xref: /linux/kernel/signal.c (revision e9a83bd2322035ed9d7dcf35753d3f984d76c6a5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/tracehook.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/livepatch.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/signal.h>
52 
53 #include <asm/param.h>
54 #include <linux/uaccess.h>
55 #include <asm/unistd.h>
56 #include <asm/siginfo.h>
57 #include <asm/cacheflush.h>
58 
59 /*
60  * SLAB caches for signal bits.
61  */
62 
63 static struct kmem_cache *sigqueue_cachep;
64 
65 int print_fatal_signals __read_mostly;
66 
67 static void __user *sig_handler(struct task_struct *t, int sig)
68 {
69 	return t->sighand->action[sig - 1].sa.sa_handler;
70 }
71 
72 static inline bool sig_handler_ignored(void __user *handler, int sig)
73 {
74 	/* Is it explicitly or implicitly ignored? */
75 	return handler == SIG_IGN ||
76 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
77 }
78 
79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
80 {
81 	void __user *handler;
82 
83 	handler = sig_handler(t, sig);
84 
85 	/* SIGKILL and SIGSTOP may not be sent to the global init */
86 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
87 		return true;
88 
89 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
91 		return true;
92 
93 	return sig_handler_ignored(handler, sig);
94 }
95 
96 static bool sig_ignored(struct task_struct *t, int sig, bool force)
97 {
98 	/*
99 	 * Blocked signals are never ignored, since the
100 	 * signal handler may change by the time it is
101 	 * unblocked.
102 	 */
103 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
104 		return false;
105 
106 	/*
107 	 * Tracers may want to know about even ignored signal unless it
108 	 * is SIGKILL which can't be reported anyway but can be ignored
109 	 * by SIGNAL_UNKILLABLE task.
110 	 */
111 	if (t->ptrace && sig != SIGKILL)
112 		return false;
113 
114 	return sig_task_ignored(t, sig, force);
115 }
116 
117 /*
118  * Re-calculate pending state from the set of locally pending
119  * signals, globally pending signals, and blocked signals.
120  */
121 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
122 {
123 	unsigned long ready;
124 	long i;
125 
126 	switch (_NSIG_WORDS) {
127 	default:
128 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
129 			ready |= signal->sig[i] &~ blocked->sig[i];
130 		break;
131 
132 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
133 		ready |= signal->sig[2] &~ blocked->sig[2];
134 		ready |= signal->sig[1] &~ blocked->sig[1];
135 		ready |= signal->sig[0] &~ blocked->sig[0];
136 		break;
137 
138 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
139 		ready |= signal->sig[0] &~ blocked->sig[0];
140 		break;
141 
142 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
143 	}
144 	return ready !=	0;
145 }
146 
147 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
148 
149 static bool recalc_sigpending_tsk(struct task_struct *t)
150 {
151 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
152 	    PENDING(&t->pending, &t->blocked) ||
153 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
154 	    cgroup_task_frozen(t)) {
155 		set_tsk_thread_flag(t, TIF_SIGPENDING);
156 		return true;
157 	}
158 
159 	/*
160 	 * We must never clear the flag in another thread, or in current
161 	 * when it's possible the current syscall is returning -ERESTART*.
162 	 * So we don't clear it here, and only callers who know they should do.
163 	 */
164 	return false;
165 }
166 
167 /*
168  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
169  * This is superfluous when called on current, the wakeup is a harmless no-op.
170  */
171 void recalc_sigpending_and_wake(struct task_struct *t)
172 {
173 	if (recalc_sigpending_tsk(t))
174 		signal_wake_up(t, 0);
175 }
176 
177 void recalc_sigpending(void)
178 {
179 	if (!recalc_sigpending_tsk(current) && !freezing(current) &&
180 	    !klp_patch_pending(current))
181 		clear_thread_flag(TIF_SIGPENDING);
182 
183 }
184 EXPORT_SYMBOL(recalc_sigpending);
185 
186 void calculate_sigpending(void)
187 {
188 	/* Have any signals or users of TIF_SIGPENDING been delayed
189 	 * until after fork?
190 	 */
191 	spin_lock_irq(&current->sighand->siglock);
192 	set_tsk_thread_flag(current, TIF_SIGPENDING);
193 	recalc_sigpending();
194 	spin_unlock_irq(&current->sighand->siglock);
195 }
196 
197 /* Given the mask, find the first available signal that should be serviced. */
198 
199 #define SYNCHRONOUS_MASK \
200 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
201 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
202 
203 int next_signal(struct sigpending *pending, sigset_t *mask)
204 {
205 	unsigned long i, *s, *m, x;
206 	int sig = 0;
207 
208 	s = pending->signal.sig;
209 	m = mask->sig;
210 
211 	/*
212 	 * Handle the first word specially: it contains the
213 	 * synchronous signals that need to be dequeued first.
214 	 */
215 	x = *s &~ *m;
216 	if (x) {
217 		if (x & SYNCHRONOUS_MASK)
218 			x &= SYNCHRONOUS_MASK;
219 		sig = ffz(~x) + 1;
220 		return sig;
221 	}
222 
223 	switch (_NSIG_WORDS) {
224 	default:
225 		for (i = 1; i < _NSIG_WORDS; ++i) {
226 			x = *++s &~ *++m;
227 			if (!x)
228 				continue;
229 			sig = ffz(~x) + i*_NSIG_BPW + 1;
230 			break;
231 		}
232 		break;
233 
234 	case 2:
235 		x = s[1] &~ m[1];
236 		if (!x)
237 			break;
238 		sig = ffz(~x) + _NSIG_BPW + 1;
239 		break;
240 
241 	case 1:
242 		/* Nothing to do */
243 		break;
244 	}
245 
246 	return sig;
247 }
248 
249 static inline void print_dropped_signal(int sig)
250 {
251 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
252 
253 	if (!print_fatal_signals)
254 		return;
255 
256 	if (!__ratelimit(&ratelimit_state))
257 		return;
258 
259 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
260 				current->comm, current->pid, sig);
261 }
262 
263 /**
264  * task_set_jobctl_pending - set jobctl pending bits
265  * @task: target task
266  * @mask: pending bits to set
267  *
268  * Clear @mask from @task->jobctl.  @mask must be subset of
269  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
270  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
271  * cleared.  If @task is already being killed or exiting, this function
272  * becomes noop.
273  *
274  * CONTEXT:
275  * Must be called with @task->sighand->siglock held.
276  *
277  * RETURNS:
278  * %true if @mask is set, %false if made noop because @task was dying.
279  */
280 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
281 {
282 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
283 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
284 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
285 
286 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
287 		return false;
288 
289 	if (mask & JOBCTL_STOP_SIGMASK)
290 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
291 
292 	task->jobctl |= mask;
293 	return true;
294 }
295 
296 /**
297  * task_clear_jobctl_trapping - clear jobctl trapping bit
298  * @task: target task
299  *
300  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
301  * Clear it and wake up the ptracer.  Note that we don't need any further
302  * locking.  @task->siglock guarantees that @task->parent points to the
303  * ptracer.
304  *
305  * CONTEXT:
306  * Must be called with @task->sighand->siglock held.
307  */
308 void task_clear_jobctl_trapping(struct task_struct *task)
309 {
310 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
311 		task->jobctl &= ~JOBCTL_TRAPPING;
312 		smp_mb();	/* advised by wake_up_bit() */
313 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
314 	}
315 }
316 
317 /**
318  * task_clear_jobctl_pending - clear jobctl pending bits
319  * @task: target task
320  * @mask: pending bits to clear
321  *
322  * Clear @mask from @task->jobctl.  @mask must be subset of
323  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
324  * STOP bits are cleared together.
325  *
326  * If clearing of @mask leaves no stop or trap pending, this function calls
327  * task_clear_jobctl_trapping().
328  *
329  * CONTEXT:
330  * Must be called with @task->sighand->siglock held.
331  */
332 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
333 {
334 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
335 
336 	if (mask & JOBCTL_STOP_PENDING)
337 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
338 
339 	task->jobctl &= ~mask;
340 
341 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
342 		task_clear_jobctl_trapping(task);
343 }
344 
345 /**
346  * task_participate_group_stop - participate in a group stop
347  * @task: task participating in a group stop
348  *
349  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
350  * Group stop states are cleared and the group stop count is consumed if
351  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
352  * stop, the appropriate %SIGNAL_* flags are set.
353  *
354  * CONTEXT:
355  * Must be called with @task->sighand->siglock held.
356  *
357  * RETURNS:
358  * %true if group stop completion should be notified to the parent, %false
359  * otherwise.
360  */
361 static bool task_participate_group_stop(struct task_struct *task)
362 {
363 	struct signal_struct *sig = task->signal;
364 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
365 
366 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
367 
368 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
369 
370 	if (!consume)
371 		return false;
372 
373 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
374 		sig->group_stop_count--;
375 
376 	/*
377 	 * Tell the caller to notify completion iff we are entering into a
378 	 * fresh group stop.  Read comment in do_signal_stop() for details.
379 	 */
380 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
381 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
382 		return true;
383 	}
384 	return false;
385 }
386 
387 void task_join_group_stop(struct task_struct *task)
388 {
389 	/* Have the new thread join an on-going signal group stop */
390 	unsigned long jobctl = current->jobctl;
391 	if (jobctl & JOBCTL_STOP_PENDING) {
392 		struct signal_struct *sig = current->signal;
393 		unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK;
394 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
395 		if (task_set_jobctl_pending(task, signr | gstop)) {
396 			sig->group_stop_count++;
397 		}
398 	}
399 }
400 
401 /*
402  * allocate a new signal queue record
403  * - this may be called without locks if and only if t == current, otherwise an
404  *   appropriate lock must be held to stop the target task from exiting
405  */
406 static struct sigqueue *
407 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
408 {
409 	struct sigqueue *q = NULL;
410 	struct user_struct *user;
411 
412 	/*
413 	 * Protect access to @t credentials. This can go away when all
414 	 * callers hold rcu read lock.
415 	 */
416 	rcu_read_lock();
417 	user = get_uid(__task_cred(t)->user);
418 	atomic_inc(&user->sigpending);
419 	rcu_read_unlock();
420 
421 	if (override_rlimit ||
422 	    atomic_read(&user->sigpending) <=
423 			task_rlimit(t, RLIMIT_SIGPENDING)) {
424 		q = kmem_cache_alloc(sigqueue_cachep, flags);
425 	} else {
426 		print_dropped_signal(sig);
427 	}
428 
429 	if (unlikely(q == NULL)) {
430 		atomic_dec(&user->sigpending);
431 		free_uid(user);
432 	} else {
433 		INIT_LIST_HEAD(&q->list);
434 		q->flags = 0;
435 		q->user = user;
436 	}
437 
438 	return q;
439 }
440 
441 static void __sigqueue_free(struct sigqueue *q)
442 {
443 	if (q->flags & SIGQUEUE_PREALLOC)
444 		return;
445 	atomic_dec(&q->user->sigpending);
446 	free_uid(q->user);
447 	kmem_cache_free(sigqueue_cachep, q);
448 }
449 
450 void flush_sigqueue(struct sigpending *queue)
451 {
452 	struct sigqueue *q;
453 
454 	sigemptyset(&queue->signal);
455 	while (!list_empty(&queue->list)) {
456 		q = list_entry(queue->list.next, struct sigqueue , list);
457 		list_del_init(&q->list);
458 		__sigqueue_free(q);
459 	}
460 }
461 
462 /*
463  * Flush all pending signals for this kthread.
464  */
465 void flush_signals(struct task_struct *t)
466 {
467 	unsigned long flags;
468 
469 	spin_lock_irqsave(&t->sighand->siglock, flags);
470 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
471 	flush_sigqueue(&t->pending);
472 	flush_sigqueue(&t->signal->shared_pending);
473 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
474 }
475 EXPORT_SYMBOL(flush_signals);
476 
477 #ifdef CONFIG_POSIX_TIMERS
478 static void __flush_itimer_signals(struct sigpending *pending)
479 {
480 	sigset_t signal, retain;
481 	struct sigqueue *q, *n;
482 
483 	signal = pending->signal;
484 	sigemptyset(&retain);
485 
486 	list_for_each_entry_safe(q, n, &pending->list, list) {
487 		int sig = q->info.si_signo;
488 
489 		if (likely(q->info.si_code != SI_TIMER)) {
490 			sigaddset(&retain, sig);
491 		} else {
492 			sigdelset(&signal, sig);
493 			list_del_init(&q->list);
494 			__sigqueue_free(q);
495 		}
496 	}
497 
498 	sigorsets(&pending->signal, &signal, &retain);
499 }
500 
501 void flush_itimer_signals(void)
502 {
503 	struct task_struct *tsk = current;
504 	unsigned long flags;
505 
506 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
507 	__flush_itimer_signals(&tsk->pending);
508 	__flush_itimer_signals(&tsk->signal->shared_pending);
509 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
510 }
511 #endif
512 
513 void ignore_signals(struct task_struct *t)
514 {
515 	int i;
516 
517 	for (i = 0; i < _NSIG; ++i)
518 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
519 
520 	flush_signals(t);
521 }
522 
523 /*
524  * Flush all handlers for a task.
525  */
526 
527 void
528 flush_signal_handlers(struct task_struct *t, int force_default)
529 {
530 	int i;
531 	struct k_sigaction *ka = &t->sighand->action[0];
532 	for (i = _NSIG ; i != 0 ; i--) {
533 		if (force_default || ka->sa.sa_handler != SIG_IGN)
534 			ka->sa.sa_handler = SIG_DFL;
535 		ka->sa.sa_flags = 0;
536 #ifdef __ARCH_HAS_SA_RESTORER
537 		ka->sa.sa_restorer = NULL;
538 #endif
539 		sigemptyset(&ka->sa.sa_mask);
540 		ka++;
541 	}
542 }
543 
544 bool unhandled_signal(struct task_struct *tsk, int sig)
545 {
546 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
547 	if (is_global_init(tsk))
548 		return true;
549 
550 	if (handler != SIG_IGN && handler != SIG_DFL)
551 		return false;
552 
553 	/* if ptraced, let the tracer determine */
554 	return !tsk->ptrace;
555 }
556 
557 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
558 			   bool *resched_timer)
559 {
560 	struct sigqueue *q, *first = NULL;
561 
562 	/*
563 	 * Collect the siginfo appropriate to this signal.  Check if
564 	 * there is another siginfo for the same signal.
565 	*/
566 	list_for_each_entry(q, &list->list, list) {
567 		if (q->info.si_signo == sig) {
568 			if (first)
569 				goto still_pending;
570 			first = q;
571 		}
572 	}
573 
574 	sigdelset(&list->signal, sig);
575 
576 	if (first) {
577 still_pending:
578 		list_del_init(&first->list);
579 		copy_siginfo(info, &first->info);
580 
581 		*resched_timer =
582 			(first->flags & SIGQUEUE_PREALLOC) &&
583 			(info->si_code == SI_TIMER) &&
584 			(info->si_sys_private);
585 
586 		__sigqueue_free(first);
587 	} else {
588 		/*
589 		 * Ok, it wasn't in the queue.  This must be
590 		 * a fast-pathed signal or we must have been
591 		 * out of queue space.  So zero out the info.
592 		 */
593 		clear_siginfo(info);
594 		info->si_signo = sig;
595 		info->si_errno = 0;
596 		info->si_code = SI_USER;
597 		info->si_pid = 0;
598 		info->si_uid = 0;
599 	}
600 }
601 
602 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
603 			kernel_siginfo_t *info, bool *resched_timer)
604 {
605 	int sig = next_signal(pending, mask);
606 
607 	if (sig)
608 		collect_signal(sig, pending, info, resched_timer);
609 	return sig;
610 }
611 
612 /*
613  * Dequeue a signal and return the element to the caller, which is
614  * expected to free it.
615  *
616  * All callers have to hold the siglock.
617  */
618 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
619 {
620 	bool resched_timer = false;
621 	int signr;
622 
623 	/* We only dequeue private signals from ourselves, we don't let
624 	 * signalfd steal them
625 	 */
626 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
627 	if (!signr) {
628 		signr = __dequeue_signal(&tsk->signal->shared_pending,
629 					 mask, info, &resched_timer);
630 #ifdef CONFIG_POSIX_TIMERS
631 		/*
632 		 * itimer signal ?
633 		 *
634 		 * itimers are process shared and we restart periodic
635 		 * itimers in the signal delivery path to prevent DoS
636 		 * attacks in the high resolution timer case. This is
637 		 * compliant with the old way of self-restarting
638 		 * itimers, as the SIGALRM is a legacy signal and only
639 		 * queued once. Changing the restart behaviour to
640 		 * restart the timer in the signal dequeue path is
641 		 * reducing the timer noise on heavy loaded !highres
642 		 * systems too.
643 		 */
644 		if (unlikely(signr == SIGALRM)) {
645 			struct hrtimer *tmr = &tsk->signal->real_timer;
646 
647 			if (!hrtimer_is_queued(tmr) &&
648 			    tsk->signal->it_real_incr != 0) {
649 				hrtimer_forward(tmr, tmr->base->get_time(),
650 						tsk->signal->it_real_incr);
651 				hrtimer_restart(tmr);
652 			}
653 		}
654 #endif
655 	}
656 
657 	recalc_sigpending();
658 	if (!signr)
659 		return 0;
660 
661 	if (unlikely(sig_kernel_stop(signr))) {
662 		/*
663 		 * Set a marker that we have dequeued a stop signal.  Our
664 		 * caller might release the siglock and then the pending
665 		 * stop signal it is about to process is no longer in the
666 		 * pending bitmasks, but must still be cleared by a SIGCONT
667 		 * (and overruled by a SIGKILL).  So those cases clear this
668 		 * shared flag after we've set it.  Note that this flag may
669 		 * remain set after the signal we return is ignored or
670 		 * handled.  That doesn't matter because its only purpose
671 		 * is to alert stop-signal processing code when another
672 		 * processor has come along and cleared the flag.
673 		 */
674 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
675 	}
676 #ifdef CONFIG_POSIX_TIMERS
677 	if (resched_timer) {
678 		/*
679 		 * Release the siglock to ensure proper locking order
680 		 * of timer locks outside of siglocks.  Note, we leave
681 		 * irqs disabled here, since the posix-timers code is
682 		 * about to disable them again anyway.
683 		 */
684 		spin_unlock(&tsk->sighand->siglock);
685 		posixtimer_rearm(info);
686 		spin_lock(&tsk->sighand->siglock);
687 
688 		/* Don't expose the si_sys_private value to userspace */
689 		info->si_sys_private = 0;
690 	}
691 #endif
692 	return signr;
693 }
694 EXPORT_SYMBOL_GPL(dequeue_signal);
695 
696 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
697 {
698 	struct task_struct *tsk = current;
699 	struct sigpending *pending = &tsk->pending;
700 	struct sigqueue *q, *sync = NULL;
701 
702 	/*
703 	 * Might a synchronous signal be in the queue?
704 	 */
705 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
706 		return 0;
707 
708 	/*
709 	 * Return the first synchronous signal in the queue.
710 	 */
711 	list_for_each_entry(q, &pending->list, list) {
712 		/* Synchronous signals have a postive si_code */
713 		if ((q->info.si_code > SI_USER) &&
714 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
715 			sync = q;
716 			goto next;
717 		}
718 	}
719 	return 0;
720 next:
721 	/*
722 	 * Check if there is another siginfo for the same signal.
723 	 */
724 	list_for_each_entry_continue(q, &pending->list, list) {
725 		if (q->info.si_signo == sync->info.si_signo)
726 			goto still_pending;
727 	}
728 
729 	sigdelset(&pending->signal, sync->info.si_signo);
730 	recalc_sigpending();
731 still_pending:
732 	list_del_init(&sync->list);
733 	copy_siginfo(info, &sync->info);
734 	__sigqueue_free(sync);
735 	return info->si_signo;
736 }
737 
738 /*
739  * Tell a process that it has a new active signal..
740  *
741  * NOTE! we rely on the previous spin_lock to
742  * lock interrupts for us! We can only be called with
743  * "siglock" held, and the local interrupt must
744  * have been disabled when that got acquired!
745  *
746  * No need to set need_resched since signal event passing
747  * goes through ->blocked
748  */
749 void signal_wake_up_state(struct task_struct *t, unsigned int state)
750 {
751 	set_tsk_thread_flag(t, TIF_SIGPENDING);
752 	/*
753 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
754 	 * case. We don't check t->state here because there is a race with it
755 	 * executing another processor and just now entering stopped state.
756 	 * By using wake_up_state, we ensure the process will wake up and
757 	 * handle its death signal.
758 	 */
759 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
760 		kick_process(t);
761 }
762 
763 /*
764  * Remove signals in mask from the pending set and queue.
765  * Returns 1 if any signals were found.
766  *
767  * All callers must be holding the siglock.
768  */
769 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
770 {
771 	struct sigqueue *q, *n;
772 	sigset_t m;
773 
774 	sigandsets(&m, mask, &s->signal);
775 	if (sigisemptyset(&m))
776 		return;
777 
778 	sigandnsets(&s->signal, &s->signal, mask);
779 	list_for_each_entry_safe(q, n, &s->list, list) {
780 		if (sigismember(mask, q->info.si_signo)) {
781 			list_del_init(&q->list);
782 			__sigqueue_free(q);
783 		}
784 	}
785 }
786 
787 static inline int is_si_special(const struct kernel_siginfo *info)
788 {
789 	return info <= SEND_SIG_PRIV;
790 }
791 
792 static inline bool si_fromuser(const struct kernel_siginfo *info)
793 {
794 	return info == SEND_SIG_NOINFO ||
795 		(!is_si_special(info) && SI_FROMUSER(info));
796 }
797 
798 /*
799  * called with RCU read lock from check_kill_permission()
800  */
801 static bool kill_ok_by_cred(struct task_struct *t)
802 {
803 	const struct cred *cred = current_cred();
804 	const struct cred *tcred = __task_cred(t);
805 
806 	return uid_eq(cred->euid, tcred->suid) ||
807 	       uid_eq(cred->euid, tcred->uid) ||
808 	       uid_eq(cred->uid, tcred->suid) ||
809 	       uid_eq(cred->uid, tcred->uid) ||
810 	       ns_capable(tcred->user_ns, CAP_KILL);
811 }
812 
813 /*
814  * Bad permissions for sending the signal
815  * - the caller must hold the RCU read lock
816  */
817 static int check_kill_permission(int sig, struct kernel_siginfo *info,
818 				 struct task_struct *t)
819 {
820 	struct pid *sid;
821 	int error;
822 
823 	if (!valid_signal(sig))
824 		return -EINVAL;
825 
826 	if (!si_fromuser(info))
827 		return 0;
828 
829 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
830 	if (error)
831 		return error;
832 
833 	if (!same_thread_group(current, t) &&
834 	    !kill_ok_by_cred(t)) {
835 		switch (sig) {
836 		case SIGCONT:
837 			sid = task_session(t);
838 			/*
839 			 * We don't return the error if sid == NULL. The
840 			 * task was unhashed, the caller must notice this.
841 			 */
842 			if (!sid || sid == task_session(current))
843 				break;
844 			/* fall through */
845 		default:
846 			return -EPERM;
847 		}
848 	}
849 
850 	return security_task_kill(t, info, sig, NULL);
851 }
852 
853 /**
854  * ptrace_trap_notify - schedule trap to notify ptracer
855  * @t: tracee wanting to notify tracer
856  *
857  * This function schedules sticky ptrace trap which is cleared on the next
858  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
859  * ptracer.
860  *
861  * If @t is running, STOP trap will be taken.  If trapped for STOP and
862  * ptracer is listening for events, tracee is woken up so that it can
863  * re-trap for the new event.  If trapped otherwise, STOP trap will be
864  * eventually taken without returning to userland after the existing traps
865  * are finished by PTRACE_CONT.
866  *
867  * CONTEXT:
868  * Must be called with @task->sighand->siglock held.
869  */
870 static void ptrace_trap_notify(struct task_struct *t)
871 {
872 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
873 	assert_spin_locked(&t->sighand->siglock);
874 
875 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
876 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
877 }
878 
879 /*
880  * Handle magic process-wide effects of stop/continue signals. Unlike
881  * the signal actions, these happen immediately at signal-generation
882  * time regardless of blocking, ignoring, or handling.  This does the
883  * actual continuing for SIGCONT, but not the actual stopping for stop
884  * signals. The process stop is done as a signal action for SIG_DFL.
885  *
886  * Returns true if the signal should be actually delivered, otherwise
887  * it should be dropped.
888  */
889 static bool prepare_signal(int sig, struct task_struct *p, bool force)
890 {
891 	struct signal_struct *signal = p->signal;
892 	struct task_struct *t;
893 	sigset_t flush;
894 
895 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
896 		if (!(signal->flags & SIGNAL_GROUP_EXIT))
897 			return sig == SIGKILL;
898 		/*
899 		 * The process is in the middle of dying, nothing to do.
900 		 */
901 	} else if (sig_kernel_stop(sig)) {
902 		/*
903 		 * This is a stop signal.  Remove SIGCONT from all queues.
904 		 */
905 		siginitset(&flush, sigmask(SIGCONT));
906 		flush_sigqueue_mask(&flush, &signal->shared_pending);
907 		for_each_thread(p, t)
908 			flush_sigqueue_mask(&flush, &t->pending);
909 	} else if (sig == SIGCONT) {
910 		unsigned int why;
911 		/*
912 		 * Remove all stop signals from all queues, wake all threads.
913 		 */
914 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
915 		flush_sigqueue_mask(&flush, &signal->shared_pending);
916 		for_each_thread(p, t) {
917 			flush_sigqueue_mask(&flush, &t->pending);
918 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
919 			if (likely(!(t->ptrace & PT_SEIZED)))
920 				wake_up_state(t, __TASK_STOPPED);
921 			else
922 				ptrace_trap_notify(t);
923 		}
924 
925 		/*
926 		 * Notify the parent with CLD_CONTINUED if we were stopped.
927 		 *
928 		 * If we were in the middle of a group stop, we pretend it
929 		 * was already finished, and then continued. Since SIGCHLD
930 		 * doesn't queue we report only CLD_STOPPED, as if the next
931 		 * CLD_CONTINUED was dropped.
932 		 */
933 		why = 0;
934 		if (signal->flags & SIGNAL_STOP_STOPPED)
935 			why |= SIGNAL_CLD_CONTINUED;
936 		else if (signal->group_stop_count)
937 			why |= SIGNAL_CLD_STOPPED;
938 
939 		if (why) {
940 			/*
941 			 * The first thread which returns from do_signal_stop()
942 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
943 			 * notify its parent. See get_signal().
944 			 */
945 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
946 			signal->group_stop_count = 0;
947 			signal->group_exit_code = 0;
948 		}
949 	}
950 
951 	return !sig_ignored(p, sig, force);
952 }
953 
954 /*
955  * Test if P wants to take SIG.  After we've checked all threads with this,
956  * it's equivalent to finding no threads not blocking SIG.  Any threads not
957  * blocking SIG were ruled out because they are not running and already
958  * have pending signals.  Such threads will dequeue from the shared queue
959  * as soon as they're available, so putting the signal on the shared queue
960  * will be equivalent to sending it to one such thread.
961  */
962 static inline bool wants_signal(int sig, struct task_struct *p)
963 {
964 	if (sigismember(&p->blocked, sig))
965 		return false;
966 
967 	if (p->flags & PF_EXITING)
968 		return false;
969 
970 	if (sig == SIGKILL)
971 		return true;
972 
973 	if (task_is_stopped_or_traced(p))
974 		return false;
975 
976 	return task_curr(p) || !signal_pending(p);
977 }
978 
979 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
980 {
981 	struct signal_struct *signal = p->signal;
982 	struct task_struct *t;
983 
984 	/*
985 	 * Now find a thread we can wake up to take the signal off the queue.
986 	 *
987 	 * If the main thread wants the signal, it gets first crack.
988 	 * Probably the least surprising to the average bear.
989 	 */
990 	if (wants_signal(sig, p))
991 		t = p;
992 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
993 		/*
994 		 * There is just one thread and it does not need to be woken.
995 		 * It will dequeue unblocked signals before it runs again.
996 		 */
997 		return;
998 	else {
999 		/*
1000 		 * Otherwise try to find a suitable thread.
1001 		 */
1002 		t = signal->curr_target;
1003 		while (!wants_signal(sig, t)) {
1004 			t = next_thread(t);
1005 			if (t == signal->curr_target)
1006 				/*
1007 				 * No thread needs to be woken.
1008 				 * Any eligible threads will see
1009 				 * the signal in the queue soon.
1010 				 */
1011 				return;
1012 		}
1013 		signal->curr_target = t;
1014 	}
1015 
1016 	/*
1017 	 * Found a killable thread.  If the signal will be fatal,
1018 	 * then start taking the whole group down immediately.
1019 	 */
1020 	if (sig_fatal(p, sig) &&
1021 	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1022 	    !sigismember(&t->real_blocked, sig) &&
1023 	    (sig == SIGKILL || !p->ptrace)) {
1024 		/*
1025 		 * This signal will be fatal to the whole group.
1026 		 */
1027 		if (!sig_kernel_coredump(sig)) {
1028 			/*
1029 			 * Start a group exit and wake everybody up.
1030 			 * This way we don't have other threads
1031 			 * running and doing things after a slower
1032 			 * thread has the fatal signal pending.
1033 			 */
1034 			signal->flags = SIGNAL_GROUP_EXIT;
1035 			signal->group_exit_code = sig;
1036 			signal->group_stop_count = 0;
1037 			t = p;
1038 			do {
1039 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1040 				sigaddset(&t->pending.signal, SIGKILL);
1041 				signal_wake_up(t, 1);
1042 			} while_each_thread(p, t);
1043 			return;
1044 		}
1045 	}
1046 
1047 	/*
1048 	 * The signal is already in the shared-pending queue.
1049 	 * Tell the chosen thread to wake up and dequeue it.
1050 	 */
1051 	signal_wake_up(t, sig == SIGKILL);
1052 	return;
1053 }
1054 
1055 static inline bool legacy_queue(struct sigpending *signals, int sig)
1056 {
1057 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1058 }
1059 
1060 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1061 			enum pid_type type, bool force)
1062 {
1063 	struct sigpending *pending;
1064 	struct sigqueue *q;
1065 	int override_rlimit;
1066 	int ret = 0, result;
1067 
1068 	assert_spin_locked(&t->sighand->siglock);
1069 
1070 	result = TRACE_SIGNAL_IGNORED;
1071 	if (!prepare_signal(sig, t, force))
1072 		goto ret;
1073 
1074 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1075 	/*
1076 	 * Short-circuit ignored signals and support queuing
1077 	 * exactly one non-rt signal, so that we can get more
1078 	 * detailed information about the cause of the signal.
1079 	 */
1080 	result = TRACE_SIGNAL_ALREADY_PENDING;
1081 	if (legacy_queue(pending, sig))
1082 		goto ret;
1083 
1084 	result = TRACE_SIGNAL_DELIVERED;
1085 	/*
1086 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1087 	 */
1088 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1089 		goto out_set;
1090 
1091 	/*
1092 	 * Real-time signals must be queued if sent by sigqueue, or
1093 	 * some other real-time mechanism.  It is implementation
1094 	 * defined whether kill() does so.  We attempt to do so, on
1095 	 * the principle of least surprise, but since kill is not
1096 	 * allowed to fail with EAGAIN when low on memory we just
1097 	 * make sure at least one signal gets delivered and don't
1098 	 * pass on the info struct.
1099 	 */
1100 	if (sig < SIGRTMIN)
1101 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1102 	else
1103 		override_rlimit = 0;
1104 
1105 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1106 	if (q) {
1107 		list_add_tail(&q->list, &pending->list);
1108 		switch ((unsigned long) info) {
1109 		case (unsigned long) SEND_SIG_NOINFO:
1110 			clear_siginfo(&q->info);
1111 			q->info.si_signo = sig;
1112 			q->info.si_errno = 0;
1113 			q->info.si_code = SI_USER;
1114 			q->info.si_pid = task_tgid_nr_ns(current,
1115 							task_active_pid_ns(t));
1116 			rcu_read_lock();
1117 			q->info.si_uid =
1118 				from_kuid_munged(task_cred_xxx(t, user_ns),
1119 						 current_uid());
1120 			rcu_read_unlock();
1121 			break;
1122 		case (unsigned long) SEND_SIG_PRIV:
1123 			clear_siginfo(&q->info);
1124 			q->info.si_signo = sig;
1125 			q->info.si_errno = 0;
1126 			q->info.si_code = SI_KERNEL;
1127 			q->info.si_pid = 0;
1128 			q->info.si_uid = 0;
1129 			break;
1130 		default:
1131 			copy_siginfo(&q->info, info);
1132 			break;
1133 		}
1134 	} else if (!is_si_special(info) &&
1135 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1136 		/*
1137 		 * Queue overflow, abort.  We may abort if the
1138 		 * signal was rt and sent by user using something
1139 		 * other than kill().
1140 		 */
1141 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1142 		ret = -EAGAIN;
1143 		goto ret;
1144 	} else {
1145 		/*
1146 		 * This is a silent loss of information.  We still
1147 		 * send the signal, but the *info bits are lost.
1148 		 */
1149 		result = TRACE_SIGNAL_LOSE_INFO;
1150 	}
1151 
1152 out_set:
1153 	signalfd_notify(t, sig);
1154 	sigaddset(&pending->signal, sig);
1155 
1156 	/* Let multiprocess signals appear after on-going forks */
1157 	if (type > PIDTYPE_TGID) {
1158 		struct multiprocess_signals *delayed;
1159 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1160 			sigset_t *signal = &delayed->signal;
1161 			/* Can't queue both a stop and a continue signal */
1162 			if (sig == SIGCONT)
1163 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1164 			else if (sig_kernel_stop(sig))
1165 				sigdelset(signal, SIGCONT);
1166 			sigaddset(signal, sig);
1167 		}
1168 	}
1169 
1170 	complete_signal(sig, t, type);
1171 ret:
1172 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1173 	return ret;
1174 }
1175 
1176 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1177 {
1178 	bool ret = false;
1179 	switch (siginfo_layout(info->si_signo, info->si_code)) {
1180 	case SIL_KILL:
1181 	case SIL_CHLD:
1182 	case SIL_RT:
1183 		ret = true;
1184 		break;
1185 	case SIL_TIMER:
1186 	case SIL_POLL:
1187 	case SIL_FAULT:
1188 	case SIL_FAULT_MCEERR:
1189 	case SIL_FAULT_BNDERR:
1190 	case SIL_FAULT_PKUERR:
1191 	case SIL_SYS:
1192 		ret = false;
1193 		break;
1194 	}
1195 	return ret;
1196 }
1197 
1198 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1199 			enum pid_type type)
1200 {
1201 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1202 	bool force = false;
1203 
1204 	if (info == SEND_SIG_NOINFO) {
1205 		/* Force if sent from an ancestor pid namespace */
1206 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1207 	} else if (info == SEND_SIG_PRIV) {
1208 		/* Don't ignore kernel generated signals */
1209 		force = true;
1210 	} else if (has_si_pid_and_uid(info)) {
1211 		/* SIGKILL and SIGSTOP is special or has ids */
1212 		struct user_namespace *t_user_ns;
1213 
1214 		rcu_read_lock();
1215 		t_user_ns = task_cred_xxx(t, user_ns);
1216 		if (current_user_ns() != t_user_ns) {
1217 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1218 			info->si_uid = from_kuid_munged(t_user_ns, uid);
1219 		}
1220 		rcu_read_unlock();
1221 
1222 		/* A kernel generated signal? */
1223 		force = (info->si_code == SI_KERNEL);
1224 
1225 		/* From an ancestor pid namespace? */
1226 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1227 			info->si_pid = 0;
1228 			force = true;
1229 		}
1230 	}
1231 	return __send_signal(sig, info, t, type, force);
1232 }
1233 
1234 static void print_fatal_signal(int signr)
1235 {
1236 	struct pt_regs *regs = signal_pt_regs();
1237 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1238 
1239 #if defined(__i386__) && !defined(__arch_um__)
1240 	pr_info("code at %08lx: ", regs->ip);
1241 	{
1242 		int i;
1243 		for (i = 0; i < 16; i++) {
1244 			unsigned char insn;
1245 
1246 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1247 				break;
1248 			pr_cont("%02x ", insn);
1249 		}
1250 	}
1251 	pr_cont("\n");
1252 #endif
1253 	preempt_disable();
1254 	show_regs(regs);
1255 	preempt_enable();
1256 }
1257 
1258 static int __init setup_print_fatal_signals(char *str)
1259 {
1260 	get_option (&str, &print_fatal_signals);
1261 
1262 	return 1;
1263 }
1264 
1265 __setup("print-fatal-signals=", setup_print_fatal_signals);
1266 
1267 int
1268 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1269 {
1270 	return send_signal(sig, info, p, PIDTYPE_TGID);
1271 }
1272 
1273 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1274 			enum pid_type type)
1275 {
1276 	unsigned long flags;
1277 	int ret = -ESRCH;
1278 
1279 	if (lock_task_sighand(p, &flags)) {
1280 		ret = send_signal(sig, info, p, type);
1281 		unlock_task_sighand(p, &flags);
1282 	}
1283 
1284 	return ret;
1285 }
1286 
1287 /*
1288  * Force a signal that the process can't ignore: if necessary
1289  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1290  *
1291  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1292  * since we do not want to have a signal handler that was blocked
1293  * be invoked when user space had explicitly blocked it.
1294  *
1295  * We don't want to have recursive SIGSEGV's etc, for example,
1296  * that is why we also clear SIGNAL_UNKILLABLE.
1297  */
1298 static int
1299 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
1300 {
1301 	unsigned long int flags;
1302 	int ret, blocked, ignored;
1303 	struct k_sigaction *action;
1304 	int sig = info->si_signo;
1305 
1306 	spin_lock_irqsave(&t->sighand->siglock, flags);
1307 	action = &t->sighand->action[sig-1];
1308 	ignored = action->sa.sa_handler == SIG_IGN;
1309 	blocked = sigismember(&t->blocked, sig);
1310 	if (blocked || ignored) {
1311 		action->sa.sa_handler = SIG_DFL;
1312 		if (blocked) {
1313 			sigdelset(&t->blocked, sig);
1314 			recalc_sigpending_and_wake(t);
1315 		}
1316 	}
1317 	/*
1318 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1319 	 * debugging to leave init killable.
1320 	 */
1321 	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1322 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1323 	ret = send_signal(sig, info, t, PIDTYPE_PID);
1324 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1325 
1326 	return ret;
1327 }
1328 
1329 int force_sig_info(struct kernel_siginfo *info)
1330 {
1331 	return force_sig_info_to_task(info, current);
1332 }
1333 
1334 /*
1335  * Nuke all other threads in the group.
1336  */
1337 int zap_other_threads(struct task_struct *p)
1338 {
1339 	struct task_struct *t = p;
1340 	int count = 0;
1341 
1342 	p->signal->group_stop_count = 0;
1343 
1344 	while_each_thread(p, t) {
1345 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1346 		count++;
1347 
1348 		/* Don't bother with already dead threads */
1349 		if (t->exit_state)
1350 			continue;
1351 		sigaddset(&t->pending.signal, SIGKILL);
1352 		signal_wake_up(t, 1);
1353 	}
1354 
1355 	return count;
1356 }
1357 
1358 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1359 					   unsigned long *flags)
1360 {
1361 	struct sighand_struct *sighand;
1362 
1363 	rcu_read_lock();
1364 	for (;;) {
1365 		sighand = rcu_dereference(tsk->sighand);
1366 		if (unlikely(sighand == NULL))
1367 			break;
1368 
1369 		/*
1370 		 * This sighand can be already freed and even reused, but
1371 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1372 		 * initializes ->siglock: this slab can't go away, it has
1373 		 * the same object type, ->siglock can't be reinitialized.
1374 		 *
1375 		 * We need to ensure that tsk->sighand is still the same
1376 		 * after we take the lock, we can race with de_thread() or
1377 		 * __exit_signal(). In the latter case the next iteration
1378 		 * must see ->sighand == NULL.
1379 		 */
1380 		spin_lock_irqsave(&sighand->siglock, *flags);
1381 		if (likely(sighand == tsk->sighand))
1382 			break;
1383 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1384 	}
1385 	rcu_read_unlock();
1386 
1387 	return sighand;
1388 }
1389 
1390 /*
1391  * send signal info to all the members of a group
1392  */
1393 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1394 			struct task_struct *p, enum pid_type type)
1395 {
1396 	int ret;
1397 
1398 	rcu_read_lock();
1399 	ret = check_kill_permission(sig, info, p);
1400 	rcu_read_unlock();
1401 
1402 	if (!ret && sig)
1403 		ret = do_send_sig_info(sig, info, p, type);
1404 
1405 	return ret;
1406 }
1407 
1408 /*
1409  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1410  * control characters do (^C, ^Z etc)
1411  * - the caller must hold at least a readlock on tasklist_lock
1412  */
1413 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1414 {
1415 	struct task_struct *p = NULL;
1416 	int retval, success;
1417 
1418 	success = 0;
1419 	retval = -ESRCH;
1420 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1421 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1422 		success |= !err;
1423 		retval = err;
1424 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1425 	return success ? 0 : retval;
1426 }
1427 
1428 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1429 {
1430 	int error = -ESRCH;
1431 	struct task_struct *p;
1432 
1433 	for (;;) {
1434 		rcu_read_lock();
1435 		p = pid_task(pid, PIDTYPE_PID);
1436 		if (p)
1437 			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1438 		rcu_read_unlock();
1439 		if (likely(!p || error != -ESRCH))
1440 			return error;
1441 
1442 		/*
1443 		 * The task was unhashed in between, try again.  If it
1444 		 * is dead, pid_task() will return NULL, if we race with
1445 		 * de_thread() it will find the new leader.
1446 		 */
1447 	}
1448 }
1449 
1450 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1451 {
1452 	int error;
1453 	rcu_read_lock();
1454 	error = kill_pid_info(sig, info, find_vpid(pid));
1455 	rcu_read_unlock();
1456 	return error;
1457 }
1458 
1459 static inline bool kill_as_cred_perm(const struct cred *cred,
1460 				     struct task_struct *target)
1461 {
1462 	const struct cred *pcred = __task_cred(target);
1463 
1464 	return uid_eq(cred->euid, pcred->suid) ||
1465 	       uid_eq(cred->euid, pcred->uid) ||
1466 	       uid_eq(cred->uid, pcred->suid) ||
1467 	       uid_eq(cred->uid, pcred->uid);
1468 }
1469 
1470 /*
1471  * The usb asyncio usage of siginfo is wrong.  The glibc support
1472  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1473  * AKA after the generic fields:
1474  *	kernel_pid_t	si_pid;
1475  *	kernel_uid32_t	si_uid;
1476  *	sigval_t	si_value;
1477  *
1478  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1479  * after the generic fields is:
1480  *	void __user 	*si_addr;
1481  *
1482  * This is a practical problem when there is a 64bit big endian kernel
1483  * and a 32bit userspace.  As the 32bit address will encoded in the low
1484  * 32bits of the pointer.  Those low 32bits will be stored at higher
1485  * address than appear in a 32 bit pointer.  So userspace will not
1486  * see the address it was expecting for it's completions.
1487  *
1488  * There is nothing in the encoding that can allow
1489  * copy_siginfo_to_user32 to detect this confusion of formats, so
1490  * handle this by requiring the caller of kill_pid_usb_asyncio to
1491  * notice when this situration takes place and to store the 32bit
1492  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1493  * parameter.
1494  */
1495 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1496 			 struct pid *pid, const struct cred *cred)
1497 {
1498 	struct kernel_siginfo info;
1499 	struct task_struct *p;
1500 	unsigned long flags;
1501 	int ret = -EINVAL;
1502 
1503 	clear_siginfo(&info);
1504 	info.si_signo = sig;
1505 	info.si_errno = errno;
1506 	info.si_code = SI_ASYNCIO;
1507 	*((sigval_t *)&info.si_pid) = addr;
1508 
1509 	if (!valid_signal(sig))
1510 		return ret;
1511 
1512 	rcu_read_lock();
1513 	p = pid_task(pid, PIDTYPE_PID);
1514 	if (!p) {
1515 		ret = -ESRCH;
1516 		goto out_unlock;
1517 	}
1518 	if (!kill_as_cred_perm(cred, p)) {
1519 		ret = -EPERM;
1520 		goto out_unlock;
1521 	}
1522 	ret = security_task_kill(p, &info, sig, cred);
1523 	if (ret)
1524 		goto out_unlock;
1525 
1526 	if (sig) {
1527 		if (lock_task_sighand(p, &flags)) {
1528 			ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1529 			unlock_task_sighand(p, &flags);
1530 		} else
1531 			ret = -ESRCH;
1532 	}
1533 out_unlock:
1534 	rcu_read_unlock();
1535 	return ret;
1536 }
1537 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1538 
1539 /*
1540  * kill_something_info() interprets pid in interesting ways just like kill(2).
1541  *
1542  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1543  * is probably wrong.  Should make it like BSD or SYSV.
1544  */
1545 
1546 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1547 {
1548 	int ret;
1549 
1550 	if (pid > 0) {
1551 		rcu_read_lock();
1552 		ret = kill_pid_info(sig, info, find_vpid(pid));
1553 		rcu_read_unlock();
1554 		return ret;
1555 	}
1556 
1557 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1558 	if (pid == INT_MIN)
1559 		return -ESRCH;
1560 
1561 	read_lock(&tasklist_lock);
1562 	if (pid != -1) {
1563 		ret = __kill_pgrp_info(sig, info,
1564 				pid ? find_vpid(-pid) : task_pgrp(current));
1565 	} else {
1566 		int retval = 0, count = 0;
1567 		struct task_struct * p;
1568 
1569 		for_each_process(p) {
1570 			if (task_pid_vnr(p) > 1 &&
1571 					!same_thread_group(p, current)) {
1572 				int err = group_send_sig_info(sig, info, p,
1573 							      PIDTYPE_MAX);
1574 				++count;
1575 				if (err != -EPERM)
1576 					retval = err;
1577 			}
1578 		}
1579 		ret = count ? retval : -ESRCH;
1580 	}
1581 	read_unlock(&tasklist_lock);
1582 
1583 	return ret;
1584 }
1585 
1586 /*
1587  * These are for backward compatibility with the rest of the kernel source.
1588  */
1589 
1590 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1591 {
1592 	/*
1593 	 * Make sure legacy kernel users don't send in bad values
1594 	 * (normal paths check this in check_kill_permission).
1595 	 */
1596 	if (!valid_signal(sig))
1597 		return -EINVAL;
1598 
1599 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1600 }
1601 EXPORT_SYMBOL(send_sig_info);
1602 
1603 #define __si_special(priv) \
1604 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1605 
1606 int
1607 send_sig(int sig, struct task_struct *p, int priv)
1608 {
1609 	return send_sig_info(sig, __si_special(priv), p);
1610 }
1611 EXPORT_SYMBOL(send_sig);
1612 
1613 void force_sig(int sig)
1614 {
1615 	struct kernel_siginfo info;
1616 
1617 	clear_siginfo(&info);
1618 	info.si_signo = sig;
1619 	info.si_errno = 0;
1620 	info.si_code = SI_KERNEL;
1621 	info.si_pid = 0;
1622 	info.si_uid = 0;
1623 	force_sig_info(&info);
1624 }
1625 EXPORT_SYMBOL(force_sig);
1626 
1627 /*
1628  * When things go south during signal handling, we
1629  * will force a SIGSEGV. And if the signal that caused
1630  * the problem was already a SIGSEGV, we'll want to
1631  * make sure we don't even try to deliver the signal..
1632  */
1633 void force_sigsegv(int sig)
1634 {
1635 	struct task_struct *p = current;
1636 
1637 	if (sig == SIGSEGV) {
1638 		unsigned long flags;
1639 		spin_lock_irqsave(&p->sighand->siglock, flags);
1640 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1641 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1642 	}
1643 	force_sig(SIGSEGV);
1644 }
1645 
1646 int force_sig_fault_to_task(int sig, int code, void __user *addr
1647 	___ARCH_SI_TRAPNO(int trapno)
1648 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1649 	, struct task_struct *t)
1650 {
1651 	struct kernel_siginfo info;
1652 
1653 	clear_siginfo(&info);
1654 	info.si_signo = sig;
1655 	info.si_errno = 0;
1656 	info.si_code  = code;
1657 	info.si_addr  = addr;
1658 #ifdef __ARCH_SI_TRAPNO
1659 	info.si_trapno = trapno;
1660 #endif
1661 #ifdef __ia64__
1662 	info.si_imm = imm;
1663 	info.si_flags = flags;
1664 	info.si_isr = isr;
1665 #endif
1666 	return force_sig_info_to_task(&info, t);
1667 }
1668 
1669 int force_sig_fault(int sig, int code, void __user *addr
1670 	___ARCH_SI_TRAPNO(int trapno)
1671 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1672 {
1673 	return force_sig_fault_to_task(sig, code, addr
1674 				       ___ARCH_SI_TRAPNO(trapno)
1675 				       ___ARCH_SI_IA64(imm, flags, isr), current);
1676 }
1677 
1678 int send_sig_fault(int sig, int code, void __user *addr
1679 	___ARCH_SI_TRAPNO(int trapno)
1680 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1681 	, struct task_struct *t)
1682 {
1683 	struct kernel_siginfo info;
1684 
1685 	clear_siginfo(&info);
1686 	info.si_signo = sig;
1687 	info.si_errno = 0;
1688 	info.si_code  = code;
1689 	info.si_addr  = addr;
1690 #ifdef __ARCH_SI_TRAPNO
1691 	info.si_trapno = trapno;
1692 #endif
1693 #ifdef __ia64__
1694 	info.si_imm = imm;
1695 	info.si_flags = flags;
1696 	info.si_isr = isr;
1697 #endif
1698 	return send_sig_info(info.si_signo, &info, t);
1699 }
1700 
1701 int force_sig_mceerr(int code, void __user *addr, short lsb)
1702 {
1703 	struct kernel_siginfo info;
1704 
1705 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1706 	clear_siginfo(&info);
1707 	info.si_signo = SIGBUS;
1708 	info.si_errno = 0;
1709 	info.si_code = code;
1710 	info.si_addr = addr;
1711 	info.si_addr_lsb = lsb;
1712 	return force_sig_info(&info);
1713 }
1714 
1715 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1716 {
1717 	struct kernel_siginfo info;
1718 
1719 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1720 	clear_siginfo(&info);
1721 	info.si_signo = SIGBUS;
1722 	info.si_errno = 0;
1723 	info.si_code = code;
1724 	info.si_addr = addr;
1725 	info.si_addr_lsb = lsb;
1726 	return send_sig_info(info.si_signo, &info, t);
1727 }
1728 EXPORT_SYMBOL(send_sig_mceerr);
1729 
1730 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1731 {
1732 	struct kernel_siginfo info;
1733 
1734 	clear_siginfo(&info);
1735 	info.si_signo = SIGSEGV;
1736 	info.si_errno = 0;
1737 	info.si_code  = SEGV_BNDERR;
1738 	info.si_addr  = addr;
1739 	info.si_lower = lower;
1740 	info.si_upper = upper;
1741 	return force_sig_info(&info);
1742 }
1743 
1744 #ifdef SEGV_PKUERR
1745 int force_sig_pkuerr(void __user *addr, u32 pkey)
1746 {
1747 	struct kernel_siginfo info;
1748 
1749 	clear_siginfo(&info);
1750 	info.si_signo = SIGSEGV;
1751 	info.si_errno = 0;
1752 	info.si_code  = SEGV_PKUERR;
1753 	info.si_addr  = addr;
1754 	info.si_pkey  = pkey;
1755 	return force_sig_info(&info);
1756 }
1757 #endif
1758 
1759 /* For the crazy architectures that include trap information in
1760  * the errno field, instead of an actual errno value.
1761  */
1762 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1763 {
1764 	struct kernel_siginfo info;
1765 
1766 	clear_siginfo(&info);
1767 	info.si_signo = SIGTRAP;
1768 	info.si_errno = errno;
1769 	info.si_code  = TRAP_HWBKPT;
1770 	info.si_addr  = addr;
1771 	return force_sig_info(&info);
1772 }
1773 
1774 int kill_pgrp(struct pid *pid, int sig, int priv)
1775 {
1776 	int ret;
1777 
1778 	read_lock(&tasklist_lock);
1779 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1780 	read_unlock(&tasklist_lock);
1781 
1782 	return ret;
1783 }
1784 EXPORT_SYMBOL(kill_pgrp);
1785 
1786 int kill_pid(struct pid *pid, int sig, int priv)
1787 {
1788 	return kill_pid_info(sig, __si_special(priv), pid);
1789 }
1790 EXPORT_SYMBOL(kill_pid);
1791 
1792 /*
1793  * These functions support sending signals using preallocated sigqueue
1794  * structures.  This is needed "because realtime applications cannot
1795  * afford to lose notifications of asynchronous events, like timer
1796  * expirations or I/O completions".  In the case of POSIX Timers
1797  * we allocate the sigqueue structure from the timer_create.  If this
1798  * allocation fails we are able to report the failure to the application
1799  * with an EAGAIN error.
1800  */
1801 struct sigqueue *sigqueue_alloc(void)
1802 {
1803 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1804 
1805 	if (q)
1806 		q->flags |= SIGQUEUE_PREALLOC;
1807 
1808 	return q;
1809 }
1810 
1811 void sigqueue_free(struct sigqueue *q)
1812 {
1813 	unsigned long flags;
1814 	spinlock_t *lock = &current->sighand->siglock;
1815 
1816 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1817 	/*
1818 	 * We must hold ->siglock while testing q->list
1819 	 * to serialize with collect_signal() or with
1820 	 * __exit_signal()->flush_sigqueue().
1821 	 */
1822 	spin_lock_irqsave(lock, flags);
1823 	q->flags &= ~SIGQUEUE_PREALLOC;
1824 	/*
1825 	 * If it is queued it will be freed when dequeued,
1826 	 * like the "regular" sigqueue.
1827 	 */
1828 	if (!list_empty(&q->list))
1829 		q = NULL;
1830 	spin_unlock_irqrestore(lock, flags);
1831 
1832 	if (q)
1833 		__sigqueue_free(q);
1834 }
1835 
1836 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1837 {
1838 	int sig = q->info.si_signo;
1839 	struct sigpending *pending;
1840 	struct task_struct *t;
1841 	unsigned long flags;
1842 	int ret, result;
1843 
1844 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1845 
1846 	ret = -1;
1847 	rcu_read_lock();
1848 	t = pid_task(pid, type);
1849 	if (!t || !likely(lock_task_sighand(t, &flags)))
1850 		goto ret;
1851 
1852 	ret = 1; /* the signal is ignored */
1853 	result = TRACE_SIGNAL_IGNORED;
1854 	if (!prepare_signal(sig, t, false))
1855 		goto out;
1856 
1857 	ret = 0;
1858 	if (unlikely(!list_empty(&q->list))) {
1859 		/*
1860 		 * If an SI_TIMER entry is already queue just increment
1861 		 * the overrun count.
1862 		 */
1863 		BUG_ON(q->info.si_code != SI_TIMER);
1864 		q->info.si_overrun++;
1865 		result = TRACE_SIGNAL_ALREADY_PENDING;
1866 		goto out;
1867 	}
1868 	q->info.si_overrun = 0;
1869 
1870 	signalfd_notify(t, sig);
1871 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1872 	list_add_tail(&q->list, &pending->list);
1873 	sigaddset(&pending->signal, sig);
1874 	complete_signal(sig, t, type);
1875 	result = TRACE_SIGNAL_DELIVERED;
1876 out:
1877 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1878 	unlock_task_sighand(t, &flags);
1879 ret:
1880 	rcu_read_unlock();
1881 	return ret;
1882 }
1883 
1884 /*
1885  * Let a parent know about the death of a child.
1886  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1887  *
1888  * Returns true if our parent ignored us and so we've switched to
1889  * self-reaping.
1890  */
1891 bool do_notify_parent(struct task_struct *tsk, int sig)
1892 {
1893 	struct kernel_siginfo info;
1894 	unsigned long flags;
1895 	struct sighand_struct *psig;
1896 	bool autoreap = false;
1897 	u64 utime, stime;
1898 
1899 	BUG_ON(sig == -1);
1900 
1901  	/* do_notify_parent_cldstop should have been called instead.  */
1902  	BUG_ON(task_is_stopped_or_traced(tsk));
1903 
1904 	BUG_ON(!tsk->ptrace &&
1905 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1906 
1907 	if (sig != SIGCHLD) {
1908 		/*
1909 		 * This is only possible if parent == real_parent.
1910 		 * Check if it has changed security domain.
1911 		 */
1912 		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1913 			sig = SIGCHLD;
1914 	}
1915 
1916 	clear_siginfo(&info);
1917 	info.si_signo = sig;
1918 	info.si_errno = 0;
1919 	/*
1920 	 * We are under tasklist_lock here so our parent is tied to
1921 	 * us and cannot change.
1922 	 *
1923 	 * task_active_pid_ns will always return the same pid namespace
1924 	 * until a task passes through release_task.
1925 	 *
1926 	 * write_lock() currently calls preempt_disable() which is the
1927 	 * same as rcu_read_lock(), but according to Oleg, this is not
1928 	 * correct to rely on this
1929 	 */
1930 	rcu_read_lock();
1931 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1932 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1933 				       task_uid(tsk));
1934 	rcu_read_unlock();
1935 
1936 	task_cputime(tsk, &utime, &stime);
1937 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1938 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1939 
1940 	info.si_status = tsk->exit_code & 0x7f;
1941 	if (tsk->exit_code & 0x80)
1942 		info.si_code = CLD_DUMPED;
1943 	else if (tsk->exit_code & 0x7f)
1944 		info.si_code = CLD_KILLED;
1945 	else {
1946 		info.si_code = CLD_EXITED;
1947 		info.si_status = tsk->exit_code >> 8;
1948 	}
1949 
1950 	psig = tsk->parent->sighand;
1951 	spin_lock_irqsave(&psig->siglock, flags);
1952 	if (!tsk->ptrace && sig == SIGCHLD &&
1953 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1954 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1955 		/*
1956 		 * We are exiting and our parent doesn't care.  POSIX.1
1957 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1958 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1959 		 * automatically and not left for our parent's wait4 call.
1960 		 * Rather than having the parent do it as a magic kind of
1961 		 * signal handler, we just set this to tell do_exit that we
1962 		 * can be cleaned up without becoming a zombie.  Note that
1963 		 * we still call __wake_up_parent in this case, because a
1964 		 * blocked sys_wait4 might now return -ECHILD.
1965 		 *
1966 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1967 		 * is implementation-defined: we do (if you don't want
1968 		 * it, just use SIG_IGN instead).
1969 		 */
1970 		autoreap = true;
1971 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1972 			sig = 0;
1973 	}
1974 	if (valid_signal(sig) && sig)
1975 		__group_send_sig_info(sig, &info, tsk->parent);
1976 	__wake_up_parent(tsk, tsk->parent);
1977 	spin_unlock_irqrestore(&psig->siglock, flags);
1978 
1979 	return autoreap;
1980 }
1981 
1982 /**
1983  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1984  * @tsk: task reporting the state change
1985  * @for_ptracer: the notification is for ptracer
1986  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1987  *
1988  * Notify @tsk's parent that the stopped/continued state has changed.  If
1989  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1990  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1991  *
1992  * CONTEXT:
1993  * Must be called with tasklist_lock at least read locked.
1994  */
1995 static void do_notify_parent_cldstop(struct task_struct *tsk,
1996 				     bool for_ptracer, int why)
1997 {
1998 	struct kernel_siginfo info;
1999 	unsigned long flags;
2000 	struct task_struct *parent;
2001 	struct sighand_struct *sighand;
2002 	u64 utime, stime;
2003 
2004 	if (for_ptracer) {
2005 		parent = tsk->parent;
2006 	} else {
2007 		tsk = tsk->group_leader;
2008 		parent = tsk->real_parent;
2009 	}
2010 
2011 	clear_siginfo(&info);
2012 	info.si_signo = SIGCHLD;
2013 	info.si_errno = 0;
2014 	/*
2015 	 * see comment in do_notify_parent() about the following 4 lines
2016 	 */
2017 	rcu_read_lock();
2018 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2019 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2020 	rcu_read_unlock();
2021 
2022 	task_cputime(tsk, &utime, &stime);
2023 	info.si_utime = nsec_to_clock_t(utime);
2024 	info.si_stime = nsec_to_clock_t(stime);
2025 
2026  	info.si_code = why;
2027  	switch (why) {
2028  	case CLD_CONTINUED:
2029  		info.si_status = SIGCONT;
2030  		break;
2031  	case CLD_STOPPED:
2032  		info.si_status = tsk->signal->group_exit_code & 0x7f;
2033  		break;
2034  	case CLD_TRAPPED:
2035  		info.si_status = tsk->exit_code & 0x7f;
2036  		break;
2037  	default:
2038  		BUG();
2039  	}
2040 
2041 	sighand = parent->sighand;
2042 	spin_lock_irqsave(&sighand->siglock, flags);
2043 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2044 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2045 		__group_send_sig_info(SIGCHLD, &info, parent);
2046 	/*
2047 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2048 	 */
2049 	__wake_up_parent(tsk, parent);
2050 	spin_unlock_irqrestore(&sighand->siglock, flags);
2051 }
2052 
2053 static inline bool may_ptrace_stop(void)
2054 {
2055 	if (!likely(current->ptrace))
2056 		return false;
2057 	/*
2058 	 * Are we in the middle of do_coredump?
2059 	 * If so and our tracer is also part of the coredump stopping
2060 	 * is a deadlock situation, and pointless because our tracer
2061 	 * is dead so don't allow us to stop.
2062 	 * If SIGKILL was already sent before the caller unlocked
2063 	 * ->siglock we must see ->core_state != NULL. Otherwise it
2064 	 * is safe to enter schedule().
2065 	 *
2066 	 * This is almost outdated, a task with the pending SIGKILL can't
2067 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2068 	 * after SIGKILL was already dequeued.
2069 	 */
2070 	if (unlikely(current->mm->core_state) &&
2071 	    unlikely(current->mm == current->parent->mm))
2072 		return false;
2073 
2074 	return true;
2075 }
2076 
2077 /*
2078  * Return non-zero if there is a SIGKILL that should be waking us up.
2079  * Called with the siglock held.
2080  */
2081 static bool sigkill_pending(struct task_struct *tsk)
2082 {
2083 	return sigismember(&tsk->pending.signal, SIGKILL) ||
2084 	       sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2085 }
2086 
2087 /*
2088  * This must be called with current->sighand->siglock held.
2089  *
2090  * This should be the path for all ptrace stops.
2091  * We always set current->last_siginfo while stopped here.
2092  * That makes it a way to test a stopped process for
2093  * being ptrace-stopped vs being job-control-stopped.
2094  *
2095  * If we actually decide not to stop at all because the tracer
2096  * is gone, we keep current->exit_code unless clear_code.
2097  */
2098 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2099 	__releases(&current->sighand->siglock)
2100 	__acquires(&current->sighand->siglock)
2101 {
2102 	bool gstop_done = false;
2103 
2104 	if (arch_ptrace_stop_needed(exit_code, info)) {
2105 		/*
2106 		 * The arch code has something special to do before a
2107 		 * ptrace stop.  This is allowed to block, e.g. for faults
2108 		 * on user stack pages.  We can't keep the siglock while
2109 		 * calling arch_ptrace_stop, so we must release it now.
2110 		 * To preserve proper semantics, we must do this before
2111 		 * any signal bookkeeping like checking group_stop_count.
2112 		 * Meanwhile, a SIGKILL could come in before we retake the
2113 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
2114 		 * So after regaining the lock, we must check for SIGKILL.
2115 		 */
2116 		spin_unlock_irq(&current->sighand->siglock);
2117 		arch_ptrace_stop(exit_code, info);
2118 		spin_lock_irq(&current->sighand->siglock);
2119 		if (sigkill_pending(current))
2120 			return;
2121 	}
2122 
2123 	set_special_state(TASK_TRACED);
2124 
2125 	/*
2126 	 * We're committing to trapping.  TRACED should be visible before
2127 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2128 	 * Also, transition to TRACED and updates to ->jobctl should be
2129 	 * atomic with respect to siglock and should be done after the arch
2130 	 * hook as siglock is released and regrabbed across it.
2131 	 *
2132 	 *     TRACER				    TRACEE
2133 	 *
2134 	 *     ptrace_attach()
2135 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2136 	 *     do_wait()
2137 	 *       set_current_state()                smp_wmb();
2138 	 *       ptrace_do_wait()
2139 	 *         wait_task_stopped()
2140 	 *           task_stopped_code()
2141 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2142 	 */
2143 	smp_wmb();
2144 
2145 	current->last_siginfo = info;
2146 	current->exit_code = exit_code;
2147 
2148 	/*
2149 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2150 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2151 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2152 	 * could be clear now.  We act as if SIGCONT is received after
2153 	 * TASK_TRACED is entered - ignore it.
2154 	 */
2155 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2156 		gstop_done = task_participate_group_stop(current);
2157 
2158 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2159 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2160 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2161 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2162 
2163 	/* entering a trap, clear TRAPPING */
2164 	task_clear_jobctl_trapping(current);
2165 
2166 	spin_unlock_irq(&current->sighand->siglock);
2167 	read_lock(&tasklist_lock);
2168 	if (may_ptrace_stop()) {
2169 		/*
2170 		 * Notify parents of the stop.
2171 		 *
2172 		 * While ptraced, there are two parents - the ptracer and
2173 		 * the real_parent of the group_leader.  The ptracer should
2174 		 * know about every stop while the real parent is only
2175 		 * interested in the completion of group stop.  The states
2176 		 * for the two don't interact with each other.  Notify
2177 		 * separately unless they're gonna be duplicates.
2178 		 */
2179 		do_notify_parent_cldstop(current, true, why);
2180 		if (gstop_done && ptrace_reparented(current))
2181 			do_notify_parent_cldstop(current, false, why);
2182 
2183 		/*
2184 		 * Don't want to allow preemption here, because
2185 		 * sys_ptrace() needs this task to be inactive.
2186 		 *
2187 		 * XXX: implement read_unlock_no_resched().
2188 		 */
2189 		preempt_disable();
2190 		read_unlock(&tasklist_lock);
2191 		preempt_enable_no_resched();
2192 		cgroup_enter_frozen();
2193 		freezable_schedule();
2194 		cgroup_leave_frozen(true);
2195 	} else {
2196 		/*
2197 		 * By the time we got the lock, our tracer went away.
2198 		 * Don't drop the lock yet, another tracer may come.
2199 		 *
2200 		 * If @gstop_done, the ptracer went away between group stop
2201 		 * completion and here.  During detach, it would have set
2202 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2203 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2204 		 * the real parent of the group stop completion is enough.
2205 		 */
2206 		if (gstop_done)
2207 			do_notify_parent_cldstop(current, false, why);
2208 
2209 		/* tasklist protects us from ptrace_freeze_traced() */
2210 		__set_current_state(TASK_RUNNING);
2211 		if (clear_code)
2212 			current->exit_code = 0;
2213 		read_unlock(&tasklist_lock);
2214 	}
2215 
2216 	/*
2217 	 * We are back.  Now reacquire the siglock before touching
2218 	 * last_siginfo, so that we are sure to have synchronized with
2219 	 * any signal-sending on another CPU that wants to examine it.
2220 	 */
2221 	spin_lock_irq(&current->sighand->siglock);
2222 	current->last_siginfo = NULL;
2223 
2224 	/* LISTENING can be set only during STOP traps, clear it */
2225 	current->jobctl &= ~JOBCTL_LISTENING;
2226 
2227 	/*
2228 	 * Queued signals ignored us while we were stopped for tracing.
2229 	 * So check for any that we should take before resuming user mode.
2230 	 * This sets TIF_SIGPENDING, but never clears it.
2231 	 */
2232 	recalc_sigpending_tsk(current);
2233 }
2234 
2235 static void ptrace_do_notify(int signr, int exit_code, int why)
2236 {
2237 	kernel_siginfo_t info;
2238 
2239 	clear_siginfo(&info);
2240 	info.si_signo = signr;
2241 	info.si_code = exit_code;
2242 	info.si_pid = task_pid_vnr(current);
2243 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2244 
2245 	/* Let the debugger run.  */
2246 	ptrace_stop(exit_code, why, 1, &info);
2247 }
2248 
2249 void ptrace_notify(int exit_code)
2250 {
2251 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2252 	if (unlikely(current->task_works))
2253 		task_work_run();
2254 
2255 	spin_lock_irq(&current->sighand->siglock);
2256 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2257 	spin_unlock_irq(&current->sighand->siglock);
2258 }
2259 
2260 /**
2261  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2262  * @signr: signr causing group stop if initiating
2263  *
2264  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2265  * and participate in it.  If already set, participate in the existing
2266  * group stop.  If participated in a group stop (and thus slept), %true is
2267  * returned with siglock released.
2268  *
2269  * If ptraced, this function doesn't handle stop itself.  Instead,
2270  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2271  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2272  * places afterwards.
2273  *
2274  * CONTEXT:
2275  * Must be called with @current->sighand->siglock held, which is released
2276  * on %true return.
2277  *
2278  * RETURNS:
2279  * %false if group stop is already cancelled or ptrace trap is scheduled.
2280  * %true if participated in group stop.
2281  */
2282 static bool do_signal_stop(int signr)
2283 	__releases(&current->sighand->siglock)
2284 {
2285 	struct signal_struct *sig = current->signal;
2286 
2287 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2288 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2289 		struct task_struct *t;
2290 
2291 		/* signr will be recorded in task->jobctl for retries */
2292 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2293 
2294 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2295 		    unlikely(signal_group_exit(sig)))
2296 			return false;
2297 		/*
2298 		 * There is no group stop already in progress.  We must
2299 		 * initiate one now.
2300 		 *
2301 		 * While ptraced, a task may be resumed while group stop is
2302 		 * still in effect and then receive a stop signal and
2303 		 * initiate another group stop.  This deviates from the
2304 		 * usual behavior as two consecutive stop signals can't
2305 		 * cause two group stops when !ptraced.  That is why we
2306 		 * also check !task_is_stopped(t) below.
2307 		 *
2308 		 * The condition can be distinguished by testing whether
2309 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2310 		 * group_exit_code in such case.
2311 		 *
2312 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2313 		 * an intervening stop signal is required to cause two
2314 		 * continued events regardless of ptrace.
2315 		 */
2316 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2317 			sig->group_exit_code = signr;
2318 
2319 		sig->group_stop_count = 0;
2320 
2321 		if (task_set_jobctl_pending(current, signr | gstop))
2322 			sig->group_stop_count++;
2323 
2324 		t = current;
2325 		while_each_thread(current, t) {
2326 			/*
2327 			 * Setting state to TASK_STOPPED for a group
2328 			 * stop is always done with the siglock held,
2329 			 * so this check has no races.
2330 			 */
2331 			if (!task_is_stopped(t) &&
2332 			    task_set_jobctl_pending(t, signr | gstop)) {
2333 				sig->group_stop_count++;
2334 				if (likely(!(t->ptrace & PT_SEIZED)))
2335 					signal_wake_up(t, 0);
2336 				else
2337 					ptrace_trap_notify(t);
2338 			}
2339 		}
2340 	}
2341 
2342 	if (likely(!current->ptrace)) {
2343 		int notify = 0;
2344 
2345 		/*
2346 		 * If there are no other threads in the group, or if there
2347 		 * is a group stop in progress and we are the last to stop,
2348 		 * report to the parent.
2349 		 */
2350 		if (task_participate_group_stop(current))
2351 			notify = CLD_STOPPED;
2352 
2353 		set_special_state(TASK_STOPPED);
2354 		spin_unlock_irq(&current->sighand->siglock);
2355 
2356 		/*
2357 		 * Notify the parent of the group stop completion.  Because
2358 		 * we're not holding either the siglock or tasklist_lock
2359 		 * here, ptracer may attach inbetween; however, this is for
2360 		 * group stop and should always be delivered to the real
2361 		 * parent of the group leader.  The new ptracer will get
2362 		 * its notification when this task transitions into
2363 		 * TASK_TRACED.
2364 		 */
2365 		if (notify) {
2366 			read_lock(&tasklist_lock);
2367 			do_notify_parent_cldstop(current, false, notify);
2368 			read_unlock(&tasklist_lock);
2369 		}
2370 
2371 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2372 		cgroup_enter_frozen();
2373 		freezable_schedule();
2374 		return true;
2375 	} else {
2376 		/*
2377 		 * While ptraced, group stop is handled by STOP trap.
2378 		 * Schedule it and let the caller deal with it.
2379 		 */
2380 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2381 		return false;
2382 	}
2383 }
2384 
2385 /**
2386  * do_jobctl_trap - take care of ptrace jobctl traps
2387  *
2388  * When PT_SEIZED, it's used for both group stop and explicit
2389  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2390  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2391  * the stop signal; otherwise, %SIGTRAP.
2392  *
2393  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2394  * number as exit_code and no siginfo.
2395  *
2396  * CONTEXT:
2397  * Must be called with @current->sighand->siglock held, which may be
2398  * released and re-acquired before returning with intervening sleep.
2399  */
2400 static void do_jobctl_trap(void)
2401 {
2402 	struct signal_struct *signal = current->signal;
2403 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2404 
2405 	if (current->ptrace & PT_SEIZED) {
2406 		if (!signal->group_stop_count &&
2407 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2408 			signr = SIGTRAP;
2409 		WARN_ON_ONCE(!signr);
2410 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2411 				 CLD_STOPPED);
2412 	} else {
2413 		WARN_ON_ONCE(!signr);
2414 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2415 		current->exit_code = 0;
2416 	}
2417 }
2418 
2419 /**
2420  * do_freezer_trap - handle the freezer jobctl trap
2421  *
2422  * Puts the task into frozen state, if only the task is not about to quit.
2423  * In this case it drops JOBCTL_TRAP_FREEZE.
2424  *
2425  * CONTEXT:
2426  * Must be called with @current->sighand->siglock held,
2427  * which is always released before returning.
2428  */
2429 static void do_freezer_trap(void)
2430 	__releases(&current->sighand->siglock)
2431 {
2432 	/*
2433 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2434 	 * let's make another loop to give it a chance to be handled.
2435 	 * In any case, we'll return back.
2436 	 */
2437 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2438 	     JOBCTL_TRAP_FREEZE) {
2439 		spin_unlock_irq(&current->sighand->siglock);
2440 		return;
2441 	}
2442 
2443 	/*
2444 	 * Now we're sure that there is no pending fatal signal and no
2445 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2446 	 * immediately (if there is a non-fatal signal pending), and
2447 	 * put the task into sleep.
2448 	 */
2449 	__set_current_state(TASK_INTERRUPTIBLE);
2450 	clear_thread_flag(TIF_SIGPENDING);
2451 	spin_unlock_irq(&current->sighand->siglock);
2452 	cgroup_enter_frozen();
2453 	freezable_schedule();
2454 }
2455 
2456 static int ptrace_signal(int signr, kernel_siginfo_t *info)
2457 {
2458 	/*
2459 	 * We do not check sig_kernel_stop(signr) but set this marker
2460 	 * unconditionally because we do not know whether debugger will
2461 	 * change signr. This flag has no meaning unless we are going
2462 	 * to stop after return from ptrace_stop(). In this case it will
2463 	 * be checked in do_signal_stop(), we should only stop if it was
2464 	 * not cleared by SIGCONT while we were sleeping. See also the
2465 	 * comment in dequeue_signal().
2466 	 */
2467 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2468 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2469 
2470 	/* We're back.  Did the debugger cancel the sig?  */
2471 	signr = current->exit_code;
2472 	if (signr == 0)
2473 		return signr;
2474 
2475 	current->exit_code = 0;
2476 
2477 	/*
2478 	 * Update the siginfo structure if the signal has
2479 	 * changed.  If the debugger wanted something
2480 	 * specific in the siginfo structure then it should
2481 	 * have updated *info via PTRACE_SETSIGINFO.
2482 	 */
2483 	if (signr != info->si_signo) {
2484 		clear_siginfo(info);
2485 		info->si_signo = signr;
2486 		info->si_errno = 0;
2487 		info->si_code = SI_USER;
2488 		rcu_read_lock();
2489 		info->si_pid = task_pid_vnr(current->parent);
2490 		info->si_uid = from_kuid_munged(current_user_ns(),
2491 						task_uid(current->parent));
2492 		rcu_read_unlock();
2493 	}
2494 
2495 	/* If the (new) signal is now blocked, requeue it.  */
2496 	if (sigismember(&current->blocked, signr)) {
2497 		send_signal(signr, info, current, PIDTYPE_PID);
2498 		signr = 0;
2499 	}
2500 
2501 	return signr;
2502 }
2503 
2504 bool get_signal(struct ksignal *ksig)
2505 {
2506 	struct sighand_struct *sighand = current->sighand;
2507 	struct signal_struct *signal = current->signal;
2508 	int signr;
2509 
2510 	if (unlikely(current->task_works))
2511 		task_work_run();
2512 
2513 	if (unlikely(uprobe_deny_signal()))
2514 		return false;
2515 
2516 	/*
2517 	 * Do this once, we can't return to user-mode if freezing() == T.
2518 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2519 	 * thus do not need another check after return.
2520 	 */
2521 	try_to_freeze();
2522 
2523 relock:
2524 	spin_lock_irq(&sighand->siglock);
2525 	/*
2526 	 * Every stopped thread goes here after wakeup. Check to see if
2527 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2528 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2529 	 */
2530 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2531 		int why;
2532 
2533 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2534 			why = CLD_CONTINUED;
2535 		else
2536 			why = CLD_STOPPED;
2537 
2538 		signal->flags &= ~SIGNAL_CLD_MASK;
2539 
2540 		spin_unlock_irq(&sighand->siglock);
2541 
2542 		/*
2543 		 * Notify the parent that we're continuing.  This event is
2544 		 * always per-process and doesn't make whole lot of sense
2545 		 * for ptracers, who shouldn't consume the state via
2546 		 * wait(2) either, but, for backward compatibility, notify
2547 		 * the ptracer of the group leader too unless it's gonna be
2548 		 * a duplicate.
2549 		 */
2550 		read_lock(&tasklist_lock);
2551 		do_notify_parent_cldstop(current, false, why);
2552 
2553 		if (ptrace_reparented(current->group_leader))
2554 			do_notify_parent_cldstop(current->group_leader,
2555 						true, why);
2556 		read_unlock(&tasklist_lock);
2557 
2558 		goto relock;
2559 	}
2560 
2561 	/* Has this task already been marked for death? */
2562 	if (signal_group_exit(signal)) {
2563 		ksig->info.si_signo = signr = SIGKILL;
2564 		sigdelset(&current->pending.signal, SIGKILL);
2565 		trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2566 				&sighand->action[SIGKILL - 1]);
2567 		recalc_sigpending();
2568 		goto fatal;
2569 	}
2570 
2571 	for (;;) {
2572 		struct k_sigaction *ka;
2573 
2574 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2575 		    do_signal_stop(0))
2576 			goto relock;
2577 
2578 		if (unlikely(current->jobctl &
2579 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2580 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2581 				do_jobctl_trap();
2582 				spin_unlock_irq(&sighand->siglock);
2583 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2584 				do_freezer_trap();
2585 
2586 			goto relock;
2587 		}
2588 
2589 		/*
2590 		 * If the task is leaving the frozen state, let's update
2591 		 * cgroup counters and reset the frozen bit.
2592 		 */
2593 		if (unlikely(cgroup_task_frozen(current))) {
2594 			spin_unlock_irq(&sighand->siglock);
2595 			cgroup_leave_frozen(false);
2596 			goto relock;
2597 		}
2598 
2599 		/*
2600 		 * Signals generated by the execution of an instruction
2601 		 * need to be delivered before any other pending signals
2602 		 * so that the instruction pointer in the signal stack
2603 		 * frame points to the faulting instruction.
2604 		 */
2605 		signr = dequeue_synchronous_signal(&ksig->info);
2606 		if (!signr)
2607 			signr = dequeue_signal(current, &current->blocked, &ksig->info);
2608 
2609 		if (!signr)
2610 			break; /* will return 0 */
2611 
2612 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2613 			signr = ptrace_signal(signr, &ksig->info);
2614 			if (!signr)
2615 				continue;
2616 		}
2617 
2618 		ka = &sighand->action[signr-1];
2619 
2620 		/* Trace actually delivered signals. */
2621 		trace_signal_deliver(signr, &ksig->info, ka);
2622 
2623 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2624 			continue;
2625 		if (ka->sa.sa_handler != SIG_DFL) {
2626 			/* Run the handler.  */
2627 			ksig->ka = *ka;
2628 
2629 			if (ka->sa.sa_flags & SA_ONESHOT)
2630 				ka->sa.sa_handler = SIG_DFL;
2631 
2632 			break; /* will return non-zero "signr" value */
2633 		}
2634 
2635 		/*
2636 		 * Now we are doing the default action for this signal.
2637 		 */
2638 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2639 			continue;
2640 
2641 		/*
2642 		 * Global init gets no signals it doesn't want.
2643 		 * Container-init gets no signals it doesn't want from same
2644 		 * container.
2645 		 *
2646 		 * Note that if global/container-init sees a sig_kernel_only()
2647 		 * signal here, the signal must have been generated internally
2648 		 * or must have come from an ancestor namespace. In either
2649 		 * case, the signal cannot be dropped.
2650 		 */
2651 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2652 				!sig_kernel_only(signr))
2653 			continue;
2654 
2655 		if (sig_kernel_stop(signr)) {
2656 			/*
2657 			 * The default action is to stop all threads in
2658 			 * the thread group.  The job control signals
2659 			 * do nothing in an orphaned pgrp, but SIGSTOP
2660 			 * always works.  Note that siglock needs to be
2661 			 * dropped during the call to is_orphaned_pgrp()
2662 			 * because of lock ordering with tasklist_lock.
2663 			 * This allows an intervening SIGCONT to be posted.
2664 			 * We need to check for that and bail out if necessary.
2665 			 */
2666 			if (signr != SIGSTOP) {
2667 				spin_unlock_irq(&sighand->siglock);
2668 
2669 				/* signals can be posted during this window */
2670 
2671 				if (is_current_pgrp_orphaned())
2672 					goto relock;
2673 
2674 				spin_lock_irq(&sighand->siglock);
2675 			}
2676 
2677 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2678 				/* It released the siglock.  */
2679 				goto relock;
2680 			}
2681 
2682 			/*
2683 			 * We didn't actually stop, due to a race
2684 			 * with SIGCONT or something like that.
2685 			 */
2686 			continue;
2687 		}
2688 
2689 	fatal:
2690 		spin_unlock_irq(&sighand->siglock);
2691 		if (unlikely(cgroup_task_frozen(current)))
2692 			cgroup_leave_frozen(true);
2693 
2694 		/*
2695 		 * Anything else is fatal, maybe with a core dump.
2696 		 */
2697 		current->flags |= PF_SIGNALED;
2698 
2699 		if (sig_kernel_coredump(signr)) {
2700 			if (print_fatal_signals)
2701 				print_fatal_signal(ksig->info.si_signo);
2702 			proc_coredump_connector(current);
2703 			/*
2704 			 * If it was able to dump core, this kills all
2705 			 * other threads in the group and synchronizes with
2706 			 * their demise.  If we lost the race with another
2707 			 * thread getting here, it set group_exit_code
2708 			 * first and our do_group_exit call below will use
2709 			 * that value and ignore the one we pass it.
2710 			 */
2711 			do_coredump(&ksig->info);
2712 		}
2713 
2714 		/*
2715 		 * Death signals, no core dump.
2716 		 */
2717 		do_group_exit(ksig->info.si_signo);
2718 		/* NOTREACHED */
2719 	}
2720 	spin_unlock_irq(&sighand->siglock);
2721 
2722 	ksig->sig = signr;
2723 	return ksig->sig > 0;
2724 }
2725 
2726 /**
2727  * signal_delivered -
2728  * @ksig:		kernel signal struct
2729  * @stepping:		nonzero if debugger single-step or block-step in use
2730  *
2731  * This function should be called when a signal has successfully been
2732  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2733  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2734  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2735  */
2736 static void signal_delivered(struct ksignal *ksig, int stepping)
2737 {
2738 	sigset_t blocked;
2739 
2740 	/* A signal was successfully delivered, and the
2741 	   saved sigmask was stored on the signal frame,
2742 	   and will be restored by sigreturn.  So we can
2743 	   simply clear the restore sigmask flag.  */
2744 	clear_restore_sigmask();
2745 
2746 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2747 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2748 		sigaddset(&blocked, ksig->sig);
2749 	set_current_blocked(&blocked);
2750 	tracehook_signal_handler(stepping);
2751 }
2752 
2753 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2754 {
2755 	if (failed)
2756 		force_sigsegv(ksig->sig);
2757 	else
2758 		signal_delivered(ksig, stepping);
2759 }
2760 
2761 /*
2762  * It could be that complete_signal() picked us to notify about the
2763  * group-wide signal. Other threads should be notified now to take
2764  * the shared signals in @which since we will not.
2765  */
2766 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2767 {
2768 	sigset_t retarget;
2769 	struct task_struct *t;
2770 
2771 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2772 	if (sigisemptyset(&retarget))
2773 		return;
2774 
2775 	t = tsk;
2776 	while_each_thread(tsk, t) {
2777 		if (t->flags & PF_EXITING)
2778 			continue;
2779 
2780 		if (!has_pending_signals(&retarget, &t->blocked))
2781 			continue;
2782 		/* Remove the signals this thread can handle. */
2783 		sigandsets(&retarget, &retarget, &t->blocked);
2784 
2785 		if (!signal_pending(t))
2786 			signal_wake_up(t, 0);
2787 
2788 		if (sigisemptyset(&retarget))
2789 			break;
2790 	}
2791 }
2792 
2793 void exit_signals(struct task_struct *tsk)
2794 {
2795 	int group_stop = 0;
2796 	sigset_t unblocked;
2797 
2798 	/*
2799 	 * @tsk is about to have PF_EXITING set - lock out users which
2800 	 * expect stable threadgroup.
2801 	 */
2802 	cgroup_threadgroup_change_begin(tsk);
2803 
2804 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2805 		tsk->flags |= PF_EXITING;
2806 		cgroup_threadgroup_change_end(tsk);
2807 		return;
2808 	}
2809 
2810 	spin_lock_irq(&tsk->sighand->siglock);
2811 	/*
2812 	 * From now this task is not visible for group-wide signals,
2813 	 * see wants_signal(), do_signal_stop().
2814 	 */
2815 	tsk->flags |= PF_EXITING;
2816 
2817 	cgroup_threadgroup_change_end(tsk);
2818 
2819 	if (!signal_pending(tsk))
2820 		goto out;
2821 
2822 	unblocked = tsk->blocked;
2823 	signotset(&unblocked);
2824 	retarget_shared_pending(tsk, &unblocked);
2825 
2826 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2827 	    task_participate_group_stop(tsk))
2828 		group_stop = CLD_STOPPED;
2829 out:
2830 	spin_unlock_irq(&tsk->sighand->siglock);
2831 
2832 	/*
2833 	 * If group stop has completed, deliver the notification.  This
2834 	 * should always go to the real parent of the group leader.
2835 	 */
2836 	if (unlikely(group_stop)) {
2837 		read_lock(&tasklist_lock);
2838 		do_notify_parent_cldstop(tsk, false, group_stop);
2839 		read_unlock(&tasklist_lock);
2840 	}
2841 }
2842 
2843 /*
2844  * System call entry points.
2845  */
2846 
2847 /**
2848  *  sys_restart_syscall - restart a system call
2849  */
2850 SYSCALL_DEFINE0(restart_syscall)
2851 {
2852 	struct restart_block *restart = &current->restart_block;
2853 	return restart->fn(restart);
2854 }
2855 
2856 long do_no_restart_syscall(struct restart_block *param)
2857 {
2858 	return -EINTR;
2859 }
2860 
2861 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2862 {
2863 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2864 		sigset_t newblocked;
2865 		/* A set of now blocked but previously unblocked signals. */
2866 		sigandnsets(&newblocked, newset, &current->blocked);
2867 		retarget_shared_pending(tsk, &newblocked);
2868 	}
2869 	tsk->blocked = *newset;
2870 	recalc_sigpending();
2871 }
2872 
2873 /**
2874  * set_current_blocked - change current->blocked mask
2875  * @newset: new mask
2876  *
2877  * It is wrong to change ->blocked directly, this helper should be used
2878  * to ensure the process can't miss a shared signal we are going to block.
2879  */
2880 void set_current_blocked(sigset_t *newset)
2881 {
2882 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2883 	__set_current_blocked(newset);
2884 }
2885 
2886 void __set_current_blocked(const sigset_t *newset)
2887 {
2888 	struct task_struct *tsk = current;
2889 
2890 	/*
2891 	 * In case the signal mask hasn't changed, there is nothing we need
2892 	 * to do. The current->blocked shouldn't be modified by other task.
2893 	 */
2894 	if (sigequalsets(&tsk->blocked, newset))
2895 		return;
2896 
2897 	spin_lock_irq(&tsk->sighand->siglock);
2898 	__set_task_blocked(tsk, newset);
2899 	spin_unlock_irq(&tsk->sighand->siglock);
2900 }
2901 
2902 /*
2903  * This is also useful for kernel threads that want to temporarily
2904  * (or permanently) block certain signals.
2905  *
2906  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2907  * interface happily blocks "unblockable" signals like SIGKILL
2908  * and friends.
2909  */
2910 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2911 {
2912 	struct task_struct *tsk = current;
2913 	sigset_t newset;
2914 
2915 	/* Lockless, only current can change ->blocked, never from irq */
2916 	if (oldset)
2917 		*oldset = tsk->blocked;
2918 
2919 	switch (how) {
2920 	case SIG_BLOCK:
2921 		sigorsets(&newset, &tsk->blocked, set);
2922 		break;
2923 	case SIG_UNBLOCK:
2924 		sigandnsets(&newset, &tsk->blocked, set);
2925 		break;
2926 	case SIG_SETMASK:
2927 		newset = *set;
2928 		break;
2929 	default:
2930 		return -EINVAL;
2931 	}
2932 
2933 	__set_current_blocked(&newset);
2934 	return 0;
2935 }
2936 EXPORT_SYMBOL(sigprocmask);
2937 
2938 /*
2939  * The api helps set app-provided sigmasks.
2940  *
2941  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2942  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
2943  */
2944 int set_user_sigmask(const sigset_t __user *usigmask, sigset_t *set,
2945 		     sigset_t *oldset, size_t sigsetsize)
2946 {
2947 	if (!usigmask)
2948 		return 0;
2949 
2950 	if (sigsetsize != sizeof(sigset_t))
2951 		return -EINVAL;
2952 	if (copy_from_user(set, usigmask, sizeof(sigset_t)))
2953 		return -EFAULT;
2954 
2955 	*oldset = current->blocked;
2956 	set_current_blocked(set);
2957 
2958 	return 0;
2959 }
2960 EXPORT_SYMBOL(set_user_sigmask);
2961 
2962 #ifdef CONFIG_COMPAT
2963 int set_compat_user_sigmask(const compat_sigset_t __user *usigmask,
2964 			    sigset_t *set, sigset_t *oldset,
2965 			    size_t sigsetsize)
2966 {
2967 	if (!usigmask)
2968 		return 0;
2969 
2970 	if (sigsetsize != sizeof(compat_sigset_t))
2971 		return -EINVAL;
2972 	if (get_compat_sigset(set, usigmask))
2973 		return -EFAULT;
2974 
2975 	*oldset = current->blocked;
2976 	set_current_blocked(set);
2977 
2978 	return 0;
2979 }
2980 EXPORT_SYMBOL(set_compat_user_sigmask);
2981 #endif
2982 
2983 /*
2984  * restore_user_sigmask:
2985  * usigmask: sigmask passed in from userland.
2986  * sigsaved: saved sigmask when the syscall started and changed the sigmask to
2987  *           usigmask.
2988  *
2989  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2990  * epoll_pwait where a new sigmask is passed in from userland for the syscalls.
2991  */
2992 void restore_user_sigmask(const void __user *usigmask, sigset_t *sigsaved,
2993 				bool interrupted)
2994 {
2995 
2996 	if (!usigmask)
2997 		return;
2998 	/*
2999 	 * When signals are pending, do not restore them here.
3000 	 * Restoring sigmask here can lead to delivering signals that the above
3001 	 * syscalls are intended to block because of the sigmask passed in.
3002 	 */
3003 	if (interrupted) {
3004 		current->saved_sigmask = *sigsaved;
3005 		set_restore_sigmask();
3006 		return;
3007 	}
3008 
3009 	/*
3010 	 * This is needed because the fast syscall return path does not restore
3011 	 * saved_sigmask when signals are not pending.
3012 	 */
3013 	set_current_blocked(sigsaved);
3014 }
3015 EXPORT_SYMBOL(restore_user_sigmask);
3016 
3017 /**
3018  *  sys_rt_sigprocmask - change the list of currently blocked signals
3019  *  @how: whether to add, remove, or set signals
3020  *  @nset: stores pending signals
3021  *  @oset: previous value of signal mask if non-null
3022  *  @sigsetsize: size of sigset_t type
3023  */
3024 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3025 		sigset_t __user *, oset, size_t, sigsetsize)
3026 {
3027 	sigset_t old_set, new_set;
3028 	int error;
3029 
3030 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3031 	if (sigsetsize != sizeof(sigset_t))
3032 		return -EINVAL;
3033 
3034 	old_set = current->blocked;
3035 
3036 	if (nset) {
3037 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3038 			return -EFAULT;
3039 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3040 
3041 		error = sigprocmask(how, &new_set, NULL);
3042 		if (error)
3043 			return error;
3044 	}
3045 
3046 	if (oset) {
3047 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3048 			return -EFAULT;
3049 	}
3050 
3051 	return 0;
3052 }
3053 
3054 #ifdef CONFIG_COMPAT
3055 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3056 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3057 {
3058 	sigset_t old_set = current->blocked;
3059 
3060 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3061 	if (sigsetsize != sizeof(sigset_t))
3062 		return -EINVAL;
3063 
3064 	if (nset) {
3065 		sigset_t new_set;
3066 		int error;
3067 		if (get_compat_sigset(&new_set, nset))
3068 			return -EFAULT;
3069 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3070 
3071 		error = sigprocmask(how, &new_set, NULL);
3072 		if (error)
3073 			return error;
3074 	}
3075 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3076 }
3077 #endif
3078 
3079 static void do_sigpending(sigset_t *set)
3080 {
3081 	spin_lock_irq(&current->sighand->siglock);
3082 	sigorsets(set, &current->pending.signal,
3083 		  &current->signal->shared_pending.signal);
3084 	spin_unlock_irq(&current->sighand->siglock);
3085 
3086 	/* Outside the lock because only this thread touches it.  */
3087 	sigandsets(set, &current->blocked, set);
3088 }
3089 
3090 /**
3091  *  sys_rt_sigpending - examine a pending signal that has been raised
3092  *			while blocked
3093  *  @uset: stores pending signals
3094  *  @sigsetsize: size of sigset_t type or larger
3095  */
3096 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3097 {
3098 	sigset_t set;
3099 
3100 	if (sigsetsize > sizeof(*uset))
3101 		return -EINVAL;
3102 
3103 	do_sigpending(&set);
3104 
3105 	if (copy_to_user(uset, &set, sigsetsize))
3106 		return -EFAULT;
3107 
3108 	return 0;
3109 }
3110 
3111 #ifdef CONFIG_COMPAT
3112 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3113 		compat_size_t, sigsetsize)
3114 {
3115 	sigset_t set;
3116 
3117 	if (sigsetsize > sizeof(*uset))
3118 		return -EINVAL;
3119 
3120 	do_sigpending(&set);
3121 
3122 	return put_compat_sigset(uset, &set, sigsetsize);
3123 }
3124 #endif
3125 
3126 static const struct {
3127 	unsigned char limit, layout;
3128 } sig_sicodes[] = {
3129 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3130 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3131 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3132 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3133 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3134 #if defined(SIGEMT)
3135 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3136 #endif
3137 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3138 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3139 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3140 };
3141 
3142 static bool known_siginfo_layout(unsigned sig, int si_code)
3143 {
3144 	if (si_code == SI_KERNEL)
3145 		return true;
3146 	else if ((si_code > SI_USER)) {
3147 		if (sig_specific_sicodes(sig)) {
3148 			if (si_code <= sig_sicodes[sig].limit)
3149 				return true;
3150 		}
3151 		else if (si_code <= NSIGPOLL)
3152 			return true;
3153 	}
3154 	else if (si_code >= SI_DETHREAD)
3155 		return true;
3156 	else if (si_code == SI_ASYNCNL)
3157 		return true;
3158 	return false;
3159 }
3160 
3161 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3162 {
3163 	enum siginfo_layout layout = SIL_KILL;
3164 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3165 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3166 		    (si_code <= sig_sicodes[sig].limit)) {
3167 			layout = sig_sicodes[sig].layout;
3168 			/* Handle the exceptions */
3169 			if ((sig == SIGBUS) &&
3170 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3171 				layout = SIL_FAULT_MCEERR;
3172 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3173 				layout = SIL_FAULT_BNDERR;
3174 #ifdef SEGV_PKUERR
3175 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3176 				layout = SIL_FAULT_PKUERR;
3177 #endif
3178 		}
3179 		else if (si_code <= NSIGPOLL)
3180 			layout = SIL_POLL;
3181 	} else {
3182 		if (si_code == SI_TIMER)
3183 			layout = SIL_TIMER;
3184 		else if (si_code == SI_SIGIO)
3185 			layout = SIL_POLL;
3186 		else if (si_code < 0)
3187 			layout = SIL_RT;
3188 	}
3189 	return layout;
3190 }
3191 
3192 static inline char __user *si_expansion(const siginfo_t __user *info)
3193 {
3194 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3195 }
3196 
3197 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3198 {
3199 	char __user *expansion = si_expansion(to);
3200 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3201 		return -EFAULT;
3202 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3203 		return -EFAULT;
3204 	return 0;
3205 }
3206 
3207 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3208 				       const siginfo_t __user *from)
3209 {
3210 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3211 		char __user *expansion = si_expansion(from);
3212 		char buf[SI_EXPANSION_SIZE];
3213 		int i;
3214 		/*
3215 		 * An unknown si_code might need more than
3216 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3217 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3218 		 * will return this data to userspace exactly.
3219 		 */
3220 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3221 			return -EFAULT;
3222 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3223 			if (buf[i] != 0)
3224 				return -E2BIG;
3225 		}
3226 	}
3227 	return 0;
3228 }
3229 
3230 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3231 				    const siginfo_t __user *from)
3232 {
3233 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3234 		return -EFAULT;
3235 	to->si_signo = signo;
3236 	return post_copy_siginfo_from_user(to, from);
3237 }
3238 
3239 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3240 {
3241 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3242 		return -EFAULT;
3243 	return post_copy_siginfo_from_user(to, from);
3244 }
3245 
3246 #ifdef CONFIG_COMPAT
3247 int copy_siginfo_to_user32(struct compat_siginfo __user *to,
3248 			   const struct kernel_siginfo *from)
3249 #if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
3250 {
3251 	return __copy_siginfo_to_user32(to, from, in_x32_syscall());
3252 }
3253 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3254 			     const struct kernel_siginfo *from, bool x32_ABI)
3255 #endif
3256 {
3257 	struct compat_siginfo new;
3258 	memset(&new, 0, sizeof(new));
3259 
3260 	new.si_signo = from->si_signo;
3261 	new.si_errno = from->si_errno;
3262 	new.si_code  = from->si_code;
3263 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3264 	case SIL_KILL:
3265 		new.si_pid = from->si_pid;
3266 		new.si_uid = from->si_uid;
3267 		break;
3268 	case SIL_TIMER:
3269 		new.si_tid     = from->si_tid;
3270 		new.si_overrun = from->si_overrun;
3271 		new.si_int     = from->si_int;
3272 		break;
3273 	case SIL_POLL:
3274 		new.si_band = from->si_band;
3275 		new.si_fd   = from->si_fd;
3276 		break;
3277 	case SIL_FAULT:
3278 		new.si_addr = ptr_to_compat(from->si_addr);
3279 #ifdef __ARCH_SI_TRAPNO
3280 		new.si_trapno = from->si_trapno;
3281 #endif
3282 		break;
3283 	case SIL_FAULT_MCEERR:
3284 		new.si_addr = ptr_to_compat(from->si_addr);
3285 #ifdef __ARCH_SI_TRAPNO
3286 		new.si_trapno = from->si_trapno;
3287 #endif
3288 		new.si_addr_lsb = from->si_addr_lsb;
3289 		break;
3290 	case SIL_FAULT_BNDERR:
3291 		new.si_addr = ptr_to_compat(from->si_addr);
3292 #ifdef __ARCH_SI_TRAPNO
3293 		new.si_trapno = from->si_trapno;
3294 #endif
3295 		new.si_lower = ptr_to_compat(from->si_lower);
3296 		new.si_upper = ptr_to_compat(from->si_upper);
3297 		break;
3298 	case SIL_FAULT_PKUERR:
3299 		new.si_addr = ptr_to_compat(from->si_addr);
3300 #ifdef __ARCH_SI_TRAPNO
3301 		new.si_trapno = from->si_trapno;
3302 #endif
3303 		new.si_pkey = from->si_pkey;
3304 		break;
3305 	case SIL_CHLD:
3306 		new.si_pid    = from->si_pid;
3307 		new.si_uid    = from->si_uid;
3308 		new.si_status = from->si_status;
3309 #ifdef CONFIG_X86_X32_ABI
3310 		if (x32_ABI) {
3311 			new._sifields._sigchld_x32._utime = from->si_utime;
3312 			new._sifields._sigchld_x32._stime = from->si_stime;
3313 		} else
3314 #endif
3315 		{
3316 			new.si_utime = from->si_utime;
3317 			new.si_stime = from->si_stime;
3318 		}
3319 		break;
3320 	case SIL_RT:
3321 		new.si_pid = from->si_pid;
3322 		new.si_uid = from->si_uid;
3323 		new.si_int = from->si_int;
3324 		break;
3325 	case SIL_SYS:
3326 		new.si_call_addr = ptr_to_compat(from->si_call_addr);
3327 		new.si_syscall   = from->si_syscall;
3328 		new.si_arch      = from->si_arch;
3329 		break;
3330 	}
3331 
3332 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3333 		return -EFAULT;
3334 
3335 	return 0;
3336 }
3337 
3338 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3339 					 const struct compat_siginfo *from)
3340 {
3341 	clear_siginfo(to);
3342 	to->si_signo = from->si_signo;
3343 	to->si_errno = from->si_errno;
3344 	to->si_code  = from->si_code;
3345 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3346 	case SIL_KILL:
3347 		to->si_pid = from->si_pid;
3348 		to->si_uid = from->si_uid;
3349 		break;
3350 	case SIL_TIMER:
3351 		to->si_tid     = from->si_tid;
3352 		to->si_overrun = from->si_overrun;
3353 		to->si_int     = from->si_int;
3354 		break;
3355 	case SIL_POLL:
3356 		to->si_band = from->si_band;
3357 		to->si_fd   = from->si_fd;
3358 		break;
3359 	case SIL_FAULT:
3360 		to->si_addr = compat_ptr(from->si_addr);
3361 #ifdef __ARCH_SI_TRAPNO
3362 		to->si_trapno = from->si_trapno;
3363 #endif
3364 		break;
3365 	case SIL_FAULT_MCEERR:
3366 		to->si_addr = compat_ptr(from->si_addr);
3367 #ifdef __ARCH_SI_TRAPNO
3368 		to->si_trapno = from->si_trapno;
3369 #endif
3370 		to->si_addr_lsb = from->si_addr_lsb;
3371 		break;
3372 	case SIL_FAULT_BNDERR:
3373 		to->si_addr = compat_ptr(from->si_addr);
3374 #ifdef __ARCH_SI_TRAPNO
3375 		to->si_trapno = from->si_trapno;
3376 #endif
3377 		to->si_lower = compat_ptr(from->si_lower);
3378 		to->si_upper = compat_ptr(from->si_upper);
3379 		break;
3380 	case SIL_FAULT_PKUERR:
3381 		to->si_addr = compat_ptr(from->si_addr);
3382 #ifdef __ARCH_SI_TRAPNO
3383 		to->si_trapno = from->si_trapno;
3384 #endif
3385 		to->si_pkey = from->si_pkey;
3386 		break;
3387 	case SIL_CHLD:
3388 		to->si_pid    = from->si_pid;
3389 		to->si_uid    = from->si_uid;
3390 		to->si_status = from->si_status;
3391 #ifdef CONFIG_X86_X32_ABI
3392 		if (in_x32_syscall()) {
3393 			to->si_utime = from->_sifields._sigchld_x32._utime;
3394 			to->si_stime = from->_sifields._sigchld_x32._stime;
3395 		} else
3396 #endif
3397 		{
3398 			to->si_utime = from->si_utime;
3399 			to->si_stime = from->si_stime;
3400 		}
3401 		break;
3402 	case SIL_RT:
3403 		to->si_pid = from->si_pid;
3404 		to->si_uid = from->si_uid;
3405 		to->si_int = from->si_int;
3406 		break;
3407 	case SIL_SYS:
3408 		to->si_call_addr = compat_ptr(from->si_call_addr);
3409 		to->si_syscall   = from->si_syscall;
3410 		to->si_arch      = from->si_arch;
3411 		break;
3412 	}
3413 	return 0;
3414 }
3415 
3416 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3417 				      const struct compat_siginfo __user *ufrom)
3418 {
3419 	struct compat_siginfo from;
3420 
3421 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3422 		return -EFAULT;
3423 
3424 	from.si_signo = signo;
3425 	return post_copy_siginfo_from_user32(to, &from);
3426 }
3427 
3428 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3429 			     const struct compat_siginfo __user *ufrom)
3430 {
3431 	struct compat_siginfo from;
3432 
3433 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3434 		return -EFAULT;
3435 
3436 	return post_copy_siginfo_from_user32(to, &from);
3437 }
3438 #endif /* CONFIG_COMPAT */
3439 
3440 /**
3441  *  do_sigtimedwait - wait for queued signals specified in @which
3442  *  @which: queued signals to wait for
3443  *  @info: if non-null, the signal's siginfo is returned here
3444  *  @ts: upper bound on process time suspension
3445  */
3446 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3447 		    const struct timespec64 *ts)
3448 {
3449 	ktime_t *to = NULL, timeout = KTIME_MAX;
3450 	struct task_struct *tsk = current;
3451 	sigset_t mask = *which;
3452 	int sig, ret = 0;
3453 
3454 	if (ts) {
3455 		if (!timespec64_valid(ts))
3456 			return -EINVAL;
3457 		timeout = timespec64_to_ktime(*ts);
3458 		to = &timeout;
3459 	}
3460 
3461 	/*
3462 	 * Invert the set of allowed signals to get those we want to block.
3463 	 */
3464 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3465 	signotset(&mask);
3466 
3467 	spin_lock_irq(&tsk->sighand->siglock);
3468 	sig = dequeue_signal(tsk, &mask, info);
3469 	if (!sig && timeout) {
3470 		/*
3471 		 * None ready, temporarily unblock those we're interested
3472 		 * while we are sleeping in so that we'll be awakened when
3473 		 * they arrive. Unblocking is always fine, we can avoid
3474 		 * set_current_blocked().
3475 		 */
3476 		tsk->real_blocked = tsk->blocked;
3477 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3478 		recalc_sigpending();
3479 		spin_unlock_irq(&tsk->sighand->siglock);
3480 
3481 		__set_current_state(TASK_INTERRUPTIBLE);
3482 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3483 							 HRTIMER_MODE_REL);
3484 		spin_lock_irq(&tsk->sighand->siglock);
3485 		__set_task_blocked(tsk, &tsk->real_blocked);
3486 		sigemptyset(&tsk->real_blocked);
3487 		sig = dequeue_signal(tsk, &mask, info);
3488 	}
3489 	spin_unlock_irq(&tsk->sighand->siglock);
3490 
3491 	if (sig)
3492 		return sig;
3493 	return ret ? -EINTR : -EAGAIN;
3494 }
3495 
3496 /**
3497  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3498  *			in @uthese
3499  *  @uthese: queued signals to wait for
3500  *  @uinfo: if non-null, the signal's siginfo is returned here
3501  *  @uts: upper bound on process time suspension
3502  *  @sigsetsize: size of sigset_t type
3503  */
3504 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3505 		siginfo_t __user *, uinfo,
3506 		const struct __kernel_timespec __user *, uts,
3507 		size_t, sigsetsize)
3508 {
3509 	sigset_t these;
3510 	struct timespec64 ts;
3511 	kernel_siginfo_t info;
3512 	int ret;
3513 
3514 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3515 	if (sigsetsize != sizeof(sigset_t))
3516 		return -EINVAL;
3517 
3518 	if (copy_from_user(&these, uthese, sizeof(these)))
3519 		return -EFAULT;
3520 
3521 	if (uts) {
3522 		if (get_timespec64(&ts, uts))
3523 			return -EFAULT;
3524 	}
3525 
3526 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3527 
3528 	if (ret > 0 && uinfo) {
3529 		if (copy_siginfo_to_user(uinfo, &info))
3530 			ret = -EFAULT;
3531 	}
3532 
3533 	return ret;
3534 }
3535 
3536 #ifdef CONFIG_COMPAT_32BIT_TIME
3537 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3538 		siginfo_t __user *, uinfo,
3539 		const struct old_timespec32 __user *, uts,
3540 		size_t, sigsetsize)
3541 {
3542 	sigset_t these;
3543 	struct timespec64 ts;
3544 	kernel_siginfo_t info;
3545 	int ret;
3546 
3547 	if (sigsetsize != sizeof(sigset_t))
3548 		return -EINVAL;
3549 
3550 	if (copy_from_user(&these, uthese, sizeof(these)))
3551 		return -EFAULT;
3552 
3553 	if (uts) {
3554 		if (get_old_timespec32(&ts, uts))
3555 			return -EFAULT;
3556 	}
3557 
3558 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3559 
3560 	if (ret > 0 && uinfo) {
3561 		if (copy_siginfo_to_user(uinfo, &info))
3562 			ret = -EFAULT;
3563 	}
3564 
3565 	return ret;
3566 }
3567 #endif
3568 
3569 #ifdef CONFIG_COMPAT
3570 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3571 		struct compat_siginfo __user *, uinfo,
3572 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3573 {
3574 	sigset_t s;
3575 	struct timespec64 t;
3576 	kernel_siginfo_t info;
3577 	long ret;
3578 
3579 	if (sigsetsize != sizeof(sigset_t))
3580 		return -EINVAL;
3581 
3582 	if (get_compat_sigset(&s, uthese))
3583 		return -EFAULT;
3584 
3585 	if (uts) {
3586 		if (get_timespec64(&t, uts))
3587 			return -EFAULT;
3588 	}
3589 
3590 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3591 
3592 	if (ret > 0 && uinfo) {
3593 		if (copy_siginfo_to_user32(uinfo, &info))
3594 			ret = -EFAULT;
3595 	}
3596 
3597 	return ret;
3598 }
3599 
3600 #ifdef CONFIG_COMPAT_32BIT_TIME
3601 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3602 		struct compat_siginfo __user *, uinfo,
3603 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3604 {
3605 	sigset_t s;
3606 	struct timespec64 t;
3607 	kernel_siginfo_t info;
3608 	long ret;
3609 
3610 	if (sigsetsize != sizeof(sigset_t))
3611 		return -EINVAL;
3612 
3613 	if (get_compat_sigset(&s, uthese))
3614 		return -EFAULT;
3615 
3616 	if (uts) {
3617 		if (get_old_timespec32(&t, uts))
3618 			return -EFAULT;
3619 	}
3620 
3621 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3622 
3623 	if (ret > 0 && uinfo) {
3624 		if (copy_siginfo_to_user32(uinfo, &info))
3625 			ret = -EFAULT;
3626 	}
3627 
3628 	return ret;
3629 }
3630 #endif
3631 #endif
3632 
3633 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3634 {
3635 	clear_siginfo(info);
3636 	info->si_signo = sig;
3637 	info->si_errno = 0;
3638 	info->si_code = SI_USER;
3639 	info->si_pid = task_tgid_vnr(current);
3640 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3641 }
3642 
3643 /**
3644  *  sys_kill - send a signal to a process
3645  *  @pid: the PID of the process
3646  *  @sig: signal to be sent
3647  */
3648 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3649 {
3650 	struct kernel_siginfo info;
3651 
3652 	prepare_kill_siginfo(sig, &info);
3653 
3654 	return kill_something_info(sig, &info, pid);
3655 }
3656 
3657 /*
3658  * Verify that the signaler and signalee either are in the same pid namespace
3659  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3660  * namespace.
3661  */
3662 static bool access_pidfd_pidns(struct pid *pid)
3663 {
3664 	struct pid_namespace *active = task_active_pid_ns(current);
3665 	struct pid_namespace *p = ns_of_pid(pid);
3666 
3667 	for (;;) {
3668 		if (!p)
3669 			return false;
3670 		if (p == active)
3671 			break;
3672 		p = p->parent;
3673 	}
3674 
3675 	return true;
3676 }
3677 
3678 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info)
3679 {
3680 #ifdef CONFIG_COMPAT
3681 	/*
3682 	 * Avoid hooking up compat syscalls and instead handle necessary
3683 	 * conversions here. Note, this is a stop-gap measure and should not be
3684 	 * considered a generic solution.
3685 	 */
3686 	if (in_compat_syscall())
3687 		return copy_siginfo_from_user32(
3688 			kinfo, (struct compat_siginfo __user *)info);
3689 #endif
3690 	return copy_siginfo_from_user(kinfo, info);
3691 }
3692 
3693 static struct pid *pidfd_to_pid(const struct file *file)
3694 {
3695 	if (file->f_op == &pidfd_fops)
3696 		return file->private_data;
3697 
3698 	return tgid_pidfd_to_pid(file);
3699 }
3700 
3701 /**
3702  * sys_pidfd_send_signal - Signal a process through a pidfd
3703  * @pidfd:  file descriptor of the process
3704  * @sig:    signal to send
3705  * @info:   signal info
3706  * @flags:  future flags
3707  *
3708  * The syscall currently only signals via PIDTYPE_PID which covers
3709  * kill(<positive-pid>, <signal>. It does not signal threads or process
3710  * groups.
3711  * In order to extend the syscall to threads and process groups the @flags
3712  * argument should be used. In essence, the @flags argument will determine
3713  * what is signaled and not the file descriptor itself. Put in other words,
3714  * grouping is a property of the flags argument not a property of the file
3715  * descriptor.
3716  *
3717  * Return: 0 on success, negative errno on failure
3718  */
3719 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3720 		siginfo_t __user *, info, unsigned int, flags)
3721 {
3722 	int ret;
3723 	struct fd f;
3724 	struct pid *pid;
3725 	kernel_siginfo_t kinfo;
3726 
3727 	/* Enforce flags be set to 0 until we add an extension. */
3728 	if (flags)
3729 		return -EINVAL;
3730 
3731 	f = fdget(pidfd);
3732 	if (!f.file)
3733 		return -EBADF;
3734 
3735 	/* Is this a pidfd? */
3736 	pid = pidfd_to_pid(f.file);
3737 	if (IS_ERR(pid)) {
3738 		ret = PTR_ERR(pid);
3739 		goto err;
3740 	}
3741 
3742 	ret = -EINVAL;
3743 	if (!access_pidfd_pidns(pid))
3744 		goto err;
3745 
3746 	if (info) {
3747 		ret = copy_siginfo_from_user_any(&kinfo, info);
3748 		if (unlikely(ret))
3749 			goto err;
3750 
3751 		ret = -EINVAL;
3752 		if (unlikely(sig != kinfo.si_signo))
3753 			goto err;
3754 
3755 		/* Only allow sending arbitrary signals to yourself. */
3756 		ret = -EPERM;
3757 		if ((task_pid(current) != pid) &&
3758 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3759 			goto err;
3760 	} else {
3761 		prepare_kill_siginfo(sig, &kinfo);
3762 	}
3763 
3764 	ret = kill_pid_info(sig, &kinfo, pid);
3765 
3766 err:
3767 	fdput(f);
3768 	return ret;
3769 }
3770 
3771 static int
3772 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3773 {
3774 	struct task_struct *p;
3775 	int error = -ESRCH;
3776 
3777 	rcu_read_lock();
3778 	p = find_task_by_vpid(pid);
3779 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3780 		error = check_kill_permission(sig, info, p);
3781 		/*
3782 		 * The null signal is a permissions and process existence
3783 		 * probe.  No signal is actually delivered.
3784 		 */
3785 		if (!error && sig) {
3786 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3787 			/*
3788 			 * If lock_task_sighand() failed we pretend the task
3789 			 * dies after receiving the signal. The window is tiny,
3790 			 * and the signal is private anyway.
3791 			 */
3792 			if (unlikely(error == -ESRCH))
3793 				error = 0;
3794 		}
3795 	}
3796 	rcu_read_unlock();
3797 
3798 	return error;
3799 }
3800 
3801 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3802 {
3803 	struct kernel_siginfo info;
3804 
3805 	clear_siginfo(&info);
3806 	info.si_signo = sig;
3807 	info.si_errno = 0;
3808 	info.si_code = SI_TKILL;
3809 	info.si_pid = task_tgid_vnr(current);
3810 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3811 
3812 	return do_send_specific(tgid, pid, sig, &info);
3813 }
3814 
3815 /**
3816  *  sys_tgkill - send signal to one specific thread
3817  *  @tgid: the thread group ID of the thread
3818  *  @pid: the PID of the thread
3819  *  @sig: signal to be sent
3820  *
3821  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3822  *  exists but it's not belonging to the target process anymore. This
3823  *  method solves the problem of threads exiting and PIDs getting reused.
3824  */
3825 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3826 {
3827 	/* This is only valid for single tasks */
3828 	if (pid <= 0 || tgid <= 0)
3829 		return -EINVAL;
3830 
3831 	return do_tkill(tgid, pid, sig);
3832 }
3833 
3834 /**
3835  *  sys_tkill - send signal to one specific task
3836  *  @pid: the PID of the task
3837  *  @sig: signal to be sent
3838  *
3839  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3840  */
3841 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3842 {
3843 	/* This is only valid for single tasks */
3844 	if (pid <= 0)
3845 		return -EINVAL;
3846 
3847 	return do_tkill(0, pid, sig);
3848 }
3849 
3850 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3851 {
3852 	/* Not even root can pretend to send signals from the kernel.
3853 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3854 	 */
3855 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3856 	    (task_pid_vnr(current) != pid))
3857 		return -EPERM;
3858 
3859 	/* POSIX.1b doesn't mention process groups.  */
3860 	return kill_proc_info(sig, info, pid);
3861 }
3862 
3863 /**
3864  *  sys_rt_sigqueueinfo - send signal information to a signal
3865  *  @pid: the PID of the thread
3866  *  @sig: signal to be sent
3867  *  @uinfo: signal info to be sent
3868  */
3869 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3870 		siginfo_t __user *, uinfo)
3871 {
3872 	kernel_siginfo_t info;
3873 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3874 	if (unlikely(ret))
3875 		return ret;
3876 	return do_rt_sigqueueinfo(pid, sig, &info);
3877 }
3878 
3879 #ifdef CONFIG_COMPAT
3880 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3881 			compat_pid_t, pid,
3882 			int, sig,
3883 			struct compat_siginfo __user *, uinfo)
3884 {
3885 	kernel_siginfo_t info;
3886 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3887 	if (unlikely(ret))
3888 		return ret;
3889 	return do_rt_sigqueueinfo(pid, sig, &info);
3890 }
3891 #endif
3892 
3893 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3894 {
3895 	/* This is only valid for single tasks */
3896 	if (pid <= 0 || tgid <= 0)
3897 		return -EINVAL;
3898 
3899 	/* Not even root can pretend to send signals from the kernel.
3900 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3901 	 */
3902 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3903 	    (task_pid_vnr(current) != pid))
3904 		return -EPERM;
3905 
3906 	return do_send_specific(tgid, pid, sig, info);
3907 }
3908 
3909 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3910 		siginfo_t __user *, uinfo)
3911 {
3912 	kernel_siginfo_t info;
3913 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3914 	if (unlikely(ret))
3915 		return ret;
3916 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3917 }
3918 
3919 #ifdef CONFIG_COMPAT
3920 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3921 			compat_pid_t, tgid,
3922 			compat_pid_t, pid,
3923 			int, sig,
3924 			struct compat_siginfo __user *, uinfo)
3925 {
3926 	kernel_siginfo_t info;
3927 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3928 	if (unlikely(ret))
3929 		return ret;
3930 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3931 }
3932 #endif
3933 
3934 /*
3935  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3936  */
3937 void kernel_sigaction(int sig, __sighandler_t action)
3938 {
3939 	spin_lock_irq(&current->sighand->siglock);
3940 	current->sighand->action[sig - 1].sa.sa_handler = action;
3941 	if (action == SIG_IGN) {
3942 		sigset_t mask;
3943 
3944 		sigemptyset(&mask);
3945 		sigaddset(&mask, sig);
3946 
3947 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3948 		flush_sigqueue_mask(&mask, &current->pending);
3949 		recalc_sigpending();
3950 	}
3951 	spin_unlock_irq(&current->sighand->siglock);
3952 }
3953 EXPORT_SYMBOL(kernel_sigaction);
3954 
3955 void __weak sigaction_compat_abi(struct k_sigaction *act,
3956 		struct k_sigaction *oact)
3957 {
3958 }
3959 
3960 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3961 {
3962 	struct task_struct *p = current, *t;
3963 	struct k_sigaction *k;
3964 	sigset_t mask;
3965 
3966 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3967 		return -EINVAL;
3968 
3969 	k = &p->sighand->action[sig-1];
3970 
3971 	spin_lock_irq(&p->sighand->siglock);
3972 	if (oact)
3973 		*oact = *k;
3974 
3975 	sigaction_compat_abi(act, oact);
3976 
3977 	if (act) {
3978 		sigdelsetmask(&act->sa.sa_mask,
3979 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3980 		*k = *act;
3981 		/*
3982 		 * POSIX 3.3.1.3:
3983 		 *  "Setting a signal action to SIG_IGN for a signal that is
3984 		 *   pending shall cause the pending signal to be discarded,
3985 		 *   whether or not it is blocked."
3986 		 *
3987 		 *  "Setting a signal action to SIG_DFL for a signal that is
3988 		 *   pending and whose default action is to ignore the signal
3989 		 *   (for example, SIGCHLD), shall cause the pending signal to
3990 		 *   be discarded, whether or not it is blocked"
3991 		 */
3992 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3993 			sigemptyset(&mask);
3994 			sigaddset(&mask, sig);
3995 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3996 			for_each_thread(p, t)
3997 				flush_sigqueue_mask(&mask, &t->pending);
3998 		}
3999 	}
4000 
4001 	spin_unlock_irq(&p->sighand->siglock);
4002 	return 0;
4003 }
4004 
4005 static int
4006 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4007 		size_t min_ss_size)
4008 {
4009 	struct task_struct *t = current;
4010 
4011 	if (oss) {
4012 		memset(oss, 0, sizeof(stack_t));
4013 		oss->ss_sp = (void __user *) t->sas_ss_sp;
4014 		oss->ss_size = t->sas_ss_size;
4015 		oss->ss_flags = sas_ss_flags(sp) |
4016 			(current->sas_ss_flags & SS_FLAG_BITS);
4017 	}
4018 
4019 	if (ss) {
4020 		void __user *ss_sp = ss->ss_sp;
4021 		size_t ss_size = ss->ss_size;
4022 		unsigned ss_flags = ss->ss_flags;
4023 		int ss_mode;
4024 
4025 		if (unlikely(on_sig_stack(sp)))
4026 			return -EPERM;
4027 
4028 		ss_mode = ss_flags & ~SS_FLAG_BITS;
4029 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4030 				ss_mode != 0))
4031 			return -EINVAL;
4032 
4033 		if (ss_mode == SS_DISABLE) {
4034 			ss_size = 0;
4035 			ss_sp = NULL;
4036 		} else {
4037 			if (unlikely(ss_size < min_ss_size))
4038 				return -ENOMEM;
4039 		}
4040 
4041 		t->sas_ss_sp = (unsigned long) ss_sp;
4042 		t->sas_ss_size = ss_size;
4043 		t->sas_ss_flags = ss_flags;
4044 	}
4045 	return 0;
4046 }
4047 
4048 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4049 {
4050 	stack_t new, old;
4051 	int err;
4052 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4053 		return -EFAULT;
4054 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4055 			      current_user_stack_pointer(),
4056 			      MINSIGSTKSZ);
4057 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4058 		err = -EFAULT;
4059 	return err;
4060 }
4061 
4062 int restore_altstack(const stack_t __user *uss)
4063 {
4064 	stack_t new;
4065 	if (copy_from_user(&new, uss, sizeof(stack_t)))
4066 		return -EFAULT;
4067 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4068 			     MINSIGSTKSZ);
4069 	/* squash all but EFAULT for now */
4070 	return 0;
4071 }
4072 
4073 int __save_altstack(stack_t __user *uss, unsigned long sp)
4074 {
4075 	struct task_struct *t = current;
4076 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4077 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4078 		__put_user(t->sas_ss_size, &uss->ss_size);
4079 	if (err)
4080 		return err;
4081 	if (t->sas_ss_flags & SS_AUTODISARM)
4082 		sas_ss_reset(t);
4083 	return 0;
4084 }
4085 
4086 #ifdef CONFIG_COMPAT
4087 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4088 				 compat_stack_t __user *uoss_ptr)
4089 {
4090 	stack_t uss, uoss;
4091 	int ret;
4092 
4093 	if (uss_ptr) {
4094 		compat_stack_t uss32;
4095 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4096 			return -EFAULT;
4097 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4098 		uss.ss_flags = uss32.ss_flags;
4099 		uss.ss_size = uss32.ss_size;
4100 	}
4101 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4102 			     compat_user_stack_pointer(),
4103 			     COMPAT_MINSIGSTKSZ);
4104 	if (ret >= 0 && uoss_ptr)  {
4105 		compat_stack_t old;
4106 		memset(&old, 0, sizeof(old));
4107 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4108 		old.ss_flags = uoss.ss_flags;
4109 		old.ss_size = uoss.ss_size;
4110 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4111 			ret = -EFAULT;
4112 	}
4113 	return ret;
4114 }
4115 
4116 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4117 			const compat_stack_t __user *, uss_ptr,
4118 			compat_stack_t __user *, uoss_ptr)
4119 {
4120 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4121 }
4122 
4123 int compat_restore_altstack(const compat_stack_t __user *uss)
4124 {
4125 	int err = do_compat_sigaltstack(uss, NULL);
4126 	/* squash all but -EFAULT for now */
4127 	return err == -EFAULT ? err : 0;
4128 }
4129 
4130 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4131 {
4132 	int err;
4133 	struct task_struct *t = current;
4134 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4135 			 &uss->ss_sp) |
4136 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4137 		__put_user(t->sas_ss_size, &uss->ss_size);
4138 	if (err)
4139 		return err;
4140 	if (t->sas_ss_flags & SS_AUTODISARM)
4141 		sas_ss_reset(t);
4142 	return 0;
4143 }
4144 #endif
4145 
4146 #ifdef __ARCH_WANT_SYS_SIGPENDING
4147 
4148 /**
4149  *  sys_sigpending - examine pending signals
4150  *  @uset: where mask of pending signal is returned
4151  */
4152 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4153 {
4154 	sigset_t set;
4155 
4156 	if (sizeof(old_sigset_t) > sizeof(*uset))
4157 		return -EINVAL;
4158 
4159 	do_sigpending(&set);
4160 
4161 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4162 		return -EFAULT;
4163 
4164 	return 0;
4165 }
4166 
4167 #ifdef CONFIG_COMPAT
4168 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4169 {
4170 	sigset_t set;
4171 
4172 	do_sigpending(&set);
4173 
4174 	return put_user(set.sig[0], set32);
4175 }
4176 #endif
4177 
4178 #endif
4179 
4180 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4181 /**
4182  *  sys_sigprocmask - examine and change blocked signals
4183  *  @how: whether to add, remove, or set signals
4184  *  @nset: signals to add or remove (if non-null)
4185  *  @oset: previous value of signal mask if non-null
4186  *
4187  * Some platforms have their own version with special arguments;
4188  * others support only sys_rt_sigprocmask.
4189  */
4190 
4191 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4192 		old_sigset_t __user *, oset)
4193 {
4194 	old_sigset_t old_set, new_set;
4195 	sigset_t new_blocked;
4196 
4197 	old_set = current->blocked.sig[0];
4198 
4199 	if (nset) {
4200 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4201 			return -EFAULT;
4202 
4203 		new_blocked = current->blocked;
4204 
4205 		switch (how) {
4206 		case SIG_BLOCK:
4207 			sigaddsetmask(&new_blocked, new_set);
4208 			break;
4209 		case SIG_UNBLOCK:
4210 			sigdelsetmask(&new_blocked, new_set);
4211 			break;
4212 		case SIG_SETMASK:
4213 			new_blocked.sig[0] = new_set;
4214 			break;
4215 		default:
4216 			return -EINVAL;
4217 		}
4218 
4219 		set_current_blocked(&new_blocked);
4220 	}
4221 
4222 	if (oset) {
4223 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4224 			return -EFAULT;
4225 	}
4226 
4227 	return 0;
4228 }
4229 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4230 
4231 #ifndef CONFIG_ODD_RT_SIGACTION
4232 /**
4233  *  sys_rt_sigaction - alter an action taken by a process
4234  *  @sig: signal to be sent
4235  *  @act: new sigaction
4236  *  @oact: used to save the previous sigaction
4237  *  @sigsetsize: size of sigset_t type
4238  */
4239 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4240 		const struct sigaction __user *, act,
4241 		struct sigaction __user *, oact,
4242 		size_t, sigsetsize)
4243 {
4244 	struct k_sigaction new_sa, old_sa;
4245 	int ret;
4246 
4247 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4248 	if (sigsetsize != sizeof(sigset_t))
4249 		return -EINVAL;
4250 
4251 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4252 		return -EFAULT;
4253 
4254 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4255 	if (ret)
4256 		return ret;
4257 
4258 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4259 		return -EFAULT;
4260 
4261 	return 0;
4262 }
4263 #ifdef CONFIG_COMPAT
4264 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4265 		const struct compat_sigaction __user *, act,
4266 		struct compat_sigaction __user *, oact,
4267 		compat_size_t, sigsetsize)
4268 {
4269 	struct k_sigaction new_ka, old_ka;
4270 #ifdef __ARCH_HAS_SA_RESTORER
4271 	compat_uptr_t restorer;
4272 #endif
4273 	int ret;
4274 
4275 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4276 	if (sigsetsize != sizeof(compat_sigset_t))
4277 		return -EINVAL;
4278 
4279 	if (act) {
4280 		compat_uptr_t handler;
4281 		ret = get_user(handler, &act->sa_handler);
4282 		new_ka.sa.sa_handler = compat_ptr(handler);
4283 #ifdef __ARCH_HAS_SA_RESTORER
4284 		ret |= get_user(restorer, &act->sa_restorer);
4285 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4286 #endif
4287 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4288 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4289 		if (ret)
4290 			return -EFAULT;
4291 	}
4292 
4293 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4294 	if (!ret && oact) {
4295 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4296 			       &oact->sa_handler);
4297 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4298 					 sizeof(oact->sa_mask));
4299 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4300 #ifdef __ARCH_HAS_SA_RESTORER
4301 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4302 				&oact->sa_restorer);
4303 #endif
4304 	}
4305 	return ret;
4306 }
4307 #endif
4308 #endif /* !CONFIG_ODD_RT_SIGACTION */
4309 
4310 #ifdef CONFIG_OLD_SIGACTION
4311 SYSCALL_DEFINE3(sigaction, int, sig,
4312 		const struct old_sigaction __user *, act,
4313 	        struct old_sigaction __user *, oact)
4314 {
4315 	struct k_sigaction new_ka, old_ka;
4316 	int ret;
4317 
4318 	if (act) {
4319 		old_sigset_t mask;
4320 		if (!access_ok(act, sizeof(*act)) ||
4321 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4322 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4323 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4324 		    __get_user(mask, &act->sa_mask))
4325 			return -EFAULT;
4326 #ifdef __ARCH_HAS_KA_RESTORER
4327 		new_ka.ka_restorer = NULL;
4328 #endif
4329 		siginitset(&new_ka.sa.sa_mask, mask);
4330 	}
4331 
4332 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4333 
4334 	if (!ret && oact) {
4335 		if (!access_ok(oact, sizeof(*oact)) ||
4336 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4337 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4338 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4339 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4340 			return -EFAULT;
4341 	}
4342 
4343 	return ret;
4344 }
4345 #endif
4346 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4347 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4348 		const struct compat_old_sigaction __user *, act,
4349 	        struct compat_old_sigaction __user *, oact)
4350 {
4351 	struct k_sigaction new_ka, old_ka;
4352 	int ret;
4353 	compat_old_sigset_t mask;
4354 	compat_uptr_t handler, restorer;
4355 
4356 	if (act) {
4357 		if (!access_ok(act, sizeof(*act)) ||
4358 		    __get_user(handler, &act->sa_handler) ||
4359 		    __get_user(restorer, &act->sa_restorer) ||
4360 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4361 		    __get_user(mask, &act->sa_mask))
4362 			return -EFAULT;
4363 
4364 #ifdef __ARCH_HAS_KA_RESTORER
4365 		new_ka.ka_restorer = NULL;
4366 #endif
4367 		new_ka.sa.sa_handler = compat_ptr(handler);
4368 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4369 		siginitset(&new_ka.sa.sa_mask, mask);
4370 	}
4371 
4372 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4373 
4374 	if (!ret && oact) {
4375 		if (!access_ok(oact, sizeof(*oact)) ||
4376 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4377 			       &oact->sa_handler) ||
4378 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4379 			       &oact->sa_restorer) ||
4380 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4381 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4382 			return -EFAULT;
4383 	}
4384 	return ret;
4385 }
4386 #endif
4387 
4388 #ifdef CONFIG_SGETMASK_SYSCALL
4389 
4390 /*
4391  * For backwards compatibility.  Functionality superseded by sigprocmask.
4392  */
4393 SYSCALL_DEFINE0(sgetmask)
4394 {
4395 	/* SMP safe */
4396 	return current->blocked.sig[0];
4397 }
4398 
4399 SYSCALL_DEFINE1(ssetmask, int, newmask)
4400 {
4401 	int old = current->blocked.sig[0];
4402 	sigset_t newset;
4403 
4404 	siginitset(&newset, newmask);
4405 	set_current_blocked(&newset);
4406 
4407 	return old;
4408 }
4409 #endif /* CONFIG_SGETMASK_SYSCALL */
4410 
4411 #ifdef __ARCH_WANT_SYS_SIGNAL
4412 /*
4413  * For backwards compatibility.  Functionality superseded by sigaction.
4414  */
4415 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4416 {
4417 	struct k_sigaction new_sa, old_sa;
4418 	int ret;
4419 
4420 	new_sa.sa.sa_handler = handler;
4421 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4422 	sigemptyset(&new_sa.sa.sa_mask);
4423 
4424 	ret = do_sigaction(sig, &new_sa, &old_sa);
4425 
4426 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4427 }
4428 #endif /* __ARCH_WANT_SYS_SIGNAL */
4429 
4430 #ifdef __ARCH_WANT_SYS_PAUSE
4431 
4432 SYSCALL_DEFINE0(pause)
4433 {
4434 	while (!signal_pending(current)) {
4435 		__set_current_state(TASK_INTERRUPTIBLE);
4436 		schedule();
4437 	}
4438 	return -ERESTARTNOHAND;
4439 }
4440 
4441 #endif
4442 
4443 static int sigsuspend(sigset_t *set)
4444 {
4445 	current->saved_sigmask = current->blocked;
4446 	set_current_blocked(set);
4447 
4448 	while (!signal_pending(current)) {
4449 		__set_current_state(TASK_INTERRUPTIBLE);
4450 		schedule();
4451 	}
4452 	set_restore_sigmask();
4453 	return -ERESTARTNOHAND;
4454 }
4455 
4456 /**
4457  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4458  *	@unewset value until a signal is received
4459  *  @unewset: new signal mask value
4460  *  @sigsetsize: size of sigset_t type
4461  */
4462 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4463 {
4464 	sigset_t newset;
4465 
4466 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4467 	if (sigsetsize != sizeof(sigset_t))
4468 		return -EINVAL;
4469 
4470 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4471 		return -EFAULT;
4472 	return sigsuspend(&newset);
4473 }
4474 
4475 #ifdef CONFIG_COMPAT
4476 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4477 {
4478 	sigset_t newset;
4479 
4480 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4481 	if (sigsetsize != sizeof(sigset_t))
4482 		return -EINVAL;
4483 
4484 	if (get_compat_sigset(&newset, unewset))
4485 		return -EFAULT;
4486 	return sigsuspend(&newset);
4487 }
4488 #endif
4489 
4490 #ifdef CONFIG_OLD_SIGSUSPEND
4491 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4492 {
4493 	sigset_t blocked;
4494 	siginitset(&blocked, mask);
4495 	return sigsuspend(&blocked);
4496 }
4497 #endif
4498 #ifdef CONFIG_OLD_SIGSUSPEND3
4499 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4500 {
4501 	sigset_t blocked;
4502 	siginitset(&blocked, mask);
4503 	return sigsuspend(&blocked);
4504 }
4505 #endif
4506 
4507 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4508 {
4509 	return NULL;
4510 }
4511 
4512 static inline void siginfo_buildtime_checks(void)
4513 {
4514 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4515 
4516 	/* Verify the offsets in the two siginfos match */
4517 #define CHECK_OFFSET(field) \
4518 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4519 
4520 	/* kill */
4521 	CHECK_OFFSET(si_pid);
4522 	CHECK_OFFSET(si_uid);
4523 
4524 	/* timer */
4525 	CHECK_OFFSET(si_tid);
4526 	CHECK_OFFSET(si_overrun);
4527 	CHECK_OFFSET(si_value);
4528 
4529 	/* rt */
4530 	CHECK_OFFSET(si_pid);
4531 	CHECK_OFFSET(si_uid);
4532 	CHECK_OFFSET(si_value);
4533 
4534 	/* sigchld */
4535 	CHECK_OFFSET(si_pid);
4536 	CHECK_OFFSET(si_uid);
4537 	CHECK_OFFSET(si_status);
4538 	CHECK_OFFSET(si_utime);
4539 	CHECK_OFFSET(si_stime);
4540 
4541 	/* sigfault */
4542 	CHECK_OFFSET(si_addr);
4543 	CHECK_OFFSET(si_addr_lsb);
4544 	CHECK_OFFSET(si_lower);
4545 	CHECK_OFFSET(si_upper);
4546 	CHECK_OFFSET(si_pkey);
4547 
4548 	/* sigpoll */
4549 	CHECK_OFFSET(si_band);
4550 	CHECK_OFFSET(si_fd);
4551 
4552 	/* sigsys */
4553 	CHECK_OFFSET(si_call_addr);
4554 	CHECK_OFFSET(si_syscall);
4555 	CHECK_OFFSET(si_arch);
4556 #undef CHECK_OFFSET
4557 
4558 	/* usb asyncio */
4559 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4560 		     offsetof(struct siginfo, si_addr));
4561 	if (sizeof(int) == sizeof(void __user *)) {
4562 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4563 			     sizeof(void __user *));
4564 	} else {
4565 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4566 			      sizeof_field(struct siginfo, si_uid)) !=
4567 			     sizeof(void __user *));
4568 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4569 			     offsetof(struct siginfo, si_uid));
4570 	}
4571 #ifdef CONFIG_COMPAT
4572 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4573 		     offsetof(struct compat_siginfo, si_addr));
4574 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4575 		     sizeof(compat_uptr_t));
4576 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4577 		     sizeof_field(struct siginfo, si_pid));
4578 #endif
4579 }
4580 
4581 void __init signals_init(void)
4582 {
4583 	siginfo_buildtime_checks();
4584 
4585 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4586 }
4587 
4588 #ifdef CONFIG_KGDB_KDB
4589 #include <linux/kdb.h>
4590 /*
4591  * kdb_send_sig - Allows kdb to send signals without exposing
4592  * signal internals.  This function checks if the required locks are
4593  * available before calling the main signal code, to avoid kdb
4594  * deadlocks.
4595  */
4596 void kdb_send_sig(struct task_struct *t, int sig)
4597 {
4598 	static struct task_struct *kdb_prev_t;
4599 	int new_t, ret;
4600 	if (!spin_trylock(&t->sighand->siglock)) {
4601 		kdb_printf("Can't do kill command now.\n"
4602 			   "The sigmask lock is held somewhere else in "
4603 			   "kernel, try again later\n");
4604 		return;
4605 	}
4606 	new_t = kdb_prev_t != t;
4607 	kdb_prev_t = t;
4608 	if (t->state != TASK_RUNNING && new_t) {
4609 		spin_unlock(&t->sighand->siglock);
4610 		kdb_printf("Process is not RUNNING, sending a signal from "
4611 			   "kdb risks deadlock\n"
4612 			   "on the run queue locks. "
4613 			   "The signal has _not_ been sent.\n"
4614 			   "Reissue the kill command if you want to risk "
4615 			   "the deadlock.\n");
4616 		return;
4617 	}
4618 	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4619 	spin_unlock(&t->sighand->siglock);
4620 	if (ret)
4621 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4622 			   sig, t->pid);
4623 	else
4624 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4625 }
4626 #endif	/* CONFIG_KGDB_KDB */
4627