1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/signal.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 8 * 9 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 10 * Changes to use preallocated sigqueue structures 11 * to allow signals to be sent reliably. 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/user.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/sched/cputime.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/mm.h> 26 #include <linux/proc_fs.h> 27 #include <linux/tty.h> 28 #include <linux/binfmts.h> 29 #include <linux/coredump.h> 30 #include <linux/security.h> 31 #include <linux/syscalls.h> 32 #include <linux/ptrace.h> 33 #include <linux/signal.h> 34 #include <linux/signalfd.h> 35 #include <linux/ratelimit.h> 36 #include <linux/task_work.h> 37 #include <linux/capability.h> 38 #include <linux/freezer.h> 39 #include <linux/pid_namespace.h> 40 #include <linux/nsproxy.h> 41 #include <linux/user_namespace.h> 42 #include <linux/uprobes.h> 43 #include <linux/compat.h> 44 #include <linux/cn_proc.h> 45 #include <linux/compiler.h> 46 #include <linux/posix-timers.h> 47 #include <linux/cgroup.h> 48 #include <linux/audit.h> 49 #include <linux/sysctl.h> 50 #include <uapi/linux/pidfd.h> 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/signal.h> 54 55 #include <asm/param.h> 56 #include <linux/uaccess.h> 57 #include <asm/unistd.h> 58 #include <asm/siginfo.h> 59 #include <asm/cacheflush.h> 60 #include <asm/syscall.h> /* for syscall_get_* */ 61 62 #include "time/posix-timers.h" 63 64 /* 65 * SLAB caches for signal bits. 66 */ 67 68 static struct kmem_cache *sigqueue_cachep; 69 70 int print_fatal_signals __read_mostly; 71 72 static void __user *sig_handler(struct task_struct *t, int sig) 73 { 74 return t->sighand->action[sig - 1].sa.sa_handler; 75 } 76 77 static inline bool sig_handler_ignored(void __user *handler, int sig) 78 { 79 /* Is it explicitly or implicitly ignored? */ 80 return handler == SIG_IGN || 81 (handler == SIG_DFL && sig_kernel_ignore(sig)); 82 } 83 84 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 85 { 86 void __user *handler; 87 88 handler = sig_handler(t, sig); 89 90 /* SIGKILL and SIGSTOP may not be sent to the global init */ 91 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 92 return true; 93 94 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 95 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 96 return true; 97 98 /* Only allow kernel generated signals to this kthread */ 99 if (unlikely((t->flags & PF_KTHREAD) && 100 (handler == SIG_KTHREAD_KERNEL) && !force)) 101 return true; 102 103 return sig_handler_ignored(handler, sig); 104 } 105 106 static bool sig_ignored(struct task_struct *t, int sig, bool force) 107 { 108 /* 109 * Blocked signals are never ignored, since the 110 * signal handler may change by the time it is 111 * unblocked. 112 */ 113 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 114 return false; 115 116 /* 117 * Tracers may want to know about even ignored signal unless it 118 * is SIGKILL which can't be reported anyway but can be ignored 119 * by SIGNAL_UNKILLABLE task. 120 */ 121 if (t->ptrace && sig != SIGKILL) 122 return false; 123 124 return sig_task_ignored(t, sig, force); 125 } 126 127 /* 128 * Re-calculate pending state from the set of locally pending 129 * signals, globally pending signals, and blocked signals. 130 */ 131 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 132 { 133 unsigned long ready; 134 long i; 135 136 switch (_NSIG_WORDS) { 137 default: 138 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 139 ready |= signal->sig[i] &~ blocked->sig[i]; 140 break; 141 142 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 143 ready |= signal->sig[2] &~ blocked->sig[2]; 144 ready |= signal->sig[1] &~ blocked->sig[1]; 145 ready |= signal->sig[0] &~ blocked->sig[0]; 146 break; 147 148 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 149 ready |= signal->sig[0] &~ blocked->sig[0]; 150 break; 151 152 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 153 } 154 return ready != 0; 155 } 156 157 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 158 159 static bool recalc_sigpending_tsk(struct task_struct *t) 160 { 161 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || 162 PENDING(&t->pending, &t->blocked) || 163 PENDING(&t->signal->shared_pending, &t->blocked) || 164 cgroup_task_frozen(t)) { 165 set_tsk_thread_flag(t, TIF_SIGPENDING); 166 return true; 167 } 168 169 /* 170 * We must never clear the flag in another thread, or in current 171 * when it's possible the current syscall is returning -ERESTART*. 172 * So we don't clear it here, and only callers who know they should do. 173 */ 174 return false; 175 } 176 177 void recalc_sigpending(void) 178 { 179 if (!recalc_sigpending_tsk(current) && !freezing(current)) 180 clear_thread_flag(TIF_SIGPENDING); 181 182 } 183 EXPORT_SYMBOL(recalc_sigpending); 184 185 void calculate_sigpending(void) 186 { 187 /* Have any signals or users of TIF_SIGPENDING been delayed 188 * until after fork? 189 */ 190 spin_lock_irq(¤t->sighand->siglock); 191 set_tsk_thread_flag(current, TIF_SIGPENDING); 192 recalc_sigpending(); 193 spin_unlock_irq(¤t->sighand->siglock); 194 } 195 196 /* Given the mask, find the first available signal that should be serviced. */ 197 198 #define SYNCHRONOUS_MASK \ 199 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 200 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 201 202 int next_signal(struct sigpending *pending, sigset_t *mask) 203 { 204 unsigned long i, *s, *m, x; 205 int sig = 0; 206 207 s = pending->signal.sig; 208 m = mask->sig; 209 210 /* 211 * Handle the first word specially: it contains the 212 * synchronous signals that need to be dequeued first. 213 */ 214 x = *s &~ *m; 215 if (x) { 216 if (x & SYNCHRONOUS_MASK) 217 x &= SYNCHRONOUS_MASK; 218 sig = ffz(~x) + 1; 219 return sig; 220 } 221 222 switch (_NSIG_WORDS) { 223 default: 224 for (i = 1; i < _NSIG_WORDS; ++i) { 225 x = *++s &~ *++m; 226 if (!x) 227 continue; 228 sig = ffz(~x) + i*_NSIG_BPW + 1; 229 break; 230 } 231 break; 232 233 case 2: 234 x = s[1] &~ m[1]; 235 if (!x) 236 break; 237 sig = ffz(~x) + _NSIG_BPW + 1; 238 break; 239 240 case 1: 241 /* Nothing to do */ 242 break; 243 } 244 245 return sig; 246 } 247 248 static inline void print_dropped_signal(int sig) 249 { 250 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 251 252 if (!print_fatal_signals) 253 return; 254 255 if (!__ratelimit(&ratelimit_state)) 256 return; 257 258 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 259 current->comm, current->pid, sig); 260 } 261 262 /** 263 * task_set_jobctl_pending - set jobctl pending bits 264 * @task: target task 265 * @mask: pending bits to set 266 * 267 * Clear @mask from @task->jobctl. @mask must be subset of 268 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 269 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 270 * cleared. If @task is already being killed or exiting, this function 271 * becomes noop. 272 * 273 * CONTEXT: 274 * Must be called with @task->sighand->siglock held. 275 * 276 * RETURNS: 277 * %true if @mask is set, %false if made noop because @task was dying. 278 */ 279 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 280 { 281 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 282 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 283 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 284 285 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 286 return false; 287 288 if (mask & JOBCTL_STOP_SIGMASK) 289 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 290 291 task->jobctl |= mask; 292 return true; 293 } 294 295 /** 296 * task_clear_jobctl_trapping - clear jobctl trapping bit 297 * @task: target task 298 * 299 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 300 * Clear it and wake up the ptracer. Note that we don't need any further 301 * locking. @task->siglock guarantees that @task->parent points to the 302 * ptracer. 303 * 304 * CONTEXT: 305 * Must be called with @task->sighand->siglock held. 306 */ 307 void task_clear_jobctl_trapping(struct task_struct *task) 308 { 309 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 310 task->jobctl &= ~JOBCTL_TRAPPING; 311 smp_mb(); /* advised by wake_up_bit() */ 312 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 313 } 314 } 315 316 /** 317 * task_clear_jobctl_pending - clear jobctl pending bits 318 * @task: target task 319 * @mask: pending bits to clear 320 * 321 * Clear @mask from @task->jobctl. @mask must be subset of 322 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 323 * STOP bits are cleared together. 324 * 325 * If clearing of @mask leaves no stop or trap pending, this function calls 326 * task_clear_jobctl_trapping(). 327 * 328 * CONTEXT: 329 * Must be called with @task->sighand->siglock held. 330 */ 331 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 332 { 333 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 334 335 if (mask & JOBCTL_STOP_PENDING) 336 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 337 338 task->jobctl &= ~mask; 339 340 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 341 task_clear_jobctl_trapping(task); 342 } 343 344 /** 345 * task_participate_group_stop - participate in a group stop 346 * @task: task participating in a group stop 347 * 348 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 349 * Group stop states are cleared and the group stop count is consumed if 350 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 351 * stop, the appropriate `SIGNAL_*` flags are set. 352 * 353 * CONTEXT: 354 * Must be called with @task->sighand->siglock held. 355 * 356 * RETURNS: 357 * %true if group stop completion should be notified to the parent, %false 358 * otherwise. 359 */ 360 static bool task_participate_group_stop(struct task_struct *task) 361 { 362 struct signal_struct *sig = task->signal; 363 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 364 365 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 366 367 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 368 369 if (!consume) 370 return false; 371 372 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 373 sig->group_stop_count--; 374 375 /* 376 * Tell the caller to notify completion iff we are entering into a 377 * fresh group stop. Read comment in do_signal_stop() for details. 378 */ 379 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 380 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 381 return true; 382 } 383 return false; 384 } 385 386 void task_join_group_stop(struct task_struct *task) 387 { 388 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK; 389 struct signal_struct *sig = current->signal; 390 391 if (sig->group_stop_count) { 392 sig->group_stop_count++; 393 mask |= JOBCTL_STOP_CONSUME; 394 } else if (!(sig->flags & SIGNAL_STOP_STOPPED)) 395 return; 396 397 /* Have the new thread join an on-going signal group stop */ 398 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING); 399 } 400 401 static struct ucounts *sig_get_ucounts(struct task_struct *t, int sig, 402 int override_rlimit) 403 { 404 struct ucounts *ucounts; 405 long sigpending; 406 407 /* 408 * Protect access to @t credentials. This can go away when all 409 * callers hold rcu read lock. 410 * 411 * NOTE! A pending signal will hold on to the user refcount, 412 * and we get/put the refcount only when the sigpending count 413 * changes from/to zero. 414 */ 415 rcu_read_lock(); 416 ucounts = task_ucounts(t); 417 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING, 418 override_rlimit); 419 rcu_read_unlock(); 420 if (!sigpending) 421 return NULL; 422 423 if (unlikely(!override_rlimit && sigpending > task_rlimit(t, RLIMIT_SIGPENDING))) { 424 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 425 print_dropped_signal(sig); 426 return NULL; 427 } 428 429 return ucounts; 430 } 431 432 static void __sigqueue_init(struct sigqueue *q, struct ucounts *ucounts, 433 const unsigned int sigqueue_flags) 434 { 435 INIT_LIST_HEAD(&q->list); 436 q->flags = sigqueue_flags; 437 q->ucounts = ucounts; 438 } 439 440 /* 441 * allocate a new signal queue record 442 * - this may be called without locks if and only if t == current, otherwise an 443 * appropriate lock must be held to stop the target task from exiting 444 */ 445 static struct sigqueue *sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags, 446 int override_rlimit) 447 { 448 struct ucounts *ucounts = sig_get_ucounts(t, sig, override_rlimit); 449 struct sigqueue *q; 450 451 if (!ucounts) 452 return NULL; 453 454 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags); 455 if (!q) { 456 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 457 return NULL; 458 } 459 460 __sigqueue_init(q, ucounts, 0); 461 return q; 462 } 463 464 static void __sigqueue_free(struct sigqueue *q) 465 { 466 if (q->flags & SIGQUEUE_PREALLOC) { 467 posixtimer_sigqueue_putref(q); 468 return; 469 } 470 if (q->ucounts) { 471 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING); 472 q->ucounts = NULL; 473 } 474 kmem_cache_free(sigqueue_cachep, q); 475 } 476 477 void flush_sigqueue(struct sigpending *queue) 478 { 479 struct sigqueue *q; 480 481 sigemptyset(&queue->signal); 482 while (!list_empty(&queue->list)) { 483 q = list_entry(queue->list.next, struct sigqueue , list); 484 list_del_init(&q->list); 485 __sigqueue_free(q); 486 } 487 } 488 489 /* 490 * Flush all pending signals for this kthread. 491 */ 492 void flush_signals(struct task_struct *t) 493 { 494 unsigned long flags; 495 496 spin_lock_irqsave(&t->sighand->siglock, flags); 497 clear_tsk_thread_flag(t, TIF_SIGPENDING); 498 flush_sigqueue(&t->pending); 499 flush_sigqueue(&t->signal->shared_pending); 500 spin_unlock_irqrestore(&t->sighand->siglock, flags); 501 } 502 EXPORT_SYMBOL(flush_signals); 503 504 void ignore_signals(struct task_struct *t) 505 { 506 int i; 507 508 for (i = 0; i < _NSIG; ++i) 509 t->sighand->action[i].sa.sa_handler = SIG_IGN; 510 511 flush_signals(t); 512 } 513 514 /* 515 * Flush all handlers for a task. 516 */ 517 518 void 519 flush_signal_handlers(struct task_struct *t, int force_default) 520 { 521 int i; 522 struct k_sigaction *ka = &t->sighand->action[0]; 523 for (i = _NSIG ; i != 0 ; i--) { 524 if (force_default || ka->sa.sa_handler != SIG_IGN) 525 ka->sa.sa_handler = SIG_DFL; 526 ka->sa.sa_flags = 0; 527 #ifdef __ARCH_HAS_SA_RESTORER 528 ka->sa.sa_restorer = NULL; 529 #endif 530 sigemptyset(&ka->sa.sa_mask); 531 ka++; 532 } 533 } 534 535 bool unhandled_signal(struct task_struct *tsk, int sig) 536 { 537 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 538 if (is_global_init(tsk)) 539 return true; 540 541 if (handler != SIG_IGN && handler != SIG_DFL) 542 return false; 543 544 /* If dying, we handle all new signals by ignoring them */ 545 if (fatal_signal_pending(tsk)) 546 return false; 547 548 /* if ptraced, let the tracer determine */ 549 return !tsk->ptrace; 550 } 551 552 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 553 struct sigqueue **timer_sigq) 554 { 555 struct sigqueue *q, *first = NULL; 556 557 /* 558 * Collect the siginfo appropriate to this signal. Check if 559 * there is another siginfo for the same signal. 560 */ 561 list_for_each_entry(q, &list->list, list) { 562 if (q->info.si_signo == sig) { 563 if (first) 564 goto still_pending; 565 first = q; 566 } 567 } 568 569 sigdelset(&list->signal, sig); 570 571 if (first) { 572 still_pending: 573 list_del_init(&first->list); 574 copy_siginfo(info, &first->info); 575 576 /* 577 * posix-timer signals are preallocated and freed when the last 578 * reference count is dropped in posixtimer_deliver_signal() or 579 * immediately on timer deletion when the signal is not pending. 580 * Spare the extra round through __sigqueue_free() which is 581 * ignoring preallocated signals. 582 */ 583 if (unlikely((first->flags & SIGQUEUE_PREALLOC) && (info->si_code == SI_TIMER))) 584 *timer_sigq = first; 585 else 586 __sigqueue_free(first); 587 } else { 588 /* 589 * Ok, it wasn't in the queue. This must be 590 * a fast-pathed signal or we must have been 591 * out of queue space. So zero out the info. 592 */ 593 clear_siginfo(info); 594 info->si_signo = sig; 595 info->si_errno = 0; 596 info->si_code = SI_USER; 597 info->si_pid = 0; 598 info->si_uid = 0; 599 } 600 } 601 602 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 603 kernel_siginfo_t *info, struct sigqueue **timer_sigq) 604 { 605 int sig = next_signal(pending, mask); 606 607 if (sig) 608 collect_signal(sig, pending, info, timer_sigq); 609 return sig; 610 } 611 612 /* 613 * Try to dequeue a signal. If a deliverable signal is found fill in the 614 * caller provided siginfo and return the signal number. Otherwise return 615 * 0. 616 */ 617 int dequeue_signal(sigset_t *mask, kernel_siginfo_t *info, enum pid_type *type) 618 { 619 struct task_struct *tsk = current; 620 struct sigqueue *timer_sigq; 621 int signr; 622 623 lockdep_assert_held(&tsk->sighand->siglock); 624 625 again: 626 *type = PIDTYPE_PID; 627 timer_sigq = NULL; 628 signr = __dequeue_signal(&tsk->pending, mask, info, &timer_sigq); 629 if (!signr) { 630 *type = PIDTYPE_TGID; 631 signr = __dequeue_signal(&tsk->signal->shared_pending, 632 mask, info, &timer_sigq); 633 634 if (unlikely(signr == SIGALRM)) 635 posixtimer_rearm_itimer(tsk); 636 } 637 638 recalc_sigpending(); 639 if (!signr) 640 return 0; 641 642 if (unlikely(sig_kernel_stop(signr))) { 643 /* 644 * Set a marker that we have dequeued a stop signal. Our 645 * caller might release the siglock and then the pending 646 * stop signal it is about to process is no longer in the 647 * pending bitmasks, but must still be cleared by a SIGCONT 648 * (and overruled by a SIGKILL). So those cases clear this 649 * shared flag after we've set it. Note that this flag may 650 * remain set after the signal we return is ignored or 651 * handled. That doesn't matter because its only purpose 652 * is to alert stop-signal processing code when another 653 * processor has come along and cleared the flag. 654 */ 655 current->jobctl |= JOBCTL_STOP_DEQUEUED; 656 } 657 658 if (IS_ENABLED(CONFIG_POSIX_TIMERS) && unlikely(timer_sigq)) { 659 if (!posixtimer_deliver_signal(info, timer_sigq)) 660 goto again; 661 } 662 663 return signr; 664 } 665 EXPORT_SYMBOL_GPL(dequeue_signal); 666 667 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 668 { 669 struct task_struct *tsk = current; 670 struct sigpending *pending = &tsk->pending; 671 struct sigqueue *q, *sync = NULL; 672 673 /* 674 * Might a synchronous signal be in the queue? 675 */ 676 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 677 return 0; 678 679 /* 680 * Return the first synchronous signal in the queue. 681 */ 682 list_for_each_entry(q, &pending->list, list) { 683 /* Synchronous signals have a positive si_code */ 684 if ((q->info.si_code > SI_USER) && 685 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 686 sync = q; 687 goto next; 688 } 689 } 690 return 0; 691 next: 692 /* 693 * Check if there is another siginfo for the same signal. 694 */ 695 list_for_each_entry_continue(q, &pending->list, list) { 696 if (q->info.si_signo == sync->info.si_signo) 697 goto still_pending; 698 } 699 700 sigdelset(&pending->signal, sync->info.si_signo); 701 recalc_sigpending(); 702 still_pending: 703 list_del_init(&sync->list); 704 copy_siginfo(info, &sync->info); 705 __sigqueue_free(sync); 706 return info->si_signo; 707 } 708 709 /* 710 * Tell a process that it has a new active signal.. 711 * 712 * NOTE! we rely on the previous spin_lock to 713 * lock interrupts for us! We can only be called with 714 * "siglock" held, and the local interrupt must 715 * have been disabled when that got acquired! 716 * 717 * No need to set need_resched since signal event passing 718 * goes through ->blocked 719 */ 720 void signal_wake_up_state(struct task_struct *t, unsigned int state) 721 { 722 lockdep_assert_held(&t->sighand->siglock); 723 724 set_tsk_thread_flag(t, TIF_SIGPENDING); 725 726 /* 727 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 728 * case. We don't check t->state here because there is a race with it 729 * executing another processor and just now entering stopped state. 730 * By using wake_up_state, we ensure the process will wake up and 731 * handle its death signal. 732 */ 733 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 734 kick_process(t); 735 } 736 737 static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q); 738 739 static void sigqueue_free_ignored(struct task_struct *tsk, struct sigqueue *q) 740 { 741 if (likely(!(q->flags & SIGQUEUE_PREALLOC) || q->info.si_code != SI_TIMER)) 742 __sigqueue_free(q); 743 else 744 posixtimer_sig_ignore(tsk, q); 745 } 746 747 /* Remove signals in mask from the pending set and queue. */ 748 static void flush_sigqueue_mask(struct task_struct *p, sigset_t *mask, struct sigpending *s) 749 { 750 struct sigqueue *q, *n; 751 sigset_t m; 752 753 lockdep_assert_held(&p->sighand->siglock); 754 755 sigandsets(&m, mask, &s->signal); 756 if (sigisemptyset(&m)) 757 return; 758 759 sigandnsets(&s->signal, &s->signal, mask); 760 list_for_each_entry_safe(q, n, &s->list, list) { 761 if (sigismember(mask, q->info.si_signo)) { 762 list_del_init(&q->list); 763 sigqueue_free_ignored(p, q); 764 } 765 } 766 } 767 768 static inline int is_si_special(const struct kernel_siginfo *info) 769 { 770 return info <= SEND_SIG_PRIV; 771 } 772 773 static inline bool si_fromuser(const struct kernel_siginfo *info) 774 { 775 return info == SEND_SIG_NOINFO || 776 (!is_si_special(info) && SI_FROMUSER(info)); 777 } 778 779 /* 780 * called with RCU read lock from check_kill_permission() 781 */ 782 static bool kill_ok_by_cred(struct task_struct *t) 783 { 784 const struct cred *cred = current_cred(); 785 const struct cred *tcred = __task_cred(t); 786 787 return uid_eq(cred->euid, tcred->suid) || 788 uid_eq(cred->euid, tcred->uid) || 789 uid_eq(cred->uid, tcred->suid) || 790 uid_eq(cred->uid, tcred->uid) || 791 ns_capable(tcred->user_ns, CAP_KILL); 792 } 793 794 /* 795 * Bad permissions for sending the signal 796 * - the caller must hold the RCU read lock 797 */ 798 static int check_kill_permission(int sig, struct kernel_siginfo *info, 799 struct task_struct *t) 800 { 801 struct pid *sid; 802 int error; 803 804 if (!valid_signal(sig)) 805 return -EINVAL; 806 807 if (!si_fromuser(info)) 808 return 0; 809 810 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 811 if (error) 812 return error; 813 814 if (!same_thread_group(current, t) && 815 !kill_ok_by_cred(t)) { 816 switch (sig) { 817 case SIGCONT: 818 sid = task_session(t); 819 /* 820 * We don't return the error if sid == NULL. The 821 * task was unhashed, the caller must notice this. 822 */ 823 if (!sid || sid == task_session(current)) 824 break; 825 fallthrough; 826 default: 827 return -EPERM; 828 } 829 } 830 831 return security_task_kill(t, info, sig, NULL); 832 } 833 834 /** 835 * ptrace_trap_notify - schedule trap to notify ptracer 836 * @t: tracee wanting to notify tracer 837 * 838 * This function schedules sticky ptrace trap which is cleared on the next 839 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 840 * ptracer. 841 * 842 * If @t is running, STOP trap will be taken. If trapped for STOP and 843 * ptracer is listening for events, tracee is woken up so that it can 844 * re-trap for the new event. If trapped otherwise, STOP trap will be 845 * eventually taken without returning to userland after the existing traps 846 * are finished by PTRACE_CONT. 847 * 848 * CONTEXT: 849 * Must be called with @task->sighand->siglock held. 850 */ 851 static void ptrace_trap_notify(struct task_struct *t) 852 { 853 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 854 lockdep_assert_held(&t->sighand->siglock); 855 856 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 857 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 858 } 859 860 /* 861 * Handle magic process-wide effects of stop/continue signals. Unlike 862 * the signal actions, these happen immediately at signal-generation 863 * time regardless of blocking, ignoring, or handling. This does the 864 * actual continuing for SIGCONT, but not the actual stopping for stop 865 * signals. The process stop is done as a signal action for SIG_DFL. 866 * 867 * Returns true if the signal should be actually delivered, otherwise 868 * it should be dropped. 869 */ 870 static bool prepare_signal(int sig, struct task_struct *p, bool force) 871 { 872 struct signal_struct *signal = p->signal; 873 struct task_struct *t; 874 sigset_t flush; 875 876 if (signal->flags & SIGNAL_GROUP_EXIT) { 877 if (signal->core_state) 878 return sig == SIGKILL; 879 /* 880 * The process is in the middle of dying, drop the signal. 881 */ 882 return false; 883 } else if (sig_kernel_stop(sig)) { 884 /* 885 * This is a stop signal. Remove SIGCONT from all queues. 886 */ 887 siginitset(&flush, sigmask(SIGCONT)); 888 flush_sigqueue_mask(p, &flush, &signal->shared_pending); 889 for_each_thread(p, t) 890 flush_sigqueue_mask(p, &flush, &t->pending); 891 } else if (sig == SIGCONT) { 892 unsigned int why; 893 /* 894 * Remove all stop signals from all queues, wake all threads. 895 */ 896 siginitset(&flush, SIG_KERNEL_STOP_MASK); 897 flush_sigqueue_mask(p, &flush, &signal->shared_pending); 898 for_each_thread(p, t) { 899 flush_sigqueue_mask(p, &flush, &t->pending); 900 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 901 if (likely(!(t->ptrace & PT_SEIZED))) { 902 t->jobctl &= ~JOBCTL_STOPPED; 903 wake_up_state(t, __TASK_STOPPED); 904 } else 905 ptrace_trap_notify(t); 906 } 907 908 /* 909 * Notify the parent with CLD_CONTINUED if we were stopped. 910 * 911 * If we were in the middle of a group stop, we pretend it 912 * was already finished, and then continued. Since SIGCHLD 913 * doesn't queue we report only CLD_STOPPED, as if the next 914 * CLD_CONTINUED was dropped. 915 */ 916 why = 0; 917 if (signal->flags & SIGNAL_STOP_STOPPED) 918 why |= SIGNAL_CLD_CONTINUED; 919 else if (signal->group_stop_count) 920 why |= SIGNAL_CLD_STOPPED; 921 922 if (why) { 923 /* 924 * The first thread which returns from do_signal_stop() 925 * will take ->siglock, notice SIGNAL_CLD_MASK, and 926 * notify its parent. See get_signal(). 927 */ 928 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 929 signal->group_stop_count = 0; 930 signal->group_exit_code = 0; 931 } 932 } 933 934 return !sig_ignored(p, sig, force); 935 } 936 937 /* 938 * Test if P wants to take SIG. After we've checked all threads with this, 939 * it's equivalent to finding no threads not blocking SIG. Any threads not 940 * blocking SIG were ruled out because they are not running and already 941 * have pending signals. Such threads will dequeue from the shared queue 942 * as soon as they're available, so putting the signal on the shared queue 943 * will be equivalent to sending it to one such thread. 944 */ 945 static inline bool wants_signal(int sig, struct task_struct *p) 946 { 947 if (sigismember(&p->blocked, sig)) 948 return false; 949 950 if (p->flags & PF_EXITING) 951 return false; 952 953 if (sig == SIGKILL) 954 return true; 955 956 if (task_is_stopped_or_traced(p)) 957 return false; 958 959 return task_curr(p) || !task_sigpending(p); 960 } 961 962 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 963 { 964 struct signal_struct *signal = p->signal; 965 struct task_struct *t; 966 967 /* 968 * Now find a thread we can wake up to take the signal off the queue. 969 * 970 * Try the suggested task first (may or may not be the main thread). 971 */ 972 if (wants_signal(sig, p)) 973 t = p; 974 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 975 /* 976 * There is just one thread and it does not need to be woken. 977 * It will dequeue unblocked signals before it runs again. 978 */ 979 return; 980 else { 981 /* 982 * Otherwise try to find a suitable thread. 983 */ 984 t = signal->curr_target; 985 while (!wants_signal(sig, t)) { 986 t = next_thread(t); 987 if (t == signal->curr_target) 988 /* 989 * No thread needs to be woken. 990 * Any eligible threads will see 991 * the signal in the queue soon. 992 */ 993 return; 994 } 995 signal->curr_target = t; 996 } 997 998 /* 999 * Found a killable thread. If the signal will be fatal, 1000 * then start taking the whole group down immediately. 1001 */ 1002 if (sig_fatal(p, sig) && 1003 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) && 1004 !sigismember(&t->real_blocked, sig) && 1005 (sig == SIGKILL || !p->ptrace)) { 1006 /* 1007 * This signal will be fatal to the whole group. 1008 */ 1009 if (!sig_kernel_coredump(sig)) { 1010 /* 1011 * Start a group exit and wake everybody up. 1012 * This way we don't have other threads 1013 * running and doing things after a slower 1014 * thread has the fatal signal pending. 1015 */ 1016 signal->flags = SIGNAL_GROUP_EXIT; 1017 signal->group_exit_code = sig; 1018 signal->group_stop_count = 0; 1019 __for_each_thread(signal, t) { 1020 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1021 sigaddset(&t->pending.signal, SIGKILL); 1022 signal_wake_up(t, 1); 1023 } 1024 return; 1025 } 1026 } 1027 1028 /* 1029 * The signal is already in the shared-pending queue. 1030 * Tell the chosen thread to wake up and dequeue it. 1031 */ 1032 signal_wake_up(t, sig == SIGKILL); 1033 return; 1034 } 1035 1036 static inline bool legacy_queue(struct sigpending *signals, int sig) 1037 { 1038 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1039 } 1040 1041 static int __send_signal_locked(int sig, struct kernel_siginfo *info, 1042 struct task_struct *t, enum pid_type type, bool force) 1043 { 1044 struct sigpending *pending; 1045 struct sigqueue *q; 1046 int override_rlimit; 1047 int ret = 0, result; 1048 1049 lockdep_assert_held(&t->sighand->siglock); 1050 1051 result = TRACE_SIGNAL_IGNORED; 1052 if (!prepare_signal(sig, t, force)) 1053 goto ret; 1054 1055 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1056 /* 1057 * Short-circuit ignored signals and support queuing 1058 * exactly one non-rt signal, so that we can get more 1059 * detailed information about the cause of the signal. 1060 */ 1061 result = TRACE_SIGNAL_ALREADY_PENDING; 1062 if (legacy_queue(pending, sig)) 1063 goto ret; 1064 1065 result = TRACE_SIGNAL_DELIVERED; 1066 /* 1067 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1068 */ 1069 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1070 goto out_set; 1071 1072 /* 1073 * Real-time signals must be queued if sent by sigqueue, or 1074 * some other real-time mechanism. It is implementation 1075 * defined whether kill() does so. We attempt to do so, on 1076 * the principle of least surprise, but since kill is not 1077 * allowed to fail with EAGAIN when low on memory we just 1078 * make sure at least one signal gets delivered and don't 1079 * pass on the info struct. 1080 */ 1081 if (sig < SIGRTMIN) 1082 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1083 else 1084 override_rlimit = 0; 1085 1086 q = sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit); 1087 1088 if (q) { 1089 list_add_tail(&q->list, &pending->list); 1090 switch ((unsigned long) info) { 1091 case (unsigned long) SEND_SIG_NOINFO: 1092 clear_siginfo(&q->info); 1093 q->info.si_signo = sig; 1094 q->info.si_errno = 0; 1095 q->info.si_code = SI_USER; 1096 q->info.si_pid = task_tgid_nr_ns(current, 1097 task_active_pid_ns(t)); 1098 rcu_read_lock(); 1099 q->info.si_uid = 1100 from_kuid_munged(task_cred_xxx(t, user_ns), 1101 current_uid()); 1102 rcu_read_unlock(); 1103 break; 1104 case (unsigned long) SEND_SIG_PRIV: 1105 clear_siginfo(&q->info); 1106 q->info.si_signo = sig; 1107 q->info.si_errno = 0; 1108 q->info.si_code = SI_KERNEL; 1109 q->info.si_pid = 0; 1110 q->info.si_uid = 0; 1111 break; 1112 default: 1113 copy_siginfo(&q->info, info); 1114 break; 1115 } 1116 } else if (!is_si_special(info) && 1117 sig >= SIGRTMIN && info->si_code != SI_USER) { 1118 /* 1119 * Queue overflow, abort. We may abort if the 1120 * signal was rt and sent by user using something 1121 * other than kill(). 1122 */ 1123 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1124 ret = -EAGAIN; 1125 goto ret; 1126 } else { 1127 /* 1128 * This is a silent loss of information. We still 1129 * send the signal, but the *info bits are lost. 1130 */ 1131 result = TRACE_SIGNAL_LOSE_INFO; 1132 } 1133 1134 out_set: 1135 signalfd_notify(t, sig); 1136 sigaddset(&pending->signal, sig); 1137 1138 /* Let multiprocess signals appear after on-going forks */ 1139 if (type > PIDTYPE_TGID) { 1140 struct multiprocess_signals *delayed; 1141 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1142 sigset_t *signal = &delayed->signal; 1143 /* Can't queue both a stop and a continue signal */ 1144 if (sig == SIGCONT) 1145 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1146 else if (sig_kernel_stop(sig)) 1147 sigdelset(signal, SIGCONT); 1148 sigaddset(signal, sig); 1149 } 1150 } 1151 1152 complete_signal(sig, t, type); 1153 ret: 1154 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1155 return ret; 1156 } 1157 1158 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) 1159 { 1160 bool ret = false; 1161 switch (siginfo_layout(info->si_signo, info->si_code)) { 1162 case SIL_KILL: 1163 case SIL_CHLD: 1164 case SIL_RT: 1165 ret = true; 1166 break; 1167 case SIL_TIMER: 1168 case SIL_POLL: 1169 case SIL_FAULT: 1170 case SIL_FAULT_TRAPNO: 1171 case SIL_FAULT_MCEERR: 1172 case SIL_FAULT_BNDERR: 1173 case SIL_FAULT_PKUERR: 1174 case SIL_FAULT_PERF_EVENT: 1175 case SIL_SYS: 1176 ret = false; 1177 break; 1178 } 1179 return ret; 1180 } 1181 1182 int send_signal_locked(int sig, struct kernel_siginfo *info, 1183 struct task_struct *t, enum pid_type type) 1184 { 1185 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ 1186 bool force = false; 1187 1188 if (info == SEND_SIG_NOINFO) { 1189 /* Force if sent from an ancestor pid namespace */ 1190 force = !task_pid_nr_ns(current, task_active_pid_ns(t)); 1191 } else if (info == SEND_SIG_PRIV) { 1192 /* Don't ignore kernel generated signals */ 1193 force = true; 1194 } else if (has_si_pid_and_uid(info)) { 1195 /* SIGKILL and SIGSTOP is special or has ids */ 1196 struct user_namespace *t_user_ns; 1197 1198 rcu_read_lock(); 1199 t_user_ns = task_cred_xxx(t, user_ns); 1200 if (current_user_ns() != t_user_ns) { 1201 kuid_t uid = make_kuid(current_user_ns(), info->si_uid); 1202 info->si_uid = from_kuid_munged(t_user_ns, uid); 1203 } 1204 rcu_read_unlock(); 1205 1206 /* A kernel generated signal? */ 1207 force = (info->si_code == SI_KERNEL); 1208 1209 /* From an ancestor pid namespace? */ 1210 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { 1211 info->si_pid = 0; 1212 force = true; 1213 } 1214 } 1215 return __send_signal_locked(sig, info, t, type, force); 1216 } 1217 1218 static void print_fatal_signal(int signr) 1219 { 1220 struct pt_regs *regs = task_pt_regs(current); 1221 struct file *exe_file; 1222 1223 exe_file = get_task_exe_file(current); 1224 if (exe_file) { 1225 pr_info("%pD: %s: potentially unexpected fatal signal %d.\n", 1226 exe_file, current->comm, signr); 1227 fput(exe_file); 1228 } else { 1229 pr_info("%s: potentially unexpected fatal signal %d.\n", 1230 current->comm, signr); 1231 } 1232 1233 #if defined(__i386__) && !defined(__arch_um__) 1234 pr_info("code at %08lx: ", regs->ip); 1235 { 1236 int i; 1237 for (i = 0; i < 16; i++) { 1238 unsigned char insn; 1239 1240 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1241 break; 1242 pr_cont("%02x ", insn); 1243 } 1244 } 1245 pr_cont("\n"); 1246 #endif 1247 preempt_disable(); 1248 show_regs(regs); 1249 preempt_enable(); 1250 } 1251 1252 static int __init setup_print_fatal_signals(char *str) 1253 { 1254 get_option (&str, &print_fatal_signals); 1255 1256 return 1; 1257 } 1258 1259 __setup("print-fatal-signals=", setup_print_fatal_signals); 1260 1261 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1262 enum pid_type type) 1263 { 1264 unsigned long flags; 1265 int ret = -ESRCH; 1266 1267 if (lock_task_sighand(p, &flags)) { 1268 ret = send_signal_locked(sig, info, p, type); 1269 unlock_task_sighand(p, &flags); 1270 } 1271 1272 return ret; 1273 } 1274 1275 enum sig_handler { 1276 HANDLER_CURRENT, /* If reachable use the current handler */ 1277 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */ 1278 HANDLER_EXIT, /* Only visible as the process exit code */ 1279 }; 1280 1281 /* 1282 * Force a signal that the process can't ignore: if necessary 1283 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1284 * 1285 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1286 * since we do not want to have a signal handler that was blocked 1287 * be invoked when user space had explicitly blocked it. 1288 * 1289 * We don't want to have recursive SIGSEGV's etc, for example, 1290 * that is why we also clear SIGNAL_UNKILLABLE. 1291 */ 1292 static int 1293 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t, 1294 enum sig_handler handler) 1295 { 1296 unsigned long int flags; 1297 int ret, blocked, ignored; 1298 struct k_sigaction *action; 1299 int sig = info->si_signo; 1300 1301 spin_lock_irqsave(&t->sighand->siglock, flags); 1302 action = &t->sighand->action[sig-1]; 1303 ignored = action->sa.sa_handler == SIG_IGN; 1304 blocked = sigismember(&t->blocked, sig); 1305 if (blocked || ignored || (handler != HANDLER_CURRENT)) { 1306 action->sa.sa_handler = SIG_DFL; 1307 if (handler == HANDLER_EXIT) 1308 action->sa.sa_flags |= SA_IMMUTABLE; 1309 if (blocked) 1310 sigdelset(&t->blocked, sig); 1311 } 1312 /* 1313 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1314 * debugging to leave init killable. But HANDLER_EXIT is always fatal. 1315 */ 1316 if (action->sa.sa_handler == SIG_DFL && 1317 (!t->ptrace || (handler == HANDLER_EXIT))) 1318 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1319 ret = send_signal_locked(sig, info, t, PIDTYPE_PID); 1320 /* This can happen if the signal was already pending and blocked */ 1321 if (!task_sigpending(t)) 1322 signal_wake_up(t, 0); 1323 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1324 1325 return ret; 1326 } 1327 1328 int force_sig_info(struct kernel_siginfo *info) 1329 { 1330 return force_sig_info_to_task(info, current, HANDLER_CURRENT); 1331 } 1332 1333 /* 1334 * Nuke all other threads in the group. 1335 */ 1336 int zap_other_threads(struct task_struct *p) 1337 { 1338 struct task_struct *t; 1339 int count = 0; 1340 1341 p->signal->group_stop_count = 0; 1342 1343 for_other_threads(p, t) { 1344 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1345 count++; 1346 1347 /* Don't bother with already dead threads */ 1348 if (t->exit_state) 1349 continue; 1350 sigaddset(&t->pending.signal, SIGKILL); 1351 signal_wake_up(t, 1); 1352 } 1353 1354 return count; 1355 } 1356 1357 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1358 unsigned long *flags) 1359 { 1360 struct sighand_struct *sighand; 1361 1362 rcu_read_lock(); 1363 for (;;) { 1364 sighand = rcu_dereference(tsk->sighand); 1365 if (unlikely(sighand == NULL)) 1366 break; 1367 1368 /* 1369 * This sighand can be already freed and even reused, but 1370 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1371 * initializes ->siglock: this slab can't go away, it has 1372 * the same object type, ->siglock can't be reinitialized. 1373 * 1374 * We need to ensure that tsk->sighand is still the same 1375 * after we take the lock, we can race with de_thread() or 1376 * __exit_signal(). In the latter case the next iteration 1377 * must see ->sighand == NULL. 1378 */ 1379 spin_lock_irqsave(&sighand->siglock, *flags); 1380 if (likely(sighand == rcu_access_pointer(tsk->sighand))) 1381 break; 1382 spin_unlock_irqrestore(&sighand->siglock, *flags); 1383 } 1384 rcu_read_unlock(); 1385 1386 return sighand; 1387 } 1388 1389 #ifdef CONFIG_LOCKDEP 1390 void lockdep_assert_task_sighand_held(struct task_struct *task) 1391 { 1392 struct sighand_struct *sighand; 1393 1394 rcu_read_lock(); 1395 sighand = rcu_dereference(task->sighand); 1396 if (sighand) 1397 lockdep_assert_held(&sighand->siglock); 1398 else 1399 WARN_ON_ONCE(1); 1400 rcu_read_unlock(); 1401 } 1402 #endif 1403 1404 /* 1405 * send signal info to all the members of a thread group or to the 1406 * individual thread if type == PIDTYPE_PID. 1407 */ 1408 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1409 struct task_struct *p, enum pid_type type) 1410 { 1411 int ret; 1412 1413 rcu_read_lock(); 1414 ret = check_kill_permission(sig, info, p); 1415 rcu_read_unlock(); 1416 1417 if (!ret && sig) 1418 ret = do_send_sig_info(sig, info, p, type); 1419 1420 return ret; 1421 } 1422 1423 /* 1424 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1425 * control characters do (^C, ^Z etc) 1426 * - the caller must hold at least a readlock on tasklist_lock 1427 */ 1428 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1429 { 1430 struct task_struct *p = NULL; 1431 int ret = -ESRCH; 1432 1433 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1434 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1435 /* 1436 * If group_send_sig_info() succeeds at least once ret 1437 * becomes 0 and after that the code below has no effect. 1438 * Otherwise we return the last err or -ESRCH if this 1439 * process group is empty. 1440 */ 1441 if (ret) 1442 ret = err; 1443 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1444 1445 return ret; 1446 } 1447 1448 static int kill_pid_info_type(int sig, struct kernel_siginfo *info, 1449 struct pid *pid, enum pid_type type) 1450 { 1451 int error = -ESRCH; 1452 struct task_struct *p; 1453 1454 for (;;) { 1455 rcu_read_lock(); 1456 p = pid_task(pid, PIDTYPE_PID); 1457 if (p) 1458 error = group_send_sig_info(sig, info, p, type); 1459 rcu_read_unlock(); 1460 if (likely(!p || error != -ESRCH)) 1461 return error; 1462 /* 1463 * The task was unhashed in between, try again. If it 1464 * is dead, pid_task() will return NULL, if we race with 1465 * de_thread() it will find the new leader. 1466 */ 1467 } 1468 } 1469 1470 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1471 { 1472 return kill_pid_info_type(sig, info, pid, PIDTYPE_TGID); 1473 } 1474 1475 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1476 { 1477 int error; 1478 rcu_read_lock(); 1479 error = kill_pid_info(sig, info, find_vpid(pid)); 1480 rcu_read_unlock(); 1481 return error; 1482 } 1483 1484 static inline bool kill_as_cred_perm(const struct cred *cred, 1485 struct task_struct *target) 1486 { 1487 const struct cred *pcred = __task_cred(target); 1488 1489 return uid_eq(cred->euid, pcred->suid) || 1490 uid_eq(cred->euid, pcred->uid) || 1491 uid_eq(cred->uid, pcred->suid) || 1492 uid_eq(cred->uid, pcred->uid); 1493 } 1494 1495 /* 1496 * The usb asyncio usage of siginfo is wrong. The glibc support 1497 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. 1498 * AKA after the generic fields: 1499 * kernel_pid_t si_pid; 1500 * kernel_uid32_t si_uid; 1501 * sigval_t si_value; 1502 * 1503 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout 1504 * after the generic fields is: 1505 * void __user *si_addr; 1506 * 1507 * This is a practical problem when there is a 64bit big endian kernel 1508 * and a 32bit userspace. As the 32bit address will encoded in the low 1509 * 32bits of the pointer. Those low 32bits will be stored at higher 1510 * address than appear in a 32 bit pointer. So userspace will not 1511 * see the address it was expecting for it's completions. 1512 * 1513 * There is nothing in the encoding that can allow 1514 * copy_siginfo_to_user32 to detect this confusion of formats, so 1515 * handle this by requiring the caller of kill_pid_usb_asyncio to 1516 * notice when this situration takes place and to store the 32bit 1517 * pointer in sival_int, instead of sival_addr of the sigval_t addr 1518 * parameter. 1519 */ 1520 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, 1521 struct pid *pid, const struct cred *cred) 1522 { 1523 struct kernel_siginfo info; 1524 struct task_struct *p; 1525 unsigned long flags; 1526 int ret = -EINVAL; 1527 1528 if (!valid_signal(sig)) 1529 return ret; 1530 1531 clear_siginfo(&info); 1532 info.si_signo = sig; 1533 info.si_errno = errno; 1534 info.si_code = SI_ASYNCIO; 1535 *((sigval_t *)&info.si_pid) = addr; 1536 1537 rcu_read_lock(); 1538 p = pid_task(pid, PIDTYPE_PID); 1539 if (!p) { 1540 ret = -ESRCH; 1541 goto out_unlock; 1542 } 1543 if (!kill_as_cred_perm(cred, p)) { 1544 ret = -EPERM; 1545 goto out_unlock; 1546 } 1547 ret = security_task_kill(p, &info, sig, cred); 1548 if (ret) 1549 goto out_unlock; 1550 1551 if (sig) { 1552 if (lock_task_sighand(p, &flags)) { 1553 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false); 1554 unlock_task_sighand(p, &flags); 1555 } else 1556 ret = -ESRCH; 1557 } 1558 out_unlock: 1559 rcu_read_unlock(); 1560 return ret; 1561 } 1562 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); 1563 1564 /* 1565 * kill_something_info() interprets pid in interesting ways just like kill(2). 1566 * 1567 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1568 * is probably wrong. Should make it like BSD or SYSV. 1569 */ 1570 1571 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1572 { 1573 int ret; 1574 1575 if (pid > 0) 1576 return kill_proc_info(sig, info, pid); 1577 1578 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1579 if (pid == INT_MIN) 1580 return -ESRCH; 1581 1582 read_lock(&tasklist_lock); 1583 if (pid != -1) { 1584 ret = __kill_pgrp_info(sig, info, 1585 pid ? find_vpid(-pid) : task_pgrp(current)); 1586 } else { 1587 int retval = 0, count = 0; 1588 struct task_struct * p; 1589 1590 for_each_process(p) { 1591 if (task_pid_vnr(p) > 1 && 1592 !same_thread_group(p, current)) { 1593 int err = group_send_sig_info(sig, info, p, 1594 PIDTYPE_MAX); 1595 ++count; 1596 if (err != -EPERM) 1597 retval = err; 1598 } 1599 } 1600 ret = count ? retval : -ESRCH; 1601 } 1602 read_unlock(&tasklist_lock); 1603 1604 return ret; 1605 } 1606 1607 /* 1608 * These are for backward compatibility with the rest of the kernel source. 1609 */ 1610 1611 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1612 { 1613 /* 1614 * Make sure legacy kernel users don't send in bad values 1615 * (normal paths check this in check_kill_permission). 1616 */ 1617 if (!valid_signal(sig)) 1618 return -EINVAL; 1619 1620 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1621 } 1622 EXPORT_SYMBOL(send_sig_info); 1623 1624 #define __si_special(priv) \ 1625 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1626 1627 int 1628 send_sig(int sig, struct task_struct *p, int priv) 1629 { 1630 return send_sig_info(sig, __si_special(priv), p); 1631 } 1632 EXPORT_SYMBOL(send_sig); 1633 1634 void force_sig(int sig) 1635 { 1636 struct kernel_siginfo info; 1637 1638 clear_siginfo(&info); 1639 info.si_signo = sig; 1640 info.si_errno = 0; 1641 info.si_code = SI_KERNEL; 1642 info.si_pid = 0; 1643 info.si_uid = 0; 1644 force_sig_info(&info); 1645 } 1646 EXPORT_SYMBOL(force_sig); 1647 1648 void force_fatal_sig(int sig) 1649 { 1650 struct kernel_siginfo info; 1651 1652 clear_siginfo(&info); 1653 info.si_signo = sig; 1654 info.si_errno = 0; 1655 info.si_code = SI_KERNEL; 1656 info.si_pid = 0; 1657 info.si_uid = 0; 1658 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL); 1659 } 1660 1661 void force_exit_sig(int sig) 1662 { 1663 struct kernel_siginfo info; 1664 1665 clear_siginfo(&info); 1666 info.si_signo = sig; 1667 info.si_errno = 0; 1668 info.si_code = SI_KERNEL; 1669 info.si_pid = 0; 1670 info.si_uid = 0; 1671 force_sig_info_to_task(&info, current, HANDLER_EXIT); 1672 } 1673 1674 /* 1675 * When things go south during signal handling, we 1676 * will force a SIGSEGV. And if the signal that caused 1677 * the problem was already a SIGSEGV, we'll want to 1678 * make sure we don't even try to deliver the signal.. 1679 */ 1680 void force_sigsegv(int sig) 1681 { 1682 if (sig == SIGSEGV) 1683 force_fatal_sig(SIGSEGV); 1684 else 1685 force_sig(SIGSEGV); 1686 } 1687 1688 int force_sig_fault_to_task(int sig, int code, void __user *addr, 1689 struct task_struct *t) 1690 { 1691 struct kernel_siginfo info; 1692 1693 clear_siginfo(&info); 1694 info.si_signo = sig; 1695 info.si_errno = 0; 1696 info.si_code = code; 1697 info.si_addr = addr; 1698 return force_sig_info_to_task(&info, t, HANDLER_CURRENT); 1699 } 1700 1701 int force_sig_fault(int sig, int code, void __user *addr) 1702 { 1703 return force_sig_fault_to_task(sig, code, addr, current); 1704 } 1705 1706 int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t) 1707 { 1708 struct kernel_siginfo info; 1709 1710 clear_siginfo(&info); 1711 info.si_signo = sig; 1712 info.si_errno = 0; 1713 info.si_code = code; 1714 info.si_addr = addr; 1715 return send_sig_info(info.si_signo, &info, t); 1716 } 1717 1718 int force_sig_mceerr(int code, void __user *addr, short lsb) 1719 { 1720 struct kernel_siginfo info; 1721 1722 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1723 clear_siginfo(&info); 1724 info.si_signo = SIGBUS; 1725 info.si_errno = 0; 1726 info.si_code = code; 1727 info.si_addr = addr; 1728 info.si_addr_lsb = lsb; 1729 return force_sig_info(&info); 1730 } 1731 1732 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1733 { 1734 struct kernel_siginfo info; 1735 1736 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1737 clear_siginfo(&info); 1738 info.si_signo = SIGBUS; 1739 info.si_errno = 0; 1740 info.si_code = code; 1741 info.si_addr = addr; 1742 info.si_addr_lsb = lsb; 1743 return send_sig_info(info.si_signo, &info, t); 1744 } 1745 EXPORT_SYMBOL(send_sig_mceerr); 1746 1747 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1748 { 1749 struct kernel_siginfo info; 1750 1751 clear_siginfo(&info); 1752 info.si_signo = SIGSEGV; 1753 info.si_errno = 0; 1754 info.si_code = SEGV_BNDERR; 1755 info.si_addr = addr; 1756 info.si_lower = lower; 1757 info.si_upper = upper; 1758 return force_sig_info(&info); 1759 } 1760 1761 #ifdef SEGV_PKUERR 1762 int force_sig_pkuerr(void __user *addr, u32 pkey) 1763 { 1764 struct kernel_siginfo info; 1765 1766 clear_siginfo(&info); 1767 info.si_signo = SIGSEGV; 1768 info.si_errno = 0; 1769 info.si_code = SEGV_PKUERR; 1770 info.si_addr = addr; 1771 info.si_pkey = pkey; 1772 return force_sig_info(&info); 1773 } 1774 #endif 1775 1776 int send_sig_perf(void __user *addr, u32 type, u64 sig_data) 1777 { 1778 struct kernel_siginfo info; 1779 1780 clear_siginfo(&info); 1781 info.si_signo = SIGTRAP; 1782 info.si_errno = 0; 1783 info.si_code = TRAP_PERF; 1784 info.si_addr = addr; 1785 info.si_perf_data = sig_data; 1786 info.si_perf_type = type; 1787 1788 /* 1789 * Signals generated by perf events should not terminate the whole 1790 * process if SIGTRAP is blocked, however, delivering the signal 1791 * asynchronously is better than not delivering at all. But tell user 1792 * space if the signal was asynchronous, so it can clearly be 1793 * distinguished from normal synchronous ones. 1794 */ 1795 info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ? 1796 TRAP_PERF_FLAG_ASYNC : 1797 0; 1798 1799 return send_sig_info(info.si_signo, &info, current); 1800 } 1801 1802 /** 1803 * force_sig_seccomp - signals the task to allow in-process syscall emulation 1804 * @syscall: syscall number to send to userland 1805 * @reason: filter-supplied reason code to send to userland (via si_errno) 1806 * @force_coredump: true to trigger a coredump 1807 * 1808 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. 1809 */ 1810 int force_sig_seccomp(int syscall, int reason, bool force_coredump) 1811 { 1812 struct kernel_siginfo info; 1813 1814 clear_siginfo(&info); 1815 info.si_signo = SIGSYS; 1816 info.si_code = SYS_SECCOMP; 1817 info.si_call_addr = (void __user *)KSTK_EIP(current); 1818 info.si_errno = reason; 1819 info.si_arch = syscall_get_arch(current); 1820 info.si_syscall = syscall; 1821 return force_sig_info_to_task(&info, current, 1822 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT); 1823 } 1824 1825 /* For the crazy architectures that include trap information in 1826 * the errno field, instead of an actual errno value. 1827 */ 1828 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1829 { 1830 struct kernel_siginfo info; 1831 1832 clear_siginfo(&info); 1833 info.si_signo = SIGTRAP; 1834 info.si_errno = errno; 1835 info.si_code = TRAP_HWBKPT; 1836 info.si_addr = addr; 1837 return force_sig_info(&info); 1838 } 1839 1840 /* For the rare architectures that include trap information using 1841 * si_trapno. 1842 */ 1843 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno) 1844 { 1845 struct kernel_siginfo info; 1846 1847 clear_siginfo(&info); 1848 info.si_signo = sig; 1849 info.si_errno = 0; 1850 info.si_code = code; 1851 info.si_addr = addr; 1852 info.si_trapno = trapno; 1853 return force_sig_info(&info); 1854 } 1855 1856 /* For the rare architectures that include trap information using 1857 * si_trapno. 1858 */ 1859 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, 1860 struct task_struct *t) 1861 { 1862 struct kernel_siginfo info; 1863 1864 clear_siginfo(&info); 1865 info.si_signo = sig; 1866 info.si_errno = 0; 1867 info.si_code = code; 1868 info.si_addr = addr; 1869 info.si_trapno = trapno; 1870 return send_sig_info(info.si_signo, &info, t); 1871 } 1872 1873 static int kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1874 { 1875 int ret; 1876 read_lock(&tasklist_lock); 1877 ret = __kill_pgrp_info(sig, info, pgrp); 1878 read_unlock(&tasklist_lock); 1879 return ret; 1880 } 1881 1882 int kill_pgrp(struct pid *pid, int sig, int priv) 1883 { 1884 return kill_pgrp_info(sig, __si_special(priv), pid); 1885 } 1886 EXPORT_SYMBOL(kill_pgrp); 1887 1888 int kill_pid(struct pid *pid, int sig, int priv) 1889 { 1890 return kill_pid_info(sig, __si_special(priv), pid); 1891 } 1892 EXPORT_SYMBOL(kill_pid); 1893 1894 #ifdef CONFIG_POSIX_TIMERS 1895 /* 1896 * These functions handle POSIX timer signals. POSIX timers use 1897 * preallocated sigqueue structs for sending signals. 1898 */ 1899 static void __flush_itimer_signals(struct sigpending *pending) 1900 { 1901 sigset_t signal, retain; 1902 struct sigqueue *q, *n; 1903 1904 signal = pending->signal; 1905 sigemptyset(&retain); 1906 1907 list_for_each_entry_safe(q, n, &pending->list, list) { 1908 int sig = q->info.si_signo; 1909 1910 if (likely(q->info.si_code != SI_TIMER)) { 1911 sigaddset(&retain, sig); 1912 } else { 1913 sigdelset(&signal, sig); 1914 list_del_init(&q->list); 1915 __sigqueue_free(q); 1916 } 1917 } 1918 1919 sigorsets(&pending->signal, &signal, &retain); 1920 } 1921 1922 void flush_itimer_signals(void) 1923 { 1924 struct task_struct *tsk = current; 1925 1926 guard(spinlock_irqsave)(&tsk->sighand->siglock); 1927 __flush_itimer_signals(&tsk->pending); 1928 __flush_itimer_signals(&tsk->signal->shared_pending); 1929 } 1930 1931 bool posixtimer_init_sigqueue(struct sigqueue *q) 1932 { 1933 struct ucounts *ucounts = sig_get_ucounts(current, -1, 0); 1934 1935 if (!ucounts) 1936 return false; 1937 clear_siginfo(&q->info); 1938 __sigqueue_init(q, ucounts, SIGQUEUE_PREALLOC); 1939 return true; 1940 } 1941 1942 static void posixtimer_queue_sigqueue(struct sigqueue *q, struct task_struct *t, enum pid_type type) 1943 { 1944 struct sigpending *pending; 1945 int sig = q->info.si_signo; 1946 1947 signalfd_notify(t, sig); 1948 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1949 list_add_tail(&q->list, &pending->list); 1950 sigaddset(&pending->signal, sig); 1951 complete_signal(sig, t, type); 1952 } 1953 1954 /* 1955 * This function is used by POSIX timers to deliver a timer signal. 1956 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID 1957 * set), the signal must be delivered to the specific thread (queues 1958 * into t->pending). 1959 * 1960 * Where type is not PIDTYPE_PID, signals must be delivered to the 1961 * process. In this case, prefer to deliver to current if it is in 1962 * the same thread group as the target process and its sighand is 1963 * stable, which avoids unnecessarily waking up a potentially idle task. 1964 */ 1965 static inline struct task_struct *posixtimer_get_target(struct k_itimer *tmr) 1966 { 1967 struct task_struct *t = pid_task(tmr->it_pid, tmr->it_pid_type); 1968 1969 if (t && tmr->it_pid_type != PIDTYPE_PID && 1970 same_thread_group(t, current) && !current->exit_state) 1971 t = current; 1972 return t; 1973 } 1974 1975 void posixtimer_send_sigqueue(struct k_itimer *tmr) 1976 { 1977 struct sigqueue *q = &tmr->sigq; 1978 int sig = q->info.si_signo; 1979 struct task_struct *t; 1980 unsigned long flags; 1981 int result; 1982 1983 guard(rcu)(); 1984 1985 t = posixtimer_get_target(tmr); 1986 if (!t) 1987 return; 1988 1989 if (!likely(lock_task_sighand(t, &flags))) 1990 return; 1991 1992 /* 1993 * Update @tmr::sigqueue_seq for posix timer signals with sighand 1994 * locked to prevent a race against dequeue_signal(). 1995 */ 1996 tmr->it_sigqueue_seq = tmr->it_signal_seq; 1997 1998 /* 1999 * Set the signal delivery status under sighand lock, so that the 2000 * ignored signal handling can distinguish between a periodic and a 2001 * non-periodic timer. 2002 */ 2003 tmr->it_sig_periodic = tmr->it_status == POSIX_TIMER_REQUEUE_PENDING; 2004 2005 if (!prepare_signal(sig, t, false)) { 2006 result = TRACE_SIGNAL_IGNORED; 2007 2008 if (!list_empty(&q->list)) { 2009 /* 2010 * The signal was ignored and blocked. The timer 2011 * expiry queued it because blocked signals are 2012 * queued independent of the ignored state. 2013 * 2014 * The unblocking set SIGPENDING, but the signal 2015 * was not yet dequeued from the pending list. 2016 * So prepare_signal() sees unblocked and ignored, 2017 * which ends up here. Leave it queued like a 2018 * regular signal. 2019 * 2020 * The same happens when the task group is exiting 2021 * and the signal is already queued. 2022 * prepare_signal() treats SIGNAL_GROUP_EXIT as 2023 * ignored independent of its queued state. This 2024 * gets cleaned up in __exit_signal(). 2025 */ 2026 goto out; 2027 } 2028 2029 /* Periodic timers with SIG_IGN are queued on the ignored list */ 2030 if (tmr->it_sig_periodic) { 2031 /* 2032 * Already queued means the timer was rearmed after 2033 * the previous expiry got it on the ignore list. 2034 * Nothing to do for that case. 2035 */ 2036 if (hlist_unhashed(&tmr->ignored_list)) { 2037 /* 2038 * Take a signal reference and queue it on 2039 * the ignored list. 2040 */ 2041 posixtimer_sigqueue_getref(q); 2042 posixtimer_sig_ignore(t, q); 2043 } 2044 } else if (!hlist_unhashed(&tmr->ignored_list)) { 2045 /* 2046 * Covers the case where a timer was periodic and 2047 * then the signal was ignored. Later it was rearmed 2048 * as oneshot timer. The previous signal is invalid 2049 * now, and this oneshot signal has to be dropped. 2050 * Remove it from the ignored list and drop the 2051 * reference count as the signal is not longer 2052 * queued. 2053 */ 2054 hlist_del_init(&tmr->ignored_list); 2055 posixtimer_putref(tmr); 2056 } 2057 goto out; 2058 } 2059 2060 if (unlikely(!list_empty(&q->list))) { 2061 /* This holds a reference count already */ 2062 result = TRACE_SIGNAL_ALREADY_PENDING; 2063 goto out; 2064 } 2065 2066 /* 2067 * If the signal is on the ignore list, it got blocked after it was 2068 * ignored earlier. But nothing lifted the ignore. Move it back to 2069 * the pending list to be consistent with the regular signal 2070 * handling. This already holds a reference count. 2071 * 2072 * If it's not on the ignore list acquire a reference count. 2073 */ 2074 if (likely(hlist_unhashed(&tmr->ignored_list))) 2075 posixtimer_sigqueue_getref(q); 2076 else 2077 hlist_del_init(&tmr->ignored_list); 2078 2079 posixtimer_queue_sigqueue(q, t, tmr->it_pid_type); 2080 result = TRACE_SIGNAL_DELIVERED; 2081 out: 2082 trace_signal_generate(sig, &q->info, t, tmr->it_pid_type != PIDTYPE_PID, result); 2083 unlock_task_sighand(t, &flags); 2084 } 2085 2086 static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q) 2087 { 2088 struct k_itimer *tmr = container_of(q, struct k_itimer, sigq); 2089 2090 /* 2091 * If the timer is marked deleted already or the signal originates 2092 * from a non-periodic timer, then just drop the reference 2093 * count. Otherwise queue it on the ignored list. 2094 */ 2095 if (posixtimer_valid(tmr) && tmr->it_sig_periodic) 2096 hlist_add_head(&tmr->ignored_list, &tsk->signal->ignored_posix_timers); 2097 else 2098 posixtimer_putref(tmr); 2099 } 2100 2101 static void posixtimer_sig_unignore(struct task_struct *tsk, int sig) 2102 { 2103 struct hlist_head *head = &tsk->signal->ignored_posix_timers; 2104 struct hlist_node *tmp; 2105 struct k_itimer *tmr; 2106 2107 if (likely(hlist_empty(head))) 2108 return; 2109 2110 /* 2111 * Rearming a timer with sighand lock held is not possible due to 2112 * lock ordering vs. tmr::it_lock. Just stick the sigqueue back and 2113 * let the signal delivery path deal with it whether it needs to be 2114 * rearmed or not. This cannot be decided here w/o dropping sighand 2115 * lock and creating a loop retry horror show. 2116 */ 2117 hlist_for_each_entry_safe(tmr, tmp , head, ignored_list) { 2118 struct task_struct *target; 2119 2120 /* 2121 * tmr::sigq.info.si_signo is immutable, so accessing it 2122 * without holding tmr::it_lock is safe. 2123 */ 2124 if (tmr->sigq.info.si_signo != sig) 2125 continue; 2126 2127 hlist_del_init(&tmr->ignored_list); 2128 2129 /* This should never happen and leaks a reference count */ 2130 if (WARN_ON_ONCE(!list_empty(&tmr->sigq.list))) 2131 continue; 2132 2133 /* 2134 * Get the target for the signal. If target is a thread and 2135 * has exited by now, drop the reference count. 2136 */ 2137 guard(rcu)(); 2138 target = posixtimer_get_target(tmr); 2139 if (target) 2140 posixtimer_queue_sigqueue(&tmr->sigq, target, tmr->it_pid_type); 2141 else 2142 posixtimer_putref(tmr); 2143 } 2144 } 2145 #else /* CONFIG_POSIX_TIMERS */ 2146 static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q) { } 2147 static inline void posixtimer_sig_unignore(struct task_struct *tsk, int sig) { } 2148 #endif /* !CONFIG_POSIX_TIMERS */ 2149 2150 void do_notify_pidfd(struct task_struct *task) 2151 { 2152 struct pid *pid = task_pid(task); 2153 2154 WARN_ON(task->exit_state == 0); 2155 2156 __wake_up(&pid->wait_pidfd, TASK_NORMAL, 0, 2157 poll_to_key(EPOLLIN | EPOLLRDNORM)); 2158 } 2159 2160 /* 2161 * Let a parent know about the death of a child. 2162 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 2163 * 2164 * Returns true if our parent ignored us and so we've switched to 2165 * self-reaping. 2166 */ 2167 bool do_notify_parent(struct task_struct *tsk, int sig) 2168 { 2169 struct kernel_siginfo info; 2170 unsigned long flags; 2171 struct sighand_struct *psig; 2172 bool autoreap = false; 2173 u64 utime, stime; 2174 2175 WARN_ON_ONCE(sig == -1); 2176 2177 /* do_notify_parent_cldstop should have been called instead. */ 2178 WARN_ON_ONCE(task_is_stopped_or_traced(tsk)); 2179 2180 WARN_ON_ONCE(!tsk->ptrace && 2181 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 2182 /* 2183 * Notify for thread-group leaders without subthreads. 2184 */ 2185 if (thread_group_empty(tsk)) 2186 do_notify_pidfd(tsk); 2187 2188 if (sig != SIGCHLD) { 2189 /* 2190 * This is only possible if parent == real_parent. 2191 * Check if it has changed security domain. 2192 */ 2193 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) 2194 sig = SIGCHLD; 2195 } 2196 2197 clear_siginfo(&info); 2198 info.si_signo = sig; 2199 info.si_errno = 0; 2200 /* 2201 * We are under tasklist_lock here so our parent is tied to 2202 * us and cannot change. 2203 * 2204 * task_active_pid_ns will always return the same pid namespace 2205 * until a task passes through release_task. 2206 * 2207 * write_lock() currently calls preempt_disable() which is the 2208 * same as rcu_read_lock(), but according to Oleg, this is not 2209 * correct to rely on this 2210 */ 2211 rcu_read_lock(); 2212 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 2213 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 2214 task_uid(tsk)); 2215 rcu_read_unlock(); 2216 2217 task_cputime(tsk, &utime, &stime); 2218 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 2219 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 2220 2221 info.si_status = tsk->exit_code & 0x7f; 2222 if (tsk->exit_code & 0x80) 2223 info.si_code = CLD_DUMPED; 2224 else if (tsk->exit_code & 0x7f) 2225 info.si_code = CLD_KILLED; 2226 else { 2227 info.si_code = CLD_EXITED; 2228 info.si_status = tsk->exit_code >> 8; 2229 } 2230 2231 psig = tsk->parent->sighand; 2232 spin_lock_irqsave(&psig->siglock, flags); 2233 if (!tsk->ptrace && sig == SIGCHLD && 2234 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 2235 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 2236 /* 2237 * We are exiting and our parent doesn't care. POSIX.1 2238 * defines special semantics for setting SIGCHLD to SIG_IGN 2239 * or setting the SA_NOCLDWAIT flag: we should be reaped 2240 * automatically and not left for our parent's wait4 call. 2241 * Rather than having the parent do it as a magic kind of 2242 * signal handler, we just set this to tell do_exit that we 2243 * can be cleaned up without becoming a zombie. Note that 2244 * we still call __wake_up_parent in this case, because a 2245 * blocked sys_wait4 might now return -ECHILD. 2246 * 2247 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 2248 * is implementation-defined: we do (if you don't want 2249 * it, just use SIG_IGN instead). 2250 */ 2251 autoreap = true; 2252 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 2253 sig = 0; 2254 } 2255 /* 2256 * Send with __send_signal as si_pid and si_uid are in the 2257 * parent's namespaces. 2258 */ 2259 if (valid_signal(sig) && sig) 2260 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false); 2261 __wake_up_parent(tsk, tsk->parent); 2262 spin_unlock_irqrestore(&psig->siglock, flags); 2263 2264 return autoreap; 2265 } 2266 2267 /** 2268 * do_notify_parent_cldstop - notify parent of stopped/continued state change 2269 * @tsk: task reporting the state change 2270 * @for_ptracer: the notification is for ptracer 2271 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 2272 * 2273 * Notify @tsk's parent that the stopped/continued state has changed. If 2274 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 2275 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 2276 * 2277 * CONTEXT: 2278 * Must be called with tasklist_lock at least read locked. 2279 */ 2280 static void do_notify_parent_cldstop(struct task_struct *tsk, 2281 bool for_ptracer, int why) 2282 { 2283 struct kernel_siginfo info; 2284 unsigned long flags; 2285 struct task_struct *parent; 2286 struct sighand_struct *sighand; 2287 u64 utime, stime; 2288 2289 if (for_ptracer) { 2290 parent = tsk->parent; 2291 } else { 2292 tsk = tsk->group_leader; 2293 parent = tsk->real_parent; 2294 } 2295 2296 clear_siginfo(&info); 2297 info.si_signo = SIGCHLD; 2298 info.si_errno = 0; 2299 /* 2300 * see comment in do_notify_parent() about the following 4 lines 2301 */ 2302 rcu_read_lock(); 2303 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 2304 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 2305 rcu_read_unlock(); 2306 2307 task_cputime(tsk, &utime, &stime); 2308 info.si_utime = nsec_to_clock_t(utime); 2309 info.si_stime = nsec_to_clock_t(stime); 2310 2311 info.si_code = why; 2312 switch (why) { 2313 case CLD_CONTINUED: 2314 info.si_status = SIGCONT; 2315 break; 2316 case CLD_STOPPED: 2317 info.si_status = tsk->signal->group_exit_code & 0x7f; 2318 break; 2319 case CLD_TRAPPED: 2320 info.si_status = tsk->exit_code & 0x7f; 2321 break; 2322 default: 2323 BUG(); 2324 } 2325 2326 sighand = parent->sighand; 2327 spin_lock_irqsave(&sighand->siglock, flags); 2328 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 2329 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 2330 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID); 2331 /* 2332 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 2333 */ 2334 __wake_up_parent(tsk, parent); 2335 spin_unlock_irqrestore(&sighand->siglock, flags); 2336 } 2337 2338 /* 2339 * This must be called with current->sighand->siglock held. 2340 * 2341 * This should be the path for all ptrace stops. 2342 * We always set current->last_siginfo while stopped here. 2343 * That makes it a way to test a stopped process for 2344 * being ptrace-stopped vs being job-control-stopped. 2345 * 2346 * Returns the signal the ptracer requested the code resume 2347 * with. If the code did not stop because the tracer is gone, 2348 * the stop signal remains unchanged unless clear_code. 2349 */ 2350 static int ptrace_stop(int exit_code, int why, unsigned long message, 2351 kernel_siginfo_t *info) 2352 __releases(¤t->sighand->siglock) 2353 __acquires(¤t->sighand->siglock) 2354 { 2355 bool gstop_done = false; 2356 2357 if (arch_ptrace_stop_needed()) { 2358 /* 2359 * The arch code has something special to do before a 2360 * ptrace stop. This is allowed to block, e.g. for faults 2361 * on user stack pages. We can't keep the siglock while 2362 * calling arch_ptrace_stop, so we must release it now. 2363 * To preserve proper semantics, we must do this before 2364 * any signal bookkeeping like checking group_stop_count. 2365 */ 2366 spin_unlock_irq(¤t->sighand->siglock); 2367 arch_ptrace_stop(); 2368 spin_lock_irq(¤t->sighand->siglock); 2369 } 2370 2371 /* 2372 * After this point ptrace_signal_wake_up or signal_wake_up 2373 * will clear TASK_TRACED if ptrace_unlink happens or a fatal 2374 * signal comes in. Handle previous ptrace_unlinks and fatal 2375 * signals here to prevent ptrace_stop sleeping in schedule. 2376 */ 2377 if (!current->ptrace || __fatal_signal_pending(current)) 2378 return exit_code; 2379 2380 set_special_state(TASK_TRACED); 2381 current->jobctl |= JOBCTL_TRACED; 2382 2383 /* 2384 * We're committing to trapping. TRACED should be visible before 2385 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2386 * Also, transition to TRACED and updates to ->jobctl should be 2387 * atomic with respect to siglock and should be done after the arch 2388 * hook as siglock is released and regrabbed across it. 2389 * 2390 * TRACER TRACEE 2391 * 2392 * ptrace_attach() 2393 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2394 * do_wait() 2395 * set_current_state() smp_wmb(); 2396 * ptrace_do_wait() 2397 * wait_task_stopped() 2398 * task_stopped_code() 2399 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2400 */ 2401 smp_wmb(); 2402 2403 current->ptrace_message = message; 2404 current->last_siginfo = info; 2405 current->exit_code = exit_code; 2406 2407 /* 2408 * If @why is CLD_STOPPED, we're trapping to participate in a group 2409 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2410 * across siglock relocks since INTERRUPT was scheduled, PENDING 2411 * could be clear now. We act as if SIGCONT is received after 2412 * TASK_TRACED is entered - ignore it. 2413 */ 2414 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2415 gstop_done = task_participate_group_stop(current); 2416 2417 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2418 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2419 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2420 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2421 2422 /* entering a trap, clear TRAPPING */ 2423 task_clear_jobctl_trapping(current); 2424 2425 spin_unlock_irq(¤t->sighand->siglock); 2426 read_lock(&tasklist_lock); 2427 /* 2428 * Notify parents of the stop. 2429 * 2430 * While ptraced, there are two parents - the ptracer and 2431 * the real_parent of the group_leader. The ptracer should 2432 * know about every stop while the real parent is only 2433 * interested in the completion of group stop. The states 2434 * for the two don't interact with each other. Notify 2435 * separately unless they're gonna be duplicates. 2436 */ 2437 if (current->ptrace) 2438 do_notify_parent_cldstop(current, true, why); 2439 if (gstop_done && (!current->ptrace || ptrace_reparented(current))) 2440 do_notify_parent_cldstop(current, false, why); 2441 2442 /* 2443 * The previous do_notify_parent_cldstop() invocation woke ptracer. 2444 * One a PREEMPTION kernel this can result in preemption requirement 2445 * which will be fulfilled after read_unlock() and the ptracer will be 2446 * put on the CPU. 2447 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for 2448 * this task wait in schedule(). If this task gets preempted then it 2449 * remains enqueued on the runqueue. The ptracer will observe this and 2450 * then sleep for a delay of one HZ tick. In the meantime this task 2451 * gets scheduled, enters schedule() and will wait for the ptracer. 2452 * 2453 * This preemption point is not bad from a correctness point of 2454 * view but extends the runtime by one HZ tick time due to the 2455 * ptracer's sleep. The preempt-disable section ensures that there 2456 * will be no preemption between unlock and schedule() and so 2457 * improving the performance since the ptracer will observe that 2458 * the tracee is scheduled out once it gets on the CPU. 2459 * 2460 * On PREEMPT_RT locking tasklist_lock does not disable preemption. 2461 * Therefore the task can be preempted after do_notify_parent_cldstop() 2462 * before unlocking tasklist_lock so there is no benefit in doing this. 2463 * 2464 * In fact disabling preemption is harmful on PREEMPT_RT because 2465 * the spinlock_t in cgroup_enter_frozen() must not be acquired 2466 * with preemption disabled due to the 'sleeping' spinlock 2467 * substitution of RT. 2468 */ 2469 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 2470 preempt_disable(); 2471 read_unlock(&tasklist_lock); 2472 cgroup_enter_frozen(); 2473 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 2474 preempt_enable_no_resched(); 2475 schedule(); 2476 cgroup_leave_frozen(true); 2477 2478 /* 2479 * We are back. Now reacquire the siglock before touching 2480 * last_siginfo, so that we are sure to have synchronized with 2481 * any signal-sending on another CPU that wants to examine it. 2482 */ 2483 spin_lock_irq(¤t->sighand->siglock); 2484 exit_code = current->exit_code; 2485 current->last_siginfo = NULL; 2486 current->ptrace_message = 0; 2487 current->exit_code = 0; 2488 2489 /* LISTENING can be set only during STOP traps, clear it */ 2490 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN); 2491 2492 /* 2493 * Queued signals ignored us while we were stopped for tracing. 2494 * So check for any that we should take before resuming user mode. 2495 * This sets TIF_SIGPENDING, but never clears it. 2496 */ 2497 recalc_sigpending_tsk(current); 2498 return exit_code; 2499 } 2500 2501 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message) 2502 { 2503 kernel_siginfo_t info; 2504 2505 clear_siginfo(&info); 2506 info.si_signo = signr; 2507 info.si_code = exit_code; 2508 info.si_pid = task_pid_vnr(current); 2509 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2510 2511 /* Let the debugger run. */ 2512 return ptrace_stop(exit_code, why, message, &info); 2513 } 2514 2515 int ptrace_notify(int exit_code, unsigned long message) 2516 { 2517 int signr; 2518 2519 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2520 if (unlikely(task_work_pending(current))) 2521 task_work_run(); 2522 2523 spin_lock_irq(¤t->sighand->siglock); 2524 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message); 2525 spin_unlock_irq(¤t->sighand->siglock); 2526 return signr; 2527 } 2528 2529 /** 2530 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2531 * @signr: signr causing group stop if initiating 2532 * 2533 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2534 * and participate in it. If already set, participate in the existing 2535 * group stop. If participated in a group stop (and thus slept), %true is 2536 * returned with siglock released. 2537 * 2538 * If ptraced, this function doesn't handle stop itself. Instead, 2539 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2540 * untouched. The caller must ensure that INTERRUPT trap handling takes 2541 * places afterwards. 2542 * 2543 * CONTEXT: 2544 * Must be called with @current->sighand->siglock held, which is released 2545 * on %true return. 2546 * 2547 * RETURNS: 2548 * %false if group stop is already cancelled or ptrace trap is scheduled. 2549 * %true if participated in group stop. 2550 */ 2551 static bool do_signal_stop(int signr) 2552 __releases(¤t->sighand->siglock) 2553 { 2554 struct signal_struct *sig = current->signal; 2555 2556 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2557 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2558 struct task_struct *t; 2559 2560 /* signr will be recorded in task->jobctl for retries */ 2561 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2562 2563 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2564 unlikely(sig->flags & SIGNAL_GROUP_EXIT) || 2565 unlikely(sig->group_exec_task)) 2566 return false; 2567 /* 2568 * There is no group stop already in progress. We must 2569 * initiate one now. 2570 * 2571 * While ptraced, a task may be resumed while group stop is 2572 * still in effect and then receive a stop signal and 2573 * initiate another group stop. This deviates from the 2574 * usual behavior as two consecutive stop signals can't 2575 * cause two group stops when !ptraced. That is why we 2576 * also check !task_is_stopped(t) below. 2577 * 2578 * The condition can be distinguished by testing whether 2579 * SIGNAL_STOP_STOPPED is already set. Don't generate 2580 * group_exit_code in such case. 2581 * 2582 * This is not necessary for SIGNAL_STOP_CONTINUED because 2583 * an intervening stop signal is required to cause two 2584 * continued events regardless of ptrace. 2585 */ 2586 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2587 sig->group_exit_code = signr; 2588 2589 sig->group_stop_count = 0; 2590 if (task_set_jobctl_pending(current, signr | gstop)) 2591 sig->group_stop_count++; 2592 2593 for_other_threads(current, t) { 2594 /* 2595 * Setting state to TASK_STOPPED for a group 2596 * stop is always done with the siglock held, 2597 * so this check has no races. 2598 */ 2599 if (!task_is_stopped(t) && 2600 task_set_jobctl_pending(t, signr | gstop)) { 2601 sig->group_stop_count++; 2602 if (likely(!(t->ptrace & PT_SEIZED))) 2603 signal_wake_up(t, 0); 2604 else 2605 ptrace_trap_notify(t); 2606 } 2607 } 2608 } 2609 2610 if (likely(!current->ptrace)) { 2611 int notify = 0; 2612 2613 /* 2614 * If there are no other threads in the group, or if there 2615 * is a group stop in progress and we are the last to stop, 2616 * report to the parent. 2617 */ 2618 if (task_participate_group_stop(current)) 2619 notify = CLD_STOPPED; 2620 2621 current->jobctl |= JOBCTL_STOPPED; 2622 set_special_state(TASK_STOPPED); 2623 spin_unlock_irq(¤t->sighand->siglock); 2624 2625 /* 2626 * Notify the parent of the group stop completion. Because 2627 * we're not holding either the siglock or tasklist_lock 2628 * here, ptracer may attach inbetween; however, this is for 2629 * group stop and should always be delivered to the real 2630 * parent of the group leader. The new ptracer will get 2631 * its notification when this task transitions into 2632 * TASK_TRACED. 2633 */ 2634 if (notify) { 2635 read_lock(&tasklist_lock); 2636 do_notify_parent_cldstop(current, false, notify); 2637 read_unlock(&tasklist_lock); 2638 } 2639 2640 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2641 cgroup_enter_frozen(); 2642 schedule(); 2643 return true; 2644 } else { 2645 /* 2646 * While ptraced, group stop is handled by STOP trap. 2647 * Schedule it and let the caller deal with it. 2648 */ 2649 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2650 return false; 2651 } 2652 } 2653 2654 /** 2655 * do_jobctl_trap - take care of ptrace jobctl traps 2656 * 2657 * When PT_SEIZED, it's used for both group stop and explicit 2658 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2659 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2660 * the stop signal; otherwise, %SIGTRAP. 2661 * 2662 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2663 * number as exit_code and no siginfo. 2664 * 2665 * CONTEXT: 2666 * Must be called with @current->sighand->siglock held, which may be 2667 * released and re-acquired before returning with intervening sleep. 2668 */ 2669 static void do_jobctl_trap(void) 2670 { 2671 struct signal_struct *signal = current->signal; 2672 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2673 2674 if (current->ptrace & PT_SEIZED) { 2675 if (!signal->group_stop_count && 2676 !(signal->flags & SIGNAL_STOP_STOPPED)) 2677 signr = SIGTRAP; 2678 WARN_ON_ONCE(!signr); 2679 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2680 CLD_STOPPED, 0); 2681 } else { 2682 WARN_ON_ONCE(!signr); 2683 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2684 } 2685 } 2686 2687 /** 2688 * do_freezer_trap - handle the freezer jobctl trap 2689 * 2690 * Puts the task into frozen state, if only the task is not about to quit. 2691 * In this case it drops JOBCTL_TRAP_FREEZE. 2692 * 2693 * CONTEXT: 2694 * Must be called with @current->sighand->siglock held, 2695 * which is always released before returning. 2696 */ 2697 static void do_freezer_trap(void) 2698 __releases(¤t->sighand->siglock) 2699 { 2700 /* 2701 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, 2702 * let's make another loop to give it a chance to be handled. 2703 * In any case, we'll return back. 2704 */ 2705 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != 2706 JOBCTL_TRAP_FREEZE) { 2707 spin_unlock_irq(¤t->sighand->siglock); 2708 return; 2709 } 2710 2711 /* 2712 * Now we're sure that there is no pending fatal signal and no 2713 * pending traps. Clear TIF_SIGPENDING to not get out of schedule() 2714 * immediately (if there is a non-fatal signal pending), and 2715 * put the task into sleep. 2716 */ 2717 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 2718 clear_thread_flag(TIF_SIGPENDING); 2719 spin_unlock_irq(¤t->sighand->siglock); 2720 cgroup_enter_frozen(); 2721 schedule(); 2722 2723 /* 2724 * We could've been woken by task_work, run it to clear 2725 * TIF_NOTIFY_SIGNAL. The caller will retry if necessary. 2726 */ 2727 clear_notify_signal(); 2728 if (unlikely(task_work_pending(current))) 2729 task_work_run(); 2730 } 2731 2732 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type) 2733 { 2734 /* 2735 * We do not check sig_kernel_stop(signr) but set this marker 2736 * unconditionally because we do not know whether debugger will 2737 * change signr. This flag has no meaning unless we are going 2738 * to stop after return from ptrace_stop(). In this case it will 2739 * be checked in do_signal_stop(), we should only stop if it was 2740 * not cleared by SIGCONT while we were sleeping. See also the 2741 * comment in dequeue_signal(). 2742 */ 2743 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2744 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info); 2745 2746 /* We're back. Did the debugger cancel the sig? */ 2747 if (signr == 0) 2748 return signr; 2749 2750 /* 2751 * Update the siginfo structure if the signal has 2752 * changed. If the debugger wanted something 2753 * specific in the siginfo structure then it should 2754 * have updated *info via PTRACE_SETSIGINFO. 2755 */ 2756 if (signr != info->si_signo) { 2757 clear_siginfo(info); 2758 info->si_signo = signr; 2759 info->si_errno = 0; 2760 info->si_code = SI_USER; 2761 rcu_read_lock(); 2762 info->si_pid = task_pid_vnr(current->parent); 2763 info->si_uid = from_kuid_munged(current_user_ns(), 2764 task_uid(current->parent)); 2765 rcu_read_unlock(); 2766 } 2767 2768 /* If the (new) signal is now blocked, requeue it. */ 2769 if (sigismember(¤t->blocked, signr) || 2770 fatal_signal_pending(current)) { 2771 send_signal_locked(signr, info, current, type); 2772 signr = 0; 2773 } 2774 2775 return signr; 2776 } 2777 2778 static void hide_si_addr_tag_bits(struct ksignal *ksig) 2779 { 2780 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) { 2781 case SIL_FAULT: 2782 case SIL_FAULT_TRAPNO: 2783 case SIL_FAULT_MCEERR: 2784 case SIL_FAULT_BNDERR: 2785 case SIL_FAULT_PKUERR: 2786 case SIL_FAULT_PERF_EVENT: 2787 ksig->info.si_addr = arch_untagged_si_addr( 2788 ksig->info.si_addr, ksig->sig, ksig->info.si_code); 2789 break; 2790 case SIL_KILL: 2791 case SIL_TIMER: 2792 case SIL_POLL: 2793 case SIL_CHLD: 2794 case SIL_RT: 2795 case SIL_SYS: 2796 break; 2797 } 2798 } 2799 2800 bool get_signal(struct ksignal *ksig) 2801 { 2802 struct sighand_struct *sighand = current->sighand; 2803 struct signal_struct *signal = current->signal; 2804 int signr; 2805 2806 clear_notify_signal(); 2807 if (unlikely(task_work_pending(current))) 2808 task_work_run(); 2809 2810 if (!task_sigpending(current)) 2811 return false; 2812 2813 if (unlikely(uprobe_deny_signal())) 2814 return false; 2815 2816 /* 2817 * Do this once, we can't return to user-mode if freezing() == T. 2818 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2819 * thus do not need another check after return. 2820 */ 2821 try_to_freeze(); 2822 2823 relock: 2824 spin_lock_irq(&sighand->siglock); 2825 2826 /* 2827 * Every stopped thread goes here after wakeup. Check to see if 2828 * we should notify the parent, prepare_signal(SIGCONT) encodes 2829 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2830 */ 2831 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2832 int why; 2833 2834 if (signal->flags & SIGNAL_CLD_CONTINUED) 2835 why = CLD_CONTINUED; 2836 else 2837 why = CLD_STOPPED; 2838 2839 signal->flags &= ~SIGNAL_CLD_MASK; 2840 2841 spin_unlock_irq(&sighand->siglock); 2842 2843 /* 2844 * Notify the parent that we're continuing. This event is 2845 * always per-process and doesn't make whole lot of sense 2846 * for ptracers, who shouldn't consume the state via 2847 * wait(2) either, but, for backward compatibility, notify 2848 * the ptracer of the group leader too unless it's gonna be 2849 * a duplicate. 2850 */ 2851 read_lock(&tasklist_lock); 2852 do_notify_parent_cldstop(current, false, why); 2853 2854 if (ptrace_reparented(current->group_leader)) 2855 do_notify_parent_cldstop(current->group_leader, 2856 true, why); 2857 read_unlock(&tasklist_lock); 2858 2859 goto relock; 2860 } 2861 2862 for (;;) { 2863 struct k_sigaction *ka; 2864 enum pid_type type; 2865 2866 /* Has this task already been marked for death? */ 2867 if ((signal->flags & SIGNAL_GROUP_EXIT) || 2868 signal->group_exec_task) { 2869 signr = SIGKILL; 2870 sigdelset(¤t->pending.signal, SIGKILL); 2871 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, 2872 &sighand->action[SIGKILL-1]); 2873 recalc_sigpending(); 2874 /* 2875 * implies do_group_exit() or return to PF_USER_WORKER, 2876 * no need to initialize ksig->info/etc. 2877 */ 2878 goto fatal; 2879 } 2880 2881 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2882 do_signal_stop(0)) 2883 goto relock; 2884 2885 if (unlikely(current->jobctl & 2886 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { 2887 if (current->jobctl & JOBCTL_TRAP_MASK) { 2888 do_jobctl_trap(); 2889 spin_unlock_irq(&sighand->siglock); 2890 } else if (current->jobctl & JOBCTL_TRAP_FREEZE) 2891 do_freezer_trap(); 2892 2893 goto relock; 2894 } 2895 2896 /* 2897 * If the task is leaving the frozen state, let's update 2898 * cgroup counters and reset the frozen bit. 2899 */ 2900 if (unlikely(cgroup_task_frozen(current))) { 2901 spin_unlock_irq(&sighand->siglock); 2902 cgroup_leave_frozen(false); 2903 goto relock; 2904 } 2905 2906 /* 2907 * Signals generated by the execution of an instruction 2908 * need to be delivered before any other pending signals 2909 * so that the instruction pointer in the signal stack 2910 * frame points to the faulting instruction. 2911 */ 2912 type = PIDTYPE_PID; 2913 signr = dequeue_synchronous_signal(&ksig->info); 2914 if (!signr) 2915 signr = dequeue_signal(¤t->blocked, &ksig->info, &type); 2916 2917 if (!signr) 2918 break; /* will return 0 */ 2919 2920 if (unlikely(current->ptrace) && (signr != SIGKILL) && 2921 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) { 2922 signr = ptrace_signal(signr, &ksig->info, type); 2923 if (!signr) 2924 continue; 2925 } 2926 2927 ka = &sighand->action[signr-1]; 2928 2929 /* Trace actually delivered signals. */ 2930 trace_signal_deliver(signr, &ksig->info, ka); 2931 2932 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2933 continue; 2934 if (ka->sa.sa_handler != SIG_DFL) { 2935 /* Run the handler. */ 2936 ksig->ka = *ka; 2937 2938 if (ka->sa.sa_flags & SA_ONESHOT) 2939 ka->sa.sa_handler = SIG_DFL; 2940 2941 break; /* will return non-zero "signr" value */ 2942 } 2943 2944 /* 2945 * Now we are doing the default action for this signal. 2946 */ 2947 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2948 continue; 2949 2950 /* 2951 * Global init gets no signals it doesn't want. 2952 * Container-init gets no signals it doesn't want from same 2953 * container. 2954 * 2955 * Note that if global/container-init sees a sig_kernel_only() 2956 * signal here, the signal must have been generated internally 2957 * or must have come from an ancestor namespace. In either 2958 * case, the signal cannot be dropped. 2959 */ 2960 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2961 !sig_kernel_only(signr)) 2962 continue; 2963 2964 if (sig_kernel_stop(signr)) { 2965 /* 2966 * The default action is to stop all threads in 2967 * the thread group. The job control signals 2968 * do nothing in an orphaned pgrp, but SIGSTOP 2969 * always works. Note that siglock needs to be 2970 * dropped during the call to is_orphaned_pgrp() 2971 * because of lock ordering with tasklist_lock. 2972 * This allows an intervening SIGCONT to be posted. 2973 * We need to check for that and bail out if necessary. 2974 */ 2975 if (signr != SIGSTOP) { 2976 spin_unlock_irq(&sighand->siglock); 2977 2978 /* signals can be posted during this window */ 2979 2980 if (is_current_pgrp_orphaned()) 2981 goto relock; 2982 2983 spin_lock_irq(&sighand->siglock); 2984 } 2985 2986 if (likely(do_signal_stop(signr))) { 2987 /* It released the siglock. */ 2988 goto relock; 2989 } 2990 2991 /* 2992 * We didn't actually stop, due to a race 2993 * with SIGCONT or something like that. 2994 */ 2995 continue; 2996 } 2997 2998 fatal: 2999 spin_unlock_irq(&sighand->siglock); 3000 if (unlikely(cgroup_task_frozen(current))) 3001 cgroup_leave_frozen(true); 3002 3003 /* 3004 * Anything else is fatal, maybe with a core dump. 3005 */ 3006 current->flags |= PF_SIGNALED; 3007 3008 if (sig_kernel_coredump(signr)) { 3009 if (print_fatal_signals) 3010 print_fatal_signal(signr); 3011 proc_coredump_connector(current); 3012 /* 3013 * If it was able to dump core, this kills all 3014 * other threads in the group and synchronizes with 3015 * their demise. If we lost the race with another 3016 * thread getting here, it set group_exit_code 3017 * first and our do_group_exit call below will use 3018 * that value and ignore the one we pass it. 3019 */ 3020 do_coredump(&ksig->info); 3021 } 3022 3023 /* 3024 * PF_USER_WORKER threads will catch and exit on fatal signals 3025 * themselves. They have cleanup that must be performed, so we 3026 * cannot call do_exit() on their behalf. Note that ksig won't 3027 * be properly initialized, PF_USER_WORKER's shouldn't use it. 3028 */ 3029 if (current->flags & PF_USER_WORKER) 3030 goto out; 3031 3032 /* 3033 * Death signals, no core dump. 3034 */ 3035 do_group_exit(signr); 3036 /* NOTREACHED */ 3037 } 3038 spin_unlock_irq(&sighand->siglock); 3039 3040 ksig->sig = signr; 3041 3042 if (signr && !(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS)) 3043 hide_si_addr_tag_bits(ksig); 3044 out: 3045 return signr > 0; 3046 } 3047 3048 /** 3049 * signal_delivered - called after signal delivery to update blocked signals 3050 * @ksig: kernel signal struct 3051 * @stepping: nonzero if debugger single-step or block-step in use 3052 * 3053 * This function should be called when a signal has successfully been 3054 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 3055 * is always blocked), and the signal itself is blocked unless %SA_NODEFER 3056 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 3057 */ 3058 static void signal_delivered(struct ksignal *ksig, int stepping) 3059 { 3060 sigset_t blocked; 3061 3062 /* A signal was successfully delivered, and the 3063 saved sigmask was stored on the signal frame, 3064 and will be restored by sigreturn. So we can 3065 simply clear the restore sigmask flag. */ 3066 clear_restore_sigmask(); 3067 3068 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 3069 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 3070 sigaddset(&blocked, ksig->sig); 3071 set_current_blocked(&blocked); 3072 if (current->sas_ss_flags & SS_AUTODISARM) 3073 sas_ss_reset(current); 3074 if (stepping) 3075 ptrace_notify(SIGTRAP, 0); 3076 } 3077 3078 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 3079 { 3080 if (failed) 3081 force_sigsegv(ksig->sig); 3082 else 3083 signal_delivered(ksig, stepping); 3084 } 3085 3086 /* 3087 * It could be that complete_signal() picked us to notify about the 3088 * group-wide signal. Other threads should be notified now to take 3089 * the shared signals in @which since we will not. 3090 */ 3091 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 3092 { 3093 sigset_t retarget; 3094 struct task_struct *t; 3095 3096 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 3097 if (sigisemptyset(&retarget)) 3098 return; 3099 3100 for_other_threads(tsk, t) { 3101 if (t->flags & PF_EXITING) 3102 continue; 3103 3104 if (!has_pending_signals(&retarget, &t->blocked)) 3105 continue; 3106 /* Remove the signals this thread can handle. */ 3107 sigandsets(&retarget, &retarget, &t->blocked); 3108 3109 if (!task_sigpending(t)) 3110 signal_wake_up(t, 0); 3111 3112 if (sigisemptyset(&retarget)) 3113 break; 3114 } 3115 } 3116 3117 void exit_signals(struct task_struct *tsk) 3118 { 3119 int group_stop = 0; 3120 sigset_t unblocked; 3121 3122 /* 3123 * @tsk is about to have PF_EXITING set - lock out users which 3124 * expect stable threadgroup. 3125 */ 3126 cgroup_threadgroup_change_begin(tsk); 3127 3128 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) { 3129 sched_mm_cid_exit_signals(tsk); 3130 tsk->flags |= PF_EXITING; 3131 cgroup_threadgroup_change_end(tsk); 3132 return; 3133 } 3134 3135 spin_lock_irq(&tsk->sighand->siglock); 3136 /* 3137 * From now this task is not visible for group-wide signals, 3138 * see wants_signal(), do_signal_stop(). 3139 */ 3140 sched_mm_cid_exit_signals(tsk); 3141 tsk->flags |= PF_EXITING; 3142 3143 cgroup_threadgroup_change_end(tsk); 3144 3145 if (!task_sigpending(tsk)) 3146 goto out; 3147 3148 unblocked = tsk->blocked; 3149 signotset(&unblocked); 3150 retarget_shared_pending(tsk, &unblocked); 3151 3152 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 3153 task_participate_group_stop(tsk)) 3154 group_stop = CLD_STOPPED; 3155 out: 3156 spin_unlock_irq(&tsk->sighand->siglock); 3157 3158 /* 3159 * If group stop has completed, deliver the notification. This 3160 * should always go to the real parent of the group leader. 3161 */ 3162 if (unlikely(group_stop)) { 3163 read_lock(&tasklist_lock); 3164 do_notify_parent_cldstop(tsk, false, group_stop); 3165 read_unlock(&tasklist_lock); 3166 } 3167 } 3168 3169 /* 3170 * System call entry points. 3171 */ 3172 3173 /** 3174 * sys_restart_syscall - restart a system call 3175 */ 3176 SYSCALL_DEFINE0(restart_syscall) 3177 { 3178 struct restart_block *restart = ¤t->restart_block; 3179 return restart->fn(restart); 3180 } 3181 3182 long do_no_restart_syscall(struct restart_block *param) 3183 { 3184 return -EINTR; 3185 } 3186 3187 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 3188 { 3189 if (task_sigpending(tsk) && !thread_group_empty(tsk)) { 3190 sigset_t newblocked; 3191 /* A set of now blocked but previously unblocked signals. */ 3192 sigandnsets(&newblocked, newset, ¤t->blocked); 3193 retarget_shared_pending(tsk, &newblocked); 3194 } 3195 tsk->blocked = *newset; 3196 recalc_sigpending(); 3197 } 3198 3199 /** 3200 * set_current_blocked - change current->blocked mask 3201 * @newset: new mask 3202 * 3203 * It is wrong to change ->blocked directly, this helper should be used 3204 * to ensure the process can't miss a shared signal we are going to block. 3205 */ 3206 void set_current_blocked(sigset_t *newset) 3207 { 3208 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3209 __set_current_blocked(newset); 3210 } 3211 3212 void __set_current_blocked(const sigset_t *newset) 3213 { 3214 struct task_struct *tsk = current; 3215 3216 /* 3217 * In case the signal mask hasn't changed, there is nothing we need 3218 * to do. The current->blocked shouldn't be modified by other task. 3219 */ 3220 if (sigequalsets(&tsk->blocked, newset)) 3221 return; 3222 3223 spin_lock_irq(&tsk->sighand->siglock); 3224 __set_task_blocked(tsk, newset); 3225 spin_unlock_irq(&tsk->sighand->siglock); 3226 } 3227 3228 /* 3229 * This is also useful for kernel threads that want to temporarily 3230 * (or permanently) block certain signals. 3231 * 3232 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 3233 * interface happily blocks "unblockable" signals like SIGKILL 3234 * and friends. 3235 */ 3236 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 3237 { 3238 struct task_struct *tsk = current; 3239 sigset_t newset; 3240 3241 /* Lockless, only current can change ->blocked, never from irq */ 3242 if (oldset) 3243 *oldset = tsk->blocked; 3244 3245 switch (how) { 3246 case SIG_BLOCK: 3247 sigorsets(&newset, &tsk->blocked, set); 3248 break; 3249 case SIG_UNBLOCK: 3250 sigandnsets(&newset, &tsk->blocked, set); 3251 break; 3252 case SIG_SETMASK: 3253 newset = *set; 3254 break; 3255 default: 3256 return -EINVAL; 3257 } 3258 3259 __set_current_blocked(&newset); 3260 return 0; 3261 } 3262 EXPORT_SYMBOL(sigprocmask); 3263 3264 /* 3265 * The api helps set app-provided sigmasks. 3266 * 3267 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 3268 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 3269 * 3270 * Note that it does set_restore_sigmask() in advance, so it must be always 3271 * paired with restore_saved_sigmask_unless() before return from syscall. 3272 */ 3273 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) 3274 { 3275 sigset_t kmask; 3276 3277 if (!umask) 3278 return 0; 3279 if (sigsetsize != sizeof(sigset_t)) 3280 return -EINVAL; 3281 if (copy_from_user(&kmask, umask, sizeof(sigset_t))) 3282 return -EFAULT; 3283 3284 set_restore_sigmask(); 3285 current->saved_sigmask = current->blocked; 3286 set_current_blocked(&kmask); 3287 3288 return 0; 3289 } 3290 3291 #ifdef CONFIG_COMPAT 3292 int set_compat_user_sigmask(const compat_sigset_t __user *umask, 3293 size_t sigsetsize) 3294 { 3295 sigset_t kmask; 3296 3297 if (!umask) 3298 return 0; 3299 if (sigsetsize != sizeof(compat_sigset_t)) 3300 return -EINVAL; 3301 if (get_compat_sigset(&kmask, umask)) 3302 return -EFAULT; 3303 3304 set_restore_sigmask(); 3305 current->saved_sigmask = current->blocked; 3306 set_current_blocked(&kmask); 3307 3308 return 0; 3309 } 3310 #endif 3311 3312 /** 3313 * sys_rt_sigprocmask - change the list of currently blocked signals 3314 * @how: whether to add, remove, or set signals 3315 * @nset: stores pending signals 3316 * @oset: previous value of signal mask if non-null 3317 * @sigsetsize: size of sigset_t type 3318 */ 3319 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 3320 sigset_t __user *, oset, size_t, sigsetsize) 3321 { 3322 sigset_t old_set, new_set; 3323 int error; 3324 3325 /* XXX: Don't preclude handling different sized sigset_t's. */ 3326 if (sigsetsize != sizeof(sigset_t)) 3327 return -EINVAL; 3328 3329 old_set = current->blocked; 3330 3331 if (nset) { 3332 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 3333 return -EFAULT; 3334 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3335 3336 error = sigprocmask(how, &new_set, NULL); 3337 if (error) 3338 return error; 3339 } 3340 3341 if (oset) { 3342 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 3343 return -EFAULT; 3344 } 3345 3346 return 0; 3347 } 3348 3349 #ifdef CONFIG_COMPAT 3350 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 3351 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 3352 { 3353 sigset_t old_set = current->blocked; 3354 3355 /* XXX: Don't preclude handling different sized sigset_t's. */ 3356 if (sigsetsize != sizeof(sigset_t)) 3357 return -EINVAL; 3358 3359 if (nset) { 3360 sigset_t new_set; 3361 int error; 3362 if (get_compat_sigset(&new_set, nset)) 3363 return -EFAULT; 3364 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3365 3366 error = sigprocmask(how, &new_set, NULL); 3367 if (error) 3368 return error; 3369 } 3370 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 3371 } 3372 #endif 3373 3374 static void do_sigpending(sigset_t *set) 3375 { 3376 spin_lock_irq(¤t->sighand->siglock); 3377 sigorsets(set, ¤t->pending.signal, 3378 ¤t->signal->shared_pending.signal); 3379 spin_unlock_irq(¤t->sighand->siglock); 3380 3381 /* Outside the lock because only this thread touches it. */ 3382 sigandsets(set, ¤t->blocked, set); 3383 } 3384 3385 /** 3386 * sys_rt_sigpending - examine a pending signal that has been raised 3387 * while blocked 3388 * @uset: stores pending signals 3389 * @sigsetsize: size of sigset_t type or larger 3390 */ 3391 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 3392 { 3393 sigset_t set; 3394 3395 if (sigsetsize > sizeof(*uset)) 3396 return -EINVAL; 3397 3398 do_sigpending(&set); 3399 3400 if (copy_to_user(uset, &set, sigsetsize)) 3401 return -EFAULT; 3402 3403 return 0; 3404 } 3405 3406 #ifdef CONFIG_COMPAT 3407 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 3408 compat_size_t, sigsetsize) 3409 { 3410 sigset_t set; 3411 3412 if (sigsetsize > sizeof(*uset)) 3413 return -EINVAL; 3414 3415 do_sigpending(&set); 3416 3417 return put_compat_sigset(uset, &set, sigsetsize); 3418 } 3419 #endif 3420 3421 static const struct { 3422 unsigned char limit, layout; 3423 } sig_sicodes[] = { 3424 [SIGILL] = { NSIGILL, SIL_FAULT }, 3425 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 3426 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 3427 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 3428 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 3429 #if defined(SIGEMT) 3430 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 3431 #endif 3432 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 3433 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 3434 [SIGSYS] = { NSIGSYS, SIL_SYS }, 3435 }; 3436 3437 static bool known_siginfo_layout(unsigned sig, int si_code) 3438 { 3439 if (si_code == SI_KERNEL) 3440 return true; 3441 else if ((si_code > SI_USER)) { 3442 if (sig_specific_sicodes(sig)) { 3443 if (si_code <= sig_sicodes[sig].limit) 3444 return true; 3445 } 3446 else if (si_code <= NSIGPOLL) 3447 return true; 3448 } 3449 else if (si_code >= SI_DETHREAD) 3450 return true; 3451 else if (si_code == SI_ASYNCNL) 3452 return true; 3453 return false; 3454 } 3455 3456 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3457 { 3458 enum siginfo_layout layout = SIL_KILL; 3459 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3460 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3461 (si_code <= sig_sicodes[sig].limit)) { 3462 layout = sig_sicodes[sig].layout; 3463 /* Handle the exceptions */ 3464 if ((sig == SIGBUS) && 3465 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3466 layout = SIL_FAULT_MCEERR; 3467 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3468 layout = SIL_FAULT_BNDERR; 3469 #ifdef SEGV_PKUERR 3470 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3471 layout = SIL_FAULT_PKUERR; 3472 #endif 3473 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF)) 3474 layout = SIL_FAULT_PERF_EVENT; 3475 else if (IS_ENABLED(CONFIG_SPARC) && 3476 (sig == SIGILL) && (si_code == ILL_ILLTRP)) 3477 layout = SIL_FAULT_TRAPNO; 3478 else if (IS_ENABLED(CONFIG_ALPHA) && 3479 ((sig == SIGFPE) || 3480 ((sig == SIGTRAP) && (si_code == TRAP_UNK)))) 3481 layout = SIL_FAULT_TRAPNO; 3482 } 3483 else if (si_code <= NSIGPOLL) 3484 layout = SIL_POLL; 3485 } else { 3486 if (si_code == SI_TIMER) 3487 layout = SIL_TIMER; 3488 else if (si_code == SI_SIGIO) 3489 layout = SIL_POLL; 3490 else if (si_code < 0) 3491 layout = SIL_RT; 3492 } 3493 return layout; 3494 } 3495 3496 static inline char __user *si_expansion(const siginfo_t __user *info) 3497 { 3498 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3499 } 3500 3501 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3502 { 3503 char __user *expansion = si_expansion(to); 3504 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3505 return -EFAULT; 3506 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3507 return -EFAULT; 3508 return 0; 3509 } 3510 3511 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3512 const siginfo_t __user *from) 3513 { 3514 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3515 char __user *expansion = si_expansion(from); 3516 char buf[SI_EXPANSION_SIZE]; 3517 int i; 3518 /* 3519 * An unknown si_code might need more than 3520 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3521 * extra bytes are 0. This guarantees copy_siginfo_to_user 3522 * will return this data to userspace exactly. 3523 */ 3524 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3525 return -EFAULT; 3526 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3527 if (buf[i] != 0) 3528 return -E2BIG; 3529 } 3530 } 3531 return 0; 3532 } 3533 3534 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3535 const siginfo_t __user *from) 3536 { 3537 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3538 return -EFAULT; 3539 to->si_signo = signo; 3540 return post_copy_siginfo_from_user(to, from); 3541 } 3542 3543 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3544 { 3545 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3546 return -EFAULT; 3547 return post_copy_siginfo_from_user(to, from); 3548 } 3549 3550 #ifdef CONFIG_COMPAT 3551 /** 3552 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo 3553 * @to: compat siginfo destination 3554 * @from: kernel siginfo source 3555 * 3556 * Note: This function does not work properly for the SIGCHLD on x32, but 3557 * fortunately it doesn't have to. The only valid callers for this function are 3558 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. 3559 * The latter does not care because SIGCHLD will never cause a coredump. 3560 */ 3561 void copy_siginfo_to_external32(struct compat_siginfo *to, 3562 const struct kernel_siginfo *from) 3563 { 3564 memset(to, 0, sizeof(*to)); 3565 3566 to->si_signo = from->si_signo; 3567 to->si_errno = from->si_errno; 3568 to->si_code = from->si_code; 3569 switch(siginfo_layout(from->si_signo, from->si_code)) { 3570 case SIL_KILL: 3571 to->si_pid = from->si_pid; 3572 to->si_uid = from->si_uid; 3573 break; 3574 case SIL_TIMER: 3575 to->si_tid = from->si_tid; 3576 to->si_overrun = from->si_overrun; 3577 to->si_int = from->si_int; 3578 break; 3579 case SIL_POLL: 3580 to->si_band = from->si_band; 3581 to->si_fd = from->si_fd; 3582 break; 3583 case SIL_FAULT: 3584 to->si_addr = ptr_to_compat(from->si_addr); 3585 break; 3586 case SIL_FAULT_TRAPNO: 3587 to->si_addr = ptr_to_compat(from->si_addr); 3588 to->si_trapno = from->si_trapno; 3589 break; 3590 case SIL_FAULT_MCEERR: 3591 to->si_addr = ptr_to_compat(from->si_addr); 3592 to->si_addr_lsb = from->si_addr_lsb; 3593 break; 3594 case SIL_FAULT_BNDERR: 3595 to->si_addr = ptr_to_compat(from->si_addr); 3596 to->si_lower = ptr_to_compat(from->si_lower); 3597 to->si_upper = ptr_to_compat(from->si_upper); 3598 break; 3599 case SIL_FAULT_PKUERR: 3600 to->si_addr = ptr_to_compat(from->si_addr); 3601 to->si_pkey = from->si_pkey; 3602 break; 3603 case SIL_FAULT_PERF_EVENT: 3604 to->si_addr = ptr_to_compat(from->si_addr); 3605 to->si_perf_data = from->si_perf_data; 3606 to->si_perf_type = from->si_perf_type; 3607 to->si_perf_flags = from->si_perf_flags; 3608 break; 3609 case SIL_CHLD: 3610 to->si_pid = from->si_pid; 3611 to->si_uid = from->si_uid; 3612 to->si_status = from->si_status; 3613 to->si_utime = from->si_utime; 3614 to->si_stime = from->si_stime; 3615 break; 3616 case SIL_RT: 3617 to->si_pid = from->si_pid; 3618 to->si_uid = from->si_uid; 3619 to->si_int = from->si_int; 3620 break; 3621 case SIL_SYS: 3622 to->si_call_addr = ptr_to_compat(from->si_call_addr); 3623 to->si_syscall = from->si_syscall; 3624 to->si_arch = from->si_arch; 3625 break; 3626 } 3627 } 3628 3629 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3630 const struct kernel_siginfo *from) 3631 { 3632 struct compat_siginfo new; 3633 3634 copy_siginfo_to_external32(&new, from); 3635 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3636 return -EFAULT; 3637 return 0; 3638 } 3639 3640 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3641 const struct compat_siginfo *from) 3642 { 3643 clear_siginfo(to); 3644 to->si_signo = from->si_signo; 3645 to->si_errno = from->si_errno; 3646 to->si_code = from->si_code; 3647 switch(siginfo_layout(from->si_signo, from->si_code)) { 3648 case SIL_KILL: 3649 to->si_pid = from->si_pid; 3650 to->si_uid = from->si_uid; 3651 break; 3652 case SIL_TIMER: 3653 to->si_tid = from->si_tid; 3654 to->si_overrun = from->si_overrun; 3655 to->si_int = from->si_int; 3656 break; 3657 case SIL_POLL: 3658 to->si_band = from->si_band; 3659 to->si_fd = from->si_fd; 3660 break; 3661 case SIL_FAULT: 3662 to->si_addr = compat_ptr(from->si_addr); 3663 break; 3664 case SIL_FAULT_TRAPNO: 3665 to->si_addr = compat_ptr(from->si_addr); 3666 to->si_trapno = from->si_trapno; 3667 break; 3668 case SIL_FAULT_MCEERR: 3669 to->si_addr = compat_ptr(from->si_addr); 3670 to->si_addr_lsb = from->si_addr_lsb; 3671 break; 3672 case SIL_FAULT_BNDERR: 3673 to->si_addr = compat_ptr(from->si_addr); 3674 to->si_lower = compat_ptr(from->si_lower); 3675 to->si_upper = compat_ptr(from->si_upper); 3676 break; 3677 case SIL_FAULT_PKUERR: 3678 to->si_addr = compat_ptr(from->si_addr); 3679 to->si_pkey = from->si_pkey; 3680 break; 3681 case SIL_FAULT_PERF_EVENT: 3682 to->si_addr = compat_ptr(from->si_addr); 3683 to->si_perf_data = from->si_perf_data; 3684 to->si_perf_type = from->si_perf_type; 3685 to->si_perf_flags = from->si_perf_flags; 3686 break; 3687 case SIL_CHLD: 3688 to->si_pid = from->si_pid; 3689 to->si_uid = from->si_uid; 3690 to->si_status = from->si_status; 3691 #ifdef CONFIG_X86_X32_ABI 3692 if (in_x32_syscall()) { 3693 to->si_utime = from->_sifields._sigchld_x32._utime; 3694 to->si_stime = from->_sifields._sigchld_x32._stime; 3695 } else 3696 #endif 3697 { 3698 to->si_utime = from->si_utime; 3699 to->si_stime = from->si_stime; 3700 } 3701 break; 3702 case SIL_RT: 3703 to->si_pid = from->si_pid; 3704 to->si_uid = from->si_uid; 3705 to->si_int = from->si_int; 3706 break; 3707 case SIL_SYS: 3708 to->si_call_addr = compat_ptr(from->si_call_addr); 3709 to->si_syscall = from->si_syscall; 3710 to->si_arch = from->si_arch; 3711 break; 3712 } 3713 return 0; 3714 } 3715 3716 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3717 const struct compat_siginfo __user *ufrom) 3718 { 3719 struct compat_siginfo from; 3720 3721 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3722 return -EFAULT; 3723 3724 from.si_signo = signo; 3725 return post_copy_siginfo_from_user32(to, &from); 3726 } 3727 3728 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3729 const struct compat_siginfo __user *ufrom) 3730 { 3731 struct compat_siginfo from; 3732 3733 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3734 return -EFAULT; 3735 3736 return post_copy_siginfo_from_user32(to, &from); 3737 } 3738 #endif /* CONFIG_COMPAT */ 3739 3740 /** 3741 * do_sigtimedwait - wait for queued signals specified in @which 3742 * @which: queued signals to wait for 3743 * @info: if non-null, the signal's siginfo is returned here 3744 * @ts: upper bound on process time suspension 3745 */ 3746 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3747 const struct timespec64 *ts) 3748 { 3749 ktime_t *to = NULL, timeout = KTIME_MAX; 3750 struct task_struct *tsk = current; 3751 sigset_t mask = *which; 3752 enum pid_type type; 3753 int sig, ret = 0; 3754 3755 if (ts) { 3756 if (!timespec64_valid(ts)) 3757 return -EINVAL; 3758 timeout = timespec64_to_ktime(*ts); 3759 to = &timeout; 3760 } 3761 3762 /* 3763 * Invert the set of allowed signals to get those we want to block. 3764 */ 3765 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3766 signotset(&mask); 3767 3768 spin_lock_irq(&tsk->sighand->siglock); 3769 sig = dequeue_signal(&mask, info, &type); 3770 if (!sig && timeout) { 3771 /* 3772 * None ready, temporarily unblock those we're interested 3773 * while we are sleeping in so that we'll be awakened when 3774 * they arrive. Unblocking is always fine, we can avoid 3775 * set_current_blocked(). 3776 */ 3777 tsk->real_blocked = tsk->blocked; 3778 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3779 recalc_sigpending(); 3780 spin_unlock_irq(&tsk->sighand->siglock); 3781 3782 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 3783 ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3784 HRTIMER_MODE_REL); 3785 spin_lock_irq(&tsk->sighand->siglock); 3786 __set_task_blocked(tsk, &tsk->real_blocked); 3787 sigemptyset(&tsk->real_blocked); 3788 sig = dequeue_signal(&mask, info, &type); 3789 } 3790 spin_unlock_irq(&tsk->sighand->siglock); 3791 3792 if (sig) 3793 return sig; 3794 return ret ? -EINTR : -EAGAIN; 3795 } 3796 3797 /** 3798 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3799 * in @uthese 3800 * @uthese: queued signals to wait for 3801 * @uinfo: if non-null, the signal's siginfo is returned here 3802 * @uts: upper bound on process time suspension 3803 * @sigsetsize: size of sigset_t type 3804 */ 3805 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3806 siginfo_t __user *, uinfo, 3807 const struct __kernel_timespec __user *, uts, 3808 size_t, sigsetsize) 3809 { 3810 sigset_t these; 3811 struct timespec64 ts; 3812 kernel_siginfo_t info; 3813 int ret; 3814 3815 /* XXX: Don't preclude handling different sized sigset_t's. */ 3816 if (sigsetsize != sizeof(sigset_t)) 3817 return -EINVAL; 3818 3819 if (copy_from_user(&these, uthese, sizeof(these))) 3820 return -EFAULT; 3821 3822 if (uts) { 3823 if (get_timespec64(&ts, uts)) 3824 return -EFAULT; 3825 } 3826 3827 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3828 3829 if (ret > 0 && uinfo) { 3830 if (copy_siginfo_to_user(uinfo, &info)) 3831 ret = -EFAULT; 3832 } 3833 3834 return ret; 3835 } 3836 3837 #ifdef CONFIG_COMPAT_32BIT_TIME 3838 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3839 siginfo_t __user *, uinfo, 3840 const struct old_timespec32 __user *, uts, 3841 size_t, sigsetsize) 3842 { 3843 sigset_t these; 3844 struct timespec64 ts; 3845 kernel_siginfo_t info; 3846 int ret; 3847 3848 if (sigsetsize != sizeof(sigset_t)) 3849 return -EINVAL; 3850 3851 if (copy_from_user(&these, uthese, sizeof(these))) 3852 return -EFAULT; 3853 3854 if (uts) { 3855 if (get_old_timespec32(&ts, uts)) 3856 return -EFAULT; 3857 } 3858 3859 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3860 3861 if (ret > 0 && uinfo) { 3862 if (copy_siginfo_to_user(uinfo, &info)) 3863 ret = -EFAULT; 3864 } 3865 3866 return ret; 3867 } 3868 #endif 3869 3870 #ifdef CONFIG_COMPAT 3871 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3872 struct compat_siginfo __user *, uinfo, 3873 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3874 { 3875 sigset_t s; 3876 struct timespec64 t; 3877 kernel_siginfo_t info; 3878 long ret; 3879 3880 if (sigsetsize != sizeof(sigset_t)) 3881 return -EINVAL; 3882 3883 if (get_compat_sigset(&s, uthese)) 3884 return -EFAULT; 3885 3886 if (uts) { 3887 if (get_timespec64(&t, uts)) 3888 return -EFAULT; 3889 } 3890 3891 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3892 3893 if (ret > 0 && uinfo) { 3894 if (copy_siginfo_to_user32(uinfo, &info)) 3895 ret = -EFAULT; 3896 } 3897 3898 return ret; 3899 } 3900 3901 #ifdef CONFIG_COMPAT_32BIT_TIME 3902 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3903 struct compat_siginfo __user *, uinfo, 3904 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3905 { 3906 sigset_t s; 3907 struct timespec64 t; 3908 kernel_siginfo_t info; 3909 long ret; 3910 3911 if (sigsetsize != sizeof(sigset_t)) 3912 return -EINVAL; 3913 3914 if (get_compat_sigset(&s, uthese)) 3915 return -EFAULT; 3916 3917 if (uts) { 3918 if (get_old_timespec32(&t, uts)) 3919 return -EFAULT; 3920 } 3921 3922 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3923 3924 if (ret > 0 && uinfo) { 3925 if (copy_siginfo_to_user32(uinfo, &info)) 3926 ret = -EFAULT; 3927 } 3928 3929 return ret; 3930 } 3931 #endif 3932 #endif 3933 3934 static void prepare_kill_siginfo(int sig, struct kernel_siginfo *info, 3935 enum pid_type type) 3936 { 3937 clear_siginfo(info); 3938 info->si_signo = sig; 3939 info->si_errno = 0; 3940 info->si_code = (type == PIDTYPE_PID) ? SI_TKILL : SI_USER; 3941 info->si_pid = task_tgid_vnr(current); 3942 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3943 } 3944 3945 /** 3946 * sys_kill - send a signal to a process 3947 * @pid: the PID of the process 3948 * @sig: signal to be sent 3949 */ 3950 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3951 { 3952 struct kernel_siginfo info; 3953 3954 prepare_kill_siginfo(sig, &info, PIDTYPE_TGID); 3955 3956 return kill_something_info(sig, &info, pid); 3957 } 3958 3959 /* 3960 * Verify that the signaler and signalee either are in the same pid namespace 3961 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3962 * namespace. 3963 */ 3964 static bool access_pidfd_pidns(struct pid *pid) 3965 { 3966 struct pid_namespace *active = task_active_pid_ns(current); 3967 struct pid_namespace *p = ns_of_pid(pid); 3968 3969 for (;;) { 3970 if (!p) 3971 return false; 3972 if (p == active) 3973 break; 3974 p = p->parent; 3975 } 3976 3977 return true; 3978 } 3979 3980 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, 3981 siginfo_t __user *info) 3982 { 3983 #ifdef CONFIG_COMPAT 3984 /* 3985 * Avoid hooking up compat syscalls and instead handle necessary 3986 * conversions here. Note, this is a stop-gap measure and should not be 3987 * considered a generic solution. 3988 */ 3989 if (in_compat_syscall()) 3990 return copy_siginfo_from_user32( 3991 kinfo, (struct compat_siginfo __user *)info); 3992 #endif 3993 return copy_siginfo_from_user(kinfo, info); 3994 } 3995 3996 static struct pid *pidfd_to_pid(const struct file *file) 3997 { 3998 struct pid *pid; 3999 4000 pid = pidfd_pid(file); 4001 if (!IS_ERR(pid)) 4002 return pid; 4003 4004 return tgid_pidfd_to_pid(file); 4005 } 4006 4007 #define PIDFD_SEND_SIGNAL_FLAGS \ 4008 (PIDFD_SIGNAL_THREAD | PIDFD_SIGNAL_THREAD_GROUP | \ 4009 PIDFD_SIGNAL_PROCESS_GROUP) 4010 4011 static int do_pidfd_send_signal(struct pid *pid, int sig, enum pid_type type, 4012 siginfo_t __user *info, unsigned int flags) 4013 { 4014 kernel_siginfo_t kinfo; 4015 4016 switch (flags) { 4017 case PIDFD_SIGNAL_THREAD: 4018 type = PIDTYPE_PID; 4019 break; 4020 case PIDFD_SIGNAL_THREAD_GROUP: 4021 type = PIDTYPE_TGID; 4022 break; 4023 case PIDFD_SIGNAL_PROCESS_GROUP: 4024 type = PIDTYPE_PGID; 4025 break; 4026 } 4027 4028 if (info) { 4029 int ret; 4030 4031 ret = copy_siginfo_from_user_any(&kinfo, info); 4032 if (unlikely(ret)) 4033 return ret; 4034 4035 if (unlikely(sig != kinfo.si_signo)) 4036 return -EINVAL; 4037 4038 /* Only allow sending arbitrary signals to yourself. */ 4039 if ((task_pid(current) != pid || type > PIDTYPE_TGID) && 4040 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) 4041 return -EPERM; 4042 } else { 4043 prepare_kill_siginfo(sig, &kinfo, type); 4044 } 4045 4046 if (type == PIDTYPE_PGID) 4047 return kill_pgrp_info(sig, &kinfo, pid); 4048 4049 return kill_pid_info_type(sig, &kinfo, pid, type); 4050 } 4051 4052 /** 4053 * sys_pidfd_send_signal - Signal a process through a pidfd 4054 * @pidfd: file descriptor of the process 4055 * @sig: signal to send 4056 * @info: signal info 4057 * @flags: future flags 4058 * 4059 * Send the signal to the thread group or to the individual thread depending 4060 * on PIDFD_THREAD. 4061 * In the future extension to @flags may be used to override the default scope 4062 * of @pidfd. 4063 * 4064 * Return: 0 on success, negative errno on failure 4065 */ 4066 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 4067 siginfo_t __user *, info, unsigned int, flags) 4068 { 4069 struct pid *pid; 4070 enum pid_type type; 4071 4072 /* Enforce flags be set to 0 until we add an extension. */ 4073 if (flags & ~PIDFD_SEND_SIGNAL_FLAGS) 4074 return -EINVAL; 4075 4076 /* Ensure that only a single signal scope determining flag is set. */ 4077 if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1) 4078 return -EINVAL; 4079 4080 switch (pidfd) { 4081 case PIDFD_SELF_THREAD: 4082 pid = get_task_pid(current, PIDTYPE_PID); 4083 type = PIDTYPE_PID; 4084 break; 4085 case PIDFD_SELF_THREAD_GROUP: 4086 pid = get_task_pid(current, PIDTYPE_TGID); 4087 type = PIDTYPE_TGID; 4088 break; 4089 default: { 4090 CLASS(fd, f)(pidfd); 4091 if (fd_empty(f)) 4092 return -EBADF; 4093 4094 /* Is this a pidfd? */ 4095 pid = pidfd_to_pid(fd_file(f)); 4096 if (IS_ERR(pid)) 4097 return PTR_ERR(pid); 4098 4099 if (!access_pidfd_pidns(pid)) 4100 return -EINVAL; 4101 4102 /* Infer scope from the type of pidfd. */ 4103 if (fd_file(f)->f_flags & PIDFD_THREAD) 4104 type = PIDTYPE_PID; 4105 else 4106 type = PIDTYPE_TGID; 4107 4108 return do_pidfd_send_signal(pid, sig, type, info, flags); 4109 } 4110 } 4111 4112 return do_pidfd_send_signal(pid, sig, type, info, flags); 4113 } 4114 4115 static int 4116 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 4117 { 4118 struct task_struct *p; 4119 int error = -ESRCH; 4120 4121 rcu_read_lock(); 4122 p = find_task_by_vpid(pid); 4123 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 4124 error = check_kill_permission(sig, info, p); 4125 /* 4126 * The null signal is a permissions and process existence 4127 * probe. No signal is actually delivered. 4128 */ 4129 if (!error && sig) { 4130 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 4131 /* 4132 * If lock_task_sighand() failed we pretend the task 4133 * dies after receiving the signal. The window is tiny, 4134 * and the signal is private anyway. 4135 */ 4136 if (unlikely(error == -ESRCH)) 4137 error = 0; 4138 } 4139 } 4140 rcu_read_unlock(); 4141 4142 return error; 4143 } 4144 4145 static int do_tkill(pid_t tgid, pid_t pid, int sig) 4146 { 4147 struct kernel_siginfo info; 4148 4149 prepare_kill_siginfo(sig, &info, PIDTYPE_PID); 4150 4151 return do_send_specific(tgid, pid, sig, &info); 4152 } 4153 4154 /** 4155 * sys_tgkill - send signal to one specific thread 4156 * @tgid: the thread group ID of the thread 4157 * @pid: the PID of the thread 4158 * @sig: signal to be sent 4159 * 4160 * This syscall also checks the @tgid and returns -ESRCH even if the PID 4161 * exists but it's not belonging to the target process anymore. This 4162 * method solves the problem of threads exiting and PIDs getting reused. 4163 */ 4164 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 4165 { 4166 /* This is only valid for single tasks */ 4167 if (pid <= 0 || tgid <= 0) 4168 return -EINVAL; 4169 4170 return do_tkill(tgid, pid, sig); 4171 } 4172 4173 /** 4174 * sys_tkill - send signal to one specific task 4175 * @pid: the PID of the task 4176 * @sig: signal to be sent 4177 * 4178 * Send a signal to only one task, even if it's a CLONE_THREAD task. 4179 */ 4180 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 4181 { 4182 /* This is only valid for single tasks */ 4183 if (pid <= 0) 4184 return -EINVAL; 4185 4186 return do_tkill(0, pid, sig); 4187 } 4188 4189 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 4190 { 4191 /* Not even root can pretend to send signals from the kernel. 4192 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4193 */ 4194 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4195 (task_pid_vnr(current) != pid)) 4196 return -EPERM; 4197 4198 /* POSIX.1b doesn't mention process groups. */ 4199 return kill_proc_info(sig, info, pid); 4200 } 4201 4202 /** 4203 * sys_rt_sigqueueinfo - send signal information to a signal 4204 * @pid: the PID of the thread 4205 * @sig: signal to be sent 4206 * @uinfo: signal info to be sent 4207 */ 4208 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 4209 siginfo_t __user *, uinfo) 4210 { 4211 kernel_siginfo_t info; 4212 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4213 if (unlikely(ret)) 4214 return ret; 4215 return do_rt_sigqueueinfo(pid, sig, &info); 4216 } 4217 4218 #ifdef CONFIG_COMPAT 4219 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 4220 compat_pid_t, pid, 4221 int, sig, 4222 struct compat_siginfo __user *, uinfo) 4223 { 4224 kernel_siginfo_t info; 4225 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4226 if (unlikely(ret)) 4227 return ret; 4228 return do_rt_sigqueueinfo(pid, sig, &info); 4229 } 4230 #endif 4231 4232 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 4233 { 4234 /* This is only valid for single tasks */ 4235 if (pid <= 0 || tgid <= 0) 4236 return -EINVAL; 4237 4238 /* Not even root can pretend to send signals from the kernel. 4239 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4240 */ 4241 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4242 (task_pid_vnr(current) != pid)) 4243 return -EPERM; 4244 4245 return do_send_specific(tgid, pid, sig, info); 4246 } 4247 4248 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 4249 siginfo_t __user *, uinfo) 4250 { 4251 kernel_siginfo_t info; 4252 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4253 if (unlikely(ret)) 4254 return ret; 4255 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4256 } 4257 4258 #ifdef CONFIG_COMPAT 4259 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 4260 compat_pid_t, tgid, 4261 compat_pid_t, pid, 4262 int, sig, 4263 struct compat_siginfo __user *, uinfo) 4264 { 4265 kernel_siginfo_t info; 4266 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4267 if (unlikely(ret)) 4268 return ret; 4269 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4270 } 4271 #endif 4272 4273 /* 4274 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 4275 */ 4276 void kernel_sigaction(int sig, __sighandler_t action) 4277 { 4278 spin_lock_irq(¤t->sighand->siglock); 4279 current->sighand->action[sig - 1].sa.sa_handler = action; 4280 if (action == SIG_IGN) { 4281 sigset_t mask; 4282 4283 sigemptyset(&mask); 4284 sigaddset(&mask, sig); 4285 4286 flush_sigqueue_mask(current, &mask, ¤t->signal->shared_pending); 4287 flush_sigqueue_mask(current, &mask, ¤t->pending); 4288 recalc_sigpending(); 4289 } 4290 spin_unlock_irq(¤t->sighand->siglock); 4291 } 4292 EXPORT_SYMBOL(kernel_sigaction); 4293 4294 void __weak sigaction_compat_abi(struct k_sigaction *act, 4295 struct k_sigaction *oact) 4296 { 4297 } 4298 4299 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 4300 { 4301 struct task_struct *p = current, *t; 4302 struct k_sigaction *k; 4303 sigset_t mask; 4304 4305 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 4306 return -EINVAL; 4307 4308 k = &p->sighand->action[sig-1]; 4309 4310 spin_lock_irq(&p->sighand->siglock); 4311 if (k->sa.sa_flags & SA_IMMUTABLE) { 4312 spin_unlock_irq(&p->sighand->siglock); 4313 return -EINVAL; 4314 } 4315 if (oact) 4316 *oact = *k; 4317 4318 /* 4319 * Make sure that we never accidentally claim to support SA_UNSUPPORTED, 4320 * e.g. by having an architecture use the bit in their uapi. 4321 */ 4322 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED); 4323 4324 /* 4325 * Clear unknown flag bits in order to allow userspace to detect missing 4326 * support for flag bits and to allow the kernel to use non-uapi bits 4327 * internally. 4328 */ 4329 if (act) 4330 act->sa.sa_flags &= UAPI_SA_FLAGS; 4331 if (oact) 4332 oact->sa.sa_flags &= UAPI_SA_FLAGS; 4333 4334 sigaction_compat_abi(act, oact); 4335 4336 if (act) { 4337 bool was_ignored = k->sa.sa_handler == SIG_IGN; 4338 4339 sigdelsetmask(&act->sa.sa_mask, 4340 sigmask(SIGKILL) | sigmask(SIGSTOP)); 4341 *k = *act; 4342 /* 4343 * POSIX 3.3.1.3: 4344 * "Setting a signal action to SIG_IGN for a signal that is 4345 * pending shall cause the pending signal to be discarded, 4346 * whether or not it is blocked." 4347 * 4348 * "Setting a signal action to SIG_DFL for a signal that is 4349 * pending and whose default action is to ignore the signal 4350 * (for example, SIGCHLD), shall cause the pending signal to 4351 * be discarded, whether or not it is blocked" 4352 */ 4353 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 4354 sigemptyset(&mask); 4355 sigaddset(&mask, sig); 4356 flush_sigqueue_mask(p, &mask, &p->signal->shared_pending); 4357 for_each_thread(p, t) 4358 flush_sigqueue_mask(p, &mask, &t->pending); 4359 } else if (was_ignored) { 4360 posixtimer_sig_unignore(p, sig); 4361 } 4362 } 4363 4364 spin_unlock_irq(&p->sighand->siglock); 4365 return 0; 4366 } 4367 4368 #ifdef CONFIG_DYNAMIC_SIGFRAME 4369 static inline void sigaltstack_lock(void) 4370 __acquires(¤t->sighand->siglock) 4371 { 4372 spin_lock_irq(¤t->sighand->siglock); 4373 } 4374 4375 static inline void sigaltstack_unlock(void) 4376 __releases(¤t->sighand->siglock) 4377 { 4378 spin_unlock_irq(¤t->sighand->siglock); 4379 } 4380 #else 4381 static inline void sigaltstack_lock(void) { } 4382 static inline void sigaltstack_unlock(void) { } 4383 #endif 4384 4385 static int 4386 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 4387 size_t min_ss_size) 4388 { 4389 struct task_struct *t = current; 4390 int ret = 0; 4391 4392 if (oss) { 4393 memset(oss, 0, sizeof(stack_t)); 4394 oss->ss_sp = (void __user *) t->sas_ss_sp; 4395 oss->ss_size = t->sas_ss_size; 4396 oss->ss_flags = sas_ss_flags(sp) | 4397 (current->sas_ss_flags & SS_FLAG_BITS); 4398 } 4399 4400 if (ss) { 4401 void __user *ss_sp = ss->ss_sp; 4402 size_t ss_size = ss->ss_size; 4403 unsigned ss_flags = ss->ss_flags; 4404 int ss_mode; 4405 4406 if (unlikely(on_sig_stack(sp))) 4407 return -EPERM; 4408 4409 ss_mode = ss_flags & ~SS_FLAG_BITS; 4410 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 4411 ss_mode != 0)) 4412 return -EINVAL; 4413 4414 /* 4415 * Return before taking any locks if no actual 4416 * sigaltstack changes were requested. 4417 */ 4418 if (t->sas_ss_sp == (unsigned long)ss_sp && 4419 t->sas_ss_size == ss_size && 4420 t->sas_ss_flags == ss_flags) 4421 return 0; 4422 4423 sigaltstack_lock(); 4424 if (ss_mode == SS_DISABLE) { 4425 ss_size = 0; 4426 ss_sp = NULL; 4427 } else { 4428 if (unlikely(ss_size < min_ss_size)) 4429 ret = -ENOMEM; 4430 if (!sigaltstack_size_valid(ss_size)) 4431 ret = -ENOMEM; 4432 } 4433 if (!ret) { 4434 t->sas_ss_sp = (unsigned long) ss_sp; 4435 t->sas_ss_size = ss_size; 4436 t->sas_ss_flags = ss_flags; 4437 } 4438 sigaltstack_unlock(); 4439 } 4440 return ret; 4441 } 4442 4443 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 4444 { 4445 stack_t new, old; 4446 int err; 4447 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 4448 return -EFAULT; 4449 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 4450 current_user_stack_pointer(), 4451 MINSIGSTKSZ); 4452 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 4453 err = -EFAULT; 4454 return err; 4455 } 4456 4457 int restore_altstack(const stack_t __user *uss) 4458 { 4459 stack_t new; 4460 if (copy_from_user(&new, uss, sizeof(stack_t))) 4461 return -EFAULT; 4462 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 4463 MINSIGSTKSZ); 4464 /* squash all but EFAULT for now */ 4465 return 0; 4466 } 4467 4468 int __save_altstack(stack_t __user *uss, unsigned long sp) 4469 { 4470 struct task_struct *t = current; 4471 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 4472 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4473 __put_user(t->sas_ss_size, &uss->ss_size); 4474 return err; 4475 } 4476 4477 #ifdef CONFIG_COMPAT 4478 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 4479 compat_stack_t __user *uoss_ptr) 4480 { 4481 stack_t uss, uoss; 4482 int ret; 4483 4484 if (uss_ptr) { 4485 compat_stack_t uss32; 4486 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 4487 return -EFAULT; 4488 uss.ss_sp = compat_ptr(uss32.ss_sp); 4489 uss.ss_flags = uss32.ss_flags; 4490 uss.ss_size = uss32.ss_size; 4491 } 4492 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 4493 compat_user_stack_pointer(), 4494 COMPAT_MINSIGSTKSZ); 4495 if (ret >= 0 && uoss_ptr) { 4496 compat_stack_t old; 4497 memset(&old, 0, sizeof(old)); 4498 old.ss_sp = ptr_to_compat(uoss.ss_sp); 4499 old.ss_flags = uoss.ss_flags; 4500 old.ss_size = uoss.ss_size; 4501 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 4502 ret = -EFAULT; 4503 } 4504 return ret; 4505 } 4506 4507 COMPAT_SYSCALL_DEFINE2(sigaltstack, 4508 const compat_stack_t __user *, uss_ptr, 4509 compat_stack_t __user *, uoss_ptr) 4510 { 4511 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 4512 } 4513 4514 int compat_restore_altstack(const compat_stack_t __user *uss) 4515 { 4516 int err = do_compat_sigaltstack(uss, NULL); 4517 /* squash all but -EFAULT for now */ 4518 return err == -EFAULT ? err : 0; 4519 } 4520 4521 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 4522 { 4523 int err; 4524 struct task_struct *t = current; 4525 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 4526 &uss->ss_sp) | 4527 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4528 __put_user(t->sas_ss_size, &uss->ss_size); 4529 return err; 4530 } 4531 #endif 4532 4533 #ifdef __ARCH_WANT_SYS_SIGPENDING 4534 4535 /** 4536 * sys_sigpending - examine pending signals 4537 * @uset: where mask of pending signal is returned 4538 */ 4539 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4540 { 4541 sigset_t set; 4542 4543 if (sizeof(old_sigset_t) > sizeof(*uset)) 4544 return -EINVAL; 4545 4546 do_sigpending(&set); 4547 4548 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4549 return -EFAULT; 4550 4551 return 0; 4552 } 4553 4554 #ifdef CONFIG_COMPAT 4555 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4556 { 4557 sigset_t set; 4558 4559 do_sigpending(&set); 4560 4561 return put_user(set.sig[0], set32); 4562 } 4563 #endif 4564 4565 #endif 4566 4567 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 4568 /** 4569 * sys_sigprocmask - examine and change blocked signals 4570 * @how: whether to add, remove, or set signals 4571 * @nset: signals to add or remove (if non-null) 4572 * @oset: previous value of signal mask if non-null 4573 * 4574 * Some platforms have their own version with special arguments; 4575 * others support only sys_rt_sigprocmask. 4576 */ 4577 4578 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4579 old_sigset_t __user *, oset) 4580 { 4581 old_sigset_t old_set, new_set; 4582 sigset_t new_blocked; 4583 4584 old_set = current->blocked.sig[0]; 4585 4586 if (nset) { 4587 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4588 return -EFAULT; 4589 4590 new_blocked = current->blocked; 4591 4592 switch (how) { 4593 case SIG_BLOCK: 4594 sigaddsetmask(&new_blocked, new_set); 4595 break; 4596 case SIG_UNBLOCK: 4597 sigdelsetmask(&new_blocked, new_set); 4598 break; 4599 case SIG_SETMASK: 4600 new_blocked.sig[0] = new_set; 4601 break; 4602 default: 4603 return -EINVAL; 4604 } 4605 4606 set_current_blocked(&new_blocked); 4607 } 4608 4609 if (oset) { 4610 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4611 return -EFAULT; 4612 } 4613 4614 return 0; 4615 } 4616 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4617 4618 #ifndef CONFIG_ODD_RT_SIGACTION 4619 /** 4620 * sys_rt_sigaction - alter an action taken by a process 4621 * @sig: signal to be sent 4622 * @act: new sigaction 4623 * @oact: used to save the previous sigaction 4624 * @sigsetsize: size of sigset_t type 4625 */ 4626 SYSCALL_DEFINE4(rt_sigaction, int, sig, 4627 const struct sigaction __user *, act, 4628 struct sigaction __user *, oact, 4629 size_t, sigsetsize) 4630 { 4631 struct k_sigaction new_sa, old_sa; 4632 int ret; 4633 4634 /* XXX: Don't preclude handling different sized sigset_t's. */ 4635 if (sigsetsize != sizeof(sigset_t)) 4636 return -EINVAL; 4637 4638 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4639 return -EFAULT; 4640 4641 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4642 if (ret) 4643 return ret; 4644 4645 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4646 return -EFAULT; 4647 4648 return 0; 4649 } 4650 #ifdef CONFIG_COMPAT 4651 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4652 const struct compat_sigaction __user *, act, 4653 struct compat_sigaction __user *, oact, 4654 compat_size_t, sigsetsize) 4655 { 4656 struct k_sigaction new_ka, old_ka; 4657 #ifdef __ARCH_HAS_SA_RESTORER 4658 compat_uptr_t restorer; 4659 #endif 4660 int ret; 4661 4662 /* XXX: Don't preclude handling different sized sigset_t's. */ 4663 if (sigsetsize != sizeof(compat_sigset_t)) 4664 return -EINVAL; 4665 4666 if (act) { 4667 compat_uptr_t handler; 4668 ret = get_user(handler, &act->sa_handler); 4669 new_ka.sa.sa_handler = compat_ptr(handler); 4670 #ifdef __ARCH_HAS_SA_RESTORER 4671 ret |= get_user(restorer, &act->sa_restorer); 4672 new_ka.sa.sa_restorer = compat_ptr(restorer); 4673 #endif 4674 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4675 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4676 if (ret) 4677 return -EFAULT; 4678 } 4679 4680 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4681 if (!ret && oact) { 4682 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4683 &oact->sa_handler); 4684 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4685 sizeof(oact->sa_mask)); 4686 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4687 #ifdef __ARCH_HAS_SA_RESTORER 4688 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4689 &oact->sa_restorer); 4690 #endif 4691 } 4692 return ret; 4693 } 4694 #endif 4695 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4696 4697 #ifdef CONFIG_OLD_SIGACTION 4698 SYSCALL_DEFINE3(sigaction, int, sig, 4699 const struct old_sigaction __user *, act, 4700 struct old_sigaction __user *, oact) 4701 { 4702 struct k_sigaction new_ka, old_ka; 4703 int ret; 4704 4705 if (act) { 4706 old_sigset_t mask; 4707 if (!access_ok(act, sizeof(*act)) || 4708 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4709 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4710 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4711 __get_user(mask, &act->sa_mask)) 4712 return -EFAULT; 4713 #ifdef __ARCH_HAS_KA_RESTORER 4714 new_ka.ka_restorer = NULL; 4715 #endif 4716 siginitset(&new_ka.sa.sa_mask, mask); 4717 } 4718 4719 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4720 4721 if (!ret && oact) { 4722 if (!access_ok(oact, sizeof(*oact)) || 4723 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4724 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4725 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4726 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4727 return -EFAULT; 4728 } 4729 4730 return ret; 4731 } 4732 #endif 4733 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4734 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4735 const struct compat_old_sigaction __user *, act, 4736 struct compat_old_sigaction __user *, oact) 4737 { 4738 struct k_sigaction new_ka, old_ka; 4739 int ret; 4740 compat_old_sigset_t mask; 4741 compat_uptr_t handler, restorer; 4742 4743 if (act) { 4744 if (!access_ok(act, sizeof(*act)) || 4745 __get_user(handler, &act->sa_handler) || 4746 __get_user(restorer, &act->sa_restorer) || 4747 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4748 __get_user(mask, &act->sa_mask)) 4749 return -EFAULT; 4750 4751 #ifdef __ARCH_HAS_KA_RESTORER 4752 new_ka.ka_restorer = NULL; 4753 #endif 4754 new_ka.sa.sa_handler = compat_ptr(handler); 4755 new_ka.sa.sa_restorer = compat_ptr(restorer); 4756 siginitset(&new_ka.sa.sa_mask, mask); 4757 } 4758 4759 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4760 4761 if (!ret && oact) { 4762 if (!access_ok(oact, sizeof(*oact)) || 4763 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4764 &oact->sa_handler) || 4765 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4766 &oact->sa_restorer) || 4767 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4768 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4769 return -EFAULT; 4770 } 4771 return ret; 4772 } 4773 #endif 4774 4775 #ifdef CONFIG_SGETMASK_SYSCALL 4776 4777 /* 4778 * For backwards compatibility. Functionality superseded by sigprocmask. 4779 */ 4780 SYSCALL_DEFINE0(sgetmask) 4781 { 4782 /* SMP safe */ 4783 return current->blocked.sig[0]; 4784 } 4785 4786 SYSCALL_DEFINE1(ssetmask, int, newmask) 4787 { 4788 int old = current->blocked.sig[0]; 4789 sigset_t newset; 4790 4791 siginitset(&newset, newmask); 4792 set_current_blocked(&newset); 4793 4794 return old; 4795 } 4796 #endif /* CONFIG_SGETMASK_SYSCALL */ 4797 4798 #ifdef __ARCH_WANT_SYS_SIGNAL 4799 /* 4800 * For backwards compatibility. Functionality superseded by sigaction. 4801 */ 4802 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4803 { 4804 struct k_sigaction new_sa, old_sa; 4805 int ret; 4806 4807 new_sa.sa.sa_handler = handler; 4808 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4809 sigemptyset(&new_sa.sa.sa_mask); 4810 4811 ret = do_sigaction(sig, &new_sa, &old_sa); 4812 4813 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4814 } 4815 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4816 4817 #ifdef __ARCH_WANT_SYS_PAUSE 4818 4819 SYSCALL_DEFINE0(pause) 4820 { 4821 while (!signal_pending(current)) { 4822 __set_current_state(TASK_INTERRUPTIBLE); 4823 schedule(); 4824 } 4825 return -ERESTARTNOHAND; 4826 } 4827 4828 #endif 4829 4830 static int sigsuspend(sigset_t *set) 4831 { 4832 current->saved_sigmask = current->blocked; 4833 set_current_blocked(set); 4834 4835 while (!signal_pending(current)) { 4836 __set_current_state(TASK_INTERRUPTIBLE); 4837 schedule(); 4838 } 4839 set_restore_sigmask(); 4840 return -ERESTARTNOHAND; 4841 } 4842 4843 /** 4844 * sys_rt_sigsuspend - replace the signal mask for a value with the 4845 * @unewset value until a signal is received 4846 * @unewset: new signal mask value 4847 * @sigsetsize: size of sigset_t type 4848 */ 4849 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4850 { 4851 sigset_t newset; 4852 4853 /* XXX: Don't preclude handling different sized sigset_t's. */ 4854 if (sigsetsize != sizeof(sigset_t)) 4855 return -EINVAL; 4856 4857 if (copy_from_user(&newset, unewset, sizeof(newset))) 4858 return -EFAULT; 4859 return sigsuspend(&newset); 4860 } 4861 4862 #ifdef CONFIG_COMPAT 4863 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4864 { 4865 sigset_t newset; 4866 4867 /* XXX: Don't preclude handling different sized sigset_t's. */ 4868 if (sigsetsize != sizeof(sigset_t)) 4869 return -EINVAL; 4870 4871 if (get_compat_sigset(&newset, unewset)) 4872 return -EFAULT; 4873 return sigsuspend(&newset); 4874 } 4875 #endif 4876 4877 #ifdef CONFIG_OLD_SIGSUSPEND 4878 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4879 { 4880 sigset_t blocked; 4881 siginitset(&blocked, mask); 4882 return sigsuspend(&blocked); 4883 } 4884 #endif 4885 #ifdef CONFIG_OLD_SIGSUSPEND3 4886 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4887 { 4888 sigset_t blocked; 4889 siginitset(&blocked, mask); 4890 return sigsuspend(&blocked); 4891 } 4892 #endif 4893 4894 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4895 { 4896 return NULL; 4897 } 4898 4899 static inline void siginfo_buildtime_checks(void) 4900 { 4901 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4902 4903 /* Verify the offsets in the two siginfos match */ 4904 #define CHECK_OFFSET(field) \ 4905 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4906 4907 /* kill */ 4908 CHECK_OFFSET(si_pid); 4909 CHECK_OFFSET(si_uid); 4910 4911 /* timer */ 4912 CHECK_OFFSET(si_tid); 4913 CHECK_OFFSET(si_overrun); 4914 CHECK_OFFSET(si_value); 4915 4916 /* rt */ 4917 CHECK_OFFSET(si_pid); 4918 CHECK_OFFSET(si_uid); 4919 CHECK_OFFSET(si_value); 4920 4921 /* sigchld */ 4922 CHECK_OFFSET(si_pid); 4923 CHECK_OFFSET(si_uid); 4924 CHECK_OFFSET(si_status); 4925 CHECK_OFFSET(si_utime); 4926 CHECK_OFFSET(si_stime); 4927 4928 /* sigfault */ 4929 CHECK_OFFSET(si_addr); 4930 CHECK_OFFSET(si_trapno); 4931 CHECK_OFFSET(si_addr_lsb); 4932 CHECK_OFFSET(si_lower); 4933 CHECK_OFFSET(si_upper); 4934 CHECK_OFFSET(si_pkey); 4935 CHECK_OFFSET(si_perf_data); 4936 CHECK_OFFSET(si_perf_type); 4937 CHECK_OFFSET(si_perf_flags); 4938 4939 /* sigpoll */ 4940 CHECK_OFFSET(si_band); 4941 CHECK_OFFSET(si_fd); 4942 4943 /* sigsys */ 4944 CHECK_OFFSET(si_call_addr); 4945 CHECK_OFFSET(si_syscall); 4946 CHECK_OFFSET(si_arch); 4947 #undef CHECK_OFFSET 4948 4949 /* usb asyncio */ 4950 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != 4951 offsetof(struct siginfo, si_addr)); 4952 if (sizeof(int) == sizeof(void __user *)) { 4953 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != 4954 sizeof(void __user *)); 4955 } else { 4956 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + 4957 sizeof_field(struct siginfo, si_uid)) != 4958 sizeof(void __user *)); 4959 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != 4960 offsetof(struct siginfo, si_uid)); 4961 } 4962 #ifdef CONFIG_COMPAT 4963 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != 4964 offsetof(struct compat_siginfo, si_addr)); 4965 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4966 sizeof(compat_uptr_t)); 4967 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4968 sizeof_field(struct siginfo, si_pid)); 4969 #endif 4970 } 4971 4972 #if defined(CONFIG_SYSCTL) 4973 static const struct ctl_table signal_debug_table[] = { 4974 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE 4975 { 4976 .procname = "exception-trace", 4977 .data = &show_unhandled_signals, 4978 .maxlen = sizeof(int), 4979 .mode = 0644, 4980 .proc_handler = proc_dointvec 4981 }, 4982 #endif 4983 }; 4984 4985 static int __init init_signal_sysctls(void) 4986 { 4987 register_sysctl_init("debug", signal_debug_table); 4988 return 0; 4989 } 4990 early_initcall(init_signal_sysctls); 4991 #endif /* CONFIG_SYSCTL */ 4992 4993 void __init signals_init(void) 4994 { 4995 siginfo_buildtime_checks(); 4996 4997 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT); 4998 } 4999 5000 #ifdef CONFIG_KGDB_KDB 5001 #include <linux/kdb.h> 5002 /* 5003 * kdb_send_sig - Allows kdb to send signals without exposing 5004 * signal internals. This function checks if the required locks are 5005 * available before calling the main signal code, to avoid kdb 5006 * deadlocks. 5007 */ 5008 void kdb_send_sig(struct task_struct *t, int sig) 5009 { 5010 static struct task_struct *kdb_prev_t; 5011 int new_t, ret; 5012 if (!spin_trylock(&t->sighand->siglock)) { 5013 kdb_printf("Can't do kill command now.\n" 5014 "The sigmask lock is held somewhere else in " 5015 "kernel, try again later\n"); 5016 return; 5017 } 5018 new_t = kdb_prev_t != t; 5019 kdb_prev_t = t; 5020 if (!task_is_running(t) && new_t) { 5021 spin_unlock(&t->sighand->siglock); 5022 kdb_printf("Process is not RUNNING, sending a signal from " 5023 "kdb risks deadlock\n" 5024 "on the run queue locks. " 5025 "The signal has _not_ been sent.\n" 5026 "Reissue the kill command if you want to risk " 5027 "the deadlock.\n"); 5028 return; 5029 } 5030 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 5031 spin_unlock(&t->sighand->siglock); 5032 if (ret) 5033 kdb_printf("Fail to deliver Signal %d to process %d.\n", 5034 sig, t->pid); 5035 else 5036 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 5037 } 5038 #endif /* CONFIG_KGDB_KDB */ 5039