
688 	 * case. We don't check t->state here because there is a race with it
689 	 * executing another processor and just now entering stopped state.
690 	 * By using wake_up_state, we ensure the process will wake up and
691 	 * handle its death signal.
692 	 */
693 	mask = TASK_INTERRUPTIBLE;
694 	if (resume)
695 		mask |= TASK_WAKEKILL;
696 	if (!wake_up_state(t, mask))
697 		kick_process(t);
698 }
699 
700 /*
701  * Remove signals in mask from the pending set and queue.
702  * Returns 1 if any signals were found.
703  *
704  * All callers must be holding the siglock.
705  *
706  * This version takes a sigset mask and looks at all signals,
707  * not just those in the first mask word.
708  */
709 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
710 {
711 	struct sigqueue *q, *n;
712 	sigset_t m;
713 
714 	sigandsets(&m, mask, &s->signal);
715 	if (sigisemptyset(&m))
716 		return 0;
717 
718 	sigandnsets(&s->signal, &s->signal, mask);
719 	list_for_each_entry_safe(q, n, &s->list, list) {
720 		if (sigismember(mask, q->info.si_signo)) {
721 			list_del_init(&q->list);
722 			__sigqueue_free(q);
723 		}
724 	}
725 	return 1;
726 }
727 /*
728  * Remove signals in mask from the pending set and queue.
729  * Returns 1 if any signals were found.
730  *
731  * All callers must be holding the siglock.
732  */
733 static int rm_from_queue(unsigned long mask, struct sigpending *s)
734 {
735 	struct sigqueue *q, *n;
736 
737 	if (!sigtestsetmask(&s->signal, mask))
738 		return 0;
739 
740 	sigdelsetmask(&s->signal, mask);
741 	list_for_each_entry_safe(q, n, &s->list, list) {
742 		if (q->info.si_signo < SIGRTMIN &&
743 		    (mask & sigmask(q->info.si_signo))) {
744 			list_del_init(&q->list);
745 			__sigqueue_free(q);
746 		}
747 	}
748 	return 1;
749 }
750 
751 static inline int is_si_special(const struct siginfo *info)
752 {
753 	return info <= SEND_SIG_FORCED;
754 }
755 
756 static inline bool si_fromuser(const struct siginfo *info)
757 {
758 	return info == SEND_SIG_NOINFO ||
759 		(!is_si_special(info) && SI_FROMUSER(info));
760 }
761 
762 /*
763  * called with RCU read lock from check_kill_permission()
764  */
765 static int kill_ok_by_cred(struct task_struct *t)
766 {
767 	const struct cred *cred = current_cred();
768 	const struct cred *tcred = __task_cred(t);
769 
770 	if (cred->user->user_ns == tcred->user->user_ns &&
771 	    (cred->euid == tcred->suid ||
772 	     cred->euid == tcred->uid ||
773 	     cred->uid  == tcred->suid ||
774 	     cred->uid  == tcred->uid))
775 		return 1;
776 
777 	if (ns_capable(tcred->user->user_ns, CAP_KILL))
778 		return 1;
779 
780 	return 0;
781 }
782 
783 /*
784  * Bad permissions for sending the signal
785  * - the caller must hold the RCU read lock
786  */
787 static int check_kill_permission(int sig, struct siginfo *info,
788 				 struct task_struct *t)
789 {
790 	struct pid *sid;
791 	int error;
792 
793 	if (!valid_signal(sig))
794 		return -EINVAL;
795 
796 	if (!si_fromuser(info))
797 		return 0;
798 
799 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
800 	if (error)
801 		return error;
802 
803 	if (!same_thread_group(current, t) &&
804 	    !kill_ok_by_cred(t)) {
805 		switch (sig) {
806 		case SIGCONT:
807 			sid = task_session(t);
808 			/*
809 			 * We don't return the error if sid == NULL. The
810 			 * task was unhashed, the caller must notice this.
811 			 */
812 			if (!sid || sid == task_session(current))
813 				break;
814 		default:
815 			return -EPERM;
816 		}
817 	}
818 
819 	return security_task_kill(t, info, sig, 0);
820 }
821 
822 /**
823  * ptrace_trap_notify - schedule trap to notify ptracer
824  * @t: tracee wanting to notify tracer
825  *
826  * This function schedules sticky ptrace trap which is cleared on the next
827  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
828  * ptracer.
829  *
830  * If @t is running, STOP trap will be taken.  If trapped for STOP and
831  * ptracer is listening for events, tracee is woken up so that it can
832  * re-trap for the new event.  If trapped otherwise, STOP trap will be
833  * eventually taken without returning to userland after the existing traps
834  * are finished by PTRACE_CONT.
835  *
836  * CONTEXT:
837  * Must be called with @task->sighand->siglock held.
838  */
839 static void ptrace_trap_notify(struct task_struct *t)
840 {
841 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
842 	assert_spin_locked(&t->sighand->siglock);
843 
844 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
845 	signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
846 }
847 
848 /*
849  * Handle magic process-wide effects of stop/continue signals. Unlike
850  * the signal actions, these happen immediately at signal-generation
851  * time regardless of blocking, ignoring, or handling.  This does the
852  * actual continuing for SIGCONT, but not the actual stopping for stop
853  * signals. The process stop is done as a signal action for SIG_DFL.
854  *
855  * Returns true if the signal should be actually delivered, otherwise
856  * it should be dropped.
857  */
858 static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns)
859 {
860 	struct signal_struct *signal = p->signal;
861 	struct task_struct *t;
862 
863 	if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
864 		/*
865 		 * The process is in the middle of dying, nothing to do.
866 		 */
867 	} else if (sig_kernel_stop(sig)) {
868 		/*
869 		 * This is a stop signal.  Remove SIGCONT from all queues.
870 		 */
871 		rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
872 		t = p;
873 		do {
874 			rm_from_queue(sigmask(SIGCONT), &t->pending);
875 		} while_each_thread(p, t);
876 	} else if (sig == SIGCONT) {
877 		unsigned int why;
878 		/*
879 		 * Remove all stop signals from all queues, wake all threads.
880 		 */
881 		rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
882 		t = p;
883 		do {
884 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
885 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
886 			if (likely(!(t->ptrace & PT_SEIZED)))
887 				wake_up_state(t, __TASK_STOPPED);
888 			else
889 				ptrace_trap_notify(t);
890 		} while_each_thread(p, t);
891 
892 		/*
893 		 * Notify the parent with CLD_CONTINUED if we were stopped.
894 		 *
895 		 * If we were in the middle of a group stop, we pretend it
896 		 * was already finished, and then continued. Since SIGCHLD
897 		 * doesn't queue we report only CLD_STOPPED, as if the next
898 		 * CLD_CONTINUED was dropped.
899 		 */
900 		why = 0;
901 		if (signal->flags & SIGNAL_STOP_STOPPED)
902 			why |= SIGNAL_CLD_CONTINUED;
903 		else if (signal->group_stop_count)
904 			why |= SIGNAL_CLD_STOPPED;
905 
906 		if (why) {
907 			/*
908 			 * The first thread which returns from do_signal_stop()
909 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
910 			 * notify its parent. See get_signal_to_deliver().
911 			 */
912 			signal->flags = why | SIGNAL_STOP_CONTINUED;
913 			signal->group_stop_count = 0;
914 			signal->group_exit_code = 0;
915 		}
916 	}
917 
918 	return !sig_ignored(p, sig, from_ancestor_ns);
919 }
920 
921 /*
922  * Test if P wants to take SIG.  After we've checked all threads with this,
923  * it's equivalent to finding no threads not blocking SIG.  Any threads not
924  * blocking SIG were ruled out because they are not running and already
925  * have pending signals.  Such threads will dequeue from the shared queue
926  * as soon as they're available, so putting the signal on the shared queue
927  * will be equivalent to sending it to one such thread.
928  */
929 static inline int wants_signal(int sig, struct task_struct *p)
930 {
931 	if (sigismember(&p->blocked, sig))
932 		return 0;
933 	if (p->flags & PF_EXITING)
934 		return 0;
935 	if (sig == SIGKILL)
936 		return 1;
937 	if (task_is_stopped_or_traced(p))
938 		return 0;
939 	return task_curr(p) || !signal_pending(p);
940 }
941 
942 static void complete_signal(int sig, struct task_struct *p, int group)
943 {
944 	struct signal_struct *signal = p->signal;
945 	struct task_struct *t;
946 
947 	/*
948 	 * Now find a thread we can wake up to take the signal off the queue.
949 	 *
950 	 * If the main thread wants the signal, it gets first crack.
951 	 * Probably the least surprising to the average bear.
952 	 */
953 	if (wants_signal(sig, p))
954 		t = p;
955 	else if (!group || thread_group_empty(p))
956 		/*
957 		 * There is just one thread and it does not need to be woken.
958 		 * It will dequeue unblocked signals before it runs again.
959 		 */
960 		return;
961 	else {
962 		/*
963 		 * Otherwise try to find a suitable thread.
964 		 */
965 		t = signal->curr_target;
966 		while (!wants_signal(sig, t)) {
967 			t = next_thread(t);
968 			if (t == signal->curr_target)
969 				/*
970 				 * No thread needs to be woken.
971 				 * Any eligible threads will see
972 				 * the signal in the queue soon.
973 				 */
974 				return;
975 		}
976 		signal->curr_target = t;
977 	}
978 
979 	/*
980 	 * Found a killable thread.  If the signal will be fatal,
981 	 * then start taking the whole group down immediately.
982 	 */
983 	if (sig_fatal(p, sig) &&
984 	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
985 	    !sigismember(&t->real_blocked, sig) &&
986 	    (sig == SIGKILL || !t->ptrace)) {
987 		/*
988 		 * This signal will be fatal to the whole group.
989 		 */
990 		if (!sig_kernel_coredump(sig)) {
991 			/*
992 			 * Start a group exit and wake everybody up.
993 			 * This way we don't have other threads
994 			 * running and doing things after a slower
995 			 * thread has the fatal signal pending.
996 			 */
997 			signal->flags = SIGNAL_GROUP_EXIT;
998 			signal->group_exit_code = sig;
999 			signal->group_stop_count = 0;
1000 			t = p;
1001 			do {
1002 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1003 				sigaddset(&t->pending.signal, SIGKILL);
1004 				signal_wake_up(t, 1);
1005 			} while_each_thread(p, t);
1006 			return;
1007 		}
1008 	}
1009 
1010 	/*
1011 	 * The signal is already in the shared-pending queue.
1012 	 * Tell the chosen thread to wake up and dequeue it.
1013 	 */
1014 	signal_wake_up(t, sig == SIGKILL);
1015 	return;
1016 }
1017 
1018 static inline int legacy_queue(struct sigpending *signals, int sig)
1019 {
1020 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1021 }
1022 
1023 /*
1024  * map the uid in struct cred into user namespace *ns
1025  */
1026 static inline uid_t map_cred_ns(const struct cred *cred,
1027 				struct user_namespace *ns)
1028 {
1029 	return user_ns_map_uid(ns, cred, cred->uid);
1030 }
1031 
1032 #ifdef CONFIG_USER_NS
1033 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1034 {
1035 	if (current_user_ns() == task_cred_xxx(t, user_ns))
1036 		return;
1037 
1038 	if (SI_FROMKERNEL(info))
1039 		return;
1040 
1041 	info->si_uid = user_ns_map_uid(task_cred_xxx(t, user_ns),
1042 					current_cred(), info->si_uid);
1043 }
1044 #else
1045 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1046 {
1047 	return;
1048 }
1049 #endif
1050 
1051 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1052 			int group, int from_ancestor_ns)
1053 {
1054 	struct sigpending *pending;
1055 	struct sigqueue *q;
1056 	int override_rlimit;
1057 	int ret = 0, result;
1058 
1059 	assert_spin_locked(&t->sighand->siglock);
1060 
1061 	result = TRACE_SIGNAL_IGNORED;
1062 	if (!prepare_signal(sig, t, from_ancestor_ns))
1063 		goto ret;
1064 
1065 	pending = group ? &t->signal->shared_pending : &t->pending;
1066 	/*
1067 	 * Short-circuit ignored signals and support queuing
1068 	 * exactly one non-rt signal, so that we can get more
1069 	 * detailed information about the cause of the signal.
1070 	 */
1071 	result = TRACE_SIGNAL_ALREADY_PENDING;
1072 	if (legacy_queue(pending, sig))
1073 		goto ret;
1074 
1075 	result = TRACE_SIGNAL_DELIVERED;
1076 	/*
1077 	 * fast-pathed signals for kernel-internal things like SIGSTOP
1078 	 * or SIGKILL.
1079 	 */
1080 	if (info == SEND_SIG_FORCED)
1081 		goto out_set;
1082 
1083 	/*
1084 	 * Real-time signals must be queued if sent by sigqueue, or
1085 	 * some other real-time mechanism.  It is implementation
1086 	 * defined whether kill() does so.  We attempt to do so, on
1087 	 * the principle of least surprise, but since kill is not
1088 	 * allowed to fail with EAGAIN when low on memory we just
1089 	 * make sure at least one signal gets delivered and don't
1090 	 * pass on the info struct.
1091 	 */
1092 	if (sig < SIGRTMIN)
1093 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1094 	else
1095 		override_rlimit = 0;
1096 
1097 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1098 		override_rlimit);
1099 	if (q) {
1100 		list_add_tail(&q->list, &pending->list);
1101 		switch ((unsigned long) info) {
1102 		case (unsigned long) SEND_SIG_NOINFO:
1103 			q->info.si_signo = sig;
1104 			q->info.si_errno = 0;
1105 			q->info.si_code = SI_USER;
1106 			q->info.si_pid = task_tgid_nr_ns(current,
1107 							task_active_pid_ns(t));
1108 			q->info.si_uid = current_uid();
1109 			break;
1110 		case (unsigned long) SEND_SIG_PRIV:
1111 			q->info.si_signo = sig;
1112 			q->info.si_errno = 0;
1113 			q->info.si_code = SI_KERNEL;
1114 			q->info.si_pid = 0;
1115 			q->info.si_uid = 0;
1116 			break;
1117 		default:
1118 			copy_siginfo(&q->info, info);
1119 			if (from_ancestor_ns)
1120 				q->info.si_pid = 0;
1121 			break;
1122 		}
1123 
1124 		userns_fixup_signal_uid(&q->info, t);
1125 
1126 	} else if (!is_si_special(info)) {
1127 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1128 			/*
1129 			 * Queue overflow, abort.  We may abort if the
1130 			 * signal was rt and sent by user using something
1131 			 * other than kill().
1132 			 */
1133 			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1134 			ret = -EAGAIN;
1135 			goto ret;
1136 		} else {
1137 			/*
1138 			 * This is a silent loss of information.  We still
1139 			 * send the signal, but the *info bits are lost.
1140 			 */
1141 			result = TRACE_SIGNAL_LOSE_INFO;
1142 		}
1143 	}
1144 
1145 out_set:
1146 	signalfd_notify(t, sig);
1147 	sigaddset(&pending->signal, sig);
1148 	complete_signal(sig, t, group);
1149 ret:
1150 	trace_signal_generate(sig, info, t, group, result);
1151 	return ret;
1152 }
1153 
1154 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1155 			int group)
1156 {
1157 	int from_ancestor_ns = 0;
1158 
1159 #ifdef CONFIG_PID_NS
1160 	from_ancestor_ns = si_fromuser(info) &&
1161 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1162 #endif
1163 
1164 	return __send_signal(sig, info, t, group, from_ancestor_ns);
1165 }
1166 
1167 static void print_fatal_signal(struct pt_regs *regs, int signr)
1168 {
1169 	printk("%s/%d: potentially unexpected fatal signal %d.\n",
1170 		current->comm, task_pid_nr(current), signr);
1171 
1172 #if defined(__i386__) && !defined(__arch_um__)
1173 	printk("code at %08lx: ", regs->ip);
1174 	{
1175 		int i;
1176 		for (i = 0; i < 16; i++) {
1177 			unsigned char insn;
1178 
1179 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1180 				break;
1181 			printk("%02x ", insn);
1182 		}
1183 	}
1184 #endif
1185 	printk("\n");
1186 	preempt_disable();
1187 	show_regs(regs);
1188 	preempt_enable();
1189 }
1190 
1191 static int __init setup_print_fatal_signals(char *str)
1192 {
1193 	get_option (&str, &print_fatal_signals);
1194 
1195 	return 1;
1196 }
1197 
1198 __setup("print-fatal-signals=", setup_print_fatal_signals);
1199 
1200 int
1201 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1202 {
1203 	return send_signal(sig, info, p, 1);
1204 }
1205 
1206 static int
1207 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1208 {
1209 	return send_signal(sig, info, t, 0);
1210 }
1211 
1212 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1213 			bool group)
1214 {
1215 	unsigned long flags;
1216 	int ret = -ESRCH;
1217 
1218 	if (lock_task_sighand(p, &flags)) {
1219 		ret = send_signal(sig, info, p, group);
1220 		unlock_task_sighand(p, &flags);
1221 	}
1222 
1223 	return ret;
1224 }
1225 
1226 /*
1227  * Force a signal that the process can't ignore: if necessary
1228  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1229  *
1230  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1231  * since we do not want to have a signal handler that was blocked
1232  * be invoked when user space had explicitly blocked it.
1233  *
1234  * We don't want to have recursive SIGSEGV's etc, for example,
1235  * that is why we also clear SIGNAL_UNKILLABLE.
1236  */
1237 int
1238 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1239 {
1240 	unsigned long int flags;
1241 	int ret, blocked, ignored;
1242 	struct k_sigaction *action;
1243 
1244 	spin_lock_irqsave(&t->sighand->siglock, flags);
1245 	action = &t->sighand->action[sig-1];
1246 	ignored = action->sa.sa_handler == SIG_IGN;
1247 	blocked = sigismember(&t->blocked, sig);
1248 	if (blocked || ignored) {
1249 		action->sa.sa_handler = SIG_DFL;
1250 		if (blocked) {
1251 			sigdelset(&t->blocked, sig);
1252 			recalc_sigpending_and_wake(t);
1253 		}
1254 	}
1255 	if (action->sa.sa_handler == SIG_DFL)
1256 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1257 	ret = specific_send_sig_info(sig, info, t);
1258 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1259 
1260 	return ret;
1261 }
1262 
1263 /*
1264  * Nuke all other threads in the group.
1265  */
1266 int zap_other_threads(struct task_struct *p)
1267 {
1268 	struct task_struct *t = p;
1269 	int count = 0;
1270 
1271 	p->signal->group_stop_count = 0;
1272 
1273 	while_each_thread(p, t) {
1274 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1275 		count++;
1276 
1277 		/* Don't bother with already dead threads */
1278 		if (t->exit_state)
1279 			continue;
1280 		sigaddset(&t->pending.signal, SIGKILL);
1281 		signal_wake_up(t, 1);
1282 	}
1283 
1284 	return count;
1285 }
1286 
1287 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1288 					   unsigned long *flags)
1289 {
1290 	struct sighand_struct *sighand;
1291 
1292 	for (;;) {
1293 		local_irq_save(*flags);
1294 		rcu_read_lock();
1295 		sighand = rcu_dereference(tsk->sighand);
1296 		if (unlikely(sighand == NULL)) {
1297 			rcu_read_unlock();
1298 			local_irq_restore(*flags);
1299 			break;
1300 		}
1301 
1302 		spin_lock(&sighand->siglock);
1303 		if (likely(sighand == tsk->sighand)) {
1304 			rcu_read_unlock();
1305 			break;
1306 		}
1307 		spin_unlock(&sighand->siglock);
1308 		rcu_read_unlock();
1309 		local_irq_restore(*flags);
1310 	}
1311 
1312 	return sighand;
1313 }
1314 
1315 /*
1316  * send signal info to all the members of a group
1317  */
1318 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1319 {
1320 	int ret;
1321 
1322 	rcu_read_lock();
1323 	ret = check_kill_permission(sig, info, p);
1324 	rcu_read_unlock();
1325 
1326 	if (!ret && sig)
1327 		ret = do_send_sig_info(sig, info, p, true);
1328 
1329 	return ret;
1330 }
1331 
1332 /*
1333  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1334  * control characters do (^C, ^Z etc)
1335  * - the caller must hold at least a readlock on tasklist_lock
1336  */
1337 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1338 {
1339 	struct task_struct *p = NULL;
1340 	int retval, success;
1341 
1342 	success = 0;
1343 	retval = -ESRCH;
1344 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1345 		int err = group_send_sig_info(sig, info, p);
1346 		success |= !err;
1347 		retval = err;
1348 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1349 	return success ? 0 : retval;
1350 }
1351 
1352 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1353 {
1354 	int error = -ESRCH;
1355 	struct task_struct *p;
1356 
1357 	rcu_read_lock();
1358 retry:
1359 	p = pid_task(pid, PIDTYPE_PID);
1360 	if (p) {
1361 		error = group_send_sig_info(sig, info, p);
1362 		if (unlikely(error == -ESRCH))
1363 			/*
1364 			 * The task was unhashed in between, try again.
1365 			 * If it is dead, pid_task() will return NULL,
1366 			 * if we race with de_thread() it will find the
1367 			 * new leader.
1368 			 */
1369 			goto retry;
1370 	}
1371 	rcu_read_unlock();
1372 
1373 	return error;
1374 }
1375 
1376 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1377 {
1378 	int error;
1379 	rcu_read_lock();
1380 	error = kill_pid_info(sig, info, find_vpid(pid));
1381 	rcu_read_unlock();
1382 	return error;
1383 }
1384 
1385 static int kill_as_cred_perm(const struct cred *cred,
1386 			     struct task_struct *target)
1387 {
1388 	const struct cred *pcred = __task_cred(target);
1389 	if (cred->user_ns != pcred->user_ns)
1390 		return 0;
1391 	if (cred->euid != pcred->suid && cred->euid != pcred->uid &&
1392 	    cred->uid  != pcred->suid && cred->uid  != pcred->uid)
1393 		return 0;
1394 	return 1;
1395 }
1396 
1397 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1398 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1399 			 const struct cred *cred, u32 secid)
1400 {
1401 	int ret = -EINVAL;
1402 	struct task_struct *p;
1403 	unsigned long flags;
1404 
1405 	if (!valid_signal(sig))
1406 		return ret;
1407 
1408 	rcu_read_lock();
1409 	p = pid_task(pid, PIDTYPE_PID);
1410 	if (!p) {
1411 		ret = -ESRCH;
1412 		goto out_unlock;
1413 	}
1414 	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1415 		ret = -EPERM;
1416 		goto out_unlock;
1417 	}
1418 	ret = security_task_kill(p, info, sig, secid);
1419 	if (ret)
1420 		goto out_unlock;
1421 
1422 	if (sig) {
1423 		if (lock_task_sighand(p, &flags)) {
1424 			ret = __send_signal(sig, info, p, 1, 0);
1425 			unlock_task_sighand(p, &flags);
1426 		} else
1427 			ret = -ESRCH;
1428 	}
1429 out_unlock:
1430 	rcu_read_unlock();
1431 	return ret;
1432 }
1433 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1434 
1435 /*
1436  * kill_something_info() interprets pid in interesting ways just like kill(2).
1437  *
1438  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1439  * is probably wrong.  Should make it like BSD or SYSV.
1440  */
1441 
1442 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1443 {
1444 	int ret;
1445 
1446 	if (pid > 0) {
1447 		rcu_read_lock();
1448 		ret = kill_pid_info(sig, info, find_vpid(pid));
1449 		rcu_read_unlock();
1450 		return ret;
1451 	}
1452 
1453 	read_lock(&tasklist_lock);
1454 	if (pid != -1) {
1455 		ret = __kill_pgrp_info(sig, info,
1456 				pid ? find_vpid(-pid) : task_pgrp(current));
1457 	} else {
1458 		int retval = 0, count = 0;
1459 		struct task_struct * p;
1460 
1461 		for_each_process(p) {
1462 			if (task_pid_vnr(p) > 1 &&
1463 					!same_thread_group(p, current)) {
1464 				int err = group_send_sig_info(sig, info, p);
1465 				++count;
1466 				if (err != -EPERM)
1467 					retval = err;
1468 			}
1469 		}
1470 		ret = count ? retval : -ESRCH;
1471 	}
1472 	read_unlock(&tasklist_lock);
1473 
1474 	return ret;
1475 }
1476 
1477 /*
1478  * These are for backward compatibility with the rest of the kernel source.
1479  */
1480 
1481 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1482 {
1483 	/*
1484 	 * Make sure legacy kernel users don't send in bad values
1485 	 * (normal paths check this in check_kill_permission).
1486 	 */
1487 	if (!valid_signal(sig))
1488 		return -EINVAL;
1489 
1490 	return do_send_sig_info(sig, info, p, false);
1491 }
1492 
1493 #define __si_special(priv) \
1494 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1495 
1496 int
1497 send_sig(int sig, struct task_struct *p, int priv)
1498 {
1499 	return send_sig_info(sig, __si_special(priv), p);
1500 }
1501 
1502 void
1503 force_sig(int sig, struct task_struct *p)
1504 {
1505 	force_sig_info(sig, SEND_SIG_PRIV, p);
1506 }
1507 
1508 /*
1509  * When things go south during signal handling, we
1510  * will force a SIGSEGV. And if the signal that caused
1511  * the problem was already a SIGSEGV, we'll want to
1512  * make sure we don't even try to deliver the signal..
1513  */
1514 int
1515 force_sigsegv(int sig, struct task_struct *p)
1516 {
1517 	if (sig == SIGSEGV) {
1518 		unsigned long flags;
1519 		spin_lock_irqsave(&p->sighand->siglock, flags);
1520 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1521 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1522 	}
1523 	force_sig(SIGSEGV, p);
1524 	return 0;
1525 }
1526 
1527 int kill_pgrp(struct pid *pid, int sig, int priv)
1528 {
1529 	int ret;
1530 
1531 	read_lock(&tasklist_lock);
1532 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1533 	read_unlock(&tasklist_lock);
1534 
1535 	return ret;
1536 }
1537 EXPORT_SYMBOL(kill_pgrp);
1538 
1539 int kill_pid(struct pid *pid, int sig, int priv)
1540 {
1541 	return kill_pid_info(sig, __si_special(priv), pid);
1542 }
1543 EXPORT_SYMBOL(kill_pid);
1544 
1545 /*
1546  * These functions support sending signals using preallocated sigqueue
1547  * structures.  This is needed "because realtime applications cannot
1548  * afford to lose notifications of asynchronous events, like timer
1549  * expirations or I/O completions".  In the case of POSIX Timers
1550  * we allocate the sigqueue structure from the timer_create.  If this
1551  * allocation fails we are able to report the failure to the application
1552  * with an EAGAIN error.
1553  */
1554 struct sigqueue *sigqueue_alloc(void)
1555 {
1556 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1557 
1558 	if (q)
1559 		q->flags |= SIGQUEUE_PREALLOC;
1560 
1561 	return q;
1562 }
1563 
1564 void sigqueue_free(struct sigqueue *q)
1565 {
1566 	unsigned long flags;
1567 	spinlock_t *lock = &current->sighand->siglock;
1568 
1569 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1570 	/*
1571 	 * We must hold ->siglock while testing q->list
1572 	 * to serialize with collect_signal() or with
1573 	 * __exit_signal()->flush_sigqueue().
1574 	 */
1575 	spin_lock_irqsave(lock, flags);
1576 	q->flags &= ~SIGQUEUE_PREALLOC;
1577 	/*
1578 	 * If it is queued it will be freed when dequeued,
1579 	 * like the "regular" sigqueue.
1580 	 */
1581 	if (!list_empty(&q->list))
1582 		q = NULL;
1583 	spin_unlock_irqrestore(lock, flags);
1584 
1585 	if (q)
1586 		__sigqueue_free(q);
1587 }
1588 
1589 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1590 {
1591 	int sig = q->info.si_signo;
1592 	struct sigpending *pending;
1593 	unsigned long flags;
1594 	int ret, result;
1595 
1596 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1597 
1598 	ret = -1;
1599 	if (!likely(lock_task_sighand(t, &flags)))
1600 		goto ret;
1601 
1602 	ret = 1; /* the signal is ignored */
1603 	result = TRACE_SIGNAL_IGNORED;
1604 	if (!prepare_signal(sig, t, 0))
1605 		goto out;
1606 
1607 	ret = 0;
1608 	if (unlikely(!list_empty(&q->list))) {
1609 		/*
1610 		 * If an SI_TIMER entry is already queue just increment
1611 		 * the overrun count.
1612 		 */
1613 		BUG_ON(q->info.si_code != SI_TIMER);
1614 		q->info.si_overrun++;
1615 		result = TRACE_SIGNAL_ALREADY_PENDING;
1616 		goto out;
1617 	}
1618 	q->info.si_overrun = 0;
1619 
1620 	signalfd_notify(t, sig);
1621 	pending = group ? &t->signal->shared_pending : &t->pending;
1622 	list_add_tail(&q->list, &pending->list);
1623 	sigaddset(&pending->signal, sig);
1624 	complete_signal(sig, t, group);
1625 	result = TRACE_SIGNAL_DELIVERED;
1626 out:
1627 	trace_signal_generate(sig, &q->info, t, group, result);
1628 	unlock_task_sighand(t, &flags);
1629 ret:
1630 	return ret;
1631 }
1632 
1633 /*
1634  * Let a parent know about the death of a child.
1635  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1636  *
1637  * Returns true if our parent ignored us and so we've switched to
1638  * self-reaping.
1639  */
1640 bool do_notify_parent(struct task_struct *tsk, int sig)
1641 {
1642 	struct siginfo info;
1643 	unsigned long flags;
1644 	struct sighand_struct *psig;
1645 	bool autoreap = false;
1646 
1647 	BUG_ON(sig == -1);
1648 
1649  	/* do_notify_parent_cldstop should have been called instead.  */
1650  	BUG_ON(task_is_stopped_or_traced(tsk));
1651 
1652 	BUG_ON(!tsk->ptrace &&
1653 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1654 
1655 	if (sig != SIGCHLD) {
1656 		/*
1657 		 * This is only possible if parent == real_parent.
1658 		 * Check if it has changed security domain.
1659 		 */
1660 		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1661 			sig = SIGCHLD;
1662 	}
1663 
1664 	info.si_signo = sig;
1665 	info.si_errno = 0;
1666 	/*
1667 	 * we are under tasklist_lock here so our parent is tied to
1668 	 * us and cannot exit and release its namespace.
1669 	 *
1670 	 * the only it can is to switch its nsproxy with sys_unshare,
1671 	 * bu uncharing pid namespaces is not allowed, so we'll always
1672 	 * see relevant namespace
1673 	 *
1674 	 * write_lock() currently calls preempt_disable() which is the
1675 	 * same as rcu_read_lock(), but according to Oleg, this is not
1676 	 * correct to rely on this
1677 	 */
1678 	rcu_read_lock();
1679 	info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1680 	info.si_uid = map_cred_ns(__task_cred(tsk),
1681 			task_cred_xxx(tsk->parent, user_ns));
1682 	rcu_read_unlock();
1683 
1684 	info.si_utime = cputime_to_clock_t(tsk->utime + tsk->signal->utime);
1685 	info.si_stime = cputime_to_clock_t(tsk->stime + tsk->signal->stime);
1686 
1687 	info.si_status = tsk->exit_code & 0x7f;
1688 	if (tsk->exit_code & 0x80)
1689 		info.si_code = CLD_DUMPED;
1690 	else if (tsk->exit_code & 0x7f)
1691 		info.si_code = CLD_KILLED;
1692 	else {
1693 		info.si_code = CLD_EXITED;
1694 		info.si_status = tsk->exit_code >> 8;
1695 	}
1696 
1697 	psig = tsk->parent->sighand;
1698 	spin_lock_irqsave(&psig->siglock, flags);
1699 	if (!tsk->ptrace && sig == SIGCHLD &&
1700 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1701 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1702 		/*
1703 		 * We are exiting and our parent doesn't care.  POSIX.1
1704 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1705 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1706 		 * automatically and not left for our parent's wait4 call.
1707 		 * Rather than having the parent do it as a magic kind of
1708 		 * signal handler, we just set this to tell do_exit that we
1709 		 * can be cleaned up without becoming a zombie.  Note that
1710 		 * we still call __wake_up_parent in this case, because a
1711 		 * blocked sys_wait4 might now return -ECHILD.
1712 		 *
1713 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1714 		 * is implementation-defined: we do (if you don't want
1715 		 * it, just use SIG_IGN instead).
1716 		 */
1717 		autoreap = true;
1718 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1719 			sig = 0;
1720 	}
1721 	if (valid_signal(sig) && sig)
1722 		__group_send_sig_info(sig, &info, tsk->parent);
1723 	__wake_up_parent(tsk, tsk->parent);
1724 	spin_unlock_irqrestore(&psig->siglock, flags);
1725 
1726 	return autoreap;
1727 }
1728 
1729 /**
1730  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1731  * @tsk: task reporting the state change
1732  * @for_ptracer: the notification is for ptracer
1733  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1734  *
1735  * Notify @tsk's parent that the stopped/continued state has changed.  If
1736  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1737  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1738  *
1739  * CONTEXT:
1740  * Must be called with tasklist_lock at least read locked.
1741  */
1742 static void do_notify_parent_cldstop(struct task_struct *tsk,
1743 				     bool for_ptracer, int why)
1744 {
1745 	struct siginfo info;
1746 	unsigned long flags;
1747 	struct task_struct *parent;
1748 	struct sighand_struct *sighand;
1749 
1750 	if (for_ptracer) {
1751 		parent = tsk->parent;
1752 	} else {
1753 		tsk = tsk->group_leader;
1754 		parent = tsk->real_parent;
1755 	}
1756 
1757 	info.si_signo = SIGCHLD;
1758 	info.si_errno = 0;
1759 	/*
1760 	 * see comment in do_notify_parent() about the following 4 lines
1761 	 */
1762 	rcu_read_lock();
1763 	info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1764 	info.si_uid = map_cred_ns(__task_cred(tsk),
1765 			task_cred_xxx(parent, user_ns));
1766 	rcu_read_unlock();
1767 
1768 	info.si_utime = cputime_to_clock_t(tsk->utime);
1769 	info.si_stime = cputime_to_clock_t(tsk->stime);
1770 
1771  	info.si_code = why;
1772  	switch (why) {
1773  	case CLD_CONTINUED:
1774  		info.si_status = SIGCONT;
1775  		break;
1776  	case CLD_STOPPED:
1777  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1778  		break;
1779  	case CLD_TRAPPED:
1780  		info.si_status = tsk->exit_code & 0x7f;
1781  		break;
1782  	default:
1783  		BUG();
1784  	}
1785 
1786 	sighand = parent->sighand;
1787 	spin_lock_irqsave(&sighand->siglock, flags);
1788 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1789 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1790 		__group_send_sig_info(SIGCHLD, &info, parent);
1791 	/*
1792 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1793 	 */
1794 	__wake_up_parent(tsk, parent);
1795 	spin_unlock_irqrestore(&sighand->siglock, flags);
1796 }
1797 
1798 static inline int may_ptrace_stop(void)
1799 {
1800 	if (!likely(current->ptrace))
1801 		return 0;
1802 	/*
1803 	 * Are we in the middle of do_coredump?
1804 	 * If so and our tracer is also part of the coredump stopping
1805 	 * is a deadlock situation, and pointless because our tracer
1806 	 * is dead so don't allow us to stop.
1807 	 * If SIGKILL was already sent before the caller unlocked
1808 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1809 	 * is safe to enter schedule().
1810 	 */
1811 	if (unlikely(current->mm->core_state) &&
1812 	    unlikely(current->mm == current->parent->mm))
1813 		return 0;
1814 
1815 	return 1;
1816 }
1817 
1818 /*
1819  * Return non-zero if there is a SIGKILL that should be waking us up.
1820  * Called with the siglock held.
1821  */
1822 static int sigkill_pending(struct task_struct *tsk)
1823 {
1824 	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1825 		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1826 }
1827 
1828 /*
1829  * This must be called with current->sighand->siglock held.
1830  *
1831  * This should be the path for all ptrace stops.
1832  * We always set current->last_siginfo while stopped here.
1833  * That makes it a way to test a stopped process for
1834  * being ptrace-stopped vs being job-control-stopped.
1835  *
1836  * If we actually decide not to stop at all because the tracer
1837  * is gone, we keep current->exit_code unless clear_code.
1838  */
1839 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1840 	__releases(&current->sighand->siglock)
1841 	__acquires(&current->sighand->siglock)
1842 {
1843 	bool gstop_done = false;
1844 
1845 	if (arch_ptrace_stop_needed(exit_code, info)) {
1846 		/*
1847 		 * The arch code has something special to do before a
1848 		 * ptrace stop.  This is allowed to block, e.g. for faults
1849 		 * on user stack pages.  We can't keep the siglock while
1850 		 * calling arch_ptrace_stop, so we must release it now.
1851 		 * To preserve proper semantics, we must do this before
1852 		 * any signal bookkeeping like checking group_stop_count.
1853 		 * Meanwhile, a SIGKILL could come in before we retake the
1854 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1855 		 * So after regaining the lock, we must check for SIGKILL.
1856 		 */
1857 		spin_unlock_irq(&current->sighand->siglock);
1858 		arch_ptrace_stop(exit_code, info);
1859 		spin_lock_irq(&current->sighand->siglock);
1860 		if (sigkill_pending(current))
1861 			return;
1862 	}
1863 
1864 	/*
1865 	 * We're committing to trapping.  TRACED should be visible before
1866 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1867 	 * Also, transition to TRACED and updates to ->jobctl should be
1868 	 * atomic with respect to siglock and should be done after the arch
1869 	 * hook as siglock is released and regrabbed across it.
1870 	 */
1871 	set_current_state(TASK_TRACED);
1872 
1873 	current->last_siginfo = info;
1874 	current->exit_code = exit_code;
1875 
1876 	/*
1877 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1878 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1879 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1880 	 * could be clear now.  We act as if SIGCONT is received after
1881 	 * TASK_TRACED is entered - ignore it.
1882 	 */
1883 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1884 		gstop_done = task_participate_group_stop(current);
1885 
1886 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1887 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1888 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1889 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1890 
1891 	/* entering a trap, clear TRAPPING */
1892 	task_clear_jobctl_trapping(current);
1893 
1894 	spin_unlock_irq(&current->sighand->siglock);
1895 	read_lock(&tasklist_lock);
1896 	if (may_ptrace_stop()) {
1897 		/*
1898 		 * Notify parents of the stop.
1899 		 *
1900 		 * While ptraced, there are two parents - the ptracer and
1901 		 * the real_parent of the group_leader.  The ptracer should
1902 		 * know about every stop while the real parent is only
1903 		 * interested in the completion of group stop.  The states
1904 		 * for the two don't interact with each other.  Notify
1905 		 * separately unless they're gonna be duplicates.
1906 		 */
1907 		do_notify_parent_cldstop(current, true, why);
1908 		if (gstop_done && ptrace_reparented(current))
1909 			do_notify_parent_cldstop(current, false, why);
1910 
1911 		/*
1912 		 * Don't want to allow preemption here, because
1913 		 * sys_ptrace() needs this task to be inactive.
1914 		 *
1915 		 * XXX: implement read_unlock_no_resched().
1916 		 */
1917 		preempt_disable();
1918 		read_unlock(&tasklist_lock);
1919 		preempt_enable_no_resched();
1920 		schedule();
1921 	} else {
1922 		/*
1923 		 * By the time we got the lock, our tracer went away.
1924 		 * Don't drop the lock yet, another tracer may come.
1925 		 *
1926 		 * If @gstop_done, the ptracer went away between group stop
1927 		 * completion and here.  During detach, it would have set
1928 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1929 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1930 		 * the real parent of the group stop completion is enough.
1931 		 */
1932 		if (gstop_done)
1933 			do_notify_parent_cldstop(current, false, why);
1934 
1935 		__set_current_state(TASK_RUNNING);
1936 		if (clear_code)
1937 			current->exit_code = 0;
1938 		read_unlock(&tasklist_lock);
1939 	}
1940 
1941 	/*
1942 	 * While in TASK_TRACED, we were considered "frozen enough".
1943 	 * Now that we woke up, it's crucial if we're supposed to be
1944 	 * frozen that we freeze now before running anything substantial.
1945 	 */
1946 	try_to_freeze();
1947 
1948 	/*
1949 	 * We are back.  Now reacquire the siglock before touching
1950 	 * last_siginfo, so that we are sure to have synchronized with
1951 	 * any signal-sending on another CPU that wants to examine it.
1952 	 */
1953 	spin_lock_irq(&current->sighand->siglock);
1954 	current->last_siginfo = NULL;
1955 
1956 	/* LISTENING can be set only during STOP traps, clear it */
1957 	current->jobctl &= ~JOBCTL_LISTENING;
1958 
1959 	/*
1960 	 * Queued signals ignored us while we were stopped for tracing.
1961 	 * So check for any that we should take before resuming user mode.
1962 	 * This sets TIF_SIGPENDING, but never clears it.
1963 	 */
1964 	recalc_sigpending_tsk(current);
1965 }
1966 
1967 static void ptrace_do_notify(int signr, int exit_code, int why)
1968 {
1969 	siginfo_t info;
1970 
1971 	memset(&info, 0, sizeof info);
1972 	info.si_signo = signr;
1973 	info.si_code = exit_code;
1974 	info.si_pid = task_pid_vnr(current);
1975 	info.si_uid = current_uid();
1976 
1977 	/* Let the debugger run.  */
1978 	ptrace_stop(exit_code, why, 1, &info);
1979 }
1980 
1981 void ptrace_notify(int exit_code)
1982 {
1983 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1984 
1985 	spin_lock_irq(&current->sighand->siglock);
1986 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1987 	spin_unlock_irq(&current->sighand->siglock);
1988 }
1989 
1990 /**
1991  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1992  * @signr: signr causing group stop if initiating
1993  *
1994  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1995  * and participate in it.  If already set, participate in the existing
1996  * group stop.  If participated in a group stop (and thus slept), %true is
1997  * returned with siglock released.
1998  *
1999  * If ptraced, this function doesn't handle stop itself.  Instead,
2000  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2001  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2002  * places afterwards.
2003  *
2004  * CONTEXT:
2005  * Must be called with @current->sighand->siglock held, which is released
2006  * on %true return.
2007  *
2008  * RETURNS:
2009  * %false if group stop is already cancelled or ptrace trap is scheduled.
2010  * %true if participated in group stop.
2011  */
2012 static bool do_signal_stop(int signr)
2013 	__releases(&current->sighand->siglock)
2014 {
2015 	struct signal_struct *sig = current->signal;
2016 
2017 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2018 		unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2019 		struct task_struct *t;
2020 
2021 		/* signr will be recorded in task->jobctl for retries */
2022 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2023 
2024 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2025 		    unlikely(signal_group_exit(sig)))
2026 			return false;
2027 		/*
2028 		 * There is no group stop already in progress.  We must
2029 		 * initiate one now.
2030 		 *
2031 		 * While ptraced, a task may be resumed while group stop is
2032 		 * still in effect and then receive a stop signal and
2033 		 * initiate another group stop.  This deviates from the
2034 		 * usual behavior as two consecutive stop signals can't
2035 		 * cause two group stops when !ptraced.  That is why we
2036 		 * also check !task_is_stopped(t) below.
2037 		 *
2038 		 * The condition can be distinguished by testing whether
2039 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2040 		 * group_exit_code in such case.
2041 		 *
2042 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2043 		 * an intervening stop signal is required to cause two
2044 		 * continued events regardless of ptrace.
2045 		 */
2046 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2047 			sig->group_exit_code = signr;
2048 
2049 		sig->group_stop_count = 0;
2050 
2051 		if (task_set_jobctl_pending(current, signr | gstop))
2052 			sig->group_stop_count++;
2053 
2054 		for (t = next_thread(current); t != current;
2055 		     t = next_thread(t)) {
2056 			/*
2057 			 * Setting state to TASK_STOPPED for a group
2058 			 * stop is always done with the siglock held,
2059 			 * so this check has no races.
2060 			 */
2061 			if (!task_is_stopped(t) &&
2062 			    task_set_jobctl_pending(t, signr | gstop)) {
2063 				sig->group_stop_count++;
2064 				if (likely(!(t->ptrace & PT_SEIZED)))
2065 					signal_wake_up(t, 0);
2066 				else
2067 					ptrace_trap_notify(t);
2068 			}
2069 		}
2070 	}
2071 
2072 	if (likely(!current->ptrace)) {
2073 		int notify = 0;
2074 
2075 		/*
2076 		 * If there are no other threads in the group, or if there
2077 		 * is a group stop in progress and we are the last to stop,
2078 		 * report to the parent.
2079 		 */
2080 		if (task_participate_group_stop(current))
2081 			notify = CLD_STOPPED;
2082 
2083 		__set_current_state(TASK_STOPPED);
2084 		spin_unlock_irq(&current->sighand->siglock);
2085 
2086 		/*
2087 		 * Notify the parent of the group stop completion.  Because
2088 		 * we're not holding either the siglock or tasklist_lock
2089 		 * here, ptracer may attach inbetween; however, this is for
2090 		 * group stop and should always be delivered to the real
2091 		 * parent of the group leader.  The new ptracer will get
2092 		 * its notification when this task transitions into
2093 		 * TASK_TRACED.
2094 		 */
2095 		if (notify) {
2096 			read_lock(&tasklist_lock);
2097 			do_notify_parent_cldstop(current, false, notify);
2098 			read_unlock(&tasklist_lock);
2099 		}
2100 
2101 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2102 		schedule();
2103 		return true;
2104 	} else {
2105 		/*
2106 		 * While ptraced, group stop is handled by STOP trap.
2107 		 * Schedule it and let the caller deal with it.
2108 		 */
2109 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2110 		return false;
2111 	}
2112 }
2113 
2114 /**
2115  * do_jobctl_trap - take care of ptrace jobctl traps
2116  *
2117  * When PT_SEIZED, it's used for both group stop and explicit
2118  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2119  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2120  * the stop signal; otherwise, %SIGTRAP.
2121  *
2122  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2123  * number as exit_code and no siginfo.
2124  *
2125  * CONTEXT:
2126  * Must be called with @current->sighand->siglock held, which may be
2127  * released and re-acquired before returning with intervening sleep.
2128  */
2129 static void do_jobctl_trap(void)
2130 {
2131 	struct signal_struct *signal = current->signal;
2132 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2133 
2134 	if (current->ptrace & PT_SEIZED) {
2135 		if (!signal->group_stop_count &&
2136 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2137 			signr = SIGTRAP;
2138 		WARN_ON_ONCE(!signr);
2139 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2140 				 CLD_STOPPED);
2141 	} else {
2142 		WARN_ON_ONCE(!signr);
2143 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2144 		current->exit_code = 0;
2145 	}
2146 }
2147 
2148 static int ptrace_signal(int signr, siginfo_t *info,
2149 			 struct pt_regs *regs, void *cookie)
2150 {
2151 	ptrace_signal_deliver(regs, cookie);
2152 	/*
2153 	 * We do not check sig_kernel_stop(signr) but set this marker
2154 	 * unconditionally because we do not know whether debugger will
2155 	 * change signr. This flag has no meaning unless we are going
2156 	 * to stop after return from ptrace_stop(). In this case it will
2157 	 * be checked in do_signal_stop(), we should only stop if it was
2158 	 * not cleared by SIGCONT while we were sleeping. See also the
2159 	 * comment in dequeue_signal().
2160 	 */
2161 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2162 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2163 
2164 	/* We're back.  Did the debugger cancel the sig?  */
2165 	signr = current->exit_code;
2166 	if (signr == 0)
2167 		return signr;
2168 
2169 	current->exit_code = 0;
2170 
2171 	/*
2172 	 * Update the siginfo structure if the signal has
2173 	 * changed.  If the debugger wanted something
2174 	 * specific in the siginfo structure then it should
2175 	 * have updated *info via PTRACE_SETSIGINFO.
2176 	 */
2177 	if (signr != info->si_signo) {
2178 		info->si_signo = signr;
2179 		info->si_errno = 0;
2180 		info->si_code = SI_USER;
2181 		rcu_read_lock();
2182 		info->si_pid = task_pid_vnr(current->parent);
2183 		info->si_uid = map_cred_ns(__task_cred(current->parent),
2184 				current_user_ns());
2185 		rcu_read_unlock();
2186 	}
2187 
2188 	/* If the (new) signal is now blocked, requeue it.  */
2189 	if (sigismember(&current->blocked, signr)) {
2190 		specific_send_sig_info(signr, info, current);
2191 		signr = 0;
2192 	}
2193 
2194 	return signr;
2195 }
2196 
2197 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2198 			  struct pt_regs *regs, void *cookie)
2199 {
2200 	struct sighand_struct *sighand = current->sighand;
2201 	struct signal_struct *signal = current->signal;
2202 	int signr;
2203 
2204 relock:
2205 	/*
2206 	 * We'll jump back here after any time we were stopped in TASK_STOPPED.
2207 	 * While in TASK_STOPPED, we were considered "frozen enough".
2208 	 * Now that we woke up, it's crucial if we're supposed to be
2209 	 * frozen that we freeze now before running anything substantial.
2210 	 */
2211 	try_to_freeze();
2212 
2213 	spin_lock_irq(&sighand->siglock);
2214 	/*
2215 	 * Every stopped thread goes here after wakeup. Check to see if
2216 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2217 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2218 	 */
2219 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2220 		int why;
2221 
2222 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2223 			why = CLD_CONTINUED;
2224 		else
2225 			why = CLD_STOPPED;
2226 
2227 		signal->flags &= ~SIGNAL_CLD_MASK;
2228 
2229 		spin_unlock_irq(&sighand->siglock);
2230 
2231 		/*
2232 		 * Notify the parent that we're continuing.  This event is
2233 		 * always per-process and doesn't make whole lot of sense
2234 		 * for ptracers, who shouldn't consume the state via
2235 		 * wait(2) either, but, for backward compatibility, notify
2236 		 * the ptracer of the group leader too unless it's gonna be
2237 		 * a duplicate.
2238 		 */
2239 		read_lock(&tasklist_lock);
2240 		do_notify_parent_cldstop(current, false, why);
2241 
2242 		if (ptrace_reparented(current->group_leader))
2243 			do_notify_parent_cldstop(current->group_leader,
2244 						true, why);
2245 		read_unlock(&tasklist_lock);
2246 
2247 		goto relock;
2248 	}
2249 
2250 	for (;;) {
2251 		struct k_sigaction *ka;
2252 
2253 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2254 		    do_signal_stop(0))
2255 			goto relock;
2256 
2257 		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2258 			do_jobctl_trap();
2259 			spin_unlock_irq(&sighand->siglock);
2260 			goto relock;
2261 		}
2262 
2263 		signr = dequeue_signal(current, &current->blocked, info);
2264 
2265 		if (!signr)
2266 			break; /* will return 0 */
2267 
2268 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2269 			signr = ptrace_signal(signr, info,
2270 					      regs, cookie);
2271 			if (!signr)
2272 				continue;
2273 		}
2274 
2275 		ka = &sighand->action[signr-1];
2276 
2277 		/* Trace actually delivered signals. */
2278 		trace_signal_deliver(signr, info, ka);
2279 
2280 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2281 			continue;
2282 		if (ka->sa.sa_handler != SIG_DFL) {
2283 			/* Run the handler.  */
2284 			*return_ka = *ka;
2285 
2286 			if (ka->sa.sa_flags & SA_ONESHOT)
2287 				ka->sa.sa_handler = SIG_DFL;
2288 
2289 			break; /* will return non-zero "signr" value */
2290 		}
2291 
2292 		/*
2293 		 * Now we are doing the default action for this signal.
2294 		 */
2295 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2296 			continue;
2297 
2298 		/*
2299 		 * Global init gets no signals it doesn't want.
2300 		 * Container-init gets no signals it doesn't want from same
2301 		 * container.
2302 		 *
2303 		 * Note that if global/container-init sees a sig_kernel_only()
2304 		 * signal here, the signal must have been generated internally
2305 		 * or must have come from an ancestor namespace. In either
2306 		 * case, the signal cannot be dropped.
2307 		 */
2308 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2309 				!sig_kernel_only(signr))
2310 			continue;
2311 
2312 		if (sig_kernel_stop(signr)) {
2313 			/*
2314 			 * The default action is to stop all threads in
2315 			 * the thread group.  The job control signals
2316 			 * do nothing in an orphaned pgrp, but SIGSTOP
2317 			 * always works.  Note that siglock needs to be
2318 			 * dropped during the call to is_orphaned_pgrp()
2319 			 * because of lock ordering with tasklist_lock.
2320 			 * This allows an intervening SIGCONT to be posted.
2321 			 * We need to check for that and bail out if necessary.
2322 			 */
2323 			if (signr != SIGSTOP) {
2324 				spin_unlock_irq(&sighand->siglock);
2325 
2326 				/* signals can be posted during this window */
2327 
2328 				if (is_current_pgrp_orphaned())
2329 					goto relock;
2330 
2331 				spin_lock_irq(&sighand->siglock);
2332 			}
2333 
2334 			if (likely(do_signal_stop(info->si_signo))) {
2335 				/* It released the siglock.  */
2336 				goto relock;
2337 			}
2338 
2339 			/*
2340 			 * We didn't actually stop, due to a race
2341 			 * with SIGCONT or something like that.
2342 			 */
2343 			continue;
2344 		}
2345 
2346 		spin_unlock_irq(&sighand->siglock);
2347 
2348 		/*
2349 		 * Anything else is fatal, maybe with a core dump.
2350 		 */
2351 		current->flags |= PF_SIGNALED;
2352 
2353 		if (sig_kernel_coredump(signr)) {
2354 			if (print_fatal_signals)
2355 				print_fatal_signal(regs, info->si_signo);
2356 			/*
2357 			 * If it was able to dump core, this kills all
2358 			 * other threads in the group and synchronizes with
2359 			 * their demise.  If we lost the race with another
2360 			 * thread getting here, it set group_exit_code
2361 			 * first and our do_group_exit call below will use
2362 			 * that value and ignore the one we pass it.
2363 			 */
2364 			do_coredump(info->si_signo, info->si_signo, regs);
2365 		}
2366 
2367 		/*
2368 		 * Death signals, no core dump.
2369 		 */
2370 		do_group_exit(info->si_signo);
2371 		/* NOTREACHED */
2372 	}
2373 	spin_unlock_irq(&sighand->siglock);
2374 	return signr;
2375 }
2376 
2377 /**
2378  * block_sigmask - add @ka's signal mask to current->blocked
2379  * @ka: action for @signr
2380  * @signr: signal that has been successfully delivered
2381  *
2382  * This function should be called when a signal has succesfully been
2383  * delivered. It adds the mask of signals for @ka to current->blocked
2384  * so that they are blocked during the execution of the signal
2385  * handler. In addition, @signr will be blocked unless %SA_NODEFER is
2386  * set in @ka->sa.sa_flags.
2387  */
2388 void block_sigmask(struct k_sigaction *ka, int signr)
2389 {
2390 	sigset_t blocked;
2391 
2392 	sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2393 	if (!(ka->sa.sa_flags & SA_NODEFER))
2394 		sigaddset(&blocked, signr);
2395 	set_current_blocked(&blocked);
2396 }
2397 
2398 /*
2399  * It could be that complete_signal() picked us to notify about the
2400  * group-wide signal. Other threads should be notified now to take
2401  * the shared signals in @which since we will not.
2402  */
2403 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2404 {
2405 	sigset_t retarget;
2406 	struct task_struct *t;
2407 
2408 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2409 	if (sigisemptyset(&retarget))
2410 		return;
2411 
2412 	t = tsk;
2413 	while_each_thread(tsk, t) {
2414 		if (t->flags & PF_EXITING)
2415 			continue;
2416 
2417 		if (!has_pending_signals(&retarget, &t->blocked))
2418 			continue;
2419 		/* Remove the signals this thread can handle. */
2420 		sigandsets(&retarget, &retarget, &t->blocked);
2421 
2422 		if (!signal_pending(t))
2423 			signal_wake_up(t, 0);
2424 
2425 		if (sigisemptyset(&retarget))
2426 			break;
2427 	}
2428 }
2429 
2430 void exit_signals(struct task_struct *tsk)
2431 {
2432 	int group_stop = 0;
2433 	sigset_t unblocked;
2434 
2435 	/*
2436 	 * @tsk is about to have PF_EXITING set - lock out users which
2437 	 * expect stable threadgroup.
2438 	 */
2439 	threadgroup_change_begin(tsk);
2440 
2441 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2442 		tsk->flags |= PF_EXITING;
2443 		threadgroup_change_end(tsk);
2444 		return;
2445 	}
2446 
2447 	spin_lock_irq(&tsk->sighand->siglock);
2448 	/*
2449 	 * From now this task is not visible for group-wide signals,
2450 	 * see wants_signal(), do_signal_stop().
2451 	 */
2452 	tsk->flags |= PF_EXITING;
2453 
2454 	threadgroup_change_end(tsk);
2455 
2456 	if (!signal_pending(tsk))
2457 		goto out;
2458 
2459 	unblocked = tsk->blocked;
2460 	signotset(&unblocked);
2461 	retarget_shared_pending(tsk, &unblocked);
2462 
2463 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2464 	    task_participate_group_stop(tsk))
2465 		group_stop = CLD_STOPPED;
2466 out:
2467 	spin_unlock_irq(&tsk->sighand->siglock);
2468 
2469 	/*
2470 	 * If group stop has completed, deliver the notification.  This
2471 	 * should always go to the real parent of the group leader.
2472 	 */
2473 	if (unlikely(group_stop)) {
2474 		read_lock(&tasklist_lock);
2475 		do_notify_parent_cldstop(tsk, false, group_stop);
2476 		read_unlock(&tasklist_lock);
2477 	}
2478 }
2479 
2480 EXPORT_SYMBOL(recalc_sigpending);
2481 EXPORT_SYMBOL_GPL(dequeue_signal);
2482 EXPORT_SYMBOL(flush_signals);
2483 EXPORT_SYMBOL(force_sig);
2484 EXPORT_SYMBOL(send_sig);
2485 EXPORT_SYMBOL(send_sig_info);
2486 EXPORT_SYMBOL(sigprocmask);
2487 EXPORT_SYMBOL(block_all_signals);
2488 EXPORT_SYMBOL(unblock_all_signals);
2489 
2490 
2491 /*
2492  * System call entry points.
2493  */
2494 
2495 /**
2496  *  sys_restart_syscall - restart a system call
2497  */
2498 SYSCALL_DEFINE0(restart_syscall)
2499 {
2500 	struct restart_block *restart = &current_thread_info()->restart_block;
2501 	return restart->fn(restart);
2502 }
2503 
2504 long do_no_restart_syscall(struct restart_block *param)
2505 {
2506 	return -EINTR;
2507 }
2508 
2509 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2510 {
2511 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2512 		sigset_t newblocked;
2513 		/* A set of now blocked but previously unblocked signals. */
2514 		sigandnsets(&newblocked, newset, &current->blocked);
2515 		retarget_shared_pending(tsk, &newblocked);
2516 	}
2517 	tsk->blocked = *newset;
2518 	recalc_sigpending();
2519 }
2520 
2521 /**
2522  * set_current_blocked - change current->blocked mask
2523  * @newset: new mask
2524  *
2525  * It is wrong to change ->blocked directly, this helper should be used
2526  * to ensure the process can't miss a shared signal we are going to block.
2527  */
2528 void set_current_blocked(const sigset_t *newset)
2529 {
2530 	struct task_struct *tsk = current;
2531 
2532 	spin_lock_irq(&tsk->sighand->siglock);
2533 	__set_task_blocked(tsk, newset);
2534 	spin_unlock_irq(&tsk->sighand->siglock);
2535 }
2536 
2537 /*
2538  * This is also useful for kernel threads that want to temporarily
2539  * (or permanently) block certain signals.
2540  *
2541  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2542  * interface happily blocks "unblockable" signals like SIGKILL
2543  * and friends.
2544  */
2545 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2546 {
2547 	struct task_struct *tsk = current;
2548 	sigset_t newset;
2549 
2550 	/* Lockless, only current can change ->blocked, never from irq */
2551 	if (oldset)
2552 		*oldset = tsk->blocked;
2553 
2554 	switch (how) {
2555 	case SIG_BLOCK:
2556 		sigorsets(&newset, &tsk->blocked, set);
2557 		break;
2558 	case SIG_UNBLOCK:
2559 		sigandnsets(&newset, &tsk->blocked, set);
2560 		break;
2561 	case SIG_SETMASK:
2562 		newset = *set;
2563 		break;
2564 	default:
2565 		return -EINVAL;
2566 	}
2567 
2568 	set_current_blocked(&newset);
2569 	return 0;
2570 }
2571 
2572 /**
2573  *  sys_rt_sigprocmask - change the list of currently blocked signals
2574  *  @how: whether to add, remove, or set signals
2575  *  @nset: stores pending signals
2576  *  @oset: previous value of signal mask if non-null
2577  *  @sigsetsize: size of sigset_t type
2578  */
2579 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2580 		sigset_t __user *, oset, size_t, sigsetsize)
2581 {
2582 	sigset_t old_set, new_set;
2583 	int error;
2584 
2585 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2586 	if (sigsetsize != sizeof(sigset_t))
2587 		return -EINVAL;
2588 
2589 	old_set = current->blocked;
2590 
2591 	if (nset) {
2592 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2593 			return -EFAULT;
2594 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2595 
2596 		error = sigprocmask(how, &new_set, NULL);
2597 		if (error)
2598 			return error;
2599 	}
2600 
2601 	if (oset) {
2602 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2603 			return -EFAULT;
2604 	}
2605 
2606 	return 0;
2607 }
2608 
2609 long do_sigpending(void __user *set, unsigned long sigsetsize)
2610 {
2611 	long error = -EINVAL;
2612 	sigset_t pending;
2613 
2614 	if (sigsetsize > sizeof(sigset_t))
2615 		goto out;
2616 
2617 	spin_lock_irq(&current->sighand->siglock);
2618 	sigorsets(&pending, &current->pending.signal,
2619 		  &current->signal->shared_pending.signal);
2620 	spin_unlock_irq(&current->sighand->siglock);
2621 
2622 	/* Outside the lock because only this thread touches it.  */
2623 	sigandsets(&pending, &current->blocked, &pending);
2624 
2625 	error = -EFAULT;
2626 	if (!copy_to_user(set, &pending, sigsetsize))
2627 		error = 0;
2628 
2629 out:
2630 	return error;
2631 }
2632 
2633 /**
2634  *  sys_rt_sigpending - examine a pending signal that has been raised
2635  *			while blocked
2636  *  @set: stores pending signals
2637  *  @sigsetsize: size of sigset_t type or larger
2638  */
2639 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2640 {
2641 	return do_sigpending(set, sigsetsize);
2642 }
2643 
2644 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2645 
2646 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2647 {
2648 	int err;
2649 
2650 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2651 		return -EFAULT;
2652 	if (from->si_code < 0)
2653 		return __copy_to_user(to, from, sizeof(siginfo_t))
2654 			? -EFAULT : 0;
2655 	/*
2656 	 * If you change siginfo_t structure, please be sure
2657 	 * this code is fixed accordingly.
2658 	 * Please remember to update the signalfd_copyinfo() function
2659 	 * inside fs/signalfd.c too, in case siginfo_t changes.
2660 	 * It should never copy any pad contained in the structure
2661 	 * to avoid security leaks, but must copy the generic
2662 	 * 3 ints plus the relevant union member.
2663 	 */
2664 	err = __put_user(from->si_signo, &to->si_signo);
2665 	err |= __put_user(from->si_errno, &to->si_errno);
2666 	err |= __put_user((short)from->si_code, &to->si_code);
2667 	switch (from->si_code & __SI_MASK) {
2668 	case __SI_KILL:
2669 		err |= __put_user(from->si_pid, &to->si_pid);
2670 		err |= __put_user(from->si_uid, &to->si_uid);
2671 		break;
2672 	case __SI_TIMER:
2673 		 err |= __put_user(from->si_tid, &to->si_tid);
2674 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2675 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2676 		break;
2677 	case __SI_POLL:
2678 		err |= __put_user(from->si_band, &to->si_band);
2679 		err |= __put_user(from->si_fd, &to->si_fd);
2680 		break;
2681 	case __SI_FAULT:
2682 		err |= __put_user(from->si_addr, &to->si_addr);
2683 #ifdef __ARCH_SI_TRAPNO
2684 		err |= __put_user(from->si_trapno, &to->si_trapno);
2685 #endif
2686 #ifdef BUS_MCEERR_AO
2687 		/*
2688 		 * Other callers might not initialize the si_lsb field,
2689 		 * so check explicitly for the right codes here.
2690 		 */
2691 		if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2692 			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2693 #endif
2694 		break;
2695 	case __SI_CHLD:
2696 		err |= __put_user(from->si_pid, &to->si_pid);
2697 		err |= __put_user(from->si_uid, &to->si_uid);
2698 		err |= __put_user(from->si_status, &to->si_status);
2699 		err |= __put_user(from->si_utime, &to->si_utime);
2700 		err |= __put_user(from->si_stime, &to->si_stime);
2701 		break;
2702 	case __SI_RT: /* This is not generated by the kernel as of now. */
2703 	case __SI_MESGQ: /* But this is */
2704 		err |= __put_user(from->si_pid, &to->si_pid);
2705 		err |= __put_user(from->si_uid, &to->si_uid);
2706 		err |= __put_user(from->si_ptr, &to->si_ptr);
2707 		break;
2708 	default: /* this is just in case for now ... */
2709 		err |= __put_user(from->si_pid, &to->si_pid);
2710 		err |= __put_user(from->si_uid, &to->si_uid);
2711 		break;
2712 	}
2713 	return err;
2714 }
2715 
2716 #endif
2717 
2718 /**
2719  *  do_sigtimedwait - wait for queued signals specified in @which
2720  *  @which: queued signals to wait for
2721  *  @info: if non-null, the signal's siginfo is returned here
2722  *  @ts: upper bound on process time suspension
2723  */
2724 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2725 			const struct timespec *ts)
2726 {
2727 	struct task_struct *tsk = current;
2728 	long timeout = MAX_SCHEDULE_TIMEOUT;
2729 	sigset_t mask = *which;
2730 	int sig;
2731 
2732 	if (ts) {
2733 		if (!timespec_valid(ts))
2734 			return -EINVAL;
2735 		timeout = timespec_to_jiffies(ts);
2736 		/*
2737 		 * We can be close to the next tick, add another one
2738 		 * to ensure we will wait at least the time asked for.
2739 		 */
2740 		if (ts->tv_sec || ts->tv_nsec)
2741 			timeout++;
2742 	}
2743 
2744 	/*
2745 	 * Invert the set of allowed signals to get those we want to block.
2746 	 */
2747 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2748 	signotset(&mask);
2749 
2750 	spin_lock_irq(&tsk->sighand->siglock);
2751 	sig = dequeue_signal(tsk, &mask, info);
2752 	if (!sig && timeout) {
2753 		/*
2754 		 * None ready, temporarily unblock those we're interested
2755 		 * while we are sleeping in so that we'll be awakened when
2756 		 * they arrive. Unblocking is always fine, we can avoid
2757 		 * set_current_blocked().
2758 		 */
2759 		tsk->real_blocked = tsk->blocked;
2760 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2761 		recalc_sigpending();
2762 		spin_unlock_irq(&tsk->sighand->siglock);
2763 
2764 		timeout = schedule_timeout_interruptible(timeout);
2765 
2766 		spin_lock_irq(&tsk->sighand->siglock);
2767 		__set_task_blocked(tsk, &tsk->real_blocked);
2768 		siginitset(&tsk->real_blocked, 0);
2769 		sig = dequeue_signal(tsk, &mask, info);
2770 	}
2771 	spin_unlock_irq(&tsk->sighand->siglock);
2772 
2773 	if (sig)
2774 		return sig;
2775 	return timeout ? -EINTR : -EAGAIN;
2776 }
2777 
2778 /**
2779  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2780  *			in @uthese
2781  *  @uthese: queued signals to wait for
2782  *  @uinfo: if non-null, the signal's siginfo is returned here
2783  *  @uts: upper bound on process time suspension
2784  *  @sigsetsize: size of sigset_t type
2785  */
2786 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2787 		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2788 		size_t, sigsetsize)
2789 {
2790 	sigset_t these;
2791 	struct timespec ts;
2792 	siginfo_t info;
2793 	int ret;
2794 
2795 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2796 	if (sigsetsize != sizeof(sigset_t))
2797 		return -EINVAL;
2798 
2799 	if (copy_from_user(&these, uthese, sizeof(these)))
2800 		return -EFAULT;
2801 
2802 	if (uts) {
2803 		if (copy_from_user(&ts, uts, sizeof(ts)))
2804 			return -EFAULT;
2805 	}
2806 
2807 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2808 
2809 	if (ret > 0 && uinfo) {
2810 		if (copy_siginfo_to_user(uinfo, &info))
2811 			ret = -EFAULT;
2812 	}
2813 
2814 	return ret;
2815 }
2816 
2817 /**
2818  *  sys_kill - send a signal to a process
2819  *  @pid: the PID of the process
2820  *  @sig: signal to be sent
2821  */
2822 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2823 {
2824 	struct siginfo info;
2825 
2826 	info.si_signo = sig;
2827 	info.si_errno = 0;
2828 	info.si_code = SI_USER;
2829 	info.si_pid = task_tgid_vnr(current);
2830 	info.si_uid = current_uid();
2831 
2832 	return kill_something_info(sig, &info, pid);
2833 }
2834 
2835 static int
2836 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2837 {
2838 	struct task_struct *p;
2839 	int error = -ESRCH;
2840 
2841 	rcu_read_lock();
2842 	p = find_task_by_vpid(pid);
2843 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2844 		error = check_kill_permission(sig, info, p);
2845 		/*
2846 		 * The null signal is a permissions and process existence
2847 		 * probe.  No signal is actually delivered.
2848 		 */
2849 		if (!error && sig) {
2850 			error = do_send_sig_info(sig, info, p, false);
2851 			/*
2852 			 * If lock_task_sighand() failed we pretend the task
2853 			 * dies after receiving the signal. The window is tiny,
2854 			 * and the signal is private anyway.
2855 			 */
2856 			if (unlikely(error == -ESRCH))
2857 				error = 0;
2858 		}
2859 	}
2860 	rcu_read_unlock();
2861 
2862 	return error;
2863 }
2864 
2865 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2866 {
2867 	struct siginfo info;
2868 
2869 	info.si_signo = sig;
2870 	info.si_errno = 0;
2871 	info.si_code = SI_TKILL;
2872 	info.si_pid = task_tgid_vnr(current);
2873 	info.si_uid = current_uid();
2874 
2875 	return do_send_specific(tgid, pid, sig, &info);
2876 }
2877 
2878 /**
2879  *  sys_tgkill - send signal to one specific thread
2880  *  @tgid: the thread group ID of the thread
2881  *  @pid: the PID of the thread
2882  *  @sig: signal to be sent
2883  *
2884  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2885  *  exists but it's not belonging to the target process anymore. This
2886  *  method solves the problem of threads exiting and PIDs getting reused.
2887  */
2888 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2889 {
2890 	/* This is only valid for single tasks */
2891 	if (pid <= 0 || tgid <= 0)
2892 		return -EINVAL;
2893 
2894 	return do_tkill(tgid, pid, sig);
2895 }
2896 
2897 /**
2898  *  sys_tkill - send signal to one specific task
2899  *  @pid: the PID of the task
2900  *  @sig: signal to be sent
2901  *
2902  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2903  */
2904 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2905 {
2906 	/* This is only valid for single tasks */
2907 	if (pid <= 0)
2908 		return -EINVAL;
2909 
2910 	return do_tkill(0, pid, sig);
2911 }
2912 
2913 /**
2914  *  sys_rt_sigqueueinfo - send signal information to a signal
2915  *  @pid: the PID of the thread
2916  *  @sig: signal to be sent
2917  *  @uinfo: signal info to be sent
2918  */
2919 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2920 		siginfo_t __user *, uinfo)
2921 {
2922 	siginfo_t info;
2923 
2924 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2925 		return -EFAULT;
2926 
2927 	/* Not even root can pretend to send signals from the kernel.
2928 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2929 	 */
2930 	if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2931 		/* We used to allow any < 0 si_code */
2932 		WARN_ON_ONCE(info.si_code < 0);
2933 		return -EPERM;
2934 	}
2935 	info.si_signo = sig;
2936 
2937 	/* POSIX.1b doesn't mention process groups.  */
2938 	return kill_proc_info(sig, &info, pid);
2939 }
2940 
2941 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2942 {
2943 	/* This is only valid for single tasks */
2944 	if (pid <= 0 || tgid <= 0)
2945 		return -EINVAL;
2946 
2947 	/* Not even root can pretend to send signals from the kernel.
2948 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2949 	 */
2950 	if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2951 		/* We used to allow any < 0 si_code */
2952 		WARN_ON_ONCE(info->si_code < 0);
2953 		return -EPERM;
2954 	}
2955 	info->si_signo = sig;
2956 
2957 	return do_send_specific(tgid, pid, sig, info);
2958 }
2959 
2960 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2961 		siginfo_t __user *, uinfo)
2962 {
2963 	siginfo_t info;
2964 
2965 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2966 		return -EFAULT;
2967 
2968 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2969 }
2970 
2971 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2972 {
2973 	struct task_struct *t = current;
2974 	struct k_sigaction *k;
2975 	sigset_t mask;
2976 
2977 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2978 		return -EINVAL;
2979 
2980 	k = &t->sighand->action[sig-1];
2981 
2982 	spin_lock_irq(&current->sighand->siglock);
2983 	if (oact)
2984 		*oact = *k;
2985 
2986 	if (act) {
2987 		sigdelsetmask(&act->sa.sa_mask,
2988 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
2989 		*k = *act;
2990 		/*
2991 		 * POSIX 3.3.1.3:
2992 		 *  "Setting a signal action to SIG_IGN for a signal that is
2993 		 *   pending shall cause the pending signal to be discarded,
2994 		 *   whether or not it is blocked."
2995 		 *
2996 		 *  "Setting a signal action to SIG_DFL for a signal that is
2997 		 *   pending and whose default action is to ignore the signal
2998 		 *   (for example, SIGCHLD), shall cause the pending signal to
2999 		 *   be discarded, whether or not it is blocked"
3000 		 */
3001 		if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3002 			sigemptyset(&mask);
3003 			sigaddset(&mask, sig);
3004 			rm_from_queue_full(&mask, &t->signal->shared_pending);
3005 			do {
3006 				rm_from_queue_full(&mask, &t->pending);
3007 				t = next_thread(t);
3008 			} while (t != current);
3009 		}
3010 	}
3011 
3012 	spin_unlock_irq(&current->sighand->siglock);
3013 	return 0;
3014 }
3015 
3016 int
3017 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3018 {
3019 	stack_t oss;
3020 	int error;
3021 
3022 	oss.ss_sp = (void __user *) current->sas_ss_sp;
3023 	oss.ss_size = current->sas_ss_size;
3024 	oss.ss_flags = sas_ss_flags(sp);
3025 
3026 	if (uss) {
3027 		void __user *ss_sp;
3028 		size_t ss_size;
3029 		int ss_flags;
3030 
3031 		error = -EFAULT;
3032 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3033 			goto out;
3034 		error = __get_user(ss_sp, &uss->ss_sp) |
3035 			__get_user(ss_flags, &uss->ss_flags) |
3036 			__get_user(ss_size, &uss->ss_size);
3037 		if (error)
3038 			goto out;
3039 
3040 		error = -EPERM;
3041 		if (on_sig_stack(sp))
3042 			goto out;
3043 
3044 		error = -EINVAL;
3045 		/*
3046 		 * Note - this code used to test ss_flags incorrectly:
3047 		 *  	  old code may have been written using ss_flags==0
3048 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
3049 		 *	  way that worked) - this fix preserves that older
3050 		 *	  mechanism.
3051 		 */
3052 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3053 			goto out;
3054 
3055 		if (ss_flags == SS_DISABLE) {
3056 			ss_size = 0;
3057 			ss_sp = NULL;
3058 		} else {
3059 			error = -ENOMEM;
3060 			if (ss_size < MINSIGSTKSZ)
3061 				goto out;
3062 		}
3063 
3064 		current->sas_ss_sp = (unsigned long) ss_sp;
3065 		current->sas_ss_size = ss_size;
3066 	}
3067 
3068 	error = 0;
3069 	if (uoss) {
3070 		error = -EFAULT;
3071 		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3072 			goto out;
3073 		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3074 			__put_user(oss.ss_size, &uoss->ss_size) |
3075 			__put_user(oss.ss_flags, &uoss->ss_flags);
3076 	}
3077 
3078 out:
3079 	return error;
3080 }
3081 
3082 #ifdef __ARCH_WANT_SYS_SIGPENDING
3083 
3084 /**
3085  *  sys_sigpending - examine pending signals
3086  *  @set: where mask of pending signal is returned
3087  */
3088 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3089 {
3090 	return do_sigpending(set, sizeof(*set));
3091 }
3092 
3093 #endif
3094 
3095 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3096 /**
3097  *  sys_sigprocmask - examine and change blocked signals
3098  *  @how: whether to add, remove, or set signals
3099  *  @nset: signals to add or remove (if non-null)
3100  *  @oset: previous value of signal mask if non-null
3101  *
3102  * Some platforms have their own version with special arguments;
3103  * others support only sys_rt_sigprocmask.
3104  */
3105 
3106 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3107 		old_sigset_t __user *, oset)
3108 {
3109 	old_sigset_t old_set, new_set;
3110 	sigset_t new_blocked;
3111 
3112 	old_set = current->blocked.sig[0];
3113 
3114 	if (nset) {
3115 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3116 			return -EFAULT;
3117 		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
3118 
3119 		new_blocked = current->blocked;
3120 
3121 		switch (how) {
3122 		case SIG_BLOCK:
3123 			sigaddsetmask(&new_blocked, new_set);
3124 			break;
3125 		case SIG_UNBLOCK:
3126 			sigdelsetmask(&new_blocked, new_set);
3127 			break;
3128 		case SIG_SETMASK:
3129 			new_blocked.sig[0] = new_set;
3130 			break;
3131 		default:
3132 			return -EINVAL;
3133 		}
3134 
3135 		set_current_blocked(&new_blocked);
3136 	}
3137 
3138 	if (oset) {
3139 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3140 			return -EFAULT;
3141 	}
3142 
3143 	return 0;
3144 }
3145 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3146 
3147 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
3148 /**
3149  *  sys_rt_sigaction - alter an action taken by a process
3150  *  @sig: signal to be sent
3151  *  @act: new sigaction
3152  *  @oact: used to save the previous sigaction
3153  *  @sigsetsize: size of sigset_t type
3154  */
3155 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3156 		const struct sigaction __user *, act,
3157 		struct sigaction __user *, oact,
3158 		size_t, sigsetsize)
3159 {
3160 	struct k_sigaction new_sa, old_sa;
3161 	int ret = -EINVAL;
3162 
3163 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3164 	if (sigsetsize != sizeof(sigset_t))
3165 		goto out;
3166 
3167 	if (act) {
3168 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3169 			return -EFAULT;
3170 	}
3171 
3172 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3173 
3174 	if (!ret && oact) {
3175 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3176 			return -EFAULT;
3177 	}
3178 out:
3179 	return ret;
3180 }
3181 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
3182 
3183 #ifdef __ARCH_WANT_SYS_SGETMASK
3184 
3185 /*
3186  * For backwards compatibility.  Functionality superseded by sigprocmask.
3187  */
3188 SYSCALL_DEFINE0(sgetmask)
3189 {
3190 	/* SMP safe */
3191 	return current->blocked.sig[0];
3192 }
3193 
3194 SYSCALL_DEFINE1(ssetmask, int, newmask)
3195 {
3196 	int old = current->blocked.sig[0];
3197 	sigset_t newset;
3198 
3199 	siginitset(&newset, newmask & ~(sigmask(SIGKILL) | sigmask(SIGSTOP)));
3200 	set_current_blocked(&newset);
3201 
3202 	return old;
3203 }
3204 #endif /* __ARCH_WANT_SGETMASK */
3205 
3206 #ifdef __ARCH_WANT_SYS_SIGNAL
3207 /*
3208  * For backwards compatibility.  Functionality superseded by sigaction.
3209  */
3210 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3211 {
3212 	struct k_sigaction new_sa, old_sa;
3213 	int ret;
3214 
3215 	new_sa.sa.sa_handler = handler;
3216 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3217 	sigemptyset(&new_sa.sa.sa_mask);
3218 
3219 	ret = do_sigaction(sig, &new_sa, &old_sa);
3220 
3221 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3222 }
3223 #endif /* __ARCH_WANT_SYS_SIGNAL */
3224 
3225 #ifdef __ARCH_WANT_SYS_PAUSE
3226 
3227 SYSCALL_DEFINE0(pause)
3228 {
3229 	while (!signal_pending(current)) {
3230 		current->state = TASK_INTERRUPTIBLE;
3231 		schedule();
3232 	}
3233 	return -ERESTARTNOHAND;
3234 }
3235 
3236 #endif
3237 
3238 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
3239 /**
3240  *  sys_rt_sigsuspend - replace the signal mask for a value with the
3241  *	@unewset value until a signal is received
3242  *  @unewset: new signal mask value
3243  *  @sigsetsize: size of sigset_t type
3244  */
3245 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3246 {
3247 	sigset_t newset;
3248 
3249 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3250 	if (sigsetsize != sizeof(sigset_t))
3251 		return -EINVAL;
3252 
3253 	if (copy_from_user(&newset, unewset, sizeof(newset)))
3254 		return -EFAULT;
3255 	sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3256 
3257 	current->saved_sigmask = current->blocked;
3258 	set_current_blocked(&newset);
3259 
3260 	current->state = TASK_INTERRUPTIBLE;
3261 	schedule();
3262 	set_restore_sigmask();
3263 	return -ERESTARTNOHAND;
3264 }
3265 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
3266 
3267 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3268 {
3269 	return NULL;
3270 }
3271 
3272 void __init signals_init(void)
3273 {
3274 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3275 }
3276 
3277 #ifdef CONFIG_KGDB_KDB
3278 #include <linux/kdb.h>
3279 /*
3280  * kdb_send_sig_info - Allows kdb to send signals without exposing
3281  * signal internals.  This function checks if the required locks are
3282  * available before calling the main signal code, to avoid kdb
3283  * deadlocks.
3284  */
3285 void
3286 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3287 {
3288 	static struct task_struct *kdb_prev_t;
3289 	int sig, new_t;
3290 	if (!spin_trylock(&t->sighand->siglock)) {
3291 		kdb_printf("Can't do kill command now.\n"
3292 			   "The sigmask lock is held somewhere else in "
3293 			   "kernel, try again later\n");
3294 		return;
3295 	}
3296 	spin_unlock(&t->sighand->siglock);
3297 	new_t = kdb_prev_t != t;
3298 	kdb_prev_t = t;
3299 	if (t->state != TASK_RUNNING && new_t) {
3300 		kdb_printf("Process is not RUNNING, sending a signal from "
3301 			   "kdb risks deadlock\n"
3302 			   "on the run queue locks. "
3303 			   "The signal has _not_ been sent.\n"
3304 			   "Reissue the kill command if you want to risk "
3305 			   "the deadlock.\n");
3306 		return;
3307 	}
3308 	sig = info->si_signo;
3309 	if (send_sig_info(sig, info, t))
3310 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3311 			   sig, t->pid);
3312 	else
3313 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3314 }
3315 #endif	/* CONFIG_KGDB_KDB */
3316