xref: /linux/kernel/signal.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/mm.h>
26 #include <linux/proc_fs.h>
27 #include <linux/tty.h>
28 #include <linux/binfmts.h>
29 #include <linux/coredump.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/ptrace.h>
33 #include <linux/signal.h>
34 #include <linux/signalfd.h>
35 #include <linux/ratelimit.h>
36 #include <linux/task_work.h>
37 #include <linux/capability.h>
38 #include <linux/freezer.h>
39 #include <linux/pid_namespace.h>
40 #include <linux/nsproxy.h>
41 #include <linux/user_namespace.h>
42 #include <linux/uprobes.h>
43 #include <linux/compat.h>
44 #include <linux/cn_proc.h>
45 #include <linux/compiler.h>
46 #include <linux/posix-timers.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49 #include <linux/sysctl.h>
50 #include <uapi/linux/pidfd.h>
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/signal.h>
54 
55 #include <asm/param.h>
56 #include <linux/uaccess.h>
57 #include <asm/unistd.h>
58 #include <asm/siginfo.h>
59 #include <asm/cacheflush.h>
60 #include <asm/syscall.h>	/* for syscall_get_* */
61 
62 /*
63  * SLAB caches for signal bits.
64  */
65 
66 static struct kmem_cache *sigqueue_cachep;
67 
68 int print_fatal_signals __read_mostly;
69 
70 static void __user *sig_handler(struct task_struct *t, int sig)
71 {
72 	return t->sighand->action[sig - 1].sa.sa_handler;
73 }
74 
75 static inline bool sig_handler_ignored(void __user *handler, int sig)
76 {
77 	/* Is it explicitly or implicitly ignored? */
78 	return handler == SIG_IGN ||
79 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
80 }
81 
82 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
83 {
84 	void __user *handler;
85 
86 	handler = sig_handler(t, sig);
87 
88 	/* SIGKILL and SIGSTOP may not be sent to the global init */
89 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
90 		return true;
91 
92 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
93 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
94 		return true;
95 
96 	/* Only allow kernel generated signals to this kthread */
97 	if (unlikely((t->flags & PF_KTHREAD) &&
98 		     (handler == SIG_KTHREAD_KERNEL) && !force))
99 		return true;
100 
101 	return sig_handler_ignored(handler, sig);
102 }
103 
104 static bool sig_ignored(struct task_struct *t, int sig, bool force)
105 {
106 	/*
107 	 * Blocked signals are never ignored, since the
108 	 * signal handler may change by the time it is
109 	 * unblocked.
110 	 */
111 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
112 		return false;
113 
114 	/*
115 	 * Tracers may want to know about even ignored signal unless it
116 	 * is SIGKILL which can't be reported anyway but can be ignored
117 	 * by SIGNAL_UNKILLABLE task.
118 	 */
119 	if (t->ptrace && sig != SIGKILL)
120 		return false;
121 
122 	return sig_task_ignored(t, sig, force);
123 }
124 
125 /*
126  * Re-calculate pending state from the set of locally pending
127  * signals, globally pending signals, and blocked signals.
128  */
129 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
130 {
131 	unsigned long ready;
132 	long i;
133 
134 	switch (_NSIG_WORDS) {
135 	default:
136 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
137 			ready |= signal->sig[i] &~ blocked->sig[i];
138 		break;
139 
140 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
141 		ready |= signal->sig[2] &~ blocked->sig[2];
142 		ready |= signal->sig[1] &~ blocked->sig[1];
143 		ready |= signal->sig[0] &~ blocked->sig[0];
144 		break;
145 
146 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
147 		ready |= signal->sig[0] &~ blocked->sig[0];
148 		break;
149 
150 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
151 	}
152 	return ready !=	0;
153 }
154 
155 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
156 
157 static bool recalc_sigpending_tsk(struct task_struct *t)
158 {
159 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
160 	    PENDING(&t->pending, &t->blocked) ||
161 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
162 	    cgroup_task_frozen(t)) {
163 		set_tsk_thread_flag(t, TIF_SIGPENDING);
164 		return true;
165 	}
166 
167 	/*
168 	 * We must never clear the flag in another thread, or in current
169 	 * when it's possible the current syscall is returning -ERESTART*.
170 	 * So we don't clear it here, and only callers who know they should do.
171 	 */
172 	return false;
173 }
174 
175 void recalc_sigpending(void)
176 {
177 	if (!recalc_sigpending_tsk(current) && !freezing(current))
178 		clear_thread_flag(TIF_SIGPENDING);
179 
180 }
181 EXPORT_SYMBOL(recalc_sigpending);
182 
183 void calculate_sigpending(void)
184 {
185 	/* Have any signals or users of TIF_SIGPENDING been delayed
186 	 * until after fork?
187 	 */
188 	spin_lock_irq(&current->sighand->siglock);
189 	set_tsk_thread_flag(current, TIF_SIGPENDING);
190 	recalc_sigpending();
191 	spin_unlock_irq(&current->sighand->siglock);
192 }
193 
194 /* Given the mask, find the first available signal that should be serviced. */
195 
196 #define SYNCHRONOUS_MASK \
197 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
198 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
199 
200 int next_signal(struct sigpending *pending, sigset_t *mask)
201 {
202 	unsigned long i, *s, *m, x;
203 	int sig = 0;
204 
205 	s = pending->signal.sig;
206 	m = mask->sig;
207 
208 	/*
209 	 * Handle the first word specially: it contains the
210 	 * synchronous signals that need to be dequeued first.
211 	 */
212 	x = *s &~ *m;
213 	if (x) {
214 		if (x & SYNCHRONOUS_MASK)
215 			x &= SYNCHRONOUS_MASK;
216 		sig = ffz(~x) + 1;
217 		return sig;
218 	}
219 
220 	switch (_NSIG_WORDS) {
221 	default:
222 		for (i = 1; i < _NSIG_WORDS; ++i) {
223 			x = *++s &~ *++m;
224 			if (!x)
225 				continue;
226 			sig = ffz(~x) + i*_NSIG_BPW + 1;
227 			break;
228 		}
229 		break;
230 
231 	case 2:
232 		x = s[1] &~ m[1];
233 		if (!x)
234 			break;
235 		sig = ffz(~x) + _NSIG_BPW + 1;
236 		break;
237 
238 	case 1:
239 		/* Nothing to do */
240 		break;
241 	}
242 
243 	return sig;
244 }
245 
246 static inline void print_dropped_signal(int sig)
247 {
248 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
249 
250 	if (!print_fatal_signals)
251 		return;
252 
253 	if (!__ratelimit(&ratelimit_state))
254 		return;
255 
256 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
257 				current->comm, current->pid, sig);
258 }
259 
260 /**
261  * task_set_jobctl_pending - set jobctl pending bits
262  * @task: target task
263  * @mask: pending bits to set
264  *
265  * Clear @mask from @task->jobctl.  @mask must be subset of
266  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
267  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
268  * cleared.  If @task is already being killed or exiting, this function
269  * becomes noop.
270  *
271  * CONTEXT:
272  * Must be called with @task->sighand->siglock held.
273  *
274  * RETURNS:
275  * %true if @mask is set, %false if made noop because @task was dying.
276  */
277 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
278 {
279 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
280 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
281 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
282 
283 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
284 		return false;
285 
286 	if (mask & JOBCTL_STOP_SIGMASK)
287 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
288 
289 	task->jobctl |= mask;
290 	return true;
291 }
292 
293 /**
294  * task_clear_jobctl_trapping - clear jobctl trapping bit
295  * @task: target task
296  *
297  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
298  * Clear it and wake up the ptracer.  Note that we don't need any further
299  * locking.  @task->siglock guarantees that @task->parent points to the
300  * ptracer.
301  *
302  * CONTEXT:
303  * Must be called with @task->sighand->siglock held.
304  */
305 void task_clear_jobctl_trapping(struct task_struct *task)
306 {
307 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
308 		task->jobctl &= ~JOBCTL_TRAPPING;
309 		smp_mb();	/* advised by wake_up_bit() */
310 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
311 	}
312 }
313 
314 /**
315  * task_clear_jobctl_pending - clear jobctl pending bits
316  * @task: target task
317  * @mask: pending bits to clear
318  *
319  * Clear @mask from @task->jobctl.  @mask must be subset of
320  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
321  * STOP bits are cleared together.
322  *
323  * If clearing of @mask leaves no stop or trap pending, this function calls
324  * task_clear_jobctl_trapping().
325  *
326  * CONTEXT:
327  * Must be called with @task->sighand->siglock held.
328  */
329 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
330 {
331 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
332 
333 	if (mask & JOBCTL_STOP_PENDING)
334 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
335 
336 	task->jobctl &= ~mask;
337 
338 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
339 		task_clear_jobctl_trapping(task);
340 }
341 
342 /**
343  * task_participate_group_stop - participate in a group stop
344  * @task: task participating in a group stop
345  *
346  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
347  * Group stop states are cleared and the group stop count is consumed if
348  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
349  * stop, the appropriate `SIGNAL_*` flags are set.
350  *
351  * CONTEXT:
352  * Must be called with @task->sighand->siglock held.
353  *
354  * RETURNS:
355  * %true if group stop completion should be notified to the parent, %false
356  * otherwise.
357  */
358 static bool task_participate_group_stop(struct task_struct *task)
359 {
360 	struct signal_struct *sig = task->signal;
361 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
362 
363 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
364 
365 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
366 
367 	if (!consume)
368 		return false;
369 
370 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
371 		sig->group_stop_count--;
372 
373 	/*
374 	 * Tell the caller to notify completion iff we are entering into a
375 	 * fresh group stop.  Read comment in do_signal_stop() for details.
376 	 */
377 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
378 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
379 		return true;
380 	}
381 	return false;
382 }
383 
384 void task_join_group_stop(struct task_struct *task)
385 {
386 	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
387 	struct signal_struct *sig = current->signal;
388 
389 	if (sig->group_stop_count) {
390 		sig->group_stop_count++;
391 		mask |= JOBCTL_STOP_CONSUME;
392 	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
393 		return;
394 
395 	/* Have the new thread join an on-going signal group stop */
396 	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
397 }
398 
399 /*
400  * allocate a new signal queue record
401  * - this may be called without locks if and only if t == current, otherwise an
402  *   appropriate lock must be held to stop the target task from exiting
403  */
404 static struct sigqueue *
405 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
406 		 int override_rlimit, const unsigned int sigqueue_flags)
407 {
408 	struct sigqueue *q = NULL;
409 	struct ucounts *ucounts;
410 	long sigpending;
411 
412 	/*
413 	 * Protect access to @t credentials. This can go away when all
414 	 * callers hold rcu read lock.
415 	 *
416 	 * NOTE! A pending signal will hold on to the user refcount,
417 	 * and we get/put the refcount only when the sigpending count
418 	 * changes from/to zero.
419 	 */
420 	rcu_read_lock();
421 	ucounts = task_ucounts(t);
422 	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
423 	rcu_read_unlock();
424 	if (!sigpending)
425 		return NULL;
426 
427 	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
428 		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
429 	} else {
430 		print_dropped_signal(sig);
431 	}
432 
433 	if (unlikely(q == NULL)) {
434 		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
435 	} else {
436 		INIT_LIST_HEAD(&q->list);
437 		q->flags = sigqueue_flags;
438 		q->ucounts = ucounts;
439 	}
440 	return q;
441 }
442 
443 static void __sigqueue_free(struct sigqueue *q)
444 {
445 	if (q->flags & SIGQUEUE_PREALLOC)
446 		return;
447 	if (q->ucounts) {
448 		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
449 		q->ucounts = NULL;
450 	}
451 	kmem_cache_free(sigqueue_cachep, q);
452 }
453 
454 void flush_sigqueue(struct sigpending *queue)
455 {
456 	struct sigqueue *q;
457 
458 	sigemptyset(&queue->signal);
459 	while (!list_empty(&queue->list)) {
460 		q = list_entry(queue->list.next, struct sigqueue , list);
461 		list_del_init(&q->list);
462 		__sigqueue_free(q);
463 	}
464 }
465 
466 /*
467  * Flush all pending signals for this kthread.
468  */
469 void flush_signals(struct task_struct *t)
470 {
471 	unsigned long flags;
472 
473 	spin_lock_irqsave(&t->sighand->siglock, flags);
474 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
475 	flush_sigqueue(&t->pending);
476 	flush_sigqueue(&t->signal->shared_pending);
477 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
478 }
479 EXPORT_SYMBOL(flush_signals);
480 
481 #ifdef CONFIG_POSIX_TIMERS
482 static void __flush_itimer_signals(struct sigpending *pending)
483 {
484 	sigset_t signal, retain;
485 	struct sigqueue *q, *n;
486 
487 	signal = pending->signal;
488 	sigemptyset(&retain);
489 
490 	list_for_each_entry_safe(q, n, &pending->list, list) {
491 		int sig = q->info.si_signo;
492 
493 		if (likely(q->info.si_code != SI_TIMER)) {
494 			sigaddset(&retain, sig);
495 		} else {
496 			sigdelset(&signal, sig);
497 			list_del_init(&q->list);
498 			__sigqueue_free(q);
499 		}
500 	}
501 
502 	sigorsets(&pending->signal, &signal, &retain);
503 }
504 
505 void flush_itimer_signals(void)
506 {
507 	struct task_struct *tsk = current;
508 	unsigned long flags;
509 
510 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
511 	__flush_itimer_signals(&tsk->pending);
512 	__flush_itimer_signals(&tsk->signal->shared_pending);
513 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
514 }
515 #endif
516 
517 void ignore_signals(struct task_struct *t)
518 {
519 	int i;
520 
521 	for (i = 0; i < _NSIG; ++i)
522 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
523 
524 	flush_signals(t);
525 }
526 
527 /*
528  * Flush all handlers for a task.
529  */
530 
531 void
532 flush_signal_handlers(struct task_struct *t, int force_default)
533 {
534 	int i;
535 	struct k_sigaction *ka = &t->sighand->action[0];
536 	for (i = _NSIG ; i != 0 ; i--) {
537 		if (force_default || ka->sa.sa_handler != SIG_IGN)
538 			ka->sa.sa_handler = SIG_DFL;
539 		ka->sa.sa_flags = 0;
540 #ifdef __ARCH_HAS_SA_RESTORER
541 		ka->sa.sa_restorer = NULL;
542 #endif
543 		sigemptyset(&ka->sa.sa_mask);
544 		ka++;
545 	}
546 }
547 
548 bool unhandled_signal(struct task_struct *tsk, int sig)
549 {
550 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
551 	if (is_global_init(tsk))
552 		return true;
553 
554 	if (handler != SIG_IGN && handler != SIG_DFL)
555 		return false;
556 
557 	/* If dying, we handle all new signals by ignoring them */
558 	if (fatal_signal_pending(tsk))
559 		return false;
560 
561 	/* if ptraced, let the tracer determine */
562 	return !tsk->ptrace;
563 }
564 
565 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
566 			   bool *resched_timer)
567 {
568 	struct sigqueue *q, *first = NULL;
569 
570 	/*
571 	 * Collect the siginfo appropriate to this signal.  Check if
572 	 * there is another siginfo for the same signal.
573 	*/
574 	list_for_each_entry(q, &list->list, list) {
575 		if (q->info.si_signo == sig) {
576 			if (first)
577 				goto still_pending;
578 			first = q;
579 		}
580 	}
581 
582 	sigdelset(&list->signal, sig);
583 
584 	if (first) {
585 still_pending:
586 		list_del_init(&first->list);
587 		copy_siginfo(info, &first->info);
588 
589 		*resched_timer =
590 			(first->flags & SIGQUEUE_PREALLOC) &&
591 			(info->si_code == SI_TIMER) &&
592 			(info->si_sys_private);
593 
594 		__sigqueue_free(first);
595 	} else {
596 		/*
597 		 * Ok, it wasn't in the queue.  This must be
598 		 * a fast-pathed signal or we must have been
599 		 * out of queue space.  So zero out the info.
600 		 */
601 		clear_siginfo(info);
602 		info->si_signo = sig;
603 		info->si_errno = 0;
604 		info->si_code = SI_USER;
605 		info->si_pid = 0;
606 		info->si_uid = 0;
607 	}
608 }
609 
610 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
611 			kernel_siginfo_t *info, bool *resched_timer)
612 {
613 	int sig = next_signal(pending, mask);
614 
615 	if (sig)
616 		collect_signal(sig, pending, info, resched_timer);
617 	return sig;
618 }
619 
620 /*
621  * Dequeue a signal and return the element to the caller, which is
622  * expected to free it.
623  *
624  * All callers have to hold the siglock.
625  */
626 int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
627 		   kernel_siginfo_t *info, enum pid_type *type)
628 {
629 	bool resched_timer = false;
630 	int signr;
631 
632 	/* We only dequeue private signals from ourselves, we don't let
633 	 * signalfd steal them
634 	 */
635 	*type = PIDTYPE_PID;
636 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
637 	if (!signr) {
638 		*type = PIDTYPE_TGID;
639 		signr = __dequeue_signal(&tsk->signal->shared_pending,
640 					 mask, info, &resched_timer);
641 #ifdef CONFIG_POSIX_TIMERS
642 		/*
643 		 * itimer signal ?
644 		 *
645 		 * itimers are process shared and we restart periodic
646 		 * itimers in the signal delivery path to prevent DoS
647 		 * attacks in the high resolution timer case. This is
648 		 * compliant with the old way of self-restarting
649 		 * itimers, as the SIGALRM is a legacy signal and only
650 		 * queued once. Changing the restart behaviour to
651 		 * restart the timer in the signal dequeue path is
652 		 * reducing the timer noise on heavy loaded !highres
653 		 * systems too.
654 		 */
655 		if (unlikely(signr == SIGALRM)) {
656 			struct hrtimer *tmr = &tsk->signal->real_timer;
657 
658 			if (!hrtimer_is_queued(tmr) &&
659 			    tsk->signal->it_real_incr != 0) {
660 				hrtimer_forward(tmr, tmr->base->get_time(),
661 						tsk->signal->it_real_incr);
662 				hrtimer_restart(tmr);
663 			}
664 		}
665 #endif
666 	}
667 
668 	recalc_sigpending();
669 	if (!signr)
670 		return 0;
671 
672 	if (unlikely(sig_kernel_stop(signr))) {
673 		/*
674 		 * Set a marker that we have dequeued a stop signal.  Our
675 		 * caller might release the siglock and then the pending
676 		 * stop signal it is about to process is no longer in the
677 		 * pending bitmasks, but must still be cleared by a SIGCONT
678 		 * (and overruled by a SIGKILL).  So those cases clear this
679 		 * shared flag after we've set it.  Note that this flag may
680 		 * remain set after the signal we return is ignored or
681 		 * handled.  That doesn't matter because its only purpose
682 		 * is to alert stop-signal processing code when another
683 		 * processor has come along and cleared the flag.
684 		 */
685 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
686 	}
687 #ifdef CONFIG_POSIX_TIMERS
688 	if (resched_timer) {
689 		/*
690 		 * Release the siglock to ensure proper locking order
691 		 * of timer locks outside of siglocks.  Note, we leave
692 		 * irqs disabled here, since the posix-timers code is
693 		 * about to disable them again anyway.
694 		 */
695 		spin_unlock(&tsk->sighand->siglock);
696 		posixtimer_rearm(info);
697 		spin_lock(&tsk->sighand->siglock);
698 
699 		/* Don't expose the si_sys_private value to userspace */
700 		info->si_sys_private = 0;
701 	}
702 #endif
703 	return signr;
704 }
705 EXPORT_SYMBOL_GPL(dequeue_signal);
706 
707 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
708 {
709 	struct task_struct *tsk = current;
710 	struct sigpending *pending = &tsk->pending;
711 	struct sigqueue *q, *sync = NULL;
712 
713 	/*
714 	 * Might a synchronous signal be in the queue?
715 	 */
716 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
717 		return 0;
718 
719 	/*
720 	 * Return the first synchronous signal in the queue.
721 	 */
722 	list_for_each_entry(q, &pending->list, list) {
723 		/* Synchronous signals have a positive si_code */
724 		if ((q->info.si_code > SI_USER) &&
725 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
726 			sync = q;
727 			goto next;
728 		}
729 	}
730 	return 0;
731 next:
732 	/*
733 	 * Check if there is another siginfo for the same signal.
734 	 */
735 	list_for_each_entry_continue(q, &pending->list, list) {
736 		if (q->info.si_signo == sync->info.si_signo)
737 			goto still_pending;
738 	}
739 
740 	sigdelset(&pending->signal, sync->info.si_signo);
741 	recalc_sigpending();
742 still_pending:
743 	list_del_init(&sync->list);
744 	copy_siginfo(info, &sync->info);
745 	__sigqueue_free(sync);
746 	return info->si_signo;
747 }
748 
749 /*
750  * Tell a process that it has a new active signal..
751  *
752  * NOTE! we rely on the previous spin_lock to
753  * lock interrupts for us! We can only be called with
754  * "siglock" held, and the local interrupt must
755  * have been disabled when that got acquired!
756  *
757  * No need to set need_resched since signal event passing
758  * goes through ->blocked
759  */
760 void signal_wake_up_state(struct task_struct *t, unsigned int state)
761 {
762 	lockdep_assert_held(&t->sighand->siglock);
763 
764 	set_tsk_thread_flag(t, TIF_SIGPENDING);
765 
766 	/*
767 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
768 	 * case. We don't check t->state here because there is a race with it
769 	 * executing another processor and just now entering stopped state.
770 	 * By using wake_up_state, we ensure the process will wake up and
771 	 * handle its death signal.
772 	 */
773 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
774 		kick_process(t);
775 }
776 
777 /*
778  * Remove signals in mask from the pending set and queue.
779  * Returns 1 if any signals were found.
780  *
781  * All callers must be holding the siglock.
782  */
783 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
784 {
785 	struct sigqueue *q, *n;
786 	sigset_t m;
787 
788 	sigandsets(&m, mask, &s->signal);
789 	if (sigisemptyset(&m))
790 		return;
791 
792 	sigandnsets(&s->signal, &s->signal, mask);
793 	list_for_each_entry_safe(q, n, &s->list, list) {
794 		if (sigismember(mask, q->info.si_signo)) {
795 			list_del_init(&q->list);
796 			__sigqueue_free(q);
797 		}
798 	}
799 }
800 
801 static inline int is_si_special(const struct kernel_siginfo *info)
802 {
803 	return info <= SEND_SIG_PRIV;
804 }
805 
806 static inline bool si_fromuser(const struct kernel_siginfo *info)
807 {
808 	return info == SEND_SIG_NOINFO ||
809 		(!is_si_special(info) && SI_FROMUSER(info));
810 }
811 
812 /*
813  * called with RCU read lock from check_kill_permission()
814  */
815 static bool kill_ok_by_cred(struct task_struct *t)
816 {
817 	const struct cred *cred = current_cred();
818 	const struct cred *tcred = __task_cred(t);
819 
820 	return uid_eq(cred->euid, tcred->suid) ||
821 	       uid_eq(cred->euid, tcred->uid) ||
822 	       uid_eq(cred->uid, tcred->suid) ||
823 	       uid_eq(cred->uid, tcred->uid) ||
824 	       ns_capable(tcred->user_ns, CAP_KILL);
825 }
826 
827 /*
828  * Bad permissions for sending the signal
829  * - the caller must hold the RCU read lock
830  */
831 static int check_kill_permission(int sig, struct kernel_siginfo *info,
832 				 struct task_struct *t)
833 {
834 	struct pid *sid;
835 	int error;
836 
837 	if (!valid_signal(sig))
838 		return -EINVAL;
839 
840 	if (!si_fromuser(info))
841 		return 0;
842 
843 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
844 	if (error)
845 		return error;
846 
847 	if (!same_thread_group(current, t) &&
848 	    !kill_ok_by_cred(t)) {
849 		switch (sig) {
850 		case SIGCONT:
851 			sid = task_session(t);
852 			/*
853 			 * We don't return the error if sid == NULL. The
854 			 * task was unhashed, the caller must notice this.
855 			 */
856 			if (!sid || sid == task_session(current))
857 				break;
858 			fallthrough;
859 		default:
860 			return -EPERM;
861 		}
862 	}
863 
864 	return security_task_kill(t, info, sig, NULL);
865 }
866 
867 /**
868  * ptrace_trap_notify - schedule trap to notify ptracer
869  * @t: tracee wanting to notify tracer
870  *
871  * This function schedules sticky ptrace trap which is cleared on the next
872  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
873  * ptracer.
874  *
875  * If @t is running, STOP trap will be taken.  If trapped for STOP and
876  * ptracer is listening for events, tracee is woken up so that it can
877  * re-trap for the new event.  If trapped otherwise, STOP trap will be
878  * eventually taken without returning to userland after the existing traps
879  * are finished by PTRACE_CONT.
880  *
881  * CONTEXT:
882  * Must be called with @task->sighand->siglock held.
883  */
884 static void ptrace_trap_notify(struct task_struct *t)
885 {
886 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
887 	lockdep_assert_held(&t->sighand->siglock);
888 
889 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
890 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
891 }
892 
893 /*
894  * Handle magic process-wide effects of stop/continue signals. Unlike
895  * the signal actions, these happen immediately at signal-generation
896  * time regardless of blocking, ignoring, or handling.  This does the
897  * actual continuing for SIGCONT, but not the actual stopping for stop
898  * signals. The process stop is done as a signal action for SIG_DFL.
899  *
900  * Returns true if the signal should be actually delivered, otherwise
901  * it should be dropped.
902  */
903 static bool prepare_signal(int sig, struct task_struct *p, bool force)
904 {
905 	struct signal_struct *signal = p->signal;
906 	struct task_struct *t;
907 	sigset_t flush;
908 
909 	if (signal->flags & SIGNAL_GROUP_EXIT) {
910 		if (signal->core_state)
911 			return sig == SIGKILL;
912 		/*
913 		 * The process is in the middle of dying, drop the signal.
914 		 */
915 		return false;
916 	} else if (sig_kernel_stop(sig)) {
917 		/*
918 		 * This is a stop signal.  Remove SIGCONT from all queues.
919 		 */
920 		siginitset(&flush, sigmask(SIGCONT));
921 		flush_sigqueue_mask(&flush, &signal->shared_pending);
922 		for_each_thread(p, t)
923 			flush_sigqueue_mask(&flush, &t->pending);
924 	} else if (sig == SIGCONT) {
925 		unsigned int why;
926 		/*
927 		 * Remove all stop signals from all queues, wake all threads.
928 		 */
929 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
930 		flush_sigqueue_mask(&flush, &signal->shared_pending);
931 		for_each_thread(p, t) {
932 			flush_sigqueue_mask(&flush, &t->pending);
933 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
934 			if (likely(!(t->ptrace & PT_SEIZED))) {
935 				t->jobctl &= ~JOBCTL_STOPPED;
936 				wake_up_state(t, __TASK_STOPPED);
937 			} else
938 				ptrace_trap_notify(t);
939 		}
940 
941 		/*
942 		 * Notify the parent with CLD_CONTINUED if we were stopped.
943 		 *
944 		 * If we were in the middle of a group stop, we pretend it
945 		 * was already finished, and then continued. Since SIGCHLD
946 		 * doesn't queue we report only CLD_STOPPED, as if the next
947 		 * CLD_CONTINUED was dropped.
948 		 */
949 		why = 0;
950 		if (signal->flags & SIGNAL_STOP_STOPPED)
951 			why |= SIGNAL_CLD_CONTINUED;
952 		else if (signal->group_stop_count)
953 			why |= SIGNAL_CLD_STOPPED;
954 
955 		if (why) {
956 			/*
957 			 * The first thread which returns from do_signal_stop()
958 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
959 			 * notify its parent. See get_signal().
960 			 */
961 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
962 			signal->group_stop_count = 0;
963 			signal->group_exit_code = 0;
964 		}
965 	}
966 
967 	return !sig_ignored(p, sig, force);
968 }
969 
970 /*
971  * Test if P wants to take SIG.  After we've checked all threads with this,
972  * it's equivalent to finding no threads not blocking SIG.  Any threads not
973  * blocking SIG were ruled out because they are not running and already
974  * have pending signals.  Such threads will dequeue from the shared queue
975  * as soon as they're available, so putting the signal on the shared queue
976  * will be equivalent to sending it to one such thread.
977  */
978 static inline bool wants_signal(int sig, struct task_struct *p)
979 {
980 	if (sigismember(&p->blocked, sig))
981 		return false;
982 
983 	if (p->flags & PF_EXITING)
984 		return false;
985 
986 	if (sig == SIGKILL)
987 		return true;
988 
989 	if (task_is_stopped_or_traced(p))
990 		return false;
991 
992 	return task_curr(p) || !task_sigpending(p);
993 }
994 
995 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
996 {
997 	struct signal_struct *signal = p->signal;
998 	struct task_struct *t;
999 
1000 	/*
1001 	 * Now find a thread we can wake up to take the signal off the queue.
1002 	 *
1003 	 * Try the suggested task first (may or may not be the main thread).
1004 	 */
1005 	if (wants_signal(sig, p))
1006 		t = p;
1007 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1008 		/*
1009 		 * There is just one thread and it does not need to be woken.
1010 		 * It will dequeue unblocked signals before it runs again.
1011 		 */
1012 		return;
1013 	else {
1014 		/*
1015 		 * Otherwise try to find a suitable thread.
1016 		 */
1017 		t = signal->curr_target;
1018 		while (!wants_signal(sig, t)) {
1019 			t = next_thread(t);
1020 			if (t == signal->curr_target)
1021 				/*
1022 				 * No thread needs to be woken.
1023 				 * Any eligible threads will see
1024 				 * the signal in the queue soon.
1025 				 */
1026 				return;
1027 		}
1028 		signal->curr_target = t;
1029 	}
1030 
1031 	/*
1032 	 * Found a killable thread.  If the signal will be fatal,
1033 	 * then start taking the whole group down immediately.
1034 	 */
1035 	if (sig_fatal(p, sig) &&
1036 	    (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1037 	    !sigismember(&t->real_blocked, sig) &&
1038 	    (sig == SIGKILL || !p->ptrace)) {
1039 		/*
1040 		 * This signal will be fatal to the whole group.
1041 		 */
1042 		if (!sig_kernel_coredump(sig)) {
1043 			/*
1044 			 * Start a group exit and wake everybody up.
1045 			 * This way we don't have other threads
1046 			 * running and doing things after a slower
1047 			 * thread has the fatal signal pending.
1048 			 */
1049 			signal->flags = SIGNAL_GROUP_EXIT;
1050 			signal->group_exit_code = sig;
1051 			signal->group_stop_count = 0;
1052 			__for_each_thread(signal, t) {
1053 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1054 				sigaddset(&t->pending.signal, SIGKILL);
1055 				signal_wake_up(t, 1);
1056 			}
1057 			return;
1058 		}
1059 	}
1060 
1061 	/*
1062 	 * The signal is already in the shared-pending queue.
1063 	 * Tell the chosen thread to wake up and dequeue it.
1064 	 */
1065 	signal_wake_up(t, sig == SIGKILL);
1066 	return;
1067 }
1068 
1069 static inline bool legacy_queue(struct sigpending *signals, int sig)
1070 {
1071 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1072 }
1073 
1074 static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1075 				struct task_struct *t, enum pid_type type, bool force)
1076 {
1077 	struct sigpending *pending;
1078 	struct sigqueue *q;
1079 	int override_rlimit;
1080 	int ret = 0, result;
1081 
1082 	lockdep_assert_held(&t->sighand->siglock);
1083 
1084 	result = TRACE_SIGNAL_IGNORED;
1085 	if (!prepare_signal(sig, t, force))
1086 		goto ret;
1087 
1088 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1089 	/*
1090 	 * Short-circuit ignored signals and support queuing
1091 	 * exactly one non-rt signal, so that we can get more
1092 	 * detailed information about the cause of the signal.
1093 	 */
1094 	result = TRACE_SIGNAL_ALREADY_PENDING;
1095 	if (legacy_queue(pending, sig))
1096 		goto ret;
1097 
1098 	result = TRACE_SIGNAL_DELIVERED;
1099 	/*
1100 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1101 	 */
1102 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1103 		goto out_set;
1104 
1105 	/*
1106 	 * Real-time signals must be queued if sent by sigqueue, or
1107 	 * some other real-time mechanism.  It is implementation
1108 	 * defined whether kill() does so.  We attempt to do so, on
1109 	 * the principle of least surprise, but since kill is not
1110 	 * allowed to fail with EAGAIN when low on memory we just
1111 	 * make sure at least one signal gets delivered and don't
1112 	 * pass on the info struct.
1113 	 */
1114 	if (sig < SIGRTMIN)
1115 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1116 	else
1117 		override_rlimit = 0;
1118 
1119 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1120 
1121 	if (q) {
1122 		list_add_tail(&q->list, &pending->list);
1123 		switch ((unsigned long) info) {
1124 		case (unsigned long) SEND_SIG_NOINFO:
1125 			clear_siginfo(&q->info);
1126 			q->info.si_signo = sig;
1127 			q->info.si_errno = 0;
1128 			q->info.si_code = SI_USER;
1129 			q->info.si_pid = task_tgid_nr_ns(current,
1130 							task_active_pid_ns(t));
1131 			rcu_read_lock();
1132 			q->info.si_uid =
1133 				from_kuid_munged(task_cred_xxx(t, user_ns),
1134 						 current_uid());
1135 			rcu_read_unlock();
1136 			break;
1137 		case (unsigned long) SEND_SIG_PRIV:
1138 			clear_siginfo(&q->info);
1139 			q->info.si_signo = sig;
1140 			q->info.si_errno = 0;
1141 			q->info.si_code = SI_KERNEL;
1142 			q->info.si_pid = 0;
1143 			q->info.si_uid = 0;
1144 			break;
1145 		default:
1146 			copy_siginfo(&q->info, info);
1147 			break;
1148 		}
1149 	} else if (!is_si_special(info) &&
1150 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1151 		/*
1152 		 * Queue overflow, abort.  We may abort if the
1153 		 * signal was rt and sent by user using something
1154 		 * other than kill().
1155 		 */
1156 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1157 		ret = -EAGAIN;
1158 		goto ret;
1159 	} else {
1160 		/*
1161 		 * This is a silent loss of information.  We still
1162 		 * send the signal, but the *info bits are lost.
1163 		 */
1164 		result = TRACE_SIGNAL_LOSE_INFO;
1165 	}
1166 
1167 out_set:
1168 	signalfd_notify(t, sig);
1169 	sigaddset(&pending->signal, sig);
1170 
1171 	/* Let multiprocess signals appear after on-going forks */
1172 	if (type > PIDTYPE_TGID) {
1173 		struct multiprocess_signals *delayed;
1174 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1175 			sigset_t *signal = &delayed->signal;
1176 			/* Can't queue both a stop and a continue signal */
1177 			if (sig == SIGCONT)
1178 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1179 			else if (sig_kernel_stop(sig))
1180 				sigdelset(signal, SIGCONT);
1181 			sigaddset(signal, sig);
1182 		}
1183 	}
1184 
1185 	complete_signal(sig, t, type);
1186 ret:
1187 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1188 	return ret;
1189 }
1190 
1191 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1192 {
1193 	bool ret = false;
1194 	switch (siginfo_layout(info->si_signo, info->si_code)) {
1195 	case SIL_KILL:
1196 	case SIL_CHLD:
1197 	case SIL_RT:
1198 		ret = true;
1199 		break;
1200 	case SIL_TIMER:
1201 	case SIL_POLL:
1202 	case SIL_FAULT:
1203 	case SIL_FAULT_TRAPNO:
1204 	case SIL_FAULT_MCEERR:
1205 	case SIL_FAULT_BNDERR:
1206 	case SIL_FAULT_PKUERR:
1207 	case SIL_FAULT_PERF_EVENT:
1208 	case SIL_SYS:
1209 		ret = false;
1210 		break;
1211 	}
1212 	return ret;
1213 }
1214 
1215 int send_signal_locked(int sig, struct kernel_siginfo *info,
1216 		       struct task_struct *t, enum pid_type type)
1217 {
1218 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1219 	bool force = false;
1220 
1221 	if (info == SEND_SIG_NOINFO) {
1222 		/* Force if sent from an ancestor pid namespace */
1223 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1224 	} else if (info == SEND_SIG_PRIV) {
1225 		/* Don't ignore kernel generated signals */
1226 		force = true;
1227 	} else if (has_si_pid_and_uid(info)) {
1228 		/* SIGKILL and SIGSTOP is special or has ids */
1229 		struct user_namespace *t_user_ns;
1230 
1231 		rcu_read_lock();
1232 		t_user_ns = task_cred_xxx(t, user_ns);
1233 		if (current_user_ns() != t_user_ns) {
1234 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1235 			info->si_uid = from_kuid_munged(t_user_ns, uid);
1236 		}
1237 		rcu_read_unlock();
1238 
1239 		/* A kernel generated signal? */
1240 		force = (info->si_code == SI_KERNEL);
1241 
1242 		/* From an ancestor pid namespace? */
1243 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1244 			info->si_pid = 0;
1245 			force = true;
1246 		}
1247 	}
1248 	return __send_signal_locked(sig, info, t, type, force);
1249 }
1250 
1251 static void print_fatal_signal(int signr)
1252 {
1253 	struct pt_regs *regs = task_pt_regs(current);
1254 	struct file *exe_file;
1255 
1256 	exe_file = get_task_exe_file(current);
1257 	if (exe_file) {
1258 		pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
1259 			exe_file, current->comm, signr);
1260 		fput(exe_file);
1261 	} else {
1262 		pr_info("%s: potentially unexpected fatal signal %d.\n",
1263 			current->comm, signr);
1264 	}
1265 
1266 #if defined(__i386__) && !defined(__arch_um__)
1267 	pr_info("code at %08lx: ", regs->ip);
1268 	{
1269 		int i;
1270 		for (i = 0; i < 16; i++) {
1271 			unsigned char insn;
1272 
1273 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1274 				break;
1275 			pr_cont("%02x ", insn);
1276 		}
1277 	}
1278 	pr_cont("\n");
1279 #endif
1280 	preempt_disable();
1281 	show_regs(regs);
1282 	preempt_enable();
1283 }
1284 
1285 static int __init setup_print_fatal_signals(char *str)
1286 {
1287 	get_option (&str, &print_fatal_signals);
1288 
1289 	return 1;
1290 }
1291 
1292 __setup("print-fatal-signals=", setup_print_fatal_signals);
1293 
1294 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1295 			enum pid_type type)
1296 {
1297 	unsigned long flags;
1298 	int ret = -ESRCH;
1299 
1300 	if (lock_task_sighand(p, &flags)) {
1301 		ret = send_signal_locked(sig, info, p, type);
1302 		unlock_task_sighand(p, &flags);
1303 	}
1304 
1305 	return ret;
1306 }
1307 
1308 enum sig_handler {
1309 	HANDLER_CURRENT, /* If reachable use the current handler */
1310 	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1311 	HANDLER_EXIT,	 /* Only visible as the process exit code */
1312 };
1313 
1314 /*
1315  * Force a signal that the process can't ignore: if necessary
1316  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1317  *
1318  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1319  * since we do not want to have a signal handler that was blocked
1320  * be invoked when user space had explicitly blocked it.
1321  *
1322  * We don't want to have recursive SIGSEGV's etc, for example,
1323  * that is why we also clear SIGNAL_UNKILLABLE.
1324  */
1325 static int
1326 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1327 	enum sig_handler handler)
1328 {
1329 	unsigned long int flags;
1330 	int ret, blocked, ignored;
1331 	struct k_sigaction *action;
1332 	int sig = info->si_signo;
1333 
1334 	spin_lock_irqsave(&t->sighand->siglock, flags);
1335 	action = &t->sighand->action[sig-1];
1336 	ignored = action->sa.sa_handler == SIG_IGN;
1337 	blocked = sigismember(&t->blocked, sig);
1338 	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1339 		action->sa.sa_handler = SIG_DFL;
1340 		if (handler == HANDLER_EXIT)
1341 			action->sa.sa_flags |= SA_IMMUTABLE;
1342 		if (blocked)
1343 			sigdelset(&t->blocked, sig);
1344 	}
1345 	/*
1346 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1347 	 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1348 	 */
1349 	if (action->sa.sa_handler == SIG_DFL &&
1350 	    (!t->ptrace || (handler == HANDLER_EXIT)))
1351 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1352 	ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1353 	/* This can happen if the signal was already pending and blocked */
1354 	if (!task_sigpending(t))
1355 		signal_wake_up(t, 0);
1356 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1357 
1358 	return ret;
1359 }
1360 
1361 int force_sig_info(struct kernel_siginfo *info)
1362 {
1363 	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1364 }
1365 
1366 /*
1367  * Nuke all other threads in the group.
1368  */
1369 int zap_other_threads(struct task_struct *p)
1370 {
1371 	struct task_struct *t;
1372 	int count = 0;
1373 
1374 	p->signal->group_stop_count = 0;
1375 
1376 	for_other_threads(p, t) {
1377 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1378 		/* Don't require de_thread to wait for the vhost_worker */
1379 		if ((t->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)
1380 			count++;
1381 
1382 		/* Don't bother with already dead threads */
1383 		if (t->exit_state)
1384 			continue;
1385 		sigaddset(&t->pending.signal, SIGKILL);
1386 		signal_wake_up(t, 1);
1387 	}
1388 
1389 	return count;
1390 }
1391 
1392 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1393 					   unsigned long *flags)
1394 {
1395 	struct sighand_struct *sighand;
1396 
1397 	rcu_read_lock();
1398 	for (;;) {
1399 		sighand = rcu_dereference(tsk->sighand);
1400 		if (unlikely(sighand == NULL))
1401 			break;
1402 
1403 		/*
1404 		 * This sighand can be already freed and even reused, but
1405 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1406 		 * initializes ->siglock: this slab can't go away, it has
1407 		 * the same object type, ->siglock can't be reinitialized.
1408 		 *
1409 		 * We need to ensure that tsk->sighand is still the same
1410 		 * after we take the lock, we can race with de_thread() or
1411 		 * __exit_signal(). In the latter case the next iteration
1412 		 * must see ->sighand == NULL.
1413 		 */
1414 		spin_lock_irqsave(&sighand->siglock, *flags);
1415 		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1416 			break;
1417 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1418 	}
1419 	rcu_read_unlock();
1420 
1421 	return sighand;
1422 }
1423 
1424 #ifdef CONFIG_LOCKDEP
1425 void lockdep_assert_task_sighand_held(struct task_struct *task)
1426 {
1427 	struct sighand_struct *sighand;
1428 
1429 	rcu_read_lock();
1430 	sighand = rcu_dereference(task->sighand);
1431 	if (sighand)
1432 		lockdep_assert_held(&sighand->siglock);
1433 	else
1434 		WARN_ON_ONCE(1);
1435 	rcu_read_unlock();
1436 }
1437 #endif
1438 
1439 /*
1440  * send signal info to all the members of a thread group or to the
1441  * individual thread if type == PIDTYPE_PID.
1442  */
1443 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1444 			struct task_struct *p, enum pid_type type)
1445 {
1446 	int ret;
1447 
1448 	rcu_read_lock();
1449 	ret = check_kill_permission(sig, info, p);
1450 	rcu_read_unlock();
1451 
1452 	if (!ret && sig)
1453 		ret = do_send_sig_info(sig, info, p, type);
1454 
1455 	return ret;
1456 }
1457 
1458 /*
1459  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1460  * control characters do (^C, ^Z etc)
1461  * - the caller must hold at least a readlock on tasklist_lock
1462  */
1463 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1464 {
1465 	struct task_struct *p = NULL;
1466 	int ret = -ESRCH;
1467 
1468 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1469 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1470 		/*
1471 		 * If group_send_sig_info() succeeds at least once ret
1472 		 * becomes 0 and after that the code below has no effect.
1473 		 * Otherwise we return the last err or -ESRCH if this
1474 		 * process group is empty.
1475 		 */
1476 		if (ret)
1477 			ret = err;
1478 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1479 
1480 	return ret;
1481 }
1482 
1483 static int kill_pid_info_type(int sig, struct kernel_siginfo *info,
1484 				struct pid *pid, enum pid_type type)
1485 {
1486 	int error = -ESRCH;
1487 	struct task_struct *p;
1488 
1489 	for (;;) {
1490 		rcu_read_lock();
1491 		p = pid_task(pid, PIDTYPE_PID);
1492 		if (p)
1493 			error = group_send_sig_info(sig, info, p, type);
1494 		rcu_read_unlock();
1495 		if (likely(!p || error != -ESRCH))
1496 			return error;
1497 		/*
1498 		 * The task was unhashed in between, try again.  If it
1499 		 * is dead, pid_task() will return NULL, if we race with
1500 		 * de_thread() it will find the new leader.
1501 		 */
1502 	}
1503 }
1504 
1505 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1506 {
1507 	return kill_pid_info_type(sig, info, pid, PIDTYPE_TGID);
1508 }
1509 
1510 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1511 {
1512 	int error;
1513 	rcu_read_lock();
1514 	error = kill_pid_info(sig, info, find_vpid(pid));
1515 	rcu_read_unlock();
1516 	return error;
1517 }
1518 
1519 static inline bool kill_as_cred_perm(const struct cred *cred,
1520 				     struct task_struct *target)
1521 {
1522 	const struct cred *pcred = __task_cred(target);
1523 
1524 	return uid_eq(cred->euid, pcred->suid) ||
1525 	       uid_eq(cred->euid, pcred->uid) ||
1526 	       uid_eq(cred->uid, pcred->suid) ||
1527 	       uid_eq(cred->uid, pcred->uid);
1528 }
1529 
1530 /*
1531  * The usb asyncio usage of siginfo is wrong.  The glibc support
1532  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1533  * AKA after the generic fields:
1534  *	kernel_pid_t	si_pid;
1535  *	kernel_uid32_t	si_uid;
1536  *	sigval_t	si_value;
1537  *
1538  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1539  * after the generic fields is:
1540  *	void __user 	*si_addr;
1541  *
1542  * This is a practical problem when there is a 64bit big endian kernel
1543  * and a 32bit userspace.  As the 32bit address will encoded in the low
1544  * 32bits of the pointer.  Those low 32bits will be stored at higher
1545  * address than appear in a 32 bit pointer.  So userspace will not
1546  * see the address it was expecting for it's completions.
1547  *
1548  * There is nothing in the encoding that can allow
1549  * copy_siginfo_to_user32 to detect this confusion of formats, so
1550  * handle this by requiring the caller of kill_pid_usb_asyncio to
1551  * notice when this situration takes place and to store the 32bit
1552  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1553  * parameter.
1554  */
1555 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1556 			 struct pid *pid, const struct cred *cred)
1557 {
1558 	struct kernel_siginfo info;
1559 	struct task_struct *p;
1560 	unsigned long flags;
1561 	int ret = -EINVAL;
1562 
1563 	if (!valid_signal(sig))
1564 		return ret;
1565 
1566 	clear_siginfo(&info);
1567 	info.si_signo = sig;
1568 	info.si_errno = errno;
1569 	info.si_code = SI_ASYNCIO;
1570 	*((sigval_t *)&info.si_pid) = addr;
1571 
1572 	rcu_read_lock();
1573 	p = pid_task(pid, PIDTYPE_PID);
1574 	if (!p) {
1575 		ret = -ESRCH;
1576 		goto out_unlock;
1577 	}
1578 	if (!kill_as_cred_perm(cred, p)) {
1579 		ret = -EPERM;
1580 		goto out_unlock;
1581 	}
1582 	ret = security_task_kill(p, &info, sig, cred);
1583 	if (ret)
1584 		goto out_unlock;
1585 
1586 	if (sig) {
1587 		if (lock_task_sighand(p, &flags)) {
1588 			ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1589 			unlock_task_sighand(p, &flags);
1590 		} else
1591 			ret = -ESRCH;
1592 	}
1593 out_unlock:
1594 	rcu_read_unlock();
1595 	return ret;
1596 }
1597 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1598 
1599 /*
1600  * kill_something_info() interprets pid in interesting ways just like kill(2).
1601  *
1602  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1603  * is probably wrong.  Should make it like BSD or SYSV.
1604  */
1605 
1606 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1607 {
1608 	int ret;
1609 
1610 	if (pid > 0)
1611 		return kill_proc_info(sig, info, pid);
1612 
1613 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1614 	if (pid == INT_MIN)
1615 		return -ESRCH;
1616 
1617 	read_lock(&tasklist_lock);
1618 	if (pid != -1) {
1619 		ret = __kill_pgrp_info(sig, info,
1620 				pid ? find_vpid(-pid) : task_pgrp(current));
1621 	} else {
1622 		int retval = 0, count = 0;
1623 		struct task_struct * p;
1624 
1625 		for_each_process(p) {
1626 			if (task_pid_vnr(p) > 1 &&
1627 					!same_thread_group(p, current)) {
1628 				int err = group_send_sig_info(sig, info, p,
1629 							      PIDTYPE_MAX);
1630 				++count;
1631 				if (err != -EPERM)
1632 					retval = err;
1633 			}
1634 		}
1635 		ret = count ? retval : -ESRCH;
1636 	}
1637 	read_unlock(&tasklist_lock);
1638 
1639 	return ret;
1640 }
1641 
1642 /*
1643  * These are for backward compatibility with the rest of the kernel source.
1644  */
1645 
1646 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1647 {
1648 	/*
1649 	 * Make sure legacy kernel users don't send in bad values
1650 	 * (normal paths check this in check_kill_permission).
1651 	 */
1652 	if (!valid_signal(sig))
1653 		return -EINVAL;
1654 
1655 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1656 }
1657 EXPORT_SYMBOL(send_sig_info);
1658 
1659 #define __si_special(priv) \
1660 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1661 
1662 int
1663 send_sig(int sig, struct task_struct *p, int priv)
1664 {
1665 	return send_sig_info(sig, __si_special(priv), p);
1666 }
1667 EXPORT_SYMBOL(send_sig);
1668 
1669 void force_sig(int sig)
1670 {
1671 	struct kernel_siginfo info;
1672 
1673 	clear_siginfo(&info);
1674 	info.si_signo = sig;
1675 	info.si_errno = 0;
1676 	info.si_code = SI_KERNEL;
1677 	info.si_pid = 0;
1678 	info.si_uid = 0;
1679 	force_sig_info(&info);
1680 }
1681 EXPORT_SYMBOL(force_sig);
1682 
1683 void force_fatal_sig(int sig)
1684 {
1685 	struct kernel_siginfo info;
1686 
1687 	clear_siginfo(&info);
1688 	info.si_signo = sig;
1689 	info.si_errno = 0;
1690 	info.si_code = SI_KERNEL;
1691 	info.si_pid = 0;
1692 	info.si_uid = 0;
1693 	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1694 }
1695 
1696 void force_exit_sig(int sig)
1697 {
1698 	struct kernel_siginfo info;
1699 
1700 	clear_siginfo(&info);
1701 	info.si_signo = sig;
1702 	info.si_errno = 0;
1703 	info.si_code = SI_KERNEL;
1704 	info.si_pid = 0;
1705 	info.si_uid = 0;
1706 	force_sig_info_to_task(&info, current, HANDLER_EXIT);
1707 }
1708 
1709 /*
1710  * When things go south during signal handling, we
1711  * will force a SIGSEGV. And if the signal that caused
1712  * the problem was already a SIGSEGV, we'll want to
1713  * make sure we don't even try to deliver the signal..
1714  */
1715 void force_sigsegv(int sig)
1716 {
1717 	if (sig == SIGSEGV)
1718 		force_fatal_sig(SIGSEGV);
1719 	else
1720 		force_sig(SIGSEGV);
1721 }
1722 
1723 int force_sig_fault_to_task(int sig, int code, void __user *addr,
1724 			    struct task_struct *t)
1725 {
1726 	struct kernel_siginfo info;
1727 
1728 	clear_siginfo(&info);
1729 	info.si_signo = sig;
1730 	info.si_errno = 0;
1731 	info.si_code  = code;
1732 	info.si_addr  = addr;
1733 	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1734 }
1735 
1736 int force_sig_fault(int sig, int code, void __user *addr)
1737 {
1738 	return force_sig_fault_to_task(sig, code, addr, current);
1739 }
1740 
1741 int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t)
1742 {
1743 	struct kernel_siginfo info;
1744 
1745 	clear_siginfo(&info);
1746 	info.si_signo = sig;
1747 	info.si_errno = 0;
1748 	info.si_code  = code;
1749 	info.si_addr  = addr;
1750 	return send_sig_info(info.si_signo, &info, t);
1751 }
1752 
1753 int force_sig_mceerr(int code, void __user *addr, short lsb)
1754 {
1755 	struct kernel_siginfo info;
1756 
1757 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1758 	clear_siginfo(&info);
1759 	info.si_signo = SIGBUS;
1760 	info.si_errno = 0;
1761 	info.si_code = code;
1762 	info.si_addr = addr;
1763 	info.si_addr_lsb = lsb;
1764 	return force_sig_info(&info);
1765 }
1766 
1767 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1768 {
1769 	struct kernel_siginfo info;
1770 
1771 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1772 	clear_siginfo(&info);
1773 	info.si_signo = SIGBUS;
1774 	info.si_errno = 0;
1775 	info.si_code = code;
1776 	info.si_addr = addr;
1777 	info.si_addr_lsb = lsb;
1778 	return send_sig_info(info.si_signo, &info, t);
1779 }
1780 EXPORT_SYMBOL(send_sig_mceerr);
1781 
1782 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1783 {
1784 	struct kernel_siginfo info;
1785 
1786 	clear_siginfo(&info);
1787 	info.si_signo = SIGSEGV;
1788 	info.si_errno = 0;
1789 	info.si_code  = SEGV_BNDERR;
1790 	info.si_addr  = addr;
1791 	info.si_lower = lower;
1792 	info.si_upper = upper;
1793 	return force_sig_info(&info);
1794 }
1795 
1796 #ifdef SEGV_PKUERR
1797 int force_sig_pkuerr(void __user *addr, u32 pkey)
1798 {
1799 	struct kernel_siginfo info;
1800 
1801 	clear_siginfo(&info);
1802 	info.si_signo = SIGSEGV;
1803 	info.si_errno = 0;
1804 	info.si_code  = SEGV_PKUERR;
1805 	info.si_addr  = addr;
1806 	info.si_pkey  = pkey;
1807 	return force_sig_info(&info);
1808 }
1809 #endif
1810 
1811 int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1812 {
1813 	struct kernel_siginfo info;
1814 
1815 	clear_siginfo(&info);
1816 	info.si_signo     = SIGTRAP;
1817 	info.si_errno     = 0;
1818 	info.si_code      = TRAP_PERF;
1819 	info.si_addr      = addr;
1820 	info.si_perf_data = sig_data;
1821 	info.si_perf_type = type;
1822 
1823 	/*
1824 	 * Signals generated by perf events should not terminate the whole
1825 	 * process if SIGTRAP is blocked, however, delivering the signal
1826 	 * asynchronously is better than not delivering at all. But tell user
1827 	 * space if the signal was asynchronous, so it can clearly be
1828 	 * distinguished from normal synchronous ones.
1829 	 */
1830 	info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
1831 				     TRAP_PERF_FLAG_ASYNC :
1832 				     0;
1833 
1834 	return send_sig_info(info.si_signo, &info, current);
1835 }
1836 
1837 /**
1838  * force_sig_seccomp - signals the task to allow in-process syscall emulation
1839  * @syscall: syscall number to send to userland
1840  * @reason: filter-supplied reason code to send to userland (via si_errno)
1841  * @force_coredump: true to trigger a coredump
1842  *
1843  * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1844  */
1845 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1846 {
1847 	struct kernel_siginfo info;
1848 
1849 	clear_siginfo(&info);
1850 	info.si_signo = SIGSYS;
1851 	info.si_code = SYS_SECCOMP;
1852 	info.si_call_addr = (void __user *)KSTK_EIP(current);
1853 	info.si_errno = reason;
1854 	info.si_arch = syscall_get_arch(current);
1855 	info.si_syscall = syscall;
1856 	return force_sig_info_to_task(&info, current,
1857 		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1858 }
1859 
1860 /* For the crazy architectures that include trap information in
1861  * the errno field, instead of an actual errno value.
1862  */
1863 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1864 {
1865 	struct kernel_siginfo info;
1866 
1867 	clear_siginfo(&info);
1868 	info.si_signo = SIGTRAP;
1869 	info.si_errno = errno;
1870 	info.si_code  = TRAP_HWBKPT;
1871 	info.si_addr  = addr;
1872 	return force_sig_info(&info);
1873 }
1874 
1875 /* For the rare architectures that include trap information using
1876  * si_trapno.
1877  */
1878 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1879 {
1880 	struct kernel_siginfo info;
1881 
1882 	clear_siginfo(&info);
1883 	info.si_signo = sig;
1884 	info.si_errno = 0;
1885 	info.si_code  = code;
1886 	info.si_addr  = addr;
1887 	info.si_trapno = trapno;
1888 	return force_sig_info(&info);
1889 }
1890 
1891 /* For the rare architectures that include trap information using
1892  * si_trapno.
1893  */
1894 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1895 			  struct task_struct *t)
1896 {
1897 	struct kernel_siginfo info;
1898 
1899 	clear_siginfo(&info);
1900 	info.si_signo = sig;
1901 	info.si_errno = 0;
1902 	info.si_code  = code;
1903 	info.si_addr  = addr;
1904 	info.si_trapno = trapno;
1905 	return send_sig_info(info.si_signo, &info, t);
1906 }
1907 
1908 static int kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1909 {
1910 	int ret;
1911 	read_lock(&tasklist_lock);
1912 	ret = __kill_pgrp_info(sig, info, pgrp);
1913 	read_unlock(&tasklist_lock);
1914 	return ret;
1915 }
1916 
1917 int kill_pgrp(struct pid *pid, int sig, int priv)
1918 {
1919 	return kill_pgrp_info(sig, __si_special(priv), pid);
1920 }
1921 EXPORT_SYMBOL(kill_pgrp);
1922 
1923 int kill_pid(struct pid *pid, int sig, int priv)
1924 {
1925 	return kill_pid_info(sig, __si_special(priv), pid);
1926 }
1927 EXPORT_SYMBOL(kill_pid);
1928 
1929 /*
1930  * These functions support sending signals using preallocated sigqueue
1931  * structures.  This is needed "because realtime applications cannot
1932  * afford to lose notifications of asynchronous events, like timer
1933  * expirations or I/O completions".  In the case of POSIX Timers
1934  * we allocate the sigqueue structure from the timer_create.  If this
1935  * allocation fails we are able to report the failure to the application
1936  * with an EAGAIN error.
1937  */
1938 struct sigqueue *sigqueue_alloc(void)
1939 {
1940 	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1941 }
1942 
1943 void sigqueue_free(struct sigqueue *q)
1944 {
1945 	unsigned long flags;
1946 	spinlock_t *lock = &current->sighand->siglock;
1947 
1948 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1949 	/*
1950 	 * We must hold ->siglock while testing q->list
1951 	 * to serialize with collect_signal() or with
1952 	 * __exit_signal()->flush_sigqueue().
1953 	 */
1954 	spin_lock_irqsave(lock, flags);
1955 	q->flags &= ~SIGQUEUE_PREALLOC;
1956 	/*
1957 	 * If it is queued it will be freed when dequeued,
1958 	 * like the "regular" sigqueue.
1959 	 */
1960 	if (!list_empty(&q->list))
1961 		q = NULL;
1962 	spin_unlock_irqrestore(lock, flags);
1963 
1964 	if (q)
1965 		__sigqueue_free(q);
1966 }
1967 
1968 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1969 {
1970 	int sig = q->info.si_signo;
1971 	struct sigpending *pending;
1972 	struct task_struct *t;
1973 	unsigned long flags;
1974 	int ret, result;
1975 
1976 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1977 
1978 	ret = -1;
1979 	rcu_read_lock();
1980 
1981 	/*
1982 	 * This function is used by POSIX timers to deliver a timer signal.
1983 	 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1984 	 * set), the signal must be delivered to the specific thread (queues
1985 	 * into t->pending).
1986 	 *
1987 	 * Where type is not PIDTYPE_PID, signals must be delivered to the
1988 	 * process. In this case, prefer to deliver to current if it is in
1989 	 * the same thread group as the target process, which avoids
1990 	 * unnecessarily waking up a potentially idle task.
1991 	 */
1992 	t = pid_task(pid, type);
1993 	if (!t)
1994 		goto ret;
1995 	if (type != PIDTYPE_PID && same_thread_group(t, current))
1996 		t = current;
1997 	if (!likely(lock_task_sighand(t, &flags)))
1998 		goto ret;
1999 
2000 	ret = 1; /* the signal is ignored */
2001 	result = TRACE_SIGNAL_IGNORED;
2002 	if (!prepare_signal(sig, t, false))
2003 		goto out;
2004 
2005 	ret = 0;
2006 	if (unlikely(!list_empty(&q->list))) {
2007 		/*
2008 		 * If an SI_TIMER entry is already queue just increment
2009 		 * the overrun count.
2010 		 */
2011 		BUG_ON(q->info.si_code != SI_TIMER);
2012 		q->info.si_overrun++;
2013 		result = TRACE_SIGNAL_ALREADY_PENDING;
2014 		goto out;
2015 	}
2016 	q->info.si_overrun = 0;
2017 
2018 	signalfd_notify(t, sig);
2019 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
2020 	list_add_tail(&q->list, &pending->list);
2021 	sigaddset(&pending->signal, sig);
2022 	complete_signal(sig, t, type);
2023 	result = TRACE_SIGNAL_DELIVERED;
2024 out:
2025 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2026 	unlock_task_sighand(t, &flags);
2027 ret:
2028 	rcu_read_unlock();
2029 	return ret;
2030 }
2031 
2032 void do_notify_pidfd(struct task_struct *task)
2033 {
2034 	struct pid *pid = task_pid(task);
2035 
2036 	WARN_ON(task->exit_state == 0);
2037 
2038 	__wake_up(&pid->wait_pidfd, TASK_NORMAL, 0,
2039 			poll_to_key(EPOLLIN | EPOLLRDNORM));
2040 }
2041 
2042 /*
2043  * Let a parent know about the death of a child.
2044  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2045  *
2046  * Returns true if our parent ignored us and so we've switched to
2047  * self-reaping.
2048  */
2049 bool do_notify_parent(struct task_struct *tsk, int sig)
2050 {
2051 	struct kernel_siginfo info;
2052 	unsigned long flags;
2053 	struct sighand_struct *psig;
2054 	bool autoreap = false;
2055 	u64 utime, stime;
2056 
2057 	WARN_ON_ONCE(sig == -1);
2058 
2059 	/* do_notify_parent_cldstop should have been called instead.  */
2060 	WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2061 
2062 	WARN_ON_ONCE(!tsk->ptrace &&
2063 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2064 	/*
2065 	 * tsk is a group leader and has no threads, wake up the
2066 	 * non-PIDFD_THREAD waiters.
2067 	 */
2068 	if (thread_group_empty(tsk))
2069 		do_notify_pidfd(tsk);
2070 
2071 	if (sig != SIGCHLD) {
2072 		/*
2073 		 * This is only possible if parent == real_parent.
2074 		 * Check if it has changed security domain.
2075 		 */
2076 		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2077 			sig = SIGCHLD;
2078 	}
2079 
2080 	clear_siginfo(&info);
2081 	info.si_signo = sig;
2082 	info.si_errno = 0;
2083 	/*
2084 	 * We are under tasklist_lock here so our parent is tied to
2085 	 * us and cannot change.
2086 	 *
2087 	 * task_active_pid_ns will always return the same pid namespace
2088 	 * until a task passes through release_task.
2089 	 *
2090 	 * write_lock() currently calls preempt_disable() which is the
2091 	 * same as rcu_read_lock(), but according to Oleg, this is not
2092 	 * correct to rely on this
2093 	 */
2094 	rcu_read_lock();
2095 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2096 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2097 				       task_uid(tsk));
2098 	rcu_read_unlock();
2099 
2100 	task_cputime(tsk, &utime, &stime);
2101 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2102 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2103 
2104 	info.si_status = tsk->exit_code & 0x7f;
2105 	if (tsk->exit_code & 0x80)
2106 		info.si_code = CLD_DUMPED;
2107 	else if (tsk->exit_code & 0x7f)
2108 		info.si_code = CLD_KILLED;
2109 	else {
2110 		info.si_code = CLD_EXITED;
2111 		info.si_status = tsk->exit_code >> 8;
2112 	}
2113 
2114 	psig = tsk->parent->sighand;
2115 	spin_lock_irqsave(&psig->siglock, flags);
2116 	if (!tsk->ptrace && sig == SIGCHLD &&
2117 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2118 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2119 		/*
2120 		 * We are exiting and our parent doesn't care.  POSIX.1
2121 		 * defines special semantics for setting SIGCHLD to SIG_IGN
2122 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2123 		 * automatically and not left for our parent's wait4 call.
2124 		 * Rather than having the parent do it as a magic kind of
2125 		 * signal handler, we just set this to tell do_exit that we
2126 		 * can be cleaned up without becoming a zombie.  Note that
2127 		 * we still call __wake_up_parent in this case, because a
2128 		 * blocked sys_wait4 might now return -ECHILD.
2129 		 *
2130 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2131 		 * is implementation-defined: we do (if you don't want
2132 		 * it, just use SIG_IGN instead).
2133 		 */
2134 		autoreap = true;
2135 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2136 			sig = 0;
2137 	}
2138 	/*
2139 	 * Send with __send_signal as si_pid and si_uid are in the
2140 	 * parent's namespaces.
2141 	 */
2142 	if (valid_signal(sig) && sig)
2143 		__send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2144 	__wake_up_parent(tsk, tsk->parent);
2145 	spin_unlock_irqrestore(&psig->siglock, flags);
2146 
2147 	return autoreap;
2148 }
2149 
2150 /**
2151  * do_notify_parent_cldstop - notify parent of stopped/continued state change
2152  * @tsk: task reporting the state change
2153  * @for_ptracer: the notification is for ptracer
2154  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2155  *
2156  * Notify @tsk's parent that the stopped/continued state has changed.  If
2157  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2158  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2159  *
2160  * CONTEXT:
2161  * Must be called with tasklist_lock at least read locked.
2162  */
2163 static void do_notify_parent_cldstop(struct task_struct *tsk,
2164 				     bool for_ptracer, int why)
2165 {
2166 	struct kernel_siginfo info;
2167 	unsigned long flags;
2168 	struct task_struct *parent;
2169 	struct sighand_struct *sighand;
2170 	u64 utime, stime;
2171 
2172 	if (for_ptracer) {
2173 		parent = tsk->parent;
2174 	} else {
2175 		tsk = tsk->group_leader;
2176 		parent = tsk->real_parent;
2177 	}
2178 
2179 	clear_siginfo(&info);
2180 	info.si_signo = SIGCHLD;
2181 	info.si_errno = 0;
2182 	/*
2183 	 * see comment in do_notify_parent() about the following 4 lines
2184 	 */
2185 	rcu_read_lock();
2186 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2187 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2188 	rcu_read_unlock();
2189 
2190 	task_cputime(tsk, &utime, &stime);
2191 	info.si_utime = nsec_to_clock_t(utime);
2192 	info.si_stime = nsec_to_clock_t(stime);
2193 
2194  	info.si_code = why;
2195  	switch (why) {
2196  	case CLD_CONTINUED:
2197  		info.si_status = SIGCONT;
2198  		break;
2199  	case CLD_STOPPED:
2200  		info.si_status = tsk->signal->group_exit_code & 0x7f;
2201  		break;
2202  	case CLD_TRAPPED:
2203  		info.si_status = tsk->exit_code & 0x7f;
2204  		break;
2205  	default:
2206  		BUG();
2207  	}
2208 
2209 	sighand = parent->sighand;
2210 	spin_lock_irqsave(&sighand->siglock, flags);
2211 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2212 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2213 		send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2214 	/*
2215 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2216 	 */
2217 	__wake_up_parent(tsk, parent);
2218 	spin_unlock_irqrestore(&sighand->siglock, flags);
2219 }
2220 
2221 /*
2222  * This must be called with current->sighand->siglock held.
2223  *
2224  * This should be the path for all ptrace stops.
2225  * We always set current->last_siginfo while stopped here.
2226  * That makes it a way to test a stopped process for
2227  * being ptrace-stopped vs being job-control-stopped.
2228  *
2229  * Returns the signal the ptracer requested the code resume
2230  * with.  If the code did not stop because the tracer is gone,
2231  * the stop signal remains unchanged unless clear_code.
2232  */
2233 static int ptrace_stop(int exit_code, int why, unsigned long message,
2234 		       kernel_siginfo_t *info)
2235 	__releases(&current->sighand->siglock)
2236 	__acquires(&current->sighand->siglock)
2237 {
2238 	bool gstop_done = false;
2239 
2240 	if (arch_ptrace_stop_needed()) {
2241 		/*
2242 		 * The arch code has something special to do before a
2243 		 * ptrace stop.  This is allowed to block, e.g. for faults
2244 		 * on user stack pages.  We can't keep the siglock while
2245 		 * calling arch_ptrace_stop, so we must release it now.
2246 		 * To preserve proper semantics, we must do this before
2247 		 * any signal bookkeeping like checking group_stop_count.
2248 		 */
2249 		spin_unlock_irq(&current->sighand->siglock);
2250 		arch_ptrace_stop();
2251 		spin_lock_irq(&current->sighand->siglock);
2252 	}
2253 
2254 	/*
2255 	 * After this point ptrace_signal_wake_up or signal_wake_up
2256 	 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2257 	 * signal comes in.  Handle previous ptrace_unlinks and fatal
2258 	 * signals here to prevent ptrace_stop sleeping in schedule.
2259 	 */
2260 	if (!current->ptrace || __fatal_signal_pending(current))
2261 		return exit_code;
2262 
2263 	set_special_state(TASK_TRACED);
2264 	current->jobctl |= JOBCTL_TRACED;
2265 
2266 	/*
2267 	 * We're committing to trapping.  TRACED should be visible before
2268 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2269 	 * Also, transition to TRACED and updates to ->jobctl should be
2270 	 * atomic with respect to siglock and should be done after the arch
2271 	 * hook as siglock is released and regrabbed across it.
2272 	 *
2273 	 *     TRACER				    TRACEE
2274 	 *
2275 	 *     ptrace_attach()
2276 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2277 	 *     do_wait()
2278 	 *       set_current_state()                smp_wmb();
2279 	 *       ptrace_do_wait()
2280 	 *         wait_task_stopped()
2281 	 *           task_stopped_code()
2282 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2283 	 */
2284 	smp_wmb();
2285 
2286 	current->ptrace_message = message;
2287 	current->last_siginfo = info;
2288 	current->exit_code = exit_code;
2289 
2290 	/*
2291 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2292 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2293 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2294 	 * could be clear now.  We act as if SIGCONT is received after
2295 	 * TASK_TRACED is entered - ignore it.
2296 	 */
2297 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2298 		gstop_done = task_participate_group_stop(current);
2299 
2300 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2301 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2302 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2303 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2304 
2305 	/* entering a trap, clear TRAPPING */
2306 	task_clear_jobctl_trapping(current);
2307 
2308 	spin_unlock_irq(&current->sighand->siglock);
2309 	read_lock(&tasklist_lock);
2310 	/*
2311 	 * Notify parents of the stop.
2312 	 *
2313 	 * While ptraced, there are two parents - the ptracer and
2314 	 * the real_parent of the group_leader.  The ptracer should
2315 	 * know about every stop while the real parent is only
2316 	 * interested in the completion of group stop.  The states
2317 	 * for the two don't interact with each other.  Notify
2318 	 * separately unless they're gonna be duplicates.
2319 	 */
2320 	if (current->ptrace)
2321 		do_notify_parent_cldstop(current, true, why);
2322 	if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2323 		do_notify_parent_cldstop(current, false, why);
2324 
2325 	/*
2326 	 * The previous do_notify_parent_cldstop() invocation woke ptracer.
2327 	 * One a PREEMPTION kernel this can result in preemption requirement
2328 	 * which will be fulfilled after read_unlock() and the ptracer will be
2329 	 * put on the CPU.
2330 	 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for
2331 	 * this task wait in schedule(). If this task gets preempted then it
2332 	 * remains enqueued on the runqueue. The ptracer will observe this and
2333 	 * then sleep for a delay of one HZ tick. In the meantime this task
2334 	 * gets scheduled, enters schedule() and will wait for the ptracer.
2335 	 *
2336 	 * This preemption point is not bad from a correctness point of
2337 	 * view but extends the runtime by one HZ tick time due to the
2338 	 * ptracer's sleep.  The preempt-disable section ensures that there
2339 	 * will be no preemption between unlock and schedule() and so
2340 	 * improving the performance since the ptracer will observe that
2341 	 * the tracee is scheduled out once it gets on the CPU.
2342 	 *
2343 	 * On PREEMPT_RT locking tasklist_lock does not disable preemption.
2344 	 * Therefore the task can be preempted after do_notify_parent_cldstop()
2345 	 * before unlocking tasklist_lock so there is no benefit in doing this.
2346 	 *
2347 	 * In fact disabling preemption is harmful on PREEMPT_RT because
2348 	 * the spinlock_t in cgroup_enter_frozen() must not be acquired
2349 	 * with preemption disabled due to the 'sleeping' spinlock
2350 	 * substitution of RT.
2351 	 */
2352 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2353 		preempt_disable();
2354 	read_unlock(&tasklist_lock);
2355 	cgroup_enter_frozen();
2356 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2357 		preempt_enable_no_resched();
2358 	schedule();
2359 	cgroup_leave_frozen(true);
2360 
2361 	/*
2362 	 * We are back.  Now reacquire the siglock before touching
2363 	 * last_siginfo, so that we are sure to have synchronized with
2364 	 * any signal-sending on another CPU that wants to examine it.
2365 	 */
2366 	spin_lock_irq(&current->sighand->siglock);
2367 	exit_code = current->exit_code;
2368 	current->last_siginfo = NULL;
2369 	current->ptrace_message = 0;
2370 	current->exit_code = 0;
2371 
2372 	/* LISTENING can be set only during STOP traps, clear it */
2373 	current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2374 
2375 	/*
2376 	 * Queued signals ignored us while we were stopped for tracing.
2377 	 * So check for any that we should take before resuming user mode.
2378 	 * This sets TIF_SIGPENDING, but never clears it.
2379 	 */
2380 	recalc_sigpending_tsk(current);
2381 	return exit_code;
2382 }
2383 
2384 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2385 {
2386 	kernel_siginfo_t info;
2387 
2388 	clear_siginfo(&info);
2389 	info.si_signo = signr;
2390 	info.si_code = exit_code;
2391 	info.si_pid = task_pid_vnr(current);
2392 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2393 
2394 	/* Let the debugger run.  */
2395 	return ptrace_stop(exit_code, why, message, &info);
2396 }
2397 
2398 int ptrace_notify(int exit_code, unsigned long message)
2399 {
2400 	int signr;
2401 
2402 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2403 	if (unlikely(task_work_pending(current)))
2404 		task_work_run();
2405 
2406 	spin_lock_irq(&current->sighand->siglock);
2407 	signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2408 	spin_unlock_irq(&current->sighand->siglock);
2409 	return signr;
2410 }
2411 
2412 /**
2413  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2414  * @signr: signr causing group stop if initiating
2415  *
2416  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2417  * and participate in it.  If already set, participate in the existing
2418  * group stop.  If participated in a group stop (and thus slept), %true is
2419  * returned with siglock released.
2420  *
2421  * If ptraced, this function doesn't handle stop itself.  Instead,
2422  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2423  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2424  * places afterwards.
2425  *
2426  * CONTEXT:
2427  * Must be called with @current->sighand->siglock held, which is released
2428  * on %true return.
2429  *
2430  * RETURNS:
2431  * %false if group stop is already cancelled or ptrace trap is scheduled.
2432  * %true if participated in group stop.
2433  */
2434 static bool do_signal_stop(int signr)
2435 	__releases(&current->sighand->siglock)
2436 {
2437 	struct signal_struct *sig = current->signal;
2438 
2439 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2440 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2441 		struct task_struct *t;
2442 
2443 		/* signr will be recorded in task->jobctl for retries */
2444 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2445 
2446 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2447 		    unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2448 		    unlikely(sig->group_exec_task))
2449 			return false;
2450 		/*
2451 		 * There is no group stop already in progress.  We must
2452 		 * initiate one now.
2453 		 *
2454 		 * While ptraced, a task may be resumed while group stop is
2455 		 * still in effect and then receive a stop signal and
2456 		 * initiate another group stop.  This deviates from the
2457 		 * usual behavior as two consecutive stop signals can't
2458 		 * cause two group stops when !ptraced.  That is why we
2459 		 * also check !task_is_stopped(t) below.
2460 		 *
2461 		 * The condition can be distinguished by testing whether
2462 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2463 		 * group_exit_code in such case.
2464 		 *
2465 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2466 		 * an intervening stop signal is required to cause two
2467 		 * continued events regardless of ptrace.
2468 		 */
2469 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2470 			sig->group_exit_code = signr;
2471 
2472 		sig->group_stop_count = 0;
2473 		if (task_set_jobctl_pending(current, signr | gstop))
2474 			sig->group_stop_count++;
2475 
2476 		for_other_threads(current, t) {
2477 			/*
2478 			 * Setting state to TASK_STOPPED for a group
2479 			 * stop is always done with the siglock held,
2480 			 * so this check has no races.
2481 			 */
2482 			if (!task_is_stopped(t) &&
2483 			    task_set_jobctl_pending(t, signr | gstop)) {
2484 				sig->group_stop_count++;
2485 				if (likely(!(t->ptrace & PT_SEIZED)))
2486 					signal_wake_up(t, 0);
2487 				else
2488 					ptrace_trap_notify(t);
2489 			}
2490 		}
2491 	}
2492 
2493 	if (likely(!current->ptrace)) {
2494 		int notify = 0;
2495 
2496 		/*
2497 		 * If there are no other threads in the group, or if there
2498 		 * is a group stop in progress and we are the last to stop,
2499 		 * report to the parent.
2500 		 */
2501 		if (task_participate_group_stop(current))
2502 			notify = CLD_STOPPED;
2503 
2504 		current->jobctl |= JOBCTL_STOPPED;
2505 		set_special_state(TASK_STOPPED);
2506 		spin_unlock_irq(&current->sighand->siglock);
2507 
2508 		/*
2509 		 * Notify the parent of the group stop completion.  Because
2510 		 * we're not holding either the siglock or tasklist_lock
2511 		 * here, ptracer may attach inbetween; however, this is for
2512 		 * group stop and should always be delivered to the real
2513 		 * parent of the group leader.  The new ptracer will get
2514 		 * its notification when this task transitions into
2515 		 * TASK_TRACED.
2516 		 */
2517 		if (notify) {
2518 			read_lock(&tasklist_lock);
2519 			do_notify_parent_cldstop(current, false, notify);
2520 			read_unlock(&tasklist_lock);
2521 		}
2522 
2523 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2524 		cgroup_enter_frozen();
2525 		schedule();
2526 		return true;
2527 	} else {
2528 		/*
2529 		 * While ptraced, group stop is handled by STOP trap.
2530 		 * Schedule it and let the caller deal with it.
2531 		 */
2532 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2533 		return false;
2534 	}
2535 }
2536 
2537 /**
2538  * do_jobctl_trap - take care of ptrace jobctl traps
2539  *
2540  * When PT_SEIZED, it's used for both group stop and explicit
2541  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2542  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2543  * the stop signal; otherwise, %SIGTRAP.
2544  *
2545  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2546  * number as exit_code and no siginfo.
2547  *
2548  * CONTEXT:
2549  * Must be called with @current->sighand->siglock held, which may be
2550  * released and re-acquired before returning with intervening sleep.
2551  */
2552 static void do_jobctl_trap(void)
2553 {
2554 	struct signal_struct *signal = current->signal;
2555 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2556 
2557 	if (current->ptrace & PT_SEIZED) {
2558 		if (!signal->group_stop_count &&
2559 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2560 			signr = SIGTRAP;
2561 		WARN_ON_ONCE(!signr);
2562 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2563 				 CLD_STOPPED, 0);
2564 	} else {
2565 		WARN_ON_ONCE(!signr);
2566 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2567 	}
2568 }
2569 
2570 /**
2571  * do_freezer_trap - handle the freezer jobctl trap
2572  *
2573  * Puts the task into frozen state, if only the task is not about to quit.
2574  * In this case it drops JOBCTL_TRAP_FREEZE.
2575  *
2576  * CONTEXT:
2577  * Must be called with @current->sighand->siglock held,
2578  * which is always released before returning.
2579  */
2580 static void do_freezer_trap(void)
2581 	__releases(&current->sighand->siglock)
2582 {
2583 	/*
2584 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2585 	 * let's make another loop to give it a chance to be handled.
2586 	 * In any case, we'll return back.
2587 	 */
2588 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2589 	     JOBCTL_TRAP_FREEZE) {
2590 		spin_unlock_irq(&current->sighand->siglock);
2591 		return;
2592 	}
2593 
2594 	/*
2595 	 * Now we're sure that there is no pending fatal signal and no
2596 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2597 	 * immediately (if there is a non-fatal signal pending), and
2598 	 * put the task into sleep.
2599 	 */
2600 	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2601 	clear_thread_flag(TIF_SIGPENDING);
2602 	spin_unlock_irq(&current->sighand->siglock);
2603 	cgroup_enter_frozen();
2604 	schedule();
2605 }
2606 
2607 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2608 {
2609 	/*
2610 	 * We do not check sig_kernel_stop(signr) but set this marker
2611 	 * unconditionally because we do not know whether debugger will
2612 	 * change signr. This flag has no meaning unless we are going
2613 	 * to stop after return from ptrace_stop(). In this case it will
2614 	 * be checked in do_signal_stop(), we should only stop if it was
2615 	 * not cleared by SIGCONT while we were sleeping. See also the
2616 	 * comment in dequeue_signal().
2617 	 */
2618 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2619 	signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2620 
2621 	/* We're back.  Did the debugger cancel the sig?  */
2622 	if (signr == 0)
2623 		return signr;
2624 
2625 	/*
2626 	 * Update the siginfo structure if the signal has
2627 	 * changed.  If the debugger wanted something
2628 	 * specific in the siginfo structure then it should
2629 	 * have updated *info via PTRACE_SETSIGINFO.
2630 	 */
2631 	if (signr != info->si_signo) {
2632 		clear_siginfo(info);
2633 		info->si_signo = signr;
2634 		info->si_errno = 0;
2635 		info->si_code = SI_USER;
2636 		rcu_read_lock();
2637 		info->si_pid = task_pid_vnr(current->parent);
2638 		info->si_uid = from_kuid_munged(current_user_ns(),
2639 						task_uid(current->parent));
2640 		rcu_read_unlock();
2641 	}
2642 
2643 	/* If the (new) signal is now blocked, requeue it.  */
2644 	if (sigismember(&current->blocked, signr) ||
2645 	    fatal_signal_pending(current)) {
2646 		send_signal_locked(signr, info, current, type);
2647 		signr = 0;
2648 	}
2649 
2650 	return signr;
2651 }
2652 
2653 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2654 {
2655 	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2656 	case SIL_FAULT:
2657 	case SIL_FAULT_TRAPNO:
2658 	case SIL_FAULT_MCEERR:
2659 	case SIL_FAULT_BNDERR:
2660 	case SIL_FAULT_PKUERR:
2661 	case SIL_FAULT_PERF_EVENT:
2662 		ksig->info.si_addr = arch_untagged_si_addr(
2663 			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2664 		break;
2665 	case SIL_KILL:
2666 	case SIL_TIMER:
2667 	case SIL_POLL:
2668 	case SIL_CHLD:
2669 	case SIL_RT:
2670 	case SIL_SYS:
2671 		break;
2672 	}
2673 }
2674 
2675 bool get_signal(struct ksignal *ksig)
2676 {
2677 	struct sighand_struct *sighand = current->sighand;
2678 	struct signal_struct *signal = current->signal;
2679 	int signr;
2680 
2681 	clear_notify_signal();
2682 	if (unlikely(task_work_pending(current)))
2683 		task_work_run();
2684 
2685 	if (!task_sigpending(current))
2686 		return false;
2687 
2688 	if (unlikely(uprobe_deny_signal()))
2689 		return false;
2690 
2691 	/*
2692 	 * Do this once, we can't return to user-mode if freezing() == T.
2693 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2694 	 * thus do not need another check after return.
2695 	 */
2696 	try_to_freeze();
2697 
2698 relock:
2699 	spin_lock_irq(&sighand->siglock);
2700 
2701 	/*
2702 	 * Every stopped thread goes here after wakeup. Check to see if
2703 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2704 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2705 	 */
2706 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2707 		int why;
2708 
2709 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2710 			why = CLD_CONTINUED;
2711 		else
2712 			why = CLD_STOPPED;
2713 
2714 		signal->flags &= ~SIGNAL_CLD_MASK;
2715 
2716 		spin_unlock_irq(&sighand->siglock);
2717 
2718 		/*
2719 		 * Notify the parent that we're continuing.  This event is
2720 		 * always per-process and doesn't make whole lot of sense
2721 		 * for ptracers, who shouldn't consume the state via
2722 		 * wait(2) either, but, for backward compatibility, notify
2723 		 * the ptracer of the group leader too unless it's gonna be
2724 		 * a duplicate.
2725 		 */
2726 		read_lock(&tasklist_lock);
2727 		do_notify_parent_cldstop(current, false, why);
2728 
2729 		if (ptrace_reparented(current->group_leader))
2730 			do_notify_parent_cldstop(current->group_leader,
2731 						true, why);
2732 		read_unlock(&tasklist_lock);
2733 
2734 		goto relock;
2735 	}
2736 
2737 	for (;;) {
2738 		struct k_sigaction *ka;
2739 		enum pid_type type;
2740 
2741 		/* Has this task already been marked for death? */
2742 		if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2743 		     signal->group_exec_task) {
2744 			signr = SIGKILL;
2745 			sigdelset(&current->pending.signal, SIGKILL);
2746 			trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2747 					     &sighand->action[SIGKILL-1]);
2748 			recalc_sigpending();
2749 			/*
2750 			 * implies do_group_exit() or return to PF_USER_WORKER,
2751 			 * no need to initialize ksig->info/etc.
2752 			 */
2753 			goto fatal;
2754 		}
2755 
2756 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2757 		    do_signal_stop(0))
2758 			goto relock;
2759 
2760 		if (unlikely(current->jobctl &
2761 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2762 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2763 				do_jobctl_trap();
2764 				spin_unlock_irq(&sighand->siglock);
2765 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2766 				do_freezer_trap();
2767 
2768 			goto relock;
2769 		}
2770 
2771 		/*
2772 		 * If the task is leaving the frozen state, let's update
2773 		 * cgroup counters and reset the frozen bit.
2774 		 */
2775 		if (unlikely(cgroup_task_frozen(current))) {
2776 			spin_unlock_irq(&sighand->siglock);
2777 			cgroup_leave_frozen(false);
2778 			goto relock;
2779 		}
2780 
2781 		/*
2782 		 * Signals generated by the execution of an instruction
2783 		 * need to be delivered before any other pending signals
2784 		 * so that the instruction pointer in the signal stack
2785 		 * frame points to the faulting instruction.
2786 		 */
2787 		type = PIDTYPE_PID;
2788 		signr = dequeue_synchronous_signal(&ksig->info);
2789 		if (!signr)
2790 			signr = dequeue_signal(current, &current->blocked,
2791 					       &ksig->info, &type);
2792 
2793 		if (!signr)
2794 			break; /* will return 0 */
2795 
2796 		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2797 		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2798 			signr = ptrace_signal(signr, &ksig->info, type);
2799 			if (!signr)
2800 				continue;
2801 		}
2802 
2803 		ka = &sighand->action[signr-1];
2804 
2805 		/* Trace actually delivered signals. */
2806 		trace_signal_deliver(signr, &ksig->info, ka);
2807 
2808 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2809 			continue;
2810 		if (ka->sa.sa_handler != SIG_DFL) {
2811 			/* Run the handler.  */
2812 			ksig->ka = *ka;
2813 
2814 			if (ka->sa.sa_flags & SA_ONESHOT)
2815 				ka->sa.sa_handler = SIG_DFL;
2816 
2817 			break; /* will return non-zero "signr" value */
2818 		}
2819 
2820 		/*
2821 		 * Now we are doing the default action for this signal.
2822 		 */
2823 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2824 			continue;
2825 
2826 		/*
2827 		 * Global init gets no signals it doesn't want.
2828 		 * Container-init gets no signals it doesn't want from same
2829 		 * container.
2830 		 *
2831 		 * Note that if global/container-init sees a sig_kernel_only()
2832 		 * signal here, the signal must have been generated internally
2833 		 * or must have come from an ancestor namespace. In either
2834 		 * case, the signal cannot be dropped.
2835 		 */
2836 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2837 				!sig_kernel_only(signr))
2838 			continue;
2839 
2840 		if (sig_kernel_stop(signr)) {
2841 			/*
2842 			 * The default action is to stop all threads in
2843 			 * the thread group.  The job control signals
2844 			 * do nothing in an orphaned pgrp, but SIGSTOP
2845 			 * always works.  Note that siglock needs to be
2846 			 * dropped during the call to is_orphaned_pgrp()
2847 			 * because of lock ordering with tasklist_lock.
2848 			 * This allows an intervening SIGCONT to be posted.
2849 			 * We need to check for that and bail out if necessary.
2850 			 */
2851 			if (signr != SIGSTOP) {
2852 				spin_unlock_irq(&sighand->siglock);
2853 
2854 				/* signals can be posted during this window */
2855 
2856 				if (is_current_pgrp_orphaned())
2857 					goto relock;
2858 
2859 				spin_lock_irq(&sighand->siglock);
2860 			}
2861 
2862 			if (likely(do_signal_stop(signr))) {
2863 				/* It released the siglock.  */
2864 				goto relock;
2865 			}
2866 
2867 			/*
2868 			 * We didn't actually stop, due to a race
2869 			 * with SIGCONT or something like that.
2870 			 */
2871 			continue;
2872 		}
2873 
2874 	fatal:
2875 		spin_unlock_irq(&sighand->siglock);
2876 		if (unlikely(cgroup_task_frozen(current)))
2877 			cgroup_leave_frozen(true);
2878 
2879 		/*
2880 		 * Anything else is fatal, maybe with a core dump.
2881 		 */
2882 		current->flags |= PF_SIGNALED;
2883 
2884 		if (sig_kernel_coredump(signr)) {
2885 			if (print_fatal_signals)
2886 				print_fatal_signal(signr);
2887 			proc_coredump_connector(current);
2888 			/*
2889 			 * If it was able to dump core, this kills all
2890 			 * other threads in the group and synchronizes with
2891 			 * their demise.  If we lost the race with another
2892 			 * thread getting here, it set group_exit_code
2893 			 * first and our do_group_exit call below will use
2894 			 * that value and ignore the one we pass it.
2895 			 */
2896 			do_coredump(&ksig->info);
2897 		}
2898 
2899 		/*
2900 		 * PF_USER_WORKER threads will catch and exit on fatal signals
2901 		 * themselves. They have cleanup that must be performed, so we
2902 		 * cannot call do_exit() on their behalf. Note that ksig won't
2903 		 * be properly initialized, PF_USER_WORKER's shouldn't use it.
2904 		 */
2905 		if (current->flags & PF_USER_WORKER)
2906 			goto out;
2907 
2908 		/*
2909 		 * Death signals, no core dump.
2910 		 */
2911 		do_group_exit(signr);
2912 		/* NOTREACHED */
2913 	}
2914 	spin_unlock_irq(&sighand->siglock);
2915 
2916 	ksig->sig = signr;
2917 
2918 	if (signr && !(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2919 		hide_si_addr_tag_bits(ksig);
2920 out:
2921 	return signr > 0;
2922 }
2923 
2924 /**
2925  * signal_delivered - called after signal delivery to update blocked signals
2926  * @ksig:		kernel signal struct
2927  * @stepping:		nonzero if debugger single-step or block-step in use
2928  *
2929  * This function should be called when a signal has successfully been
2930  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2931  * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2932  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2933  */
2934 static void signal_delivered(struct ksignal *ksig, int stepping)
2935 {
2936 	sigset_t blocked;
2937 
2938 	/* A signal was successfully delivered, and the
2939 	   saved sigmask was stored on the signal frame,
2940 	   and will be restored by sigreturn.  So we can
2941 	   simply clear the restore sigmask flag.  */
2942 	clear_restore_sigmask();
2943 
2944 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2945 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2946 		sigaddset(&blocked, ksig->sig);
2947 	set_current_blocked(&blocked);
2948 	if (current->sas_ss_flags & SS_AUTODISARM)
2949 		sas_ss_reset(current);
2950 	if (stepping)
2951 		ptrace_notify(SIGTRAP, 0);
2952 }
2953 
2954 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2955 {
2956 	if (failed)
2957 		force_sigsegv(ksig->sig);
2958 	else
2959 		signal_delivered(ksig, stepping);
2960 }
2961 
2962 /*
2963  * It could be that complete_signal() picked us to notify about the
2964  * group-wide signal. Other threads should be notified now to take
2965  * the shared signals in @which since we will not.
2966  */
2967 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2968 {
2969 	sigset_t retarget;
2970 	struct task_struct *t;
2971 
2972 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2973 	if (sigisemptyset(&retarget))
2974 		return;
2975 
2976 	for_other_threads(tsk, t) {
2977 		if (t->flags & PF_EXITING)
2978 			continue;
2979 
2980 		if (!has_pending_signals(&retarget, &t->blocked))
2981 			continue;
2982 		/* Remove the signals this thread can handle. */
2983 		sigandsets(&retarget, &retarget, &t->blocked);
2984 
2985 		if (!task_sigpending(t))
2986 			signal_wake_up(t, 0);
2987 
2988 		if (sigisemptyset(&retarget))
2989 			break;
2990 	}
2991 }
2992 
2993 void exit_signals(struct task_struct *tsk)
2994 {
2995 	int group_stop = 0;
2996 	sigset_t unblocked;
2997 
2998 	/*
2999 	 * @tsk is about to have PF_EXITING set - lock out users which
3000 	 * expect stable threadgroup.
3001 	 */
3002 	cgroup_threadgroup_change_begin(tsk);
3003 
3004 	if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
3005 		sched_mm_cid_exit_signals(tsk);
3006 		tsk->flags |= PF_EXITING;
3007 		cgroup_threadgroup_change_end(tsk);
3008 		return;
3009 	}
3010 
3011 	spin_lock_irq(&tsk->sighand->siglock);
3012 	/*
3013 	 * From now this task is not visible for group-wide signals,
3014 	 * see wants_signal(), do_signal_stop().
3015 	 */
3016 	sched_mm_cid_exit_signals(tsk);
3017 	tsk->flags |= PF_EXITING;
3018 
3019 	cgroup_threadgroup_change_end(tsk);
3020 
3021 	if (!task_sigpending(tsk))
3022 		goto out;
3023 
3024 	unblocked = tsk->blocked;
3025 	signotset(&unblocked);
3026 	retarget_shared_pending(tsk, &unblocked);
3027 
3028 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3029 	    task_participate_group_stop(tsk))
3030 		group_stop = CLD_STOPPED;
3031 out:
3032 	spin_unlock_irq(&tsk->sighand->siglock);
3033 
3034 	/*
3035 	 * If group stop has completed, deliver the notification.  This
3036 	 * should always go to the real parent of the group leader.
3037 	 */
3038 	if (unlikely(group_stop)) {
3039 		read_lock(&tasklist_lock);
3040 		do_notify_parent_cldstop(tsk, false, group_stop);
3041 		read_unlock(&tasklist_lock);
3042 	}
3043 }
3044 
3045 /*
3046  * System call entry points.
3047  */
3048 
3049 /**
3050  *  sys_restart_syscall - restart a system call
3051  */
3052 SYSCALL_DEFINE0(restart_syscall)
3053 {
3054 	struct restart_block *restart = &current->restart_block;
3055 	return restart->fn(restart);
3056 }
3057 
3058 long do_no_restart_syscall(struct restart_block *param)
3059 {
3060 	return -EINTR;
3061 }
3062 
3063 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3064 {
3065 	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3066 		sigset_t newblocked;
3067 		/* A set of now blocked but previously unblocked signals. */
3068 		sigandnsets(&newblocked, newset, &current->blocked);
3069 		retarget_shared_pending(tsk, &newblocked);
3070 	}
3071 	tsk->blocked = *newset;
3072 	recalc_sigpending();
3073 }
3074 
3075 /**
3076  * set_current_blocked - change current->blocked mask
3077  * @newset: new mask
3078  *
3079  * It is wrong to change ->blocked directly, this helper should be used
3080  * to ensure the process can't miss a shared signal we are going to block.
3081  */
3082 void set_current_blocked(sigset_t *newset)
3083 {
3084 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3085 	__set_current_blocked(newset);
3086 }
3087 
3088 void __set_current_blocked(const sigset_t *newset)
3089 {
3090 	struct task_struct *tsk = current;
3091 
3092 	/*
3093 	 * In case the signal mask hasn't changed, there is nothing we need
3094 	 * to do. The current->blocked shouldn't be modified by other task.
3095 	 */
3096 	if (sigequalsets(&tsk->blocked, newset))
3097 		return;
3098 
3099 	spin_lock_irq(&tsk->sighand->siglock);
3100 	__set_task_blocked(tsk, newset);
3101 	spin_unlock_irq(&tsk->sighand->siglock);
3102 }
3103 
3104 /*
3105  * This is also useful for kernel threads that want to temporarily
3106  * (or permanently) block certain signals.
3107  *
3108  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3109  * interface happily blocks "unblockable" signals like SIGKILL
3110  * and friends.
3111  */
3112 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3113 {
3114 	struct task_struct *tsk = current;
3115 	sigset_t newset;
3116 
3117 	/* Lockless, only current can change ->blocked, never from irq */
3118 	if (oldset)
3119 		*oldset = tsk->blocked;
3120 
3121 	switch (how) {
3122 	case SIG_BLOCK:
3123 		sigorsets(&newset, &tsk->blocked, set);
3124 		break;
3125 	case SIG_UNBLOCK:
3126 		sigandnsets(&newset, &tsk->blocked, set);
3127 		break;
3128 	case SIG_SETMASK:
3129 		newset = *set;
3130 		break;
3131 	default:
3132 		return -EINVAL;
3133 	}
3134 
3135 	__set_current_blocked(&newset);
3136 	return 0;
3137 }
3138 EXPORT_SYMBOL(sigprocmask);
3139 
3140 /*
3141  * The api helps set app-provided sigmasks.
3142  *
3143  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3144  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3145  *
3146  * Note that it does set_restore_sigmask() in advance, so it must be always
3147  * paired with restore_saved_sigmask_unless() before return from syscall.
3148  */
3149 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3150 {
3151 	sigset_t kmask;
3152 
3153 	if (!umask)
3154 		return 0;
3155 	if (sigsetsize != sizeof(sigset_t))
3156 		return -EINVAL;
3157 	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3158 		return -EFAULT;
3159 
3160 	set_restore_sigmask();
3161 	current->saved_sigmask = current->blocked;
3162 	set_current_blocked(&kmask);
3163 
3164 	return 0;
3165 }
3166 
3167 #ifdef CONFIG_COMPAT
3168 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3169 			    size_t sigsetsize)
3170 {
3171 	sigset_t kmask;
3172 
3173 	if (!umask)
3174 		return 0;
3175 	if (sigsetsize != sizeof(compat_sigset_t))
3176 		return -EINVAL;
3177 	if (get_compat_sigset(&kmask, umask))
3178 		return -EFAULT;
3179 
3180 	set_restore_sigmask();
3181 	current->saved_sigmask = current->blocked;
3182 	set_current_blocked(&kmask);
3183 
3184 	return 0;
3185 }
3186 #endif
3187 
3188 /**
3189  *  sys_rt_sigprocmask - change the list of currently blocked signals
3190  *  @how: whether to add, remove, or set signals
3191  *  @nset: stores pending signals
3192  *  @oset: previous value of signal mask if non-null
3193  *  @sigsetsize: size of sigset_t type
3194  */
3195 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3196 		sigset_t __user *, oset, size_t, sigsetsize)
3197 {
3198 	sigset_t old_set, new_set;
3199 	int error;
3200 
3201 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3202 	if (sigsetsize != sizeof(sigset_t))
3203 		return -EINVAL;
3204 
3205 	old_set = current->blocked;
3206 
3207 	if (nset) {
3208 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3209 			return -EFAULT;
3210 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3211 
3212 		error = sigprocmask(how, &new_set, NULL);
3213 		if (error)
3214 			return error;
3215 	}
3216 
3217 	if (oset) {
3218 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3219 			return -EFAULT;
3220 	}
3221 
3222 	return 0;
3223 }
3224 
3225 #ifdef CONFIG_COMPAT
3226 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3227 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3228 {
3229 	sigset_t old_set = current->blocked;
3230 
3231 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3232 	if (sigsetsize != sizeof(sigset_t))
3233 		return -EINVAL;
3234 
3235 	if (nset) {
3236 		sigset_t new_set;
3237 		int error;
3238 		if (get_compat_sigset(&new_set, nset))
3239 			return -EFAULT;
3240 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3241 
3242 		error = sigprocmask(how, &new_set, NULL);
3243 		if (error)
3244 			return error;
3245 	}
3246 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3247 }
3248 #endif
3249 
3250 static void do_sigpending(sigset_t *set)
3251 {
3252 	spin_lock_irq(&current->sighand->siglock);
3253 	sigorsets(set, &current->pending.signal,
3254 		  &current->signal->shared_pending.signal);
3255 	spin_unlock_irq(&current->sighand->siglock);
3256 
3257 	/* Outside the lock because only this thread touches it.  */
3258 	sigandsets(set, &current->blocked, set);
3259 }
3260 
3261 /**
3262  *  sys_rt_sigpending - examine a pending signal that has been raised
3263  *			while blocked
3264  *  @uset: stores pending signals
3265  *  @sigsetsize: size of sigset_t type or larger
3266  */
3267 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3268 {
3269 	sigset_t set;
3270 
3271 	if (sigsetsize > sizeof(*uset))
3272 		return -EINVAL;
3273 
3274 	do_sigpending(&set);
3275 
3276 	if (copy_to_user(uset, &set, sigsetsize))
3277 		return -EFAULT;
3278 
3279 	return 0;
3280 }
3281 
3282 #ifdef CONFIG_COMPAT
3283 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3284 		compat_size_t, sigsetsize)
3285 {
3286 	sigset_t set;
3287 
3288 	if (sigsetsize > sizeof(*uset))
3289 		return -EINVAL;
3290 
3291 	do_sigpending(&set);
3292 
3293 	return put_compat_sigset(uset, &set, sigsetsize);
3294 }
3295 #endif
3296 
3297 static const struct {
3298 	unsigned char limit, layout;
3299 } sig_sicodes[] = {
3300 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3301 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3302 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3303 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3304 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3305 #if defined(SIGEMT)
3306 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3307 #endif
3308 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3309 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3310 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3311 };
3312 
3313 static bool known_siginfo_layout(unsigned sig, int si_code)
3314 {
3315 	if (si_code == SI_KERNEL)
3316 		return true;
3317 	else if ((si_code > SI_USER)) {
3318 		if (sig_specific_sicodes(sig)) {
3319 			if (si_code <= sig_sicodes[sig].limit)
3320 				return true;
3321 		}
3322 		else if (si_code <= NSIGPOLL)
3323 			return true;
3324 	}
3325 	else if (si_code >= SI_DETHREAD)
3326 		return true;
3327 	else if (si_code == SI_ASYNCNL)
3328 		return true;
3329 	return false;
3330 }
3331 
3332 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3333 {
3334 	enum siginfo_layout layout = SIL_KILL;
3335 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3336 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3337 		    (si_code <= sig_sicodes[sig].limit)) {
3338 			layout = sig_sicodes[sig].layout;
3339 			/* Handle the exceptions */
3340 			if ((sig == SIGBUS) &&
3341 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3342 				layout = SIL_FAULT_MCEERR;
3343 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3344 				layout = SIL_FAULT_BNDERR;
3345 #ifdef SEGV_PKUERR
3346 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3347 				layout = SIL_FAULT_PKUERR;
3348 #endif
3349 			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3350 				layout = SIL_FAULT_PERF_EVENT;
3351 			else if (IS_ENABLED(CONFIG_SPARC) &&
3352 				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3353 				layout = SIL_FAULT_TRAPNO;
3354 			else if (IS_ENABLED(CONFIG_ALPHA) &&
3355 				 ((sig == SIGFPE) ||
3356 				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3357 				layout = SIL_FAULT_TRAPNO;
3358 		}
3359 		else if (si_code <= NSIGPOLL)
3360 			layout = SIL_POLL;
3361 	} else {
3362 		if (si_code == SI_TIMER)
3363 			layout = SIL_TIMER;
3364 		else if (si_code == SI_SIGIO)
3365 			layout = SIL_POLL;
3366 		else if (si_code < 0)
3367 			layout = SIL_RT;
3368 	}
3369 	return layout;
3370 }
3371 
3372 static inline char __user *si_expansion(const siginfo_t __user *info)
3373 {
3374 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3375 }
3376 
3377 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3378 {
3379 	char __user *expansion = si_expansion(to);
3380 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3381 		return -EFAULT;
3382 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3383 		return -EFAULT;
3384 	return 0;
3385 }
3386 
3387 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3388 				       const siginfo_t __user *from)
3389 {
3390 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3391 		char __user *expansion = si_expansion(from);
3392 		char buf[SI_EXPANSION_SIZE];
3393 		int i;
3394 		/*
3395 		 * An unknown si_code might need more than
3396 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3397 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3398 		 * will return this data to userspace exactly.
3399 		 */
3400 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3401 			return -EFAULT;
3402 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3403 			if (buf[i] != 0)
3404 				return -E2BIG;
3405 		}
3406 	}
3407 	return 0;
3408 }
3409 
3410 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3411 				    const siginfo_t __user *from)
3412 {
3413 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3414 		return -EFAULT;
3415 	to->si_signo = signo;
3416 	return post_copy_siginfo_from_user(to, from);
3417 }
3418 
3419 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3420 {
3421 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3422 		return -EFAULT;
3423 	return post_copy_siginfo_from_user(to, from);
3424 }
3425 
3426 #ifdef CONFIG_COMPAT
3427 /**
3428  * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3429  * @to: compat siginfo destination
3430  * @from: kernel siginfo source
3431  *
3432  * Note: This function does not work properly for the SIGCHLD on x32, but
3433  * fortunately it doesn't have to.  The only valid callers for this function are
3434  * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3435  * The latter does not care because SIGCHLD will never cause a coredump.
3436  */
3437 void copy_siginfo_to_external32(struct compat_siginfo *to,
3438 		const struct kernel_siginfo *from)
3439 {
3440 	memset(to, 0, sizeof(*to));
3441 
3442 	to->si_signo = from->si_signo;
3443 	to->si_errno = from->si_errno;
3444 	to->si_code  = from->si_code;
3445 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3446 	case SIL_KILL:
3447 		to->si_pid = from->si_pid;
3448 		to->si_uid = from->si_uid;
3449 		break;
3450 	case SIL_TIMER:
3451 		to->si_tid     = from->si_tid;
3452 		to->si_overrun = from->si_overrun;
3453 		to->si_int     = from->si_int;
3454 		break;
3455 	case SIL_POLL:
3456 		to->si_band = from->si_band;
3457 		to->si_fd   = from->si_fd;
3458 		break;
3459 	case SIL_FAULT:
3460 		to->si_addr = ptr_to_compat(from->si_addr);
3461 		break;
3462 	case SIL_FAULT_TRAPNO:
3463 		to->si_addr = ptr_to_compat(from->si_addr);
3464 		to->si_trapno = from->si_trapno;
3465 		break;
3466 	case SIL_FAULT_MCEERR:
3467 		to->si_addr = ptr_to_compat(from->si_addr);
3468 		to->si_addr_lsb = from->si_addr_lsb;
3469 		break;
3470 	case SIL_FAULT_BNDERR:
3471 		to->si_addr = ptr_to_compat(from->si_addr);
3472 		to->si_lower = ptr_to_compat(from->si_lower);
3473 		to->si_upper = ptr_to_compat(from->si_upper);
3474 		break;
3475 	case SIL_FAULT_PKUERR:
3476 		to->si_addr = ptr_to_compat(from->si_addr);
3477 		to->si_pkey = from->si_pkey;
3478 		break;
3479 	case SIL_FAULT_PERF_EVENT:
3480 		to->si_addr = ptr_to_compat(from->si_addr);
3481 		to->si_perf_data = from->si_perf_data;
3482 		to->si_perf_type = from->si_perf_type;
3483 		to->si_perf_flags = from->si_perf_flags;
3484 		break;
3485 	case SIL_CHLD:
3486 		to->si_pid = from->si_pid;
3487 		to->si_uid = from->si_uid;
3488 		to->si_status = from->si_status;
3489 		to->si_utime = from->si_utime;
3490 		to->si_stime = from->si_stime;
3491 		break;
3492 	case SIL_RT:
3493 		to->si_pid = from->si_pid;
3494 		to->si_uid = from->si_uid;
3495 		to->si_int = from->si_int;
3496 		break;
3497 	case SIL_SYS:
3498 		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3499 		to->si_syscall   = from->si_syscall;
3500 		to->si_arch      = from->si_arch;
3501 		break;
3502 	}
3503 }
3504 
3505 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3506 			   const struct kernel_siginfo *from)
3507 {
3508 	struct compat_siginfo new;
3509 
3510 	copy_siginfo_to_external32(&new, from);
3511 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3512 		return -EFAULT;
3513 	return 0;
3514 }
3515 
3516 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3517 					 const struct compat_siginfo *from)
3518 {
3519 	clear_siginfo(to);
3520 	to->si_signo = from->si_signo;
3521 	to->si_errno = from->si_errno;
3522 	to->si_code  = from->si_code;
3523 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3524 	case SIL_KILL:
3525 		to->si_pid = from->si_pid;
3526 		to->si_uid = from->si_uid;
3527 		break;
3528 	case SIL_TIMER:
3529 		to->si_tid     = from->si_tid;
3530 		to->si_overrun = from->si_overrun;
3531 		to->si_int     = from->si_int;
3532 		break;
3533 	case SIL_POLL:
3534 		to->si_band = from->si_band;
3535 		to->si_fd   = from->si_fd;
3536 		break;
3537 	case SIL_FAULT:
3538 		to->si_addr = compat_ptr(from->si_addr);
3539 		break;
3540 	case SIL_FAULT_TRAPNO:
3541 		to->si_addr = compat_ptr(from->si_addr);
3542 		to->si_trapno = from->si_trapno;
3543 		break;
3544 	case SIL_FAULT_MCEERR:
3545 		to->si_addr = compat_ptr(from->si_addr);
3546 		to->si_addr_lsb = from->si_addr_lsb;
3547 		break;
3548 	case SIL_FAULT_BNDERR:
3549 		to->si_addr = compat_ptr(from->si_addr);
3550 		to->si_lower = compat_ptr(from->si_lower);
3551 		to->si_upper = compat_ptr(from->si_upper);
3552 		break;
3553 	case SIL_FAULT_PKUERR:
3554 		to->si_addr = compat_ptr(from->si_addr);
3555 		to->si_pkey = from->si_pkey;
3556 		break;
3557 	case SIL_FAULT_PERF_EVENT:
3558 		to->si_addr = compat_ptr(from->si_addr);
3559 		to->si_perf_data = from->si_perf_data;
3560 		to->si_perf_type = from->si_perf_type;
3561 		to->si_perf_flags = from->si_perf_flags;
3562 		break;
3563 	case SIL_CHLD:
3564 		to->si_pid    = from->si_pid;
3565 		to->si_uid    = from->si_uid;
3566 		to->si_status = from->si_status;
3567 #ifdef CONFIG_X86_X32_ABI
3568 		if (in_x32_syscall()) {
3569 			to->si_utime = from->_sifields._sigchld_x32._utime;
3570 			to->si_stime = from->_sifields._sigchld_x32._stime;
3571 		} else
3572 #endif
3573 		{
3574 			to->si_utime = from->si_utime;
3575 			to->si_stime = from->si_stime;
3576 		}
3577 		break;
3578 	case SIL_RT:
3579 		to->si_pid = from->si_pid;
3580 		to->si_uid = from->si_uid;
3581 		to->si_int = from->si_int;
3582 		break;
3583 	case SIL_SYS:
3584 		to->si_call_addr = compat_ptr(from->si_call_addr);
3585 		to->si_syscall   = from->si_syscall;
3586 		to->si_arch      = from->si_arch;
3587 		break;
3588 	}
3589 	return 0;
3590 }
3591 
3592 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3593 				      const struct compat_siginfo __user *ufrom)
3594 {
3595 	struct compat_siginfo from;
3596 
3597 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3598 		return -EFAULT;
3599 
3600 	from.si_signo = signo;
3601 	return post_copy_siginfo_from_user32(to, &from);
3602 }
3603 
3604 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3605 			     const struct compat_siginfo __user *ufrom)
3606 {
3607 	struct compat_siginfo from;
3608 
3609 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3610 		return -EFAULT;
3611 
3612 	return post_copy_siginfo_from_user32(to, &from);
3613 }
3614 #endif /* CONFIG_COMPAT */
3615 
3616 /**
3617  *  do_sigtimedwait - wait for queued signals specified in @which
3618  *  @which: queued signals to wait for
3619  *  @info: if non-null, the signal's siginfo is returned here
3620  *  @ts: upper bound on process time suspension
3621  */
3622 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3623 		    const struct timespec64 *ts)
3624 {
3625 	ktime_t *to = NULL, timeout = KTIME_MAX;
3626 	struct task_struct *tsk = current;
3627 	sigset_t mask = *which;
3628 	enum pid_type type;
3629 	int sig, ret = 0;
3630 
3631 	if (ts) {
3632 		if (!timespec64_valid(ts))
3633 			return -EINVAL;
3634 		timeout = timespec64_to_ktime(*ts);
3635 		to = &timeout;
3636 	}
3637 
3638 	/*
3639 	 * Invert the set of allowed signals to get those we want to block.
3640 	 */
3641 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3642 	signotset(&mask);
3643 
3644 	spin_lock_irq(&tsk->sighand->siglock);
3645 	sig = dequeue_signal(tsk, &mask, info, &type);
3646 	if (!sig && timeout) {
3647 		/*
3648 		 * None ready, temporarily unblock those we're interested
3649 		 * while we are sleeping in so that we'll be awakened when
3650 		 * they arrive. Unblocking is always fine, we can avoid
3651 		 * set_current_blocked().
3652 		 */
3653 		tsk->real_blocked = tsk->blocked;
3654 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3655 		recalc_sigpending();
3656 		spin_unlock_irq(&tsk->sighand->siglock);
3657 
3658 		__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3659 		ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3660 					       HRTIMER_MODE_REL);
3661 		spin_lock_irq(&tsk->sighand->siglock);
3662 		__set_task_blocked(tsk, &tsk->real_blocked);
3663 		sigemptyset(&tsk->real_blocked);
3664 		sig = dequeue_signal(tsk, &mask, info, &type);
3665 	}
3666 	spin_unlock_irq(&tsk->sighand->siglock);
3667 
3668 	if (sig)
3669 		return sig;
3670 	return ret ? -EINTR : -EAGAIN;
3671 }
3672 
3673 /**
3674  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3675  *			in @uthese
3676  *  @uthese: queued signals to wait for
3677  *  @uinfo: if non-null, the signal's siginfo is returned here
3678  *  @uts: upper bound on process time suspension
3679  *  @sigsetsize: size of sigset_t type
3680  */
3681 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3682 		siginfo_t __user *, uinfo,
3683 		const struct __kernel_timespec __user *, uts,
3684 		size_t, sigsetsize)
3685 {
3686 	sigset_t these;
3687 	struct timespec64 ts;
3688 	kernel_siginfo_t info;
3689 	int ret;
3690 
3691 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3692 	if (sigsetsize != sizeof(sigset_t))
3693 		return -EINVAL;
3694 
3695 	if (copy_from_user(&these, uthese, sizeof(these)))
3696 		return -EFAULT;
3697 
3698 	if (uts) {
3699 		if (get_timespec64(&ts, uts))
3700 			return -EFAULT;
3701 	}
3702 
3703 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3704 
3705 	if (ret > 0 && uinfo) {
3706 		if (copy_siginfo_to_user(uinfo, &info))
3707 			ret = -EFAULT;
3708 	}
3709 
3710 	return ret;
3711 }
3712 
3713 #ifdef CONFIG_COMPAT_32BIT_TIME
3714 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3715 		siginfo_t __user *, uinfo,
3716 		const struct old_timespec32 __user *, uts,
3717 		size_t, sigsetsize)
3718 {
3719 	sigset_t these;
3720 	struct timespec64 ts;
3721 	kernel_siginfo_t info;
3722 	int ret;
3723 
3724 	if (sigsetsize != sizeof(sigset_t))
3725 		return -EINVAL;
3726 
3727 	if (copy_from_user(&these, uthese, sizeof(these)))
3728 		return -EFAULT;
3729 
3730 	if (uts) {
3731 		if (get_old_timespec32(&ts, uts))
3732 			return -EFAULT;
3733 	}
3734 
3735 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3736 
3737 	if (ret > 0 && uinfo) {
3738 		if (copy_siginfo_to_user(uinfo, &info))
3739 			ret = -EFAULT;
3740 	}
3741 
3742 	return ret;
3743 }
3744 #endif
3745 
3746 #ifdef CONFIG_COMPAT
3747 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3748 		struct compat_siginfo __user *, uinfo,
3749 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3750 {
3751 	sigset_t s;
3752 	struct timespec64 t;
3753 	kernel_siginfo_t info;
3754 	long ret;
3755 
3756 	if (sigsetsize != sizeof(sigset_t))
3757 		return -EINVAL;
3758 
3759 	if (get_compat_sigset(&s, uthese))
3760 		return -EFAULT;
3761 
3762 	if (uts) {
3763 		if (get_timespec64(&t, uts))
3764 			return -EFAULT;
3765 	}
3766 
3767 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3768 
3769 	if (ret > 0 && uinfo) {
3770 		if (copy_siginfo_to_user32(uinfo, &info))
3771 			ret = -EFAULT;
3772 	}
3773 
3774 	return ret;
3775 }
3776 
3777 #ifdef CONFIG_COMPAT_32BIT_TIME
3778 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3779 		struct compat_siginfo __user *, uinfo,
3780 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3781 {
3782 	sigset_t s;
3783 	struct timespec64 t;
3784 	kernel_siginfo_t info;
3785 	long ret;
3786 
3787 	if (sigsetsize != sizeof(sigset_t))
3788 		return -EINVAL;
3789 
3790 	if (get_compat_sigset(&s, uthese))
3791 		return -EFAULT;
3792 
3793 	if (uts) {
3794 		if (get_old_timespec32(&t, uts))
3795 			return -EFAULT;
3796 	}
3797 
3798 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3799 
3800 	if (ret > 0 && uinfo) {
3801 		if (copy_siginfo_to_user32(uinfo, &info))
3802 			ret = -EFAULT;
3803 	}
3804 
3805 	return ret;
3806 }
3807 #endif
3808 #endif
3809 
3810 static void prepare_kill_siginfo(int sig, struct kernel_siginfo *info,
3811 				 enum pid_type type)
3812 {
3813 	clear_siginfo(info);
3814 	info->si_signo = sig;
3815 	info->si_errno = 0;
3816 	info->si_code = (type == PIDTYPE_PID) ? SI_TKILL : SI_USER;
3817 	info->si_pid = task_tgid_vnr(current);
3818 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3819 }
3820 
3821 /**
3822  *  sys_kill - send a signal to a process
3823  *  @pid: the PID of the process
3824  *  @sig: signal to be sent
3825  */
3826 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3827 {
3828 	struct kernel_siginfo info;
3829 
3830 	prepare_kill_siginfo(sig, &info, PIDTYPE_TGID);
3831 
3832 	return kill_something_info(sig, &info, pid);
3833 }
3834 
3835 /*
3836  * Verify that the signaler and signalee either are in the same pid namespace
3837  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3838  * namespace.
3839  */
3840 static bool access_pidfd_pidns(struct pid *pid)
3841 {
3842 	struct pid_namespace *active = task_active_pid_ns(current);
3843 	struct pid_namespace *p = ns_of_pid(pid);
3844 
3845 	for (;;) {
3846 		if (!p)
3847 			return false;
3848 		if (p == active)
3849 			break;
3850 		p = p->parent;
3851 	}
3852 
3853 	return true;
3854 }
3855 
3856 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3857 		siginfo_t __user *info)
3858 {
3859 #ifdef CONFIG_COMPAT
3860 	/*
3861 	 * Avoid hooking up compat syscalls and instead handle necessary
3862 	 * conversions here. Note, this is a stop-gap measure and should not be
3863 	 * considered a generic solution.
3864 	 */
3865 	if (in_compat_syscall())
3866 		return copy_siginfo_from_user32(
3867 			kinfo, (struct compat_siginfo __user *)info);
3868 #endif
3869 	return copy_siginfo_from_user(kinfo, info);
3870 }
3871 
3872 static struct pid *pidfd_to_pid(const struct file *file)
3873 {
3874 	struct pid *pid;
3875 
3876 	pid = pidfd_pid(file);
3877 	if (!IS_ERR(pid))
3878 		return pid;
3879 
3880 	return tgid_pidfd_to_pid(file);
3881 }
3882 
3883 #define PIDFD_SEND_SIGNAL_FLAGS                            \
3884 	(PIDFD_SIGNAL_THREAD | PIDFD_SIGNAL_THREAD_GROUP | \
3885 	 PIDFD_SIGNAL_PROCESS_GROUP)
3886 
3887 /**
3888  * sys_pidfd_send_signal - Signal a process through a pidfd
3889  * @pidfd:  file descriptor of the process
3890  * @sig:    signal to send
3891  * @info:   signal info
3892  * @flags:  future flags
3893  *
3894  * Send the signal to the thread group or to the individual thread depending
3895  * on PIDFD_THREAD.
3896  * In the future extension to @flags may be used to override the default scope
3897  * of @pidfd.
3898  *
3899  * Return: 0 on success, negative errno on failure
3900  */
3901 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3902 		siginfo_t __user *, info, unsigned int, flags)
3903 {
3904 	int ret;
3905 	struct fd f;
3906 	struct pid *pid;
3907 	kernel_siginfo_t kinfo;
3908 	enum pid_type type;
3909 
3910 	/* Enforce flags be set to 0 until we add an extension. */
3911 	if (flags & ~PIDFD_SEND_SIGNAL_FLAGS)
3912 		return -EINVAL;
3913 
3914 	/* Ensure that only a single signal scope determining flag is set. */
3915 	if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1)
3916 		return -EINVAL;
3917 
3918 	f = fdget(pidfd);
3919 	if (!f.file)
3920 		return -EBADF;
3921 
3922 	/* Is this a pidfd? */
3923 	pid = pidfd_to_pid(f.file);
3924 	if (IS_ERR(pid)) {
3925 		ret = PTR_ERR(pid);
3926 		goto err;
3927 	}
3928 
3929 	ret = -EINVAL;
3930 	if (!access_pidfd_pidns(pid))
3931 		goto err;
3932 
3933 	switch (flags) {
3934 	case 0:
3935 		/* Infer scope from the type of pidfd. */
3936 		if (f.file->f_flags & PIDFD_THREAD)
3937 			type = PIDTYPE_PID;
3938 		else
3939 			type = PIDTYPE_TGID;
3940 		break;
3941 	case PIDFD_SIGNAL_THREAD:
3942 		type = PIDTYPE_PID;
3943 		break;
3944 	case PIDFD_SIGNAL_THREAD_GROUP:
3945 		type = PIDTYPE_TGID;
3946 		break;
3947 	case PIDFD_SIGNAL_PROCESS_GROUP:
3948 		type = PIDTYPE_PGID;
3949 		break;
3950 	}
3951 
3952 	if (info) {
3953 		ret = copy_siginfo_from_user_any(&kinfo, info);
3954 		if (unlikely(ret))
3955 			goto err;
3956 
3957 		ret = -EINVAL;
3958 		if (unlikely(sig != kinfo.si_signo))
3959 			goto err;
3960 
3961 		/* Only allow sending arbitrary signals to yourself. */
3962 		ret = -EPERM;
3963 		if ((task_pid(current) != pid || type > PIDTYPE_TGID) &&
3964 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3965 			goto err;
3966 	} else {
3967 		prepare_kill_siginfo(sig, &kinfo, type);
3968 	}
3969 
3970 	if (type == PIDTYPE_PGID)
3971 		ret = kill_pgrp_info(sig, &kinfo, pid);
3972 	else
3973 		ret = kill_pid_info_type(sig, &kinfo, pid, type);
3974 err:
3975 	fdput(f);
3976 	return ret;
3977 }
3978 
3979 static int
3980 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3981 {
3982 	struct task_struct *p;
3983 	int error = -ESRCH;
3984 
3985 	rcu_read_lock();
3986 	p = find_task_by_vpid(pid);
3987 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3988 		error = check_kill_permission(sig, info, p);
3989 		/*
3990 		 * The null signal is a permissions and process existence
3991 		 * probe.  No signal is actually delivered.
3992 		 */
3993 		if (!error && sig) {
3994 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3995 			/*
3996 			 * If lock_task_sighand() failed we pretend the task
3997 			 * dies after receiving the signal. The window is tiny,
3998 			 * and the signal is private anyway.
3999 			 */
4000 			if (unlikely(error == -ESRCH))
4001 				error = 0;
4002 		}
4003 	}
4004 	rcu_read_unlock();
4005 
4006 	return error;
4007 }
4008 
4009 static int do_tkill(pid_t tgid, pid_t pid, int sig)
4010 {
4011 	struct kernel_siginfo info;
4012 
4013 	prepare_kill_siginfo(sig, &info, PIDTYPE_PID);
4014 
4015 	return do_send_specific(tgid, pid, sig, &info);
4016 }
4017 
4018 /**
4019  *  sys_tgkill - send signal to one specific thread
4020  *  @tgid: the thread group ID of the thread
4021  *  @pid: the PID of the thread
4022  *  @sig: signal to be sent
4023  *
4024  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
4025  *  exists but it's not belonging to the target process anymore. This
4026  *  method solves the problem of threads exiting and PIDs getting reused.
4027  */
4028 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
4029 {
4030 	/* This is only valid for single tasks */
4031 	if (pid <= 0 || tgid <= 0)
4032 		return -EINVAL;
4033 
4034 	return do_tkill(tgid, pid, sig);
4035 }
4036 
4037 /**
4038  *  sys_tkill - send signal to one specific task
4039  *  @pid: the PID of the task
4040  *  @sig: signal to be sent
4041  *
4042  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
4043  */
4044 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4045 {
4046 	/* This is only valid for single tasks */
4047 	if (pid <= 0)
4048 		return -EINVAL;
4049 
4050 	return do_tkill(0, pid, sig);
4051 }
4052 
4053 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4054 {
4055 	/* Not even root can pretend to send signals from the kernel.
4056 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4057 	 */
4058 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4059 	    (task_pid_vnr(current) != pid))
4060 		return -EPERM;
4061 
4062 	/* POSIX.1b doesn't mention process groups.  */
4063 	return kill_proc_info(sig, info, pid);
4064 }
4065 
4066 /**
4067  *  sys_rt_sigqueueinfo - send signal information to a signal
4068  *  @pid: the PID of the thread
4069  *  @sig: signal to be sent
4070  *  @uinfo: signal info to be sent
4071  */
4072 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4073 		siginfo_t __user *, uinfo)
4074 {
4075 	kernel_siginfo_t info;
4076 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4077 	if (unlikely(ret))
4078 		return ret;
4079 	return do_rt_sigqueueinfo(pid, sig, &info);
4080 }
4081 
4082 #ifdef CONFIG_COMPAT
4083 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4084 			compat_pid_t, pid,
4085 			int, sig,
4086 			struct compat_siginfo __user *, uinfo)
4087 {
4088 	kernel_siginfo_t info;
4089 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4090 	if (unlikely(ret))
4091 		return ret;
4092 	return do_rt_sigqueueinfo(pid, sig, &info);
4093 }
4094 #endif
4095 
4096 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4097 {
4098 	/* This is only valid for single tasks */
4099 	if (pid <= 0 || tgid <= 0)
4100 		return -EINVAL;
4101 
4102 	/* Not even root can pretend to send signals from the kernel.
4103 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4104 	 */
4105 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4106 	    (task_pid_vnr(current) != pid))
4107 		return -EPERM;
4108 
4109 	return do_send_specific(tgid, pid, sig, info);
4110 }
4111 
4112 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4113 		siginfo_t __user *, uinfo)
4114 {
4115 	kernel_siginfo_t info;
4116 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4117 	if (unlikely(ret))
4118 		return ret;
4119 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4120 }
4121 
4122 #ifdef CONFIG_COMPAT
4123 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4124 			compat_pid_t, tgid,
4125 			compat_pid_t, pid,
4126 			int, sig,
4127 			struct compat_siginfo __user *, uinfo)
4128 {
4129 	kernel_siginfo_t info;
4130 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4131 	if (unlikely(ret))
4132 		return ret;
4133 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4134 }
4135 #endif
4136 
4137 /*
4138  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4139  */
4140 void kernel_sigaction(int sig, __sighandler_t action)
4141 {
4142 	spin_lock_irq(&current->sighand->siglock);
4143 	current->sighand->action[sig - 1].sa.sa_handler = action;
4144 	if (action == SIG_IGN) {
4145 		sigset_t mask;
4146 
4147 		sigemptyset(&mask);
4148 		sigaddset(&mask, sig);
4149 
4150 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4151 		flush_sigqueue_mask(&mask, &current->pending);
4152 		recalc_sigpending();
4153 	}
4154 	spin_unlock_irq(&current->sighand->siglock);
4155 }
4156 EXPORT_SYMBOL(kernel_sigaction);
4157 
4158 void __weak sigaction_compat_abi(struct k_sigaction *act,
4159 		struct k_sigaction *oact)
4160 {
4161 }
4162 
4163 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4164 {
4165 	struct task_struct *p = current, *t;
4166 	struct k_sigaction *k;
4167 	sigset_t mask;
4168 
4169 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4170 		return -EINVAL;
4171 
4172 	k = &p->sighand->action[sig-1];
4173 
4174 	spin_lock_irq(&p->sighand->siglock);
4175 	if (k->sa.sa_flags & SA_IMMUTABLE) {
4176 		spin_unlock_irq(&p->sighand->siglock);
4177 		return -EINVAL;
4178 	}
4179 	if (oact)
4180 		*oact = *k;
4181 
4182 	/*
4183 	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4184 	 * e.g. by having an architecture use the bit in their uapi.
4185 	 */
4186 	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4187 
4188 	/*
4189 	 * Clear unknown flag bits in order to allow userspace to detect missing
4190 	 * support for flag bits and to allow the kernel to use non-uapi bits
4191 	 * internally.
4192 	 */
4193 	if (act)
4194 		act->sa.sa_flags &= UAPI_SA_FLAGS;
4195 	if (oact)
4196 		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4197 
4198 	sigaction_compat_abi(act, oact);
4199 
4200 	if (act) {
4201 		sigdelsetmask(&act->sa.sa_mask,
4202 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4203 		*k = *act;
4204 		/*
4205 		 * POSIX 3.3.1.3:
4206 		 *  "Setting a signal action to SIG_IGN for a signal that is
4207 		 *   pending shall cause the pending signal to be discarded,
4208 		 *   whether or not it is blocked."
4209 		 *
4210 		 *  "Setting a signal action to SIG_DFL for a signal that is
4211 		 *   pending and whose default action is to ignore the signal
4212 		 *   (for example, SIGCHLD), shall cause the pending signal to
4213 		 *   be discarded, whether or not it is blocked"
4214 		 */
4215 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4216 			sigemptyset(&mask);
4217 			sigaddset(&mask, sig);
4218 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4219 			for_each_thread(p, t)
4220 				flush_sigqueue_mask(&mask, &t->pending);
4221 		}
4222 	}
4223 
4224 	spin_unlock_irq(&p->sighand->siglock);
4225 	return 0;
4226 }
4227 
4228 #ifdef CONFIG_DYNAMIC_SIGFRAME
4229 static inline void sigaltstack_lock(void)
4230 	__acquires(&current->sighand->siglock)
4231 {
4232 	spin_lock_irq(&current->sighand->siglock);
4233 }
4234 
4235 static inline void sigaltstack_unlock(void)
4236 	__releases(&current->sighand->siglock)
4237 {
4238 	spin_unlock_irq(&current->sighand->siglock);
4239 }
4240 #else
4241 static inline void sigaltstack_lock(void) { }
4242 static inline void sigaltstack_unlock(void) { }
4243 #endif
4244 
4245 static int
4246 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4247 		size_t min_ss_size)
4248 {
4249 	struct task_struct *t = current;
4250 	int ret = 0;
4251 
4252 	if (oss) {
4253 		memset(oss, 0, sizeof(stack_t));
4254 		oss->ss_sp = (void __user *) t->sas_ss_sp;
4255 		oss->ss_size = t->sas_ss_size;
4256 		oss->ss_flags = sas_ss_flags(sp) |
4257 			(current->sas_ss_flags & SS_FLAG_BITS);
4258 	}
4259 
4260 	if (ss) {
4261 		void __user *ss_sp = ss->ss_sp;
4262 		size_t ss_size = ss->ss_size;
4263 		unsigned ss_flags = ss->ss_flags;
4264 		int ss_mode;
4265 
4266 		if (unlikely(on_sig_stack(sp)))
4267 			return -EPERM;
4268 
4269 		ss_mode = ss_flags & ~SS_FLAG_BITS;
4270 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4271 				ss_mode != 0))
4272 			return -EINVAL;
4273 
4274 		/*
4275 		 * Return before taking any locks if no actual
4276 		 * sigaltstack changes were requested.
4277 		 */
4278 		if (t->sas_ss_sp == (unsigned long)ss_sp &&
4279 		    t->sas_ss_size == ss_size &&
4280 		    t->sas_ss_flags == ss_flags)
4281 			return 0;
4282 
4283 		sigaltstack_lock();
4284 		if (ss_mode == SS_DISABLE) {
4285 			ss_size = 0;
4286 			ss_sp = NULL;
4287 		} else {
4288 			if (unlikely(ss_size < min_ss_size))
4289 				ret = -ENOMEM;
4290 			if (!sigaltstack_size_valid(ss_size))
4291 				ret = -ENOMEM;
4292 		}
4293 		if (!ret) {
4294 			t->sas_ss_sp = (unsigned long) ss_sp;
4295 			t->sas_ss_size = ss_size;
4296 			t->sas_ss_flags = ss_flags;
4297 		}
4298 		sigaltstack_unlock();
4299 	}
4300 	return ret;
4301 }
4302 
4303 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4304 {
4305 	stack_t new, old;
4306 	int err;
4307 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4308 		return -EFAULT;
4309 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4310 			      current_user_stack_pointer(),
4311 			      MINSIGSTKSZ);
4312 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4313 		err = -EFAULT;
4314 	return err;
4315 }
4316 
4317 int restore_altstack(const stack_t __user *uss)
4318 {
4319 	stack_t new;
4320 	if (copy_from_user(&new, uss, sizeof(stack_t)))
4321 		return -EFAULT;
4322 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4323 			     MINSIGSTKSZ);
4324 	/* squash all but EFAULT for now */
4325 	return 0;
4326 }
4327 
4328 int __save_altstack(stack_t __user *uss, unsigned long sp)
4329 {
4330 	struct task_struct *t = current;
4331 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4332 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4333 		__put_user(t->sas_ss_size, &uss->ss_size);
4334 	return err;
4335 }
4336 
4337 #ifdef CONFIG_COMPAT
4338 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4339 				 compat_stack_t __user *uoss_ptr)
4340 {
4341 	stack_t uss, uoss;
4342 	int ret;
4343 
4344 	if (uss_ptr) {
4345 		compat_stack_t uss32;
4346 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4347 			return -EFAULT;
4348 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4349 		uss.ss_flags = uss32.ss_flags;
4350 		uss.ss_size = uss32.ss_size;
4351 	}
4352 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4353 			     compat_user_stack_pointer(),
4354 			     COMPAT_MINSIGSTKSZ);
4355 	if (ret >= 0 && uoss_ptr)  {
4356 		compat_stack_t old;
4357 		memset(&old, 0, sizeof(old));
4358 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4359 		old.ss_flags = uoss.ss_flags;
4360 		old.ss_size = uoss.ss_size;
4361 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4362 			ret = -EFAULT;
4363 	}
4364 	return ret;
4365 }
4366 
4367 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4368 			const compat_stack_t __user *, uss_ptr,
4369 			compat_stack_t __user *, uoss_ptr)
4370 {
4371 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4372 }
4373 
4374 int compat_restore_altstack(const compat_stack_t __user *uss)
4375 {
4376 	int err = do_compat_sigaltstack(uss, NULL);
4377 	/* squash all but -EFAULT for now */
4378 	return err == -EFAULT ? err : 0;
4379 }
4380 
4381 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4382 {
4383 	int err;
4384 	struct task_struct *t = current;
4385 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4386 			 &uss->ss_sp) |
4387 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4388 		__put_user(t->sas_ss_size, &uss->ss_size);
4389 	return err;
4390 }
4391 #endif
4392 
4393 #ifdef __ARCH_WANT_SYS_SIGPENDING
4394 
4395 /**
4396  *  sys_sigpending - examine pending signals
4397  *  @uset: where mask of pending signal is returned
4398  */
4399 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4400 {
4401 	sigset_t set;
4402 
4403 	if (sizeof(old_sigset_t) > sizeof(*uset))
4404 		return -EINVAL;
4405 
4406 	do_sigpending(&set);
4407 
4408 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4409 		return -EFAULT;
4410 
4411 	return 0;
4412 }
4413 
4414 #ifdef CONFIG_COMPAT
4415 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4416 {
4417 	sigset_t set;
4418 
4419 	do_sigpending(&set);
4420 
4421 	return put_user(set.sig[0], set32);
4422 }
4423 #endif
4424 
4425 #endif
4426 
4427 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4428 /**
4429  *  sys_sigprocmask - examine and change blocked signals
4430  *  @how: whether to add, remove, or set signals
4431  *  @nset: signals to add or remove (if non-null)
4432  *  @oset: previous value of signal mask if non-null
4433  *
4434  * Some platforms have their own version with special arguments;
4435  * others support only sys_rt_sigprocmask.
4436  */
4437 
4438 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4439 		old_sigset_t __user *, oset)
4440 {
4441 	old_sigset_t old_set, new_set;
4442 	sigset_t new_blocked;
4443 
4444 	old_set = current->blocked.sig[0];
4445 
4446 	if (nset) {
4447 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4448 			return -EFAULT;
4449 
4450 		new_blocked = current->blocked;
4451 
4452 		switch (how) {
4453 		case SIG_BLOCK:
4454 			sigaddsetmask(&new_blocked, new_set);
4455 			break;
4456 		case SIG_UNBLOCK:
4457 			sigdelsetmask(&new_blocked, new_set);
4458 			break;
4459 		case SIG_SETMASK:
4460 			new_blocked.sig[0] = new_set;
4461 			break;
4462 		default:
4463 			return -EINVAL;
4464 		}
4465 
4466 		set_current_blocked(&new_blocked);
4467 	}
4468 
4469 	if (oset) {
4470 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4471 			return -EFAULT;
4472 	}
4473 
4474 	return 0;
4475 }
4476 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4477 
4478 #ifndef CONFIG_ODD_RT_SIGACTION
4479 /**
4480  *  sys_rt_sigaction - alter an action taken by a process
4481  *  @sig: signal to be sent
4482  *  @act: new sigaction
4483  *  @oact: used to save the previous sigaction
4484  *  @sigsetsize: size of sigset_t type
4485  */
4486 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4487 		const struct sigaction __user *, act,
4488 		struct sigaction __user *, oact,
4489 		size_t, sigsetsize)
4490 {
4491 	struct k_sigaction new_sa, old_sa;
4492 	int ret;
4493 
4494 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4495 	if (sigsetsize != sizeof(sigset_t))
4496 		return -EINVAL;
4497 
4498 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4499 		return -EFAULT;
4500 
4501 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4502 	if (ret)
4503 		return ret;
4504 
4505 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4506 		return -EFAULT;
4507 
4508 	return 0;
4509 }
4510 #ifdef CONFIG_COMPAT
4511 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4512 		const struct compat_sigaction __user *, act,
4513 		struct compat_sigaction __user *, oact,
4514 		compat_size_t, sigsetsize)
4515 {
4516 	struct k_sigaction new_ka, old_ka;
4517 #ifdef __ARCH_HAS_SA_RESTORER
4518 	compat_uptr_t restorer;
4519 #endif
4520 	int ret;
4521 
4522 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4523 	if (sigsetsize != sizeof(compat_sigset_t))
4524 		return -EINVAL;
4525 
4526 	if (act) {
4527 		compat_uptr_t handler;
4528 		ret = get_user(handler, &act->sa_handler);
4529 		new_ka.sa.sa_handler = compat_ptr(handler);
4530 #ifdef __ARCH_HAS_SA_RESTORER
4531 		ret |= get_user(restorer, &act->sa_restorer);
4532 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4533 #endif
4534 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4535 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4536 		if (ret)
4537 			return -EFAULT;
4538 	}
4539 
4540 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4541 	if (!ret && oact) {
4542 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4543 			       &oact->sa_handler);
4544 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4545 					 sizeof(oact->sa_mask));
4546 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4547 #ifdef __ARCH_HAS_SA_RESTORER
4548 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4549 				&oact->sa_restorer);
4550 #endif
4551 	}
4552 	return ret;
4553 }
4554 #endif
4555 #endif /* !CONFIG_ODD_RT_SIGACTION */
4556 
4557 #ifdef CONFIG_OLD_SIGACTION
4558 SYSCALL_DEFINE3(sigaction, int, sig,
4559 		const struct old_sigaction __user *, act,
4560 	        struct old_sigaction __user *, oact)
4561 {
4562 	struct k_sigaction new_ka, old_ka;
4563 	int ret;
4564 
4565 	if (act) {
4566 		old_sigset_t mask;
4567 		if (!access_ok(act, sizeof(*act)) ||
4568 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4569 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4570 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4571 		    __get_user(mask, &act->sa_mask))
4572 			return -EFAULT;
4573 #ifdef __ARCH_HAS_KA_RESTORER
4574 		new_ka.ka_restorer = NULL;
4575 #endif
4576 		siginitset(&new_ka.sa.sa_mask, mask);
4577 	}
4578 
4579 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4580 
4581 	if (!ret && oact) {
4582 		if (!access_ok(oact, sizeof(*oact)) ||
4583 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4584 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4585 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4586 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4587 			return -EFAULT;
4588 	}
4589 
4590 	return ret;
4591 }
4592 #endif
4593 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4594 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4595 		const struct compat_old_sigaction __user *, act,
4596 	        struct compat_old_sigaction __user *, oact)
4597 {
4598 	struct k_sigaction new_ka, old_ka;
4599 	int ret;
4600 	compat_old_sigset_t mask;
4601 	compat_uptr_t handler, restorer;
4602 
4603 	if (act) {
4604 		if (!access_ok(act, sizeof(*act)) ||
4605 		    __get_user(handler, &act->sa_handler) ||
4606 		    __get_user(restorer, &act->sa_restorer) ||
4607 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4608 		    __get_user(mask, &act->sa_mask))
4609 			return -EFAULT;
4610 
4611 #ifdef __ARCH_HAS_KA_RESTORER
4612 		new_ka.ka_restorer = NULL;
4613 #endif
4614 		new_ka.sa.sa_handler = compat_ptr(handler);
4615 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4616 		siginitset(&new_ka.sa.sa_mask, mask);
4617 	}
4618 
4619 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4620 
4621 	if (!ret && oact) {
4622 		if (!access_ok(oact, sizeof(*oact)) ||
4623 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4624 			       &oact->sa_handler) ||
4625 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4626 			       &oact->sa_restorer) ||
4627 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4628 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4629 			return -EFAULT;
4630 	}
4631 	return ret;
4632 }
4633 #endif
4634 
4635 #ifdef CONFIG_SGETMASK_SYSCALL
4636 
4637 /*
4638  * For backwards compatibility.  Functionality superseded by sigprocmask.
4639  */
4640 SYSCALL_DEFINE0(sgetmask)
4641 {
4642 	/* SMP safe */
4643 	return current->blocked.sig[0];
4644 }
4645 
4646 SYSCALL_DEFINE1(ssetmask, int, newmask)
4647 {
4648 	int old = current->blocked.sig[0];
4649 	sigset_t newset;
4650 
4651 	siginitset(&newset, newmask);
4652 	set_current_blocked(&newset);
4653 
4654 	return old;
4655 }
4656 #endif /* CONFIG_SGETMASK_SYSCALL */
4657 
4658 #ifdef __ARCH_WANT_SYS_SIGNAL
4659 /*
4660  * For backwards compatibility.  Functionality superseded by sigaction.
4661  */
4662 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4663 {
4664 	struct k_sigaction new_sa, old_sa;
4665 	int ret;
4666 
4667 	new_sa.sa.sa_handler = handler;
4668 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4669 	sigemptyset(&new_sa.sa.sa_mask);
4670 
4671 	ret = do_sigaction(sig, &new_sa, &old_sa);
4672 
4673 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4674 }
4675 #endif /* __ARCH_WANT_SYS_SIGNAL */
4676 
4677 #ifdef __ARCH_WANT_SYS_PAUSE
4678 
4679 SYSCALL_DEFINE0(pause)
4680 {
4681 	while (!signal_pending(current)) {
4682 		__set_current_state(TASK_INTERRUPTIBLE);
4683 		schedule();
4684 	}
4685 	return -ERESTARTNOHAND;
4686 }
4687 
4688 #endif
4689 
4690 static int sigsuspend(sigset_t *set)
4691 {
4692 	current->saved_sigmask = current->blocked;
4693 	set_current_blocked(set);
4694 
4695 	while (!signal_pending(current)) {
4696 		__set_current_state(TASK_INTERRUPTIBLE);
4697 		schedule();
4698 	}
4699 	set_restore_sigmask();
4700 	return -ERESTARTNOHAND;
4701 }
4702 
4703 /**
4704  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4705  *	@unewset value until a signal is received
4706  *  @unewset: new signal mask value
4707  *  @sigsetsize: size of sigset_t type
4708  */
4709 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4710 {
4711 	sigset_t newset;
4712 
4713 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4714 	if (sigsetsize != sizeof(sigset_t))
4715 		return -EINVAL;
4716 
4717 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4718 		return -EFAULT;
4719 	return sigsuspend(&newset);
4720 }
4721 
4722 #ifdef CONFIG_COMPAT
4723 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4724 {
4725 	sigset_t newset;
4726 
4727 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4728 	if (sigsetsize != sizeof(sigset_t))
4729 		return -EINVAL;
4730 
4731 	if (get_compat_sigset(&newset, unewset))
4732 		return -EFAULT;
4733 	return sigsuspend(&newset);
4734 }
4735 #endif
4736 
4737 #ifdef CONFIG_OLD_SIGSUSPEND
4738 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4739 {
4740 	sigset_t blocked;
4741 	siginitset(&blocked, mask);
4742 	return sigsuspend(&blocked);
4743 }
4744 #endif
4745 #ifdef CONFIG_OLD_SIGSUSPEND3
4746 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4747 {
4748 	sigset_t blocked;
4749 	siginitset(&blocked, mask);
4750 	return sigsuspend(&blocked);
4751 }
4752 #endif
4753 
4754 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4755 {
4756 	return NULL;
4757 }
4758 
4759 static inline void siginfo_buildtime_checks(void)
4760 {
4761 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4762 
4763 	/* Verify the offsets in the two siginfos match */
4764 #define CHECK_OFFSET(field) \
4765 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4766 
4767 	/* kill */
4768 	CHECK_OFFSET(si_pid);
4769 	CHECK_OFFSET(si_uid);
4770 
4771 	/* timer */
4772 	CHECK_OFFSET(si_tid);
4773 	CHECK_OFFSET(si_overrun);
4774 	CHECK_OFFSET(si_value);
4775 
4776 	/* rt */
4777 	CHECK_OFFSET(si_pid);
4778 	CHECK_OFFSET(si_uid);
4779 	CHECK_OFFSET(si_value);
4780 
4781 	/* sigchld */
4782 	CHECK_OFFSET(si_pid);
4783 	CHECK_OFFSET(si_uid);
4784 	CHECK_OFFSET(si_status);
4785 	CHECK_OFFSET(si_utime);
4786 	CHECK_OFFSET(si_stime);
4787 
4788 	/* sigfault */
4789 	CHECK_OFFSET(si_addr);
4790 	CHECK_OFFSET(si_trapno);
4791 	CHECK_OFFSET(si_addr_lsb);
4792 	CHECK_OFFSET(si_lower);
4793 	CHECK_OFFSET(si_upper);
4794 	CHECK_OFFSET(si_pkey);
4795 	CHECK_OFFSET(si_perf_data);
4796 	CHECK_OFFSET(si_perf_type);
4797 	CHECK_OFFSET(si_perf_flags);
4798 
4799 	/* sigpoll */
4800 	CHECK_OFFSET(si_band);
4801 	CHECK_OFFSET(si_fd);
4802 
4803 	/* sigsys */
4804 	CHECK_OFFSET(si_call_addr);
4805 	CHECK_OFFSET(si_syscall);
4806 	CHECK_OFFSET(si_arch);
4807 #undef CHECK_OFFSET
4808 
4809 	/* usb asyncio */
4810 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4811 		     offsetof(struct siginfo, si_addr));
4812 	if (sizeof(int) == sizeof(void __user *)) {
4813 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4814 			     sizeof(void __user *));
4815 	} else {
4816 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4817 			      sizeof_field(struct siginfo, si_uid)) !=
4818 			     sizeof(void __user *));
4819 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4820 			     offsetof(struct siginfo, si_uid));
4821 	}
4822 #ifdef CONFIG_COMPAT
4823 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4824 		     offsetof(struct compat_siginfo, si_addr));
4825 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4826 		     sizeof(compat_uptr_t));
4827 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4828 		     sizeof_field(struct siginfo, si_pid));
4829 #endif
4830 }
4831 
4832 #if defined(CONFIG_SYSCTL)
4833 static struct ctl_table signal_debug_table[] = {
4834 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4835 	{
4836 		.procname	= "exception-trace",
4837 		.data		= &show_unhandled_signals,
4838 		.maxlen		= sizeof(int),
4839 		.mode		= 0644,
4840 		.proc_handler	= proc_dointvec
4841 	},
4842 #endif
4843 	{ }
4844 };
4845 
4846 static int __init init_signal_sysctls(void)
4847 {
4848 	register_sysctl_init("debug", signal_debug_table);
4849 	return 0;
4850 }
4851 early_initcall(init_signal_sysctls);
4852 #endif /* CONFIG_SYSCTL */
4853 
4854 void __init signals_init(void)
4855 {
4856 	siginfo_buildtime_checks();
4857 
4858 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4859 }
4860 
4861 #ifdef CONFIG_KGDB_KDB
4862 #include <linux/kdb.h>
4863 /*
4864  * kdb_send_sig - Allows kdb to send signals without exposing
4865  * signal internals.  This function checks if the required locks are
4866  * available before calling the main signal code, to avoid kdb
4867  * deadlocks.
4868  */
4869 void kdb_send_sig(struct task_struct *t, int sig)
4870 {
4871 	static struct task_struct *kdb_prev_t;
4872 	int new_t, ret;
4873 	if (!spin_trylock(&t->sighand->siglock)) {
4874 		kdb_printf("Can't do kill command now.\n"
4875 			   "The sigmask lock is held somewhere else in "
4876 			   "kernel, try again later\n");
4877 		return;
4878 	}
4879 	new_t = kdb_prev_t != t;
4880 	kdb_prev_t = t;
4881 	if (!task_is_running(t) && new_t) {
4882 		spin_unlock(&t->sighand->siglock);
4883 		kdb_printf("Process is not RUNNING, sending a signal from "
4884 			   "kdb risks deadlock\n"
4885 			   "on the run queue locks. "
4886 			   "The signal has _not_ been sent.\n"
4887 			   "Reissue the kill command if you want to risk "
4888 			   "the deadlock.\n");
4889 		return;
4890 	}
4891 	ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4892 	spin_unlock(&t->sighand->siglock);
4893 	if (ret)
4894 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4895 			   sig, t->pid);
4896 	else
4897 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4898 }
4899 #endif	/* CONFIG_KGDB_KDB */
4900