1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/export.h> 15 #include <linux/init.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/tty.h> 19 #include <linux/binfmts.h> 20 #include <linux/security.h> 21 #include <linux/syscalls.h> 22 #include <linux/ptrace.h> 23 #include <linux/signal.h> 24 #include <linux/signalfd.h> 25 #include <linux/ratelimit.h> 26 #include <linux/tracehook.h> 27 #include <linux/capability.h> 28 #include <linux/freezer.h> 29 #include <linux/pid_namespace.h> 30 #include <linux/nsproxy.h> 31 #include <linux/user_namespace.h> 32 #define CREATE_TRACE_POINTS 33 #include <trace/events/signal.h> 34 35 #include <asm/param.h> 36 #include <asm/uaccess.h> 37 #include <asm/unistd.h> 38 #include <asm/siginfo.h> 39 #include "audit.h" /* audit_signal_info() */ 40 41 /* 42 * SLAB caches for signal bits. 43 */ 44 45 static struct kmem_cache *sigqueue_cachep; 46 47 int print_fatal_signals __read_mostly; 48 49 static void __user *sig_handler(struct task_struct *t, int sig) 50 { 51 return t->sighand->action[sig - 1].sa.sa_handler; 52 } 53 54 static int sig_handler_ignored(void __user *handler, int sig) 55 { 56 /* Is it explicitly or implicitly ignored? */ 57 return handler == SIG_IGN || 58 (handler == SIG_DFL && sig_kernel_ignore(sig)); 59 } 60 61 static int sig_task_ignored(struct task_struct *t, int sig, 62 int from_ancestor_ns) 63 { 64 void __user *handler; 65 66 handler = sig_handler(t, sig); 67 68 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 69 handler == SIG_DFL && !from_ancestor_ns) 70 return 1; 71 72 return sig_handler_ignored(handler, sig); 73 } 74 75 static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns) 76 { 77 /* 78 * Blocked signals are never ignored, since the 79 * signal handler may change by the time it is 80 * unblocked. 81 */ 82 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 83 return 0; 84 85 if (!sig_task_ignored(t, sig, from_ancestor_ns)) 86 return 0; 87 88 /* 89 * Tracers may want to know about even ignored signals. 90 */ 91 return !t->ptrace; 92 } 93 94 /* 95 * Re-calculate pending state from the set of locally pending 96 * signals, globally pending signals, and blocked signals. 97 */ 98 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 99 { 100 unsigned long ready; 101 long i; 102 103 switch (_NSIG_WORDS) { 104 default: 105 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 106 ready |= signal->sig[i] &~ blocked->sig[i]; 107 break; 108 109 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 110 ready |= signal->sig[2] &~ blocked->sig[2]; 111 ready |= signal->sig[1] &~ blocked->sig[1]; 112 ready |= signal->sig[0] &~ blocked->sig[0]; 113 break; 114 115 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 116 ready |= signal->sig[0] &~ blocked->sig[0]; 117 break; 118 119 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 120 } 121 return ready != 0; 122 } 123 124 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 125 126 static int recalc_sigpending_tsk(struct task_struct *t) 127 { 128 if ((t->jobctl & JOBCTL_PENDING_MASK) || 129 PENDING(&t->pending, &t->blocked) || 130 PENDING(&t->signal->shared_pending, &t->blocked)) { 131 set_tsk_thread_flag(t, TIF_SIGPENDING); 132 return 1; 133 } 134 /* 135 * We must never clear the flag in another thread, or in current 136 * when it's possible the current syscall is returning -ERESTART*. 137 * So we don't clear it here, and only callers who know they should do. 138 */ 139 return 0; 140 } 141 142 /* 143 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 144 * This is superfluous when called on current, the wakeup is a harmless no-op. 145 */ 146 void recalc_sigpending_and_wake(struct task_struct *t) 147 { 148 if (recalc_sigpending_tsk(t)) 149 signal_wake_up(t, 0); 150 } 151 152 void recalc_sigpending(void) 153 { 154 if (!recalc_sigpending_tsk(current) && !freezing(current)) 155 clear_thread_flag(TIF_SIGPENDING); 156 157 } 158 159 /* Given the mask, find the first available signal that should be serviced. */ 160 161 #define SYNCHRONOUS_MASK \ 162 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 163 sigmask(SIGTRAP) | sigmask(SIGFPE)) 164 165 int next_signal(struct sigpending *pending, sigset_t *mask) 166 { 167 unsigned long i, *s, *m, x; 168 int sig = 0; 169 170 s = pending->signal.sig; 171 m = mask->sig; 172 173 /* 174 * Handle the first word specially: it contains the 175 * synchronous signals that need to be dequeued first. 176 */ 177 x = *s &~ *m; 178 if (x) { 179 if (x & SYNCHRONOUS_MASK) 180 x &= SYNCHRONOUS_MASK; 181 sig = ffz(~x) + 1; 182 return sig; 183 } 184 185 switch (_NSIG_WORDS) { 186 default: 187 for (i = 1; i < _NSIG_WORDS; ++i) { 188 x = *++s &~ *++m; 189 if (!x) 190 continue; 191 sig = ffz(~x) + i*_NSIG_BPW + 1; 192 break; 193 } 194 break; 195 196 case 2: 197 x = s[1] &~ m[1]; 198 if (!x) 199 break; 200 sig = ffz(~x) + _NSIG_BPW + 1; 201 break; 202 203 case 1: 204 /* Nothing to do */ 205 break; 206 } 207 208 return sig; 209 } 210 211 static inline void print_dropped_signal(int sig) 212 { 213 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 214 215 if (!print_fatal_signals) 216 return; 217 218 if (!__ratelimit(&ratelimit_state)) 219 return; 220 221 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 222 current->comm, current->pid, sig); 223 } 224 225 /** 226 * task_set_jobctl_pending - set jobctl pending bits 227 * @task: target task 228 * @mask: pending bits to set 229 * 230 * Clear @mask from @task->jobctl. @mask must be subset of 231 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 232 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 233 * cleared. If @task is already being killed or exiting, this function 234 * becomes noop. 235 * 236 * CONTEXT: 237 * Must be called with @task->sighand->siglock held. 238 * 239 * RETURNS: 240 * %true if @mask is set, %false if made noop because @task was dying. 241 */ 242 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask) 243 { 244 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 245 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 246 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 247 248 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 249 return false; 250 251 if (mask & JOBCTL_STOP_SIGMASK) 252 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 253 254 task->jobctl |= mask; 255 return true; 256 } 257 258 /** 259 * task_clear_jobctl_trapping - clear jobctl trapping bit 260 * @task: target task 261 * 262 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 263 * Clear it and wake up the ptracer. Note that we don't need any further 264 * locking. @task->siglock guarantees that @task->parent points to the 265 * ptracer. 266 * 267 * CONTEXT: 268 * Must be called with @task->sighand->siglock held. 269 */ 270 void task_clear_jobctl_trapping(struct task_struct *task) 271 { 272 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 273 task->jobctl &= ~JOBCTL_TRAPPING; 274 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 275 } 276 } 277 278 /** 279 * task_clear_jobctl_pending - clear jobctl pending bits 280 * @task: target task 281 * @mask: pending bits to clear 282 * 283 * Clear @mask from @task->jobctl. @mask must be subset of 284 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 285 * STOP bits are cleared together. 286 * 287 * If clearing of @mask leaves no stop or trap pending, this function calls 288 * task_clear_jobctl_trapping(). 289 * 290 * CONTEXT: 291 * Must be called with @task->sighand->siglock held. 292 */ 293 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask) 294 { 295 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 296 297 if (mask & JOBCTL_STOP_PENDING) 298 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 299 300 task->jobctl &= ~mask; 301 302 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 303 task_clear_jobctl_trapping(task); 304 } 305 306 /** 307 * task_participate_group_stop - participate in a group stop 308 * @task: task participating in a group stop 309 * 310 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 311 * Group stop states are cleared and the group stop count is consumed if 312 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 313 * stop, the appropriate %SIGNAL_* flags are set. 314 * 315 * CONTEXT: 316 * Must be called with @task->sighand->siglock held. 317 * 318 * RETURNS: 319 * %true if group stop completion should be notified to the parent, %false 320 * otherwise. 321 */ 322 static bool task_participate_group_stop(struct task_struct *task) 323 { 324 struct signal_struct *sig = task->signal; 325 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 326 327 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 328 329 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 330 331 if (!consume) 332 return false; 333 334 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 335 sig->group_stop_count--; 336 337 /* 338 * Tell the caller to notify completion iff we are entering into a 339 * fresh group stop. Read comment in do_signal_stop() for details. 340 */ 341 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 342 sig->flags = SIGNAL_STOP_STOPPED; 343 return true; 344 } 345 return false; 346 } 347 348 /* 349 * allocate a new signal queue record 350 * - this may be called without locks if and only if t == current, otherwise an 351 * appropriate lock must be held to stop the target task from exiting 352 */ 353 static struct sigqueue * 354 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) 355 { 356 struct sigqueue *q = NULL; 357 struct user_struct *user; 358 359 /* 360 * Protect access to @t credentials. This can go away when all 361 * callers hold rcu read lock. 362 */ 363 rcu_read_lock(); 364 user = get_uid(__task_cred(t)->user); 365 atomic_inc(&user->sigpending); 366 rcu_read_unlock(); 367 368 if (override_rlimit || 369 atomic_read(&user->sigpending) <= 370 task_rlimit(t, RLIMIT_SIGPENDING)) { 371 q = kmem_cache_alloc(sigqueue_cachep, flags); 372 } else { 373 print_dropped_signal(sig); 374 } 375 376 if (unlikely(q == NULL)) { 377 atomic_dec(&user->sigpending); 378 free_uid(user); 379 } else { 380 INIT_LIST_HEAD(&q->list); 381 q->flags = 0; 382 q->user = user; 383 } 384 385 return q; 386 } 387 388 static void __sigqueue_free(struct sigqueue *q) 389 { 390 if (q->flags & SIGQUEUE_PREALLOC) 391 return; 392 atomic_dec(&q->user->sigpending); 393 free_uid(q->user); 394 kmem_cache_free(sigqueue_cachep, q); 395 } 396 397 void flush_sigqueue(struct sigpending *queue) 398 { 399 struct sigqueue *q; 400 401 sigemptyset(&queue->signal); 402 while (!list_empty(&queue->list)) { 403 q = list_entry(queue->list.next, struct sigqueue , list); 404 list_del_init(&q->list); 405 __sigqueue_free(q); 406 } 407 } 408 409 /* 410 * Flush all pending signals for a task. 411 */ 412 void __flush_signals(struct task_struct *t) 413 { 414 clear_tsk_thread_flag(t, TIF_SIGPENDING); 415 flush_sigqueue(&t->pending); 416 flush_sigqueue(&t->signal->shared_pending); 417 } 418 419 void flush_signals(struct task_struct *t) 420 { 421 unsigned long flags; 422 423 spin_lock_irqsave(&t->sighand->siglock, flags); 424 __flush_signals(t); 425 spin_unlock_irqrestore(&t->sighand->siglock, flags); 426 } 427 428 static void __flush_itimer_signals(struct sigpending *pending) 429 { 430 sigset_t signal, retain; 431 struct sigqueue *q, *n; 432 433 signal = pending->signal; 434 sigemptyset(&retain); 435 436 list_for_each_entry_safe(q, n, &pending->list, list) { 437 int sig = q->info.si_signo; 438 439 if (likely(q->info.si_code != SI_TIMER)) { 440 sigaddset(&retain, sig); 441 } else { 442 sigdelset(&signal, sig); 443 list_del_init(&q->list); 444 __sigqueue_free(q); 445 } 446 } 447 448 sigorsets(&pending->signal, &signal, &retain); 449 } 450 451 void flush_itimer_signals(void) 452 { 453 struct task_struct *tsk = current; 454 unsigned long flags; 455 456 spin_lock_irqsave(&tsk->sighand->siglock, flags); 457 __flush_itimer_signals(&tsk->pending); 458 __flush_itimer_signals(&tsk->signal->shared_pending); 459 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 460 } 461 462 void ignore_signals(struct task_struct *t) 463 { 464 int i; 465 466 for (i = 0; i < _NSIG; ++i) 467 t->sighand->action[i].sa.sa_handler = SIG_IGN; 468 469 flush_signals(t); 470 } 471 472 /* 473 * Flush all handlers for a task. 474 */ 475 476 void 477 flush_signal_handlers(struct task_struct *t, int force_default) 478 { 479 int i; 480 struct k_sigaction *ka = &t->sighand->action[0]; 481 for (i = _NSIG ; i != 0 ; i--) { 482 if (force_default || ka->sa.sa_handler != SIG_IGN) 483 ka->sa.sa_handler = SIG_DFL; 484 ka->sa.sa_flags = 0; 485 sigemptyset(&ka->sa.sa_mask); 486 ka++; 487 } 488 } 489 490 int unhandled_signal(struct task_struct *tsk, int sig) 491 { 492 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 493 if (is_global_init(tsk)) 494 return 1; 495 if (handler != SIG_IGN && handler != SIG_DFL) 496 return 0; 497 /* if ptraced, let the tracer determine */ 498 return !tsk->ptrace; 499 } 500 501 /* 502 * Notify the system that a driver wants to block all signals for this 503 * process, and wants to be notified if any signals at all were to be 504 * sent/acted upon. If the notifier routine returns non-zero, then the 505 * signal will be acted upon after all. If the notifier routine returns 0, 506 * then then signal will be blocked. Only one block per process is 507 * allowed. priv is a pointer to private data that the notifier routine 508 * can use to determine if the signal should be blocked or not. 509 */ 510 void 511 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) 512 { 513 unsigned long flags; 514 515 spin_lock_irqsave(¤t->sighand->siglock, flags); 516 current->notifier_mask = mask; 517 current->notifier_data = priv; 518 current->notifier = notifier; 519 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 520 } 521 522 /* Notify the system that blocking has ended. */ 523 524 void 525 unblock_all_signals(void) 526 { 527 unsigned long flags; 528 529 spin_lock_irqsave(¤t->sighand->siglock, flags); 530 current->notifier = NULL; 531 current->notifier_data = NULL; 532 recalc_sigpending(); 533 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 534 } 535 536 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info) 537 { 538 struct sigqueue *q, *first = NULL; 539 540 /* 541 * Collect the siginfo appropriate to this signal. Check if 542 * there is another siginfo for the same signal. 543 */ 544 list_for_each_entry(q, &list->list, list) { 545 if (q->info.si_signo == sig) { 546 if (first) 547 goto still_pending; 548 first = q; 549 } 550 } 551 552 sigdelset(&list->signal, sig); 553 554 if (first) { 555 still_pending: 556 list_del_init(&first->list); 557 copy_siginfo(info, &first->info); 558 __sigqueue_free(first); 559 } else { 560 /* 561 * Ok, it wasn't in the queue. This must be 562 * a fast-pathed signal or we must have been 563 * out of queue space. So zero out the info. 564 */ 565 info->si_signo = sig; 566 info->si_errno = 0; 567 info->si_code = SI_USER; 568 info->si_pid = 0; 569 info->si_uid = 0; 570 } 571 } 572 573 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 574 siginfo_t *info) 575 { 576 int sig = next_signal(pending, mask); 577 578 if (sig) { 579 if (current->notifier) { 580 if (sigismember(current->notifier_mask, sig)) { 581 if (!(current->notifier)(current->notifier_data)) { 582 clear_thread_flag(TIF_SIGPENDING); 583 return 0; 584 } 585 } 586 } 587 588 collect_signal(sig, pending, info); 589 } 590 591 return sig; 592 } 593 594 /* 595 * Dequeue a signal and return the element to the caller, which is 596 * expected to free it. 597 * 598 * All callers have to hold the siglock. 599 */ 600 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 601 { 602 int signr; 603 604 /* We only dequeue private signals from ourselves, we don't let 605 * signalfd steal them 606 */ 607 signr = __dequeue_signal(&tsk->pending, mask, info); 608 if (!signr) { 609 signr = __dequeue_signal(&tsk->signal->shared_pending, 610 mask, info); 611 /* 612 * itimer signal ? 613 * 614 * itimers are process shared and we restart periodic 615 * itimers in the signal delivery path to prevent DoS 616 * attacks in the high resolution timer case. This is 617 * compliant with the old way of self-restarting 618 * itimers, as the SIGALRM is a legacy signal and only 619 * queued once. Changing the restart behaviour to 620 * restart the timer in the signal dequeue path is 621 * reducing the timer noise on heavy loaded !highres 622 * systems too. 623 */ 624 if (unlikely(signr == SIGALRM)) { 625 struct hrtimer *tmr = &tsk->signal->real_timer; 626 627 if (!hrtimer_is_queued(tmr) && 628 tsk->signal->it_real_incr.tv64 != 0) { 629 hrtimer_forward(tmr, tmr->base->get_time(), 630 tsk->signal->it_real_incr); 631 hrtimer_restart(tmr); 632 } 633 } 634 } 635 636 recalc_sigpending(); 637 if (!signr) 638 return 0; 639 640 if (unlikely(sig_kernel_stop(signr))) { 641 /* 642 * Set a marker that we have dequeued a stop signal. Our 643 * caller might release the siglock and then the pending 644 * stop signal it is about to process is no longer in the 645 * pending bitmasks, but must still be cleared by a SIGCONT 646 * (and overruled by a SIGKILL). So those cases clear this 647 * shared flag after we've set it. Note that this flag may 648 * remain set after the signal we return is ignored or 649 * handled. That doesn't matter because its only purpose 650 * is to alert stop-signal processing code when another 651 * processor has come along and cleared the flag. 652 */ 653 current->jobctl |= JOBCTL_STOP_DEQUEUED; 654 } 655 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) { 656 /* 657 * Release the siglock to ensure proper locking order 658 * of timer locks outside of siglocks. Note, we leave 659 * irqs disabled here, since the posix-timers code is 660 * about to disable them again anyway. 661 */ 662 spin_unlock(&tsk->sighand->siglock); 663 do_schedule_next_timer(info); 664 spin_lock(&tsk->sighand->siglock); 665 } 666 return signr; 667 } 668 669 /* 670 * Tell a process that it has a new active signal.. 671 * 672 * NOTE! we rely on the previous spin_lock to 673 * lock interrupts for us! We can only be called with 674 * "siglock" held, and the local interrupt must 675 * have been disabled when that got acquired! 676 * 677 * No need to set need_resched since signal event passing 678 * goes through ->blocked 679 */ 680 void signal_wake_up(struct task_struct *t, int resume) 681 { 682 unsigned int mask; 683 684 set_tsk_thread_flag(t, TIF_SIGPENDING); 685 686 /* 687 * For SIGKILL, we want to wake it up in the stopped/traced/killable 688 * case. We don't check t->state here because there is a race with it 689 * executing another processor and just now entering stopped state. 690 * By using wake_up_state, we ensure the process will wake up and 691 * handle its death signal. 692 */ 693 mask = TASK_INTERRUPTIBLE; 694 if (resume) 695 mask |= TASK_WAKEKILL; 696 if (!wake_up_state(t, mask)) 697 kick_process(t); 698 } 699 700 /* 701 * Remove signals in mask from the pending set and queue. 702 * Returns 1 if any signals were found. 703 * 704 * All callers must be holding the siglock. 705 * 706 * This version takes a sigset mask and looks at all signals, 707 * not just those in the first mask word. 708 */ 709 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s) 710 { 711 struct sigqueue *q, *n; 712 sigset_t m; 713 714 sigandsets(&m, mask, &s->signal); 715 if (sigisemptyset(&m)) 716 return 0; 717 718 sigandnsets(&s->signal, &s->signal, mask); 719 list_for_each_entry_safe(q, n, &s->list, list) { 720 if (sigismember(mask, q->info.si_signo)) { 721 list_del_init(&q->list); 722 __sigqueue_free(q); 723 } 724 } 725 return 1; 726 } 727 /* 728 * Remove signals in mask from the pending set and queue. 729 * Returns 1 if any signals were found. 730 * 731 * All callers must be holding the siglock. 732 */ 733 static int rm_from_queue(unsigned long mask, struct sigpending *s) 734 { 735 struct sigqueue *q, *n; 736 737 if (!sigtestsetmask(&s->signal, mask)) 738 return 0; 739 740 sigdelsetmask(&s->signal, mask); 741 list_for_each_entry_safe(q, n, &s->list, list) { 742 if (q->info.si_signo < SIGRTMIN && 743 (mask & sigmask(q->info.si_signo))) { 744 list_del_init(&q->list); 745 __sigqueue_free(q); 746 } 747 } 748 return 1; 749 } 750 751 static inline int is_si_special(const struct siginfo *info) 752 { 753 return info <= SEND_SIG_FORCED; 754 } 755 756 static inline bool si_fromuser(const struct siginfo *info) 757 { 758 return info == SEND_SIG_NOINFO || 759 (!is_si_special(info) && SI_FROMUSER(info)); 760 } 761 762 /* 763 * called with RCU read lock from check_kill_permission() 764 */ 765 static int kill_ok_by_cred(struct task_struct *t) 766 { 767 const struct cred *cred = current_cred(); 768 const struct cred *tcred = __task_cred(t); 769 770 if (cred->user->user_ns == tcred->user->user_ns && 771 (cred->euid == tcred->suid || 772 cred->euid == tcred->uid || 773 cred->uid == tcred->suid || 774 cred->uid == tcred->uid)) 775 return 1; 776 777 if (ns_capable(tcred->user->user_ns, CAP_KILL)) 778 return 1; 779 780 return 0; 781 } 782 783 /* 784 * Bad permissions for sending the signal 785 * - the caller must hold the RCU read lock 786 */ 787 static int check_kill_permission(int sig, struct siginfo *info, 788 struct task_struct *t) 789 { 790 struct pid *sid; 791 int error; 792 793 if (!valid_signal(sig)) 794 return -EINVAL; 795 796 if (!si_fromuser(info)) 797 return 0; 798 799 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 800 if (error) 801 return error; 802 803 if (!same_thread_group(current, t) && 804 !kill_ok_by_cred(t)) { 805 switch (sig) { 806 case SIGCONT: 807 sid = task_session(t); 808 /* 809 * We don't return the error if sid == NULL. The 810 * task was unhashed, the caller must notice this. 811 */ 812 if (!sid || sid == task_session(current)) 813 break; 814 default: 815 return -EPERM; 816 } 817 } 818 819 return security_task_kill(t, info, sig, 0); 820 } 821 822 /** 823 * ptrace_trap_notify - schedule trap to notify ptracer 824 * @t: tracee wanting to notify tracer 825 * 826 * This function schedules sticky ptrace trap which is cleared on the next 827 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 828 * ptracer. 829 * 830 * If @t is running, STOP trap will be taken. If trapped for STOP and 831 * ptracer is listening for events, tracee is woken up so that it can 832 * re-trap for the new event. If trapped otherwise, STOP trap will be 833 * eventually taken without returning to userland after the existing traps 834 * are finished by PTRACE_CONT. 835 * 836 * CONTEXT: 837 * Must be called with @task->sighand->siglock held. 838 */ 839 static void ptrace_trap_notify(struct task_struct *t) 840 { 841 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 842 assert_spin_locked(&t->sighand->siglock); 843 844 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 845 signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 846 } 847 848 /* 849 * Handle magic process-wide effects of stop/continue signals. Unlike 850 * the signal actions, these happen immediately at signal-generation 851 * time regardless of blocking, ignoring, or handling. This does the 852 * actual continuing for SIGCONT, but not the actual stopping for stop 853 * signals. The process stop is done as a signal action for SIG_DFL. 854 * 855 * Returns true if the signal should be actually delivered, otherwise 856 * it should be dropped. 857 */ 858 static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns) 859 { 860 struct signal_struct *signal = p->signal; 861 struct task_struct *t; 862 863 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) { 864 /* 865 * The process is in the middle of dying, nothing to do. 866 */ 867 } else if (sig_kernel_stop(sig)) { 868 /* 869 * This is a stop signal. Remove SIGCONT from all queues. 870 */ 871 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending); 872 t = p; 873 do { 874 rm_from_queue(sigmask(SIGCONT), &t->pending); 875 } while_each_thread(p, t); 876 } else if (sig == SIGCONT) { 877 unsigned int why; 878 /* 879 * Remove all stop signals from all queues, wake all threads. 880 */ 881 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending); 882 t = p; 883 do { 884 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 885 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 886 if (likely(!(t->ptrace & PT_SEIZED))) 887 wake_up_state(t, __TASK_STOPPED); 888 else 889 ptrace_trap_notify(t); 890 } while_each_thread(p, t); 891 892 /* 893 * Notify the parent with CLD_CONTINUED if we were stopped. 894 * 895 * If we were in the middle of a group stop, we pretend it 896 * was already finished, and then continued. Since SIGCHLD 897 * doesn't queue we report only CLD_STOPPED, as if the next 898 * CLD_CONTINUED was dropped. 899 */ 900 why = 0; 901 if (signal->flags & SIGNAL_STOP_STOPPED) 902 why |= SIGNAL_CLD_CONTINUED; 903 else if (signal->group_stop_count) 904 why |= SIGNAL_CLD_STOPPED; 905 906 if (why) { 907 /* 908 * The first thread which returns from do_signal_stop() 909 * will take ->siglock, notice SIGNAL_CLD_MASK, and 910 * notify its parent. See get_signal_to_deliver(). 911 */ 912 signal->flags = why | SIGNAL_STOP_CONTINUED; 913 signal->group_stop_count = 0; 914 signal->group_exit_code = 0; 915 } 916 } 917 918 return !sig_ignored(p, sig, from_ancestor_ns); 919 } 920 921 /* 922 * Test if P wants to take SIG. After we've checked all threads with this, 923 * it's equivalent to finding no threads not blocking SIG. Any threads not 924 * blocking SIG were ruled out because they are not running and already 925 * have pending signals. Such threads will dequeue from the shared queue 926 * as soon as they're available, so putting the signal on the shared queue 927 * will be equivalent to sending it to one such thread. 928 */ 929 static inline int wants_signal(int sig, struct task_struct *p) 930 { 931 if (sigismember(&p->blocked, sig)) 932 return 0; 933 if (p->flags & PF_EXITING) 934 return 0; 935 if (sig == SIGKILL) 936 return 1; 937 if (task_is_stopped_or_traced(p)) 938 return 0; 939 return task_curr(p) || !signal_pending(p); 940 } 941 942 static void complete_signal(int sig, struct task_struct *p, int group) 943 { 944 struct signal_struct *signal = p->signal; 945 struct task_struct *t; 946 947 /* 948 * Now find a thread we can wake up to take the signal off the queue. 949 * 950 * If the main thread wants the signal, it gets first crack. 951 * Probably the least surprising to the average bear. 952 */ 953 if (wants_signal(sig, p)) 954 t = p; 955 else if (!group || thread_group_empty(p)) 956 /* 957 * There is just one thread and it does not need to be woken. 958 * It will dequeue unblocked signals before it runs again. 959 */ 960 return; 961 else { 962 /* 963 * Otherwise try to find a suitable thread. 964 */ 965 t = signal->curr_target; 966 while (!wants_signal(sig, t)) { 967 t = next_thread(t); 968 if (t == signal->curr_target) 969 /* 970 * No thread needs to be woken. 971 * Any eligible threads will see 972 * the signal in the queue soon. 973 */ 974 return; 975 } 976 signal->curr_target = t; 977 } 978 979 /* 980 * Found a killable thread. If the signal will be fatal, 981 * then start taking the whole group down immediately. 982 */ 983 if (sig_fatal(p, sig) && 984 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) && 985 !sigismember(&t->real_blocked, sig) && 986 (sig == SIGKILL || !t->ptrace)) { 987 /* 988 * This signal will be fatal to the whole group. 989 */ 990 if (!sig_kernel_coredump(sig)) { 991 /* 992 * Start a group exit and wake everybody up. 993 * This way we don't have other threads 994 * running and doing things after a slower 995 * thread has the fatal signal pending. 996 */ 997 signal->flags = SIGNAL_GROUP_EXIT; 998 signal->group_exit_code = sig; 999 signal->group_stop_count = 0; 1000 t = p; 1001 do { 1002 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1003 sigaddset(&t->pending.signal, SIGKILL); 1004 signal_wake_up(t, 1); 1005 } while_each_thread(p, t); 1006 return; 1007 } 1008 } 1009 1010 /* 1011 * The signal is already in the shared-pending queue. 1012 * Tell the chosen thread to wake up and dequeue it. 1013 */ 1014 signal_wake_up(t, sig == SIGKILL); 1015 return; 1016 } 1017 1018 static inline int legacy_queue(struct sigpending *signals, int sig) 1019 { 1020 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1021 } 1022 1023 /* 1024 * map the uid in struct cred into user namespace *ns 1025 */ 1026 static inline uid_t map_cred_ns(const struct cred *cred, 1027 struct user_namespace *ns) 1028 { 1029 return user_ns_map_uid(ns, cred, cred->uid); 1030 } 1031 1032 #ifdef CONFIG_USER_NS 1033 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 1034 { 1035 if (current_user_ns() == task_cred_xxx(t, user_ns)) 1036 return; 1037 1038 if (SI_FROMKERNEL(info)) 1039 return; 1040 1041 info->si_uid = user_ns_map_uid(task_cred_xxx(t, user_ns), 1042 current_cred(), info->si_uid); 1043 } 1044 #else 1045 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 1046 { 1047 return; 1048 } 1049 #endif 1050 1051 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t, 1052 int group, int from_ancestor_ns) 1053 { 1054 struct sigpending *pending; 1055 struct sigqueue *q; 1056 int override_rlimit; 1057 int ret = 0, result; 1058 1059 assert_spin_locked(&t->sighand->siglock); 1060 1061 result = TRACE_SIGNAL_IGNORED; 1062 if (!prepare_signal(sig, t, from_ancestor_ns)) 1063 goto ret; 1064 1065 pending = group ? &t->signal->shared_pending : &t->pending; 1066 /* 1067 * Short-circuit ignored signals and support queuing 1068 * exactly one non-rt signal, so that we can get more 1069 * detailed information about the cause of the signal. 1070 */ 1071 result = TRACE_SIGNAL_ALREADY_PENDING; 1072 if (legacy_queue(pending, sig)) 1073 goto ret; 1074 1075 result = TRACE_SIGNAL_DELIVERED; 1076 /* 1077 * fast-pathed signals for kernel-internal things like SIGSTOP 1078 * or SIGKILL. 1079 */ 1080 if (info == SEND_SIG_FORCED) 1081 goto out_set; 1082 1083 /* 1084 * Real-time signals must be queued if sent by sigqueue, or 1085 * some other real-time mechanism. It is implementation 1086 * defined whether kill() does so. We attempt to do so, on 1087 * the principle of least surprise, but since kill is not 1088 * allowed to fail with EAGAIN when low on memory we just 1089 * make sure at least one signal gets delivered and don't 1090 * pass on the info struct. 1091 */ 1092 if (sig < SIGRTMIN) 1093 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1094 else 1095 override_rlimit = 0; 1096 1097 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE, 1098 override_rlimit); 1099 if (q) { 1100 list_add_tail(&q->list, &pending->list); 1101 switch ((unsigned long) info) { 1102 case (unsigned long) SEND_SIG_NOINFO: 1103 q->info.si_signo = sig; 1104 q->info.si_errno = 0; 1105 q->info.si_code = SI_USER; 1106 q->info.si_pid = task_tgid_nr_ns(current, 1107 task_active_pid_ns(t)); 1108 q->info.si_uid = current_uid(); 1109 break; 1110 case (unsigned long) SEND_SIG_PRIV: 1111 q->info.si_signo = sig; 1112 q->info.si_errno = 0; 1113 q->info.si_code = SI_KERNEL; 1114 q->info.si_pid = 0; 1115 q->info.si_uid = 0; 1116 break; 1117 default: 1118 copy_siginfo(&q->info, info); 1119 if (from_ancestor_ns) 1120 q->info.si_pid = 0; 1121 break; 1122 } 1123 1124 userns_fixup_signal_uid(&q->info, t); 1125 1126 } else if (!is_si_special(info)) { 1127 if (sig >= SIGRTMIN && info->si_code != SI_USER) { 1128 /* 1129 * Queue overflow, abort. We may abort if the 1130 * signal was rt and sent by user using something 1131 * other than kill(). 1132 */ 1133 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1134 ret = -EAGAIN; 1135 goto ret; 1136 } else { 1137 /* 1138 * This is a silent loss of information. We still 1139 * send the signal, but the *info bits are lost. 1140 */ 1141 result = TRACE_SIGNAL_LOSE_INFO; 1142 } 1143 } 1144 1145 out_set: 1146 signalfd_notify(t, sig); 1147 sigaddset(&pending->signal, sig); 1148 complete_signal(sig, t, group); 1149 ret: 1150 trace_signal_generate(sig, info, t, group, result); 1151 return ret; 1152 } 1153 1154 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 1155 int group) 1156 { 1157 int from_ancestor_ns = 0; 1158 1159 #ifdef CONFIG_PID_NS 1160 from_ancestor_ns = si_fromuser(info) && 1161 !task_pid_nr_ns(current, task_active_pid_ns(t)); 1162 #endif 1163 1164 return __send_signal(sig, info, t, group, from_ancestor_ns); 1165 } 1166 1167 static void print_fatal_signal(struct pt_regs *regs, int signr) 1168 { 1169 printk("%s/%d: potentially unexpected fatal signal %d.\n", 1170 current->comm, task_pid_nr(current), signr); 1171 1172 #if defined(__i386__) && !defined(__arch_um__) 1173 printk("code at %08lx: ", regs->ip); 1174 { 1175 int i; 1176 for (i = 0; i < 16; i++) { 1177 unsigned char insn; 1178 1179 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1180 break; 1181 printk("%02x ", insn); 1182 } 1183 } 1184 #endif 1185 printk("\n"); 1186 preempt_disable(); 1187 show_regs(regs); 1188 preempt_enable(); 1189 } 1190 1191 static int __init setup_print_fatal_signals(char *str) 1192 { 1193 get_option (&str, &print_fatal_signals); 1194 1195 return 1; 1196 } 1197 1198 __setup("print-fatal-signals=", setup_print_fatal_signals); 1199 1200 int 1201 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1202 { 1203 return send_signal(sig, info, p, 1); 1204 } 1205 1206 static int 1207 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1208 { 1209 return send_signal(sig, info, t, 0); 1210 } 1211 1212 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p, 1213 bool group) 1214 { 1215 unsigned long flags; 1216 int ret = -ESRCH; 1217 1218 if (lock_task_sighand(p, &flags)) { 1219 ret = send_signal(sig, info, p, group); 1220 unlock_task_sighand(p, &flags); 1221 } 1222 1223 return ret; 1224 } 1225 1226 /* 1227 * Force a signal that the process can't ignore: if necessary 1228 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1229 * 1230 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1231 * since we do not want to have a signal handler that was blocked 1232 * be invoked when user space had explicitly blocked it. 1233 * 1234 * We don't want to have recursive SIGSEGV's etc, for example, 1235 * that is why we also clear SIGNAL_UNKILLABLE. 1236 */ 1237 int 1238 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1239 { 1240 unsigned long int flags; 1241 int ret, blocked, ignored; 1242 struct k_sigaction *action; 1243 1244 spin_lock_irqsave(&t->sighand->siglock, flags); 1245 action = &t->sighand->action[sig-1]; 1246 ignored = action->sa.sa_handler == SIG_IGN; 1247 blocked = sigismember(&t->blocked, sig); 1248 if (blocked || ignored) { 1249 action->sa.sa_handler = SIG_DFL; 1250 if (blocked) { 1251 sigdelset(&t->blocked, sig); 1252 recalc_sigpending_and_wake(t); 1253 } 1254 } 1255 if (action->sa.sa_handler == SIG_DFL) 1256 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1257 ret = specific_send_sig_info(sig, info, t); 1258 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1259 1260 return ret; 1261 } 1262 1263 /* 1264 * Nuke all other threads in the group. 1265 */ 1266 int zap_other_threads(struct task_struct *p) 1267 { 1268 struct task_struct *t = p; 1269 int count = 0; 1270 1271 p->signal->group_stop_count = 0; 1272 1273 while_each_thread(p, t) { 1274 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1275 count++; 1276 1277 /* Don't bother with already dead threads */ 1278 if (t->exit_state) 1279 continue; 1280 sigaddset(&t->pending.signal, SIGKILL); 1281 signal_wake_up(t, 1); 1282 } 1283 1284 return count; 1285 } 1286 1287 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1288 unsigned long *flags) 1289 { 1290 struct sighand_struct *sighand; 1291 1292 for (;;) { 1293 local_irq_save(*flags); 1294 rcu_read_lock(); 1295 sighand = rcu_dereference(tsk->sighand); 1296 if (unlikely(sighand == NULL)) { 1297 rcu_read_unlock(); 1298 local_irq_restore(*flags); 1299 break; 1300 } 1301 1302 spin_lock(&sighand->siglock); 1303 if (likely(sighand == tsk->sighand)) { 1304 rcu_read_unlock(); 1305 break; 1306 } 1307 spin_unlock(&sighand->siglock); 1308 rcu_read_unlock(); 1309 local_irq_restore(*flags); 1310 } 1311 1312 return sighand; 1313 } 1314 1315 /* 1316 * send signal info to all the members of a group 1317 */ 1318 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1319 { 1320 int ret; 1321 1322 rcu_read_lock(); 1323 ret = check_kill_permission(sig, info, p); 1324 rcu_read_unlock(); 1325 1326 if (!ret && sig) 1327 ret = do_send_sig_info(sig, info, p, true); 1328 1329 return ret; 1330 } 1331 1332 /* 1333 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1334 * control characters do (^C, ^Z etc) 1335 * - the caller must hold at least a readlock on tasklist_lock 1336 */ 1337 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1338 { 1339 struct task_struct *p = NULL; 1340 int retval, success; 1341 1342 success = 0; 1343 retval = -ESRCH; 1344 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1345 int err = group_send_sig_info(sig, info, p); 1346 success |= !err; 1347 retval = err; 1348 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1349 return success ? 0 : retval; 1350 } 1351 1352 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) 1353 { 1354 int error = -ESRCH; 1355 struct task_struct *p; 1356 1357 rcu_read_lock(); 1358 retry: 1359 p = pid_task(pid, PIDTYPE_PID); 1360 if (p) { 1361 error = group_send_sig_info(sig, info, p); 1362 if (unlikely(error == -ESRCH)) 1363 /* 1364 * The task was unhashed in between, try again. 1365 * If it is dead, pid_task() will return NULL, 1366 * if we race with de_thread() it will find the 1367 * new leader. 1368 */ 1369 goto retry; 1370 } 1371 rcu_read_unlock(); 1372 1373 return error; 1374 } 1375 1376 int kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1377 { 1378 int error; 1379 rcu_read_lock(); 1380 error = kill_pid_info(sig, info, find_vpid(pid)); 1381 rcu_read_unlock(); 1382 return error; 1383 } 1384 1385 static int kill_as_cred_perm(const struct cred *cred, 1386 struct task_struct *target) 1387 { 1388 const struct cred *pcred = __task_cred(target); 1389 if (cred->user_ns != pcred->user_ns) 1390 return 0; 1391 if (cred->euid != pcred->suid && cred->euid != pcred->uid && 1392 cred->uid != pcred->suid && cred->uid != pcred->uid) 1393 return 0; 1394 return 1; 1395 } 1396 1397 /* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1398 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid, 1399 const struct cred *cred, u32 secid) 1400 { 1401 int ret = -EINVAL; 1402 struct task_struct *p; 1403 unsigned long flags; 1404 1405 if (!valid_signal(sig)) 1406 return ret; 1407 1408 rcu_read_lock(); 1409 p = pid_task(pid, PIDTYPE_PID); 1410 if (!p) { 1411 ret = -ESRCH; 1412 goto out_unlock; 1413 } 1414 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) { 1415 ret = -EPERM; 1416 goto out_unlock; 1417 } 1418 ret = security_task_kill(p, info, sig, secid); 1419 if (ret) 1420 goto out_unlock; 1421 1422 if (sig) { 1423 if (lock_task_sighand(p, &flags)) { 1424 ret = __send_signal(sig, info, p, 1, 0); 1425 unlock_task_sighand(p, &flags); 1426 } else 1427 ret = -ESRCH; 1428 } 1429 out_unlock: 1430 rcu_read_unlock(); 1431 return ret; 1432 } 1433 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred); 1434 1435 /* 1436 * kill_something_info() interprets pid in interesting ways just like kill(2). 1437 * 1438 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1439 * is probably wrong. Should make it like BSD or SYSV. 1440 */ 1441 1442 static int kill_something_info(int sig, struct siginfo *info, pid_t pid) 1443 { 1444 int ret; 1445 1446 if (pid > 0) { 1447 rcu_read_lock(); 1448 ret = kill_pid_info(sig, info, find_vpid(pid)); 1449 rcu_read_unlock(); 1450 return ret; 1451 } 1452 1453 read_lock(&tasklist_lock); 1454 if (pid != -1) { 1455 ret = __kill_pgrp_info(sig, info, 1456 pid ? find_vpid(-pid) : task_pgrp(current)); 1457 } else { 1458 int retval = 0, count = 0; 1459 struct task_struct * p; 1460 1461 for_each_process(p) { 1462 if (task_pid_vnr(p) > 1 && 1463 !same_thread_group(p, current)) { 1464 int err = group_send_sig_info(sig, info, p); 1465 ++count; 1466 if (err != -EPERM) 1467 retval = err; 1468 } 1469 } 1470 ret = count ? retval : -ESRCH; 1471 } 1472 read_unlock(&tasklist_lock); 1473 1474 return ret; 1475 } 1476 1477 /* 1478 * These are for backward compatibility with the rest of the kernel source. 1479 */ 1480 1481 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1482 { 1483 /* 1484 * Make sure legacy kernel users don't send in bad values 1485 * (normal paths check this in check_kill_permission). 1486 */ 1487 if (!valid_signal(sig)) 1488 return -EINVAL; 1489 1490 return do_send_sig_info(sig, info, p, false); 1491 } 1492 1493 #define __si_special(priv) \ 1494 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1495 1496 int 1497 send_sig(int sig, struct task_struct *p, int priv) 1498 { 1499 return send_sig_info(sig, __si_special(priv), p); 1500 } 1501 1502 void 1503 force_sig(int sig, struct task_struct *p) 1504 { 1505 force_sig_info(sig, SEND_SIG_PRIV, p); 1506 } 1507 1508 /* 1509 * When things go south during signal handling, we 1510 * will force a SIGSEGV. And if the signal that caused 1511 * the problem was already a SIGSEGV, we'll want to 1512 * make sure we don't even try to deliver the signal.. 1513 */ 1514 int 1515 force_sigsegv(int sig, struct task_struct *p) 1516 { 1517 if (sig == SIGSEGV) { 1518 unsigned long flags; 1519 spin_lock_irqsave(&p->sighand->siglock, flags); 1520 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1521 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1522 } 1523 force_sig(SIGSEGV, p); 1524 return 0; 1525 } 1526 1527 int kill_pgrp(struct pid *pid, int sig, int priv) 1528 { 1529 int ret; 1530 1531 read_lock(&tasklist_lock); 1532 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1533 read_unlock(&tasklist_lock); 1534 1535 return ret; 1536 } 1537 EXPORT_SYMBOL(kill_pgrp); 1538 1539 int kill_pid(struct pid *pid, int sig, int priv) 1540 { 1541 return kill_pid_info(sig, __si_special(priv), pid); 1542 } 1543 EXPORT_SYMBOL(kill_pid); 1544 1545 /* 1546 * These functions support sending signals using preallocated sigqueue 1547 * structures. This is needed "because realtime applications cannot 1548 * afford to lose notifications of asynchronous events, like timer 1549 * expirations or I/O completions". In the case of POSIX Timers 1550 * we allocate the sigqueue structure from the timer_create. If this 1551 * allocation fails we are able to report the failure to the application 1552 * with an EAGAIN error. 1553 */ 1554 struct sigqueue *sigqueue_alloc(void) 1555 { 1556 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); 1557 1558 if (q) 1559 q->flags |= SIGQUEUE_PREALLOC; 1560 1561 return q; 1562 } 1563 1564 void sigqueue_free(struct sigqueue *q) 1565 { 1566 unsigned long flags; 1567 spinlock_t *lock = ¤t->sighand->siglock; 1568 1569 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1570 /* 1571 * We must hold ->siglock while testing q->list 1572 * to serialize with collect_signal() or with 1573 * __exit_signal()->flush_sigqueue(). 1574 */ 1575 spin_lock_irqsave(lock, flags); 1576 q->flags &= ~SIGQUEUE_PREALLOC; 1577 /* 1578 * If it is queued it will be freed when dequeued, 1579 * like the "regular" sigqueue. 1580 */ 1581 if (!list_empty(&q->list)) 1582 q = NULL; 1583 spin_unlock_irqrestore(lock, flags); 1584 1585 if (q) 1586 __sigqueue_free(q); 1587 } 1588 1589 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) 1590 { 1591 int sig = q->info.si_signo; 1592 struct sigpending *pending; 1593 unsigned long flags; 1594 int ret, result; 1595 1596 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1597 1598 ret = -1; 1599 if (!likely(lock_task_sighand(t, &flags))) 1600 goto ret; 1601 1602 ret = 1; /* the signal is ignored */ 1603 result = TRACE_SIGNAL_IGNORED; 1604 if (!prepare_signal(sig, t, 0)) 1605 goto out; 1606 1607 ret = 0; 1608 if (unlikely(!list_empty(&q->list))) { 1609 /* 1610 * If an SI_TIMER entry is already queue just increment 1611 * the overrun count. 1612 */ 1613 BUG_ON(q->info.si_code != SI_TIMER); 1614 q->info.si_overrun++; 1615 result = TRACE_SIGNAL_ALREADY_PENDING; 1616 goto out; 1617 } 1618 q->info.si_overrun = 0; 1619 1620 signalfd_notify(t, sig); 1621 pending = group ? &t->signal->shared_pending : &t->pending; 1622 list_add_tail(&q->list, &pending->list); 1623 sigaddset(&pending->signal, sig); 1624 complete_signal(sig, t, group); 1625 result = TRACE_SIGNAL_DELIVERED; 1626 out: 1627 trace_signal_generate(sig, &q->info, t, group, result); 1628 unlock_task_sighand(t, &flags); 1629 ret: 1630 return ret; 1631 } 1632 1633 /* 1634 * Let a parent know about the death of a child. 1635 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1636 * 1637 * Returns true if our parent ignored us and so we've switched to 1638 * self-reaping. 1639 */ 1640 bool do_notify_parent(struct task_struct *tsk, int sig) 1641 { 1642 struct siginfo info; 1643 unsigned long flags; 1644 struct sighand_struct *psig; 1645 bool autoreap = false; 1646 1647 BUG_ON(sig == -1); 1648 1649 /* do_notify_parent_cldstop should have been called instead. */ 1650 BUG_ON(task_is_stopped_or_traced(tsk)); 1651 1652 BUG_ON(!tsk->ptrace && 1653 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1654 1655 if (sig != SIGCHLD) { 1656 /* 1657 * This is only possible if parent == real_parent. 1658 * Check if it has changed security domain. 1659 */ 1660 if (tsk->parent_exec_id != tsk->parent->self_exec_id) 1661 sig = SIGCHLD; 1662 } 1663 1664 info.si_signo = sig; 1665 info.si_errno = 0; 1666 /* 1667 * we are under tasklist_lock here so our parent is tied to 1668 * us and cannot exit and release its namespace. 1669 * 1670 * the only it can is to switch its nsproxy with sys_unshare, 1671 * bu uncharing pid namespaces is not allowed, so we'll always 1672 * see relevant namespace 1673 * 1674 * write_lock() currently calls preempt_disable() which is the 1675 * same as rcu_read_lock(), but according to Oleg, this is not 1676 * correct to rely on this 1677 */ 1678 rcu_read_lock(); 1679 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns); 1680 info.si_uid = map_cred_ns(__task_cred(tsk), 1681 task_cred_xxx(tsk->parent, user_ns)); 1682 rcu_read_unlock(); 1683 1684 info.si_utime = cputime_to_clock_t(tsk->utime + tsk->signal->utime); 1685 info.si_stime = cputime_to_clock_t(tsk->stime + tsk->signal->stime); 1686 1687 info.si_status = tsk->exit_code & 0x7f; 1688 if (tsk->exit_code & 0x80) 1689 info.si_code = CLD_DUMPED; 1690 else if (tsk->exit_code & 0x7f) 1691 info.si_code = CLD_KILLED; 1692 else { 1693 info.si_code = CLD_EXITED; 1694 info.si_status = tsk->exit_code >> 8; 1695 } 1696 1697 psig = tsk->parent->sighand; 1698 spin_lock_irqsave(&psig->siglock, flags); 1699 if (!tsk->ptrace && sig == SIGCHLD && 1700 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1701 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1702 /* 1703 * We are exiting and our parent doesn't care. POSIX.1 1704 * defines special semantics for setting SIGCHLD to SIG_IGN 1705 * or setting the SA_NOCLDWAIT flag: we should be reaped 1706 * automatically and not left for our parent's wait4 call. 1707 * Rather than having the parent do it as a magic kind of 1708 * signal handler, we just set this to tell do_exit that we 1709 * can be cleaned up without becoming a zombie. Note that 1710 * we still call __wake_up_parent in this case, because a 1711 * blocked sys_wait4 might now return -ECHILD. 1712 * 1713 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1714 * is implementation-defined: we do (if you don't want 1715 * it, just use SIG_IGN instead). 1716 */ 1717 autoreap = true; 1718 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1719 sig = 0; 1720 } 1721 if (valid_signal(sig) && sig) 1722 __group_send_sig_info(sig, &info, tsk->parent); 1723 __wake_up_parent(tsk, tsk->parent); 1724 spin_unlock_irqrestore(&psig->siglock, flags); 1725 1726 return autoreap; 1727 } 1728 1729 /** 1730 * do_notify_parent_cldstop - notify parent of stopped/continued state change 1731 * @tsk: task reporting the state change 1732 * @for_ptracer: the notification is for ptracer 1733 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 1734 * 1735 * Notify @tsk's parent that the stopped/continued state has changed. If 1736 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 1737 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 1738 * 1739 * CONTEXT: 1740 * Must be called with tasklist_lock at least read locked. 1741 */ 1742 static void do_notify_parent_cldstop(struct task_struct *tsk, 1743 bool for_ptracer, int why) 1744 { 1745 struct siginfo info; 1746 unsigned long flags; 1747 struct task_struct *parent; 1748 struct sighand_struct *sighand; 1749 1750 if (for_ptracer) { 1751 parent = tsk->parent; 1752 } else { 1753 tsk = tsk->group_leader; 1754 parent = tsk->real_parent; 1755 } 1756 1757 info.si_signo = SIGCHLD; 1758 info.si_errno = 0; 1759 /* 1760 * see comment in do_notify_parent() about the following 4 lines 1761 */ 1762 rcu_read_lock(); 1763 info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns); 1764 info.si_uid = map_cred_ns(__task_cred(tsk), 1765 task_cred_xxx(parent, user_ns)); 1766 rcu_read_unlock(); 1767 1768 info.si_utime = cputime_to_clock_t(tsk->utime); 1769 info.si_stime = cputime_to_clock_t(tsk->stime); 1770 1771 info.si_code = why; 1772 switch (why) { 1773 case CLD_CONTINUED: 1774 info.si_status = SIGCONT; 1775 break; 1776 case CLD_STOPPED: 1777 info.si_status = tsk->signal->group_exit_code & 0x7f; 1778 break; 1779 case CLD_TRAPPED: 1780 info.si_status = tsk->exit_code & 0x7f; 1781 break; 1782 default: 1783 BUG(); 1784 } 1785 1786 sighand = parent->sighand; 1787 spin_lock_irqsave(&sighand->siglock, flags); 1788 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1789 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1790 __group_send_sig_info(SIGCHLD, &info, parent); 1791 /* 1792 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1793 */ 1794 __wake_up_parent(tsk, parent); 1795 spin_unlock_irqrestore(&sighand->siglock, flags); 1796 } 1797 1798 static inline int may_ptrace_stop(void) 1799 { 1800 if (!likely(current->ptrace)) 1801 return 0; 1802 /* 1803 * Are we in the middle of do_coredump? 1804 * If so and our tracer is also part of the coredump stopping 1805 * is a deadlock situation, and pointless because our tracer 1806 * is dead so don't allow us to stop. 1807 * If SIGKILL was already sent before the caller unlocked 1808 * ->siglock we must see ->core_state != NULL. Otherwise it 1809 * is safe to enter schedule(). 1810 */ 1811 if (unlikely(current->mm->core_state) && 1812 unlikely(current->mm == current->parent->mm)) 1813 return 0; 1814 1815 return 1; 1816 } 1817 1818 /* 1819 * Return non-zero if there is a SIGKILL that should be waking us up. 1820 * Called with the siglock held. 1821 */ 1822 static int sigkill_pending(struct task_struct *tsk) 1823 { 1824 return sigismember(&tsk->pending.signal, SIGKILL) || 1825 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 1826 } 1827 1828 /* 1829 * This must be called with current->sighand->siglock held. 1830 * 1831 * This should be the path for all ptrace stops. 1832 * We always set current->last_siginfo while stopped here. 1833 * That makes it a way to test a stopped process for 1834 * being ptrace-stopped vs being job-control-stopped. 1835 * 1836 * If we actually decide not to stop at all because the tracer 1837 * is gone, we keep current->exit_code unless clear_code. 1838 */ 1839 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info) 1840 __releases(¤t->sighand->siglock) 1841 __acquires(¤t->sighand->siglock) 1842 { 1843 bool gstop_done = false; 1844 1845 if (arch_ptrace_stop_needed(exit_code, info)) { 1846 /* 1847 * The arch code has something special to do before a 1848 * ptrace stop. This is allowed to block, e.g. for faults 1849 * on user stack pages. We can't keep the siglock while 1850 * calling arch_ptrace_stop, so we must release it now. 1851 * To preserve proper semantics, we must do this before 1852 * any signal bookkeeping like checking group_stop_count. 1853 * Meanwhile, a SIGKILL could come in before we retake the 1854 * siglock. That must prevent us from sleeping in TASK_TRACED. 1855 * So after regaining the lock, we must check for SIGKILL. 1856 */ 1857 spin_unlock_irq(¤t->sighand->siglock); 1858 arch_ptrace_stop(exit_code, info); 1859 spin_lock_irq(¤t->sighand->siglock); 1860 if (sigkill_pending(current)) 1861 return; 1862 } 1863 1864 /* 1865 * We're committing to trapping. TRACED should be visible before 1866 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 1867 * Also, transition to TRACED and updates to ->jobctl should be 1868 * atomic with respect to siglock and should be done after the arch 1869 * hook as siglock is released and regrabbed across it. 1870 */ 1871 set_current_state(TASK_TRACED); 1872 1873 current->last_siginfo = info; 1874 current->exit_code = exit_code; 1875 1876 /* 1877 * If @why is CLD_STOPPED, we're trapping to participate in a group 1878 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 1879 * across siglock relocks since INTERRUPT was scheduled, PENDING 1880 * could be clear now. We act as if SIGCONT is received after 1881 * TASK_TRACED is entered - ignore it. 1882 */ 1883 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 1884 gstop_done = task_participate_group_stop(current); 1885 1886 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 1887 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 1888 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 1889 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 1890 1891 /* entering a trap, clear TRAPPING */ 1892 task_clear_jobctl_trapping(current); 1893 1894 spin_unlock_irq(¤t->sighand->siglock); 1895 read_lock(&tasklist_lock); 1896 if (may_ptrace_stop()) { 1897 /* 1898 * Notify parents of the stop. 1899 * 1900 * While ptraced, there are two parents - the ptracer and 1901 * the real_parent of the group_leader. The ptracer should 1902 * know about every stop while the real parent is only 1903 * interested in the completion of group stop. The states 1904 * for the two don't interact with each other. Notify 1905 * separately unless they're gonna be duplicates. 1906 */ 1907 do_notify_parent_cldstop(current, true, why); 1908 if (gstop_done && ptrace_reparented(current)) 1909 do_notify_parent_cldstop(current, false, why); 1910 1911 /* 1912 * Don't want to allow preemption here, because 1913 * sys_ptrace() needs this task to be inactive. 1914 * 1915 * XXX: implement read_unlock_no_resched(). 1916 */ 1917 preempt_disable(); 1918 read_unlock(&tasklist_lock); 1919 preempt_enable_no_resched(); 1920 schedule(); 1921 } else { 1922 /* 1923 * By the time we got the lock, our tracer went away. 1924 * Don't drop the lock yet, another tracer may come. 1925 * 1926 * If @gstop_done, the ptracer went away between group stop 1927 * completion and here. During detach, it would have set 1928 * JOBCTL_STOP_PENDING on us and we'll re-enter 1929 * TASK_STOPPED in do_signal_stop() on return, so notifying 1930 * the real parent of the group stop completion is enough. 1931 */ 1932 if (gstop_done) 1933 do_notify_parent_cldstop(current, false, why); 1934 1935 __set_current_state(TASK_RUNNING); 1936 if (clear_code) 1937 current->exit_code = 0; 1938 read_unlock(&tasklist_lock); 1939 } 1940 1941 /* 1942 * While in TASK_TRACED, we were considered "frozen enough". 1943 * Now that we woke up, it's crucial if we're supposed to be 1944 * frozen that we freeze now before running anything substantial. 1945 */ 1946 try_to_freeze(); 1947 1948 /* 1949 * We are back. Now reacquire the siglock before touching 1950 * last_siginfo, so that we are sure to have synchronized with 1951 * any signal-sending on another CPU that wants to examine it. 1952 */ 1953 spin_lock_irq(¤t->sighand->siglock); 1954 current->last_siginfo = NULL; 1955 1956 /* LISTENING can be set only during STOP traps, clear it */ 1957 current->jobctl &= ~JOBCTL_LISTENING; 1958 1959 /* 1960 * Queued signals ignored us while we were stopped for tracing. 1961 * So check for any that we should take before resuming user mode. 1962 * This sets TIF_SIGPENDING, but never clears it. 1963 */ 1964 recalc_sigpending_tsk(current); 1965 } 1966 1967 static void ptrace_do_notify(int signr, int exit_code, int why) 1968 { 1969 siginfo_t info; 1970 1971 memset(&info, 0, sizeof info); 1972 info.si_signo = signr; 1973 info.si_code = exit_code; 1974 info.si_pid = task_pid_vnr(current); 1975 info.si_uid = current_uid(); 1976 1977 /* Let the debugger run. */ 1978 ptrace_stop(exit_code, why, 1, &info); 1979 } 1980 1981 void ptrace_notify(int exit_code) 1982 { 1983 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1984 1985 spin_lock_irq(¤t->sighand->siglock); 1986 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 1987 spin_unlock_irq(¤t->sighand->siglock); 1988 } 1989 1990 /** 1991 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 1992 * @signr: signr causing group stop if initiating 1993 * 1994 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 1995 * and participate in it. If already set, participate in the existing 1996 * group stop. If participated in a group stop (and thus slept), %true is 1997 * returned with siglock released. 1998 * 1999 * If ptraced, this function doesn't handle stop itself. Instead, 2000 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2001 * untouched. The caller must ensure that INTERRUPT trap handling takes 2002 * places afterwards. 2003 * 2004 * CONTEXT: 2005 * Must be called with @current->sighand->siglock held, which is released 2006 * on %true return. 2007 * 2008 * RETURNS: 2009 * %false if group stop is already cancelled or ptrace trap is scheduled. 2010 * %true if participated in group stop. 2011 */ 2012 static bool do_signal_stop(int signr) 2013 __releases(¤t->sighand->siglock) 2014 { 2015 struct signal_struct *sig = current->signal; 2016 2017 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2018 unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2019 struct task_struct *t; 2020 2021 /* signr will be recorded in task->jobctl for retries */ 2022 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2023 2024 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2025 unlikely(signal_group_exit(sig))) 2026 return false; 2027 /* 2028 * There is no group stop already in progress. We must 2029 * initiate one now. 2030 * 2031 * While ptraced, a task may be resumed while group stop is 2032 * still in effect and then receive a stop signal and 2033 * initiate another group stop. This deviates from the 2034 * usual behavior as two consecutive stop signals can't 2035 * cause two group stops when !ptraced. That is why we 2036 * also check !task_is_stopped(t) below. 2037 * 2038 * The condition can be distinguished by testing whether 2039 * SIGNAL_STOP_STOPPED is already set. Don't generate 2040 * group_exit_code in such case. 2041 * 2042 * This is not necessary for SIGNAL_STOP_CONTINUED because 2043 * an intervening stop signal is required to cause two 2044 * continued events regardless of ptrace. 2045 */ 2046 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2047 sig->group_exit_code = signr; 2048 2049 sig->group_stop_count = 0; 2050 2051 if (task_set_jobctl_pending(current, signr | gstop)) 2052 sig->group_stop_count++; 2053 2054 for (t = next_thread(current); t != current; 2055 t = next_thread(t)) { 2056 /* 2057 * Setting state to TASK_STOPPED for a group 2058 * stop is always done with the siglock held, 2059 * so this check has no races. 2060 */ 2061 if (!task_is_stopped(t) && 2062 task_set_jobctl_pending(t, signr | gstop)) { 2063 sig->group_stop_count++; 2064 if (likely(!(t->ptrace & PT_SEIZED))) 2065 signal_wake_up(t, 0); 2066 else 2067 ptrace_trap_notify(t); 2068 } 2069 } 2070 } 2071 2072 if (likely(!current->ptrace)) { 2073 int notify = 0; 2074 2075 /* 2076 * If there are no other threads in the group, or if there 2077 * is a group stop in progress and we are the last to stop, 2078 * report to the parent. 2079 */ 2080 if (task_participate_group_stop(current)) 2081 notify = CLD_STOPPED; 2082 2083 __set_current_state(TASK_STOPPED); 2084 spin_unlock_irq(¤t->sighand->siglock); 2085 2086 /* 2087 * Notify the parent of the group stop completion. Because 2088 * we're not holding either the siglock or tasklist_lock 2089 * here, ptracer may attach inbetween; however, this is for 2090 * group stop and should always be delivered to the real 2091 * parent of the group leader. The new ptracer will get 2092 * its notification when this task transitions into 2093 * TASK_TRACED. 2094 */ 2095 if (notify) { 2096 read_lock(&tasklist_lock); 2097 do_notify_parent_cldstop(current, false, notify); 2098 read_unlock(&tasklist_lock); 2099 } 2100 2101 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2102 schedule(); 2103 return true; 2104 } else { 2105 /* 2106 * While ptraced, group stop is handled by STOP trap. 2107 * Schedule it and let the caller deal with it. 2108 */ 2109 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2110 return false; 2111 } 2112 } 2113 2114 /** 2115 * do_jobctl_trap - take care of ptrace jobctl traps 2116 * 2117 * When PT_SEIZED, it's used for both group stop and explicit 2118 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2119 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2120 * the stop signal; otherwise, %SIGTRAP. 2121 * 2122 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2123 * number as exit_code and no siginfo. 2124 * 2125 * CONTEXT: 2126 * Must be called with @current->sighand->siglock held, which may be 2127 * released and re-acquired before returning with intervening sleep. 2128 */ 2129 static void do_jobctl_trap(void) 2130 { 2131 struct signal_struct *signal = current->signal; 2132 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2133 2134 if (current->ptrace & PT_SEIZED) { 2135 if (!signal->group_stop_count && 2136 !(signal->flags & SIGNAL_STOP_STOPPED)) 2137 signr = SIGTRAP; 2138 WARN_ON_ONCE(!signr); 2139 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2140 CLD_STOPPED); 2141 } else { 2142 WARN_ON_ONCE(!signr); 2143 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2144 current->exit_code = 0; 2145 } 2146 } 2147 2148 static int ptrace_signal(int signr, siginfo_t *info, 2149 struct pt_regs *regs, void *cookie) 2150 { 2151 ptrace_signal_deliver(regs, cookie); 2152 /* 2153 * We do not check sig_kernel_stop(signr) but set this marker 2154 * unconditionally because we do not know whether debugger will 2155 * change signr. This flag has no meaning unless we are going 2156 * to stop after return from ptrace_stop(). In this case it will 2157 * be checked in do_signal_stop(), we should only stop if it was 2158 * not cleared by SIGCONT while we were sleeping. See also the 2159 * comment in dequeue_signal(). 2160 */ 2161 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2162 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2163 2164 /* We're back. Did the debugger cancel the sig? */ 2165 signr = current->exit_code; 2166 if (signr == 0) 2167 return signr; 2168 2169 current->exit_code = 0; 2170 2171 /* 2172 * Update the siginfo structure if the signal has 2173 * changed. If the debugger wanted something 2174 * specific in the siginfo structure then it should 2175 * have updated *info via PTRACE_SETSIGINFO. 2176 */ 2177 if (signr != info->si_signo) { 2178 info->si_signo = signr; 2179 info->si_errno = 0; 2180 info->si_code = SI_USER; 2181 rcu_read_lock(); 2182 info->si_pid = task_pid_vnr(current->parent); 2183 info->si_uid = map_cred_ns(__task_cred(current->parent), 2184 current_user_ns()); 2185 rcu_read_unlock(); 2186 } 2187 2188 /* If the (new) signal is now blocked, requeue it. */ 2189 if (sigismember(¤t->blocked, signr)) { 2190 specific_send_sig_info(signr, info, current); 2191 signr = 0; 2192 } 2193 2194 return signr; 2195 } 2196 2197 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, 2198 struct pt_regs *regs, void *cookie) 2199 { 2200 struct sighand_struct *sighand = current->sighand; 2201 struct signal_struct *signal = current->signal; 2202 int signr; 2203 2204 relock: 2205 /* 2206 * We'll jump back here after any time we were stopped in TASK_STOPPED. 2207 * While in TASK_STOPPED, we were considered "frozen enough". 2208 * Now that we woke up, it's crucial if we're supposed to be 2209 * frozen that we freeze now before running anything substantial. 2210 */ 2211 try_to_freeze(); 2212 2213 spin_lock_irq(&sighand->siglock); 2214 /* 2215 * Every stopped thread goes here after wakeup. Check to see if 2216 * we should notify the parent, prepare_signal(SIGCONT) encodes 2217 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2218 */ 2219 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2220 int why; 2221 2222 if (signal->flags & SIGNAL_CLD_CONTINUED) 2223 why = CLD_CONTINUED; 2224 else 2225 why = CLD_STOPPED; 2226 2227 signal->flags &= ~SIGNAL_CLD_MASK; 2228 2229 spin_unlock_irq(&sighand->siglock); 2230 2231 /* 2232 * Notify the parent that we're continuing. This event is 2233 * always per-process and doesn't make whole lot of sense 2234 * for ptracers, who shouldn't consume the state via 2235 * wait(2) either, but, for backward compatibility, notify 2236 * the ptracer of the group leader too unless it's gonna be 2237 * a duplicate. 2238 */ 2239 read_lock(&tasklist_lock); 2240 do_notify_parent_cldstop(current, false, why); 2241 2242 if (ptrace_reparented(current->group_leader)) 2243 do_notify_parent_cldstop(current->group_leader, 2244 true, why); 2245 read_unlock(&tasklist_lock); 2246 2247 goto relock; 2248 } 2249 2250 for (;;) { 2251 struct k_sigaction *ka; 2252 2253 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2254 do_signal_stop(0)) 2255 goto relock; 2256 2257 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) { 2258 do_jobctl_trap(); 2259 spin_unlock_irq(&sighand->siglock); 2260 goto relock; 2261 } 2262 2263 signr = dequeue_signal(current, ¤t->blocked, info); 2264 2265 if (!signr) 2266 break; /* will return 0 */ 2267 2268 if (unlikely(current->ptrace) && signr != SIGKILL) { 2269 signr = ptrace_signal(signr, info, 2270 regs, cookie); 2271 if (!signr) 2272 continue; 2273 } 2274 2275 ka = &sighand->action[signr-1]; 2276 2277 /* Trace actually delivered signals. */ 2278 trace_signal_deliver(signr, info, ka); 2279 2280 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2281 continue; 2282 if (ka->sa.sa_handler != SIG_DFL) { 2283 /* Run the handler. */ 2284 *return_ka = *ka; 2285 2286 if (ka->sa.sa_flags & SA_ONESHOT) 2287 ka->sa.sa_handler = SIG_DFL; 2288 2289 break; /* will return non-zero "signr" value */ 2290 } 2291 2292 /* 2293 * Now we are doing the default action for this signal. 2294 */ 2295 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2296 continue; 2297 2298 /* 2299 * Global init gets no signals it doesn't want. 2300 * Container-init gets no signals it doesn't want from same 2301 * container. 2302 * 2303 * Note that if global/container-init sees a sig_kernel_only() 2304 * signal here, the signal must have been generated internally 2305 * or must have come from an ancestor namespace. In either 2306 * case, the signal cannot be dropped. 2307 */ 2308 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2309 !sig_kernel_only(signr)) 2310 continue; 2311 2312 if (sig_kernel_stop(signr)) { 2313 /* 2314 * The default action is to stop all threads in 2315 * the thread group. The job control signals 2316 * do nothing in an orphaned pgrp, but SIGSTOP 2317 * always works. Note that siglock needs to be 2318 * dropped during the call to is_orphaned_pgrp() 2319 * because of lock ordering with tasklist_lock. 2320 * This allows an intervening SIGCONT to be posted. 2321 * We need to check for that and bail out if necessary. 2322 */ 2323 if (signr != SIGSTOP) { 2324 spin_unlock_irq(&sighand->siglock); 2325 2326 /* signals can be posted during this window */ 2327 2328 if (is_current_pgrp_orphaned()) 2329 goto relock; 2330 2331 spin_lock_irq(&sighand->siglock); 2332 } 2333 2334 if (likely(do_signal_stop(info->si_signo))) { 2335 /* It released the siglock. */ 2336 goto relock; 2337 } 2338 2339 /* 2340 * We didn't actually stop, due to a race 2341 * with SIGCONT or something like that. 2342 */ 2343 continue; 2344 } 2345 2346 spin_unlock_irq(&sighand->siglock); 2347 2348 /* 2349 * Anything else is fatal, maybe with a core dump. 2350 */ 2351 current->flags |= PF_SIGNALED; 2352 2353 if (sig_kernel_coredump(signr)) { 2354 if (print_fatal_signals) 2355 print_fatal_signal(regs, info->si_signo); 2356 /* 2357 * If it was able to dump core, this kills all 2358 * other threads in the group and synchronizes with 2359 * their demise. If we lost the race with another 2360 * thread getting here, it set group_exit_code 2361 * first and our do_group_exit call below will use 2362 * that value and ignore the one we pass it. 2363 */ 2364 do_coredump(info->si_signo, info->si_signo, regs); 2365 } 2366 2367 /* 2368 * Death signals, no core dump. 2369 */ 2370 do_group_exit(info->si_signo); 2371 /* NOTREACHED */ 2372 } 2373 spin_unlock_irq(&sighand->siglock); 2374 return signr; 2375 } 2376 2377 /** 2378 * block_sigmask - add @ka's signal mask to current->blocked 2379 * @ka: action for @signr 2380 * @signr: signal that has been successfully delivered 2381 * 2382 * This function should be called when a signal has succesfully been 2383 * delivered. It adds the mask of signals for @ka to current->blocked 2384 * so that they are blocked during the execution of the signal 2385 * handler. In addition, @signr will be blocked unless %SA_NODEFER is 2386 * set in @ka->sa.sa_flags. 2387 */ 2388 void block_sigmask(struct k_sigaction *ka, int signr) 2389 { 2390 sigset_t blocked; 2391 2392 sigorsets(&blocked, ¤t->blocked, &ka->sa.sa_mask); 2393 if (!(ka->sa.sa_flags & SA_NODEFER)) 2394 sigaddset(&blocked, signr); 2395 set_current_blocked(&blocked); 2396 } 2397 2398 /* 2399 * It could be that complete_signal() picked us to notify about the 2400 * group-wide signal. Other threads should be notified now to take 2401 * the shared signals in @which since we will not. 2402 */ 2403 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2404 { 2405 sigset_t retarget; 2406 struct task_struct *t; 2407 2408 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2409 if (sigisemptyset(&retarget)) 2410 return; 2411 2412 t = tsk; 2413 while_each_thread(tsk, t) { 2414 if (t->flags & PF_EXITING) 2415 continue; 2416 2417 if (!has_pending_signals(&retarget, &t->blocked)) 2418 continue; 2419 /* Remove the signals this thread can handle. */ 2420 sigandsets(&retarget, &retarget, &t->blocked); 2421 2422 if (!signal_pending(t)) 2423 signal_wake_up(t, 0); 2424 2425 if (sigisemptyset(&retarget)) 2426 break; 2427 } 2428 } 2429 2430 void exit_signals(struct task_struct *tsk) 2431 { 2432 int group_stop = 0; 2433 sigset_t unblocked; 2434 2435 /* 2436 * @tsk is about to have PF_EXITING set - lock out users which 2437 * expect stable threadgroup. 2438 */ 2439 threadgroup_change_begin(tsk); 2440 2441 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 2442 tsk->flags |= PF_EXITING; 2443 threadgroup_change_end(tsk); 2444 return; 2445 } 2446 2447 spin_lock_irq(&tsk->sighand->siglock); 2448 /* 2449 * From now this task is not visible for group-wide signals, 2450 * see wants_signal(), do_signal_stop(). 2451 */ 2452 tsk->flags |= PF_EXITING; 2453 2454 threadgroup_change_end(tsk); 2455 2456 if (!signal_pending(tsk)) 2457 goto out; 2458 2459 unblocked = tsk->blocked; 2460 signotset(&unblocked); 2461 retarget_shared_pending(tsk, &unblocked); 2462 2463 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2464 task_participate_group_stop(tsk)) 2465 group_stop = CLD_STOPPED; 2466 out: 2467 spin_unlock_irq(&tsk->sighand->siglock); 2468 2469 /* 2470 * If group stop has completed, deliver the notification. This 2471 * should always go to the real parent of the group leader. 2472 */ 2473 if (unlikely(group_stop)) { 2474 read_lock(&tasklist_lock); 2475 do_notify_parent_cldstop(tsk, false, group_stop); 2476 read_unlock(&tasklist_lock); 2477 } 2478 } 2479 2480 EXPORT_SYMBOL(recalc_sigpending); 2481 EXPORT_SYMBOL_GPL(dequeue_signal); 2482 EXPORT_SYMBOL(flush_signals); 2483 EXPORT_SYMBOL(force_sig); 2484 EXPORT_SYMBOL(send_sig); 2485 EXPORT_SYMBOL(send_sig_info); 2486 EXPORT_SYMBOL(sigprocmask); 2487 EXPORT_SYMBOL(block_all_signals); 2488 EXPORT_SYMBOL(unblock_all_signals); 2489 2490 2491 /* 2492 * System call entry points. 2493 */ 2494 2495 /** 2496 * sys_restart_syscall - restart a system call 2497 */ 2498 SYSCALL_DEFINE0(restart_syscall) 2499 { 2500 struct restart_block *restart = ¤t_thread_info()->restart_block; 2501 return restart->fn(restart); 2502 } 2503 2504 long do_no_restart_syscall(struct restart_block *param) 2505 { 2506 return -EINTR; 2507 } 2508 2509 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 2510 { 2511 if (signal_pending(tsk) && !thread_group_empty(tsk)) { 2512 sigset_t newblocked; 2513 /* A set of now blocked but previously unblocked signals. */ 2514 sigandnsets(&newblocked, newset, ¤t->blocked); 2515 retarget_shared_pending(tsk, &newblocked); 2516 } 2517 tsk->blocked = *newset; 2518 recalc_sigpending(); 2519 } 2520 2521 /** 2522 * set_current_blocked - change current->blocked mask 2523 * @newset: new mask 2524 * 2525 * It is wrong to change ->blocked directly, this helper should be used 2526 * to ensure the process can't miss a shared signal we are going to block. 2527 */ 2528 void set_current_blocked(const sigset_t *newset) 2529 { 2530 struct task_struct *tsk = current; 2531 2532 spin_lock_irq(&tsk->sighand->siglock); 2533 __set_task_blocked(tsk, newset); 2534 spin_unlock_irq(&tsk->sighand->siglock); 2535 } 2536 2537 /* 2538 * This is also useful for kernel threads that want to temporarily 2539 * (or permanently) block certain signals. 2540 * 2541 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2542 * interface happily blocks "unblockable" signals like SIGKILL 2543 * and friends. 2544 */ 2545 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2546 { 2547 struct task_struct *tsk = current; 2548 sigset_t newset; 2549 2550 /* Lockless, only current can change ->blocked, never from irq */ 2551 if (oldset) 2552 *oldset = tsk->blocked; 2553 2554 switch (how) { 2555 case SIG_BLOCK: 2556 sigorsets(&newset, &tsk->blocked, set); 2557 break; 2558 case SIG_UNBLOCK: 2559 sigandnsets(&newset, &tsk->blocked, set); 2560 break; 2561 case SIG_SETMASK: 2562 newset = *set; 2563 break; 2564 default: 2565 return -EINVAL; 2566 } 2567 2568 set_current_blocked(&newset); 2569 return 0; 2570 } 2571 2572 /** 2573 * sys_rt_sigprocmask - change the list of currently blocked signals 2574 * @how: whether to add, remove, or set signals 2575 * @nset: stores pending signals 2576 * @oset: previous value of signal mask if non-null 2577 * @sigsetsize: size of sigset_t type 2578 */ 2579 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 2580 sigset_t __user *, oset, size_t, sigsetsize) 2581 { 2582 sigset_t old_set, new_set; 2583 int error; 2584 2585 /* XXX: Don't preclude handling different sized sigset_t's. */ 2586 if (sigsetsize != sizeof(sigset_t)) 2587 return -EINVAL; 2588 2589 old_set = current->blocked; 2590 2591 if (nset) { 2592 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 2593 return -EFAULT; 2594 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2595 2596 error = sigprocmask(how, &new_set, NULL); 2597 if (error) 2598 return error; 2599 } 2600 2601 if (oset) { 2602 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 2603 return -EFAULT; 2604 } 2605 2606 return 0; 2607 } 2608 2609 long do_sigpending(void __user *set, unsigned long sigsetsize) 2610 { 2611 long error = -EINVAL; 2612 sigset_t pending; 2613 2614 if (sigsetsize > sizeof(sigset_t)) 2615 goto out; 2616 2617 spin_lock_irq(¤t->sighand->siglock); 2618 sigorsets(&pending, ¤t->pending.signal, 2619 ¤t->signal->shared_pending.signal); 2620 spin_unlock_irq(¤t->sighand->siglock); 2621 2622 /* Outside the lock because only this thread touches it. */ 2623 sigandsets(&pending, ¤t->blocked, &pending); 2624 2625 error = -EFAULT; 2626 if (!copy_to_user(set, &pending, sigsetsize)) 2627 error = 0; 2628 2629 out: 2630 return error; 2631 } 2632 2633 /** 2634 * sys_rt_sigpending - examine a pending signal that has been raised 2635 * while blocked 2636 * @set: stores pending signals 2637 * @sigsetsize: size of sigset_t type or larger 2638 */ 2639 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize) 2640 { 2641 return do_sigpending(set, sigsetsize); 2642 } 2643 2644 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2645 2646 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) 2647 { 2648 int err; 2649 2650 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2651 return -EFAULT; 2652 if (from->si_code < 0) 2653 return __copy_to_user(to, from, sizeof(siginfo_t)) 2654 ? -EFAULT : 0; 2655 /* 2656 * If you change siginfo_t structure, please be sure 2657 * this code is fixed accordingly. 2658 * Please remember to update the signalfd_copyinfo() function 2659 * inside fs/signalfd.c too, in case siginfo_t changes. 2660 * It should never copy any pad contained in the structure 2661 * to avoid security leaks, but must copy the generic 2662 * 3 ints plus the relevant union member. 2663 */ 2664 err = __put_user(from->si_signo, &to->si_signo); 2665 err |= __put_user(from->si_errno, &to->si_errno); 2666 err |= __put_user((short)from->si_code, &to->si_code); 2667 switch (from->si_code & __SI_MASK) { 2668 case __SI_KILL: 2669 err |= __put_user(from->si_pid, &to->si_pid); 2670 err |= __put_user(from->si_uid, &to->si_uid); 2671 break; 2672 case __SI_TIMER: 2673 err |= __put_user(from->si_tid, &to->si_tid); 2674 err |= __put_user(from->si_overrun, &to->si_overrun); 2675 err |= __put_user(from->si_ptr, &to->si_ptr); 2676 break; 2677 case __SI_POLL: 2678 err |= __put_user(from->si_band, &to->si_band); 2679 err |= __put_user(from->si_fd, &to->si_fd); 2680 break; 2681 case __SI_FAULT: 2682 err |= __put_user(from->si_addr, &to->si_addr); 2683 #ifdef __ARCH_SI_TRAPNO 2684 err |= __put_user(from->si_trapno, &to->si_trapno); 2685 #endif 2686 #ifdef BUS_MCEERR_AO 2687 /* 2688 * Other callers might not initialize the si_lsb field, 2689 * so check explicitly for the right codes here. 2690 */ 2691 if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO) 2692 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb); 2693 #endif 2694 break; 2695 case __SI_CHLD: 2696 err |= __put_user(from->si_pid, &to->si_pid); 2697 err |= __put_user(from->si_uid, &to->si_uid); 2698 err |= __put_user(from->si_status, &to->si_status); 2699 err |= __put_user(from->si_utime, &to->si_utime); 2700 err |= __put_user(from->si_stime, &to->si_stime); 2701 break; 2702 case __SI_RT: /* This is not generated by the kernel as of now. */ 2703 case __SI_MESGQ: /* But this is */ 2704 err |= __put_user(from->si_pid, &to->si_pid); 2705 err |= __put_user(from->si_uid, &to->si_uid); 2706 err |= __put_user(from->si_ptr, &to->si_ptr); 2707 break; 2708 default: /* this is just in case for now ... */ 2709 err |= __put_user(from->si_pid, &to->si_pid); 2710 err |= __put_user(from->si_uid, &to->si_uid); 2711 break; 2712 } 2713 return err; 2714 } 2715 2716 #endif 2717 2718 /** 2719 * do_sigtimedwait - wait for queued signals specified in @which 2720 * @which: queued signals to wait for 2721 * @info: if non-null, the signal's siginfo is returned here 2722 * @ts: upper bound on process time suspension 2723 */ 2724 int do_sigtimedwait(const sigset_t *which, siginfo_t *info, 2725 const struct timespec *ts) 2726 { 2727 struct task_struct *tsk = current; 2728 long timeout = MAX_SCHEDULE_TIMEOUT; 2729 sigset_t mask = *which; 2730 int sig; 2731 2732 if (ts) { 2733 if (!timespec_valid(ts)) 2734 return -EINVAL; 2735 timeout = timespec_to_jiffies(ts); 2736 /* 2737 * We can be close to the next tick, add another one 2738 * to ensure we will wait at least the time asked for. 2739 */ 2740 if (ts->tv_sec || ts->tv_nsec) 2741 timeout++; 2742 } 2743 2744 /* 2745 * Invert the set of allowed signals to get those we want to block. 2746 */ 2747 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2748 signotset(&mask); 2749 2750 spin_lock_irq(&tsk->sighand->siglock); 2751 sig = dequeue_signal(tsk, &mask, info); 2752 if (!sig && timeout) { 2753 /* 2754 * None ready, temporarily unblock those we're interested 2755 * while we are sleeping in so that we'll be awakened when 2756 * they arrive. Unblocking is always fine, we can avoid 2757 * set_current_blocked(). 2758 */ 2759 tsk->real_blocked = tsk->blocked; 2760 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 2761 recalc_sigpending(); 2762 spin_unlock_irq(&tsk->sighand->siglock); 2763 2764 timeout = schedule_timeout_interruptible(timeout); 2765 2766 spin_lock_irq(&tsk->sighand->siglock); 2767 __set_task_blocked(tsk, &tsk->real_blocked); 2768 siginitset(&tsk->real_blocked, 0); 2769 sig = dequeue_signal(tsk, &mask, info); 2770 } 2771 spin_unlock_irq(&tsk->sighand->siglock); 2772 2773 if (sig) 2774 return sig; 2775 return timeout ? -EINTR : -EAGAIN; 2776 } 2777 2778 /** 2779 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 2780 * in @uthese 2781 * @uthese: queued signals to wait for 2782 * @uinfo: if non-null, the signal's siginfo is returned here 2783 * @uts: upper bound on process time suspension 2784 * @sigsetsize: size of sigset_t type 2785 */ 2786 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 2787 siginfo_t __user *, uinfo, const struct timespec __user *, uts, 2788 size_t, sigsetsize) 2789 { 2790 sigset_t these; 2791 struct timespec ts; 2792 siginfo_t info; 2793 int ret; 2794 2795 /* XXX: Don't preclude handling different sized sigset_t's. */ 2796 if (sigsetsize != sizeof(sigset_t)) 2797 return -EINVAL; 2798 2799 if (copy_from_user(&these, uthese, sizeof(these))) 2800 return -EFAULT; 2801 2802 if (uts) { 2803 if (copy_from_user(&ts, uts, sizeof(ts))) 2804 return -EFAULT; 2805 } 2806 2807 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 2808 2809 if (ret > 0 && uinfo) { 2810 if (copy_siginfo_to_user(uinfo, &info)) 2811 ret = -EFAULT; 2812 } 2813 2814 return ret; 2815 } 2816 2817 /** 2818 * sys_kill - send a signal to a process 2819 * @pid: the PID of the process 2820 * @sig: signal to be sent 2821 */ 2822 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 2823 { 2824 struct siginfo info; 2825 2826 info.si_signo = sig; 2827 info.si_errno = 0; 2828 info.si_code = SI_USER; 2829 info.si_pid = task_tgid_vnr(current); 2830 info.si_uid = current_uid(); 2831 2832 return kill_something_info(sig, &info, pid); 2833 } 2834 2835 static int 2836 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) 2837 { 2838 struct task_struct *p; 2839 int error = -ESRCH; 2840 2841 rcu_read_lock(); 2842 p = find_task_by_vpid(pid); 2843 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 2844 error = check_kill_permission(sig, info, p); 2845 /* 2846 * The null signal is a permissions and process existence 2847 * probe. No signal is actually delivered. 2848 */ 2849 if (!error && sig) { 2850 error = do_send_sig_info(sig, info, p, false); 2851 /* 2852 * If lock_task_sighand() failed we pretend the task 2853 * dies after receiving the signal. The window is tiny, 2854 * and the signal is private anyway. 2855 */ 2856 if (unlikely(error == -ESRCH)) 2857 error = 0; 2858 } 2859 } 2860 rcu_read_unlock(); 2861 2862 return error; 2863 } 2864 2865 static int do_tkill(pid_t tgid, pid_t pid, int sig) 2866 { 2867 struct siginfo info; 2868 2869 info.si_signo = sig; 2870 info.si_errno = 0; 2871 info.si_code = SI_TKILL; 2872 info.si_pid = task_tgid_vnr(current); 2873 info.si_uid = current_uid(); 2874 2875 return do_send_specific(tgid, pid, sig, &info); 2876 } 2877 2878 /** 2879 * sys_tgkill - send signal to one specific thread 2880 * @tgid: the thread group ID of the thread 2881 * @pid: the PID of the thread 2882 * @sig: signal to be sent 2883 * 2884 * This syscall also checks the @tgid and returns -ESRCH even if the PID 2885 * exists but it's not belonging to the target process anymore. This 2886 * method solves the problem of threads exiting and PIDs getting reused. 2887 */ 2888 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 2889 { 2890 /* This is only valid for single tasks */ 2891 if (pid <= 0 || tgid <= 0) 2892 return -EINVAL; 2893 2894 return do_tkill(tgid, pid, sig); 2895 } 2896 2897 /** 2898 * sys_tkill - send signal to one specific task 2899 * @pid: the PID of the task 2900 * @sig: signal to be sent 2901 * 2902 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2903 */ 2904 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 2905 { 2906 /* This is only valid for single tasks */ 2907 if (pid <= 0) 2908 return -EINVAL; 2909 2910 return do_tkill(0, pid, sig); 2911 } 2912 2913 /** 2914 * sys_rt_sigqueueinfo - send signal information to a signal 2915 * @pid: the PID of the thread 2916 * @sig: signal to be sent 2917 * @uinfo: signal info to be sent 2918 */ 2919 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 2920 siginfo_t __user *, uinfo) 2921 { 2922 siginfo_t info; 2923 2924 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2925 return -EFAULT; 2926 2927 /* Not even root can pretend to send signals from the kernel. 2928 * Nor can they impersonate a kill()/tgkill(), which adds source info. 2929 */ 2930 if (info.si_code >= 0 || info.si_code == SI_TKILL) { 2931 /* We used to allow any < 0 si_code */ 2932 WARN_ON_ONCE(info.si_code < 0); 2933 return -EPERM; 2934 } 2935 info.si_signo = sig; 2936 2937 /* POSIX.1b doesn't mention process groups. */ 2938 return kill_proc_info(sig, &info, pid); 2939 } 2940 2941 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info) 2942 { 2943 /* This is only valid for single tasks */ 2944 if (pid <= 0 || tgid <= 0) 2945 return -EINVAL; 2946 2947 /* Not even root can pretend to send signals from the kernel. 2948 * Nor can they impersonate a kill()/tgkill(), which adds source info. 2949 */ 2950 if (info->si_code >= 0 || info->si_code == SI_TKILL) { 2951 /* We used to allow any < 0 si_code */ 2952 WARN_ON_ONCE(info->si_code < 0); 2953 return -EPERM; 2954 } 2955 info->si_signo = sig; 2956 2957 return do_send_specific(tgid, pid, sig, info); 2958 } 2959 2960 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 2961 siginfo_t __user *, uinfo) 2962 { 2963 siginfo_t info; 2964 2965 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2966 return -EFAULT; 2967 2968 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 2969 } 2970 2971 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 2972 { 2973 struct task_struct *t = current; 2974 struct k_sigaction *k; 2975 sigset_t mask; 2976 2977 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 2978 return -EINVAL; 2979 2980 k = &t->sighand->action[sig-1]; 2981 2982 spin_lock_irq(¤t->sighand->siglock); 2983 if (oact) 2984 *oact = *k; 2985 2986 if (act) { 2987 sigdelsetmask(&act->sa.sa_mask, 2988 sigmask(SIGKILL) | sigmask(SIGSTOP)); 2989 *k = *act; 2990 /* 2991 * POSIX 3.3.1.3: 2992 * "Setting a signal action to SIG_IGN for a signal that is 2993 * pending shall cause the pending signal to be discarded, 2994 * whether or not it is blocked." 2995 * 2996 * "Setting a signal action to SIG_DFL for a signal that is 2997 * pending and whose default action is to ignore the signal 2998 * (for example, SIGCHLD), shall cause the pending signal to 2999 * be discarded, whether or not it is blocked" 3000 */ 3001 if (sig_handler_ignored(sig_handler(t, sig), sig)) { 3002 sigemptyset(&mask); 3003 sigaddset(&mask, sig); 3004 rm_from_queue_full(&mask, &t->signal->shared_pending); 3005 do { 3006 rm_from_queue_full(&mask, &t->pending); 3007 t = next_thread(t); 3008 } while (t != current); 3009 } 3010 } 3011 3012 spin_unlock_irq(¤t->sighand->siglock); 3013 return 0; 3014 } 3015 3016 int 3017 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 3018 { 3019 stack_t oss; 3020 int error; 3021 3022 oss.ss_sp = (void __user *) current->sas_ss_sp; 3023 oss.ss_size = current->sas_ss_size; 3024 oss.ss_flags = sas_ss_flags(sp); 3025 3026 if (uss) { 3027 void __user *ss_sp; 3028 size_t ss_size; 3029 int ss_flags; 3030 3031 error = -EFAULT; 3032 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))) 3033 goto out; 3034 error = __get_user(ss_sp, &uss->ss_sp) | 3035 __get_user(ss_flags, &uss->ss_flags) | 3036 __get_user(ss_size, &uss->ss_size); 3037 if (error) 3038 goto out; 3039 3040 error = -EPERM; 3041 if (on_sig_stack(sp)) 3042 goto out; 3043 3044 error = -EINVAL; 3045 /* 3046 * Note - this code used to test ss_flags incorrectly: 3047 * old code may have been written using ss_flags==0 3048 * to mean ss_flags==SS_ONSTACK (as this was the only 3049 * way that worked) - this fix preserves that older 3050 * mechanism. 3051 */ 3052 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) 3053 goto out; 3054 3055 if (ss_flags == SS_DISABLE) { 3056 ss_size = 0; 3057 ss_sp = NULL; 3058 } else { 3059 error = -ENOMEM; 3060 if (ss_size < MINSIGSTKSZ) 3061 goto out; 3062 } 3063 3064 current->sas_ss_sp = (unsigned long) ss_sp; 3065 current->sas_ss_size = ss_size; 3066 } 3067 3068 error = 0; 3069 if (uoss) { 3070 error = -EFAULT; 3071 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss))) 3072 goto out; 3073 error = __put_user(oss.ss_sp, &uoss->ss_sp) | 3074 __put_user(oss.ss_size, &uoss->ss_size) | 3075 __put_user(oss.ss_flags, &uoss->ss_flags); 3076 } 3077 3078 out: 3079 return error; 3080 } 3081 3082 #ifdef __ARCH_WANT_SYS_SIGPENDING 3083 3084 /** 3085 * sys_sigpending - examine pending signals 3086 * @set: where mask of pending signal is returned 3087 */ 3088 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set) 3089 { 3090 return do_sigpending(set, sizeof(*set)); 3091 } 3092 3093 #endif 3094 3095 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 3096 /** 3097 * sys_sigprocmask - examine and change blocked signals 3098 * @how: whether to add, remove, or set signals 3099 * @nset: signals to add or remove (if non-null) 3100 * @oset: previous value of signal mask if non-null 3101 * 3102 * Some platforms have their own version with special arguments; 3103 * others support only sys_rt_sigprocmask. 3104 */ 3105 3106 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 3107 old_sigset_t __user *, oset) 3108 { 3109 old_sigset_t old_set, new_set; 3110 sigset_t new_blocked; 3111 3112 old_set = current->blocked.sig[0]; 3113 3114 if (nset) { 3115 if (copy_from_user(&new_set, nset, sizeof(*nset))) 3116 return -EFAULT; 3117 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP)); 3118 3119 new_blocked = current->blocked; 3120 3121 switch (how) { 3122 case SIG_BLOCK: 3123 sigaddsetmask(&new_blocked, new_set); 3124 break; 3125 case SIG_UNBLOCK: 3126 sigdelsetmask(&new_blocked, new_set); 3127 break; 3128 case SIG_SETMASK: 3129 new_blocked.sig[0] = new_set; 3130 break; 3131 default: 3132 return -EINVAL; 3133 } 3134 3135 set_current_blocked(&new_blocked); 3136 } 3137 3138 if (oset) { 3139 if (copy_to_user(oset, &old_set, sizeof(*oset))) 3140 return -EFAULT; 3141 } 3142 3143 return 0; 3144 } 3145 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 3146 3147 #ifdef __ARCH_WANT_SYS_RT_SIGACTION 3148 /** 3149 * sys_rt_sigaction - alter an action taken by a process 3150 * @sig: signal to be sent 3151 * @act: new sigaction 3152 * @oact: used to save the previous sigaction 3153 * @sigsetsize: size of sigset_t type 3154 */ 3155 SYSCALL_DEFINE4(rt_sigaction, int, sig, 3156 const struct sigaction __user *, act, 3157 struct sigaction __user *, oact, 3158 size_t, sigsetsize) 3159 { 3160 struct k_sigaction new_sa, old_sa; 3161 int ret = -EINVAL; 3162 3163 /* XXX: Don't preclude handling different sized sigset_t's. */ 3164 if (sigsetsize != sizeof(sigset_t)) 3165 goto out; 3166 3167 if (act) { 3168 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 3169 return -EFAULT; 3170 } 3171 3172 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 3173 3174 if (!ret && oact) { 3175 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 3176 return -EFAULT; 3177 } 3178 out: 3179 return ret; 3180 } 3181 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */ 3182 3183 #ifdef __ARCH_WANT_SYS_SGETMASK 3184 3185 /* 3186 * For backwards compatibility. Functionality superseded by sigprocmask. 3187 */ 3188 SYSCALL_DEFINE0(sgetmask) 3189 { 3190 /* SMP safe */ 3191 return current->blocked.sig[0]; 3192 } 3193 3194 SYSCALL_DEFINE1(ssetmask, int, newmask) 3195 { 3196 int old = current->blocked.sig[0]; 3197 sigset_t newset; 3198 3199 siginitset(&newset, newmask & ~(sigmask(SIGKILL) | sigmask(SIGSTOP))); 3200 set_current_blocked(&newset); 3201 3202 return old; 3203 } 3204 #endif /* __ARCH_WANT_SGETMASK */ 3205 3206 #ifdef __ARCH_WANT_SYS_SIGNAL 3207 /* 3208 * For backwards compatibility. Functionality superseded by sigaction. 3209 */ 3210 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 3211 { 3212 struct k_sigaction new_sa, old_sa; 3213 int ret; 3214 3215 new_sa.sa.sa_handler = handler; 3216 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 3217 sigemptyset(&new_sa.sa.sa_mask); 3218 3219 ret = do_sigaction(sig, &new_sa, &old_sa); 3220 3221 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 3222 } 3223 #endif /* __ARCH_WANT_SYS_SIGNAL */ 3224 3225 #ifdef __ARCH_WANT_SYS_PAUSE 3226 3227 SYSCALL_DEFINE0(pause) 3228 { 3229 while (!signal_pending(current)) { 3230 current->state = TASK_INTERRUPTIBLE; 3231 schedule(); 3232 } 3233 return -ERESTARTNOHAND; 3234 } 3235 3236 #endif 3237 3238 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND 3239 /** 3240 * sys_rt_sigsuspend - replace the signal mask for a value with the 3241 * @unewset value until a signal is received 3242 * @unewset: new signal mask value 3243 * @sigsetsize: size of sigset_t type 3244 */ 3245 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 3246 { 3247 sigset_t newset; 3248 3249 /* XXX: Don't preclude handling different sized sigset_t's. */ 3250 if (sigsetsize != sizeof(sigset_t)) 3251 return -EINVAL; 3252 3253 if (copy_from_user(&newset, unewset, sizeof(newset))) 3254 return -EFAULT; 3255 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3256 3257 current->saved_sigmask = current->blocked; 3258 set_current_blocked(&newset); 3259 3260 current->state = TASK_INTERRUPTIBLE; 3261 schedule(); 3262 set_restore_sigmask(); 3263 return -ERESTARTNOHAND; 3264 } 3265 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */ 3266 3267 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma) 3268 { 3269 return NULL; 3270 } 3271 3272 void __init signals_init(void) 3273 { 3274 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 3275 } 3276 3277 #ifdef CONFIG_KGDB_KDB 3278 #include <linux/kdb.h> 3279 /* 3280 * kdb_send_sig_info - Allows kdb to send signals without exposing 3281 * signal internals. This function checks if the required locks are 3282 * available before calling the main signal code, to avoid kdb 3283 * deadlocks. 3284 */ 3285 void 3286 kdb_send_sig_info(struct task_struct *t, struct siginfo *info) 3287 { 3288 static struct task_struct *kdb_prev_t; 3289 int sig, new_t; 3290 if (!spin_trylock(&t->sighand->siglock)) { 3291 kdb_printf("Can't do kill command now.\n" 3292 "The sigmask lock is held somewhere else in " 3293 "kernel, try again later\n"); 3294 return; 3295 } 3296 spin_unlock(&t->sighand->siglock); 3297 new_t = kdb_prev_t != t; 3298 kdb_prev_t = t; 3299 if (t->state != TASK_RUNNING && new_t) { 3300 kdb_printf("Process is not RUNNING, sending a signal from " 3301 "kdb risks deadlock\n" 3302 "on the run queue locks. " 3303 "The signal has _not_ been sent.\n" 3304 "Reissue the kill command if you want to risk " 3305 "the deadlock.\n"); 3306 return; 3307 } 3308 sig = info->si_signo; 3309 if (send_sig_info(sig, info, t)) 3310 kdb_printf("Fail to deliver Signal %d to process %d.\n", 3311 sig, t->pid); 3312 else 3313 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 3314 } 3315 #endif /* CONFIG_KGDB_KDB */ 3316