1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/signal.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 8 * 9 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 10 * Changes to use preallocated sigqueue structures 11 * to allow signals to be sent reliably. 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/user.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/sched/cputime.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/proc_fs.h> 26 #include <linux/tty.h> 27 #include <linux/binfmts.h> 28 #include <linux/coredump.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include <linux/ptrace.h> 32 #include <linux/signal.h> 33 #include <linux/signalfd.h> 34 #include <linux/ratelimit.h> 35 #include <linux/tracehook.h> 36 #include <linux/capability.h> 37 #include <linux/freezer.h> 38 #include <linux/pid_namespace.h> 39 #include <linux/nsproxy.h> 40 #include <linux/user_namespace.h> 41 #include <linux/uprobes.h> 42 #include <linux/compat.h> 43 #include <linux/cn_proc.h> 44 #include <linux/compiler.h> 45 #include <linux/posix-timers.h> 46 #include <linux/livepatch.h> 47 #include <linux/cgroup.h> 48 #include <linux/audit.h> 49 50 #define CREATE_TRACE_POINTS 51 #include <trace/events/signal.h> 52 53 #include <asm/param.h> 54 #include <linux/uaccess.h> 55 #include <asm/unistd.h> 56 #include <asm/siginfo.h> 57 #include <asm/cacheflush.h> 58 59 /* 60 * SLAB caches for signal bits. 61 */ 62 63 static struct kmem_cache *sigqueue_cachep; 64 65 int print_fatal_signals __read_mostly; 66 67 static void __user *sig_handler(struct task_struct *t, int sig) 68 { 69 return t->sighand->action[sig - 1].sa.sa_handler; 70 } 71 72 static inline bool sig_handler_ignored(void __user *handler, int sig) 73 { 74 /* Is it explicitly or implicitly ignored? */ 75 return handler == SIG_IGN || 76 (handler == SIG_DFL && sig_kernel_ignore(sig)); 77 } 78 79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 80 { 81 void __user *handler; 82 83 handler = sig_handler(t, sig); 84 85 /* SIGKILL and SIGSTOP may not be sent to the global init */ 86 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 87 return true; 88 89 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 90 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 91 return true; 92 93 return sig_handler_ignored(handler, sig); 94 } 95 96 static bool sig_ignored(struct task_struct *t, int sig, bool force) 97 { 98 /* 99 * Blocked signals are never ignored, since the 100 * signal handler may change by the time it is 101 * unblocked. 102 */ 103 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 104 return false; 105 106 /* 107 * Tracers may want to know about even ignored signal unless it 108 * is SIGKILL which can't be reported anyway but can be ignored 109 * by SIGNAL_UNKILLABLE task. 110 */ 111 if (t->ptrace && sig != SIGKILL) 112 return false; 113 114 return sig_task_ignored(t, sig, force); 115 } 116 117 /* 118 * Re-calculate pending state from the set of locally pending 119 * signals, globally pending signals, and blocked signals. 120 */ 121 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 122 { 123 unsigned long ready; 124 long i; 125 126 switch (_NSIG_WORDS) { 127 default: 128 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 129 ready |= signal->sig[i] &~ blocked->sig[i]; 130 break; 131 132 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 133 ready |= signal->sig[2] &~ blocked->sig[2]; 134 ready |= signal->sig[1] &~ blocked->sig[1]; 135 ready |= signal->sig[0] &~ blocked->sig[0]; 136 break; 137 138 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 139 ready |= signal->sig[0] &~ blocked->sig[0]; 140 break; 141 142 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 143 } 144 return ready != 0; 145 } 146 147 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 148 149 static bool recalc_sigpending_tsk(struct task_struct *t) 150 { 151 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || 152 PENDING(&t->pending, &t->blocked) || 153 PENDING(&t->signal->shared_pending, &t->blocked) || 154 cgroup_task_frozen(t)) { 155 set_tsk_thread_flag(t, TIF_SIGPENDING); 156 return true; 157 } 158 159 /* 160 * We must never clear the flag in another thread, or in current 161 * when it's possible the current syscall is returning -ERESTART*. 162 * So we don't clear it here, and only callers who know they should do. 163 */ 164 return false; 165 } 166 167 /* 168 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 169 * This is superfluous when called on current, the wakeup is a harmless no-op. 170 */ 171 void recalc_sigpending_and_wake(struct task_struct *t) 172 { 173 if (recalc_sigpending_tsk(t)) 174 signal_wake_up(t, 0); 175 } 176 177 void recalc_sigpending(void) 178 { 179 if (!recalc_sigpending_tsk(current) && !freezing(current) && 180 !klp_patch_pending(current)) 181 clear_thread_flag(TIF_SIGPENDING); 182 183 } 184 EXPORT_SYMBOL(recalc_sigpending); 185 186 void calculate_sigpending(void) 187 { 188 /* Have any signals or users of TIF_SIGPENDING been delayed 189 * until after fork? 190 */ 191 spin_lock_irq(¤t->sighand->siglock); 192 set_tsk_thread_flag(current, TIF_SIGPENDING); 193 recalc_sigpending(); 194 spin_unlock_irq(¤t->sighand->siglock); 195 } 196 197 /* Given the mask, find the first available signal that should be serviced. */ 198 199 #define SYNCHRONOUS_MASK \ 200 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 201 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 202 203 int next_signal(struct sigpending *pending, sigset_t *mask) 204 { 205 unsigned long i, *s, *m, x; 206 int sig = 0; 207 208 s = pending->signal.sig; 209 m = mask->sig; 210 211 /* 212 * Handle the first word specially: it contains the 213 * synchronous signals that need to be dequeued first. 214 */ 215 x = *s &~ *m; 216 if (x) { 217 if (x & SYNCHRONOUS_MASK) 218 x &= SYNCHRONOUS_MASK; 219 sig = ffz(~x) + 1; 220 return sig; 221 } 222 223 switch (_NSIG_WORDS) { 224 default: 225 for (i = 1; i < _NSIG_WORDS; ++i) { 226 x = *++s &~ *++m; 227 if (!x) 228 continue; 229 sig = ffz(~x) + i*_NSIG_BPW + 1; 230 break; 231 } 232 break; 233 234 case 2: 235 x = s[1] &~ m[1]; 236 if (!x) 237 break; 238 sig = ffz(~x) + _NSIG_BPW + 1; 239 break; 240 241 case 1: 242 /* Nothing to do */ 243 break; 244 } 245 246 return sig; 247 } 248 249 static inline void print_dropped_signal(int sig) 250 { 251 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 252 253 if (!print_fatal_signals) 254 return; 255 256 if (!__ratelimit(&ratelimit_state)) 257 return; 258 259 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 260 current->comm, current->pid, sig); 261 } 262 263 /** 264 * task_set_jobctl_pending - set jobctl pending bits 265 * @task: target task 266 * @mask: pending bits to set 267 * 268 * Clear @mask from @task->jobctl. @mask must be subset of 269 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 270 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 271 * cleared. If @task is already being killed or exiting, this function 272 * becomes noop. 273 * 274 * CONTEXT: 275 * Must be called with @task->sighand->siglock held. 276 * 277 * RETURNS: 278 * %true if @mask is set, %false if made noop because @task was dying. 279 */ 280 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 281 { 282 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 283 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 284 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 285 286 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 287 return false; 288 289 if (mask & JOBCTL_STOP_SIGMASK) 290 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 291 292 task->jobctl |= mask; 293 return true; 294 } 295 296 /** 297 * task_clear_jobctl_trapping - clear jobctl trapping bit 298 * @task: target task 299 * 300 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 301 * Clear it and wake up the ptracer. Note that we don't need any further 302 * locking. @task->siglock guarantees that @task->parent points to the 303 * ptracer. 304 * 305 * CONTEXT: 306 * Must be called with @task->sighand->siglock held. 307 */ 308 void task_clear_jobctl_trapping(struct task_struct *task) 309 { 310 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 311 task->jobctl &= ~JOBCTL_TRAPPING; 312 smp_mb(); /* advised by wake_up_bit() */ 313 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 314 } 315 } 316 317 /** 318 * task_clear_jobctl_pending - clear jobctl pending bits 319 * @task: target task 320 * @mask: pending bits to clear 321 * 322 * Clear @mask from @task->jobctl. @mask must be subset of 323 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 324 * STOP bits are cleared together. 325 * 326 * If clearing of @mask leaves no stop or trap pending, this function calls 327 * task_clear_jobctl_trapping(). 328 * 329 * CONTEXT: 330 * Must be called with @task->sighand->siglock held. 331 */ 332 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 333 { 334 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 335 336 if (mask & JOBCTL_STOP_PENDING) 337 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 338 339 task->jobctl &= ~mask; 340 341 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 342 task_clear_jobctl_trapping(task); 343 } 344 345 /** 346 * task_participate_group_stop - participate in a group stop 347 * @task: task participating in a group stop 348 * 349 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 350 * Group stop states are cleared and the group stop count is consumed if 351 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 352 * stop, the appropriate %SIGNAL_* flags are set. 353 * 354 * CONTEXT: 355 * Must be called with @task->sighand->siglock held. 356 * 357 * RETURNS: 358 * %true if group stop completion should be notified to the parent, %false 359 * otherwise. 360 */ 361 static bool task_participate_group_stop(struct task_struct *task) 362 { 363 struct signal_struct *sig = task->signal; 364 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 365 366 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 367 368 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 369 370 if (!consume) 371 return false; 372 373 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 374 sig->group_stop_count--; 375 376 /* 377 * Tell the caller to notify completion iff we are entering into a 378 * fresh group stop. Read comment in do_signal_stop() for details. 379 */ 380 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 381 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 382 return true; 383 } 384 return false; 385 } 386 387 void task_join_group_stop(struct task_struct *task) 388 { 389 /* Have the new thread join an on-going signal group stop */ 390 unsigned long jobctl = current->jobctl; 391 if (jobctl & JOBCTL_STOP_PENDING) { 392 struct signal_struct *sig = current->signal; 393 unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK; 394 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 395 if (task_set_jobctl_pending(task, signr | gstop)) { 396 sig->group_stop_count++; 397 } 398 } 399 } 400 401 /* 402 * allocate a new signal queue record 403 * - this may be called without locks if and only if t == current, otherwise an 404 * appropriate lock must be held to stop the target task from exiting 405 */ 406 static struct sigqueue * 407 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) 408 { 409 struct sigqueue *q = NULL; 410 struct user_struct *user; 411 412 /* 413 * Protect access to @t credentials. This can go away when all 414 * callers hold rcu read lock. 415 */ 416 rcu_read_lock(); 417 user = get_uid(__task_cred(t)->user); 418 atomic_inc(&user->sigpending); 419 rcu_read_unlock(); 420 421 if (override_rlimit || 422 atomic_read(&user->sigpending) <= 423 task_rlimit(t, RLIMIT_SIGPENDING)) { 424 q = kmem_cache_alloc(sigqueue_cachep, flags); 425 } else { 426 print_dropped_signal(sig); 427 } 428 429 if (unlikely(q == NULL)) { 430 atomic_dec(&user->sigpending); 431 free_uid(user); 432 } else { 433 INIT_LIST_HEAD(&q->list); 434 q->flags = 0; 435 q->user = user; 436 } 437 438 return q; 439 } 440 441 static void __sigqueue_free(struct sigqueue *q) 442 { 443 if (q->flags & SIGQUEUE_PREALLOC) 444 return; 445 atomic_dec(&q->user->sigpending); 446 free_uid(q->user); 447 kmem_cache_free(sigqueue_cachep, q); 448 } 449 450 void flush_sigqueue(struct sigpending *queue) 451 { 452 struct sigqueue *q; 453 454 sigemptyset(&queue->signal); 455 while (!list_empty(&queue->list)) { 456 q = list_entry(queue->list.next, struct sigqueue , list); 457 list_del_init(&q->list); 458 __sigqueue_free(q); 459 } 460 } 461 462 /* 463 * Flush all pending signals for this kthread. 464 */ 465 void flush_signals(struct task_struct *t) 466 { 467 unsigned long flags; 468 469 spin_lock_irqsave(&t->sighand->siglock, flags); 470 clear_tsk_thread_flag(t, TIF_SIGPENDING); 471 flush_sigqueue(&t->pending); 472 flush_sigqueue(&t->signal->shared_pending); 473 spin_unlock_irqrestore(&t->sighand->siglock, flags); 474 } 475 EXPORT_SYMBOL(flush_signals); 476 477 #ifdef CONFIG_POSIX_TIMERS 478 static void __flush_itimer_signals(struct sigpending *pending) 479 { 480 sigset_t signal, retain; 481 struct sigqueue *q, *n; 482 483 signal = pending->signal; 484 sigemptyset(&retain); 485 486 list_for_each_entry_safe(q, n, &pending->list, list) { 487 int sig = q->info.si_signo; 488 489 if (likely(q->info.si_code != SI_TIMER)) { 490 sigaddset(&retain, sig); 491 } else { 492 sigdelset(&signal, sig); 493 list_del_init(&q->list); 494 __sigqueue_free(q); 495 } 496 } 497 498 sigorsets(&pending->signal, &signal, &retain); 499 } 500 501 void flush_itimer_signals(void) 502 { 503 struct task_struct *tsk = current; 504 unsigned long flags; 505 506 spin_lock_irqsave(&tsk->sighand->siglock, flags); 507 __flush_itimer_signals(&tsk->pending); 508 __flush_itimer_signals(&tsk->signal->shared_pending); 509 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 510 } 511 #endif 512 513 void ignore_signals(struct task_struct *t) 514 { 515 int i; 516 517 for (i = 0; i < _NSIG; ++i) 518 t->sighand->action[i].sa.sa_handler = SIG_IGN; 519 520 flush_signals(t); 521 } 522 523 /* 524 * Flush all handlers for a task. 525 */ 526 527 void 528 flush_signal_handlers(struct task_struct *t, int force_default) 529 { 530 int i; 531 struct k_sigaction *ka = &t->sighand->action[0]; 532 for (i = _NSIG ; i != 0 ; i--) { 533 if (force_default || ka->sa.sa_handler != SIG_IGN) 534 ka->sa.sa_handler = SIG_DFL; 535 ka->sa.sa_flags = 0; 536 #ifdef __ARCH_HAS_SA_RESTORER 537 ka->sa.sa_restorer = NULL; 538 #endif 539 sigemptyset(&ka->sa.sa_mask); 540 ka++; 541 } 542 } 543 544 bool unhandled_signal(struct task_struct *tsk, int sig) 545 { 546 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 547 if (is_global_init(tsk)) 548 return true; 549 550 if (handler != SIG_IGN && handler != SIG_DFL) 551 return false; 552 553 /* if ptraced, let the tracer determine */ 554 return !tsk->ptrace; 555 } 556 557 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 558 bool *resched_timer) 559 { 560 struct sigqueue *q, *first = NULL; 561 562 /* 563 * Collect the siginfo appropriate to this signal. Check if 564 * there is another siginfo for the same signal. 565 */ 566 list_for_each_entry(q, &list->list, list) { 567 if (q->info.si_signo == sig) { 568 if (first) 569 goto still_pending; 570 first = q; 571 } 572 } 573 574 sigdelset(&list->signal, sig); 575 576 if (first) { 577 still_pending: 578 list_del_init(&first->list); 579 copy_siginfo(info, &first->info); 580 581 *resched_timer = 582 (first->flags & SIGQUEUE_PREALLOC) && 583 (info->si_code == SI_TIMER) && 584 (info->si_sys_private); 585 586 __sigqueue_free(first); 587 } else { 588 /* 589 * Ok, it wasn't in the queue. This must be 590 * a fast-pathed signal or we must have been 591 * out of queue space. So zero out the info. 592 */ 593 clear_siginfo(info); 594 info->si_signo = sig; 595 info->si_errno = 0; 596 info->si_code = SI_USER; 597 info->si_pid = 0; 598 info->si_uid = 0; 599 } 600 } 601 602 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 603 kernel_siginfo_t *info, bool *resched_timer) 604 { 605 int sig = next_signal(pending, mask); 606 607 if (sig) 608 collect_signal(sig, pending, info, resched_timer); 609 return sig; 610 } 611 612 /* 613 * Dequeue a signal and return the element to the caller, which is 614 * expected to free it. 615 * 616 * All callers have to hold the siglock. 617 */ 618 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info) 619 { 620 bool resched_timer = false; 621 int signr; 622 623 /* We only dequeue private signals from ourselves, we don't let 624 * signalfd steal them 625 */ 626 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 627 if (!signr) { 628 signr = __dequeue_signal(&tsk->signal->shared_pending, 629 mask, info, &resched_timer); 630 #ifdef CONFIG_POSIX_TIMERS 631 /* 632 * itimer signal ? 633 * 634 * itimers are process shared and we restart periodic 635 * itimers in the signal delivery path to prevent DoS 636 * attacks in the high resolution timer case. This is 637 * compliant with the old way of self-restarting 638 * itimers, as the SIGALRM is a legacy signal and only 639 * queued once. Changing the restart behaviour to 640 * restart the timer in the signal dequeue path is 641 * reducing the timer noise on heavy loaded !highres 642 * systems too. 643 */ 644 if (unlikely(signr == SIGALRM)) { 645 struct hrtimer *tmr = &tsk->signal->real_timer; 646 647 if (!hrtimer_is_queued(tmr) && 648 tsk->signal->it_real_incr != 0) { 649 hrtimer_forward(tmr, tmr->base->get_time(), 650 tsk->signal->it_real_incr); 651 hrtimer_restart(tmr); 652 } 653 } 654 #endif 655 } 656 657 recalc_sigpending(); 658 if (!signr) 659 return 0; 660 661 if (unlikely(sig_kernel_stop(signr))) { 662 /* 663 * Set a marker that we have dequeued a stop signal. Our 664 * caller might release the siglock and then the pending 665 * stop signal it is about to process is no longer in the 666 * pending bitmasks, but must still be cleared by a SIGCONT 667 * (and overruled by a SIGKILL). So those cases clear this 668 * shared flag after we've set it. Note that this flag may 669 * remain set after the signal we return is ignored or 670 * handled. That doesn't matter because its only purpose 671 * is to alert stop-signal processing code when another 672 * processor has come along and cleared the flag. 673 */ 674 current->jobctl |= JOBCTL_STOP_DEQUEUED; 675 } 676 #ifdef CONFIG_POSIX_TIMERS 677 if (resched_timer) { 678 /* 679 * Release the siglock to ensure proper locking order 680 * of timer locks outside of siglocks. Note, we leave 681 * irqs disabled here, since the posix-timers code is 682 * about to disable them again anyway. 683 */ 684 spin_unlock(&tsk->sighand->siglock); 685 posixtimer_rearm(info); 686 spin_lock(&tsk->sighand->siglock); 687 688 /* Don't expose the si_sys_private value to userspace */ 689 info->si_sys_private = 0; 690 } 691 #endif 692 return signr; 693 } 694 EXPORT_SYMBOL_GPL(dequeue_signal); 695 696 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 697 { 698 struct task_struct *tsk = current; 699 struct sigpending *pending = &tsk->pending; 700 struct sigqueue *q, *sync = NULL; 701 702 /* 703 * Might a synchronous signal be in the queue? 704 */ 705 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 706 return 0; 707 708 /* 709 * Return the first synchronous signal in the queue. 710 */ 711 list_for_each_entry(q, &pending->list, list) { 712 /* Synchronous signals have a postive si_code */ 713 if ((q->info.si_code > SI_USER) && 714 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 715 sync = q; 716 goto next; 717 } 718 } 719 return 0; 720 next: 721 /* 722 * Check if there is another siginfo for the same signal. 723 */ 724 list_for_each_entry_continue(q, &pending->list, list) { 725 if (q->info.si_signo == sync->info.si_signo) 726 goto still_pending; 727 } 728 729 sigdelset(&pending->signal, sync->info.si_signo); 730 recalc_sigpending(); 731 still_pending: 732 list_del_init(&sync->list); 733 copy_siginfo(info, &sync->info); 734 __sigqueue_free(sync); 735 return info->si_signo; 736 } 737 738 /* 739 * Tell a process that it has a new active signal.. 740 * 741 * NOTE! we rely on the previous spin_lock to 742 * lock interrupts for us! We can only be called with 743 * "siglock" held, and the local interrupt must 744 * have been disabled when that got acquired! 745 * 746 * No need to set need_resched since signal event passing 747 * goes through ->blocked 748 */ 749 void signal_wake_up_state(struct task_struct *t, unsigned int state) 750 { 751 set_tsk_thread_flag(t, TIF_SIGPENDING); 752 /* 753 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 754 * case. We don't check t->state here because there is a race with it 755 * executing another processor and just now entering stopped state. 756 * By using wake_up_state, we ensure the process will wake up and 757 * handle its death signal. 758 */ 759 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 760 kick_process(t); 761 } 762 763 /* 764 * Remove signals in mask from the pending set and queue. 765 * Returns 1 if any signals were found. 766 * 767 * All callers must be holding the siglock. 768 */ 769 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 770 { 771 struct sigqueue *q, *n; 772 sigset_t m; 773 774 sigandsets(&m, mask, &s->signal); 775 if (sigisemptyset(&m)) 776 return; 777 778 sigandnsets(&s->signal, &s->signal, mask); 779 list_for_each_entry_safe(q, n, &s->list, list) { 780 if (sigismember(mask, q->info.si_signo)) { 781 list_del_init(&q->list); 782 __sigqueue_free(q); 783 } 784 } 785 } 786 787 static inline int is_si_special(const struct kernel_siginfo *info) 788 { 789 return info <= SEND_SIG_PRIV; 790 } 791 792 static inline bool si_fromuser(const struct kernel_siginfo *info) 793 { 794 return info == SEND_SIG_NOINFO || 795 (!is_si_special(info) && SI_FROMUSER(info)); 796 } 797 798 /* 799 * called with RCU read lock from check_kill_permission() 800 */ 801 static bool kill_ok_by_cred(struct task_struct *t) 802 { 803 const struct cred *cred = current_cred(); 804 const struct cred *tcred = __task_cred(t); 805 806 return uid_eq(cred->euid, tcred->suid) || 807 uid_eq(cred->euid, tcred->uid) || 808 uid_eq(cred->uid, tcred->suid) || 809 uid_eq(cred->uid, tcred->uid) || 810 ns_capable(tcred->user_ns, CAP_KILL); 811 } 812 813 /* 814 * Bad permissions for sending the signal 815 * - the caller must hold the RCU read lock 816 */ 817 static int check_kill_permission(int sig, struct kernel_siginfo *info, 818 struct task_struct *t) 819 { 820 struct pid *sid; 821 int error; 822 823 if (!valid_signal(sig)) 824 return -EINVAL; 825 826 if (!si_fromuser(info)) 827 return 0; 828 829 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 830 if (error) 831 return error; 832 833 if (!same_thread_group(current, t) && 834 !kill_ok_by_cred(t)) { 835 switch (sig) { 836 case SIGCONT: 837 sid = task_session(t); 838 /* 839 * We don't return the error if sid == NULL. The 840 * task was unhashed, the caller must notice this. 841 */ 842 if (!sid || sid == task_session(current)) 843 break; 844 /* fall through */ 845 default: 846 return -EPERM; 847 } 848 } 849 850 return security_task_kill(t, info, sig, NULL); 851 } 852 853 /** 854 * ptrace_trap_notify - schedule trap to notify ptracer 855 * @t: tracee wanting to notify tracer 856 * 857 * This function schedules sticky ptrace trap which is cleared on the next 858 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 859 * ptracer. 860 * 861 * If @t is running, STOP trap will be taken. If trapped for STOP and 862 * ptracer is listening for events, tracee is woken up so that it can 863 * re-trap for the new event. If trapped otherwise, STOP trap will be 864 * eventually taken without returning to userland after the existing traps 865 * are finished by PTRACE_CONT. 866 * 867 * CONTEXT: 868 * Must be called with @task->sighand->siglock held. 869 */ 870 static void ptrace_trap_notify(struct task_struct *t) 871 { 872 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 873 assert_spin_locked(&t->sighand->siglock); 874 875 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 876 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 877 } 878 879 /* 880 * Handle magic process-wide effects of stop/continue signals. Unlike 881 * the signal actions, these happen immediately at signal-generation 882 * time regardless of blocking, ignoring, or handling. This does the 883 * actual continuing for SIGCONT, but not the actual stopping for stop 884 * signals. The process stop is done as a signal action for SIG_DFL. 885 * 886 * Returns true if the signal should be actually delivered, otherwise 887 * it should be dropped. 888 */ 889 static bool prepare_signal(int sig, struct task_struct *p, bool force) 890 { 891 struct signal_struct *signal = p->signal; 892 struct task_struct *t; 893 sigset_t flush; 894 895 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) { 896 if (!(signal->flags & SIGNAL_GROUP_EXIT)) 897 return sig == SIGKILL; 898 /* 899 * The process is in the middle of dying, nothing to do. 900 */ 901 } else if (sig_kernel_stop(sig)) { 902 /* 903 * This is a stop signal. Remove SIGCONT from all queues. 904 */ 905 siginitset(&flush, sigmask(SIGCONT)); 906 flush_sigqueue_mask(&flush, &signal->shared_pending); 907 for_each_thread(p, t) 908 flush_sigqueue_mask(&flush, &t->pending); 909 } else if (sig == SIGCONT) { 910 unsigned int why; 911 /* 912 * Remove all stop signals from all queues, wake all threads. 913 */ 914 siginitset(&flush, SIG_KERNEL_STOP_MASK); 915 flush_sigqueue_mask(&flush, &signal->shared_pending); 916 for_each_thread(p, t) { 917 flush_sigqueue_mask(&flush, &t->pending); 918 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 919 if (likely(!(t->ptrace & PT_SEIZED))) 920 wake_up_state(t, __TASK_STOPPED); 921 else 922 ptrace_trap_notify(t); 923 } 924 925 /* 926 * Notify the parent with CLD_CONTINUED if we were stopped. 927 * 928 * If we were in the middle of a group stop, we pretend it 929 * was already finished, and then continued. Since SIGCHLD 930 * doesn't queue we report only CLD_STOPPED, as if the next 931 * CLD_CONTINUED was dropped. 932 */ 933 why = 0; 934 if (signal->flags & SIGNAL_STOP_STOPPED) 935 why |= SIGNAL_CLD_CONTINUED; 936 else if (signal->group_stop_count) 937 why |= SIGNAL_CLD_STOPPED; 938 939 if (why) { 940 /* 941 * The first thread which returns from do_signal_stop() 942 * will take ->siglock, notice SIGNAL_CLD_MASK, and 943 * notify its parent. See get_signal(). 944 */ 945 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 946 signal->group_stop_count = 0; 947 signal->group_exit_code = 0; 948 } 949 } 950 951 return !sig_ignored(p, sig, force); 952 } 953 954 /* 955 * Test if P wants to take SIG. After we've checked all threads with this, 956 * it's equivalent to finding no threads not blocking SIG. Any threads not 957 * blocking SIG were ruled out because they are not running and already 958 * have pending signals. Such threads will dequeue from the shared queue 959 * as soon as they're available, so putting the signal on the shared queue 960 * will be equivalent to sending it to one such thread. 961 */ 962 static inline bool wants_signal(int sig, struct task_struct *p) 963 { 964 if (sigismember(&p->blocked, sig)) 965 return false; 966 967 if (p->flags & PF_EXITING) 968 return false; 969 970 if (sig == SIGKILL) 971 return true; 972 973 if (task_is_stopped_or_traced(p)) 974 return false; 975 976 return task_curr(p) || !signal_pending(p); 977 } 978 979 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 980 { 981 struct signal_struct *signal = p->signal; 982 struct task_struct *t; 983 984 /* 985 * Now find a thread we can wake up to take the signal off the queue. 986 * 987 * If the main thread wants the signal, it gets first crack. 988 * Probably the least surprising to the average bear. 989 */ 990 if (wants_signal(sig, p)) 991 t = p; 992 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 993 /* 994 * There is just one thread and it does not need to be woken. 995 * It will dequeue unblocked signals before it runs again. 996 */ 997 return; 998 else { 999 /* 1000 * Otherwise try to find a suitable thread. 1001 */ 1002 t = signal->curr_target; 1003 while (!wants_signal(sig, t)) { 1004 t = next_thread(t); 1005 if (t == signal->curr_target) 1006 /* 1007 * No thread needs to be woken. 1008 * Any eligible threads will see 1009 * the signal in the queue soon. 1010 */ 1011 return; 1012 } 1013 signal->curr_target = t; 1014 } 1015 1016 /* 1017 * Found a killable thread. If the signal will be fatal, 1018 * then start taking the whole group down immediately. 1019 */ 1020 if (sig_fatal(p, sig) && 1021 !(signal->flags & SIGNAL_GROUP_EXIT) && 1022 !sigismember(&t->real_blocked, sig) && 1023 (sig == SIGKILL || !p->ptrace)) { 1024 /* 1025 * This signal will be fatal to the whole group. 1026 */ 1027 if (!sig_kernel_coredump(sig)) { 1028 /* 1029 * Start a group exit and wake everybody up. 1030 * This way we don't have other threads 1031 * running and doing things after a slower 1032 * thread has the fatal signal pending. 1033 */ 1034 signal->flags = SIGNAL_GROUP_EXIT; 1035 signal->group_exit_code = sig; 1036 signal->group_stop_count = 0; 1037 t = p; 1038 do { 1039 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1040 sigaddset(&t->pending.signal, SIGKILL); 1041 signal_wake_up(t, 1); 1042 } while_each_thread(p, t); 1043 return; 1044 } 1045 } 1046 1047 /* 1048 * The signal is already in the shared-pending queue. 1049 * Tell the chosen thread to wake up and dequeue it. 1050 */ 1051 signal_wake_up(t, sig == SIGKILL); 1052 return; 1053 } 1054 1055 static inline bool legacy_queue(struct sigpending *signals, int sig) 1056 { 1057 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1058 } 1059 1060 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1061 enum pid_type type, bool force) 1062 { 1063 struct sigpending *pending; 1064 struct sigqueue *q; 1065 int override_rlimit; 1066 int ret = 0, result; 1067 1068 assert_spin_locked(&t->sighand->siglock); 1069 1070 result = TRACE_SIGNAL_IGNORED; 1071 if (!prepare_signal(sig, t, force)) 1072 goto ret; 1073 1074 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1075 /* 1076 * Short-circuit ignored signals and support queuing 1077 * exactly one non-rt signal, so that we can get more 1078 * detailed information about the cause of the signal. 1079 */ 1080 result = TRACE_SIGNAL_ALREADY_PENDING; 1081 if (legacy_queue(pending, sig)) 1082 goto ret; 1083 1084 result = TRACE_SIGNAL_DELIVERED; 1085 /* 1086 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1087 */ 1088 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1089 goto out_set; 1090 1091 /* 1092 * Real-time signals must be queued if sent by sigqueue, or 1093 * some other real-time mechanism. It is implementation 1094 * defined whether kill() does so. We attempt to do so, on 1095 * the principle of least surprise, but since kill is not 1096 * allowed to fail with EAGAIN when low on memory we just 1097 * make sure at least one signal gets delivered and don't 1098 * pass on the info struct. 1099 */ 1100 if (sig < SIGRTMIN) 1101 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1102 else 1103 override_rlimit = 0; 1104 1105 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit); 1106 if (q) { 1107 list_add_tail(&q->list, &pending->list); 1108 switch ((unsigned long) info) { 1109 case (unsigned long) SEND_SIG_NOINFO: 1110 clear_siginfo(&q->info); 1111 q->info.si_signo = sig; 1112 q->info.si_errno = 0; 1113 q->info.si_code = SI_USER; 1114 q->info.si_pid = task_tgid_nr_ns(current, 1115 task_active_pid_ns(t)); 1116 rcu_read_lock(); 1117 q->info.si_uid = 1118 from_kuid_munged(task_cred_xxx(t, user_ns), 1119 current_uid()); 1120 rcu_read_unlock(); 1121 break; 1122 case (unsigned long) SEND_SIG_PRIV: 1123 clear_siginfo(&q->info); 1124 q->info.si_signo = sig; 1125 q->info.si_errno = 0; 1126 q->info.si_code = SI_KERNEL; 1127 q->info.si_pid = 0; 1128 q->info.si_uid = 0; 1129 break; 1130 default: 1131 copy_siginfo(&q->info, info); 1132 break; 1133 } 1134 } else if (!is_si_special(info) && 1135 sig >= SIGRTMIN && info->si_code != SI_USER) { 1136 /* 1137 * Queue overflow, abort. We may abort if the 1138 * signal was rt and sent by user using something 1139 * other than kill(). 1140 */ 1141 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1142 ret = -EAGAIN; 1143 goto ret; 1144 } else { 1145 /* 1146 * This is a silent loss of information. We still 1147 * send the signal, but the *info bits are lost. 1148 */ 1149 result = TRACE_SIGNAL_LOSE_INFO; 1150 } 1151 1152 out_set: 1153 signalfd_notify(t, sig); 1154 sigaddset(&pending->signal, sig); 1155 1156 /* Let multiprocess signals appear after on-going forks */ 1157 if (type > PIDTYPE_TGID) { 1158 struct multiprocess_signals *delayed; 1159 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1160 sigset_t *signal = &delayed->signal; 1161 /* Can't queue both a stop and a continue signal */ 1162 if (sig == SIGCONT) 1163 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1164 else if (sig_kernel_stop(sig)) 1165 sigdelset(signal, SIGCONT); 1166 sigaddset(signal, sig); 1167 } 1168 } 1169 1170 complete_signal(sig, t, type); 1171 ret: 1172 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1173 return ret; 1174 } 1175 1176 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) 1177 { 1178 bool ret = false; 1179 switch (siginfo_layout(info->si_signo, info->si_code)) { 1180 case SIL_KILL: 1181 case SIL_CHLD: 1182 case SIL_RT: 1183 ret = true; 1184 break; 1185 case SIL_TIMER: 1186 case SIL_POLL: 1187 case SIL_FAULT: 1188 case SIL_FAULT_MCEERR: 1189 case SIL_FAULT_BNDERR: 1190 case SIL_FAULT_PKUERR: 1191 case SIL_SYS: 1192 ret = false; 1193 break; 1194 } 1195 return ret; 1196 } 1197 1198 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1199 enum pid_type type) 1200 { 1201 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ 1202 bool force = false; 1203 1204 if (info == SEND_SIG_NOINFO) { 1205 /* Force if sent from an ancestor pid namespace */ 1206 force = !task_pid_nr_ns(current, task_active_pid_ns(t)); 1207 } else if (info == SEND_SIG_PRIV) { 1208 /* Don't ignore kernel generated signals */ 1209 force = true; 1210 } else if (has_si_pid_and_uid(info)) { 1211 /* SIGKILL and SIGSTOP is special or has ids */ 1212 struct user_namespace *t_user_ns; 1213 1214 rcu_read_lock(); 1215 t_user_ns = task_cred_xxx(t, user_ns); 1216 if (current_user_ns() != t_user_ns) { 1217 kuid_t uid = make_kuid(current_user_ns(), info->si_uid); 1218 info->si_uid = from_kuid_munged(t_user_ns, uid); 1219 } 1220 rcu_read_unlock(); 1221 1222 /* A kernel generated signal? */ 1223 force = (info->si_code == SI_KERNEL); 1224 1225 /* From an ancestor pid namespace? */ 1226 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { 1227 info->si_pid = 0; 1228 force = true; 1229 } 1230 } 1231 return __send_signal(sig, info, t, type, force); 1232 } 1233 1234 static void print_fatal_signal(int signr) 1235 { 1236 struct pt_regs *regs = signal_pt_regs(); 1237 pr_info("potentially unexpected fatal signal %d.\n", signr); 1238 1239 #if defined(__i386__) && !defined(__arch_um__) 1240 pr_info("code at %08lx: ", regs->ip); 1241 { 1242 int i; 1243 for (i = 0; i < 16; i++) { 1244 unsigned char insn; 1245 1246 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1247 break; 1248 pr_cont("%02x ", insn); 1249 } 1250 } 1251 pr_cont("\n"); 1252 #endif 1253 preempt_disable(); 1254 show_regs(regs); 1255 preempt_enable(); 1256 } 1257 1258 static int __init setup_print_fatal_signals(char *str) 1259 { 1260 get_option (&str, &print_fatal_signals); 1261 1262 return 1; 1263 } 1264 1265 __setup("print-fatal-signals=", setup_print_fatal_signals); 1266 1267 int 1268 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1269 { 1270 return send_signal(sig, info, p, PIDTYPE_TGID); 1271 } 1272 1273 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1274 enum pid_type type) 1275 { 1276 unsigned long flags; 1277 int ret = -ESRCH; 1278 1279 if (lock_task_sighand(p, &flags)) { 1280 ret = send_signal(sig, info, p, type); 1281 unlock_task_sighand(p, &flags); 1282 } 1283 1284 return ret; 1285 } 1286 1287 /* 1288 * Force a signal that the process can't ignore: if necessary 1289 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1290 * 1291 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1292 * since we do not want to have a signal handler that was blocked 1293 * be invoked when user space had explicitly blocked it. 1294 * 1295 * We don't want to have recursive SIGSEGV's etc, for example, 1296 * that is why we also clear SIGNAL_UNKILLABLE. 1297 */ 1298 static int 1299 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t) 1300 { 1301 unsigned long int flags; 1302 int ret, blocked, ignored; 1303 struct k_sigaction *action; 1304 int sig = info->si_signo; 1305 1306 spin_lock_irqsave(&t->sighand->siglock, flags); 1307 action = &t->sighand->action[sig-1]; 1308 ignored = action->sa.sa_handler == SIG_IGN; 1309 blocked = sigismember(&t->blocked, sig); 1310 if (blocked || ignored) { 1311 action->sa.sa_handler = SIG_DFL; 1312 if (blocked) { 1313 sigdelset(&t->blocked, sig); 1314 recalc_sigpending_and_wake(t); 1315 } 1316 } 1317 /* 1318 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1319 * debugging to leave init killable. 1320 */ 1321 if (action->sa.sa_handler == SIG_DFL && !t->ptrace) 1322 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1323 ret = send_signal(sig, info, t, PIDTYPE_PID); 1324 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1325 1326 return ret; 1327 } 1328 1329 int force_sig_info(struct kernel_siginfo *info) 1330 { 1331 return force_sig_info_to_task(info, current); 1332 } 1333 1334 /* 1335 * Nuke all other threads in the group. 1336 */ 1337 int zap_other_threads(struct task_struct *p) 1338 { 1339 struct task_struct *t = p; 1340 int count = 0; 1341 1342 p->signal->group_stop_count = 0; 1343 1344 while_each_thread(p, t) { 1345 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1346 count++; 1347 1348 /* Don't bother with already dead threads */ 1349 if (t->exit_state) 1350 continue; 1351 sigaddset(&t->pending.signal, SIGKILL); 1352 signal_wake_up(t, 1); 1353 } 1354 1355 return count; 1356 } 1357 1358 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1359 unsigned long *flags) 1360 { 1361 struct sighand_struct *sighand; 1362 1363 rcu_read_lock(); 1364 for (;;) { 1365 sighand = rcu_dereference(tsk->sighand); 1366 if (unlikely(sighand == NULL)) 1367 break; 1368 1369 /* 1370 * This sighand can be already freed and even reused, but 1371 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1372 * initializes ->siglock: this slab can't go away, it has 1373 * the same object type, ->siglock can't be reinitialized. 1374 * 1375 * We need to ensure that tsk->sighand is still the same 1376 * after we take the lock, we can race with de_thread() or 1377 * __exit_signal(). In the latter case the next iteration 1378 * must see ->sighand == NULL. 1379 */ 1380 spin_lock_irqsave(&sighand->siglock, *flags); 1381 if (likely(sighand == tsk->sighand)) 1382 break; 1383 spin_unlock_irqrestore(&sighand->siglock, *flags); 1384 } 1385 rcu_read_unlock(); 1386 1387 return sighand; 1388 } 1389 1390 /* 1391 * send signal info to all the members of a group 1392 */ 1393 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1394 struct task_struct *p, enum pid_type type) 1395 { 1396 int ret; 1397 1398 rcu_read_lock(); 1399 ret = check_kill_permission(sig, info, p); 1400 rcu_read_unlock(); 1401 1402 if (!ret && sig) 1403 ret = do_send_sig_info(sig, info, p, type); 1404 1405 return ret; 1406 } 1407 1408 /* 1409 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1410 * control characters do (^C, ^Z etc) 1411 * - the caller must hold at least a readlock on tasklist_lock 1412 */ 1413 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1414 { 1415 struct task_struct *p = NULL; 1416 int retval, success; 1417 1418 success = 0; 1419 retval = -ESRCH; 1420 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1421 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1422 success |= !err; 1423 retval = err; 1424 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1425 return success ? 0 : retval; 1426 } 1427 1428 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1429 { 1430 int error = -ESRCH; 1431 struct task_struct *p; 1432 1433 for (;;) { 1434 rcu_read_lock(); 1435 p = pid_task(pid, PIDTYPE_PID); 1436 if (p) 1437 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID); 1438 rcu_read_unlock(); 1439 if (likely(!p || error != -ESRCH)) 1440 return error; 1441 1442 /* 1443 * The task was unhashed in between, try again. If it 1444 * is dead, pid_task() will return NULL, if we race with 1445 * de_thread() it will find the new leader. 1446 */ 1447 } 1448 } 1449 1450 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1451 { 1452 int error; 1453 rcu_read_lock(); 1454 error = kill_pid_info(sig, info, find_vpid(pid)); 1455 rcu_read_unlock(); 1456 return error; 1457 } 1458 1459 static inline bool kill_as_cred_perm(const struct cred *cred, 1460 struct task_struct *target) 1461 { 1462 const struct cred *pcred = __task_cred(target); 1463 1464 return uid_eq(cred->euid, pcred->suid) || 1465 uid_eq(cred->euid, pcred->uid) || 1466 uid_eq(cred->uid, pcred->suid) || 1467 uid_eq(cred->uid, pcred->uid); 1468 } 1469 1470 /* 1471 * The usb asyncio usage of siginfo is wrong. The glibc support 1472 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. 1473 * AKA after the generic fields: 1474 * kernel_pid_t si_pid; 1475 * kernel_uid32_t si_uid; 1476 * sigval_t si_value; 1477 * 1478 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout 1479 * after the generic fields is: 1480 * void __user *si_addr; 1481 * 1482 * This is a practical problem when there is a 64bit big endian kernel 1483 * and a 32bit userspace. As the 32bit address will encoded in the low 1484 * 32bits of the pointer. Those low 32bits will be stored at higher 1485 * address than appear in a 32 bit pointer. So userspace will not 1486 * see the address it was expecting for it's completions. 1487 * 1488 * There is nothing in the encoding that can allow 1489 * copy_siginfo_to_user32 to detect this confusion of formats, so 1490 * handle this by requiring the caller of kill_pid_usb_asyncio to 1491 * notice when this situration takes place and to store the 32bit 1492 * pointer in sival_int, instead of sival_addr of the sigval_t addr 1493 * parameter. 1494 */ 1495 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, 1496 struct pid *pid, const struct cred *cred) 1497 { 1498 struct kernel_siginfo info; 1499 struct task_struct *p; 1500 unsigned long flags; 1501 int ret = -EINVAL; 1502 1503 clear_siginfo(&info); 1504 info.si_signo = sig; 1505 info.si_errno = errno; 1506 info.si_code = SI_ASYNCIO; 1507 *((sigval_t *)&info.si_pid) = addr; 1508 1509 if (!valid_signal(sig)) 1510 return ret; 1511 1512 rcu_read_lock(); 1513 p = pid_task(pid, PIDTYPE_PID); 1514 if (!p) { 1515 ret = -ESRCH; 1516 goto out_unlock; 1517 } 1518 if (!kill_as_cred_perm(cred, p)) { 1519 ret = -EPERM; 1520 goto out_unlock; 1521 } 1522 ret = security_task_kill(p, &info, sig, cred); 1523 if (ret) 1524 goto out_unlock; 1525 1526 if (sig) { 1527 if (lock_task_sighand(p, &flags)) { 1528 ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false); 1529 unlock_task_sighand(p, &flags); 1530 } else 1531 ret = -ESRCH; 1532 } 1533 out_unlock: 1534 rcu_read_unlock(); 1535 return ret; 1536 } 1537 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); 1538 1539 /* 1540 * kill_something_info() interprets pid in interesting ways just like kill(2). 1541 * 1542 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1543 * is probably wrong. Should make it like BSD or SYSV. 1544 */ 1545 1546 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1547 { 1548 int ret; 1549 1550 if (pid > 0) { 1551 rcu_read_lock(); 1552 ret = kill_pid_info(sig, info, find_vpid(pid)); 1553 rcu_read_unlock(); 1554 return ret; 1555 } 1556 1557 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1558 if (pid == INT_MIN) 1559 return -ESRCH; 1560 1561 read_lock(&tasklist_lock); 1562 if (pid != -1) { 1563 ret = __kill_pgrp_info(sig, info, 1564 pid ? find_vpid(-pid) : task_pgrp(current)); 1565 } else { 1566 int retval = 0, count = 0; 1567 struct task_struct * p; 1568 1569 for_each_process(p) { 1570 if (task_pid_vnr(p) > 1 && 1571 !same_thread_group(p, current)) { 1572 int err = group_send_sig_info(sig, info, p, 1573 PIDTYPE_MAX); 1574 ++count; 1575 if (err != -EPERM) 1576 retval = err; 1577 } 1578 } 1579 ret = count ? retval : -ESRCH; 1580 } 1581 read_unlock(&tasklist_lock); 1582 1583 return ret; 1584 } 1585 1586 /* 1587 * These are for backward compatibility with the rest of the kernel source. 1588 */ 1589 1590 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1591 { 1592 /* 1593 * Make sure legacy kernel users don't send in bad values 1594 * (normal paths check this in check_kill_permission). 1595 */ 1596 if (!valid_signal(sig)) 1597 return -EINVAL; 1598 1599 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1600 } 1601 EXPORT_SYMBOL(send_sig_info); 1602 1603 #define __si_special(priv) \ 1604 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1605 1606 int 1607 send_sig(int sig, struct task_struct *p, int priv) 1608 { 1609 return send_sig_info(sig, __si_special(priv), p); 1610 } 1611 EXPORT_SYMBOL(send_sig); 1612 1613 void force_sig(int sig) 1614 { 1615 struct kernel_siginfo info; 1616 1617 clear_siginfo(&info); 1618 info.si_signo = sig; 1619 info.si_errno = 0; 1620 info.si_code = SI_KERNEL; 1621 info.si_pid = 0; 1622 info.si_uid = 0; 1623 force_sig_info(&info); 1624 } 1625 EXPORT_SYMBOL(force_sig); 1626 1627 /* 1628 * When things go south during signal handling, we 1629 * will force a SIGSEGV. And if the signal that caused 1630 * the problem was already a SIGSEGV, we'll want to 1631 * make sure we don't even try to deliver the signal.. 1632 */ 1633 void force_sigsegv(int sig) 1634 { 1635 struct task_struct *p = current; 1636 1637 if (sig == SIGSEGV) { 1638 unsigned long flags; 1639 spin_lock_irqsave(&p->sighand->siglock, flags); 1640 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1641 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1642 } 1643 force_sig(SIGSEGV); 1644 } 1645 1646 int force_sig_fault_to_task(int sig, int code, void __user *addr 1647 ___ARCH_SI_TRAPNO(int trapno) 1648 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1649 , struct task_struct *t) 1650 { 1651 struct kernel_siginfo info; 1652 1653 clear_siginfo(&info); 1654 info.si_signo = sig; 1655 info.si_errno = 0; 1656 info.si_code = code; 1657 info.si_addr = addr; 1658 #ifdef __ARCH_SI_TRAPNO 1659 info.si_trapno = trapno; 1660 #endif 1661 #ifdef __ia64__ 1662 info.si_imm = imm; 1663 info.si_flags = flags; 1664 info.si_isr = isr; 1665 #endif 1666 return force_sig_info_to_task(&info, t); 1667 } 1668 1669 int force_sig_fault(int sig, int code, void __user *addr 1670 ___ARCH_SI_TRAPNO(int trapno) 1671 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)) 1672 { 1673 return force_sig_fault_to_task(sig, code, addr 1674 ___ARCH_SI_TRAPNO(trapno) 1675 ___ARCH_SI_IA64(imm, flags, isr), current); 1676 } 1677 1678 int send_sig_fault(int sig, int code, void __user *addr 1679 ___ARCH_SI_TRAPNO(int trapno) 1680 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1681 , struct task_struct *t) 1682 { 1683 struct kernel_siginfo info; 1684 1685 clear_siginfo(&info); 1686 info.si_signo = sig; 1687 info.si_errno = 0; 1688 info.si_code = code; 1689 info.si_addr = addr; 1690 #ifdef __ARCH_SI_TRAPNO 1691 info.si_trapno = trapno; 1692 #endif 1693 #ifdef __ia64__ 1694 info.si_imm = imm; 1695 info.si_flags = flags; 1696 info.si_isr = isr; 1697 #endif 1698 return send_sig_info(info.si_signo, &info, t); 1699 } 1700 1701 int force_sig_mceerr(int code, void __user *addr, short lsb) 1702 { 1703 struct kernel_siginfo info; 1704 1705 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1706 clear_siginfo(&info); 1707 info.si_signo = SIGBUS; 1708 info.si_errno = 0; 1709 info.si_code = code; 1710 info.si_addr = addr; 1711 info.si_addr_lsb = lsb; 1712 return force_sig_info(&info); 1713 } 1714 1715 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1716 { 1717 struct kernel_siginfo info; 1718 1719 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1720 clear_siginfo(&info); 1721 info.si_signo = SIGBUS; 1722 info.si_errno = 0; 1723 info.si_code = code; 1724 info.si_addr = addr; 1725 info.si_addr_lsb = lsb; 1726 return send_sig_info(info.si_signo, &info, t); 1727 } 1728 EXPORT_SYMBOL(send_sig_mceerr); 1729 1730 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1731 { 1732 struct kernel_siginfo info; 1733 1734 clear_siginfo(&info); 1735 info.si_signo = SIGSEGV; 1736 info.si_errno = 0; 1737 info.si_code = SEGV_BNDERR; 1738 info.si_addr = addr; 1739 info.si_lower = lower; 1740 info.si_upper = upper; 1741 return force_sig_info(&info); 1742 } 1743 1744 #ifdef SEGV_PKUERR 1745 int force_sig_pkuerr(void __user *addr, u32 pkey) 1746 { 1747 struct kernel_siginfo info; 1748 1749 clear_siginfo(&info); 1750 info.si_signo = SIGSEGV; 1751 info.si_errno = 0; 1752 info.si_code = SEGV_PKUERR; 1753 info.si_addr = addr; 1754 info.si_pkey = pkey; 1755 return force_sig_info(&info); 1756 } 1757 #endif 1758 1759 /* For the crazy architectures that include trap information in 1760 * the errno field, instead of an actual errno value. 1761 */ 1762 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1763 { 1764 struct kernel_siginfo info; 1765 1766 clear_siginfo(&info); 1767 info.si_signo = SIGTRAP; 1768 info.si_errno = errno; 1769 info.si_code = TRAP_HWBKPT; 1770 info.si_addr = addr; 1771 return force_sig_info(&info); 1772 } 1773 1774 int kill_pgrp(struct pid *pid, int sig, int priv) 1775 { 1776 int ret; 1777 1778 read_lock(&tasklist_lock); 1779 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1780 read_unlock(&tasklist_lock); 1781 1782 return ret; 1783 } 1784 EXPORT_SYMBOL(kill_pgrp); 1785 1786 int kill_pid(struct pid *pid, int sig, int priv) 1787 { 1788 return kill_pid_info(sig, __si_special(priv), pid); 1789 } 1790 EXPORT_SYMBOL(kill_pid); 1791 1792 /* 1793 * These functions support sending signals using preallocated sigqueue 1794 * structures. This is needed "because realtime applications cannot 1795 * afford to lose notifications of asynchronous events, like timer 1796 * expirations or I/O completions". In the case of POSIX Timers 1797 * we allocate the sigqueue structure from the timer_create. If this 1798 * allocation fails we are able to report the failure to the application 1799 * with an EAGAIN error. 1800 */ 1801 struct sigqueue *sigqueue_alloc(void) 1802 { 1803 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); 1804 1805 if (q) 1806 q->flags |= SIGQUEUE_PREALLOC; 1807 1808 return q; 1809 } 1810 1811 void sigqueue_free(struct sigqueue *q) 1812 { 1813 unsigned long flags; 1814 spinlock_t *lock = ¤t->sighand->siglock; 1815 1816 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1817 /* 1818 * We must hold ->siglock while testing q->list 1819 * to serialize with collect_signal() or with 1820 * __exit_signal()->flush_sigqueue(). 1821 */ 1822 spin_lock_irqsave(lock, flags); 1823 q->flags &= ~SIGQUEUE_PREALLOC; 1824 /* 1825 * If it is queued it will be freed when dequeued, 1826 * like the "regular" sigqueue. 1827 */ 1828 if (!list_empty(&q->list)) 1829 q = NULL; 1830 spin_unlock_irqrestore(lock, flags); 1831 1832 if (q) 1833 __sigqueue_free(q); 1834 } 1835 1836 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) 1837 { 1838 int sig = q->info.si_signo; 1839 struct sigpending *pending; 1840 struct task_struct *t; 1841 unsigned long flags; 1842 int ret, result; 1843 1844 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1845 1846 ret = -1; 1847 rcu_read_lock(); 1848 t = pid_task(pid, type); 1849 if (!t || !likely(lock_task_sighand(t, &flags))) 1850 goto ret; 1851 1852 ret = 1; /* the signal is ignored */ 1853 result = TRACE_SIGNAL_IGNORED; 1854 if (!prepare_signal(sig, t, false)) 1855 goto out; 1856 1857 ret = 0; 1858 if (unlikely(!list_empty(&q->list))) { 1859 /* 1860 * If an SI_TIMER entry is already queue just increment 1861 * the overrun count. 1862 */ 1863 BUG_ON(q->info.si_code != SI_TIMER); 1864 q->info.si_overrun++; 1865 result = TRACE_SIGNAL_ALREADY_PENDING; 1866 goto out; 1867 } 1868 q->info.si_overrun = 0; 1869 1870 signalfd_notify(t, sig); 1871 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1872 list_add_tail(&q->list, &pending->list); 1873 sigaddset(&pending->signal, sig); 1874 complete_signal(sig, t, type); 1875 result = TRACE_SIGNAL_DELIVERED; 1876 out: 1877 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result); 1878 unlock_task_sighand(t, &flags); 1879 ret: 1880 rcu_read_unlock(); 1881 return ret; 1882 } 1883 1884 /* 1885 * Let a parent know about the death of a child. 1886 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1887 * 1888 * Returns true if our parent ignored us and so we've switched to 1889 * self-reaping. 1890 */ 1891 bool do_notify_parent(struct task_struct *tsk, int sig) 1892 { 1893 struct kernel_siginfo info; 1894 unsigned long flags; 1895 struct sighand_struct *psig; 1896 bool autoreap = false; 1897 u64 utime, stime; 1898 1899 BUG_ON(sig == -1); 1900 1901 /* do_notify_parent_cldstop should have been called instead. */ 1902 BUG_ON(task_is_stopped_or_traced(tsk)); 1903 1904 BUG_ON(!tsk->ptrace && 1905 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1906 1907 if (sig != SIGCHLD) { 1908 /* 1909 * This is only possible if parent == real_parent. 1910 * Check if it has changed security domain. 1911 */ 1912 if (tsk->parent_exec_id != tsk->parent->self_exec_id) 1913 sig = SIGCHLD; 1914 } 1915 1916 clear_siginfo(&info); 1917 info.si_signo = sig; 1918 info.si_errno = 0; 1919 /* 1920 * We are under tasklist_lock here so our parent is tied to 1921 * us and cannot change. 1922 * 1923 * task_active_pid_ns will always return the same pid namespace 1924 * until a task passes through release_task. 1925 * 1926 * write_lock() currently calls preempt_disable() which is the 1927 * same as rcu_read_lock(), but according to Oleg, this is not 1928 * correct to rely on this 1929 */ 1930 rcu_read_lock(); 1931 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 1932 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 1933 task_uid(tsk)); 1934 rcu_read_unlock(); 1935 1936 task_cputime(tsk, &utime, &stime); 1937 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 1938 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 1939 1940 info.si_status = tsk->exit_code & 0x7f; 1941 if (tsk->exit_code & 0x80) 1942 info.si_code = CLD_DUMPED; 1943 else if (tsk->exit_code & 0x7f) 1944 info.si_code = CLD_KILLED; 1945 else { 1946 info.si_code = CLD_EXITED; 1947 info.si_status = tsk->exit_code >> 8; 1948 } 1949 1950 psig = tsk->parent->sighand; 1951 spin_lock_irqsave(&psig->siglock, flags); 1952 if (!tsk->ptrace && sig == SIGCHLD && 1953 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1954 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1955 /* 1956 * We are exiting and our parent doesn't care. POSIX.1 1957 * defines special semantics for setting SIGCHLD to SIG_IGN 1958 * or setting the SA_NOCLDWAIT flag: we should be reaped 1959 * automatically and not left for our parent's wait4 call. 1960 * Rather than having the parent do it as a magic kind of 1961 * signal handler, we just set this to tell do_exit that we 1962 * can be cleaned up without becoming a zombie. Note that 1963 * we still call __wake_up_parent in this case, because a 1964 * blocked sys_wait4 might now return -ECHILD. 1965 * 1966 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1967 * is implementation-defined: we do (if you don't want 1968 * it, just use SIG_IGN instead). 1969 */ 1970 autoreap = true; 1971 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1972 sig = 0; 1973 } 1974 if (valid_signal(sig) && sig) 1975 __group_send_sig_info(sig, &info, tsk->parent); 1976 __wake_up_parent(tsk, tsk->parent); 1977 spin_unlock_irqrestore(&psig->siglock, flags); 1978 1979 return autoreap; 1980 } 1981 1982 /** 1983 * do_notify_parent_cldstop - notify parent of stopped/continued state change 1984 * @tsk: task reporting the state change 1985 * @for_ptracer: the notification is for ptracer 1986 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 1987 * 1988 * Notify @tsk's parent that the stopped/continued state has changed. If 1989 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 1990 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 1991 * 1992 * CONTEXT: 1993 * Must be called with tasklist_lock at least read locked. 1994 */ 1995 static void do_notify_parent_cldstop(struct task_struct *tsk, 1996 bool for_ptracer, int why) 1997 { 1998 struct kernel_siginfo info; 1999 unsigned long flags; 2000 struct task_struct *parent; 2001 struct sighand_struct *sighand; 2002 u64 utime, stime; 2003 2004 if (for_ptracer) { 2005 parent = tsk->parent; 2006 } else { 2007 tsk = tsk->group_leader; 2008 parent = tsk->real_parent; 2009 } 2010 2011 clear_siginfo(&info); 2012 info.si_signo = SIGCHLD; 2013 info.si_errno = 0; 2014 /* 2015 * see comment in do_notify_parent() about the following 4 lines 2016 */ 2017 rcu_read_lock(); 2018 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 2019 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 2020 rcu_read_unlock(); 2021 2022 task_cputime(tsk, &utime, &stime); 2023 info.si_utime = nsec_to_clock_t(utime); 2024 info.si_stime = nsec_to_clock_t(stime); 2025 2026 info.si_code = why; 2027 switch (why) { 2028 case CLD_CONTINUED: 2029 info.si_status = SIGCONT; 2030 break; 2031 case CLD_STOPPED: 2032 info.si_status = tsk->signal->group_exit_code & 0x7f; 2033 break; 2034 case CLD_TRAPPED: 2035 info.si_status = tsk->exit_code & 0x7f; 2036 break; 2037 default: 2038 BUG(); 2039 } 2040 2041 sighand = parent->sighand; 2042 spin_lock_irqsave(&sighand->siglock, flags); 2043 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 2044 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 2045 __group_send_sig_info(SIGCHLD, &info, parent); 2046 /* 2047 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 2048 */ 2049 __wake_up_parent(tsk, parent); 2050 spin_unlock_irqrestore(&sighand->siglock, flags); 2051 } 2052 2053 static inline bool may_ptrace_stop(void) 2054 { 2055 if (!likely(current->ptrace)) 2056 return false; 2057 /* 2058 * Are we in the middle of do_coredump? 2059 * If so and our tracer is also part of the coredump stopping 2060 * is a deadlock situation, and pointless because our tracer 2061 * is dead so don't allow us to stop. 2062 * If SIGKILL was already sent before the caller unlocked 2063 * ->siglock we must see ->core_state != NULL. Otherwise it 2064 * is safe to enter schedule(). 2065 * 2066 * This is almost outdated, a task with the pending SIGKILL can't 2067 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported 2068 * after SIGKILL was already dequeued. 2069 */ 2070 if (unlikely(current->mm->core_state) && 2071 unlikely(current->mm == current->parent->mm)) 2072 return false; 2073 2074 return true; 2075 } 2076 2077 /* 2078 * Return non-zero if there is a SIGKILL that should be waking us up. 2079 * Called with the siglock held. 2080 */ 2081 static bool sigkill_pending(struct task_struct *tsk) 2082 { 2083 return sigismember(&tsk->pending.signal, SIGKILL) || 2084 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 2085 } 2086 2087 /* 2088 * This must be called with current->sighand->siglock held. 2089 * 2090 * This should be the path for all ptrace stops. 2091 * We always set current->last_siginfo while stopped here. 2092 * That makes it a way to test a stopped process for 2093 * being ptrace-stopped vs being job-control-stopped. 2094 * 2095 * If we actually decide not to stop at all because the tracer 2096 * is gone, we keep current->exit_code unless clear_code. 2097 */ 2098 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info) 2099 __releases(¤t->sighand->siglock) 2100 __acquires(¤t->sighand->siglock) 2101 { 2102 bool gstop_done = false; 2103 2104 if (arch_ptrace_stop_needed(exit_code, info)) { 2105 /* 2106 * The arch code has something special to do before a 2107 * ptrace stop. This is allowed to block, e.g. for faults 2108 * on user stack pages. We can't keep the siglock while 2109 * calling arch_ptrace_stop, so we must release it now. 2110 * To preserve proper semantics, we must do this before 2111 * any signal bookkeeping like checking group_stop_count. 2112 * Meanwhile, a SIGKILL could come in before we retake the 2113 * siglock. That must prevent us from sleeping in TASK_TRACED. 2114 * So after regaining the lock, we must check for SIGKILL. 2115 */ 2116 spin_unlock_irq(¤t->sighand->siglock); 2117 arch_ptrace_stop(exit_code, info); 2118 spin_lock_irq(¤t->sighand->siglock); 2119 if (sigkill_pending(current)) 2120 return; 2121 } 2122 2123 set_special_state(TASK_TRACED); 2124 2125 /* 2126 * We're committing to trapping. TRACED should be visible before 2127 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2128 * Also, transition to TRACED and updates to ->jobctl should be 2129 * atomic with respect to siglock and should be done after the arch 2130 * hook as siglock is released and regrabbed across it. 2131 * 2132 * TRACER TRACEE 2133 * 2134 * ptrace_attach() 2135 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2136 * do_wait() 2137 * set_current_state() smp_wmb(); 2138 * ptrace_do_wait() 2139 * wait_task_stopped() 2140 * task_stopped_code() 2141 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2142 */ 2143 smp_wmb(); 2144 2145 current->last_siginfo = info; 2146 current->exit_code = exit_code; 2147 2148 /* 2149 * If @why is CLD_STOPPED, we're trapping to participate in a group 2150 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2151 * across siglock relocks since INTERRUPT was scheduled, PENDING 2152 * could be clear now. We act as if SIGCONT is received after 2153 * TASK_TRACED is entered - ignore it. 2154 */ 2155 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2156 gstop_done = task_participate_group_stop(current); 2157 2158 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2159 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2160 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2161 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2162 2163 /* entering a trap, clear TRAPPING */ 2164 task_clear_jobctl_trapping(current); 2165 2166 spin_unlock_irq(¤t->sighand->siglock); 2167 read_lock(&tasklist_lock); 2168 if (may_ptrace_stop()) { 2169 /* 2170 * Notify parents of the stop. 2171 * 2172 * While ptraced, there are two parents - the ptracer and 2173 * the real_parent of the group_leader. The ptracer should 2174 * know about every stop while the real parent is only 2175 * interested in the completion of group stop. The states 2176 * for the two don't interact with each other. Notify 2177 * separately unless they're gonna be duplicates. 2178 */ 2179 do_notify_parent_cldstop(current, true, why); 2180 if (gstop_done && ptrace_reparented(current)) 2181 do_notify_parent_cldstop(current, false, why); 2182 2183 /* 2184 * Don't want to allow preemption here, because 2185 * sys_ptrace() needs this task to be inactive. 2186 * 2187 * XXX: implement read_unlock_no_resched(). 2188 */ 2189 preempt_disable(); 2190 read_unlock(&tasklist_lock); 2191 preempt_enable_no_resched(); 2192 cgroup_enter_frozen(); 2193 freezable_schedule(); 2194 cgroup_leave_frozen(true); 2195 } else { 2196 /* 2197 * By the time we got the lock, our tracer went away. 2198 * Don't drop the lock yet, another tracer may come. 2199 * 2200 * If @gstop_done, the ptracer went away between group stop 2201 * completion and here. During detach, it would have set 2202 * JOBCTL_STOP_PENDING on us and we'll re-enter 2203 * TASK_STOPPED in do_signal_stop() on return, so notifying 2204 * the real parent of the group stop completion is enough. 2205 */ 2206 if (gstop_done) 2207 do_notify_parent_cldstop(current, false, why); 2208 2209 /* tasklist protects us from ptrace_freeze_traced() */ 2210 __set_current_state(TASK_RUNNING); 2211 if (clear_code) 2212 current->exit_code = 0; 2213 read_unlock(&tasklist_lock); 2214 } 2215 2216 /* 2217 * We are back. Now reacquire the siglock before touching 2218 * last_siginfo, so that we are sure to have synchronized with 2219 * any signal-sending on another CPU that wants to examine it. 2220 */ 2221 spin_lock_irq(¤t->sighand->siglock); 2222 current->last_siginfo = NULL; 2223 2224 /* LISTENING can be set only during STOP traps, clear it */ 2225 current->jobctl &= ~JOBCTL_LISTENING; 2226 2227 /* 2228 * Queued signals ignored us while we were stopped for tracing. 2229 * So check for any that we should take before resuming user mode. 2230 * This sets TIF_SIGPENDING, but never clears it. 2231 */ 2232 recalc_sigpending_tsk(current); 2233 } 2234 2235 static void ptrace_do_notify(int signr, int exit_code, int why) 2236 { 2237 kernel_siginfo_t info; 2238 2239 clear_siginfo(&info); 2240 info.si_signo = signr; 2241 info.si_code = exit_code; 2242 info.si_pid = task_pid_vnr(current); 2243 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2244 2245 /* Let the debugger run. */ 2246 ptrace_stop(exit_code, why, 1, &info); 2247 } 2248 2249 void ptrace_notify(int exit_code) 2250 { 2251 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2252 if (unlikely(current->task_works)) 2253 task_work_run(); 2254 2255 spin_lock_irq(¤t->sighand->siglock); 2256 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 2257 spin_unlock_irq(¤t->sighand->siglock); 2258 } 2259 2260 /** 2261 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2262 * @signr: signr causing group stop if initiating 2263 * 2264 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2265 * and participate in it. If already set, participate in the existing 2266 * group stop. If participated in a group stop (and thus slept), %true is 2267 * returned with siglock released. 2268 * 2269 * If ptraced, this function doesn't handle stop itself. Instead, 2270 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2271 * untouched. The caller must ensure that INTERRUPT trap handling takes 2272 * places afterwards. 2273 * 2274 * CONTEXT: 2275 * Must be called with @current->sighand->siglock held, which is released 2276 * on %true return. 2277 * 2278 * RETURNS: 2279 * %false if group stop is already cancelled or ptrace trap is scheduled. 2280 * %true if participated in group stop. 2281 */ 2282 static bool do_signal_stop(int signr) 2283 __releases(¤t->sighand->siglock) 2284 { 2285 struct signal_struct *sig = current->signal; 2286 2287 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2288 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2289 struct task_struct *t; 2290 2291 /* signr will be recorded in task->jobctl for retries */ 2292 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2293 2294 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2295 unlikely(signal_group_exit(sig))) 2296 return false; 2297 /* 2298 * There is no group stop already in progress. We must 2299 * initiate one now. 2300 * 2301 * While ptraced, a task may be resumed while group stop is 2302 * still in effect and then receive a stop signal and 2303 * initiate another group stop. This deviates from the 2304 * usual behavior as two consecutive stop signals can't 2305 * cause two group stops when !ptraced. That is why we 2306 * also check !task_is_stopped(t) below. 2307 * 2308 * The condition can be distinguished by testing whether 2309 * SIGNAL_STOP_STOPPED is already set. Don't generate 2310 * group_exit_code in such case. 2311 * 2312 * This is not necessary for SIGNAL_STOP_CONTINUED because 2313 * an intervening stop signal is required to cause two 2314 * continued events regardless of ptrace. 2315 */ 2316 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2317 sig->group_exit_code = signr; 2318 2319 sig->group_stop_count = 0; 2320 2321 if (task_set_jobctl_pending(current, signr | gstop)) 2322 sig->group_stop_count++; 2323 2324 t = current; 2325 while_each_thread(current, t) { 2326 /* 2327 * Setting state to TASK_STOPPED for a group 2328 * stop is always done with the siglock held, 2329 * so this check has no races. 2330 */ 2331 if (!task_is_stopped(t) && 2332 task_set_jobctl_pending(t, signr | gstop)) { 2333 sig->group_stop_count++; 2334 if (likely(!(t->ptrace & PT_SEIZED))) 2335 signal_wake_up(t, 0); 2336 else 2337 ptrace_trap_notify(t); 2338 } 2339 } 2340 } 2341 2342 if (likely(!current->ptrace)) { 2343 int notify = 0; 2344 2345 /* 2346 * If there are no other threads in the group, or if there 2347 * is a group stop in progress and we are the last to stop, 2348 * report to the parent. 2349 */ 2350 if (task_participate_group_stop(current)) 2351 notify = CLD_STOPPED; 2352 2353 set_special_state(TASK_STOPPED); 2354 spin_unlock_irq(¤t->sighand->siglock); 2355 2356 /* 2357 * Notify the parent of the group stop completion. Because 2358 * we're not holding either the siglock or tasklist_lock 2359 * here, ptracer may attach inbetween; however, this is for 2360 * group stop and should always be delivered to the real 2361 * parent of the group leader. The new ptracer will get 2362 * its notification when this task transitions into 2363 * TASK_TRACED. 2364 */ 2365 if (notify) { 2366 read_lock(&tasklist_lock); 2367 do_notify_parent_cldstop(current, false, notify); 2368 read_unlock(&tasklist_lock); 2369 } 2370 2371 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2372 cgroup_enter_frozen(); 2373 freezable_schedule(); 2374 return true; 2375 } else { 2376 /* 2377 * While ptraced, group stop is handled by STOP trap. 2378 * Schedule it and let the caller deal with it. 2379 */ 2380 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2381 return false; 2382 } 2383 } 2384 2385 /** 2386 * do_jobctl_trap - take care of ptrace jobctl traps 2387 * 2388 * When PT_SEIZED, it's used for both group stop and explicit 2389 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2390 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2391 * the stop signal; otherwise, %SIGTRAP. 2392 * 2393 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2394 * number as exit_code and no siginfo. 2395 * 2396 * CONTEXT: 2397 * Must be called with @current->sighand->siglock held, which may be 2398 * released and re-acquired before returning with intervening sleep. 2399 */ 2400 static void do_jobctl_trap(void) 2401 { 2402 struct signal_struct *signal = current->signal; 2403 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2404 2405 if (current->ptrace & PT_SEIZED) { 2406 if (!signal->group_stop_count && 2407 !(signal->flags & SIGNAL_STOP_STOPPED)) 2408 signr = SIGTRAP; 2409 WARN_ON_ONCE(!signr); 2410 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2411 CLD_STOPPED); 2412 } else { 2413 WARN_ON_ONCE(!signr); 2414 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2415 current->exit_code = 0; 2416 } 2417 } 2418 2419 /** 2420 * do_freezer_trap - handle the freezer jobctl trap 2421 * 2422 * Puts the task into frozen state, if only the task is not about to quit. 2423 * In this case it drops JOBCTL_TRAP_FREEZE. 2424 * 2425 * CONTEXT: 2426 * Must be called with @current->sighand->siglock held, 2427 * which is always released before returning. 2428 */ 2429 static void do_freezer_trap(void) 2430 __releases(¤t->sighand->siglock) 2431 { 2432 /* 2433 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, 2434 * let's make another loop to give it a chance to be handled. 2435 * In any case, we'll return back. 2436 */ 2437 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != 2438 JOBCTL_TRAP_FREEZE) { 2439 spin_unlock_irq(¤t->sighand->siglock); 2440 return; 2441 } 2442 2443 /* 2444 * Now we're sure that there is no pending fatal signal and no 2445 * pending traps. Clear TIF_SIGPENDING to not get out of schedule() 2446 * immediately (if there is a non-fatal signal pending), and 2447 * put the task into sleep. 2448 */ 2449 __set_current_state(TASK_INTERRUPTIBLE); 2450 clear_thread_flag(TIF_SIGPENDING); 2451 spin_unlock_irq(¤t->sighand->siglock); 2452 cgroup_enter_frozen(); 2453 freezable_schedule(); 2454 } 2455 2456 static int ptrace_signal(int signr, kernel_siginfo_t *info) 2457 { 2458 /* 2459 * We do not check sig_kernel_stop(signr) but set this marker 2460 * unconditionally because we do not know whether debugger will 2461 * change signr. This flag has no meaning unless we are going 2462 * to stop after return from ptrace_stop(). In this case it will 2463 * be checked in do_signal_stop(), we should only stop if it was 2464 * not cleared by SIGCONT while we were sleeping. See also the 2465 * comment in dequeue_signal(). 2466 */ 2467 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2468 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2469 2470 /* We're back. Did the debugger cancel the sig? */ 2471 signr = current->exit_code; 2472 if (signr == 0) 2473 return signr; 2474 2475 current->exit_code = 0; 2476 2477 /* 2478 * Update the siginfo structure if the signal has 2479 * changed. If the debugger wanted something 2480 * specific in the siginfo structure then it should 2481 * have updated *info via PTRACE_SETSIGINFO. 2482 */ 2483 if (signr != info->si_signo) { 2484 clear_siginfo(info); 2485 info->si_signo = signr; 2486 info->si_errno = 0; 2487 info->si_code = SI_USER; 2488 rcu_read_lock(); 2489 info->si_pid = task_pid_vnr(current->parent); 2490 info->si_uid = from_kuid_munged(current_user_ns(), 2491 task_uid(current->parent)); 2492 rcu_read_unlock(); 2493 } 2494 2495 /* If the (new) signal is now blocked, requeue it. */ 2496 if (sigismember(¤t->blocked, signr)) { 2497 send_signal(signr, info, current, PIDTYPE_PID); 2498 signr = 0; 2499 } 2500 2501 return signr; 2502 } 2503 2504 bool get_signal(struct ksignal *ksig) 2505 { 2506 struct sighand_struct *sighand = current->sighand; 2507 struct signal_struct *signal = current->signal; 2508 int signr; 2509 2510 if (unlikely(current->task_works)) 2511 task_work_run(); 2512 2513 if (unlikely(uprobe_deny_signal())) 2514 return false; 2515 2516 /* 2517 * Do this once, we can't return to user-mode if freezing() == T. 2518 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2519 * thus do not need another check after return. 2520 */ 2521 try_to_freeze(); 2522 2523 relock: 2524 spin_lock_irq(&sighand->siglock); 2525 /* 2526 * Every stopped thread goes here after wakeup. Check to see if 2527 * we should notify the parent, prepare_signal(SIGCONT) encodes 2528 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2529 */ 2530 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2531 int why; 2532 2533 if (signal->flags & SIGNAL_CLD_CONTINUED) 2534 why = CLD_CONTINUED; 2535 else 2536 why = CLD_STOPPED; 2537 2538 signal->flags &= ~SIGNAL_CLD_MASK; 2539 2540 spin_unlock_irq(&sighand->siglock); 2541 2542 /* 2543 * Notify the parent that we're continuing. This event is 2544 * always per-process and doesn't make whole lot of sense 2545 * for ptracers, who shouldn't consume the state via 2546 * wait(2) either, but, for backward compatibility, notify 2547 * the ptracer of the group leader too unless it's gonna be 2548 * a duplicate. 2549 */ 2550 read_lock(&tasklist_lock); 2551 do_notify_parent_cldstop(current, false, why); 2552 2553 if (ptrace_reparented(current->group_leader)) 2554 do_notify_parent_cldstop(current->group_leader, 2555 true, why); 2556 read_unlock(&tasklist_lock); 2557 2558 goto relock; 2559 } 2560 2561 /* Has this task already been marked for death? */ 2562 if (signal_group_exit(signal)) { 2563 ksig->info.si_signo = signr = SIGKILL; 2564 sigdelset(¤t->pending.signal, SIGKILL); 2565 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, 2566 &sighand->action[SIGKILL - 1]); 2567 recalc_sigpending(); 2568 goto fatal; 2569 } 2570 2571 for (;;) { 2572 struct k_sigaction *ka; 2573 2574 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2575 do_signal_stop(0)) 2576 goto relock; 2577 2578 if (unlikely(current->jobctl & 2579 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { 2580 if (current->jobctl & JOBCTL_TRAP_MASK) { 2581 do_jobctl_trap(); 2582 spin_unlock_irq(&sighand->siglock); 2583 } else if (current->jobctl & JOBCTL_TRAP_FREEZE) 2584 do_freezer_trap(); 2585 2586 goto relock; 2587 } 2588 2589 /* 2590 * If the task is leaving the frozen state, let's update 2591 * cgroup counters and reset the frozen bit. 2592 */ 2593 if (unlikely(cgroup_task_frozen(current))) { 2594 spin_unlock_irq(&sighand->siglock); 2595 cgroup_leave_frozen(false); 2596 goto relock; 2597 } 2598 2599 /* 2600 * Signals generated by the execution of an instruction 2601 * need to be delivered before any other pending signals 2602 * so that the instruction pointer in the signal stack 2603 * frame points to the faulting instruction. 2604 */ 2605 signr = dequeue_synchronous_signal(&ksig->info); 2606 if (!signr) 2607 signr = dequeue_signal(current, ¤t->blocked, &ksig->info); 2608 2609 if (!signr) 2610 break; /* will return 0 */ 2611 2612 if (unlikely(current->ptrace) && signr != SIGKILL) { 2613 signr = ptrace_signal(signr, &ksig->info); 2614 if (!signr) 2615 continue; 2616 } 2617 2618 ka = &sighand->action[signr-1]; 2619 2620 /* Trace actually delivered signals. */ 2621 trace_signal_deliver(signr, &ksig->info, ka); 2622 2623 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2624 continue; 2625 if (ka->sa.sa_handler != SIG_DFL) { 2626 /* Run the handler. */ 2627 ksig->ka = *ka; 2628 2629 if (ka->sa.sa_flags & SA_ONESHOT) 2630 ka->sa.sa_handler = SIG_DFL; 2631 2632 break; /* will return non-zero "signr" value */ 2633 } 2634 2635 /* 2636 * Now we are doing the default action for this signal. 2637 */ 2638 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2639 continue; 2640 2641 /* 2642 * Global init gets no signals it doesn't want. 2643 * Container-init gets no signals it doesn't want from same 2644 * container. 2645 * 2646 * Note that if global/container-init sees a sig_kernel_only() 2647 * signal here, the signal must have been generated internally 2648 * or must have come from an ancestor namespace. In either 2649 * case, the signal cannot be dropped. 2650 */ 2651 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2652 !sig_kernel_only(signr)) 2653 continue; 2654 2655 if (sig_kernel_stop(signr)) { 2656 /* 2657 * The default action is to stop all threads in 2658 * the thread group. The job control signals 2659 * do nothing in an orphaned pgrp, but SIGSTOP 2660 * always works. Note that siglock needs to be 2661 * dropped during the call to is_orphaned_pgrp() 2662 * because of lock ordering with tasklist_lock. 2663 * This allows an intervening SIGCONT to be posted. 2664 * We need to check for that and bail out if necessary. 2665 */ 2666 if (signr != SIGSTOP) { 2667 spin_unlock_irq(&sighand->siglock); 2668 2669 /* signals can be posted during this window */ 2670 2671 if (is_current_pgrp_orphaned()) 2672 goto relock; 2673 2674 spin_lock_irq(&sighand->siglock); 2675 } 2676 2677 if (likely(do_signal_stop(ksig->info.si_signo))) { 2678 /* It released the siglock. */ 2679 goto relock; 2680 } 2681 2682 /* 2683 * We didn't actually stop, due to a race 2684 * with SIGCONT or something like that. 2685 */ 2686 continue; 2687 } 2688 2689 fatal: 2690 spin_unlock_irq(&sighand->siglock); 2691 if (unlikely(cgroup_task_frozen(current))) 2692 cgroup_leave_frozen(true); 2693 2694 /* 2695 * Anything else is fatal, maybe with a core dump. 2696 */ 2697 current->flags |= PF_SIGNALED; 2698 2699 if (sig_kernel_coredump(signr)) { 2700 if (print_fatal_signals) 2701 print_fatal_signal(ksig->info.si_signo); 2702 proc_coredump_connector(current); 2703 /* 2704 * If it was able to dump core, this kills all 2705 * other threads in the group and synchronizes with 2706 * their demise. If we lost the race with another 2707 * thread getting here, it set group_exit_code 2708 * first and our do_group_exit call below will use 2709 * that value and ignore the one we pass it. 2710 */ 2711 do_coredump(&ksig->info); 2712 } 2713 2714 /* 2715 * Death signals, no core dump. 2716 */ 2717 do_group_exit(ksig->info.si_signo); 2718 /* NOTREACHED */ 2719 } 2720 spin_unlock_irq(&sighand->siglock); 2721 2722 ksig->sig = signr; 2723 return ksig->sig > 0; 2724 } 2725 2726 /** 2727 * signal_delivered - 2728 * @ksig: kernel signal struct 2729 * @stepping: nonzero if debugger single-step or block-step in use 2730 * 2731 * This function should be called when a signal has successfully been 2732 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2733 * is always blocked, and the signal itself is blocked unless %SA_NODEFER 2734 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2735 */ 2736 static void signal_delivered(struct ksignal *ksig, int stepping) 2737 { 2738 sigset_t blocked; 2739 2740 /* A signal was successfully delivered, and the 2741 saved sigmask was stored on the signal frame, 2742 and will be restored by sigreturn. So we can 2743 simply clear the restore sigmask flag. */ 2744 clear_restore_sigmask(); 2745 2746 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2747 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2748 sigaddset(&blocked, ksig->sig); 2749 set_current_blocked(&blocked); 2750 tracehook_signal_handler(stepping); 2751 } 2752 2753 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2754 { 2755 if (failed) 2756 force_sigsegv(ksig->sig); 2757 else 2758 signal_delivered(ksig, stepping); 2759 } 2760 2761 /* 2762 * It could be that complete_signal() picked us to notify about the 2763 * group-wide signal. Other threads should be notified now to take 2764 * the shared signals in @which since we will not. 2765 */ 2766 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2767 { 2768 sigset_t retarget; 2769 struct task_struct *t; 2770 2771 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2772 if (sigisemptyset(&retarget)) 2773 return; 2774 2775 t = tsk; 2776 while_each_thread(tsk, t) { 2777 if (t->flags & PF_EXITING) 2778 continue; 2779 2780 if (!has_pending_signals(&retarget, &t->blocked)) 2781 continue; 2782 /* Remove the signals this thread can handle. */ 2783 sigandsets(&retarget, &retarget, &t->blocked); 2784 2785 if (!signal_pending(t)) 2786 signal_wake_up(t, 0); 2787 2788 if (sigisemptyset(&retarget)) 2789 break; 2790 } 2791 } 2792 2793 void exit_signals(struct task_struct *tsk) 2794 { 2795 int group_stop = 0; 2796 sigset_t unblocked; 2797 2798 /* 2799 * @tsk is about to have PF_EXITING set - lock out users which 2800 * expect stable threadgroup. 2801 */ 2802 cgroup_threadgroup_change_begin(tsk); 2803 2804 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 2805 tsk->flags |= PF_EXITING; 2806 cgroup_threadgroup_change_end(tsk); 2807 return; 2808 } 2809 2810 spin_lock_irq(&tsk->sighand->siglock); 2811 /* 2812 * From now this task is not visible for group-wide signals, 2813 * see wants_signal(), do_signal_stop(). 2814 */ 2815 tsk->flags |= PF_EXITING; 2816 2817 cgroup_threadgroup_change_end(tsk); 2818 2819 if (!signal_pending(tsk)) 2820 goto out; 2821 2822 unblocked = tsk->blocked; 2823 signotset(&unblocked); 2824 retarget_shared_pending(tsk, &unblocked); 2825 2826 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2827 task_participate_group_stop(tsk)) 2828 group_stop = CLD_STOPPED; 2829 out: 2830 spin_unlock_irq(&tsk->sighand->siglock); 2831 2832 /* 2833 * If group stop has completed, deliver the notification. This 2834 * should always go to the real parent of the group leader. 2835 */ 2836 if (unlikely(group_stop)) { 2837 read_lock(&tasklist_lock); 2838 do_notify_parent_cldstop(tsk, false, group_stop); 2839 read_unlock(&tasklist_lock); 2840 } 2841 } 2842 2843 /* 2844 * System call entry points. 2845 */ 2846 2847 /** 2848 * sys_restart_syscall - restart a system call 2849 */ 2850 SYSCALL_DEFINE0(restart_syscall) 2851 { 2852 struct restart_block *restart = ¤t->restart_block; 2853 return restart->fn(restart); 2854 } 2855 2856 long do_no_restart_syscall(struct restart_block *param) 2857 { 2858 return -EINTR; 2859 } 2860 2861 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 2862 { 2863 if (signal_pending(tsk) && !thread_group_empty(tsk)) { 2864 sigset_t newblocked; 2865 /* A set of now blocked but previously unblocked signals. */ 2866 sigandnsets(&newblocked, newset, ¤t->blocked); 2867 retarget_shared_pending(tsk, &newblocked); 2868 } 2869 tsk->blocked = *newset; 2870 recalc_sigpending(); 2871 } 2872 2873 /** 2874 * set_current_blocked - change current->blocked mask 2875 * @newset: new mask 2876 * 2877 * It is wrong to change ->blocked directly, this helper should be used 2878 * to ensure the process can't miss a shared signal we are going to block. 2879 */ 2880 void set_current_blocked(sigset_t *newset) 2881 { 2882 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2883 __set_current_blocked(newset); 2884 } 2885 2886 void __set_current_blocked(const sigset_t *newset) 2887 { 2888 struct task_struct *tsk = current; 2889 2890 /* 2891 * In case the signal mask hasn't changed, there is nothing we need 2892 * to do. The current->blocked shouldn't be modified by other task. 2893 */ 2894 if (sigequalsets(&tsk->blocked, newset)) 2895 return; 2896 2897 spin_lock_irq(&tsk->sighand->siglock); 2898 __set_task_blocked(tsk, newset); 2899 spin_unlock_irq(&tsk->sighand->siglock); 2900 } 2901 2902 /* 2903 * This is also useful for kernel threads that want to temporarily 2904 * (or permanently) block certain signals. 2905 * 2906 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2907 * interface happily blocks "unblockable" signals like SIGKILL 2908 * and friends. 2909 */ 2910 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2911 { 2912 struct task_struct *tsk = current; 2913 sigset_t newset; 2914 2915 /* Lockless, only current can change ->blocked, never from irq */ 2916 if (oldset) 2917 *oldset = tsk->blocked; 2918 2919 switch (how) { 2920 case SIG_BLOCK: 2921 sigorsets(&newset, &tsk->blocked, set); 2922 break; 2923 case SIG_UNBLOCK: 2924 sigandnsets(&newset, &tsk->blocked, set); 2925 break; 2926 case SIG_SETMASK: 2927 newset = *set; 2928 break; 2929 default: 2930 return -EINVAL; 2931 } 2932 2933 __set_current_blocked(&newset); 2934 return 0; 2935 } 2936 EXPORT_SYMBOL(sigprocmask); 2937 2938 /* 2939 * The api helps set app-provided sigmasks. 2940 * 2941 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 2942 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 2943 */ 2944 int set_user_sigmask(const sigset_t __user *usigmask, sigset_t *set, 2945 sigset_t *oldset, size_t sigsetsize) 2946 { 2947 if (!usigmask) 2948 return 0; 2949 2950 if (sigsetsize != sizeof(sigset_t)) 2951 return -EINVAL; 2952 if (copy_from_user(set, usigmask, sizeof(sigset_t))) 2953 return -EFAULT; 2954 2955 *oldset = current->blocked; 2956 set_current_blocked(set); 2957 2958 return 0; 2959 } 2960 EXPORT_SYMBOL(set_user_sigmask); 2961 2962 #ifdef CONFIG_COMPAT 2963 int set_compat_user_sigmask(const compat_sigset_t __user *usigmask, 2964 sigset_t *set, sigset_t *oldset, 2965 size_t sigsetsize) 2966 { 2967 if (!usigmask) 2968 return 0; 2969 2970 if (sigsetsize != sizeof(compat_sigset_t)) 2971 return -EINVAL; 2972 if (get_compat_sigset(set, usigmask)) 2973 return -EFAULT; 2974 2975 *oldset = current->blocked; 2976 set_current_blocked(set); 2977 2978 return 0; 2979 } 2980 EXPORT_SYMBOL(set_compat_user_sigmask); 2981 #endif 2982 2983 /* 2984 * restore_user_sigmask: 2985 * usigmask: sigmask passed in from userland. 2986 * sigsaved: saved sigmask when the syscall started and changed the sigmask to 2987 * usigmask. 2988 * 2989 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 2990 * epoll_pwait where a new sigmask is passed in from userland for the syscalls. 2991 */ 2992 void restore_user_sigmask(const void __user *usigmask, sigset_t *sigsaved, 2993 bool interrupted) 2994 { 2995 2996 if (!usigmask) 2997 return; 2998 /* 2999 * When signals are pending, do not restore them here. 3000 * Restoring sigmask here can lead to delivering signals that the above 3001 * syscalls are intended to block because of the sigmask passed in. 3002 */ 3003 if (interrupted) { 3004 current->saved_sigmask = *sigsaved; 3005 set_restore_sigmask(); 3006 return; 3007 } 3008 3009 /* 3010 * This is needed because the fast syscall return path does not restore 3011 * saved_sigmask when signals are not pending. 3012 */ 3013 set_current_blocked(sigsaved); 3014 } 3015 EXPORT_SYMBOL(restore_user_sigmask); 3016 3017 /** 3018 * sys_rt_sigprocmask - change the list of currently blocked signals 3019 * @how: whether to add, remove, or set signals 3020 * @nset: stores pending signals 3021 * @oset: previous value of signal mask if non-null 3022 * @sigsetsize: size of sigset_t type 3023 */ 3024 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 3025 sigset_t __user *, oset, size_t, sigsetsize) 3026 { 3027 sigset_t old_set, new_set; 3028 int error; 3029 3030 /* XXX: Don't preclude handling different sized sigset_t's. */ 3031 if (sigsetsize != sizeof(sigset_t)) 3032 return -EINVAL; 3033 3034 old_set = current->blocked; 3035 3036 if (nset) { 3037 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 3038 return -EFAULT; 3039 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3040 3041 error = sigprocmask(how, &new_set, NULL); 3042 if (error) 3043 return error; 3044 } 3045 3046 if (oset) { 3047 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 3048 return -EFAULT; 3049 } 3050 3051 return 0; 3052 } 3053 3054 #ifdef CONFIG_COMPAT 3055 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 3056 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 3057 { 3058 sigset_t old_set = current->blocked; 3059 3060 /* XXX: Don't preclude handling different sized sigset_t's. */ 3061 if (sigsetsize != sizeof(sigset_t)) 3062 return -EINVAL; 3063 3064 if (nset) { 3065 sigset_t new_set; 3066 int error; 3067 if (get_compat_sigset(&new_set, nset)) 3068 return -EFAULT; 3069 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3070 3071 error = sigprocmask(how, &new_set, NULL); 3072 if (error) 3073 return error; 3074 } 3075 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 3076 } 3077 #endif 3078 3079 static void do_sigpending(sigset_t *set) 3080 { 3081 spin_lock_irq(¤t->sighand->siglock); 3082 sigorsets(set, ¤t->pending.signal, 3083 ¤t->signal->shared_pending.signal); 3084 spin_unlock_irq(¤t->sighand->siglock); 3085 3086 /* Outside the lock because only this thread touches it. */ 3087 sigandsets(set, ¤t->blocked, set); 3088 } 3089 3090 /** 3091 * sys_rt_sigpending - examine a pending signal that has been raised 3092 * while blocked 3093 * @uset: stores pending signals 3094 * @sigsetsize: size of sigset_t type or larger 3095 */ 3096 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 3097 { 3098 sigset_t set; 3099 3100 if (sigsetsize > sizeof(*uset)) 3101 return -EINVAL; 3102 3103 do_sigpending(&set); 3104 3105 if (copy_to_user(uset, &set, sigsetsize)) 3106 return -EFAULT; 3107 3108 return 0; 3109 } 3110 3111 #ifdef CONFIG_COMPAT 3112 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 3113 compat_size_t, sigsetsize) 3114 { 3115 sigset_t set; 3116 3117 if (sigsetsize > sizeof(*uset)) 3118 return -EINVAL; 3119 3120 do_sigpending(&set); 3121 3122 return put_compat_sigset(uset, &set, sigsetsize); 3123 } 3124 #endif 3125 3126 static const struct { 3127 unsigned char limit, layout; 3128 } sig_sicodes[] = { 3129 [SIGILL] = { NSIGILL, SIL_FAULT }, 3130 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 3131 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 3132 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 3133 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 3134 #if defined(SIGEMT) 3135 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 3136 #endif 3137 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 3138 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 3139 [SIGSYS] = { NSIGSYS, SIL_SYS }, 3140 }; 3141 3142 static bool known_siginfo_layout(unsigned sig, int si_code) 3143 { 3144 if (si_code == SI_KERNEL) 3145 return true; 3146 else if ((si_code > SI_USER)) { 3147 if (sig_specific_sicodes(sig)) { 3148 if (si_code <= sig_sicodes[sig].limit) 3149 return true; 3150 } 3151 else if (si_code <= NSIGPOLL) 3152 return true; 3153 } 3154 else if (si_code >= SI_DETHREAD) 3155 return true; 3156 else if (si_code == SI_ASYNCNL) 3157 return true; 3158 return false; 3159 } 3160 3161 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3162 { 3163 enum siginfo_layout layout = SIL_KILL; 3164 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3165 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3166 (si_code <= sig_sicodes[sig].limit)) { 3167 layout = sig_sicodes[sig].layout; 3168 /* Handle the exceptions */ 3169 if ((sig == SIGBUS) && 3170 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3171 layout = SIL_FAULT_MCEERR; 3172 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3173 layout = SIL_FAULT_BNDERR; 3174 #ifdef SEGV_PKUERR 3175 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3176 layout = SIL_FAULT_PKUERR; 3177 #endif 3178 } 3179 else if (si_code <= NSIGPOLL) 3180 layout = SIL_POLL; 3181 } else { 3182 if (si_code == SI_TIMER) 3183 layout = SIL_TIMER; 3184 else if (si_code == SI_SIGIO) 3185 layout = SIL_POLL; 3186 else if (si_code < 0) 3187 layout = SIL_RT; 3188 } 3189 return layout; 3190 } 3191 3192 static inline char __user *si_expansion(const siginfo_t __user *info) 3193 { 3194 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3195 } 3196 3197 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3198 { 3199 char __user *expansion = si_expansion(to); 3200 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3201 return -EFAULT; 3202 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3203 return -EFAULT; 3204 return 0; 3205 } 3206 3207 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3208 const siginfo_t __user *from) 3209 { 3210 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3211 char __user *expansion = si_expansion(from); 3212 char buf[SI_EXPANSION_SIZE]; 3213 int i; 3214 /* 3215 * An unknown si_code might need more than 3216 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3217 * extra bytes are 0. This guarantees copy_siginfo_to_user 3218 * will return this data to userspace exactly. 3219 */ 3220 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3221 return -EFAULT; 3222 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3223 if (buf[i] != 0) 3224 return -E2BIG; 3225 } 3226 } 3227 return 0; 3228 } 3229 3230 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3231 const siginfo_t __user *from) 3232 { 3233 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3234 return -EFAULT; 3235 to->si_signo = signo; 3236 return post_copy_siginfo_from_user(to, from); 3237 } 3238 3239 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3240 { 3241 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3242 return -EFAULT; 3243 return post_copy_siginfo_from_user(to, from); 3244 } 3245 3246 #ifdef CONFIG_COMPAT 3247 int copy_siginfo_to_user32(struct compat_siginfo __user *to, 3248 const struct kernel_siginfo *from) 3249 #if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION) 3250 { 3251 return __copy_siginfo_to_user32(to, from, in_x32_syscall()); 3252 } 3253 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3254 const struct kernel_siginfo *from, bool x32_ABI) 3255 #endif 3256 { 3257 struct compat_siginfo new; 3258 memset(&new, 0, sizeof(new)); 3259 3260 new.si_signo = from->si_signo; 3261 new.si_errno = from->si_errno; 3262 new.si_code = from->si_code; 3263 switch(siginfo_layout(from->si_signo, from->si_code)) { 3264 case SIL_KILL: 3265 new.si_pid = from->si_pid; 3266 new.si_uid = from->si_uid; 3267 break; 3268 case SIL_TIMER: 3269 new.si_tid = from->si_tid; 3270 new.si_overrun = from->si_overrun; 3271 new.si_int = from->si_int; 3272 break; 3273 case SIL_POLL: 3274 new.si_band = from->si_band; 3275 new.si_fd = from->si_fd; 3276 break; 3277 case SIL_FAULT: 3278 new.si_addr = ptr_to_compat(from->si_addr); 3279 #ifdef __ARCH_SI_TRAPNO 3280 new.si_trapno = from->si_trapno; 3281 #endif 3282 break; 3283 case SIL_FAULT_MCEERR: 3284 new.si_addr = ptr_to_compat(from->si_addr); 3285 #ifdef __ARCH_SI_TRAPNO 3286 new.si_trapno = from->si_trapno; 3287 #endif 3288 new.si_addr_lsb = from->si_addr_lsb; 3289 break; 3290 case SIL_FAULT_BNDERR: 3291 new.si_addr = ptr_to_compat(from->si_addr); 3292 #ifdef __ARCH_SI_TRAPNO 3293 new.si_trapno = from->si_trapno; 3294 #endif 3295 new.si_lower = ptr_to_compat(from->si_lower); 3296 new.si_upper = ptr_to_compat(from->si_upper); 3297 break; 3298 case SIL_FAULT_PKUERR: 3299 new.si_addr = ptr_to_compat(from->si_addr); 3300 #ifdef __ARCH_SI_TRAPNO 3301 new.si_trapno = from->si_trapno; 3302 #endif 3303 new.si_pkey = from->si_pkey; 3304 break; 3305 case SIL_CHLD: 3306 new.si_pid = from->si_pid; 3307 new.si_uid = from->si_uid; 3308 new.si_status = from->si_status; 3309 #ifdef CONFIG_X86_X32_ABI 3310 if (x32_ABI) { 3311 new._sifields._sigchld_x32._utime = from->si_utime; 3312 new._sifields._sigchld_x32._stime = from->si_stime; 3313 } else 3314 #endif 3315 { 3316 new.si_utime = from->si_utime; 3317 new.si_stime = from->si_stime; 3318 } 3319 break; 3320 case SIL_RT: 3321 new.si_pid = from->si_pid; 3322 new.si_uid = from->si_uid; 3323 new.si_int = from->si_int; 3324 break; 3325 case SIL_SYS: 3326 new.si_call_addr = ptr_to_compat(from->si_call_addr); 3327 new.si_syscall = from->si_syscall; 3328 new.si_arch = from->si_arch; 3329 break; 3330 } 3331 3332 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3333 return -EFAULT; 3334 3335 return 0; 3336 } 3337 3338 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3339 const struct compat_siginfo *from) 3340 { 3341 clear_siginfo(to); 3342 to->si_signo = from->si_signo; 3343 to->si_errno = from->si_errno; 3344 to->si_code = from->si_code; 3345 switch(siginfo_layout(from->si_signo, from->si_code)) { 3346 case SIL_KILL: 3347 to->si_pid = from->si_pid; 3348 to->si_uid = from->si_uid; 3349 break; 3350 case SIL_TIMER: 3351 to->si_tid = from->si_tid; 3352 to->si_overrun = from->si_overrun; 3353 to->si_int = from->si_int; 3354 break; 3355 case SIL_POLL: 3356 to->si_band = from->si_band; 3357 to->si_fd = from->si_fd; 3358 break; 3359 case SIL_FAULT: 3360 to->si_addr = compat_ptr(from->si_addr); 3361 #ifdef __ARCH_SI_TRAPNO 3362 to->si_trapno = from->si_trapno; 3363 #endif 3364 break; 3365 case SIL_FAULT_MCEERR: 3366 to->si_addr = compat_ptr(from->si_addr); 3367 #ifdef __ARCH_SI_TRAPNO 3368 to->si_trapno = from->si_trapno; 3369 #endif 3370 to->si_addr_lsb = from->si_addr_lsb; 3371 break; 3372 case SIL_FAULT_BNDERR: 3373 to->si_addr = compat_ptr(from->si_addr); 3374 #ifdef __ARCH_SI_TRAPNO 3375 to->si_trapno = from->si_trapno; 3376 #endif 3377 to->si_lower = compat_ptr(from->si_lower); 3378 to->si_upper = compat_ptr(from->si_upper); 3379 break; 3380 case SIL_FAULT_PKUERR: 3381 to->si_addr = compat_ptr(from->si_addr); 3382 #ifdef __ARCH_SI_TRAPNO 3383 to->si_trapno = from->si_trapno; 3384 #endif 3385 to->si_pkey = from->si_pkey; 3386 break; 3387 case SIL_CHLD: 3388 to->si_pid = from->si_pid; 3389 to->si_uid = from->si_uid; 3390 to->si_status = from->si_status; 3391 #ifdef CONFIG_X86_X32_ABI 3392 if (in_x32_syscall()) { 3393 to->si_utime = from->_sifields._sigchld_x32._utime; 3394 to->si_stime = from->_sifields._sigchld_x32._stime; 3395 } else 3396 #endif 3397 { 3398 to->si_utime = from->si_utime; 3399 to->si_stime = from->si_stime; 3400 } 3401 break; 3402 case SIL_RT: 3403 to->si_pid = from->si_pid; 3404 to->si_uid = from->si_uid; 3405 to->si_int = from->si_int; 3406 break; 3407 case SIL_SYS: 3408 to->si_call_addr = compat_ptr(from->si_call_addr); 3409 to->si_syscall = from->si_syscall; 3410 to->si_arch = from->si_arch; 3411 break; 3412 } 3413 return 0; 3414 } 3415 3416 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3417 const struct compat_siginfo __user *ufrom) 3418 { 3419 struct compat_siginfo from; 3420 3421 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3422 return -EFAULT; 3423 3424 from.si_signo = signo; 3425 return post_copy_siginfo_from_user32(to, &from); 3426 } 3427 3428 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3429 const struct compat_siginfo __user *ufrom) 3430 { 3431 struct compat_siginfo from; 3432 3433 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3434 return -EFAULT; 3435 3436 return post_copy_siginfo_from_user32(to, &from); 3437 } 3438 #endif /* CONFIG_COMPAT */ 3439 3440 /** 3441 * do_sigtimedwait - wait for queued signals specified in @which 3442 * @which: queued signals to wait for 3443 * @info: if non-null, the signal's siginfo is returned here 3444 * @ts: upper bound on process time suspension 3445 */ 3446 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3447 const struct timespec64 *ts) 3448 { 3449 ktime_t *to = NULL, timeout = KTIME_MAX; 3450 struct task_struct *tsk = current; 3451 sigset_t mask = *which; 3452 int sig, ret = 0; 3453 3454 if (ts) { 3455 if (!timespec64_valid(ts)) 3456 return -EINVAL; 3457 timeout = timespec64_to_ktime(*ts); 3458 to = &timeout; 3459 } 3460 3461 /* 3462 * Invert the set of allowed signals to get those we want to block. 3463 */ 3464 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3465 signotset(&mask); 3466 3467 spin_lock_irq(&tsk->sighand->siglock); 3468 sig = dequeue_signal(tsk, &mask, info); 3469 if (!sig && timeout) { 3470 /* 3471 * None ready, temporarily unblock those we're interested 3472 * while we are sleeping in so that we'll be awakened when 3473 * they arrive. Unblocking is always fine, we can avoid 3474 * set_current_blocked(). 3475 */ 3476 tsk->real_blocked = tsk->blocked; 3477 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3478 recalc_sigpending(); 3479 spin_unlock_irq(&tsk->sighand->siglock); 3480 3481 __set_current_state(TASK_INTERRUPTIBLE); 3482 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3483 HRTIMER_MODE_REL); 3484 spin_lock_irq(&tsk->sighand->siglock); 3485 __set_task_blocked(tsk, &tsk->real_blocked); 3486 sigemptyset(&tsk->real_blocked); 3487 sig = dequeue_signal(tsk, &mask, info); 3488 } 3489 spin_unlock_irq(&tsk->sighand->siglock); 3490 3491 if (sig) 3492 return sig; 3493 return ret ? -EINTR : -EAGAIN; 3494 } 3495 3496 /** 3497 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3498 * in @uthese 3499 * @uthese: queued signals to wait for 3500 * @uinfo: if non-null, the signal's siginfo is returned here 3501 * @uts: upper bound on process time suspension 3502 * @sigsetsize: size of sigset_t type 3503 */ 3504 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3505 siginfo_t __user *, uinfo, 3506 const struct __kernel_timespec __user *, uts, 3507 size_t, sigsetsize) 3508 { 3509 sigset_t these; 3510 struct timespec64 ts; 3511 kernel_siginfo_t info; 3512 int ret; 3513 3514 /* XXX: Don't preclude handling different sized sigset_t's. */ 3515 if (sigsetsize != sizeof(sigset_t)) 3516 return -EINVAL; 3517 3518 if (copy_from_user(&these, uthese, sizeof(these))) 3519 return -EFAULT; 3520 3521 if (uts) { 3522 if (get_timespec64(&ts, uts)) 3523 return -EFAULT; 3524 } 3525 3526 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3527 3528 if (ret > 0 && uinfo) { 3529 if (copy_siginfo_to_user(uinfo, &info)) 3530 ret = -EFAULT; 3531 } 3532 3533 return ret; 3534 } 3535 3536 #ifdef CONFIG_COMPAT_32BIT_TIME 3537 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3538 siginfo_t __user *, uinfo, 3539 const struct old_timespec32 __user *, uts, 3540 size_t, sigsetsize) 3541 { 3542 sigset_t these; 3543 struct timespec64 ts; 3544 kernel_siginfo_t info; 3545 int ret; 3546 3547 if (sigsetsize != sizeof(sigset_t)) 3548 return -EINVAL; 3549 3550 if (copy_from_user(&these, uthese, sizeof(these))) 3551 return -EFAULT; 3552 3553 if (uts) { 3554 if (get_old_timespec32(&ts, uts)) 3555 return -EFAULT; 3556 } 3557 3558 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3559 3560 if (ret > 0 && uinfo) { 3561 if (copy_siginfo_to_user(uinfo, &info)) 3562 ret = -EFAULT; 3563 } 3564 3565 return ret; 3566 } 3567 #endif 3568 3569 #ifdef CONFIG_COMPAT 3570 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3571 struct compat_siginfo __user *, uinfo, 3572 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3573 { 3574 sigset_t s; 3575 struct timespec64 t; 3576 kernel_siginfo_t info; 3577 long ret; 3578 3579 if (sigsetsize != sizeof(sigset_t)) 3580 return -EINVAL; 3581 3582 if (get_compat_sigset(&s, uthese)) 3583 return -EFAULT; 3584 3585 if (uts) { 3586 if (get_timespec64(&t, uts)) 3587 return -EFAULT; 3588 } 3589 3590 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3591 3592 if (ret > 0 && uinfo) { 3593 if (copy_siginfo_to_user32(uinfo, &info)) 3594 ret = -EFAULT; 3595 } 3596 3597 return ret; 3598 } 3599 3600 #ifdef CONFIG_COMPAT_32BIT_TIME 3601 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3602 struct compat_siginfo __user *, uinfo, 3603 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3604 { 3605 sigset_t s; 3606 struct timespec64 t; 3607 kernel_siginfo_t info; 3608 long ret; 3609 3610 if (sigsetsize != sizeof(sigset_t)) 3611 return -EINVAL; 3612 3613 if (get_compat_sigset(&s, uthese)) 3614 return -EFAULT; 3615 3616 if (uts) { 3617 if (get_old_timespec32(&t, uts)) 3618 return -EFAULT; 3619 } 3620 3621 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3622 3623 if (ret > 0 && uinfo) { 3624 if (copy_siginfo_to_user32(uinfo, &info)) 3625 ret = -EFAULT; 3626 } 3627 3628 return ret; 3629 } 3630 #endif 3631 #endif 3632 3633 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info) 3634 { 3635 clear_siginfo(info); 3636 info->si_signo = sig; 3637 info->si_errno = 0; 3638 info->si_code = SI_USER; 3639 info->si_pid = task_tgid_vnr(current); 3640 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3641 } 3642 3643 /** 3644 * sys_kill - send a signal to a process 3645 * @pid: the PID of the process 3646 * @sig: signal to be sent 3647 */ 3648 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3649 { 3650 struct kernel_siginfo info; 3651 3652 prepare_kill_siginfo(sig, &info); 3653 3654 return kill_something_info(sig, &info, pid); 3655 } 3656 3657 /* 3658 * Verify that the signaler and signalee either are in the same pid namespace 3659 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3660 * namespace. 3661 */ 3662 static bool access_pidfd_pidns(struct pid *pid) 3663 { 3664 struct pid_namespace *active = task_active_pid_ns(current); 3665 struct pid_namespace *p = ns_of_pid(pid); 3666 3667 for (;;) { 3668 if (!p) 3669 return false; 3670 if (p == active) 3671 break; 3672 p = p->parent; 3673 } 3674 3675 return true; 3676 } 3677 3678 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info) 3679 { 3680 #ifdef CONFIG_COMPAT 3681 /* 3682 * Avoid hooking up compat syscalls and instead handle necessary 3683 * conversions here. Note, this is a stop-gap measure and should not be 3684 * considered a generic solution. 3685 */ 3686 if (in_compat_syscall()) 3687 return copy_siginfo_from_user32( 3688 kinfo, (struct compat_siginfo __user *)info); 3689 #endif 3690 return copy_siginfo_from_user(kinfo, info); 3691 } 3692 3693 static struct pid *pidfd_to_pid(const struct file *file) 3694 { 3695 if (file->f_op == &pidfd_fops) 3696 return file->private_data; 3697 3698 return tgid_pidfd_to_pid(file); 3699 } 3700 3701 /** 3702 * sys_pidfd_send_signal - Signal a process through a pidfd 3703 * @pidfd: file descriptor of the process 3704 * @sig: signal to send 3705 * @info: signal info 3706 * @flags: future flags 3707 * 3708 * The syscall currently only signals via PIDTYPE_PID which covers 3709 * kill(<positive-pid>, <signal>. It does not signal threads or process 3710 * groups. 3711 * In order to extend the syscall to threads and process groups the @flags 3712 * argument should be used. In essence, the @flags argument will determine 3713 * what is signaled and not the file descriptor itself. Put in other words, 3714 * grouping is a property of the flags argument not a property of the file 3715 * descriptor. 3716 * 3717 * Return: 0 on success, negative errno on failure 3718 */ 3719 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 3720 siginfo_t __user *, info, unsigned int, flags) 3721 { 3722 int ret; 3723 struct fd f; 3724 struct pid *pid; 3725 kernel_siginfo_t kinfo; 3726 3727 /* Enforce flags be set to 0 until we add an extension. */ 3728 if (flags) 3729 return -EINVAL; 3730 3731 f = fdget(pidfd); 3732 if (!f.file) 3733 return -EBADF; 3734 3735 /* Is this a pidfd? */ 3736 pid = pidfd_to_pid(f.file); 3737 if (IS_ERR(pid)) { 3738 ret = PTR_ERR(pid); 3739 goto err; 3740 } 3741 3742 ret = -EINVAL; 3743 if (!access_pidfd_pidns(pid)) 3744 goto err; 3745 3746 if (info) { 3747 ret = copy_siginfo_from_user_any(&kinfo, info); 3748 if (unlikely(ret)) 3749 goto err; 3750 3751 ret = -EINVAL; 3752 if (unlikely(sig != kinfo.si_signo)) 3753 goto err; 3754 3755 /* Only allow sending arbitrary signals to yourself. */ 3756 ret = -EPERM; 3757 if ((task_pid(current) != pid) && 3758 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) 3759 goto err; 3760 } else { 3761 prepare_kill_siginfo(sig, &kinfo); 3762 } 3763 3764 ret = kill_pid_info(sig, &kinfo, pid); 3765 3766 err: 3767 fdput(f); 3768 return ret; 3769 } 3770 3771 static int 3772 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 3773 { 3774 struct task_struct *p; 3775 int error = -ESRCH; 3776 3777 rcu_read_lock(); 3778 p = find_task_by_vpid(pid); 3779 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 3780 error = check_kill_permission(sig, info, p); 3781 /* 3782 * The null signal is a permissions and process existence 3783 * probe. No signal is actually delivered. 3784 */ 3785 if (!error && sig) { 3786 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 3787 /* 3788 * If lock_task_sighand() failed we pretend the task 3789 * dies after receiving the signal. The window is tiny, 3790 * and the signal is private anyway. 3791 */ 3792 if (unlikely(error == -ESRCH)) 3793 error = 0; 3794 } 3795 } 3796 rcu_read_unlock(); 3797 3798 return error; 3799 } 3800 3801 static int do_tkill(pid_t tgid, pid_t pid, int sig) 3802 { 3803 struct kernel_siginfo info; 3804 3805 clear_siginfo(&info); 3806 info.si_signo = sig; 3807 info.si_errno = 0; 3808 info.si_code = SI_TKILL; 3809 info.si_pid = task_tgid_vnr(current); 3810 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3811 3812 return do_send_specific(tgid, pid, sig, &info); 3813 } 3814 3815 /** 3816 * sys_tgkill - send signal to one specific thread 3817 * @tgid: the thread group ID of the thread 3818 * @pid: the PID of the thread 3819 * @sig: signal to be sent 3820 * 3821 * This syscall also checks the @tgid and returns -ESRCH even if the PID 3822 * exists but it's not belonging to the target process anymore. This 3823 * method solves the problem of threads exiting and PIDs getting reused. 3824 */ 3825 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 3826 { 3827 /* This is only valid for single tasks */ 3828 if (pid <= 0 || tgid <= 0) 3829 return -EINVAL; 3830 3831 return do_tkill(tgid, pid, sig); 3832 } 3833 3834 /** 3835 * sys_tkill - send signal to one specific task 3836 * @pid: the PID of the task 3837 * @sig: signal to be sent 3838 * 3839 * Send a signal to only one task, even if it's a CLONE_THREAD task. 3840 */ 3841 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 3842 { 3843 /* This is only valid for single tasks */ 3844 if (pid <= 0) 3845 return -EINVAL; 3846 3847 return do_tkill(0, pid, sig); 3848 } 3849 3850 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 3851 { 3852 /* Not even root can pretend to send signals from the kernel. 3853 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3854 */ 3855 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3856 (task_pid_vnr(current) != pid)) 3857 return -EPERM; 3858 3859 /* POSIX.1b doesn't mention process groups. */ 3860 return kill_proc_info(sig, info, pid); 3861 } 3862 3863 /** 3864 * sys_rt_sigqueueinfo - send signal information to a signal 3865 * @pid: the PID of the thread 3866 * @sig: signal to be sent 3867 * @uinfo: signal info to be sent 3868 */ 3869 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 3870 siginfo_t __user *, uinfo) 3871 { 3872 kernel_siginfo_t info; 3873 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 3874 if (unlikely(ret)) 3875 return ret; 3876 return do_rt_sigqueueinfo(pid, sig, &info); 3877 } 3878 3879 #ifdef CONFIG_COMPAT 3880 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 3881 compat_pid_t, pid, 3882 int, sig, 3883 struct compat_siginfo __user *, uinfo) 3884 { 3885 kernel_siginfo_t info; 3886 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 3887 if (unlikely(ret)) 3888 return ret; 3889 return do_rt_sigqueueinfo(pid, sig, &info); 3890 } 3891 #endif 3892 3893 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 3894 { 3895 /* This is only valid for single tasks */ 3896 if (pid <= 0 || tgid <= 0) 3897 return -EINVAL; 3898 3899 /* Not even root can pretend to send signals from the kernel. 3900 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3901 */ 3902 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3903 (task_pid_vnr(current) != pid)) 3904 return -EPERM; 3905 3906 return do_send_specific(tgid, pid, sig, info); 3907 } 3908 3909 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 3910 siginfo_t __user *, uinfo) 3911 { 3912 kernel_siginfo_t info; 3913 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 3914 if (unlikely(ret)) 3915 return ret; 3916 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3917 } 3918 3919 #ifdef CONFIG_COMPAT 3920 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 3921 compat_pid_t, tgid, 3922 compat_pid_t, pid, 3923 int, sig, 3924 struct compat_siginfo __user *, uinfo) 3925 { 3926 kernel_siginfo_t info; 3927 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 3928 if (unlikely(ret)) 3929 return ret; 3930 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3931 } 3932 #endif 3933 3934 /* 3935 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 3936 */ 3937 void kernel_sigaction(int sig, __sighandler_t action) 3938 { 3939 spin_lock_irq(¤t->sighand->siglock); 3940 current->sighand->action[sig - 1].sa.sa_handler = action; 3941 if (action == SIG_IGN) { 3942 sigset_t mask; 3943 3944 sigemptyset(&mask); 3945 sigaddset(&mask, sig); 3946 3947 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 3948 flush_sigqueue_mask(&mask, ¤t->pending); 3949 recalc_sigpending(); 3950 } 3951 spin_unlock_irq(¤t->sighand->siglock); 3952 } 3953 EXPORT_SYMBOL(kernel_sigaction); 3954 3955 void __weak sigaction_compat_abi(struct k_sigaction *act, 3956 struct k_sigaction *oact) 3957 { 3958 } 3959 3960 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 3961 { 3962 struct task_struct *p = current, *t; 3963 struct k_sigaction *k; 3964 sigset_t mask; 3965 3966 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 3967 return -EINVAL; 3968 3969 k = &p->sighand->action[sig-1]; 3970 3971 spin_lock_irq(&p->sighand->siglock); 3972 if (oact) 3973 *oact = *k; 3974 3975 sigaction_compat_abi(act, oact); 3976 3977 if (act) { 3978 sigdelsetmask(&act->sa.sa_mask, 3979 sigmask(SIGKILL) | sigmask(SIGSTOP)); 3980 *k = *act; 3981 /* 3982 * POSIX 3.3.1.3: 3983 * "Setting a signal action to SIG_IGN for a signal that is 3984 * pending shall cause the pending signal to be discarded, 3985 * whether or not it is blocked." 3986 * 3987 * "Setting a signal action to SIG_DFL for a signal that is 3988 * pending and whose default action is to ignore the signal 3989 * (for example, SIGCHLD), shall cause the pending signal to 3990 * be discarded, whether or not it is blocked" 3991 */ 3992 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 3993 sigemptyset(&mask); 3994 sigaddset(&mask, sig); 3995 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 3996 for_each_thread(p, t) 3997 flush_sigqueue_mask(&mask, &t->pending); 3998 } 3999 } 4000 4001 spin_unlock_irq(&p->sighand->siglock); 4002 return 0; 4003 } 4004 4005 static int 4006 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 4007 size_t min_ss_size) 4008 { 4009 struct task_struct *t = current; 4010 4011 if (oss) { 4012 memset(oss, 0, sizeof(stack_t)); 4013 oss->ss_sp = (void __user *) t->sas_ss_sp; 4014 oss->ss_size = t->sas_ss_size; 4015 oss->ss_flags = sas_ss_flags(sp) | 4016 (current->sas_ss_flags & SS_FLAG_BITS); 4017 } 4018 4019 if (ss) { 4020 void __user *ss_sp = ss->ss_sp; 4021 size_t ss_size = ss->ss_size; 4022 unsigned ss_flags = ss->ss_flags; 4023 int ss_mode; 4024 4025 if (unlikely(on_sig_stack(sp))) 4026 return -EPERM; 4027 4028 ss_mode = ss_flags & ~SS_FLAG_BITS; 4029 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 4030 ss_mode != 0)) 4031 return -EINVAL; 4032 4033 if (ss_mode == SS_DISABLE) { 4034 ss_size = 0; 4035 ss_sp = NULL; 4036 } else { 4037 if (unlikely(ss_size < min_ss_size)) 4038 return -ENOMEM; 4039 } 4040 4041 t->sas_ss_sp = (unsigned long) ss_sp; 4042 t->sas_ss_size = ss_size; 4043 t->sas_ss_flags = ss_flags; 4044 } 4045 return 0; 4046 } 4047 4048 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 4049 { 4050 stack_t new, old; 4051 int err; 4052 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 4053 return -EFAULT; 4054 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 4055 current_user_stack_pointer(), 4056 MINSIGSTKSZ); 4057 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 4058 err = -EFAULT; 4059 return err; 4060 } 4061 4062 int restore_altstack(const stack_t __user *uss) 4063 { 4064 stack_t new; 4065 if (copy_from_user(&new, uss, sizeof(stack_t))) 4066 return -EFAULT; 4067 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 4068 MINSIGSTKSZ); 4069 /* squash all but EFAULT for now */ 4070 return 0; 4071 } 4072 4073 int __save_altstack(stack_t __user *uss, unsigned long sp) 4074 { 4075 struct task_struct *t = current; 4076 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 4077 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4078 __put_user(t->sas_ss_size, &uss->ss_size); 4079 if (err) 4080 return err; 4081 if (t->sas_ss_flags & SS_AUTODISARM) 4082 sas_ss_reset(t); 4083 return 0; 4084 } 4085 4086 #ifdef CONFIG_COMPAT 4087 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 4088 compat_stack_t __user *uoss_ptr) 4089 { 4090 stack_t uss, uoss; 4091 int ret; 4092 4093 if (uss_ptr) { 4094 compat_stack_t uss32; 4095 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 4096 return -EFAULT; 4097 uss.ss_sp = compat_ptr(uss32.ss_sp); 4098 uss.ss_flags = uss32.ss_flags; 4099 uss.ss_size = uss32.ss_size; 4100 } 4101 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 4102 compat_user_stack_pointer(), 4103 COMPAT_MINSIGSTKSZ); 4104 if (ret >= 0 && uoss_ptr) { 4105 compat_stack_t old; 4106 memset(&old, 0, sizeof(old)); 4107 old.ss_sp = ptr_to_compat(uoss.ss_sp); 4108 old.ss_flags = uoss.ss_flags; 4109 old.ss_size = uoss.ss_size; 4110 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 4111 ret = -EFAULT; 4112 } 4113 return ret; 4114 } 4115 4116 COMPAT_SYSCALL_DEFINE2(sigaltstack, 4117 const compat_stack_t __user *, uss_ptr, 4118 compat_stack_t __user *, uoss_ptr) 4119 { 4120 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 4121 } 4122 4123 int compat_restore_altstack(const compat_stack_t __user *uss) 4124 { 4125 int err = do_compat_sigaltstack(uss, NULL); 4126 /* squash all but -EFAULT for now */ 4127 return err == -EFAULT ? err : 0; 4128 } 4129 4130 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 4131 { 4132 int err; 4133 struct task_struct *t = current; 4134 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 4135 &uss->ss_sp) | 4136 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4137 __put_user(t->sas_ss_size, &uss->ss_size); 4138 if (err) 4139 return err; 4140 if (t->sas_ss_flags & SS_AUTODISARM) 4141 sas_ss_reset(t); 4142 return 0; 4143 } 4144 #endif 4145 4146 #ifdef __ARCH_WANT_SYS_SIGPENDING 4147 4148 /** 4149 * sys_sigpending - examine pending signals 4150 * @uset: where mask of pending signal is returned 4151 */ 4152 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4153 { 4154 sigset_t set; 4155 4156 if (sizeof(old_sigset_t) > sizeof(*uset)) 4157 return -EINVAL; 4158 4159 do_sigpending(&set); 4160 4161 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4162 return -EFAULT; 4163 4164 return 0; 4165 } 4166 4167 #ifdef CONFIG_COMPAT 4168 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4169 { 4170 sigset_t set; 4171 4172 do_sigpending(&set); 4173 4174 return put_user(set.sig[0], set32); 4175 } 4176 #endif 4177 4178 #endif 4179 4180 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 4181 /** 4182 * sys_sigprocmask - examine and change blocked signals 4183 * @how: whether to add, remove, or set signals 4184 * @nset: signals to add or remove (if non-null) 4185 * @oset: previous value of signal mask if non-null 4186 * 4187 * Some platforms have their own version with special arguments; 4188 * others support only sys_rt_sigprocmask. 4189 */ 4190 4191 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4192 old_sigset_t __user *, oset) 4193 { 4194 old_sigset_t old_set, new_set; 4195 sigset_t new_blocked; 4196 4197 old_set = current->blocked.sig[0]; 4198 4199 if (nset) { 4200 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4201 return -EFAULT; 4202 4203 new_blocked = current->blocked; 4204 4205 switch (how) { 4206 case SIG_BLOCK: 4207 sigaddsetmask(&new_blocked, new_set); 4208 break; 4209 case SIG_UNBLOCK: 4210 sigdelsetmask(&new_blocked, new_set); 4211 break; 4212 case SIG_SETMASK: 4213 new_blocked.sig[0] = new_set; 4214 break; 4215 default: 4216 return -EINVAL; 4217 } 4218 4219 set_current_blocked(&new_blocked); 4220 } 4221 4222 if (oset) { 4223 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4224 return -EFAULT; 4225 } 4226 4227 return 0; 4228 } 4229 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4230 4231 #ifndef CONFIG_ODD_RT_SIGACTION 4232 /** 4233 * sys_rt_sigaction - alter an action taken by a process 4234 * @sig: signal to be sent 4235 * @act: new sigaction 4236 * @oact: used to save the previous sigaction 4237 * @sigsetsize: size of sigset_t type 4238 */ 4239 SYSCALL_DEFINE4(rt_sigaction, int, sig, 4240 const struct sigaction __user *, act, 4241 struct sigaction __user *, oact, 4242 size_t, sigsetsize) 4243 { 4244 struct k_sigaction new_sa, old_sa; 4245 int ret; 4246 4247 /* XXX: Don't preclude handling different sized sigset_t's. */ 4248 if (sigsetsize != sizeof(sigset_t)) 4249 return -EINVAL; 4250 4251 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4252 return -EFAULT; 4253 4254 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4255 if (ret) 4256 return ret; 4257 4258 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4259 return -EFAULT; 4260 4261 return 0; 4262 } 4263 #ifdef CONFIG_COMPAT 4264 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4265 const struct compat_sigaction __user *, act, 4266 struct compat_sigaction __user *, oact, 4267 compat_size_t, sigsetsize) 4268 { 4269 struct k_sigaction new_ka, old_ka; 4270 #ifdef __ARCH_HAS_SA_RESTORER 4271 compat_uptr_t restorer; 4272 #endif 4273 int ret; 4274 4275 /* XXX: Don't preclude handling different sized sigset_t's. */ 4276 if (sigsetsize != sizeof(compat_sigset_t)) 4277 return -EINVAL; 4278 4279 if (act) { 4280 compat_uptr_t handler; 4281 ret = get_user(handler, &act->sa_handler); 4282 new_ka.sa.sa_handler = compat_ptr(handler); 4283 #ifdef __ARCH_HAS_SA_RESTORER 4284 ret |= get_user(restorer, &act->sa_restorer); 4285 new_ka.sa.sa_restorer = compat_ptr(restorer); 4286 #endif 4287 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4288 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4289 if (ret) 4290 return -EFAULT; 4291 } 4292 4293 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4294 if (!ret && oact) { 4295 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4296 &oact->sa_handler); 4297 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4298 sizeof(oact->sa_mask)); 4299 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4300 #ifdef __ARCH_HAS_SA_RESTORER 4301 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4302 &oact->sa_restorer); 4303 #endif 4304 } 4305 return ret; 4306 } 4307 #endif 4308 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4309 4310 #ifdef CONFIG_OLD_SIGACTION 4311 SYSCALL_DEFINE3(sigaction, int, sig, 4312 const struct old_sigaction __user *, act, 4313 struct old_sigaction __user *, oact) 4314 { 4315 struct k_sigaction new_ka, old_ka; 4316 int ret; 4317 4318 if (act) { 4319 old_sigset_t mask; 4320 if (!access_ok(act, sizeof(*act)) || 4321 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4322 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4323 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4324 __get_user(mask, &act->sa_mask)) 4325 return -EFAULT; 4326 #ifdef __ARCH_HAS_KA_RESTORER 4327 new_ka.ka_restorer = NULL; 4328 #endif 4329 siginitset(&new_ka.sa.sa_mask, mask); 4330 } 4331 4332 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4333 4334 if (!ret && oact) { 4335 if (!access_ok(oact, sizeof(*oact)) || 4336 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4337 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4338 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4339 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4340 return -EFAULT; 4341 } 4342 4343 return ret; 4344 } 4345 #endif 4346 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4347 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4348 const struct compat_old_sigaction __user *, act, 4349 struct compat_old_sigaction __user *, oact) 4350 { 4351 struct k_sigaction new_ka, old_ka; 4352 int ret; 4353 compat_old_sigset_t mask; 4354 compat_uptr_t handler, restorer; 4355 4356 if (act) { 4357 if (!access_ok(act, sizeof(*act)) || 4358 __get_user(handler, &act->sa_handler) || 4359 __get_user(restorer, &act->sa_restorer) || 4360 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4361 __get_user(mask, &act->sa_mask)) 4362 return -EFAULT; 4363 4364 #ifdef __ARCH_HAS_KA_RESTORER 4365 new_ka.ka_restorer = NULL; 4366 #endif 4367 new_ka.sa.sa_handler = compat_ptr(handler); 4368 new_ka.sa.sa_restorer = compat_ptr(restorer); 4369 siginitset(&new_ka.sa.sa_mask, mask); 4370 } 4371 4372 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4373 4374 if (!ret && oact) { 4375 if (!access_ok(oact, sizeof(*oact)) || 4376 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4377 &oact->sa_handler) || 4378 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4379 &oact->sa_restorer) || 4380 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4381 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4382 return -EFAULT; 4383 } 4384 return ret; 4385 } 4386 #endif 4387 4388 #ifdef CONFIG_SGETMASK_SYSCALL 4389 4390 /* 4391 * For backwards compatibility. Functionality superseded by sigprocmask. 4392 */ 4393 SYSCALL_DEFINE0(sgetmask) 4394 { 4395 /* SMP safe */ 4396 return current->blocked.sig[0]; 4397 } 4398 4399 SYSCALL_DEFINE1(ssetmask, int, newmask) 4400 { 4401 int old = current->blocked.sig[0]; 4402 sigset_t newset; 4403 4404 siginitset(&newset, newmask); 4405 set_current_blocked(&newset); 4406 4407 return old; 4408 } 4409 #endif /* CONFIG_SGETMASK_SYSCALL */ 4410 4411 #ifdef __ARCH_WANT_SYS_SIGNAL 4412 /* 4413 * For backwards compatibility. Functionality superseded by sigaction. 4414 */ 4415 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4416 { 4417 struct k_sigaction new_sa, old_sa; 4418 int ret; 4419 4420 new_sa.sa.sa_handler = handler; 4421 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4422 sigemptyset(&new_sa.sa.sa_mask); 4423 4424 ret = do_sigaction(sig, &new_sa, &old_sa); 4425 4426 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4427 } 4428 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4429 4430 #ifdef __ARCH_WANT_SYS_PAUSE 4431 4432 SYSCALL_DEFINE0(pause) 4433 { 4434 while (!signal_pending(current)) { 4435 __set_current_state(TASK_INTERRUPTIBLE); 4436 schedule(); 4437 } 4438 return -ERESTARTNOHAND; 4439 } 4440 4441 #endif 4442 4443 static int sigsuspend(sigset_t *set) 4444 { 4445 current->saved_sigmask = current->blocked; 4446 set_current_blocked(set); 4447 4448 while (!signal_pending(current)) { 4449 __set_current_state(TASK_INTERRUPTIBLE); 4450 schedule(); 4451 } 4452 set_restore_sigmask(); 4453 return -ERESTARTNOHAND; 4454 } 4455 4456 /** 4457 * sys_rt_sigsuspend - replace the signal mask for a value with the 4458 * @unewset value until a signal is received 4459 * @unewset: new signal mask value 4460 * @sigsetsize: size of sigset_t type 4461 */ 4462 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4463 { 4464 sigset_t newset; 4465 4466 /* XXX: Don't preclude handling different sized sigset_t's. */ 4467 if (sigsetsize != sizeof(sigset_t)) 4468 return -EINVAL; 4469 4470 if (copy_from_user(&newset, unewset, sizeof(newset))) 4471 return -EFAULT; 4472 return sigsuspend(&newset); 4473 } 4474 4475 #ifdef CONFIG_COMPAT 4476 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4477 { 4478 sigset_t newset; 4479 4480 /* XXX: Don't preclude handling different sized sigset_t's. */ 4481 if (sigsetsize != sizeof(sigset_t)) 4482 return -EINVAL; 4483 4484 if (get_compat_sigset(&newset, unewset)) 4485 return -EFAULT; 4486 return sigsuspend(&newset); 4487 } 4488 #endif 4489 4490 #ifdef CONFIG_OLD_SIGSUSPEND 4491 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4492 { 4493 sigset_t blocked; 4494 siginitset(&blocked, mask); 4495 return sigsuspend(&blocked); 4496 } 4497 #endif 4498 #ifdef CONFIG_OLD_SIGSUSPEND3 4499 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4500 { 4501 sigset_t blocked; 4502 siginitset(&blocked, mask); 4503 return sigsuspend(&blocked); 4504 } 4505 #endif 4506 4507 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4508 { 4509 return NULL; 4510 } 4511 4512 static inline void siginfo_buildtime_checks(void) 4513 { 4514 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4515 4516 /* Verify the offsets in the two siginfos match */ 4517 #define CHECK_OFFSET(field) \ 4518 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4519 4520 /* kill */ 4521 CHECK_OFFSET(si_pid); 4522 CHECK_OFFSET(si_uid); 4523 4524 /* timer */ 4525 CHECK_OFFSET(si_tid); 4526 CHECK_OFFSET(si_overrun); 4527 CHECK_OFFSET(si_value); 4528 4529 /* rt */ 4530 CHECK_OFFSET(si_pid); 4531 CHECK_OFFSET(si_uid); 4532 CHECK_OFFSET(si_value); 4533 4534 /* sigchld */ 4535 CHECK_OFFSET(si_pid); 4536 CHECK_OFFSET(si_uid); 4537 CHECK_OFFSET(si_status); 4538 CHECK_OFFSET(si_utime); 4539 CHECK_OFFSET(si_stime); 4540 4541 /* sigfault */ 4542 CHECK_OFFSET(si_addr); 4543 CHECK_OFFSET(si_addr_lsb); 4544 CHECK_OFFSET(si_lower); 4545 CHECK_OFFSET(si_upper); 4546 CHECK_OFFSET(si_pkey); 4547 4548 /* sigpoll */ 4549 CHECK_OFFSET(si_band); 4550 CHECK_OFFSET(si_fd); 4551 4552 /* sigsys */ 4553 CHECK_OFFSET(si_call_addr); 4554 CHECK_OFFSET(si_syscall); 4555 CHECK_OFFSET(si_arch); 4556 #undef CHECK_OFFSET 4557 4558 /* usb asyncio */ 4559 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != 4560 offsetof(struct siginfo, si_addr)); 4561 if (sizeof(int) == sizeof(void __user *)) { 4562 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != 4563 sizeof(void __user *)); 4564 } else { 4565 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + 4566 sizeof_field(struct siginfo, si_uid)) != 4567 sizeof(void __user *)); 4568 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != 4569 offsetof(struct siginfo, si_uid)); 4570 } 4571 #ifdef CONFIG_COMPAT 4572 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != 4573 offsetof(struct compat_siginfo, si_addr)); 4574 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4575 sizeof(compat_uptr_t)); 4576 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4577 sizeof_field(struct siginfo, si_pid)); 4578 #endif 4579 } 4580 4581 void __init signals_init(void) 4582 { 4583 siginfo_buildtime_checks(); 4584 4585 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 4586 } 4587 4588 #ifdef CONFIG_KGDB_KDB 4589 #include <linux/kdb.h> 4590 /* 4591 * kdb_send_sig - Allows kdb to send signals without exposing 4592 * signal internals. This function checks if the required locks are 4593 * available before calling the main signal code, to avoid kdb 4594 * deadlocks. 4595 */ 4596 void kdb_send_sig(struct task_struct *t, int sig) 4597 { 4598 static struct task_struct *kdb_prev_t; 4599 int new_t, ret; 4600 if (!spin_trylock(&t->sighand->siglock)) { 4601 kdb_printf("Can't do kill command now.\n" 4602 "The sigmask lock is held somewhere else in " 4603 "kernel, try again later\n"); 4604 return; 4605 } 4606 new_t = kdb_prev_t != t; 4607 kdb_prev_t = t; 4608 if (t->state != TASK_RUNNING && new_t) { 4609 spin_unlock(&t->sighand->siglock); 4610 kdb_printf("Process is not RUNNING, sending a signal from " 4611 "kdb risks deadlock\n" 4612 "on the run queue locks. " 4613 "The signal has _not_ been sent.\n" 4614 "Reissue the kill command if you want to risk " 4615 "the deadlock.\n"); 4616 return; 4617 } 4618 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 4619 spin_unlock(&t->sighand->siglock); 4620 if (ret) 4621 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4622 sig, t->pid); 4623 else 4624 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4625 } 4626 #endif /* CONFIG_KGDB_KDB */ 4627