xref: /linux/kernel/signal.c (revision ea8d7647f9ddf1f81e2027ed305299797299aa03)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/mm.h>
26 #include <linux/proc_fs.h>
27 #include <linux/tty.h>
28 #include <linux/binfmts.h>
29 #include <linux/coredump.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/ptrace.h>
33 #include <linux/signal.h>
34 #include <linux/signalfd.h>
35 #include <linux/ratelimit.h>
36 #include <linux/task_work.h>
37 #include <linux/capability.h>
38 #include <linux/freezer.h>
39 #include <linux/pid_namespace.h>
40 #include <linux/nsproxy.h>
41 #include <linux/user_namespace.h>
42 #include <linux/uprobes.h>
43 #include <linux/compat.h>
44 #include <linux/cn_proc.h>
45 #include <linux/compiler.h>
46 #include <linux/posix-timers.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49 #include <linux/sysctl.h>
50 #include <uapi/linux/pidfd.h>
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/signal.h>
54 
55 #include <asm/param.h>
56 #include <linux/uaccess.h>
57 #include <asm/unistd.h>
58 #include <asm/siginfo.h>
59 #include <asm/cacheflush.h>
60 #include <asm/syscall.h>	/* for syscall_get_* */
61 
62 #include "time/posix-timers.h"
63 
64 /*
65  * SLAB caches for signal bits.
66  */
67 
68 static struct kmem_cache *sigqueue_cachep;
69 
70 int print_fatal_signals __read_mostly;
71 
72 static void __user *sig_handler(struct task_struct *t, int sig)
73 {
74 	return t->sighand->action[sig - 1].sa.sa_handler;
75 }
76 
77 static inline bool sig_handler_ignored(void __user *handler, int sig)
78 {
79 	/* Is it explicitly or implicitly ignored? */
80 	return handler == SIG_IGN ||
81 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
82 }
83 
84 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
85 {
86 	void __user *handler;
87 
88 	handler = sig_handler(t, sig);
89 
90 	/* SIGKILL and SIGSTOP may not be sent to the global init */
91 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
92 		return true;
93 
94 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
95 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
96 		return true;
97 
98 	/* Only allow kernel generated signals to this kthread */
99 	if (unlikely((t->flags & PF_KTHREAD) &&
100 		     (handler == SIG_KTHREAD_KERNEL) && !force))
101 		return true;
102 
103 	return sig_handler_ignored(handler, sig);
104 }
105 
106 static bool sig_ignored(struct task_struct *t, int sig, bool force)
107 {
108 	/*
109 	 * Blocked signals are never ignored, since the
110 	 * signal handler may change by the time it is
111 	 * unblocked.
112 	 */
113 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
114 		return false;
115 
116 	/*
117 	 * Tracers may want to know about even ignored signal unless it
118 	 * is SIGKILL which can't be reported anyway but can be ignored
119 	 * by SIGNAL_UNKILLABLE task.
120 	 */
121 	if (t->ptrace && sig != SIGKILL)
122 		return false;
123 
124 	return sig_task_ignored(t, sig, force);
125 }
126 
127 /*
128  * Re-calculate pending state from the set of locally pending
129  * signals, globally pending signals, and blocked signals.
130  */
131 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
132 {
133 	unsigned long ready;
134 	long i;
135 
136 	switch (_NSIG_WORDS) {
137 	default:
138 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
139 			ready |= signal->sig[i] &~ blocked->sig[i];
140 		break;
141 
142 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
143 		ready |= signal->sig[2] &~ blocked->sig[2];
144 		ready |= signal->sig[1] &~ blocked->sig[1];
145 		ready |= signal->sig[0] &~ blocked->sig[0];
146 		break;
147 
148 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
149 		ready |= signal->sig[0] &~ blocked->sig[0];
150 		break;
151 
152 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
153 	}
154 	return ready !=	0;
155 }
156 
157 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
158 
159 static bool recalc_sigpending_tsk(struct task_struct *t)
160 {
161 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
162 	    PENDING(&t->pending, &t->blocked) ||
163 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
164 	    cgroup_task_frozen(t)) {
165 		set_tsk_thread_flag(t, TIF_SIGPENDING);
166 		return true;
167 	}
168 
169 	/*
170 	 * We must never clear the flag in another thread, or in current
171 	 * when it's possible the current syscall is returning -ERESTART*.
172 	 * So we don't clear it here, and only callers who know they should do.
173 	 */
174 	return false;
175 }
176 
177 void recalc_sigpending(void)
178 {
179 	if (!recalc_sigpending_tsk(current) && !freezing(current))
180 		clear_thread_flag(TIF_SIGPENDING);
181 
182 }
183 EXPORT_SYMBOL(recalc_sigpending);
184 
185 void calculate_sigpending(void)
186 {
187 	/* Have any signals or users of TIF_SIGPENDING been delayed
188 	 * until after fork?
189 	 */
190 	spin_lock_irq(&current->sighand->siglock);
191 	set_tsk_thread_flag(current, TIF_SIGPENDING);
192 	recalc_sigpending();
193 	spin_unlock_irq(&current->sighand->siglock);
194 }
195 
196 /* Given the mask, find the first available signal that should be serviced. */
197 
198 #define SYNCHRONOUS_MASK \
199 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
200 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
201 
202 int next_signal(struct sigpending *pending, sigset_t *mask)
203 {
204 	unsigned long i, *s, *m, x;
205 	int sig = 0;
206 
207 	s = pending->signal.sig;
208 	m = mask->sig;
209 
210 	/*
211 	 * Handle the first word specially: it contains the
212 	 * synchronous signals that need to be dequeued first.
213 	 */
214 	x = *s &~ *m;
215 	if (x) {
216 		if (x & SYNCHRONOUS_MASK)
217 			x &= SYNCHRONOUS_MASK;
218 		sig = ffz(~x) + 1;
219 		return sig;
220 	}
221 
222 	switch (_NSIG_WORDS) {
223 	default:
224 		for (i = 1; i < _NSIG_WORDS; ++i) {
225 			x = *++s &~ *++m;
226 			if (!x)
227 				continue;
228 			sig = ffz(~x) + i*_NSIG_BPW + 1;
229 			break;
230 		}
231 		break;
232 
233 	case 2:
234 		x = s[1] &~ m[1];
235 		if (!x)
236 			break;
237 		sig = ffz(~x) + _NSIG_BPW + 1;
238 		break;
239 
240 	case 1:
241 		/* Nothing to do */
242 		break;
243 	}
244 
245 	return sig;
246 }
247 
248 static inline void print_dropped_signal(int sig)
249 {
250 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
251 
252 	if (!print_fatal_signals)
253 		return;
254 
255 	if (!__ratelimit(&ratelimit_state))
256 		return;
257 
258 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
259 				current->comm, current->pid, sig);
260 }
261 
262 /**
263  * task_set_jobctl_pending - set jobctl pending bits
264  * @task: target task
265  * @mask: pending bits to set
266  *
267  * Clear @mask from @task->jobctl.  @mask must be subset of
268  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
269  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
270  * cleared.  If @task is already being killed or exiting, this function
271  * becomes noop.
272  *
273  * CONTEXT:
274  * Must be called with @task->sighand->siglock held.
275  *
276  * RETURNS:
277  * %true if @mask is set, %false if made noop because @task was dying.
278  */
279 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
280 {
281 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
282 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
283 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
284 
285 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
286 		return false;
287 
288 	if (mask & JOBCTL_STOP_SIGMASK)
289 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
290 
291 	task->jobctl |= mask;
292 	return true;
293 }
294 
295 /**
296  * task_clear_jobctl_trapping - clear jobctl trapping bit
297  * @task: target task
298  *
299  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
300  * Clear it and wake up the ptracer.  Note that we don't need any further
301  * locking.  @task->siglock guarantees that @task->parent points to the
302  * ptracer.
303  *
304  * CONTEXT:
305  * Must be called with @task->sighand->siglock held.
306  */
307 void task_clear_jobctl_trapping(struct task_struct *task)
308 {
309 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
310 		task->jobctl &= ~JOBCTL_TRAPPING;
311 		smp_mb();	/* advised by wake_up_bit() */
312 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
313 	}
314 }
315 
316 /**
317  * task_clear_jobctl_pending - clear jobctl pending bits
318  * @task: target task
319  * @mask: pending bits to clear
320  *
321  * Clear @mask from @task->jobctl.  @mask must be subset of
322  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
323  * STOP bits are cleared together.
324  *
325  * If clearing of @mask leaves no stop or trap pending, this function calls
326  * task_clear_jobctl_trapping().
327  *
328  * CONTEXT:
329  * Must be called with @task->sighand->siglock held.
330  */
331 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
332 {
333 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
334 
335 	if (mask & JOBCTL_STOP_PENDING)
336 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
337 
338 	task->jobctl &= ~mask;
339 
340 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
341 		task_clear_jobctl_trapping(task);
342 }
343 
344 /**
345  * task_participate_group_stop - participate in a group stop
346  * @task: task participating in a group stop
347  *
348  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
349  * Group stop states are cleared and the group stop count is consumed if
350  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
351  * stop, the appropriate `SIGNAL_*` flags are set.
352  *
353  * CONTEXT:
354  * Must be called with @task->sighand->siglock held.
355  *
356  * RETURNS:
357  * %true if group stop completion should be notified to the parent, %false
358  * otherwise.
359  */
360 static bool task_participate_group_stop(struct task_struct *task)
361 {
362 	struct signal_struct *sig = task->signal;
363 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
364 
365 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
366 
367 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
368 
369 	if (!consume)
370 		return false;
371 
372 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
373 		sig->group_stop_count--;
374 
375 	/*
376 	 * Tell the caller to notify completion iff we are entering into a
377 	 * fresh group stop.  Read comment in do_signal_stop() for details.
378 	 */
379 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
380 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
381 		return true;
382 	}
383 	return false;
384 }
385 
386 void task_join_group_stop(struct task_struct *task)
387 {
388 	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
389 	struct signal_struct *sig = current->signal;
390 
391 	if (sig->group_stop_count) {
392 		sig->group_stop_count++;
393 		mask |= JOBCTL_STOP_CONSUME;
394 	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
395 		return;
396 
397 	/* Have the new thread join an on-going signal group stop */
398 	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
399 }
400 
401 static struct ucounts *sig_get_ucounts(struct task_struct *t, int sig,
402 				       int override_rlimit)
403 {
404 	struct ucounts *ucounts;
405 	long sigpending;
406 
407 	/*
408 	 * Protect access to @t credentials. This can go away when all
409 	 * callers hold rcu read lock.
410 	 *
411 	 * NOTE! A pending signal will hold on to the user refcount,
412 	 * and we get/put the refcount only when the sigpending count
413 	 * changes from/to zero.
414 	 */
415 	rcu_read_lock();
416 	ucounts = task_ucounts(t);
417 	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING,
418 					    override_rlimit);
419 	rcu_read_unlock();
420 	if (!sigpending)
421 		return NULL;
422 
423 	if (unlikely(!override_rlimit && sigpending > task_rlimit(t, RLIMIT_SIGPENDING))) {
424 		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
425 		print_dropped_signal(sig);
426 		return NULL;
427 	}
428 
429 	return ucounts;
430 }
431 
432 static void __sigqueue_init(struct sigqueue *q, struct ucounts *ucounts,
433 			    const unsigned int sigqueue_flags)
434 {
435 	INIT_LIST_HEAD(&q->list);
436 	q->flags = sigqueue_flags;
437 	q->ucounts = ucounts;
438 }
439 
440 /*
441  * allocate a new signal queue record
442  * - this may be called without locks if and only if t == current, otherwise an
443  *   appropriate lock must be held to stop the target task from exiting
444  */
445 static struct sigqueue *sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
446 				       int override_rlimit)
447 {
448 	struct ucounts *ucounts = sig_get_ucounts(t, sig, override_rlimit);
449 	struct sigqueue *q;
450 
451 	if (!ucounts)
452 		return NULL;
453 
454 	q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
455 	if (!q) {
456 		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
457 		return NULL;
458 	}
459 
460 	__sigqueue_init(q, ucounts, 0);
461 	return q;
462 }
463 
464 static void __sigqueue_free(struct sigqueue *q)
465 {
466 	if (q->flags & SIGQUEUE_PREALLOC) {
467 		posixtimer_sigqueue_putref(q);
468 		return;
469 	}
470 	if (q->ucounts) {
471 		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
472 		q->ucounts = NULL;
473 	}
474 	kmem_cache_free(sigqueue_cachep, q);
475 }
476 
477 void flush_sigqueue(struct sigpending *queue)
478 {
479 	struct sigqueue *q;
480 
481 	sigemptyset(&queue->signal);
482 	while (!list_empty(&queue->list)) {
483 		q = list_entry(queue->list.next, struct sigqueue , list);
484 		list_del_init(&q->list);
485 		__sigqueue_free(q);
486 	}
487 }
488 
489 /*
490  * Flush all pending signals for this kthread.
491  */
492 void flush_signals(struct task_struct *t)
493 {
494 	unsigned long flags;
495 
496 	spin_lock_irqsave(&t->sighand->siglock, flags);
497 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
498 	flush_sigqueue(&t->pending);
499 	flush_sigqueue(&t->signal->shared_pending);
500 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
501 }
502 EXPORT_SYMBOL(flush_signals);
503 
504 void ignore_signals(struct task_struct *t)
505 {
506 	int i;
507 
508 	for (i = 0; i < _NSIG; ++i)
509 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
510 
511 	flush_signals(t);
512 }
513 
514 /*
515  * Flush all handlers for a task.
516  */
517 
518 void
519 flush_signal_handlers(struct task_struct *t, int force_default)
520 {
521 	int i;
522 	struct k_sigaction *ka = &t->sighand->action[0];
523 	for (i = _NSIG ; i != 0 ; i--) {
524 		if (force_default || ka->sa.sa_handler != SIG_IGN)
525 			ka->sa.sa_handler = SIG_DFL;
526 		ka->sa.sa_flags = 0;
527 #ifdef __ARCH_HAS_SA_RESTORER
528 		ka->sa.sa_restorer = NULL;
529 #endif
530 		sigemptyset(&ka->sa.sa_mask);
531 		ka++;
532 	}
533 }
534 
535 bool unhandled_signal(struct task_struct *tsk, int sig)
536 {
537 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
538 	if (is_global_init(tsk))
539 		return true;
540 
541 	if (handler != SIG_IGN && handler != SIG_DFL)
542 		return false;
543 
544 	/* If dying, we handle all new signals by ignoring them */
545 	if (fatal_signal_pending(tsk))
546 		return false;
547 
548 	/* if ptraced, let the tracer determine */
549 	return !tsk->ptrace;
550 }
551 
552 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
553 			   struct sigqueue **timer_sigq)
554 {
555 	struct sigqueue *q, *first = NULL;
556 
557 	/*
558 	 * Collect the siginfo appropriate to this signal.  Check if
559 	 * there is another siginfo for the same signal.
560 	*/
561 	list_for_each_entry(q, &list->list, list) {
562 		if (q->info.si_signo == sig) {
563 			if (first)
564 				goto still_pending;
565 			first = q;
566 		}
567 	}
568 
569 	sigdelset(&list->signal, sig);
570 
571 	if (first) {
572 still_pending:
573 		list_del_init(&first->list);
574 		copy_siginfo(info, &first->info);
575 
576 		/*
577 		 * posix-timer signals are preallocated and freed when the last
578 		 * reference count is dropped in posixtimer_deliver_signal() or
579 		 * immediately on timer deletion when the signal is not pending.
580 		 * Spare the extra round through __sigqueue_free() which is
581 		 * ignoring preallocated signals.
582 		 */
583 		if (unlikely((first->flags & SIGQUEUE_PREALLOC) && (info->si_code == SI_TIMER)))
584 			*timer_sigq = first;
585 		else
586 			__sigqueue_free(first);
587 	} else {
588 		/*
589 		 * Ok, it wasn't in the queue.  This must be
590 		 * a fast-pathed signal or we must have been
591 		 * out of queue space.  So zero out the info.
592 		 */
593 		clear_siginfo(info);
594 		info->si_signo = sig;
595 		info->si_errno = 0;
596 		info->si_code = SI_USER;
597 		info->si_pid = 0;
598 		info->si_uid = 0;
599 	}
600 }
601 
602 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
603 			    kernel_siginfo_t *info, struct sigqueue **timer_sigq)
604 {
605 	int sig = next_signal(pending, mask);
606 
607 	if (sig)
608 		collect_signal(sig, pending, info, timer_sigq);
609 	return sig;
610 }
611 
612 /*
613  * Try to dequeue a signal. If a deliverable signal is found fill in the
614  * caller provided siginfo and return the signal number. Otherwise return
615  * 0.
616  */
617 int dequeue_signal(sigset_t *mask, kernel_siginfo_t *info, enum pid_type *type)
618 {
619 	struct task_struct *tsk = current;
620 	struct sigqueue *timer_sigq;
621 	int signr;
622 
623 	lockdep_assert_held(&tsk->sighand->siglock);
624 
625 again:
626 	*type = PIDTYPE_PID;
627 	timer_sigq = NULL;
628 	signr = __dequeue_signal(&tsk->pending, mask, info, &timer_sigq);
629 	if (!signr) {
630 		*type = PIDTYPE_TGID;
631 		signr = __dequeue_signal(&tsk->signal->shared_pending,
632 					 mask, info, &timer_sigq);
633 
634 		if (unlikely(signr == SIGALRM))
635 			posixtimer_rearm_itimer(tsk);
636 	}
637 
638 	recalc_sigpending();
639 	if (!signr)
640 		return 0;
641 
642 	if (unlikely(sig_kernel_stop(signr))) {
643 		/*
644 		 * Set a marker that we have dequeued a stop signal.  Our
645 		 * caller might release the siglock and then the pending
646 		 * stop signal it is about to process is no longer in the
647 		 * pending bitmasks, but must still be cleared by a SIGCONT
648 		 * (and overruled by a SIGKILL).  So those cases clear this
649 		 * shared flag after we've set it.  Note that this flag may
650 		 * remain set after the signal we return is ignored or
651 		 * handled.  That doesn't matter because its only purpose
652 		 * is to alert stop-signal processing code when another
653 		 * processor has come along and cleared the flag.
654 		 */
655 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
656 	}
657 
658 	if (IS_ENABLED(CONFIG_POSIX_TIMERS) && unlikely(timer_sigq)) {
659 		if (!posixtimer_deliver_signal(info, timer_sigq))
660 			goto again;
661 	}
662 
663 	return signr;
664 }
665 EXPORT_SYMBOL_GPL(dequeue_signal);
666 
667 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
668 {
669 	struct task_struct *tsk = current;
670 	struct sigpending *pending = &tsk->pending;
671 	struct sigqueue *q, *sync = NULL;
672 
673 	/*
674 	 * Might a synchronous signal be in the queue?
675 	 */
676 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
677 		return 0;
678 
679 	/*
680 	 * Return the first synchronous signal in the queue.
681 	 */
682 	list_for_each_entry(q, &pending->list, list) {
683 		/* Synchronous signals have a positive si_code */
684 		if ((q->info.si_code > SI_USER) &&
685 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
686 			sync = q;
687 			goto next;
688 		}
689 	}
690 	return 0;
691 next:
692 	/*
693 	 * Check if there is another siginfo for the same signal.
694 	 */
695 	list_for_each_entry_continue(q, &pending->list, list) {
696 		if (q->info.si_signo == sync->info.si_signo)
697 			goto still_pending;
698 	}
699 
700 	sigdelset(&pending->signal, sync->info.si_signo);
701 	recalc_sigpending();
702 still_pending:
703 	list_del_init(&sync->list);
704 	copy_siginfo(info, &sync->info);
705 	__sigqueue_free(sync);
706 	return info->si_signo;
707 }
708 
709 /*
710  * Tell a process that it has a new active signal..
711  *
712  * NOTE! we rely on the previous spin_lock to
713  * lock interrupts for us! We can only be called with
714  * "siglock" held, and the local interrupt must
715  * have been disabled when that got acquired!
716  *
717  * No need to set need_resched since signal event passing
718  * goes through ->blocked
719  */
720 void signal_wake_up_state(struct task_struct *t, unsigned int state)
721 {
722 	lockdep_assert_held(&t->sighand->siglock);
723 
724 	set_tsk_thread_flag(t, TIF_SIGPENDING);
725 
726 	/*
727 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
728 	 * case. We don't check t->state here because there is a race with it
729 	 * executing another processor and just now entering stopped state.
730 	 * By using wake_up_state, we ensure the process will wake up and
731 	 * handle its death signal.
732 	 */
733 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
734 		kick_process(t);
735 }
736 
737 static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q);
738 
739 static void sigqueue_free_ignored(struct task_struct *tsk, struct sigqueue *q)
740 {
741 	if (likely(!(q->flags & SIGQUEUE_PREALLOC) || q->info.si_code != SI_TIMER))
742 		__sigqueue_free(q);
743 	else
744 		posixtimer_sig_ignore(tsk, q);
745 }
746 
747 /* Remove signals in mask from the pending set and queue. */
748 static void flush_sigqueue_mask(struct task_struct *p, sigset_t *mask, struct sigpending *s)
749 {
750 	struct sigqueue *q, *n;
751 	sigset_t m;
752 
753 	lockdep_assert_held(&p->sighand->siglock);
754 
755 	sigandsets(&m, mask, &s->signal);
756 	if (sigisemptyset(&m))
757 		return;
758 
759 	sigandnsets(&s->signal, &s->signal, mask);
760 	list_for_each_entry_safe(q, n, &s->list, list) {
761 		if (sigismember(mask, q->info.si_signo)) {
762 			list_del_init(&q->list);
763 			sigqueue_free_ignored(p, q);
764 		}
765 	}
766 }
767 
768 static inline int is_si_special(const struct kernel_siginfo *info)
769 {
770 	return info <= SEND_SIG_PRIV;
771 }
772 
773 static inline bool si_fromuser(const struct kernel_siginfo *info)
774 {
775 	return info == SEND_SIG_NOINFO ||
776 		(!is_si_special(info) && SI_FROMUSER(info));
777 }
778 
779 /*
780  * called with RCU read lock from check_kill_permission()
781  */
782 static bool kill_ok_by_cred(struct task_struct *t)
783 {
784 	const struct cred *cred = current_cred();
785 	const struct cred *tcred = __task_cred(t);
786 
787 	return uid_eq(cred->euid, tcred->suid) ||
788 	       uid_eq(cred->euid, tcred->uid) ||
789 	       uid_eq(cred->uid, tcred->suid) ||
790 	       uid_eq(cred->uid, tcred->uid) ||
791 	       ns_capable(tcred->user_ns, CAP_KILL);
792 }
793 
794 /*
795  * Bad permissions for sending the signal
796  * - the caller must hold the RCU read lock
797  */
798 static int check_kill_permission(int sig, struct kernel_siginfo *info,
799 				 struct task_struct *t)
800 {
801 	struct pid *sid;
802 	int error;
803 
804 	if (!valid_signal(sig))
805 		return -EINVAL;
806 
807 	if (!si_fromuser(info))
808 		return 0;
809 
810 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
811 	if (error)
812 		return error;
813 
814 	if (!same_thread_group(current, t) &&
815 	    !kill_ok_by_cred(t)) {
816 		switch (sig) {
817 		case SIGCONT:
818 			sid = task_session(t);
819 			/*
820 			 * We don't return the error if sid == NULL. The
821 			 * task was unhashed, the caller must notice this.
822 			 */
823 			if (!sid || sid == task_session(current))
824 				break;
825 			fallthrough;
826 		default:
827 			return -EPERM;
828 		}
829 	}
830 
831 	return security_task_kill(t, info, sig, NULL);
832 }
833 
834 /**
835  * ptrace_trap_notify - schedule trap to notify ptracer
836  * @t: tracee wanting to notify tracer
837  *
838  * This function schedules sticky ptrace trap which is cleared on the next
839  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
840  * ptracer.
841  *
842  * If @t is running, STOP trap will be taken.  If trapped for STOP and
843  * ptracer is listening for events, tracee is woken up so that it can
844  * re-trap for the new event.  If trapped otherwise, STOP trap will be
845  * eventually taken without returning to userland after the existing traps
846  * are finished by PTRACE_CONT.
847  *
848  * CONTEXT:
849  * Must be called with @task->sighand->siglock held.
850  */
851 static void ptrace_trap_notify(struct task_struct *t)
852 {
853 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
854 	lockdep_assert_held(&t->sighand->siglock);
855 
856 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
857 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
858 }
859 
860 /*
861  * Handle magic process-wide effects of stop/continue signals. Unlike
862  * the signal actions, these happen immediately at signal-generation
863  * time regardless of blocking, ignoring, or handling.  This does the
864  * actual continuing for SIGCONT, but not the actual stopping for stop
865  * signals. The process stop is done as a signal action for SIG_DFL.
866  *
867  * Returns true if the signal should be actually delivered, otherwise
868  * it should be dropped.
869  */
870 static bool prepare_signal(int sig, struct task_struct *p, bool force)
871 {
872 	struct signal_struct *signal = p->signal;
873 	struct task_struct *t;
874 	sigset_t flush;
875 
876 	if (signal->flags & SIGNAL_GROUP_EXIT) {
877 		if (signal->core_state)
878 			return sig == SIGKILL;
879 		/*
880 		 * The process is in the middle of dying, drop the signal.
881 		 */
882 		return false;
883 	} else if (sig_kernel_stop(sig)) {
884 		/*
885 		 * This is a stop signal.  Remove SIGCONT from all queues.
886 		 */
887 		siginitset(&flush, sigmask(SIGCONT));
888 		flush_sigqueue_mask(p, &flush, &signal->shared_pending);
889 		for_each_thread(p, t)
890 			flush_sigqueue_mask(p, &flush, &t->pending);
891 	} else if (sig == SIGCONT) {
892 		unsigned int why;
893 		/*
894 		 * Remove all stop signals from all queues, wake all threads.
895 		 */
896 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
897 		flush_sigqueue_mask(p, &flush, &signal->shared_pending);
898 		for_each_thread(p, t) {
899 			flush_sigqueue_mask(p, &flush, &t->pending);
900 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
901 			if (likely(!(t->ptrace & PT_SEIZED))) {
902 				t->jobctl &= ~JOBCTL_STOPPED;
903 				wake_up_state(t, __TASK_STOPPED);
904 			} else
905 				ptrace_trap_notify(t);
906 		}
907 
908 		/*
909 		 * Notify the parent with CLD_CONTINUED if we were stopped.
910 		 *
911 		 * If we were in the middle of a group stop, we pretend it
912 		 * was already finished, and then continued. Since SIGCHLD
913 		 * doesn't queue we report only CLD_STOPPED, as if the next
914 		 * CLD_CONTINUED was dropped.
915 		 */
916 		why = 0;
917 		if (signal->flags & SIGNAL_STOP_STOPPED)
918 			why |= SIGNAL_CLD_CONTINUED;
919 		else if (signal->group_stop_count)
920 			why |= SIGNAL_CLD_STOPPED;
921 
922 		if (why) {
923 			/*
924 			 * The first thread which returns from do_signal_stop()
925 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
926 			 * notify its parent. See get_signal().
927 			 */
928 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
929 			signal->group_stop_count = 0;
930 			signal->group_exit_code = 0;
931 		}
932 	}
933 
934 	return !sig_ignored(p, sig, force);
935 }
936 
937 /*
938  * Test if P wants to take SIG.  After we've checked all threads with this,
939  * it's equivalent to finding no threads not blocking SIG.  Any threads not
940  * blocking SIG were ruled out because they are not running and already
941  * have pending signals.  Such threads will dequeue from the shared queue
942  * as soon as they're available, so putting the signal on the shared queue
943  * will be equivalent to sending it to one such thread.
944  */
945 static inline bool wants_signal(int sig, struct task_struct *p)
946 {
947 	if (sigismember(&p->blocked, sig))
948 		return false;
949 
950 	if (p->flags & PF_EXITING)
951 		return false;
952 
953 	if (sig == SIGKILL)
954 		return true;
955 
956 	if (task_is_stopped_or_traced(p))
957 		return false;
958 
959 	return task_curr(p) || !task_sigpending(p);
960 }
961 
962 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
963 {
964 	struct signal_struct *signal = p->signal;
965 	struct task_struct *t;
966 
967 	/*
968 	 * Now find a thread we can wake up to take the signal off the queue.
969 	 *
970 	 * Try the suggested task first (may or may not be the main thread).
971 	 */
972 	if (wants_signal(sig, p))
973 		t = p;
974 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
975 		/*
976 		 * There is just one thread and it does not need to be woken.
977 		 * It will dequeue unblocked signals before it runs again.
978 		 */
979 		return;
980 	else {
981 		/*
982 		 * Otherwise try to find a suitable thread.
983 		 */
984 		t = signal->curr_target;
985 		while (!wants_signal(sig, t)) {
986 			t = next_thread(t);
987 			if (t == signal->curr_target)
988 				/*
989 				 * No thread needs to be woken.
990 				 * Any eligible threads will see
991 				 * the signal in the queue soon.
992 				 */
993 				return;
994 		}
995 		signal->curr_target = t;
996 	}
997 
998 	/*
999 	 * Found a killable thread.  If the signal will be fatal,
1000 	 * then start taking the whole group down immediately.
1001 	 */
1002 	if (sig_fatal(p, sig) &&
1003 	    (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1004 	    !sigismember(&t->real_blocked, sig) &&
1005 	    (sig == SIGKILL || !p->ptrace)) {
1006 		/*
1007 		 * This signal will be fatal to the whole group.
1008 		 */
1009 		if (!sig_kernel_coredump(sig)) {
1010 			/*
1011 			 * Start a group exit and wake everybody up.
1012 			 * This way we don't have other threads
1013 			 * running and doing things after a slower
1014 			 * thread has the fatal signal pending.
1015 			 */
1016 			signal->flags = SIGNAL_GROUP_EXIT;
1017 			signal->group_exit_code = sig;
1018 			signal->group_stop_count = 0;
1019 			__for_each_thread(signal, t) {
1020 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1021 				sigaddset(&t->pending.signal, SIGKILL);
1022 				signal_wake_up(t, 1);
1023 			}
1024 			return;
1025 		}
1026 	}
1027 
1028 	/*
1029 	 * The signal is already in the shared-pending queue.
1030 	 * Tell the chosen thread to wake up and dequeue it.
1031 	 */
1032 	signal_wake_up(t, sig == SIGKILL);
1033 	return;
1034 }
1035 
1036 static inline bool legacy_queue(struct sigpending *signals, int sig)
1037 {
1038 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1039 }
1040 
1041 static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1042 				struct task_struct *t, enum pid_type type, bool force)
1043 {
1044 	struct sigpending *pending;
1045 	struct sigqueue *q;
1046 	int override_rlimit;
1047 	int ret = 0, result;
1048 
1049 	lockdep_assert_held(&t->sighand->siglock);
1050 
1051 	result = TRACE_SIGNAL_IGNORED;
1052 	if (!prepare_signal(sig, t, force))
1053 		goto ret;
1054 
1055 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1056 	/*
1057 	 * Short-circuit ignored signals and support queuing
1058 	 * exactly one non-rt signal, so that we can get more
1059 	 * detailed information about the cause of the signal.
1060 	 */
1061 	result = TRACE_SIGNAL_ALREADY_PENDING;
1062 	if (legacy_queue(pending, sig))
1063 		goto ret;
1064 
1065 	result = TRACE_SIGNAL_DELIVERED;
1066 	/*
1067 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1068 	 */
1069 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1070 		goto out_set;
1071 
1072 	/*
1073 	 * Real-time signals must be queued if sent by sigqueue, or
1074 	 * some other real-time mechanism.  It is implementation
1075 	 * defined whether kill() does so.  We attempt to do so, on
1076 	 * the principle of least surprise, but since kill is not
1077 	 * allowed to fail with EAGAIN when low on memory we just
1078 	 * make sure at least one signal gets delivered and don't
1079 	 * pass on the info struct.
1080 	 */
1081 	if (sig < SIGRTMIN)
1082 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1083 	else
1084 		override_rlimit = 0;
1085 
1086 	q = sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1087 
1088 	if (q) {
1089 		list_add_tail(&q->list, &pending->list);
1090 		switch ((unsigned long) info) {
1091 		case (unsigned long) SEND_SIG_NOINFO:
1092 			clear_siginfo(&q->info);
1093 			q->info.si_signo = sig;
1094 			q->info.si_errno = 0;
1095 			q->info.si_code = SI_USER;
1096 			q->info.si_pid = task_tgid_nr_ns(current,
1097 							task_active_pid_ns(t));
1098 			rcu_read_lock();
1099 			q->info.si_uid =
1100 				from_kuid_munged(task_cred_xxx(t, user_ns),
1101 						 current_uid());
1102 			rcu_read_unlock();
1103 			break;
1104 		case (unsigned long) SEND_SIG_PRIV:
1105 			clear_siginfo(&q->info);
1106 			q->info.si_signo = sig;
1107 			q->info.si_errno = 0;
1108 			q->info.si_code = SI_KERNEL;
1109 			q->info.si_pid = 0;
1110 			q->info.si_uid = 0;
1111 			break;
1112 		default:
1113 			copy_siginfo(&q->info, info);
1114 			break;
1115 		}
1116 	} else if (!is_si_special(info) &&
1117 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1118 		/*
1119 		 * Queue overflow, abort.  We may abort if the
1120 		 * signal was rt and sent by user using something
1121 		 * other than kill().
1122 		 */
1123 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1124 		ret = -EAGAIN;
1125 		goto ret;
1126 	} else {
1127 		/*
1128 		 * This is a silent loss of information.  We still
1129 		 * send the signal, but the *info bits are lost.
1130 		 */
1131 		result = TRACE_SIGNAL_LOSE_INFO;
1132 	}
1133 
1134 out_set:
1135 	signalfd_notify(t, sig);
1136 	sigaddset(&pending->signal, sig);
1137 
1138 	/* Let multiprocess signals appear after on-going forks */
1139 	if (type > PIDTYPE_TGID) {
1140 		struct multiprocess_signals *delayed;
1141 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1142 			sigset_t *signal = &delayed->signal;
1143 			/* Can't queue both a stop and a continue signal */
1144 			if (sig == SIGCONT)
1145 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1146 			else if (sig_kernel_stop(sig))
1147 				sigdelset(signal, SIGCONT);
1148 			sigaddset(signal, sig);
1149 		}
1150 	}
1151 
1152 	complete_signal(sig, t, type);
1153 ret:
1154 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1155 	return ret;
1156 }
1157 
1158 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1159 {
1160 	bool ret = false;
1161 	switch (siginfo_layout(info->si_signo, info->si_code)) {
1162 	case SIL_KILL:
1163 	case SIL_CHLD:
1164 	case SIL_RT:
1165 		ret = true;
1166 		break;
1167 	case SIL_TIMER:
1168 	case SIL_POLL:
1169 	case SIL_FAULT:
1170 	case SIL_FAULT_TRAPNO:
1171 	case SIL_FAULT_MCEERR:
1172 	case SIL_FAULT_BNDERR:
1173 	case SIL_FAULT_PKUERR:
1174 	case SIL_FAULT_PERF_EVENT:
1175 	case SIL_SYS:
1176 		ret = false;
1177 		break;
1178 	}
1179 	return ret;
1180 }
1181 
1182 int send_signal_locked(int sig, struct kernel_siginfo *info,
1183 		       struct task_struct *t, enum pid_type type)
1184 {
1185 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1186 	bool force = false;
1187 
1188 	if (info == SEND_SIG_NOINFO) {
1189 		/* Force if sent from an ancestor pid namespace */
1190 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1191 	} else if (info == SEND_SIG_PRIV) {
1192 		/* Don't ignore kernel generated signals */
1193 		force = true;
1194 	} else if (has_si_pid_and_uid(info)) {
1195 		/* SIGKILL and SIGSTOP is special or has ids */
1196 		struct user_namespace *t_user_ns;
1197 
1198 		rcu_read_lock();
1199 		t_user_ns = task_cred_xxx(t, user_ns);
1200 		if (current_user_ns() != t_user_ns) {
1201 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1202 			info->si_uid = from_kuid_munged(t_user_ns, uid);
1203 		}
1204 		rcu_read_unlock();
1205 
1206 		/* A kernel generated signal? */
1207 		force = (info->si_code == SI_KERNEL);
1208 
1209 		/* From an ancestor pid namespace? */
1210 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1211 			info->si_pid = 0;
1212 			force = true;
1213 		}
1214 	}
1215 	return __send_signal_locked(sig, info, t, type, force);
1216 }
1217 
1218 static void print_fatal_signal(int signr)
1219 {
1220 	struct pt_regs *regs = task_pt_regs(current);
1221 	struct file *exe_file;
1222 
1223 	exe_file = get_task_exe_file(current);
1224 	if (exe_file) {
1225 		pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
1226 			exe_file, current->comm, signr);
1227 		fput(exe_file);
1228 	} else {
1229 		pr_info("%s: potentially unexpected fatal signal %d.\n",
1230 			current->comm, signr);
1231 	}
1232 
1233 #if defined(__i386__) && !defined(__arch_um__)
1234 	pr_info("code at %08lx: ", regs->ip);
1235 	{
1236 		int i;
1237 		for (i = 0; i < 16; i++) {
1238 			unsigned char insn;
1239 
1240 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1241 				break;
1242 			pr_cont("%02x ", insn);
1243 		}
1244 	}
1245 	pr_cont("\n");
1246 #endif
1247 	preempt_disable();
1248 	show_regs(regs);
1249 	preempt_enable();
1250 }
1251 
1252 static int __init setup_print_fatal_signals(char *str)
1253 {
1254 	get_option (&str, &print_fatal_signals);
1255 
1256 	return 1;
1257 }
1258 
1259 __setup("print-fatal-signals=", setup_print_fatal_signals);
1260 
1261 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1262 			enum pid_type type)
1263 {
1264 	unsigned long flags;
1265 	int ret = -ESRCH;
1266 
1267 	if (lock_task_sighand(p, &flags)) {
1268 		ret = send_signal_locked(sig, info, p, type);
1269 		unlock_task_sighand(p, &flags);
1270 	}
1271 
1272 	return ret;
1273 }
1274 
1275 enum sig_handler {
1276 	HANDLER_CURRENT, /* If reachable use the current handler */
1277 	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1278 	HANDLER_EXIT,	 /* Only visible as the process exit code */
1279 };
1280 
1281 /*
1282  * Force a signal that the process can't ignore: if necessary
1283  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1284  *
1285  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1286  * since we do not want to have a signal handler that was blocked
1287  * be invoked when user space had explicitly blocked it.
1288  *
1289  * We don't want to have recursive SIGSEGV's etc, for example,
1290  * that is why we also clear SIGNAL_UNKILLABLE.
1291  */
1292 static int
1293 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1294 	enum sig_handler handler)
1295 {
1296 	unsigned long int flags;
1297 	int ret, blocked, ignored;
1298 	struct k_sigaction *action;
1299 	int sig = info->si_signo;
1300 
1301 	spin_lock_irqsave(&t->sighand->siglock, flags);
1302 	action = &t->sighand->action[sig-1];
1303 	ignored = action->sa.sa_handler == SIG_IGN;
1304 	blocked = sigismember(&t->blocked, sig);
1305 	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1306 		action->sa.sa_handler = SIG_DFL;
1307 		if (handler == HANDLER_EXIT)
1308 			action->sa.sa_flags |= SA_IMMUTABLE;
1309 		if (blocked)
1310 			sigdelset(&t->blocked, sig);
1311 	}
1312 	/*
1313 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1314 	 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1315 	 */
1316 	if (action->sa.sa_handler == SIG_DFL &&
1317 	    (!t->ptrace || (handler == HANDLER_EXIT)))
1318 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1319 	ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1320 	/* This can happen if the signal was already pending and blocked */
1321 	if (!task_sigpending(t))
1322 		signal_wake_up(t, 0);
1323 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1324 
1325 	return ret;
1326 }
1327 
1328 int force_sig_info(struct kernel_siginfo *info)
1329 {
1330 	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1331 }
1332 
1333 /*
1334  * Nuke all other threads in the group.
1335  */
1336 int zap_other_threads(struct task_struct *p)
1337 {
1338 	struct task_struct *t;
1339 	int count = 0;
1340 
1341 	p->signal->group_stop_count = 0;
1342 
1343 	for_other_threads(p, t) {
1344 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1345 		count++;
1346 
1347 		/* Don't bother with already dead threads */
1348 		if (t->exit_state)
1349 			continue;
1350 		sigaddset(&t->pending.signal, SIGKILL);
1351 		signal_wake_up(t, 1);
1352 	}
1353 
1354 	return count;
1355 }
1356 
1357 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1358 					   unsigned long *flags)
1359 {
1360 	struct sighand_struct *sighand;
1361 
1362 	rcu_read_lock();
1363 	for (;;) {
1364 		sighand = rcu_dereference(tsk->sighand);
1365 		if (unlikely(sighand == NULL))
1366 			break;
1367 
1368 		/*
1369 		 * This sighand can be already freed and even reused, but
1370 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1371 		 * initializes ->siglock: this slab can't go away, it has
1372 		 * the same object type, ->siglock can't be reinitialized.
1373 		 *
1374 		 * We need to ensure that tsk->sighand is still the same
1375 		 * after we take the lock, we can race with de_thread() or
1376 		 * __exit_signal(). In the latter case the next iteration
1377 		 * must see ->sighand == NULL.
1378 		 */
1379 		spin_lock_irqsave(&sighand->siglock, *flags);
1380 		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1381 			break;
1382 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1383 	}
1384 	rcu_read_unlock();
1385 
1386 	return sighand;
1387 }
1388 
1389 #ifdef CONFIG_LOCKDEP
1390 void lockdep_assert_task_sighand_held(struct task_struct *task)
1391 {
1392 	struct sighand_struct *sighand;
1393 
1394 	rcu_read_lock();
1395 	sighand = rcu_dereference(task->sighand);
1396 	if (sighand)
1397 		lockdep_assert_held(&sighand->siglock);
1398 	else
1399 		WARN_ON_ONCE(1);
1400 	rcu_read_unlock();
1401 }
1402 #endif
1403 
1404 /*
1405  * send signal info to all the members of a thread group or to the
1406  * individual thread if type == PIDTYPE_PID.
1407  */
1408 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1409 			struct task_struct *p, enum pid_type type)
1410 {
1411 	int ret;
1412 
1413 	rcu_read_lock();
1414 	ret = check_kill_permission(sig, info, p);
1415 	rcu_read_unlock();
1416 
1417 	if (!ret && sig)
1418 		ret = do_send_sig_info(sig, info, p, type);
1419 
1420 	return ret;
1421 }
1422 
1423 /*
1424  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1425  * control characters do (^C, ^Z etc)
1426  * - the caller must hold at least a readlock on tasklist_lock
1427  */
1428 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1429 {
1430 	struct task_struct *p = NULL;
1431 	int ret = -ESRCH;
1432 
1433 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1434 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1435 		/*
1436 		 * If group_send_sig_info() succeeds at least once ret
1437 		 * becomes 0 and after that the code below has no effect.
1438 		 * Otherwise we return the last err or -ESRCH if this
1439 		 * process group is empty.
1440 		 */
1441 		if (ret)
1442 			ret = err;
1443 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1444 
1445 	return ret;
1446 }
1447 
1448 static int kill_pid_info_type(int sig, struct kernel_siginfo *info,
1449 				struct pid *pid, enum pid_type type)
1450 {
1451 	int error = -ESRCH;
1452 	struct task_struct *p;
1453 
1454 	for (;;) {
1455 		rcu_read_lock();
1456 		p = pid_task(pid, PIDTYPE_PID);
1457 		if (p)
1458 			error = group_send_sig_info(sig, info, p, type);
1459 		rcu_read_unlock();
1460 		if (likely(!p || error != -ESRCH))
1461 			return error;
1462 		/*
1463 		 * The task was unhashed in between, try again.  If it
1464 		 * is dead, pid_task() will return NULL, if we race with
1465 		 * de_thread() it will find the new leader.
1466 		 */
1467 	}
1468 }
1469 
1470 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1471 {
1472 	return kill_pid_info_type(sig, info, pid, PIDTYPE_TGID);
1473 }
1474 
1475 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1476 {
1477 	int error;
1478 	rcu_read_lock();
1479 	error = kill_pid_info(sig, info, find_vpid(pid));
1480 	rcu_read_unlock();
1481 	return error;
1482 }
1483 
1484 static inline bool kill_as_cred_perm(const struct cred *cred,
1485 				     struct task_struct *target)
1486 {
1487 	const struct cred *pcred = __task_cred(target);
1488 
1489 	return uid_eq(cred->euid, pcred->suid) ||
1490 	       uid_eq(cred->euid, pcred->uid) ||
1491 	       uid_eq(cred->uid, pcred->suid) ||
1492 	       uid_eq(cred->uid, pcred->uid);
1493 }
1494 
1495 /*
1496  * The usb asyncio usage of siginfo is wrong.  The glibc support
1497  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1498  * AKA after the generic fields:
1499  *	kernel_pid_t	si_pid;
1500  *	kernel_uid32_t	si_uid;
1501  *	sigval_t	si_value;
1502  *
1503  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1504  * after the generic fields is:
1505  *	void __user 	*si_addr;
1506  *
1507  * This is a practical problem when there is a 64bit big endian kernel
1508  * and a 32bit userspace.  As the 32bit address will encoded in the low
1509  * 32bits of the pointer.  Those low 32bits will be stored at higher
1510  * address than appear in a 32 bit pointer.  So userspace will not
1511  * see the address it was expecting for it's completions.
1512  *
1513  * There is nothing in the encoding that can allow
1514  * copy_siginfo_to_user32 to detect this confusion of formats, so
1515  * handle this by requiring the caller of kill_pid_usb_asyncio to
1516  * notice when this situration takes place and to store the 32bit
1517  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1518  * parameter.
1519  */
1520 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1521 			 struct pid *pid, const struct cred *cred)
1522 {
1523 	struct kernel_siginfo info;
1524 	struct task_struct *p;
1525 	unsigned long flags;
1526 	int ret = -EINVAL;
1527 
1528 	if (!valid_signal(sig))
1529 		return ret;
1530 
1531 	clear_siginfo(&info);
1532 	info.si_signo = sig;
1533 	info.si_errno = errno;
1534 	info.si_code = SI_ASYNCIO;
1535 	*((sigval_t *)&info.si_pid) = addr;
1536 
1537 	rcu_read_lock();
1538 	p = pid_task(pid, PIDTYPE_PID);
1539 	if (!p) {
1540 		ret = -ESRCH;
1541 		goto out_unlock;
1542 	}
1543 	if (!kill_as_cred_perm(cred, p)) {
1544 		ret = -EPERM;
1545 		goto out_unlock;
1546 	}
1547 	ret = security_task_kill(p, &info, sig, cred);
1548 	if (ret)
1549 		goto out_unlock;
1550 
1551 	if (sig) {
1552 		if (lock_task_sighand(p, &flags)) {
1553 			ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1554 			unlock_task_sighand(p, &flags);
1555 		} else
1556 			ret = -ESRCH;
1557 	}
1558 out_unlock:
1559 	rcu_read_unlock();
1560 	return ret;
1561 }
1562 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1563 
1564 /*
1565  * kill_something_info() interprets pid in interesting ways just like kill(2).
1566  *
1567  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1568  * is probably wrong.  Should make it like BSD or SYSV.
1569  */
1570 
1571 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1572 {
1573 	int ret;
1574 
1575 	if (pid > 0)
1576 		return kill_proc_info(sig, info, pid);
1577 
1578 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1579 	if (pid == INT_MIN)
1580 		return -ESRCH;
1581 
1582 	read_lock(&tasklist_lock);
1583 	if (pid != -1) {
1584 		ret = __kill_pgrp_info(sig, info,
1585 				pid ? find_vpid(-pid) : task_pgrp(current));
1586 	} else {
1587 		int retval = 0, count = 0;
1588 		struct task_struct * p;
1589 
1590 		for_each_process(p) {
1591 			if (task_pid_vnr(p) > 1 &&
1592 					!same_thread_group(p, current)) {
1593 				int err = group_send_sig_info(sig, info, p,
1594 							      PIDTYPE_MAX);
1595 				++count;
1596 				if (err != -EPERM)
1597 					retval = err;
1598 			}
1599 		}
1600 		ret = count ? retval : -ESRCH;
1601 	}
1602 	read_unlock(&tasklist_lock);
1603 
1604 	return ret;
1605 }
1606 
1607 /*
1608  * These are for backward compatibility with the rest of the kernel source.
1609  */
1610 
1611 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1612 {
1613 	/*
1614 	 * Make sure legacy kernel users don't send in bad values
1615 	 * (normal paths check this in check_kill_permission).
1616 	 */
1617 	if (!valid_signal(sig))
1618 		return -EINVAL;
1619 
1620 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1621 }
1622 EXPORT_SYMBOL(send_sig_info);
1623 
1624 #define __si_special(priv) \
1625 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1626 
1627 int
1628 send_sig(int sig, struct task_struct *p, int priv)
1629 {
1630 	return send_sig_info(sig, __si_special(priv), p);
1631 }
1632 EXPORT_SYMBOL(send_sig);
1633 
1634 void force_sig(int sig)
1635 {
1636 	struct kernel_siginfo info;
1637 
1638 	clear_siginfo(&info);
1639 	info.si_signo = sig;
1640 	info.si_errno = 0;
1641 	info.si_code = SI_KERNEL;
1642 	info.si_pid = 0;
1643 	info.si_uid = 0;
1644 	force_sig_info(&info);
1645 }
1646 EXPORT_SYMBOL(force_sig);
1647 
1648 void force_fatal_sig(int sig)
1649 {
1650 	struct kernel_siginfo info;
1651 
1652 	clear_siginfo(&info);
1653 	info.si_signo = sig;
1654 	info.si_errno = 0;
1655 	info.si_code = SI_KERNEL;
1656 	info.si_pid = 0;
1657 	info.si_uid = 0;
1658 	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1659 }
1660 
1661 void force_exit_sig(int sig)
1662 {
1663 	struct kernel_siginfo info;
1664 
1665 	clear_siginfo(&info);
1666 	info.si_signo = sig;
1667 	info.si_errno = 0;
1668 	info.si_code = SI_KERNEL;
1669 	info.si_pid = 0;
1670 	info.si_uid = 0;
1671 	force_sig_info_to_task(&info, current, HANDLER_EXIT);
1672 }
1673 
1674 /*
1675  * When things go south during signal handling, we
1676  * will force a SIGSEGV. And if the signal that caused
1677  * the problem was already a SIGSEGV, we'll want to
1678  * make sure we don't even try to deliver the signal..
1679  */
1680 void force_sigsegv(int sig)
1681 {
1682 	if (sig == SIGSEGV)
1683 		force_fatal_sig(SIGSEGV);
1684 	else
1685 		force_sig(SIGSEGV);
1686 }
1687 
1688 int force_sig_fault_to_task(int sig, int code, void __user *addr,
1689 			    struct task_struct *t)
1690 {
1691 	struct kernel_siginfo info;
1692 
1693 	clear_siginfo(&info);
1694 	info.si_signo = sig;
1695 	info.si_errno = 0;
1696 	info.si_code  = code;
1697 	info.si_addr  = addr;
1698 	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1699 }
1700 
1701 int force_sig_fault(int sig, int code, void __user *addr)
1702 {
1703 	return force_sig_fault_to_task(sig, code, addr, current);
1704 }
1705 
1706 int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t)
1707 {
1708 	struct kernel_siginfo info;
1709 
1710 	clear_siginfo(&info);
1711 	info.si_signo = sig;
1712 	info.si_errno = 0;
1713 	info.si_code  = code;
1714 	info.si_addr  = addr;
1715 	return send_sig_info(info.si_signo, &info, t);
1716 }
1717 
1718 int force_sig_mceerr(int code, void __user *addr, short lsb)
1719 {
1720 	struct kernel_siginfo info;
1721 
1722 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1723 	clear_siginfo(&info);
1724 	info.si_signo = SIGBUS;
1725 	info.si_errno = 0;
1726 	info.si_code = code;
1727 	info.si_addr = addr;
1728 	info.si_addr_lsb = lsb;
1729 	return force_sig_info(&info);
1730 }
1731 
1732 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1733 {
1734 	struct kernel_siginfo info;
1735 
1736 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1737 	clear_siginfo(&info);
1738 	info.si_signo = SIGBUS;
1739 	info.si_errno = 0;
1740 	info.si_code = code;
1741 	info.si_addr = addr;
1742 	info.si_addr_lsb = lsb;
1743 	return send_sig_info(info.si_signo, &info, t);
1744 }
1745 EXPORT_SYMBOL(send_sig_mceerr);
1746 
1747 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1748 {
1749 	struct kernel_siginfo info;
1750 
1751 	clear_siginfo(&info);
1752 	info.si_signo = SIGSEGV;
1753 	info.si_errno = 0;
1754 	info.si_code  = SEGV_BNDERR;
1755 	info.si_addr  = addr;
1756 	info.si_lower = lower;
1757 	info.si_upper = upper;
1758 	return force_sig_info(&info);
1759 }
1760 
1761 #ifdef SEGV_PKUERR
1762 int force_sig_pkuerr(void __user *addr, u32 pkey)
1763 {
1764 	struct kernel_siginfo info;
1765 
1766 	clear_siginfo(&info);
1767 	info.si_signo = SIGSEGV;
1768 	info.si_errno = 0;
1769 	info.si_code  = SEGV_PKUERR;
1770 	info.si_addr  = addr;
1771 	info.si_pkey  = pkey;
1772 	return force_sig_info(&info);
1773 }
1774 #endif
1775 
1776 int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1777 {
1778 	struct kernel_siginfo info;
1779 
1780 	clear_siginfo(&info);
1781 	info.si_signo     = SIGTRAP;
1782 	info.si_errno     = 0;
1783 	info.si_code      = TRAP_PERF;
1784 	info.si_addr      = addr;
1785 	info.si_perf_data = sig_data;
1786 	info.si_perf_type = type;
1787 
1788 	/*
1789 	 * Signals generated by perf events should not terminate the whole
1790 	 * process if SIGTRAP is blocked, however, delivering the signal
1791 	 * asynchronously is better than not delivering at all. But tell user
1792 	 * space if the signal was asynchronous, so it can clearly be
1793 	 * distinguished from normal synchronous ones.
1794 	 */
1795 	info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
1796 				     TRAP_PERF_FLAG_ASYNC :
1797 				     0;
1798 
1799 	return send_sig_info(info.si_signo, &info, current);
1800 }
1801 
1802 /**
1803  * force_sig_seccomp - signals the task to allow in-process syscall emulation
1804  * @syscall: syscall number to send to userland
1805  * @reason: filter-supplied reason code to send to userland (via si_errno)
1806  * @force_coredump: true to trigger a coredump
1807  *
1808  * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1809  */
1810 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1811 {
1812 	struct kernel_siginfo info;
1813 
1814 	clear_siginfo(&info);
1815 	info.si_signo = SIGSYS;
1816 	info.si_code = SYS_SECCOMP;
1817 	info.si_call_addr = (void __user *)KSTK_EIP(current);
1818 	info.si_errno = reason;
1819 	info.si_arch = syscall_get_arch(current);
1820 	info.si_syscall = syscall;
1821 	return force_sig_info_to_task(&info, current,
1822 		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1823 }
1824 
1825 /* For the crazy architectures that include trap information in
1826  * the errno field, instead of an actual errno value.
1827  */
1828 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1829 {
1830 	struct kernel_siginfo info;
1831 
1832 	clear_siginfo(&info);
1833 	info.si_signo = SIGTRAP;
1834 	info.si_errno = errno;
1835 	info.si_code  = TRAP_HWBKPT;
1836 	info.si_addr  = addr;
1837 	return force_sig_info(&info);
1838 }
1839 
1840 /* For the rare architectures that include trap information using
1841  * si_trapno.
1842  */
1843 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1844 {
1845 	struct kernel_siginfo info;
1846 
1847 	clear_siginfo(&info);
1848 	info.si_signo = sig;
1849 	info.si_errno = 0;
1850 	info.si_code  = code;
1851 	info.si_addr  = addr;
1852 	info.si_trapno = trapno;
1853 	return force_sig_info(&info);
1854 }
1855 
1856 /* For the rare architectures that include trap information using
1857  * si_trapno.
1858  */
1859 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1860 			  struct task_struct *t)
1861 {
1862 	struct kernel_siginfo info;
1863 
1864 	clear_siginfo(&info);
1865 	info.si_signo = sig;
1866 	info.si_errno = 0;
1867 	info.si_code  = code;
1868 	info.si_addr  = addr;
1869 	info.si_trapno = trapno;
1870 	return send_sig_info(info.si_signo, &info, t);
1871 }
1872 
1873 static int kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1874 {
1875 	int ret;
1876 	read_lock(&tasklist_lock);
1877 	ret = __kill_pgrp_info(sig, info, pgrp);
1878 	read_unlock(&tasklist_lock);
1879 	return ret;
1880 }
1881 
1882 int kill_pgrp(struct pid *pid, int sig, int priv)
1883 {
1884 	return kill_pgrp_info(sig, __si_special(priv), pid);
1885 }
1886 EXPORT_SYMBOL(kill_pgrp);
1887 
1888 int kill_pid(struct pid *pid, int sig, int priv)
1889 {
1890 	return kill_pid_info(sig, __si_special(priv), pid);
1891 }
1892 EXPORT_SYMBOL(kill_pid);
1893 
1894 #ifdef CONFIG_POSIX_TIMERS
1895 /*
1896  * These functions handle POSIX timer signals. POSIX timers use
1897  * preallocated sigqueue structs for sending signals.
1898  */
1899 static void __flush_itimer_signals(struct sigpending *pending)
1900 {
1901 	sigset_t signal, retain;
1902 	struct sigqueue *q, *n;
1903 
1904 	signal = pending->signal;
1905 	sigemptyset(&retain);
1906 
1907 	list_for_each_entry_safe(q, n, &pending->list, list) {
1908 		int sig = q->info.si_signo;
1909 
1910 		if (likely(q->info.si_code != SI_TIMER)) {
1911 			sigaddset(&retain, sig);
1912 		} else {
1913 			sigdelset(&signal, sig);
1914 			list_del_init(&q->list);
1915 			__sigqueue_free(q);
1916 		}
1917 	}
1918 
1919 	sigorsets(&pending->signal, &signal, &retain);
1920 }
1921 
1922 void flush_itimer_signals(void)
1923 {
1924 	struct task_struct *tsk = current;
1925 
1926 	guard(spinlock_irqsave)(&tsk->sighand->siglock);
1927 	__flush_itimer_signals(&tsk->pending);
1928 	__flush_itimer_signals(&tsk->signal->shared_pending);
1929 }
1930 
1931 bool posixtimer_init_sigqueue(struct sigqueue *q)
1932 {
1933 	struct ucounts *ucounts = sig_get_ucounts(current, -1, 0);
1934 
1935 	if (!ucounts)
1936 		return false;
1937 	clear_siginfo(&q->info);
1938 	__sigqueue_init(q, ucounts, SIGQUEUE_PREALLOC);
1939 	return true;
1940 }
1941 
1942 static void posixtimer_queue_sigqueue(struct sigqueue *q, struct task_struct *t, enum pid_type type)
1943 {
1944 	struct sigpending *pending;
1945 	int sig = q->info.si_signo;
1946 
1947 	signalfd_notify(t, sig);
1948 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1949 	list_add_tail(&q->list, &pending->list);
1950 	sigaddset(&pending->signal, sig);
1951 	complete_signal(sig, t, type);
1952 }
1953 
1954 /*
1955  * This function is used by POSIX timers to deliver a timer signal.
1956  * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1957  * set), the signal must be delivered to the specific thread (queues
1958  * into t->pending).
1959  *
1960  * Where type is not PIDTYPE_PID, signals must be delivered to the
1961  * process. In this case, prefer to deliver to current if it is in
1962  * the same thread group as the target process and its sighand is
1963  * stable, which avoids unnecessarily waking up a potentially idle task.
1964  */
1965 static inline struct task_struct *posixtimer_get_target(struct k_itimer *tmr)
1966 {
1967 	struct task_struct *t = pid_task(tmr->it_pid, tmr->it_pid_type);
1968 
1969 	if (t && tmr->it_pid_type != PIDTYPE_PID &&
1970 	    same_thread_group(t, current) && !current->exit_state)
1971 		t = current;
1972 	return t;
1973 }
1974 
1975 void posixtimer_send_sigqueue(struct k_itimer *tmr)
1976 {
1977 	struct sigqueue *q = &tmr->sigq;
1978 	int sig = q->info.si_signo;
1979 	struct task_struct *t;
1980 	unsigned long flags;
1981 	int result;
1982 
1983 	guard(rcu)();
1984 
1985 	t = posixtimer_get_target(tmr);
1986 	if (!t)
1987 		return;
1988 
1989 	if (!likely(lock_task_sighand(t, &flags)))
1990 		return;
1991 
1992 	/*
1993 	 * Update @tmr::sigqueue_seq for posix timer signals with sighand
1994 	 * locked to prevent a race against dequeue_signal().
1995 	 */
1996 	tmr->it_sigqueue_seq = tmr->it_signal_seq;
1997 
1998 	/*
1999 	 * Set the signal delivery status under sighand lock, so that the
2000 	 * ignored signal handling can distinguish between a periodic and a
2001 	 * non-periodic timer.
2002 	 */
2003 	tmr->it_sig_periodic = tmr->it_status == POSIX_TIMER_REQUEUE_PENDING;
2004 
2005 	if (!prepare_signal(sig, t, false)) {
2006 		result = TRACE_SIGNAL_IGNORED;
2007 
2008 		if (!list_empty(&q->list)) {
2009 			/*
2010 			 * The signal was ignored and blocked. The timer
2011 			 * expiry queued it because blocked signals are
2012 			 * queued independent of the ignored state.
2013 			 *
2014 			 * The unblocking set SIGPENDING, but the signal
2015 			 * was not yet dequeued from the pending list.
2016 			 * So prepare_signal() sees unblocked and ignored,
2017 			 * which ends up here. Leave it queued like a
2018 			 * regular signal.
2019 			 *
2020 			 * The same happens when the task group is exiting
2021 			 * and the signal is already queued.
2022 			 * prepare_signal() treats SIGNAL_GROUP_EXIT as
2023 			 * ignored independent of its queued state. This
2024 			 * gets cleaned up in __exit_signal().
2025 			 */
2026 			goto out;
2027 		}
2028 
2029 		/* Periodic timers with SIG_IGN are queued on the ignored list */
2030 		if (tmr->it_sig_periodic) {
2031 			/*
2032 			 * Already queued means the timer was rearmed after
2033 			 * the previous expiry got it on the ignore list.
2034 			 * Nothing to do for that case.
2035 			 */
2036 			if (hlist_unhashed(&tmr->ignored_list)) {
2037 				/*
2038 				 * Take a signal reference and queue it on
2039 				 * the ignored list.
2040 				 */
2041 				posixtimer_sigqueue_getref(q);
2042 				posixtimer_sig_ignore(t, q);
2043 			}
2044 		} else if (!hlist_unhashed(&tmr->ignored_list)) {
2045 			/*
2046 			 * Covers the case where a timer was periodic and
2047 			 * then the signal was ignored. Later it was rearmed
2048 			 * as oneshot timer. The previous signal is invalid
2049 			 * now, and this oneshot signal has to be dropped.
2050 			 * Remove it from the ignored list and drop the
2051 			 * reference count as the signal is not longer
2052 			 * queued.
2053 			 */
2054 			hlist_del_init(&tmr->ignored_list);
2055 			posixtimer_putref(tmr);
2056 		}
2057 		goto out;
2058 	}
2059 
2060 	if (unlikely(!list_empty(&q->list))) {
2061 		/* This holds a reference count already */
2062 		result = TRACE_SIGNAL_ALREADY_PENDING;
2063 		goto out;
2064 	}
2065 
2066 	/*
2067 	 * If the signal is on the ignore list, it got blocked after it was
2068 	 * ignored earlier. But nothing lifted the ignore. Move it back to
2069 	 * the pending list to be consistent with the regular signal
2070 	 * handling. This already holds a reference count.
2071 	 *
2072 	 * If it's not on the ignore list acquire a reference count.
2073 	 */
2074 	if (likely(hlist_unhashed(&tmr->ignored_list)))
2075 		posixtimer_sigqueue_getref(q);
2076 	else
2077 		hlist_del_init(&tmr->ignored_list);
2078 
2079 	posixtimer_queue_sigqueue(q, t, tmr->it_pid_type);
2080 	result = TRACE_SIGNAL_DELIVERED;
2081 out:
2082 	trace_signal_generate(sig, &q->info, t, tmr->it_pid_type != PIDTYPE_PID, result);
2083 	unlock_task_sighand(t, &flags);
2084 }
2085 
2086 static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q)
2087 {
2088 	struct k_itimer *tmr = container_of(q, struct k_itimer, sigq);
2089 
2090 	/*
2091 	 * If the timer is marked deleted already or the signal originates
2092 	 * from a non-periodic timer, then just drop the reference
2093 	 * count. Otherwise queue it on the ignored list.
2094 	 */
2095 	if (posixtimer_valid(tmr) && tmr->it_sig_periodic)
2096 		hlist_add_head(&tmr->ignored_list, &tsk->signal->ignored_posix_timers);
2097 	else
2098 		posixtimer_putref(tmr);
2099 }
2100 
2101 static void posixtimer_sig_unignore(struct task_struct *tsk, int sig)
2102 {
2103 	struct hlist_head *head = &tsk->signal->ignored_posix_timers;
2104 	struct hlist_node *tmp;
2105 	struct k_itimer *tmr;
2106 
2107 	if (likely(hlist_empty(head)))
2108 		return;
2109 
2110 	/*
2111 	 * Rearming a timer with sighand lock held is not possible due to
2112 	 * lock ordering vs. tmr::it_lock. Just stick the sigqueue back and
2113 	 * let the signal delivery path deal with it whether it needs to be
2114 	 * rearmed or not. This cannot be decided here w/o dropping sighand
2115 	 * lock and creating a loop retry horror show.
2116 	 */
2117 	hlist_for_each_entry_safe(tmr, tmp , head, ignored_list) {
2118 		struct task_struct *target;
2119 
2120 		/*
2121 		 * tmr::sigq.info.si_signo is immutable, so accessing it
2122 		 * without holding tmr::it_lock is safe.
2123 		 */
2124 		if (tmr->sigq.info.si_signo != sig)
2125 			continue;
2126 
2127 		hlist_del_init(&tmr->ignored_list);
2128 
2129 		/* This should never happen and leaks a reference count */
2130 		if (WARN_ON_ONCE(!list_empty(&tmr->sigq.list)))
2131 			continue;
2132 
2133 		/*
2134 		 * Get the target for the signal. If target is a thread and
2135 		 * has exited by now, drop the reference count.
2136 		 */
2137 		guard(rcu)();
2138 		target = posixtimer_get_target(tmr);
2139 		if (target)
2140 			posixtimer_queue_sigqueue(&tmr->sigq, target, tmr->it_pid_type);
2141 		else
2142 			posixtimer_putref(tmr);
2143 	}
2144 }
2145 #else /* CONFIG_POSIX_TIMERS */
2146 static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q) { }
2147 static inline void posixtimer_sig_unignore(struct task_struct *tsk, int sig) { }
2148 #endif /* !CONFIG_POSIX_TIMERS */
2149 
2150 void do_notify_pidfd(struct task_struct *task)
2151 {
2152 	struct pid *pid = task_pid(task);
2153 
2154 	WARN_ON(task->exit_state == 0);
2155 
2156 	__wake_up(&pid->wait_pidfd, TASK_NORMAL, 0,
2157 			poll_to_key(EPOLLIN | EPOLLRDNORM));
2158 }
2159 
2160 /*
2161  * Let a parent know about the death of a child.
2162  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2163  *
2164  * Returns true if our parent ignored us and so we've switched to
2165  * self-reaping.
2166  */
2167 bool do_notify_parent(struct task_struct *tsk, int sig)
2168 {
2169 	struct kernel_siginfo info;
2170 	unsigned long flags;
2171 	struct sighand_struct *psig;
2172 	bool autoreap = false;
2173 	u64 utime, stime;
2174 
2175 	WARN_ON_ONCE(sig == -1);
2176 
2177 	/* do_notify_parent_cldstop should have been called instead.  */
2178 	WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2179 
2180 	WARN_ON_ONCE(!tsk->ptrace &&
2181 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2182 	/*
2183 	 * Notify for thread-group leaders without subthreads.
2184 	 */
2185 	if (thread_group_empty(tsk))
2186 		do_notify_pidfd(tsk);
2187 
2188 	if (sig != SIGCHLD) {
2189 		/*
2190 		 * This is only possible if parent == real_parent.
2191 		 * Check if it has changed security domain.
2192 		 */
2193 		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2194 			sig = SIGCHLD;
2195 	}
2196 
2197 	clear_siginfo(&info);
2198 	info.si_signo = sig;
2199 	info.si_errno = 0;
2200 	/*
2201 	 * We are under tasklist_lock here so our parent is tied to
2202 	 * us and cannot change.
2203 	 *
2204 	 * task_active_pid_ns will always return the same pid namespace
2205 	 * until a task passes through release_task.
2206 	 *
2207 	 * write_lock() currently calls preempt_disable() which is the
2208 	 * same as rcu_read_lock(), but according to Oleg, this is not
2209 	 * correct to rely on this
2210 	 */
2211 	rcu_read_lock();
2212 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2213 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2214 				       task_uid(tsk));
2215 	rcu_read_unlock();
2216 
2217 	task_cputime(tsk, &utime, &stime);
2218 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2219 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2220 
2221 	info.si_status = tsk->exit_code & 0x7f;
2222 	if (tsk->exit_code & 0x80)
2223 		info.si_code = CLD_DUMPED;
2224 	else if (tsk->exit_code & 0x7f)
2225 		info.si_code = CLD_KILLED;
2226 	else {
2227 		info.si_code = CLD_EXITED;
2228 		info.si_status = tsk->exit_code >> 8;
2229 	}
2230 
2231 	psig = tsk->parent->sighand;
2232 	spin_lock_irqsave(&psig->siglock, flags);
2233 	if (!tsk->ptrace && sig == SIGCHLD &&
2234 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2235 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2236 		/*
2237 		 * We are exiting and our parent doesn't care.  POSIX.1
2238 		 * defines special semantics for setting SIGCHLD to SIG_IGN
2239 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2240 		 * automatically and not left for our parent's wait4 call.
2241 		 * Rather than having the parent do it as a magic kind of
2242 		 * signal handler, we just set this to tell do_exit that we
2243 		 * can be cleaned up without becoming a zombie.  Note that
2244 		 * we still call __wake_up_parent in this case, because a
2245 		 * blocked sys_wait4 might now return -ECHILD.
2246 		 *
2247 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2248 		 * is implementation-defined: we do (if you don't want
2249 		 * it, just use SIG_IGN instead).
2250 		 */
2251 		autoreap = true;
2252 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2253 			sig = 0;
2254 	}
2255 	/*
2256 	 * Send with __send_signal as si_pid and si_uid are in the
2257 	 * parent's namespaces.
2258 	 */
2259 	if (valid_signal(sig) && sig)
2260 		__send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2261 	__wake_up_parent(tsk, tsk->parent);
2262 	spin_unlock_irqrestore(&psig->siglock, flags);
2263 
2264 	return autoreap;
2265 }
2266 
2267 /**
2268  * do_notify_parent_cldstop - notify parent of stopped/continued state change
2269  * @tsk: task reporting the state change
2270  * @for_ptracer: the notification is for ptracer
2271  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2272  *
2273  * Notify @tsk's parent that the stopped/continued state has changed.  If
2274  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2275  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2276  *
2277  * CONTEXT:
2278  * Must be called with tasklist_lock at least read locked.
2279  */
2280 static void do_notify_parent_cldstop(struct task_struct *tsk,
2281 				     bool for_ptracer, int why)
2282 {
2283 	struct kernel_siginfo info;
2284 	unsigned long flags;
2285 	struct task_struct *parent;
2286 	struct sighand_struct *sighand;
2287 	u64 utime, stime;
2288 
2289 	if (for_ptracer) {
2290 		parent = tsk->parent;
2291 	} else {
2292 		tsk = tsk->group_leader;
2293 		parent = tsk->real_parent;
2294 	}
2295 
2296 	clear_siginfo(&info);
2297 	info.si_signo = SIGCHLD;
2298 	info.si_errno = 0;
2299 	/*
2300 	 * see comment in do_notify_parent() about the following 4 lines
2301 	 */
2302 	rcu_read_lock();
2303 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2304 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2305 	rcu_read_unlock();
2306 
2307 	task_cputime(tsk, &utime, &stime);
2308 	info.si_utime = nsec_to_clock_t(utime);
2309 	info.si_stime = nsec_to_clock_t(stime);
2310 
2311  	info.si_code = why;
2312  	switch (why) {
2313  	case CLD_CONTINUED:
2314  		info.si_status = SIGCONT;
2315  		break;
2316  	case CLD_STOPPED:
2317  		info.si_status = tsk->signal->group_exit_code & 0x7f;
2318  		break;
2319  	case CLD_TRAPPED:
2320  		info.si_status = tsk->exit_code & 0x7f;
2321  		break;
2322  	default:
2323  		BUG();
2324  	}
2325 
2326 	sighand = parent->sighand;
2327 	spin_lock_irqsave(&sighand->siglock, flags);
2328 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2329 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2330 		send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2331 	/*
2332 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2333 	 */
2334 	__wake_up_parent(tsk, parent);
2335 	spin_unlock_irqrestore(&sighand->siglock, flags);
2336 }
2337 
2338 /*
2339  * This must be called with current->sighand->siglock held.
2340  *
2341  * This should be the path for all ptrace stops.
2342  * We always set current->last_siginfo while stopped here.
2343  * That makes it a way to test a stopped process for
2344  * being ptrace-stopped vs being job-control-stopped.
2345  *
2346  * Returns the signal the ptracer requested the code resume
2347  * with.  If the code did not stop because the tracer is gone,
2348  * the stop signal remains unchanged unless clear_code.
2349  */
2350 static int ptrace_stop(int exit_code, int why, unsigned long message,
2351 		       kernel_siginfo_t *info)
2352 	__releases(&current->sighand->siglock)
2353 	__acquires(&current->sighand->siglock)
2354 {
2355 	bool gstop_done = false;
2356 
2357 	if (arch_ptrace_stop_needed()) {
2358 		/*
2359 		 * The arch code has something special to do before a
2360 		 * ptrace stop.  This is allowed to block, e.g. for faults
2361 		 * on user stack pages.  We can't keep the siglock while
2362 		 * calling arch_ptrace_stop, so we must release it now.
2363 		 * To preserve proper semantics, we must do this before
2364 		 * any signal bookkeeping like checking group_stop_count.
2365 		 */
2366 		spin_unlock_irq(&current->sighand->siglock);
2367 		arch_ptrace_stop();
2368 		spin_lock_irq(&current->sighand->siglock);
2369 	}
2370 
2371 	/*
2372 	 * After this point ptrace_signal_wake_up or signal_wake_up
2373 	 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2374 	 * signal comes in.  Handle previous ptrace_unlinks and fatal
2375 	 * signals here to prevent ptrace_stop sleeping in schedule.
2376 	 */
2377 	if (!current->ptrace || __fatal_signal_pending(current))
2378 		return exit_code;
2379 
2380 	set_special_state(TASK_TRACED);
2381 	current->jobctl |= JOBCTL_TRACED;
2382 
2383 	/*
2384 	 * We're committing to trapping.  TRACED should be visible before
2385 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2386 	 * Also, transition to TRACED and updates to ->jobctl should be
2387 	 * atomic with respect to siglock and should be done after the arch
2388 	 * hook as siglock is released and regrabbed across it.
2389 	 *
2390 	 *     TRACER				    TRACEE
2391 	 *
2392 	 *     ptrace_attach()
2393 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2394 	 *     do_wait()
2395 	 *       set_current_state()                smp_wmb();
2396 	 *       ptrace_do_wait()
2397 	 *         wait_task_stopped()
2398 	 *           task_stopped_code()
2399 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2400 	 */
2401 	smp_wmb();
2402 
2403 	current->ptrace_message = message;
2404 	current->last_siginfo = info;
2405 	current->exit_code = exit_code;
2406 
2407 	/*
2408 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2409 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2410 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2411 	 * could be clear now.  We act as if SIGCONT is received after
2412 	 * TASK_TRACED is entered - ignore it.
2413 	 */
2414 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2415 		gstop_done = task_participate_group_stop(current);
2416 
2417 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2418 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2419 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2420 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2421 
2422 	/* entering a trap, clear TRAPPING */
2423 	task_clear_jobctl_trapping(current);
2424 
2425 	spin_unlock_irq(&current->sighand->siglock);
2426 	read_lock(&tasklist_lock);
2427 	/*
2428 	 * Notify parents of the stop.
2429 	 *
2430 	 * While ptraced, there are two parents - the ptracer and
2431 	 * the real_parent of the group_leader.  The ptracer should
2432 	 * know about every stop while the real parent is only
2433 	 * interested in the completion of group stop.  The states
2434 	 * for the two don't interact with each other.  Notify
2435 	 * separately unless they're gonna be duplicates.
2436 	 */
2437 	if (current->ptrace)
2438 		do_notify_parent_cldstop(current, true, why);
2439 	if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2440 		do_notify_parent_cldstop(current, false, why);
2441 
2442 	/*
2443 	 * The previous do_notify_parent_cldstop() invocation woke ptracer.
2444 	 * One a PREEMPTION kernel this can result in preemption requirement
2445 	 * which will be fulfilled after read_unlock() and the ptracer will be
2446 	 * put on the CPU.
2447 	 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for
2448 	 * this task wait in schedule(). If this task gets preempted then it
2449 	 * remains enqueued on the runqueue. The ptracer will observe this and
2450 	 * then sleep for a delay of one HZ tick. In the meantime this task
2451 	 * gets scheduled, enters schedule() and will wait for the ptracer.
2452 	 *
2453 	 * This preemption point is not bad from a correctness point of
2454 	 * view but extends the runtime by one HZ tick time due to the
2455 	 * ptracer's sleep.  The preempt-disable section ensures that there
2456 	 * will be no preemption between unlock and schedule() and so
2457 	 * improving the performance since the ptracer will observe that
2458 	 * the tracee is scheduled out once it gets on the CPU.
2459 	 *
2460 	 * On PREEMPT_RT locking tasklist_lock does not disable preemption.
2461 	 * Therefore the task can be preempted after do_notify_parent_cldstop()
2462 	 * before unlocking tasklist_lock so there is no benefit in doing this.
2463 	 *
2464 	 * In fact disabling preemption is harmful on PREEMPT_RT because
2465 	 * the spinlock_t in cgroup_enter_frozen() must not be acquired
2466 	 * with preemption disabled due to the 'sleeping' spinlock
2467 	 * substitution of RT.
2468 	 */
2469 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2470 		preempt_disable();
2471 	read_unlock(&tasklist_lock);
2472 	cgroup_enter_frozen();
2473 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2474 		preempt_enable_no_resched();
2475 	schedule();
2476 	cgroup_leave_frozen(true);
2477 
2478 	/*
2479 	 * We are back.  Now reacquire the siglock before touching
2480 	 * last_siginfo, so that we are sure to have synchronized with
2481 	 * any signal-sending on another CPU that wants to examine it.
2482 	 */
2483 	spin_lock_irq(&current->sighand->siglock);
2484 	exit_code = current->exit_code;
2485 	current->last_siginfo = NULL;
2486 	current->ptrace_message = 0;
2487 	current->exit_code = 0;
2488 
2489 	/* LISTENING can be set only during STOP traps, clear it */
2490 	current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2491 
2492 	/*
2493 	 * Queued signals ignored us while we were stopped for tracing.
2494 	 * So check for any that we should take before resuming user mode.
2495 	 * This sets TIF_SIGPENDING, but never clears it.
2496 	 */
2497 	recalc_sigpending_tsk(current);
2498 	return exit_code;
2499 }
2500 
2501 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2502 {
2503 	kernel_siginfo_t info;
2504 
2505 	clear_siginfo(&info);
2506 	info.si_signo = signr;
2507 	info.si_code = exit_code;
2508 	info.si_pid = task_pid_vnr(current);
2509 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2510 
2511 	/* Let the debugger run.  */
2512 	return ptrace_stop(exit_code, why, message, &info);
2513 }
2514 
2515 int ptrace_notify(int exit_code, unsigned long message)
2516 {
2517 	int signr;
2518 
2519 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2520 	if (unlikely(task_work_pending(current)))
2521 		task_work_run();
2522 
2523 	spin_lock_irq(&current->sighand->siglock);
2524 	signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2525 	spin_unlock_irq(&current->sighand->siglock);
2526 	return signr;
2527 }
2528 
2529 /**
2530  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2531  * @signr: signr causing group stop if initiating
2532  *
2533  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2534  * and participate in it.  If already set, participate in the existing
2535  * group stop.  If participated in a group stop (and thus slept), %true is
2536  * returned with siglock released.
2537  *
2538  * If ptraced, this function doesn't handle stop itself.  Instead,
2539  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2540  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2541  * places afterwards.
2542  *
2543  * CONTEXT:
2544  * Must be called with @current->sighand->siglock held, which is released
2545  * on %true return.
2546  *
2547  * RETURNS:
2548  * %false if group stop is already cancelled or ptrace trap is scheduled.
2549  * %true if participated in group stop.
2550  */
2551 static bool do_signal_stop(int signr)
2552 	__releases(&current->sighand->siglock)
2553 {
2554 	struct signal_struct *sig = current->signal;
2555 
2556 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2557 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2558 		struct task_struct *t;
2559 
2560 		/* signr will be recorded in task->jobctl for retries */
2561 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2562 
2563 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2564 		    unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2565 		    unlikely(sig->group_exec_task))
2566 			return false;
2567 		/*
2568 		 * There is no group stop already in progress.  We must
2569 		 * initiate one now.
2570 		 *
2571 		 * While ptraced, a task may be resumed while group stop is
2572 		 * still in effect and then receive a stop signal and
2573 		 * initiate another group stop.  This deviates from the
2574 		 * usual behavior as two consecutive stop signals can't
2575 		 * cause two group stops when !ptraced.  That is why we
2576 		 * also check !task_is_stopped(t) below.
2577 		 *
2578 		 * The condition can be distinguished by testing whether
2579 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2580 		 * group_exit_code in such case.
2581 		 *
2582 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2583 		 * an intervening stop signal is required to cause two
2584 		 * continued events regardless of ptrace.
2585 		 */
2586 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2587 			sig->group_exit_code = signr;
2588 
2589 		sig->group_stop_count = 0;
2590 		if (task_set_jobctl_pending(current, signr | gstop))
2591 			sig->group_stop_count++;
2592 
2593 		for_other_threads(current, t) {
2594 			/*
2595 			 * Setting state to TASK_STOPPED for a group
2596 			 * stop is always done with the siglock held,
2597 			 * so this check has no races.
2598 			 */
2599 			if (!task_is_stopped(t) &&
2600 			    task_set_jobctl_pending(t, signr | gstop)) {
2601 				sig->group_stop_count++;
2602 				if (likely(!(t->ptrace & PT_SEIZED)))
2603 					signal_wake_up(t, 0);
2604 				else
2605 					ptrace_trap_notify(t);
2606 			}
2607 		}
2608 	}
2609 
2610 	if (likely(!current->ptrace)) {
2611 		int notify = 0;
2612 
2613 		/*
2614 		 * If there are no other threads in the group, or if there
2615 		 * is a group stop in progress and we are the last to stop,
2616 		 * report to the parent.
2617 		 */
2618 		if (task_participate_group_stop(current))
2619 			notify = CLD_STOPPED;
2620 
2621 		current->jobctl |= JOBCTL_STOPPED;
2622 		set_special_state(TASK_STOPPED);
2623 		spin_unlock_irq(&current->sighand->siglock);
2624 
2625 		/*
2626 		 * Notify the parent of the group stop completion.  Because
2627 		 * we're not holding either the siglock or tasklist_lock
2628 		 * here, ptracer may attach inbetween; however, this is for
2629 		 * group stop and should always be delivered to the real
2630 		 * parent of the group leader.  The new ptracer will get
2631 		 * its notification when this task transitions into
2632 		 * TASK_TRACED.
2633 		 */
2634 		if (notify) {
2635 			read_lock(&tasklist_lock);
2636 			do_notify_parent_cldstop(current, false, notify);
2637 			read_unlock(&tasklist_lock);
2638 		}
2639 
2640 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2641 		cgroup_enter_frozen();
2642 		schedule();
2643 		return true;
2644 	} else {
2645 		/*
2646 		 * While ptraced, group stop is handled by STOP trap.
2647 		 * Schedule it and let the caller deal with it.
2648 		 */
2649 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2650 		return false;
2651 	}
2652 }
2653 
2654 /**
2655  * do_jobctl_trap - take care of ptrace jobctl traps
2656  *
2657  * When PT_SEIZED, it's used for both group stop and explicit
2658  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2659  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2660  * the stop signal; otherwise, %SIGTRAP.
2661  *
2662  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2663  * number as exit_code and no siginfo.
2664  *
2665  * CONTEXT:
2666  * Must be called with @current->sighand->siglock held, which may be
2667  * released and re-acquired before returning with intervening sleep.
2668  */
2669 static void do_jobctl_trap(void)
2670 {
2671 	struct signal_struct *signal = current->signal;
2672 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2673 
2674 	if (current->ptrace & PT_SEIZED) {
2675 		if (!signal->group_stop_count &&
2676 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2677 			signr = SIGTRAP;
2678 		WARN_ON_ONCE(!signr);
2679 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2680 				 CLD_STOPPED, 0);
2681 	} else {
2682 		WARN_ON_ONCE(!signr);
2683 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2684 	}
2685 }
2686 
2687 /**
2688  * do_freezer_trap - handle the freezer jobctl trap
2689  *
2690  * Puts the task into frozen state, if only the task is not about to quit.
2691  * In this case it drops JOBCTL_TRAP_FREEZE.
2692  *
2693  * CONTEXT:
2694  * Must be called with @current->sighand->siglock held,
2695  * which is always released before returning.
2696  */
2697 static void do_freezer_trap(void)
2698 	__releases(&current->sighand->siglock)
2699 {
2700 	/*
2701 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2702 	 * let's make another loop to give it a chance to be handled.
2703 	 * In any case, we'll return back.
2704 	 */
2705 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2706 	     JOBCTL_TRAP_FREEZE) {
2707 		spin_unlock_irq(&current->sighand->siglock);
2708 		return;
2709 	}
2710 
2711 	/*
2712 	 * Now we're sure that there is no pending fatal signal and no
2713 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2714 	 * immediately (if there is a non-fatal signal pending), and
2715 	 * put the task into sleep.
2716 	 */
2717 	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2718 	clear_thread_flag(TIF_SIGPENDING);
2719 	spin_unlock_irq(&current->sighand->siglock);
2720 	cgroup_enter_frozen();
2721 	schedule();
2722 
2723 	/*
2724 	 * We could've been woken by task_work, run it to clear
2725 	 * TIF_NOTIFY_SIGNAL. The caller will retry if necessary.
2726 	 */
2727 	clear_notify_signal();
2728 	if (unlikely(task_work_pending(current)))
2729 		task_work_run();
2730 }
2731 
2732 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2733 {
2734 	/*
2735 	 * We do not check sig_kernel_stop(signr) but set this marker
2736 	 * unconditionally because we do not know whether debugger will
2737 	 * change signr. This flag has no meaning unless we are going
2738 	 * to stop after return from ptrace_stop(). In this case it will
2739 	 * be checked in do_signal_stop(), we should only stop if it was
2740 	 * not cleared by SIGCONT while we were sleeping. See also the
2741 	 * comment in dequeue_signal().
2742 	 */
2743 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2744 	signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2745 
2746 	/* We're back.  Did the debugger cancel the sig?  */
2747 	if (signr == 0)
2748 		return signr;
2749 
2750 	/*
2751 	 * Update the siginfo structure if the signal has
2752 	 * changed.  If the debugger wanted something
2753 	 * specific in the siginfo structure then it should
2754 	 * have updated *info via PTRACE_SETSIGINFO.
2755 	 */
2756 	if (signr != info->si_signo) {
2757 		clear_siginfo(info);
2758 		info->si_signo = signr;
2759 		info->si_errno = 0;
2760 		info->si_code = SI_USER;
2761 		rcu_read_lock();
2762 		info->si_pid = task_pid_vnr(current->parent);
2763 		info->si_uid = from_kuid_munged(current_user_ns(),
2764 						task_uid(current->parent));
2765 		rcu_read_unlock();
2766 	}
2767 
2768 	/* If the (new) signal is now blocked, requeue it.  */
2769 	if (sigismember(&current->blocked, signr) ||
2770 	    fatal_signal_pending(current)) {
2771 		send_signal_locked(signr, info, current, type);
2772 		signr = 0;
2773 	}
2774 
2775 	return signr;
2776 }
2777 
2778 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2779 {
2780 	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2781 	case SIL_FAULT:
2782 	case SIL_FAULT_TRAPNO:
2783 	case SIL_FAULT_MCEERR:
2784 	case SIL_FAULT_BNDERR:
2785 	case SIL_FAULT_PKUERR:
2786 	case SIL_FAULT_PERF_EVENT:
2787 		ksig->info.si_addr = arch_untagged_si_addr(
2788 			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2789 		break;
2790 	case SIL_KILL:
2791 	case SIL_TIMER:
2792 	case SIL_POLL:
2793 	case SIL_CHLD:
2794 	case SIL_RT:
2795 	case SIL_SYS:
2796 		break;
2797 	}
2798 }
2799 
2800 bool get_signal(struct ksignal *ksig)
2801 {
2802 	struct sighand_struct *sighand = current->sighand;
2803 	struct signal_struct *signal = current->signal;
2804 	int signr;
2805 
2806 	clear_notify_signal();
2807 	if (unlikely(task_work_pending(current)))
2808 		task_work_run();
2809 
2810 	if (!task_sigpending(current))
2811 		return false;
2812 
2813 	if (unlikely(uprobe_deny_signal()))
2814 		return false;
2815 
2816 	/*
2817 	 * Do this once, we can't return to user-mode if freezing() == T.
2818 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2819 	 * thus do not need another check after return.
2820 	 */
2821 	try_to_freeze();
2822 
2823 relock:
2824 	spin_lock_irq(&sighand->siglock);
2825 
2826 	/*
2827 	 * Every stopped thread goes here after wakeup. Check to see if
2828 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2829 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2830 	 */
2831 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2832 		int why;
2833 
2834 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2835 			why = CLD_CONTINUED;
2836 		else
2837 			why = CLD_STOPPED;
2838 
2839 		signal->flags &= ~SIGNAL_CLD_MASK;
2840 
2841 		spin_unlock_irq(&sighand->siglock);
2842 
2843 		/*
2844 		 * Notify the parent that we're continuing.  This event is
2845 		 * always per-process and doesn't make whole lot of sense
2846 		 * for ptracers, who shouldn't consume the state via
2847 		 * wait(2) either, but, for backward compatibility, notify
2848 		 * the ptracer of the group leader too unless it's gonna be
2849 		 * a duplicate.
2850 		 */
2851 		read_lock(&tasklist_lock);
2852 		do_notify_parent_cldstop(current, false, why);
2853 
2854 		if (ptrace_reparented(current->group_leader))
2855 			do_notify_parent_cldstop(current->group_leader,
2856 						true, why);
2857 		read_unlock(&tasklist_lock);
2858 
2859 		goto relock;
2860 	}
2861 
2862 	for (;;) {
2863 		struct k_sigaction *ka;
2864 		enum pid_type type;
2865 
2866 		/* Has this task already been marked for death? */
2867 		if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2868 		     signal->group_exec_task) {
2869 			signr = SIGKILL;
2870 			sigdelset(&current->pending.signal, SIGKILL);
2871 			trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2872 					     &sighand->action[SIGKILL-1]);
2873 			recalc_sigpending();
2874 			/*
2875 			 * implies do_group_exit() or return to PF_USER_WORKER,
2876 			 * no need to initialize ksig->info/etc.
2877 			 */
2878 			goto fatal;
2879 		}
2880 
2881 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2882 		    do_signal_stop(0))
2883 			goto relock;
2884 
2885 		if (unlikely(current->jobctl &
2886 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2887 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2888 				do_jobctl_trap();
2889 				spin_unlock_irq(&sighand->siglock);
2890 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2891 				do_freezer_trap();
2892 
2893 			goto relock;
2894 		}
2895 
2896 		/*
2897 		 * If the task is leaving the frozen state, let's update
2898 		 * cgroup counters and reset the frozen bit.
2899 		 */
2900 		if (unlikely(cgroup_task_frozen(current))) {
2901 			spin_unlock_irq(&sighand->siglock);
2902 			cgroup_leave_frozen(false);
2903 			goto relock;
2904 		}
2905 
2906 		/*
2907 		 * Signals generated by the execution of an instruction
2908 		 * need to be delivered before any other pending signals
2909 		 * so that the instruction pointer in the signal stack
2910 		 * frame points to the faulting instruction.
2911 		 */
2912 		type = PIDTYPE_PID;
2913 		signr = dequeue_synchronous_signal(&ksig->info);
2914 		if (!signr)
2915 			signr = dequeue_signal(&current->blocked, &ksig->info, &type);
2916 
2917 		if (!signr)
2918 			break; /* will return 0 */
2919 
2920 		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2921 		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2922 			signr = ptrace_signal(signr, &ksig->info, type);
2923 			if (!signr)
2924 				continue;
2925 		}
2926 
2927 		ka = &sighand->action[signr-1];
2928 
2929 		/* Trace actually delivered signals. */
2930 		trace_signal_deliver(signr, &ksig->info, ka);
2931 
2932 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2933 			continue;
2934 		if (ka->sa.sa_handler != SIG_DFL) {
2935 			/* Run the handler.  */
2936 			ksig->ka = *ka;
2937 
2938 			if (ka->sa.sa_flags & SA_ONESHOT)
2939 				ka->sa.sa_handler = SIG_DFL;
2940 
2941 			break; /* will return non-zero "signr" value */
2942 		}
2943 
2944 		/*
2945 		 * Now we are doing the default action for this signal.
2946 		 */
2947 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2948 			continue;
2949 
2950 		/*
2951 		 * Global init gets no signals it doesn't want.
2952 		 * Container-init gets no signals it doesn't want from same
2953 		 * container.
2954 		 *
2955 		 * Note that if global/container-init sees a sig_kernel_only()
2956 		 * signal here, the signal must have been generated internally
2957 		 * or must have come from an ancestor namespace. In either
2958 		 * case, the signal cannot be dropped.
2959 		 */
2960 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2961 				!sig_kernel_only(signr))
2962 			continue;
2963 
2964 		if (sig_kernel_stop(signr)) {
2965 			/*
2966 			 * The default action is to stop all threads in
2967 			 * the thread group.  The job control signals
2968 			 * do nothing in an orphaned pgrp, but SIGSTOP
2969 			 * always works.  Note that siglock needs to be
2970 			 * dropped during the call to is_orphaned_pgrp()
2971 			 * because of lock ordering with tasklist_lock.
2972 			 * This allows an intervening SIGCONT to be posted.
2973 			 * We need to check for that and bail out if necessary.
2974 			 */
2975 			if (signr != SIGSTOP) {
2976 				spin_unlock_irq(&sighand->siglock);
2977 
2978 				/* signals can be posted during this window */
2979 
2980 				if (is_current_pgrp_orphaned())
2981 					goto relock;
2982 
2983 				spin_lock_irq(&sighand->siglock);
2984 			}
2985 
2986 			if (likely(do_signal_stop(signr))) {
2987 				/* It released the siglock.  */
2988 				goto relock;
2989 			}
2990 
2991 			/*
2992 			 * We didn't actually stop, due to a race
2993 			 * with SIGCONT or something like that.
2994 			 */
2995 			continue;
2996 		}
2997 
2998 	fatal:
2999 		spin_unlock_irq(&sighand->siglock);
3000 		if (unlikely(cgroup_task_frozen(current)))
3001 			cgroup_leave_frozen(true);
3002 
3003 		/*
3004 		 * Anything else is fatal, maybe with a core dump.
3005 		 */
3006 		current->flags |= PF_SIGNALED;
3007 
3008 		if (sig_kernel_coredump(signr)) {
3009 			if (print_fatal_signals)
3010 				print_fatal_signal(signr);
3011 			proc_coredump_connector(current);
3012 			/*
3013 			 * If it was able to dump core, this kills all
3014 			 * other threads in the group and synchronizes with
3015 			 * their demise.  If we lost the race with another
3016 			 * thread getting here, it set group_exit_code
3017 			 * first and our do_group_exit call below will use
3018 			 * that value and ignore the one we pass it.
3019 			 */
3020 			do_coredump(&ksig->info);
3021 		}
3022 
3023 		/*
3024 		 * PF_USER_WORKER threads will catch and exit on fatal signals
3025 		 * themselves. They have cleanup that must be performed, so we
3026 		 * cannot call do_exit() on their behalf. Note that ksig won't
3027 		 * be properly initialized, PF_USER_WORKER's shouldn't use it.
3028 		 */
3029 		if (current->flags & PF_USER_WORKER)
3030 			goto out;
3031 
3032 		/*
3033 		 * Death signals, no core dump.
3034 		 */
3035 		do_group_exit(signr);
3036 		/* NOTREACHED */
3037 	}
3038 	spin_unlock_irq(&sighand->siglock);
3039 
3040 	ksig->sig = signr;
3041 
3042 	if (signr && !(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
3043 		hide_si_addr_tag_bits(ksig);
3044 out:
3045 	return signr > 0;
3046 }
3047 
3048 /**
3049  * signal_delivered - called after signal delivery to update blocked signals
3050  * @ksig:		kernel signal struct
3051  * @stepping:		nonzero if debugger single-step or block-step in use
3052  *
3053  * This function should be called when a signal has successfully been
3054  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
3055  * is always blocked), and the signal itself is blocked unless %SA_NODEFER
3056  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
3057  */
3058 static void signal_delivered(struct ksignal *ksig, int stepping)
3059 {
3060 	sigset_t blocked;
3061 
3062 	/* A signal was successfully delivered, and the
3063 	   saved sigmask was stored on the signal frame,
3064 	   and will be restored by sigreturn.  So we can
3065 	   simply clear the restore sigmask flag.  */
3066 	clear_restore_sigmask();
3067 
3068 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
3069 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
3070 		sigaddset(&blocked, ksig->sig);
3071 	set_current_blocked(&blocked);
3072 	if (current->sas_ss_flags & SS_AUTODISARM)
3073 		sas_ss_reset(current);
3074 	if (stepping)
3075 		ptrace_notify(SIGTRAP, 0);
3076 }
3077 
3078 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
3079 {
3080 	if (failed)
3081 		force_sigsegv(ksig->sig);
3082 	else
3083 		signal_delivered(ksig, stepping);
3084 }
3085 
3086 /*
3087  * It could be that complete_signal() picked us to notify about the
3088  * group-wide signal. Other threads should be notified now to take
3089  * the shared signals in @which since we will not.
3090  */
3091 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
3092 {
3093 	sigset_t retarget;
3094 	struct task_struct *t;
3095 
3096 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
3097 	if (sigisemptyset(&retarget))
3098 		return;
3099 
3100 	for_other_threads(tsk, t) {
3101 		if (t->flags & PF_EXITING)
3102 			continue;
3103 
3104 		if (!has_pending_signals(&retarget, &t->blocked))
3105 			continue;
3106 		/* Remove the signals this thread can handle. */
3107 		sigandsets(&retarget, &retarget, &t->blocked);
3108 
3109 		if (!task_sigpending(t))
3110 			signal_wake_up(t, 0);
3111 
3112 		if (sigisemptyset(&retarget))
3113 			break;
3114 	}
3115 }
3116 
3117 void exit_signals(struct task_struct *tsk)
3118 {
3119 	int group_stop = 0;
3120 	sigset_t unblocked;
3121 
3122 	/*
3123 	 * @tsk is about to have PF_EXITING set - lock out users which
3124 	 * expect stable threadgroup.
3125 	 */
3126 	cgroup_threadgroup_change_begin(tsk);
3127 
3128 	if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
3129 		sched_mm_cid_exit_signals(tsk);
3130 		tsk->flags |= PF_EXITING;
3131 		cgroup_threadgroup_change_end(tsk);
3132 		return;
3133 	}
3134 
3135 	spin_lock_irq(&tsk->sighand->siglock);
3136 	/*
3137 	 * From now this task is not visible for group-wide signals,
3138 	 * see wants_signal(), do_signal_stop().
3139 	 */
3140 	sched_mm_cid_exit_signals(tsk);
3141 	tsk->flags |= PF_EXITING;
3142 
3143 	cgroup_threadgroup_change_end(tsk);
3144 
3145 	if (!task_sigpending(tsk))
3146 		goto out;
3147 
3148 	unblocked = tsk->blocked;
3149 	signotset(&unblocked);
3150 	retarget_shared_pending(tsk, &unblocked);
3151 
3152 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3153 	    task_participate_group_stop(tsk))
3154 		group_stop = CLD_STOPPED;
3155 out:
3156 	spin_unlock_irq(&tsk->sighand->siglock);
3157 
3158 	/*
3159 	 * If group stop has completed, deliver the notification.  This
3160 	 * should always go to the real parent of the group leader.
3161 	 */
3162 	if (unlikely(group_stop)) {
3163 		read_lock(&tasklist_lock);
3164 		do_notify_parent_cldstop(tsk, false, group_stop);
3165 		read_unlock(&tasklist_lock);
3166 	}
3167 }
3168 
3169 /*
3170  * System call entry points.
3171  */
3172 
3173 /**
3174  *  sys_restart_syscall - restart a system call
3175  */
3176 SYSCALL_DEFINE0(restart_syscall)
3177 {
3178 	struct restart_block *restart = &current->restart_block;
3179 	return restart->fn(restart);
3180 }
3181 
3182 long do_no_restart_syscall(struct restart_block *param)
3183 {
3184 	return -EINTR;
3185 }
3186 
3187 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3188 {
3189 	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3190 		sigset_t newblocked;
3191 		/* A set of now blocked but previously unblocked signals. */
3192 		sigandnsets(&newblocked, newset, &current->blocked);
3193 		retarget_shared_pending(tsk, &newblocked);
3194 	}
3195 	tsk->blocked = *newset;
3196 	recalc_sigpending();
3197 }
3198 
3199 /**
3200  * set_current_blocked - change current->blocked mask
3201  * @newset: new mask
3202  *
3203  * It is wrong to change ->blocked directly, this helper should be used
3204  * to ensure the process can't miss a shared signal we are going to block.
3205  */
3206 void set_current_blocked(sigset_t *newset)
3207 {
3208 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3209 	__set_current_blocked(newset);
3210 }
3211 
3212 void __set_current_blocked(const sigset_t *newset)
3213 {
3214 	struct task_struct *tsk = current;
3215 
3216 	/*
3217 	 * In case the signal mask hasn't changed, there is nothing we need
3218 	 * to do. The current->blocked shouldn't be modified by other task.
3219 	 */
3220 	if (sigequalsets(&tsk->blocked, newset))
3221 		return;
3222 
3223 	spin_lock_irq(&tsk->sighand->siglock);
3224 	__set_task_blocked(tsk, newset);
3225 	spin_unlock_irq(&tsk->sighand->siglock);
3226 }
3227 
3228 /*
3229  * This is also useful for kernel threads that want to temporarily
3230  * (or permanently) block certain signals.
3231  *
3232  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3233  * interface happily blocks "unblockable" signals like SIGKILL
3234  * and friends.
3235  */
3236 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3237 {
3238 	struct task_struct *tsk = current;
3239 	sigset_t newset;
3240 
3241 	/* Lockless, only current can change ->blocked, never from irq */
3242 	if (oldset)
3243 		*oldset = tsk->blocked;
3244 
3245 	switch (how) {
3246 	case SIG_BLOCK:
3247 		sigorsets(&newset, &tsk->blocked, set);
3248 		break;
3249 	case SIG_UNBLOCK:
3250 		sigandnsets(&newset, &tsk->blocked, set);
3251 		break;
3252 	case SIG_SETMASK:
3253 		newset = *set;
3254 		break;
3255 	default:
3256 		return -EINVAL;
3257 	}
3258 
3259 	__set_current_blocked(&newset);
3260 	return 0;
3261 }
3262 EXPORT_SYMBOL(sigprocmask);
3263 
3264 /*
3265  * The api helps set app-provided sigmasks.
3266  *
3267  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3268  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3269  *
3270  * Note that it does set_restore_sigmask() in advance, so it must be always
3271  * paired with restore_saved_sigmask_unless() before return from syscall.
3272  */
3273 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3274 {
3275 	sigset_t kmask;
3276 
3277 	if (!umask)
3278 		return 0;
3279 	if (sigsetsize != sizeof(sigset_t))
3280 		return -EINVAL;
3281 	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3282 		return -EFAULT;
3283 
3284 	set_restore_sigmask();
3285 	current->saved_sigmask = current->blocked;
3286 	set_current_blocked(&kmask);
3287 
3288 	return 0;
3289 }
3290 
3291 #ifdef CONFIG_COMPAT
3292 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3293 			    size_t sigsetsize)
3294 {
3295 	sigset_t kmask;
3296 
3297 	if (!umask)
3298 		return 0;
3299 	if (sigsetsize != sizeof(compat_sigset_t))
3300 		return -EINVAL;
3301 	if (get_compat_sigset(&kmask, umask))
3302 		return -EFAULT;
3303 
3304 	set_restore_sigmask();
3305 	current->saved_sigmask = current->blocked;
3306 	set_current_blocked(&kmask);
3307 
3308 	return 0;
3309 }
3310 #endif
3311 
3312 /**
3313  *  sys_rt_sigprocmask - change the list of currently blocked signals
3314  *  @how: whether to add, remove, or set signals
3315  *  @nset: stores pending signals
3316  *  @oset: previous value of signal mask if non-null
3317  *  @sigsetsize: size of sigset_t type
3318  */
3319 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3320 		sigset_t __user *, oset, size_t, sigsetsize)
3321 {
3322 	sigset_t old_set, new_set;
3323 	int error;
3324 
3325 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3326 	if (sigsetsize != sizeof(sigset_t))
3327 		return -EINVAL;
3328 
3329 	old_set = current->blocked;
3330 
3331 	if (nset) {
3332 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3333 			return -EFAULT;
3334 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3335 
3336 		error = sigprocmask(how, &new_set, NULL);
3337 		if (error)
3338 			return error;
3339 	}
3340 
3341 	if (oset) {
3342 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3343 			return -EFAULT;
3344 	}
3345 
3346 	return 0;
3347 }
3348 
3349 #ifdef CONFIG_COMPAT
3350 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3351 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3352 {
3353 	sigset_t old_set = current->blocked;
3354 
3355 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3356 	if (sigsetsize != sizeof(sigset_t))
3357 		return -EINVAL;
3358 
3359 	if (nset) {
3360 		sigset_t new_set;
3361 		int error;
3362 		if (get_compat_sigset(&new_set, nset))
3363 			return -EFAULT;
3364 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3365 
3366 		error = sigprocmask(how, &new_set, NULL);
3367 		if (error)
3368 			return error;
3369 	}
3370 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3371 }
3372 #endif
3373 
3374 static void do_sigpending(sigset_t *set)
3375 {
3376 	spin_lock_irq(&current->sighand->siglock);
3377 	sigorsets(set, &current->pending.signal,
3378 		  &current->signal->shared_pending.signal);
3379 	spin_unlock_irq(&current->sighand->siglock);
3380 
3381 	/* Outside the lock because only this thread touches it.  */
3382 	sigandsets(set, &current->blocked, set);
3383 }
3384 
3385 /**
3386  *  sys_rt_sigpending - examine a pending signal that has been raised
3387  *			while blocked
3388  *  @uset: stores pending signals
3389  *  @sigsetsize: size of sigset_t type or larger
3390  */
3391 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3392 {
3393 	sigset_t set;
3394 
3395 	if (sigsetsize > sizeof(*uset))
3396 		return -EINVAL;
3397 
3398 	do_sigpending(&set);
3399 
3400 	if (copy_to_user(uset, &set, sigsetsize))
3401 		return -EFAULT;
3402 
3403 	return 0;
3404 }
3405 
3406 #ifdef CONFIG_COMPAT
3407 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3408 		compat_size_t, sigsetsize)
3409 {
3410 	sigset_t set;
3411 
3412 	if (sigsetsize > sizeof(*uset))
3413 		return -EINVAL;
3414 
3415 	do_sigpending(&set);
3416 
3417 	return put_compat_sigset(uset, &set, sigsetsize);
3418 }
3419 #endif
3420 
3421 static const struct {
3422 	unsigned char limit, layout;
3423 } sig_sicodes[] = {
3424 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3425 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3426 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3427 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3428 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3429 #if defined(SIGEMT)
3430 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3431 #endif
3432 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3433 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3434 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3435 };
3436 
3437 static bool known_siginfo_layout(unsigned sig, int si_code)
3438 {
3439 	if (si_code == SI_KERNEL)
3440 		return true;
3441 	else if ((si_code > SI_USER)) {
3442 		if (sig_specific_sicodes(sig)) {
3443 			if (si_code <= sig_sicodes[sig].limit)
3444 				return true;
3445 		}
3446 		else if (si_code <= NSIGPOLL)
3447 			return true;
3448 	}
3449 	else if (si_code >= SI_DETHREAD)
3450 		return true;
3451 	else if (si_code == SI_ASYNCNL)
3452 		return true;
3453 	return false;
3454 }
3455 
3456 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3457 {
3458 	enum siginfo_layout layout = SIL_KILL;
3459 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3460 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3461 		    (si_code <= sig_sicodes[sig].limit)) {
3462 			layout = sig_sicodes[sig].layout;
3463 			/* Handle the exceptions */
3464 			if ((sig == SIGBUS) &&
3465 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3466 				layout = SIL_FAULT_MCEERR;
3467 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3468 				layout = SIL_FAULT_BNDERR;
3469 #ifdef SEGV_PKUERR
3470 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3471 				layout = SIL_FAULT_PKUERR;
3472 #endif
3473 			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3474 				layout = SIL_FAULT_PERF_EVENT;
3475 			else if (IS_ENABLED(CONFIG_SPARC) &&
3476 				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3477 				layout = SIL_FAULT_TRAPNO;
3478 			else if (IS_ENABLED(CONFIG_ALPHA) &&
3479 				 ((sig == SIGFPE) ||
3480 				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3481 				layout = SIL_FAULT_TRAPNO;
3482 		}
3483 		else if (si_code <= NSIGPOLL)
3484 			layout = SIL_POLL;
3485 	} else {
3486 		if (si_code == SI_TIMER)
3487 			layout = SIL_TIMER;
3488 		else if (si_code == SI_SIGIO)
3489 			layout = SIL_POLL;
3490 		else if (si_code < 0)
3491 			layout = SIL_RT;
3492 	}
3493 	return layout;
3494 }
3495 
3496 static inline char __user *si_expansion(const siginfo_t __user *info)
3497 {
3498 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3499 }
3500 
3501 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3502 {
3503 	char __user *expansion = si_expansion(to);
3504 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3505 		return -EFAULT;
3506 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3507 		return -EFAULT;
3508 	return 0;
3509 }
3510 
3511 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3512 				       const siginfo_t __user *from)
3513 {
3514 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3515 		char __user *expansion = si_expansion(from);
3516 		char buf[SI_EXPANSION_SIZE];
3517 		int i;
3518 		/*
3519 		 * An unknown si_code might need more than
3520 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3521 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3522 		 * will return this data to userspace exactly.
3523 		 */
3524 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3525 			return -EFAULT;
3526 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3527 			if (buf[i] != 0)
3528 				return -E2BIG;
3529 		}
3530 	}
3531 	return 0;
3532 }
3533 
3534 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3535 				    const siginfo_t __user *from)
3536 {
3537 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3538 		return -EFAULT;
3539 	to->si_signo = signo;
3540 	return post_copy_siginfo_from_user(to, from);
3541 }
3542 
3543 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3544 {
3545 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3546 		return -EFAULT;
3547 	return post_copy_siginfo_from_user(to, from);
3548 }
3549 
3550 #ifdef CONFIG_COMPAT
3551 /**
3552  * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3553  * @to: compat siginfo destination
3554  * @from: kernel siginfo source
3555  *
3556  * Note: This function does not work properly for the SIGCHLD on x32, but
3557  * fortunately it doesn't have to.  The only valid callers for this function are
3558  * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3559  * The latter does not care because SIGCHLD will never cause a coredump.
3560  */
3561 void copy_siginfo_to_external32(struct compat_siginfo *to,
3562 		const struct kernel_siginfo *from)
3563 {
3564 	memset(to, 0, sizeof(*to));
3565 
3566 	to->si_signo = from->si_signo;
3567 	to->si_errno = from->si_errno;
3568 	to->si_code  = from->si_code;
3569 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3570 	case SIL_KILL:
3571 		to->si_pid = from->si_pid;
3572 		to->si_uid = from->si_uid;
3573 		break;
3574 	case SIL_TIMER:
3575 		to->si_tid     = from->si_tid;
3576 		to->si_overrun = from->si_overrun;
3577 		to->si_int     = from->si_int;
3578 		break;
3579 	case SIL_POLL:
3580 		to->si_band = from->si_band;
3581 		to->si_fd   = from->si_fd;
3582 		break;
3583 	case SIL_FAULT:
3584 		to->si_addr = ptr_to_compat(from->si_addr);
3585 		break;
3586 	case SIL_FAULT_TRAPNO:
3587 		to->si_addr = ptr_to_compat(from->si_addr);
3588 		to->si_trapno = from->si_trapno;
3589 		break;
3590 	case SIL_FAULT_MCEERR:
3591 		to->si_addr = ptr_to_compat(from->si_addr);
3592 		to->si_addr_lsb = from->si_addr_lsb;
3593 		break;
3594 	case SIL_FAULT_BNDERR:
3595 		to->si_addr = ptr_to_compat(from->si_addr);
3596 		to->si_lower = ptr_to_compat(from->si_lower);
3597 		to->si_upper = ptr_to_compat(from->si_upper);
3598 		break;
3599 	case SIL_FAULT_PKUERR:
3600 		to->si_addr = ptr_to_compat(from->si_addr);
3601 		to->si_pkey = from->si_pkey;
3602 		break;
3603 	case SIL_FAULT_PERF_EVENT:
3604 		to->si_addr = ptr_to_compat(from->si_addr);
3605 		to->si_perf_data = from->si_perf_data;
3606 		to->si_perf_type = from->si_perf_type;
3607 		to->si_perf_flags = from->si_perf_flags;
3608 		break;
3609 	case SIL_CHLD:
3610 		to->si_pid = from->si_pid;
3611 		to->si_uid = from->si_uid;
3612 		to->si_status = from->si_status;
3613 		to->si_utime = from->si_utime;
3614 		to->si_stime = from->si_stime;
3615 		break;
3616 	case SIL_RT:
3617 		to->si_pid = from->si_pid;
3618 		to->si_uid = from->si_uid;
3619 		to->si_int = from->si_int;
3620 		break;
3621 	case SIL_SYS:
3622 		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3623 		to->si_syscall   = from->si_syscall;
3624 		to->si_arch      = from->si_arch;
3625 		break;
3626 	}
3627 }
3628 
3629 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3630 			   const struct kernel_siginfo *from)
3631 {
3632 	struct compat_siginfo new;
3633 
3634 	copy_siginfo_to_external32(&new, from);
3635 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3636 		return -EFAULT;
3637 	return 0;
3638 }
3639 
3640 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3641 					 const struct compat_siginfo *from)
3642 {
3643 	clear_siginfo(to);
3644 	to->si_signo = from->si_signo;
3645 	to->si_errno = from->si_errno;
3646 	to->si_code  = from->si_code;
3647 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3648 	case SIL_KILL:
3649 		to->si_pid = from->si_pid;
3650 		to->si_uid = from->si_uid;
3651 		break;
3652 	case SIL_TIMER:
3653 		to->si_tid     = from->si_tid;
3654 		to->si_overrun = from->si_overrun;
3655 		to->si_int     = from->si_int;
3656 		break;
3657 	case SIL_POLL:
3658 		to->si_band = from->si_band;
3659 		to->si_fd   = from->si_fd;
3660 		break;
3661 	case SIL_FAULT:
3662 		to->si_addr = compat_ptr(from->si_addr);
3663 		break;
3664 	case SIL_FAULT_TRAPNO:
3665 		to->si_addr = compat_ptr(from->si_addr);
3666 		to->si_trapno = from->si_trapno;
3667 		break;
3668 	case SIL_FAULT_MCEERR:
3669 		to->si_addr = compat_ptr(from->si_addr);
3670 		to->si_addr_lsb = from->si_addr_lsb;
3671 		break;
3672 	case SIL_FAULT_BNDERR:
3673 		to->si_addr = compat_ptr(from->si_addr);
3674 		to->si_lower = compat_ptr(from->si_lower);
3675 		to->si_upper = compat_ptr(from->si_upper);
3676 		break;
3677 	case SIL_FAULT_PKUERR:
3678 		to->si_addr = compat_ptr(from->si_addr);
3679 		to->si_pkey = from->si_pkey;
3680 		break;
3681 	case SIL_FAULT_PERF_EVENT:
3682 		to->si_addr = compat_ptr(from->si_addr);
3683 		to->si_perf_data = from->si_perf_data;
3684 		to->si_perf_type = from->si_perf_type;
3685 		to->si_perf_flags = from->si_perf_flags;
3686 		break;
3687 	case SIL_CHLD:
3688 		to->si_pid    = from->si_pid;
3689 		to->si_uid    = from->si_uid;
3690 		to->si_status = from->si_status;
3691 #ifdef CONFIG_X86_X32_ABI
3692 		if (in_x32_syscall()) {
3693 			to->si_utime = from->_sifields._sigchld_x32._utime;
3694 			to->si_stime = from->_sifields._sigchld_x32._stime;
3695 		} else
3696 #endif
3697 		{
3698 			to->si_utime = from->si_utime;
3699 			to->si_stime = from->si_stime;
3700 		}
3701 		break;
3702 	case SIL_RT:
3703 		to->si_pid = from->si_pid;
3704 		to->si_uid = from->si_uid;
3705 		to->si_int = from->si_int;
3706 		break;
3707 	case SIL_SYS:
3708 		to->si_call_addr = compat_ptr(from->si_call_addr);
3709 		to->si_syscall   = from->si_syscall;
3710 		to->si_arch      = from->si_arch;
3711 		break;
3712 	}
3713 	return 0;
3714 }
3715 
3716 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3717 				      const struct compat_siginfo __user *ufrom)
3718 {
3719 	struct compat_siginfo from;
3720 
3721 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3722 		return -EFAULT;
3723 
3724 	from.si_signo = signo;
3725 	return post_copy_siginfo_from_user32(to, &from);
3726 }
3727 
3728 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3729 			     const struct compat_siginfo __user *ufrom)
3730 {
3731 	struct compat_siginfo from;
3732 
3733 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3734 		return -EFAULT;
3735 
3736 	return post_copy_siginfo_from_user32(to, &from);
3737 }
3738 #endif /* CONFIG_COMPAT */
3739 
3740 /**
3741  *  do_sigtimedwait - wait for queued signals specified in @which
3742  *  @which: queued signals to wait for
3743  *  @info: if non-null, the signal's siginfo is returned here
3744  *  @ts: upper bound on process time suspension
3745  */
3746 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3747 		    const struct timespec64 *ts)
3748 {
3749 	ktime_t *to = NULL, timeout = KTIME_MAX;
3750 	struct task_struct *tsk = current;
3751 	sigset_t mask = *which;
3752 	enum pid_type type;
3753 	int sig, ret = 0;
3754 
3755 	if (ts) {
3756 		if (!timespec64_valid(ts))
3757 			return -EINVAL;
3758 		timeout = timespec64_to_ktime(*ts);
3759 		to = &timeout;
3760 	}
3761 
3762 	/*
3763 	 * Invert the set of allowed signals to get those we want to block.
3764 	 */
3765 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3766 	signotset(&mask);
3767 
3768 	spin_lock_irq(&tsk->sighand->siglock);
3769 	sig = dequeue_signal(&mask, info, &type);
3770 	if (!sig && timeout) {
3771 		/*
3772 		 * None ready, temporarily unblock those we're interested
3773 		 * while we are sleeping in so that we'll be awakened when
3774 		 * they arrive. Unblocking is always fine, we can avoid
3775 		 * set_current_blocked().
3776 		 */
3777 		tsk->real_blocked = tsk->blocked;
3778 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3779 		recalc_sigpending();
3780 		spin_unlock_irq(&tsk->sighand->siglock);
3781 
3782 		__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3783 		ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3784 					       HRTIMER_MODE_REL);
3785 		spin_lock_irq(&tsk->sighand->siglock);
3786 		__set_task_blocked(tsk, &tsk->real_blocked);
3787 		sigemptyset(&tsk->real_blocked);
3788 		sig = dequeue_signal(&mask, info, &type);
3789 	}
3790 	spin_unlock_irq(&tsk->sighand->siglock);
3791 
3792 	if (sig)
3793 		return sig;
3794 	return ret ? -EINTR : -EAGAIN;
3795 }
3796 
3797 /**
3798  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3799  *			in @uthese
3800  *  @uthese: queued signals to wait for
3801  *  @uinfo: if non-null, the signal's siginfo is returned here
3802  *  @uts: upper bound on process time suspension
3803  *  @sigsetsize: size of sigset_t type
3804  */
3805 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3806 		siginfo_t __user *, uinfo,
3807 		const struct __kernel_timespec __user *, uts,
3808 		size_t, sigsetsize)
3809 {
3810 	sigset_t these;
3811 	struct timespec64 ts;
3812 	kernel_siginfo_t info;
3813 	int ret;
3814 
3815 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3816 	if (sigsetsize != sizeof(sigset_t))
3817 		return -EINVAL;
3818 
3819 	if (copy_from_user(&these, uthese, sizeof(these)))
3820 		return -EFAULT;
3821 
3822 	if (uts) {
3823 		if (get_timespec64(&ts, uts))
3824 			return -EFAULT;
3825 	}
3826 
3827 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3828 
3829 	if (ret > 0 && uinfo) {
3830 		if (copy_siginfo_to_user(uinfo, &info))
3831 			ret = -EFAULT;
3832 	}
3833 
3834 	return ret;
3835 }
3836 
3837 #ifdef CONFIG_COMPAT_32BIT_TIME
3838 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3839 		siginfo_t __user *, uinfo,
3840 		const struct old_timespec32 __user *, uts,
3841 		size_t, sigsetsize)
3842 {
3843 	sigset_t these;
3844 	struct timespec64 ts;
3845 	kernel_siginfo_t info;
3846 	int ret;
3847 
3848 	if (sigsetsize != sizeof(sigset_t))
3849 		return -EINVAL;
3850 
3851 	if (copy_from_user(&these, uthese, sizeof(these)))
3852 		return -EFAULT;
3853 
3854 	if (uts) {
3855 		if (get_old_timespec32(&ts, uts))
3856 			return -EFAULT;
3857 	}
3858 
3859 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3860 
3861 	if (ret > 0 && uinfo) {
3862 		if (copy_siginfo_to_user(uinfo, &info))
3863 			ret = -EFAULT;
3864 	}
3865 
3866 	return ret;
3867 }
3868 #endif
3869 
3870 #ifdef CONFIG_COMPAT
3871 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3872 		struct compat_siginfo __user *, uinfo,
3873 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3874 {
3875 	sigset_t s;
3876 	struct timespec64 t;
3877 	kernel_siginfo_t info;
3878 	long ret;
3879 
3880 	if (sigsetsize != sizeof(sigset_t))
3881 		return -EINVAL;
3882 
3883 	if (get_compat_sigset(&s, uthese))
3884 		return -EFAULT;
3885 
3886 	if (uts) {
3887 		if (get_timespec64(&t, uts))
3888 			return -EFAULT;
3889 	}
3890 
3891 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3892 
3893 	if (ret > 0 && uinfo) {
3894 		if (copy_siginfo_to_user32(uinfo, &info))
3895 			ret = -EFAULT;
3896 	}
3897 
3898 	return ret;
3899 }
3900 
3901 #ifdef CONFIG_COMPAT_32BIT_TIME
3902 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3903 		struct compat_siginfo __user *, uinfo,
3904 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3905 {
3906 	sigset_t s;
3907 	struct timespec64 t;
3908 	kernel_siginfo_t info;
3909 	long ret;
3910 
3911 	if (sigsetsize != sizeof(sigset_t))
3912 		return -EINVAL;
3913 
3914 	if (get_compat_sigset(&s, uthese))
3915 		return -EFAULT;
3916 
3917 	if (uts) {
3918 		if (get_old_timespec32(&t, uts))
3919 			return -EFAULT;
3920 	}
3921 
3922 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3923 
3924 	if (ret > 0 && uinfo) {
3925 		if (copy_siginfo_to_user32(uinfo, &info))
3926 			ret = -EFAULT;
3927 	}
3928 
3929 	return ret;
3930 }
3931 #endif
3932 #endif
3933 
3934 static void prepare_kill_siginfo(int sig, struct kernel_siginfo *info,
3935 				 enum pid_type type)
3936 {
3937 	clear_siginfo(info);
3938 	info->si_signo = sig;
3939 	info->si_errno = 0;
3940 	info->si_code = (type == PIDTYPE_PID) ? SI_TKILL : SI_USER;
3941 	info->si_pid = task_tgid_vnr(current);
3942 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3943 }
3944 
3945 /**
3946  *  sys_kill - send a signal to a process
3947  *  @pid: the PID of the process
3948  *  @sig: signal to be sent
3949  */
3950 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3951 {
3952 	struct kernel_siginfo info;
3953 
3954 	prepare_kill_siginfo(sig, &info, PIDTYPE_TGID);
3955 
3956 	return kill_something_info(sig, &info, pid);
3957 }
3958 
3959 /*
3960  * Verify that the signaler and signalee either are in the same pid namespace
3961  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3962  * namespace.
3963  */
3964 static bool access_pidfd_pidns(struct pid *pid)
3965 {
3966 	struct pid_namespace *active = task_active_pid_ns(current);
3967 	struct pid_namespace *p = ns_of_pid(pid);
3968 
3969 	for (;;) {
3970 		if (!p)
3971 			return false;
3972 		if (p == active)
3973 			break;
3974 		p = p->parent;
3975 	}
3976 
3977 	return true;
3978 }
3979 
3980 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3981 		siginfo_t __user *info)
3982 {
3983 #ifdef CONFIG_COMPAT
3984 	/*
3985 	 * Avoid hooking up compat syscalls and instead handle necessary
3986 	 * conversions here. Note, this is a stop-gap measure and should not be
3987 	 * considered a generic solution.
3988 	 */
3989 	if (in_compat_syscall())
3990 		return copy_siginfo_from_user32(
3991 			kinfo, (struct compat_siginfo __user *)info);
3992 #endif
3993 	return copy_siginfo_from_user(kinfo, info);
3994 }
3995 
3996 static struct pid *pidfd_to_pid(const struct file *file)
3997 {
3998 	struct pid *pid;
3999 
4000 	pid = pidfd_pid(file);
4001 	if (!IS_ERR(pid))
4002 		return pid;
4003 
4004 	return tgid_pidfd_to_pid(file);
4005 }
4006 
4007 #define PIDFD_SEND_SIGNAL_FLAGS                            \
4008 	(PIDFD_SIGNAL_THREAD | PIDFD_SIGNAL_THREAD_GROUP | \
4009 	 PIDFD_SIGNAL_PROCESS_GROUP)
4010 
4011 static int do_pidfd_send_signal(struct pid *pid, int sig, enum pid_type type,
4012 				siginfo_t __user *info, unsigned int flags)
4013 {
4014 	kernel_siginfo_t kinfo;
4015 
4016 	switch (flags) {
4017 	case PIDFD_SIGNAL_THREAD:
4018 		type = PIDTYPE_PID;
4019 		break;
4020 	case PIDFD_SIGNAL_THREAD_GROUP:
4021 		type = PIDTYPE_TGID;
4022 		break;
4023 	case PIDFD_SIGNAL_PROCESS_GROUP:
4024 		type = PIDTYPE_PGID;
4025 		break;
4026 	}
4027 
4028 	if (info) {
4029 		int ret;
4030 
4031 		ret = copy_siginfo_from_user_any(&kinfo, info);
4032 		if (unlikely(ret))
4033 			return ret;
4034 
4035 		if (unlikely(sig != kinfo.si_signo))
4036 			return -EINVAL;
4037 
4038 		/* Only allow sending arbitrary signals to yourself. */
4039 		if ((task_pid(current) != pid || type > PIDTYPE_TGID) &&
4040 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
4041 			return -EPERM;
4042 	} else {
4043 		prepare_kill_siginfo(sig, &kinfo, type);
4044 	}
4045 
4046 	if (type == PIDTYPE_PGID)
4047 		return kill_pgrp_info(sig, &kinfo, pid);
4048 
4049 	return kill_pid_info_type(sig, &kinfo, pid, type);
4050 }
4051 
4052 /**
4053  * sys_pidfd_send_signal - Signal a process through a pidfd
4054  * @pidfd:  file descriptor of the process
4055  * @sig:    signal to send
4056  * @info:   signal info
4057  * @flags:  future flags
4058  *
4059  * Send the signal to the thread group or to the individual thread depending
4060  * on PIDFD_THREAD.
4061  * In the future extension to @flags may be used to override the default scope
4062  * of @pidfd.
4063  *
4064  * Return: 0 on success, negative errno on failure
4065  */
4066 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
4067 		siginfo_t __user *, info, unsigned int, flags)
4068 {
4069 	struct pid *pid;
4070 	enum pid_type type;
4071 
4072 	/* Enforce flags be set to 0 until we add an extension. */
4073 	if (flags & ~PIDFD_SEND_SIGNAL_FLAGS)
4074 		return -EINVAL;
4075 
4076 	/* Ensure that only a single signal scope determining flag is set. */
4077 	if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1)
4078 		return -EINVAL;
4079 
4080 	switch (pidfd) {
4081 	case PIDFD_SELF_THREAD:
4082 		pid = get_task_pid(current, PIDTYPE_PID);
4083 		type = PIDTYPE_PID;
4084 		break;
4085 	case PIDFD_SELF_THREAD_GROUP:
4086 		pid = get_task_pid(current, PIDTYPE_TGID);
4087 		type = PIDTYPE_TGID;
4088 		break;
4089 	default: {
4090 		CLASS(fd, f)(pidfd);
4091 		if (fd_empty(f))
4092 			return -EBADF;
4093 
4094 		/* Is this a pidfd? */
4095 		pid = pidfd_to_pid(fd_file(f));
4096 		if (IS_ERR(pid))
4097 			return PTR_ERR(pid);
4098 
4099 		if (!access_pidfd_pidns(pid))
4100 			return -EINVAL;
4101 
4102 		/* Infer scope from the type of pidfd. */
4103 		if (fd_file(f)->f_flags & PIDFD_THREAD)
4104 			type = PIDTYPE_PID;
4105 		else
4106 			type = PIDTYPE_TGID;
4107 
4108 		return do_pidfd_send_signal(pid, sig, type, info, flags);
4109 	}
4110 	}
4111 
4112 	return do_pidfd_send_signal(pid, sig, type, info, flags);
4113 }
4114 
4115 static int
4116 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
4117 {
4118 	struct task_struct *p;
4119 	int error = -ESRCH;
4120 
4121 	rcu_read_lock();
4122 	p = find_task_by_vpid(pid);
4123 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
4124 		error = check_kill_permission(sig, info, p);
4125 		/*
4126 		 * The null signal is a permissions and process existence
4127 		 * probe.  No signal is actually delivered.
4128 		 */
4129 		if (!error && sig) {
4130 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
4131 			/*
4132 			 * If lock_task_sighand() failed we pretend the task
4133 			 * dies after receiving the signal. The window is tiny,
4134 			 * and the signal is private anyway.
4135 			 */
4136 			if (unlikely(error == -ESRCH))
4137 				error = 0;
4138 		}
4139 	}
4140 	rcu_read_unlock();
4141 
4142 	return error;
4143 }
4144 
4145 static int do_tkill(pid_t tgid, pid_t pid, int sig)
4146 {
4147 	struct kernel_siginfo info;
4148 
4149 	prepare_kill_siginfo(sig, &info, PIDTYPE_PID);
4150 
4151 	return do_send_specific(tgid, pid, sig, &info);
4152 }
4153 
4154 /**
4155  *  sys_tgkill - send signal to one specific thread
4156  *  @tgid: the thread group ID of the thread
4157  *  @pid: the PID of the thread
4158  *  @sig: signal to be sent
4159  *
4160  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
4161  *  exists but it's not belonging to the target process anymore. This
4162  *  method solves the problem of threads exiting and PIDs getting reused.
4163  */
4164 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
4165 {
4166 	/* This is only valid for single tasks */
4167 	if (pid <= 0 || tgid <= 0)
4168 		return -EINVAL;
4169 
4170 	return do_tkill(tgid, pid, sig);
4171 }
4172 
4173 /**
4174  *  sys_tkill - send signal to one specific task
4175  *  @pid: the PID of the task
4176  *  @sig: signal to be sent
4177  *
4178  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
4179  */
4180 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4181 {
4182 	/* This is only valid for single tasks */
4183 	if (pid <= 0)
4184 		return -EINVAL;
4185 
4186 	return do_tkill(0, pid, sig);
4187 }
4188 
4189 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4190 {
4191 	/* Not even root can pretend to send signals from the kernel.
4192 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4193 	 */
4194 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4195 	    (task_pid_vnr(current) != pid))
4196 		return -EPERM;
4197 
4198 	/* POSIX.1b doesn't mention process groups.  */
4199 	return kill_proc_info(sig, info, pid);
4200 }
4201 
4202 /**
4203  *  sys_rt_sigqueueinfo - send signal information to a signal
4204  *  @pid: the PID of the thread
4205  *  @sig: signal to be sent
4206  *  @uinfo: signal info to be sent
4207  */
4208 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4209 		siginfo_t __user *, uinfo)
4210 {
4211 	kernel_siginfo_t info;
4212 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4213 	if (unlikely(ret))
4214 		return ret;
4215 	return do_rt_sigqueueinfo(pid, sig, &info);
4216 }
4217 
4218 #ifdef CONFIG_COMPAT
4219 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4220 			compat_pid_t, pid,
4221 			int, sig,
4222 			struct compat_siginfo __user *, uinfo)
4223 {
4224 	kernel_siginfo_t info;
4225 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4226 	if (unlikely(ret))
4227 		return ret;
4228 	return do_rt_sigqueueinfo(pid, sig, &info);
4229 }
4230 #endif
4231 
4232 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4233 {
4234 	/* This is only valid for single tasks */
4235 	if (pid <= 0 || tgid <= 0)
4236 		return -EINVAL;
4237 
4238 	/* Not even root can pretend to send signals from the kernel.
4239 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4240 	 */
4241 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4242 	    (task_pid_vnr(current) != pid))
4243 		return -EPERM;
4244 
4245 	return do_send_specific(tgid, pid, sig, info);
4246 }
4247 
4248 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4249 		siginfo_t __user *, uinfo)
4250 {
4251 	kernel_siginfo_t info;
4252 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4253 	if (unlikely(ret))
4254 		return ret;
4255 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4256 }
4257 
4258 #ifdef CONFIG_COMPAT
4259 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4260 			compat_pid_t, tgid,
4261 			compat_pid_t, pid,
4262 			int, sig,
4263 			struct compat_siginfo __user *, uinfo)
4264 {
4265 	kernel_siginfo_t info;
4266 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4267 	if (unlikely(ret))
4268 		return ret;
4269 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4270 }
4271 #endif
4272 
4273 /*
4274  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4275  */
4276 void kernel_sigaction(int sig, __sighandler_t action)
4277 {
4278 	spin_lock_irq(&current->sighand->siglock);
4279 	current->sighand->action[sig - 1].sa.sa_handler = action;
4280 	if (action == SIG_IGN) {
4281 		sigset_t mask;
4282 
4283 		sigemptyset(&mask);
4284 		sigaddset(&mask, sig);
4285 
4286 		flush_sigqueue_mask(current, &mask, &current->signal->shared_pending);
4287 		flush_sigqueue_mask(current, &mask, &current->pending);
4288 		recalc_sigpending();
4289 	}
4290 	spin_unlock_irq(&current->sighand->siglock);
4291 }
4292 EXPORT_SYMBOL(kernel_sigaction);
4293 
4294 void __weak sigaction_compat_abi(struct k_sigaction *act,
4295 		struct k_sigaction *oact)
4296 {
4297 }
4298 
4299 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4300 {
4301 	struct task_struct *p = current, *t;
4302 	struct k_sigaction *k;
4303 	sigset_t mask;
4304 
4305 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4306 		return -EINVAL;
4307 
4308 	k = &p->sighand->action[sig-1];
4309 
4310 	spin_lock_irq(&p->sighand->siglock);
4311 	if (k->sa.sa_flags & SA_IMMUTABLE) {
4312 		spin_unlock_irq(&p->sighand->siglock);
4313 		return -EINVAL;
4314 	}
4315 	if (oact)
4316 		*oact = *k;
4317 
4318 	/*
4319 	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4320 	 * e.g. by having an architecture use the bit in their uapi.
4321 	 */
4322 	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4323 
4324 	/*
4325 	 * Clear unknown flag bits in order to allow userspace to detect missing
4326 	 * support for flag bits and to allow the kernel to use non-uapi bits
4327 	 * internally.
4328 	 */
4329 	if (act)
4330 		act->sa.sa_flags &= UAPI_SA_FLAGS;
4331 	if (oact)
4332 		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4333 
4334 	sigaction_compat_abi(act, oact);
4335 
4336 	if (act) {
4337 		bool was_ignored = k->sa.sa_handler == SIG_IGN;
4338 
4339 		sigdelsetmask(&act->sa.sa_mask,
4340 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4341 		*k = *act;
4342 		/*
4343 		 * POSIX 3.3.1.3:
4344 		 *  "Setting a signal action to SIG_IGN for a signal that is
4345 		 *   pending shall cause the pending signal to be discarded,
4346 		 *   whether or not it is blocked."
4347 		 *
4348 		 *  "Setting a signal action to SIG_DFL for a signal that is
4349 		 *   pending and whose default action is to ignore the signal
4350 		 *   (for example, SIGCHLD), shall cause the pending signal to
4351 		 *   be discarded, whether or not it is blocked"
4352 		 */
4353 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4354 			sigemptyset(&mask);
4355 			sigaddset(&mask, sig);
4356 			flush_sigqueue_mask(p, &mask, &p->signal->shared_pending);
4357 			for_each_thread(p, t)
4358 				flush_sigqueue_mask(p, &mask, &t->pending);
4359 		} else if (was_ignored) {
4360 			posixtimer_sig_unignore(p, sig);
4361 		}
4362 	}
4363 
4364 	spin_unlock_irq(&p->sighand->siglock);
4365 	return 0;
4366 }
4367 
4368 #ifdef CONFIG_DYNAMIC_SIGFRAME
4369 static inline void sigaltstack_lock(void)
4370 	__acquires(&current->sighand->siglock)
4371 {
4372 	spin_lock_irq(&current->sighand->siglock);
4373 }
4374 
4375 static inline void sigaltstack_unlock(void)
4376 	__releases(&current->sighand->siglock)
4377 {
4378 	spin_unlock_irq(&current->sighand->siglock);
4379 }
4380 #else
4381 static inline void sigaltstack_lock(void) { }
4382 static inline void sigaltstack_unlock(void) { }
4383 #endif
4384 
4385 static int
4386 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4387 		size_t min_ss_size)
4388 {
4389 	struct task_struct *t = current;
4390 	int ret = 0;
4391 
4392 	if (oss) {
4393 		memset(oss, 0, sizeof(stack_t));
4394 		oss->ss_sp = (void __user *) t->sas_ss_sp;
4395 		oss->ss_size = t->sas_ss_size;
4396 		oss->ss_flags = sas_ss_flags(sp) |
4397 			(current->sas_ss_flags & SS_FLAG_BITS);
4398 	}
4399 
4400 	if (ss) {
4401 		void __user *ss_sp = ss->ss_sp;
4402 		size_t ss_size = ss->ss_size;
4403 		unsigned ss_flags = ss->ss_flags;
4404 		int ss_mode;
4405 
4406 		if (unlikely(on_sig_stack(sp)))
4407 			return -EPERM;
4408 
4409 		ss_mode = ss_flags & ~SS_FLAG_BITS;
4410 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4411 				ss_mode != 0))
4412 			return -EINVAL;
4413 
4414 		/*
4415 		 * Return before taking any locks if no actual
4416 		 * sigaltstack changes were requested.
4417 		 */
4418 		if (t->sas_ss_sp == (unsigned long)ss_sp &&
4419 		    t->sas_ss_size == ss_size &&
4420 		    t->sas_ss_flags == ss_flags)
4421 			return 0;
4422 
4423 		sigaltstack_lock();
4424 		if (ss_mode == SS_DISABLE) {
4425 			ss_size = 0;
4426 			ss_sp = NULL;
4427 		} else {
4428 			if (unlikely(ss_size < min_ss_size))
4429 				ret = -ENOMEM;
4430 			if (!sigaltstack_size_valid(ss_size))
4431 				ret = -ENOMEM;
4432 		}
4433 		if (!ret) {
4434 			t->sas_ss_sp = (unsigned long) ss_sp;
4435 			t->sas_ss_size = ss_size;
4436 			t->sas_ss_flags = ss_flags;
4437 		}
4438 		sigaltstack_unlock();
4439 	}
4440 	return ret;
4441 }
4442 
4443 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4444 {
4445 	stack_t new, old;
4446 	int err;
4447 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4448 		return -EFAULT;
4449 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4450 			      current_user_stack_pointer(),
4451 			      MINSIGSTKSZ);
4452 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4453 		err = -EFAULT;
4454 	return err;
4455 }
4456 
4457 int restore_altstack(const stack_t __user *uss)
4458 {
4459 	stack_t new;
4460 	if (copy_from_user(&new, uss, sizeof(stack_t)))
4461 		return -EFAULT;
4462 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4463 			     MINSIGSTKSZ);
4464 	/* squash all but EFAULT for now */
4465 	return 0;
4466 }
4467 
4468 int __save_altstack(stack_t __user *uss, unsigned long sp)
4469 {
4470 	struct task_struct *t = current;
4471 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4472 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4473 		__put_user(t->sas_ss_size, &uss->ss_size);
4474 	return err;
4475 }
4476 
4477 #ifdef CONFIG_COMPAT
4478 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4479 				 compat_stack_t __user *uoss_ptr)
4480 {
4481 	stack_t uss, uoss;
4482 	int ret;
4483 
4484 	if (uss_ptr) {
4485 		compat_stack_t uss32;
4486 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4487 			return -EFAULT;
4488 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4489 		uss.ss_flags = uss32.ss_flags;
4490 		uss.ss_size = uss32.ss_size;
4491 	}
4492 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4493 			     compat_user_stack_pointer(),
4494 			     COMPAT_MINSIGSTKSZ);
4495 	if (ret >= 0 && uoss_ptr)  {
4496 		compat_stack_t old;
4497 		memset(&old, 0, sizeof(old));
4498 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4499 		old.ss_flags = uoss.ss_flags;
4500 		old.ss_size = uoss.ss_size;
4501 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4502 			ret = -EFAULT;
4503 	}
4504 	return ret;
4505 }
4506 
4507 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4508 			const compat_stack_t __user *, uss_ptr,
4509 			compat_stack_t __user *, uoss_ptr)
4510 {
4511 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4512 }
4513 
4514 int compat_restore_altstack(const compat_stack_t __user *uss)
4515 {
4516 	int err = do_compat_sigaltstack(uss, NULL);
4517 	/* squash all but -EFAULT for now */
4518 	return err == -EFAULT ? err : 0;
4519 }
4520 
4521 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4522 {
4523 	int err;
4524 	struct task_struct *t = current;
4525 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4526 			 &uss->ss_sp) |
4527 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4528 		__put_user(t->sas_ss_size, &uss->ss_size);
4529 	return err;
4530 }
4531 #endif
4532 
4533 #ifdef __ARCH_WANT_SYS_SIGPENDING
4534 
4535 /**
4536  *  sys_sigpending - examine pending signals
4537  *  @uset: where mask of pending signal is returned
4538  */
4539 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4540 {
4541 	sigset_t set;
4542 
4543 	if (sizeof(old_sigset_t) > sizeof(*uset))
4544 		return -EINVAL;
4545 
4546 	do_sigpending(&set);
4547 
4548 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4549 		return -EFAULT;
4550 
4551 	return 0;
4552 }
4553 
4554 #ifdef CONFIG_COMPAT
4555 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4556 {
4557 	sigset_t set;
4558 
4559 	do_sigpending(&set);
4560 
4561 	return put_user(set.sig[0], set32);
4562 }
4563 #endif
4564 
4565 #endif
4566 
4567 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4568 /**
4569  *  sys_sigprocmask - examine and change blocked signals
4570  *  @how: whether to add, remove, or set signals
4571  *  @nset: signals to add or remove (if non-null)
4572  *  @oset: previous value of signal mask if non-null
4573  *
4574  * Some platforms have their own version with special arguments;
4575  * others support only sys_rt_sigprocmask.
4576  */
4577 
4578 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4579 		old_sigset_t __user *, oset)
4580 {
4581 	old_sigset_t old_set, new_set;
4582 	sigset_t new_blocked;
4583 
4584 	old_set = current->blocked.sig[0];
4585 
4586 	if (nset) {
4587 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4588 			return -EFAULT;
4589 
4590 		new_blocked = current->blocked;
4591 
4592 		switch (how) {
4593 		case SIG_BLOCK:
4594 			sigaddsetmask(&new_blocked, new_set);
4595 			break;
4596 		case SIG_UNBLOCK:
4597 			sigdelsetmask(&new_blocked, new_set);
4598 			break;
4599 		case SIG_SETMASK:
4600 			new_blocked.sig[0] = new_set;
4601 			break;
4602 		default:
4603 			return -EINVAL;
4604 		}
4605 
4606 		set_current_blocked(&new_blocked);
4607 	}
4608 
4609 	if (oset) {
4610 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4611 			return -EFAULT;
4612 	}
4613 
4614 	return 0;
4615 }
4616 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4617 
4618 #ifndef CONFIG_ODD_RT_SIGACTION
4619 /**
4620  *  sys_rt_sigaction - alter an action taken by a process
4621  *  @sig: signal to be sent
4622  *  @act: new sigaction
4623  *  @oact: used to save the previous sigaction
4624  *  @sigsetsize: size of sigset_t type
4625  */
4626 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4627 		const struct sigaction __user *, act,
4628 		struct sigaction __user *, oact,
4629 		size_t, sigsetsize)
4630 {
4631 	struct k_sigaction new_sa, old_sa;
4632 	int ret;
4633 
4634 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4635 	if (sigsetsize != sizeof(sigset_t))
4636 		return -EINVAL;
4637 
4638 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4639 		return -EFAULT;
4640 
4641 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4642 	if (ret)
4643 		return ret;
4644 
4645 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4646 		return -EFAULT;
4647 
4648 	return 0;
4649 }
4650 #ifdef CONFIG_COMPAT
4651 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4652 		const struct compat_sigaction __user *, act,
4653 		struct compat_sigaction __user *, oact,
4654 		compat_size_t, sigsetsize)
4655 {
4656 	struct k_sigaction new_ka, old_ka;
4657 #ifdef __ARCH_HAS_SA_RESTORER
4658 	compat_uptr_t restorer;
4659 #endif
4660 	int ret;
4661 
4662 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4663 	if (sigsetsize != sizeof(compat_sigset_t))
4664 		return -EINVAL;
4665 
4666 	if (act) {
4667 		compat_uptr_t handler;
4668 		ret = get_user(handler, &act->sa_handler);
4669 		new_ka.sa.sa_handler = compat_ptr(handler);
4670 #ifdef __ARCH_HAS_SA_RESTORER
4671 		ret |= get_user(restorer, &act->sa_restorer);
4672 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4673 #endif
4674 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4675 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4676 		if (ret)
4677 			return -EFAULT;
4678 	}
4679 
4680 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4681 	if (!ret && oact) {
4682 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4683 			       &oact->sa_handler);
4684 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4685 					 sizeof(oact->sa_mask));
4686 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4687 #ifdef __ARCH_HAS_SA_RESTORER
4688 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4689 				&oact->sa_restorer);
4690 #endif
4691 	}
4692 	return ret;
4693 }
4694 #endif
4695 #endif /* !CONFIG_ODD_RT_SIGACTION */
4696 
4697 #ifdef CONFIG_OLD_SIGACTION
4698 SYSCALL_DEFINE3(sigaction, int, sig,
4699 		const struct old_sigaction __user *, act,
4700 	        struct old_sigaction __user *, oact)
4701 {
4702 	struct k_sigaction new_ka, old_ka;
4703 	int ret;
4704 
4705 	if (act) {
4706 		old_sigset_t mask;
4707 		if (!access_ok(act, sizeof(*act)) ||
4708 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4709 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4710 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4711 		    __get_user(mask, &act->sa_mask))
4712 			return -EFAULT;
4713 #ifdef __ARCH_HAS_KA_RESTORER
4714 		new_ka.ka_restorer = NULL;
4715 #endif
4716 		siginitset(&new_ka.sa.sa_mask, mask);
4717 	}
4718 
4719 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4720 
4721 	if (!ret && oact) {
4722 		if (!access_ok(oact, sizeof(*oact)) ||
4723 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4724 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4725 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4726 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4727 			return -EFAULT;
4728 	}
4729 
4730 	return ret;
4731 }
4732 #endif
4733 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4734 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4735 		const struct compat_old_sigaction __user *, act,
4736 	        struct compat_old_sigaction __user *, oact)
4737 {
4738 	struct k_sigaction new_ka, old_ka;
4739 	int ret;
4740 	compat_old_sigset_t mask;
4741 	compat_uptr_t handler, restorer;
4742 
4743 	if (act) {
4744 		if (!access_ok(act, sizeof(*act)) ||
4745 		    __get_user(handler, &act->sa_handler) ||
4746 		    __get_user(restorer, &act->sa_restorer) ||
4747 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4748 		    __get_user(mask, &act->sa_mask))
4749 			return -EFAULT;
4750 
4751 #ifdef __ARCH_HAS_KA_RESTORER
4752 		new_ka.ka_restorer = NULL;
4753 #endif
4754 		new_ka.sa.sa_handler = compat_ptr(handler);
4755 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4756 		siginitset(&new_ka.sa.sa_mask, mask);
4757 	}
4758 
4759 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4760 
4761 	if (!ret && oact) {
4762 		if (!access_ok(oact, sizeof(*oact)) ||
4763 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4764 			       &oact->sa_handler) ||
4765 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4766 			       &oact->sa_restorer) ||
4767 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4768 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4769 			return -EFAULT;
4770 	}
4771 	return ret;
4772 }
4773 #endif
4774 
4775 #ifdef CONFIG_SGETMASK_SYSCALL
4776 
4777 /*
4778  * For backwards compatibility.  Functionality superseded by sigprocmask.
4779  */
4780 SYSCALL_DEFINE0(sgetmask)
4781 {
4782 	/* SMP safe */
4783 	return current->blocked.sig[0];
4784 }
4785 
4786 SYSCALL_DEFINE1(ssetmask, int, newmask)
4787 {
4788 	int old = current->blocked.sig[0];
4789 	sigset_t newset;
4790 
4791 	siginitset(&newset, newmask);
4792 	set_current_blocked(&newset);
4793 
4794 	return old;
4795 }
4796 #endif /* CONFIG_SGETMASK_SYSCALL */
4797 
4798 #ifdef __ARCH_WANT_SYS_SIGNAL
4799 /*
4800  * For backwards compatibility.  Functionality superseded by sigaction.
4801  */
4802 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4803 {
4804 	struct k_sigaction new_sa, old_sa;
4805 	int ret;
4806 
4807 	new_sa.sa.sa_handler = handler;
4808 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4809 	sigemptyset(&new_sa.sa.sa_mask);
4810 
4811 	ret = do_sigaction(sig, &new_sa, &old_sa);
4812 
4813 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4814 }
4815 #endif /* __ARCH_WANT_SYS_SIGNAL */
4816 
4817 #ifdef __ARCH_WANT_SYS_PAUSE
4818 
4819 SYSCALL_DEFINE0(pause)
4820 {
4821 	while (!signal_pending(current)) {
4822 		__set_current_state(TASK_INTERRUPTIBLE);
4823 		schedule();
4824 	}
4825 	return -ERESTARTNOHAND;
4826 }
4827 
4828 #endif
4829 
4830 static int sigsuspend(sigset_t *set)
4831 {
4832 	current->saved_sigmask = current->blocked;
4833 	set_current_blocked(set);
4834 
4835 	while (!signal_pending(current)) {
4836 		__set_current_state(TASK_INTERRUPTIBLE);
4837 		schedule();
4838 	}
4839 	set_restore_sigmask();
4840 	return -ERESTARTNOHAND;
4841 }
4842 
4843 /**
4844  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4845  *	@unewset value until a signal is received
4846  *  @unewset: new signal mask value
4847  *  @sigsetsize: size of sigset_t type
4848  */
4849 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4850 {
4851 	sigset_t newset;
4852 
4853 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4854 	if (sigsetsize != sizeof(sigset_t))
4855 		return -EINVAL;
4856 
4857 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4858 		return -EFAULT;
4859 	return sigsuspend(&newset);
4860 }
4861 
4862 #ifdef CONFIG_COMPAT
4863 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4864 {
4865 	sigset_t newset;
4866 
4867 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4868 	if (sigsetsize != sizeof(sigset_t))
4869 		return -EINVAL;
4870 
4871 	if (get_compat_sigset(&newset, unewset))
4872 		return -EFAULT;
4873 	return sigsuspend(&newset);
4874 }
4875 #endif
4876 
4877 #ifdef CONFIG_OLD_SIGSUSPEND
4878 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4879 {
4880 	sigset_t blocked;
4881 	siginitset(&blocked, mask);
4882 	return sigsuspend(&blocked);
4883 }
4884 #endif
4885 #ifdef CONFIG_OLD_SIGSUSPEND3
4886 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4887 {
4888 	sigset_t blocked;
4889 	siginitset(&blocked, mask);
4890 	return sigsuspend(&blocked);
4891 }
4892 #endif
4893 
4894 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4895 {
4896 	return NULL;
4897 }
4898 
4899 static inline void siginfo_buildtime_checks(void)
4900 {
4901 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4902 
4903 	/* Verify the offsets in the two siginfos match */
4904 #define CHECK_OFFSET(field) \
4905 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4906 
4907 	/* kill */
4908 	CHECK_OFFSET(si_pid);
4909 	CHECK_OFFSET(si_uid);
4910 
4911 	/* timer */
4912 	CHECK_OFFSET(si_tid);
4913 	CHECK_OFFSET(si_overrun);
4914 	CHECK_OFFSET(si_value);
4915 
4916 	/* rt */
4917 	CHECK_OFFSET(si_pid);
4918 	CHECK_OFFSET(si_uid);
4919 	CHECK_OFFSET(si_value);
4920 
4921 	/* sigchld */
4922 	CHECK_OFFSET(si_pid);
4923 	CHECK_OFFSET(si_uid);
4924 	CHECK_OFFSET(si_status);
4925 	CHECK_OFFSET(si_utime);
4926 	CHECK_OFFSET(si_stime);
4927 
4928 	/* sigfault */
4929 	CHECK_OFFSET(si_addr);
4930 	CHECK_OFFSET(si_trapno);
4931 	CHECK_OFFSET(si_addr_lsb);
4932 	CHECK_OFFSET(si_lower);
4933 	CHECK_OFFSET(si_upper);
4934 	CHECK_OFFSET(si_pkey);
4935 	CHECK_OFFSET(si_perf_data);
4936 	CHECK_OFFSET(si_perf_type);
4937 	CHECK_OFFSET(si_perf_flags);
4938 
4939 	/* sigpoll */
4940 	CHECK_OFFSET(si_band);
4941 	CHECK_OFFSET(si_fd);
4942 
4943 	/* sigsys */
4944 	CHECK_OFFSET(si_call_addr);
4945 	CHECK_OFFSET(si_syscall);
4946 	CHECK_OFFSET(si_arch);
4947 #undef CHECK_OFFSET
4948 
4949 	/* usb asyncio */
4950 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4951 		     offsetof(struct siginfo, si_addr));
4952 	if (sizeof(int) == sizeof(void __user *)) {
4953 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4954 			     sizeof(void __user *));
4955 	} else {
4956 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4957 			      sizeof_field(struct siginfo, si_uid)) !=
4958 			     sizeof(void __user *));
4959 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4960 			     offsetof(struct siginfo, si_uid));
4961 	}
4962 #ifdef CONFIG_COMPAT
4963 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4964 		     offsetof(struct compat_siginfo, si_addr));
4965 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4966 		     sizeof(compat_uptr_t));
4967 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4968 		     sizeof_field(struct siginfo, si_pid));
4969 #endif
4970 }
4971 
4972 #if defined(CONFIG_SYSCTL)
4973 static const struct ctl_table signal_debug_table[] = {
4974 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4975 	{
4976 		.procname	= "exception-trace",
4977 		.data		= &show_unhandled_signals,
4978 		.maxlen		= sizeof(int),
4979 		.mode		= 0644,
4980 		.proc_handler	= proc_dointvec
4981 	},
4982 #endif
4983 };
4984 
4985 static int __init init_signal_sysctls(void)
4986 {
4987 	register_sysctl_init("debug", signal_debug_table);
4988 	return 0;
4989 }
4990 early_initcall(init_signal_sysctls);
4991 #endif /* CONFIG_SYSCTL */
4992 
4993 void __init signals_init(void)
4994 {
4995 	siginfo_buildtime_checks();
4996 
4997 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4998 }
4999 
5000 #ifdef CONFIG_KGDB_KDB
5001 #include <linux/kdb.h>
5002 /*
5003  * kdb_send_sig - Allows kdb to send signals without exposing
5004  * signal internals.  This function checks if the required locks are
5005  * available before calling the main signal code, to avoid kdb
5006  * deadlocks.
5007  */
5008 void kdb_send_sig(struct task_struct *t, int sig)
5009 {
5010 	static struct task_struct *kdb_prev_t;
5011 	int new_t, ret;
5012 	if (!spin_trylock(&t->sighand->siglock)) {
5013 		kdb_printf("Can't do kill command now.\n"
5014 			   "The sigmask lock is held somewhere else in "
5015 			   "kernel, try again later\n");
5016 		return;
5017 	}
5018 	new_t = kdb_prev_t != t;
5019 	kdb_prev_t = t;
5020 	if (!task_is_running(t) && new_t) {
5021 		spin_unlock(&t->sighand->siglock);
5022 		kdb_printf("Process is not RUNNING, sending a signal from "
5023 			   "kdb risks deadlock\n"
5024 			   "on the run queue locks. "
5025 			   "The signal has _not_ been sent.\n"
5026 			   "Reissue the kill command if you want to risk "
5027 			   "the deadlock.\n");
5028 		return;
5029 	}
5030 	ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
5031 	spin_unlock(&t->sighand->siglock);
5032 	if (ret)
5033 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
5034 			   sig, t->pid);
5035 	else
5036 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
5037 }
5038 #endif	/* CONFIG_KGDB_KDB */
5039