1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/signal.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 8 * 9 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 10 * Changes to use preallocated sigqueue structures 11 * to allow signals to be sent reliably. 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/user.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/sched/cputime.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/mm.h> 26 #include <linux/proc_fs.h> 27 #include <linux/tty.h> 28 #include <linux/binfmts.h> 29 #include <linux/coredump.h> 30 #include <linux/security.h> 31 #include <linux/syscalls.h> 32 #include <linux/ptrace.h> 33 #include <linux/signal.h> 34 #include <linux/signalfd.h> 35 #include <linux/ratelimit.h> 36 #include <linux/task_work.h> 37 #include <linux/capability.h> 38 #include <linux/freezer.h> 39 #include <linux/pid_namespace.h> 40 #include <linux/nsproxy.h> 41 #include <linux/user_namespace.h> 42 #include <linux/uprobes.h> 43 #include <linux/compat.h> 44 #include <linux/cn_proc.h> 45 #include <linux/compiler.h> 46 #include <linux/posix-timers.h> 47 #include <linux/cgroup.h> 48 #include <linux/audit.h> 49 #include <linux/sysctl.h> 50 #include <uapi/linux/pidfd.h> 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/signal.h> 54 55 #include <asm/param.h> 56 #include <linux/uaccess.h> 57 #include <asm/unistd.h> 58 #include <asm/siginfo.h> 59 #include <asm/cacheflush.h> 60 #include <asm/syscall.h> /* for syscall_get_* */ 61 62 #include "time/posix-timers.h" 63 64 /* 65 * SLAB caches for signal bits. 66 */ 67 68 static struct kmem_cache *sigqueue_cachep; 69 70 int print_fatal_signals __read_mostly; 71 72 static void __user *sig_handler(struct task_struct *t, int sig) 73 { 74 return t->sighand->action[sig - 1].sa.sa_handler; 75 } 76 77 static inline bool sig_handler_ignored(void __user *handler, int sig) 78 { 79 /* Is it explicitly or implicitly ignored? */ 80 return handler == SIG_IGN || 81 (handler == SIG_DFL && sig_kernel_ignore(sig)); 82 } 83 84 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 85 { 86 void __user *handler; 87 88 handler = sig_handler(t, sig); 89 90 /* SIGKILL and SIGSTOP may not be sent to the global init */ 91 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 92 return true; 93 94 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 95 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 96 return true; 97 98 /* Only allow kernel generated signals to this kthread */ 99 if (unlikely((t->flags & PF_KTHREAD) && 100 (handler == SIG_KTHREAD_KERNEL) && !force)) 101 return true; 102 103 return sig_handler_ignored(handler, sig); 104 } 105 106 static bool sig_ignored(struct task_struct *t, int sig, bool force) 107 { 108 /* 109 * Blocked signals are never ignored, since the 110 * signal handler may change by the time it is 111 * unblocked. 112 */ 113 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 114 return false; 115 116 /* 117 * Tracers may want to know about even ignored signal unless it 118 * is SIGKILL which can't be reported anyway but can be ignored 119 * by SIGNAL_UNKILLABLE task. 120 */ 121 if (t->ptrace && sig != SIGKILL) 122 return false; 123 124 return sig_task_ignored(t, sig, force); 125 } 126 127 /* 128 * Re-calculate pending state from the set of locally pending 129 * signals, globally pending signals, and blocked signals. 130 */ 131 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 132 { 133 unsigned long ready; 134 long i; 135 136 switch (_NSIG_WORDS) { 137 default: 138 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 139 ready |= signal->sig[i] &~ blocked->sig[i]; 140 break; 141 142 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 143 ready |= signal->sig[2] &~ blocked->sig[2]; 144 ready |= signal->sig[1] &~ blocked->sig[1]; 145 ready |= signal->sig[0] &~ blocked->sig[0]; 146 break; 147 148 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 149 ready |= signal->sig[0] &~ blocked->sig[0]; 150 break; 151 152 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 153 } 154 return ready != 0; 155 } 156 157 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 158 159 static bool recalc_sigpending_tsk(struct task_struct *t) 160 { 161 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || 162 PENDING(&t->pending, &t->blocked) || 163 PENDING(&t->signal->shared_pending, &t->blocked) || 164 cgroup_task_frozen(t)) { 165 set_tsk_thread_flag(t, TIF_SIGPENDING); 166 return true; 167 } 168 169 /* 170 * We must never clear the flag in another thread, or in current 171 * when it's possible the current syscall is returning -ERESTART*. 172 * So we don't clear it here, and only callers who know they should do. 173 */ 174 return false; 175 } 176 177 void recalc_sigpending(void) 178 { 179 if (!recalc_sigpending_tsk(current) && !freezing(current)) { 180 if (unlikely(test_thread_flag(TIF_SIGPENDING))) 181 clear_thread_flag(TIF_SIGPENDING); 182 } 183 } 184 EXPORT_SYMBOL(recalc_sigpending); 185 186 void calculate_sigpending(void) 187 { 188 /* Have any signals or users of TIF_SIGPENDING been delayed 189 * until after fork? 190 */ 191 spin_lock_irq(¤t->sighand->siglock); 192 set_tsk_thread_flag(current, TIF_SIGPENDING); 193 recalc_sigpending(); 194 spin_unlock_irq(¤t->sighand->siglock); 195 } 196 197 /* Given the mask, find the first available signal that should be serviced. */ 198 199 #define SYNCHRONOUS_MASK \ 200 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 201 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 202 203 int next_signal(struct sigpending *pending, sigset_t *mask) 204 { 205 unsigned long i, *s, *m, x; 206 int sig = 0; 207 208 s = pending->signal.sig; 209 m = mask->sig; 210 211 /* 212 * Handle the first word specially: it contains the 213 * synchronous signals that need to be dequeued first. 214 */ 215 x = *s &~ *m; 216 if (x) { 217 if (x & SYNCHRONOUS_MASK) 218 x &= SYNCHRONOUS_MASK; 219 sig = ffz(~x) + 1; 220 return sig; 221 } 222 223 switch (_NSIG_WORDS) { 224 default: 225 for (i = 1; i < _NSIG_WORDS; ++i) { 226 x = *++s &~ *++m; 227 if (!x) 228 continue; 229 sig = ffz(~x) + i*_NSIG_BPW + 1; 230 break; 231 } 232 break; 233 234 case 2: 235 x = s[1] &~ m[1]; 236 if (!x) 237 break; 238 sig = ffz(~x) + _NSIG_BPW + 1; 239 break; 240 241 case 1: 242 /* Nothing to do */ 243 break; 244 } 245 246 return sig; 247 } 248 249 static inline void print_dropped_signal(int sig) 250 { 251 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 252 253 if (!print_fatal_signals) 254 return; 255 256 if (!__ratelimit(&ratelimit_state)) 257 return; 258 259 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 260 current->comm, current->pid, sig); 261 } 262 263 /** 264 * task_set_jobctl_pending - set jobctl pending bits 265 * @task: target task 266 * @mask: pending bits to set 267 * 268 * Clear @mask from @task->jobctl. @mask must be subset of 269 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 270 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 271 * cleared. If @task is already being killed or exiting, this function 272 * becomes noop. 273 * 274 * CONTEXT: 275 * Must be called with @task->sighand->siglock held. 276 * 277 * RETURNS: 278 * %true if @mask is set, %false if made noop because @task was dying. 279 */ 280 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 281 { 282 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 283 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 284 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 285 286 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 287 return false; 288 289 if (mask & JOBCTL_STOP_SIGMASK) 290 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 291 292 task->jobctl |= mask; 293 return true; 294 } 295 296 /** 297 * task_clear_jobctl_trapping - clear jobctl trapping bit 298 * @task: target task 299 * 300 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 301 * Clear it and wake up the ptracer. Note that we don't need any further 302 * locking. @task->siglock guarantees that @task->parent points to the 303 * ptracer. 304 * 305 * CONTEXT: 306 * Must be called with @task->sighand->siglock held. 307 */ 308 void task_clear_jobctl_trapping(struct task_struct *task) 309 { 310 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 311 task->jobctl &= ~JOBCTL_TRAPPING; 312 smp_mb(); /* advised by wake_up_bit() */ 313 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 314 } 315 } 316 317 /** 318 * task_clear_jobctl_pending - clear jobctl pending bits 319 * @task: target task 320 * @mask: pending bits to clear 321 * 322 * Clear @mask from @task->jobctl. @mask must be subset of 323 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 324 * STOP bits are cleared together. 325 * 326 * If clearing of @mask leaves no stop or trap pending, this function calls 327 * task_clear_jobctl_trapping(). 328 * 329 * CONTEXT: 330 * Must be called with @task->sighand->siglock held. 331 */ 332 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 333 { 334 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 335 336 if (mask & JOBCTL_STOP_PENDING) 337 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 338 339 task->jobctl &= ~mask; 340 341 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 342 task_clear_jobctl_trapping(task); 343 } 344 345 /** 346 * task_participate_group_stop - participate in a group stop 347 * @task: task participating in a group stop 348 * 349 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 350 * Group stop states are cleared and the group stop count is consumed if 351 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 352 * stop, the appropriate `SIGNAL_*` flags are set. 353 * 354 * CONTEXT: 355 * Must be called with @task->sighand->siglock held. 356 * 357 * RETURNS: 358 * %true if group stop completion should be notified to the parent, %false 359 * otherwise. 360 */ 361 static bool task_participate_group_stop(struct task_struct *task) 362 { 363 struct signal_struct *sig = task->signal; 364 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 365 366 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 367 368 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 369 370 if (!consume) 371 return false; 372 373 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 374 sig->group_stop_count--; 375 376 /* 377 * Tell the caller to notify completion iff we are entering into a 378 * fresh group stop. Read comment in do_signal_stop() for details. 379 */ 380 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 381 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 382 return true; 383 } 384 return false; 385 } 386 387 void task_join_group_stop(struct task_struct *task) 388 { 389 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK; 390 struct signal_struct *sig = current->signal; 391 392 if (sig->group_stop_count) { 393 sig->group_stop_count++; 394 mask |= JOBCTL_STOP_CONSUME; 395 } else if (!(sig->flags & SIGNAL_STOP_STOPPED)) 396 return; 397 398 /* Have the new thread join an on-going signal group stop */ 399 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING); 400 } 401 402 static struct ucounts *sig_get_ucounts(struct task_struct *t, int sig, 403 int override_rlimit) 404 { 405 struct ucounts *ucounts; 406 long sigpending; 407 408 /* 409 * Protect access to @t credentials. This can go away when all 410 * callers hold rcu read lock. 411 * 412 * NOTE! A pending signal will hold on to the user refcount, 413 * and we get/put the refcount only when the sigpending count 414 * changes from/to zero. 415 */ 416 rcu_read_lock(); 417 ucounts = task_ucounts(t); 418 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING, 419 override_rlimit); 420 rcu_read_unlock(); 421 if (!sigpending) 422 return NULL; 423 424 if (unlikely(!override_rlimit && sigpending > task_rlimit(t, RLIMIT_SIGPENDING))) { 425 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 426 print_dropped_signal(sig); 427 return NULL; 428 } 429 430 return ucounts; 431 } 432 433 static void __sigqueue_init(struct sigqueue *q, struct ucounts *ucounts, 434 const unsigned int sigqueue_flags) 435 { 436 INIT_LIST_HEAD(&q->list); 437 q->flags = sigqueue_flags; 438 q->ucounts = ucounts; 439 } 440 441 /* 442 * allocate a new signal queue record 443 * - this may be called without locks if and only if t == current, otherwise an 444 * appropriate lock must be held to stop the target task from exiting 445 */ 446 static struct sigqueue *sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags, 447 int override_rlimit) 448 { 449 struct ucounts *ucounts = sig_get_ucounts(t, sig, override_rlimit); 450 struct sigqueue *q; 451 452 if (!ucounts) 453 return NULL; 454 455 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags); 456 if (!q) { 457 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 458 return NULL; 459 } 460 461 __sigqueue_init(q, ucounts, 0); 462 return q; 463 } 464 465 static void __sigqueue_free(struct sigqueue *q) 466 { 467 if (q->flags & SIGQUEUE_PREALLOC) { 468 posixtimer_sigqueue_putref(q); 469 return; 470 } 471 if (q->ucounts) { 472 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING); 473 q->ucounts = NULL; 474 } 475 kmem_cache_free(sigqueue_cachep, q); 476 } 477 478 void flush_sigqueue(struct sigpending *queue) 479 { 480 struct sigqueue *q; 481 482 sigemptyset(&queue->signal); 483 while (!list_empty(&queue->list)) { 484 q = list_entry(queue->list.next, struct sigqueue , list); 485 list_del_init(&q->list); 486 __sigqueue_free(q); 487 } 488 } 489 490 /* 491 * Flush all pending signals for this kthread. 492 */ 493 void flush_signals(struct task_struct *t) 494 { 495 unsigned long flags; 496 497 spin_lock_irqsave(&t->sighand->siglock, flags); 498 clear_tsk_thread_flag(t, TIF_SIGPENDING); 499 flush_sigqueue(&t->pending); 500 flush_sigqueue(&t->signal->shared_pending); 501 spin_unlock_irqrestore(&t->sighand->siglock, flags); 502 } 503 EXPORT_SYMBOL(flush_signals); 504 505 void ignore_signals(struct task_struct *t) 506 { 507 int i; 508 509 for (i = 0; i < _NSIG; ++i) 510 t->sighand->action[i].sa.sa_handler = SIG_IGN; 511 512 flush_signals(t); 513 } 514 515 /* 516 * Flush all handlers for a task. 517 */ 518 519 void 520 flush_signal_handlers(struct task_struct *t, int force_default) 521 { 522 int i; 523 struct k_sigaction *ka = &t->sighand->action[0]; 524 for (i = _NSIG ; i != 0 ; i--) { 525 if (force_default || ka->sa.sa_handler != SIG_IGN) 526 ka->sa.sa_handler = SIG_DFL; 527 ka->sa.sa_flags = 0; 528 #ifdef __ARCH_HAS_SA_RESTORER 529 ka->sa.sa_restorer = NULL; 530 #endif 531 sigemptyset(&ka->sa.sa_mask); 532 ka++; 533 } 534 } 535 536 bool unhandled_signal(struct task_struct *tsk, int sig) 537 { 538 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 539 if (is_global_init(tsk)) 540 return true; 541 542 if (handler != SIG_IGN && handler != SIG_DFL) 543 return false; 544 545 /* If dying, we handle all new signals by ignoring them */ 546 if (fatal_signal_pending(tsk)) 547 return false; 548 549 /* if ptraced, let the tracer determine */ 550 return !tsk->ptrace; 551 } 552 553 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 554 struct sigqueue **timer_sigq) 555 { 556 struct sigqueue *q, *first = NULL; 557 558 /* 559 * Collect the siginfo appropriate to this signal. Check if 560 * there is another siginfo for the same signal. 561 */ 562 list_for_each_entry(q, &list->list, list) { 563 if (q->info.si_signo == sig) { 564 if (first) 565 goto still_pending; 566 first = q; 567 } 568 } 569 570 sigdelset(&list->signal, sig); 571 572 if (first) { 573 still_pending: 574 list_del_init(&first->list); 575 copy_siginfo(info, &first->info); 576 577 /* 578 * posix-timer signals are preallocated and freed when the last 579 * reference count is dropped in posixtimer_deliver_signal() or 580 * immediately on timer deletion when the signal is not pending. 581 * Spare the extra round through __sigqueue_free() which is 582 * ignoring preallocated signals. 583 */ 584 if (unlikely((first->flags & SIGQUEUE_PREALLOC) && (info->si_code == SI_TIMER))) 585 *timer_sigq = first; 586 else 587 __sigqueue_free(first); 588 } else { 589 /* 590 * Ok, it wasn't in the queue. This must be 591 * a fast-pathed signal or we must have been 592 * out of queue space. So zero out the info. 593 */ 594 clear_siginfo(info); 595 info->si_signo = sig; 596 info->si_errno = 0; 597 info->si_code = SI_USER; 598 info->si_pid = 0; 599 info->si_uid = 0; 600 } 601 } 602 603 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 604 kernel_siginfo_t *info, struct sigqueue **timer_sigq) 605 { 606 int sig = next_signal(pending, mask); 607 608 if (sig) 609 collect_signal(sig, pending, info, timer_sigq); 610 return sig; 611 } 612 613 /* 614 * Try to dequeue a signal. If a deliverable signal is found fill in the 615 * caller provided siginfo and return the signal number. Otherwise return 616 * 0. 617 */ 618 int dequeue_signal(sigset_t *mask, kernel_siginfo_t *info, enum pid_type *type) 619 { 620 struct task_struct *tsk = current; 621 struct sigqueue *timer_sigq; 622 int signr; 623 624 lockdep_assert_held(&tsk->sighand->siglock); 625 626 again: 627 *type = PIDTYPE_PID; 628 timer_sigq = NULL; 629 signr = __dequeue_signal(&tsk->pending, mask, info, &timer_sigq); 630 if (!signr) { 631 *type = PIDTYPE_TGID; 632 signr = __dequeue_signal(&tsk->signal->shared_pending, 633 mask, info, &timer_sigq); 634 635 if (unlikely(signr == SIGALRM)) 636 posixtimer_rearm_itimer(tsk); 637 } 638 639 recalc_sigpending(); 640 if (!signr) 641 return 0; 642 643 if (unlikely(sig_kernel_stop(signr))) { 644 /* 645 * Set a marker that we have dequeued a stop signal. Our 646 * caller might release the siglock and then the pending 647 * stop signal it is about to process is no longer in the 648 * pending bitmasks, but must still be cleared by a SIGCONT 649 * (and overruled by a SIGKILL). So those cases clear this 650 * shared flag after we've set it. Note that this flag may 651 * remain set after the signal we return is ignored or 652 * handled. That doesn't matter because its only purpose 653 * is to alert stop-signal processing code when another 654 * processor has come along and cleared the flag. 655 */ 656 current->jobctl |= JOBCTL_STOP_DEQUEUED; 657 } 658 659 if (IS_ENABLED(CONFIG_POSIX_TIMERS) && unlikely(timer_sigq)) { 660 if (!posixtimer_deliver_signal(info, timer_sigq)) 661 goto again; 662 } 663 664 return signr; 665 } 666 EXPORT_SYMBOL_GPL(dequeue_signal); 667 668 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 669 { 670 struct task_struct *tsk = current; 671 struct sigpending *pending = &tsk->pending; 672 struct sigqueue *q, *sync = NULL; 673 674 /* 675 * Might a synchronous signal be in the queue? 676 */ 677 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 678 return 0; 679 680 /* 681 * Return the first synchronous signal in the queue. 682 */ 683 list_for_each_entry(q, &pending->list, list) { 684 /* Synchronous signals have a positive si_code */ 685 if ((q->info.si_code > SI_USER) && 686 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 687 sync = q; 688 goto next; 689 } 690 } 691 return 0; 692 next: 693 /* 694 * Check if there is another siginfo for the same signal. 695 */ 696 list_for_each_entry_continue(q, &pending->list, list) { 697 if (q->info.si_signo == sync->info.si_signo) 698 goto still_pending; 699 } 700 701 sigdelset(&pending->signal, sync->info.si_signo); 702 recalc_sigpending(); 703 still_pending: 704 list_del_init(&sync->list); 705 copy_siginfo(info, &sync->info); 706 __sigqueue_free(sync); 707 return info->si_signo; 708 } 709 710 /* 711 * Tell a process that it has a new active signal.. 712 * 713 * NOTE! we rely on the previous spin_lock to 714 * lock interrupts for us! We can only be called with 715 * "siglock" held, and the local interrupt must 716 * have been disabled when that got acquired! 717 * 718 * No need to set need_resched since signal event passing 719 * goes through ->blocked 720 */ 721 void signal_wake_up_state(struct task_struct *t, unsigned int state) 722 { 723 lockdep_assert_held(&t->sighand->siglock); 724 725 set_tsk_thread_flag(t, TIF_SIGPENDING); 726 727 /* 728 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 729 * case. We don't check t->state here because there is a race with it 730 * executing another processor and just now entering stopped state. 731 * By using wake_up_state, we ensure the process will wake up and 732 * handle its death signal. 733 */ 734 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 735 kick_process(t); 736 } 737 738 static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q); 739 740 static void sigqueue_free_ignored(struct task_struct *tsk, struct sigqueue *q) 741 { 742 if (likely(!(q->flags & SIGQUEUE_PREALLOC) || q->info.si_code != SI_TIMER)) 743 __sigqueue_free(q); 744 else 745 posixtimer_sig_ignore(tsk, q); 746 } 747 748 /* Remove signals in mask from the pending set and queue. */ 749 static void flush_sigqueue_mask(struct task_struct *p, sigset_t *mask, struct sigpending *s) 750 { 751 struct sigqueue *q, *n; 752 sigset_t m; 753 754 lockdep_assert_held(&p->sighand->siglock); 755 756 sigandsets(&m, mask, &s->signal); 757 if (sigisemptyset(&m)) 758 return; 759 760 sigandnsets(&s->signal, &s->signal, mask); 761 list_for_each_entry_safe(q, n, &s->list, list) { 762 if (sigismember(mask, q->info.si_signo)) { 763 list_del_init(&q->list); 764 sigqueue_free_ignored(p, q); 765 } 766 } 767 } 768 769 static inline int is_si_special(const struct kernel_siginfo *info) 770 { 771 return info <= SEND_SIG_PRIV; 772 } 773 774 static inline bool si_fromuser(const struct kernel_siginfo *info) 775 { 776 return info == SEND_SIG_NOINFO || 777 (!is_si_special(info) && SI_FROMUSER(info)); 778 } 779 780 /* 781 * called with RCU read lock from check_kill_permission() 782 */ 783 static bool kill_ok_by_cred(struct task_struct *t) 784 { 785 const struct cred *cred = current_cred(); 786 const struct cred *tcred = __task_cred(t); 787 788 return uid_eq(cred->euid, tcred->suid) || 789 uid_eq(cred->euid, tcred->uid) || 790 uid_eq(cred->uid, tcred->suid) || 791 uid_eq(cred->uid, tcred->uid) || 792 ns_capable(tcred->user_ns, CAP_KILL); 793 } 794 795 /* 796 * Bad permissions for sending the signal 797 * - the caller must hold the RCU read lock 798 */ 799 static int check_kill_permission(int sig, struct kernel_siginfo *info, 800 struct task_struct *t) 801 { 802 struct pid *sid; 803 int error; 804 805 if (!valid_signal(sig)) 806 return -EINVAL; 807 808 if (!si_fromuser(info)) 809 return 0; 810 811 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 812 if (error) 813 return error; 814 815 if (!same_thread_group(current, t) && 816 !kill_ok_by_cred(t)) { 817 switch (sig) { 818 case SIGCONT: 819 sid = task_session(t); 820 /* 821 * We don't return the error if sid == NULL. The 822 * task was unhashed, the caller must notice this. 823 */ 824 if (!sid || sid == task_session(current)) 825 break; 826 fallthrough; 827 default: 828 return -EPERM; 829 } 830 } 831 832 return security_task_kill(t, info, sig, NULL); 833 } 834 835 /** 836 * ptrace_trap_notify - schedule trap to notify ptracer 837 * @t: tracee wanting to notify tracer 838 * 839 * This function schedules sticky ptrace trap which is cleared on the next 840 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 841 * ptracer. 842 * 843 * If @t is running, STOP trap will be taken. If trapped for STOP and 844 * ptracer is listening for events, tracee is woken up so that it can 845 * re-trap for the new event. If trapped otherwise, STOP trap will be 846 * eventually taken without returning to userland after the existing traps 847 * are finished by PTRACE_CONT. 848 * 849 * CONTEXT: 850 * Must be called with @task->sighand->siglock held. 851 */ 852 static void ptrace_trap_notify(struct task_struct *t) 853 { 854 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 855 lockdep_assert_held(&t->sighand->siglock); 856 857 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 858 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 859 } 860 861 /* 862 * Handle magic process-wide effects of stop/continue signals. Unlike 863 * the signal actions, these happen immediately at signal-generation 864 * time regardless of blocking, ignoring, or handling. This does the 865 * actual continuing for SIGCONT, but not the actual stopping for stop 866 * signals. The process stop is done as a signal action for SIG_DFL. 867 * 868 * Returns true if the signal should be actually delivered, otherwise 869 * it should be dropped. 870 */ 871 static bool prepare_signal(int sig, struct task_struct *p, bool force) 872 { 873 struct signal_struct *signal = p->signal; 874 struct task_struct *t; 875 sigset_t flush; 876 877 if (signal->flags & SIGNAL_GROUP_EXIT) { 878 if (signal->core_state) 879 return sig == SIGKILL; 880 /* 881 * The process is in the middle of dying, drop the signal. 882 */ 883 return false; 884 } else if (sig_kernel_stop(sig)) { 885 /* 886 * This is a stop signal. Remove SIGCONT from all queues. 887 */ 888 siginitset(&flush, sigmask(SIGCONT)); 889 flush_sigqueue_mask(p, &flush, &signal->shared_pending); 890 for_each_thread(p, t) 891 flush_sigqueue_mask(p, &flush, &t->pending); 892 } else if (sig == SIGCONT) { 893 unsigned int why; 894 /* 895 * Remove all stop signals from all queues, wake all threads. 896 */ 897 siginitset(&flush, SIG_KERNEL_STOP_MASK); 898 flush_sigqueue_mask(p, &flush, &signal->shared_pending); 899 for_each_thread(p, t) { 900 flush_sigqueue_mask(p, &flush, &t->pending); 901 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 902 if (likely(!(t->ptrace & PT_SEIZED))) { 903 t->jobctl &= ~JOBCTL_STOPPED; 904 wake_up_state(t, __TASK_STOPPED); 905 } else 906 ptrace_trap_notify(t); 907 } 908 909 /* 910 * Notify the parent with CLD_CONTINUED if we were stopped. 911 * 912 * If we were in the middle of a group stop, we pretend it 913 * was already finished, and then continued. Since SIGCHLD 914 * doesn't queue we report only CLD_STOPPED, as if the next 915 * CLD_CONTINUED was dropped. 916 */ 917 why = 0; 918 if (signal->flags & SIGNAL_STOP_STOPPED) 919 why |= SIGNAL_CLD_CONTINUED; 920 else if (signal->group_stop_count) 921 why |= SIGNAL_CLD_STOPPED; 922 923 if (why) { 924 /* 925 * The first thread which returns from do_signal_stop() 926 * will take ->siglock, notice SIGNAL_CLD_MASK, and 927 * notify its parent. See get_signal(). 928 */ 929 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 930 signal->group_stop_count = 0; 931 signal->group_exit_code = 0; 932 } 933 } 934 935 return !sig_ignored(p, sig, force); 936 } 937 938 /* 939 * Test if P wants to take SIG. After we've checked all threads with this, 940 * it's equivalent to finding no threads not blocking SIG. Any threads not 941 * blocking SIG were ruled out because they are not running and already 942 * have pending signals. Such threads will dequeue from the shared queue 943 * as soon as they're available, so putting the signal on the shared queue 944 * will be equivalent to sending it to one such thread. 945 */ 946 static inline bool wants_signal(int sig, struct task_struct *p) 947 { 948 if (sigismember(&p->blocked, sig)) 949 return false; 950 951 if (p->flags & PF_EXITING) 952 return false; 953 954 if (sig == SIGKILL) 955 return true; 956 957 if (task_is_stopped_or_traced(p)) 958 return false; 959 960 return task_curr(p) || !task_sigpending(p); 961 } 962 963 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 964 { 965 struct signal_struct *signal = p->signal; 966 struct task_struct *t; 967 968 /* 969 * Now find a thread we can wake up to take the signal off the queue. 970 * 971 * Try the suggested task first (may or may not be the main thread). 972 */ 973 if (wants_signal(sig, p)) 974 t = p; 975 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 976 /* 977 * There is just one thread and it does not need to be woken. 978 * It will dequeue unblocked signals before it runs again. 979 */ 980 return; 981 else { 982 /* 983 * Otherwise try to find a suitable thread. 984 */ 985 t = signal->curr_target; 986 while (!wants_signal(sig, t)) { 987 t = next_thread(t); 988 if (t == signal->curr_target) 989 /* 990 * No thread needs to be woken. 991 * Any eligible threads will see 992 * the signal in the queue soon. 993 */ 994 return; 995 } 996 signal->curr_target = t; 997 } 998 999 /* 1000 * Found a killable thread. If the signal will be fatal, 1001 * then start taking the whole group down immediately. 1002 */ 1003 if (sig_fatal(p, sig) && 1004 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) && 1005 !sigismember(&t->real_blocked, sig) && 1006 (sig == SIGKILL || !p->ptrace)) { 1007 /* 1008 * This signal will be fatal to the whole group. 1009 */ 1010 if (!sig_kernel_coredump(sig)) { 1011 /* 1012 * Start a group exit and wake everybody up. 1013 * This way we don't have other threads 1014 * running and doing things after a slower 1015 * thread has the fatal signal pending. 1016 */ 1017 signal->flags = SIGNAL_GROUP_EXIT; 1018 signal->group_exit_code = sig; 1019 signal->group_stop_count = 0; 1020 __for_each_thread(signal, t) { 1021 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1022 sigaddset(&t->pending.signal, SIGKILL); 1023 signal_wake_up(t, 1); 1024 } 1025 return; 1026 } 1027 } 1028 1029 /* 1030 * The signal is already in the shared-pending queue. 1031 * Tell the chosen thread to wake up and dequeue it. 1032 */ 1033 signal_wake_up(t, sig == SIGKILL); 1034 return; 1035 } 1036 1037 static inline bool legacy_queue(struct sigpending *signals, int sig) 1038 { 1039 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1040 } 1041 1042 static int __send_signal_locked(int sig, struct kernel_siginfo *info, 1043 struct task_struct *t, enum pid_type type, bool force) 1044 { 1045 struct sigpending *pending; 1046 struct sigqueue *q; 1047 int override_rlimit; 1048 int ret = 0, result; 1049 1050 lockdep_assert_held(&t->sighand->siglock); 1051 1052 result = TRACE_SIGNAL_IGNORED; 1053 if (!prepare_signal(sig, t, force)) 1054 goto ret; 1055 1056 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1057 /* 1058 * Short-circuit ignored signals and support queuing 1059 * exactly one non-rt signal, so that we can get more 1060 * detailed information about the cause of the signal. 1061 */ 1062 result = TRACE_SIGNAL_ALREADY_PENDING; 1063 if (legacy_queue(pending, sig)) 1064 goto ret; 1065 1066 result = TRACE_SIGNAL_DELIVERED; 1067 /* 1068 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1069 */ 1070 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1071 goto out_set; 1072 1073 /* 1074 * Real-time signals must be queued if sent by sigqueue, or 1075 * some other real-time mechanism. It is implementation 1076 * defined whether kill() does so. We attempt to do so, on 1077 * the principle of least surprise, but since kill is not 1078 * allowed to fail with EAGAIN when low on memory we just 1079 * make sure at least one signal gets delivered and don't 1080 * pass on the info struct. 1081 */ 1082 if (sig < SIGRTMIN) 1083 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1084 else 1085 override_rlimit = 0; 1086 1087 q = sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit); 1088 1089 if (q) { 1090 list_add_tail(&q->list, &pending->list); 1091 switch ((unsigned long) info) { 1092 case (unsigned long) SEND_SIG_NOINFO: 1093 clear_siginfo(&q->info); 1094 q->info.si_signo = sig; 1095 q->info.si_errno = 0; 1096 q->info.si_code = SI_USER; 1097 q->info.si_pid = task_tgid_nr_ns(current, 1098 task_active_pid_ns(t)); 1099 rcu_read_lock(); 1100 q->info.si_uid = 1101 from_kuid_munged(task_cred_xxx(t, user_ns), 1102 current_uid()); 1103 rcu_read_unlock(); 1104 break; 1105 case (unsigned long) SEND_SIG_PRIV: 1106 clear_siginfo(&q->info); 1107 q->info.si_signo = sig; 1108 q->info.si_errno = 0; 1109 q->info.si_code = SI_KERNEL; 1110 q->info.si_pid = 0; 1111 q->info.si_uid = 0; 1112 break; 1113 default: 1114 copy_siginfo(&q->info, info); 1115 break; 1116 } 1117 } else if (!is_si_special(info) && 1118 sig >= SIGRTMIN && info->si_code != SI_USER) { 1119 /* 1120 * Queue overflow, abort. We may abort if the 1121 * signal was rt and sent by user using something 1122 * other than kill(). 1123 */ 1124 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1125 ret = -EAGAIN; 1126 goto ret; 1127 } else { 1128 /* 1129 * This is a silent loss of information. We still 1130 * send the signal, but the *info bits are lost. 1131 */ 1132 result = TRACE_SIGNAL_LOSE_INFO; 1133 } 1134 1135 out_set: 1136 signalfd_notify(t, sig); 1137 sigaddset(&pending->signal, sig); 1138 1139 /* Let multiprocess signals appear after on-going forks */ 1140 if (type > PIDTYPE_TGID) { 1141 struct multiprocess_signals *delayed; 1142 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1143 sigset_t *signal = &delayed->signal; 1144 /* Can't queue both a stop and a continue signal */ 1145 if (sig == SIGCONT) 1146 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1147 else if (sig_kernel_stop(sig)) 1148 sigdelset(signal, SIGCONT); 1149 sigaddset(signal, sig); 1150 } 1151 } 1152 1153 complete_signal(sig, t, type); 1154 ret: 1155 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1156 return ret; 1157 } 1158 1159 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) 1160 { 1161 bool ret = false; 1162 switch (siginfo_layout(info->si_signo, info->si_code)) { 1163 case SIL_KILL: 1164 case SIL_CHLD: 1165 case SIL_RT: 1166 ret = true; 1167 break; 1168 case SIL_TIMER: 1169 case SIL_POLL: 1170 case SIL_FAULT: 1171 case SIL_FAULT_TRAPNO: 1172 case SIL_FAULT_MCEERR: 1173 case SIL_FAULT_BNDERR: 1174 case SIL_FAULT_PKUERR: 1175 case SIL_FAULT_PERF_EVENT: 1176 case SIL_SYS: 1177 ret = false; 1178 break; 1179 } 1180 return ret; 1181 } 1182 1183 int send_signal_locked(int sig, struct kernel_siginfo *info, 1184 struct task_struct *t, enum pid_type type) 1185 { 1186 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ 1187 bool force = false; 1188 1189 if (info == SEND_SIG_NOINFO) { 1190 /* Force if sent from an ancestor pid namespace */ 1191 force = !task_pid_nr_ns(current, task_active_pid_ns(t)); 1192 } else if (info == SEND_SIG_PRIV) { 1193 /* Don't ignore kernel generated signals */ 1194 force = true; 1195 } else if (has_si_pid_and_uid(info)) { 1196 /* SIGKILL and SIGSTOP is special or has ids */ 1197 struct user_namespace *t_user_ns; 1198 1199 rcu_read_lock(); 1200 t_user_ns = task_cred_xxx(t, user_ns); 1201 if (current_user_ns() != t_user_ns) { 1202 kuid_t uid = make_kuid(current_user_ns(), info->si_uid); 1203 info->si_uid = from_kuid_munged(t_user_ns, uid); 1204 } 1205 rcu_read_unlock(); 1206 1207 /* A kernel generated signal? */ 1208 force = (info->si_code == SI_KERNEL); 1209 1210 /* From an ancestor pid namespace? */ 1211 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { 1212 info->si_pid = 0; 1213 force = true; 1214 } 1215 } 1216 return __send_signal_locked(sig, info, t, type, force); 1217 } 1218 1219 static void print_fatal_signal(int signr) 1220 { 1221 struct pt_regs *regs = task_pt_regs(current); 1222 struct file *exe_file; 1223 1224 exe_file = get_task_exe_file(current); 1225 if (exe_file) { 1226 pr_info("%pD: %s: potentially unexpected fatal signal %d.\n", 1227 exe_file, current->comm, signr); 1228 fput(exe_file); 1229 } else { 1230 pr_info("%s: potentially unexpected fatal signal %d.\n", 1231 current->comm, signr); 1232 } 1233 1234 #if defined(__i386__) && !defined(__arch_um__) 1235 pr_info("code at %08lx: ", regs->ip); 1236 { 1237 int i; 1238 for (i = 0; i < 16; i++) { 1239 unsigned char insn; 1240 1241 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1242 break; 1243 pr_cont("%02x ", insn); 1244 } 1245 } 1246 pr_cont("\n"); 1247 #endif 1248 preempt_disable(); 1249 show_regs(regs); 1250 preempt_enable(); 1251 } 1252 1253 static int __init setup_print_fatal_signals(char *str) 1254 { 1255 get_option (&str, &print_fatal_signals); 1256 1257 return 1; 1258 } 1259 1260 __setup("print-fatal-signals=", setup_print_fatal_signals); 1261 1262 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1263 enum pid_type type) 1264 { 1265 unsigned long flags; 1266 int ret = -ESRCH; 1267 1268 if (lock_task_sighand(p, &flags)) { 1269 ret = send_signal_locked(sig, info, p, type); 1270 unlock_task_sighand(p, &flags); 1271 } 1272 1273 return ret; 1274 } 1275 1276 enum sig_handler { 1277 HANDLER_CURRENT, /* If reachable use the current handler */ 1278 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */ 1279 HANDLER_EXIT, /* Only visible as the process exit code */ 1280 }; 1281 1282 /* 1283 * Force a signal that the process can't ignore: if necessary 1284 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1285 * 1286 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1287 * since we do not want to have a signal handler that was blocked 1288 * be invoked when user space had explicitly blocked it. 1289 * 1290 * We don't want to have recursive SIGSEGV's etc, for example, 1291 * that is why we also clear SIGNAL_UNKILLABLE. 1292 */ 1293 static int 1294 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t, 1295 enum sig_handler handler) 1296 { 1297 unsigned long int flags; 1298 int ret, blocked, ignored; 1299 struct k_sigaction *action; 1300 int sig = info->si_signo; 1301 1302 spin_lock_irqsave(&t->sighand->siglock, flags); 1303 action = &t->sighand->action[sig-1]; 1304 ignored = action->sa.sa_handler == SIG_IGN; 1305 blocked = sigismember(&t->blocked, sig); 1306 if (blocked || ignored || (handler != HANDLER_CURRENT)) { 1307 action->sa.sa_handler = SIG_DFL; 1308 if (handler == HANDLER_EXIT) 1309 action->sa.sa_flags |= SA_IMMUTABLE; 1310 if (blocked) 1311 sigdelset(&t->blocked, sig); 1312 } 1313 /* 1314 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1315 * debugging to leave init killable. But HANDLER_EXIT is always fatal. 1316 */ 1317 if (action->sa.sa_handler == SIG_DFL && 1318 (!t->ptrace || (handler == HANDLER_EXIT))) 1319 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1320 ret = send_signal_locked(sig, info, t, PIDTYPE_PID); 1321 /* This can happen if the signal was already pending and blocked */ 1322 if (!task_sigpending(t)) 1323 signal_wake_up(t, 0); 1324 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1325 1326 return ret; 1327 } 1328 1329 int force_sig_info(struct kernel_siginfo *info) 1330 { 1331 return force_sig_info_to_task(info, current, HANDLER_CURRENT); 1332 } 1333 1334 /* 1335 * Nuke all other threads in the group. 1336 */ 1337 int zap_other_threads(struct task_struct *p) 1338 { 1339 struct task_struct *t; 1340 int count = 0; 1341 1342 p->signal->group_stop_count = 0; 1343 1344 for_other_threads(p, t) { 1345 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1346 count++; 1347 1348 /* Don't bother with already dead threads */ 1349 if (t->exit_state) 1350 continue; 1351 sigaddset(&t->pending.signal, SIGKILL); 1352 signal_wake_up(t, 1); 1353 } 1354 1355 return count; 1356 } 1357 1358 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1359 unsigned long *flags) 1360 { 1361 struct sighand_struct *sighand; 1362 1363 rcu_read_lock(); 1364 for (;;) { 1365 sighand = rcu_dereference(tsk->sighand); 1366 if (unlikely(sighand == NULL)) 1367 break; 1368 1369 /* 1370 * This sighand can be already freed and even reused, but 1371 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1372 * initializes ->siglock: this slab can't go away, it has 1373 * the same object type, ->siglock can't be reinitialized. 1374 * 1375 * We need to ensure that tsk->sighand is still the same 1376 * after we take the lock, we can race with de_thread() or 1377 * __exit_signal(). In the latter case the next iteration 1378 * must see ->sighand == NULL. 1379 */ 1380 spin_lock_irqsave(&sighand->siglock, *flags); 1381 if (likely(sighand == rcu_access_pointer(tsk->sighand))) 1382 break; 1383 spin_unlock_irqrestore(&sighand->siglock, *flags); 1384 } 1385 rcu_read_unlock(); 1386 1387 return sighand; 1388 } 1389 1390 #ifdef CONFIG_LOCKDEP 1391 void lockdep_assert_task_sighand_held(struct task_struct *task) 1392 { 1393 struct sighand_struct *sighand; 1394 1395 rcu_read_lock(); 1396 sighand = rcu_dereference(task->sighand); 1397 if (sighand) 1398 lockdep_assert_held(&sighand->siglock); 1399 else 1400 WARN_ON_ONCE(1); 1401 rcu_read_unlock(); 1402 } 1403 #endif 1404 1405 /* 1406 * send signal info to all the members of a thread group or to the 1407 * individual thread if type == PIDTYPE_PID. 1408 */ 1409 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1410 struct task_struct *p, enum pid_type type) 1411 { 1412 int ret; 1413 1414 rcu_read_lock(); 1415 ret = check_kill_permission(sig, info, p); 1416 rcu_read_unlock(); 1417 1418 if (!ret && sig) 1419 ret = do_send_sig_info(sig, info, p, type); 1420 1421 return ret; 1422 } 1423 1424 /* 1425 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1426 * control characters do (^C, ^Z etc) 1427 * - the caller must hold at least a readlock on tasklist_lock 1428 */ 1429 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1430 { 1431 struct task_struct *p = NULL; 1432 int ret = -ESRCH; 1433 1434 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1435 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1436 /* 1437 * If group_send_sig_info() succeeds at least once ret 1438 * becomes 0 and after that the code below has no effect. 1439 * Otherwise we return the last err or -ESRCH if this 1440 * process group is empty. 1441 */ 1442 if (ret) 1443 ret = err; 1444 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1445 1446 return ret; 1447 } 1448 1449 static int kill_pid_info_type(int sig, struct kernel_siginfo *info, 1450 struct pid *pid, enum pid_type type) 1451 { 1452 int error = -ESRCH; 1453 struct task_struct *p; 1454 1455 for (;;) { 1456 rcu_read_lock(); 1457 p = pid_task(pid, PIDTYPE_PID); 1458 if (p) 1459 error = group_send_sig_info(sig, info, p, type); 1460 rcu_read_unlock(); 1461 if (likely(!p || error != -ESRCH)) 1462 return error; 1463 /* 1464 * The task was unhashed in between, try again. If it 1465 * is dead, pid_task() will return NULL, if we race with 1466 * de_thread() it will find the new leader. 1467 */ 1468 } 1469 } 1470 1471 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1472 { 1473 return kill_pid_info_type(sig, info, pid, PIDTYPE_TGID); 1474 } 1475 1476 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1477 { 1478 int error; 1479 rcu_read_lock(); 1480 error = kill_pid_info(sig, info, find_vpid(pid)); 1481 rcu_read_unlock(); 1482 return error; 1483 } 1484 1485 static inline bool kill_as_cred_perm(const struct cred *cred, 1486 struct task_struct *target) 1487 { 1488 const struct cred *pcred = __task_cred(target); 1489 1490 return uid_eq(cred->euid, pcred->suid) || 1491 uid_eq(cred->euid, pcred->uid) || 1492 uid_eq(cred->uid, pcred->suid) || 1493 uid_eq(cred->uid, pcred->uid); 1494 } 1495 1496 /* 1497 * The usb asyncio usage of siginfo is wrong. The glibc support 1498 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. 1499 * AKA after the generic fields: 1500 * kernel_pid_t si_pid; 1501 * kernel_uid32_t si_uid; 1502 * sigval_t si_value; 1503 * 1504 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout 1505 * after the generic fields is: 1506 * void __user *si_addr; 1507 * 1508 * This is a practical problem when there is a 64bit big endian kernel 1509 * and a 32bit userspace. As the 32bit address will encoded in the low 1510 * 32bits of the pointer. Those low 32bits will be stored at higher 1511 * address than appear in a 32 bit pointer. So userspace will not 1512 * see the address it was expecting for it's completions. 1513 * 1514 * There is nothing in the encoding that can allow 1515 * copy_siginfo_to_user32 to detect this confusion of formats, so 1516 * handle this by requiring the caller of kill_pid_usb_asyncio to 1517 * notice when this situration takes place and to store the 32bit 1518 * pointer in sival_int, instead of sival_addr of the sigval_t addr 1519 * parameter. 1520 */ 1521 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, 1522 struct pid *pid, const struct cred *cred) 1523 { 1524 struct kernel_siginfo info; 1525 struct task_struct *p; 1526 unsigned long flags; 1527 int ret = -EINVAL; 1528 1529 if (!valid_signal(sig)) 1530 return ret; 1531 1532 clear_siginfo(&info); 1533 info.si_signo = sig; 1534 info.si_errno = errno; 1535 info.si_code = SI_ASYNCIO; 1536 *((sigval_t *)&info.si_pid) = addr; 1537 1538 rcu_read_lock(); 1539 p = pid_task(pid, PIDTYPE_PID); 1540 if (!p) { 1541 ret = -ESRCH; 1542 goto out_unlock; 1543 } 1544 if (!kill_as_cred_perm(cred, p)) { 1545 ret = -EPERM; 1546 goto out_unlock; 1547 } 1548 ret = security_task_kill(p, &info, sig, cred); 1549 if (ret) 1550 goto out_unlock; 1551 1552 if (sig) { 1553 if (lock_task_sighand(p, &flags)) { 1554 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false); 1555 unlock_task_sighand(p, &flags); 1556 } else 1557 ret = -ESRCH; 1558 } 1559 out_unlock: 1560 rcu_read_unlock(); 1561 return ret; 1562 } 1563 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); 1564 1565 /* 1566 * kill_something_info() interprets pid in interesting ways just like kill(2). 1567 * 1568 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1569 * is probably wrong. Should make it like BSD or SYSV. 1570 */ 1571 1572 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1573 { 1574 int ret; 1575 1576 if (pid > 0) 1577 return kill_proc_info(sig, info, pid); 1578 1579 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1580 if (pid == INT_MIN) 1581 return -ESRCH; 1582 1583 read_lock(&tasklist_lock); 1584 if (pid != -1) { 1585 ret = __kill_pgrp_info(sig, info, 1586 pid ? find_vpid(-pid) : task_pgrp(current)); 1587 } else { 1588 int retval = 0, count = 0; 1589 struct task_struct * p; 1590 1591 for_each_process(p) { 1592 if (task_pid_vnr(p) > 1 && 1593 !same_thread_group(p, current)) { 1594 int err = group_send_sig_info(sig, info, p, 1595 PIDTYPE_MAX); 1596 ++count; 1597 if (err != -EPERM) 1598 retval = err; 1599 } 1600 } 1601 ret = count ? retval : -ESRCH; 1602 } 1603 read_unlock(&tasklist_lock); 1604 1605 return ret; 1606 } 1607 1608 /* 1609 * These are for backward compatibility with the rest of the kernel source. 1610 */ 1611 1612 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1613 { 1614 /* 1615 * Make sure legacy kernel users don't send in bad values 1616 * (normal paths check this in check_kill_permission). 1617 */ 1618 if (!valid_signal(sig)) 1619 return -EINVAL; 1620 1621 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1622 } 1623 EXPORT_SYMBOL(send_sig_info); 1624 1625 #define __si_special(priv) \ 1626 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1627 1628 int 1629 send_sig(int sig, struct task_struct *p, int priv) 1630 { 1631 return send_sig_info(sig, __si_special(priv), p); 1632 } 1633 EXPORT_SYMBOL(send_sig); 1634 1635 void force_sig(int sig) 1636 { 1637 struct kernel_siginfo info; 1638 1639 clear_siginfo(&info); 1640 info.si_signo = sig; 1641 info.si_errno = 0; 1642 info.si_code = SI_KERNEL; 1643 info.si_pid = 0; 1644 info.si_uid = 0; 1645 force_sig_info(&info); 1646 } 1647 EXPORT_SYMBOL(force_sig); 1648 1649 void force_fatal_sig(int sig) 1650 { 1651 struct kernel_siginfo info; 1652 1653 clear_siginfo(&info); 1654 info.si_signo = sig; 1655 info.si_errno = 0; 1656 info.si_code = SI_KERNEL; 1657 info.si_pid = 0; 1658 info.si_uid = 0; 1659 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL); 1660 } 1661 1662 void force_exit_sig(int sig) 1663 { 1664 struct kernel_siginfo info; 1665 1666 clear_siginfo(&info); 1667 info.si_signo = sig; 1668 info.si_errno = 0; 1669 info.si_code = SI_KERNEL; 1670 info.si_pid = 0; 1671 info.si_uid = 0; 1672 force_sig_info_to_task(&info, current, HANDLER_EXIT); 1673 } 1674 1675 /* 1676 * When things go south during signal handling, we 1677 * will force a SIGSEGV. And if the signal that caused 1678 * the problem was already a SIGSEGV, we'll want to 1679 * make sure we don't even try to deliver the signal.. 1680 */ 1681 void force_sigsegv(int sig) 1682 { 1683 if (sig == SIGSEGV) 1684 force_fatal_sig(SIGSEGV); 1685 else 1686 force_sig(SIGSEGV); 1687 } 1688 1689 int force_sig_fault_to_task(int sig, int code, void __user *addr, 1690 struct task_struct *t) 1691 { 1692 struct kernel_siginfo info; 1693 1694 clear_siginfo(&info); 1695 info.si_signo = sig; 1696 info.si_errno = 0; 1697 info.si_code = code; 1698 info.si_addr = addr; 1699 return force_sig_info_to_task(&info, t, HANDLER_CURRENT); 1700 } 1701 1702 int force_sig_fault(int sig, int code, void __user *addr) 1703 { 1704 return force_sig_fault_to_task(sig, code, addr, current); 1705 } 1706 1707 int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t) 1708 { 1709 struct kernel_siginfo info; 1710 1711 clear_siginfo(&info); 1712 info.si_signo = sig; 1713 info.si_errno = 0; 1714 info.si_code = code; 1715 info.si_addr = addr; 1716 return send_sig_info(info.si_signo, &info, t); 1717 } 1718 1719 int force_sig_mceerr(int code, void __user *addr, short lsb) 1720 { 1721 struct kernel_siginfo info; 1722 1723 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1724 clear_siginfo(&info); 1725 info.si_signo = SIGBUS; 1726 info.si_errno = 0; 1727 info.si_code = code; 1728 info.si_addr = addr; 1729 info.si_addr_lsb = lsb; 1730 return force_sig_info(&info); 1731 } 1732 1733 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1734 { 1735 struct kernel_siginfo info; 1736 1737 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1738 clear_siginfo(&info); 1739 info.si_signo = SIGBUS; 1740 info.si_errno = 0; 1741 info.si_code = code; 1742 info.si_addr = addr; 1743 info.si_addr_lsb = lsb; 1744 return send_sig_info(info.si_signo, &info, t); 1745 } 1746 EXPORT_SYMBOL(send_sig_mceerr); 1747 1748 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1749 { 1750 struct kernel_siginfo info; 1751 1752 clear_siginfo(&info); 1753 info.si_signo = SIGSEGV; 1754 info.si_errno = 0; 1755 info.si_code = SEGV_BNDERR; 1756 info.si_addr = addr; 1757 info.si_lower = lower; 1758 info.si_upper = upper; 1759 return force_sig_info(&info); 1760 } 1761 1762 #ifdef SEGV_PKUERR 1763 int force_sig_pkuerr(void __user *addr, u32 pkey) 1764 { 1765 struct kernel_siginfo info; 1766 1767 clear_siginfo(&info); 1768 info.si_signo = SIGSEGV; 1769 info.si_errno = 0; 1770 info.si_code = SEGV_PKUERR; 1771 info.si_addr = addr; 1772 info.si_pkey = pkey; 1773 return force_sig_info(&info); 1774 } 1775 #endif 1776 1777 int send_sig_perf(void __user *addr, u32 type, u64 sig_data) 1778 { 1779 struct kernel_siginfo info; 1780 1781 clear_siginfo(&info); 1782 info.si_signo = SIGTRAP; 1783 info.si_errno = 0; 1784 info.si_code = TRAP_PERF; 1785 info.si_addr = addr; 1786 info.si_perf_data = sig_data; 1787 info.si_perf_type = type; 1788 1789 /* 1790 * Signals generated by perf events should not terminate the whole 1791 * process if SIGTRAP is blocked, however, delivering the signal 1792 * asynchronously is better than not delivering at all. But tell user 1793 * space if the signal was asynchronous, so it can clearly be 1794 * distinguished from normal synchronous ones. 1795 */ 1796 info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ? 1797 TRAP_PERF_FLAG_ASYNC : 1798 0; 1799 1800 return send_sig_info(info.si_signo, &info, current); 1801 } 1802 1803 /** 1804 * force_sig_seccomp - signals the task to allow in-process syscall emulation 1805 * @syscall: syscall number to send to userland 1806 * @reason: filter-supplied reason code to send to userland (via si_errno) 1807 * @force_coredump: true to trigger a coredump 1808 * 1809 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. 1810 */ 1811 int force_sig_seccomp(int syscall, int reason, bool force_coredump) 1812 { 1813 struct kernel_siginfo info; 1814 1815 clear_siginfo(&info); 1816 info.si_signo = SIGSYS; 1817 info.si_code = SYS_SECCOMP; 1818 info.si_call_addr = (void __user *)KSTK_EIP(current); 1819 info.si_errno = reason; 1820 info.si_arch = syscall_get_arch(current); 1821 info.si_syscall = syscall; 1822 return force_sig_info_to_task(&info, current, 1823 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT); 1824 } 1825 1826 /* For the crazy architectures that include trap information in 1827 * the errno field, instead of an actual errno value. 1828 */ 1829 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1830 { 1831 struct kernel_siginfo info; 1832 1833 clear_siginfo(&info); 1834 info.si_signo = SIGTRAP; 1835 info.si_errno = errno; 1836 info.si_code = TRAP_HWBKPT; 1837 info.si_addr = addr; 1838 return force_sig_info(&info); 1839 } 1840 1841 /* For the rare architectures that include trap information using 1842 * si_trapno. 1843 */ 1844 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno) 1845 { 1846 struct kernel_siginfo info; 1847 1848 clear_siginfo(&info); 1849 info.si_signo = sig; 1850 info.si_errno = 0; 1851 info.si_code = code; 1852 info.si_addr = addr; 1853 info.si_trapno = trapno; 1854 return force_sig_info(&info); 1855 } 1856 1857 /* For the rare architectures that include trap information using 1858 * si_trapno. 1859 */ 1860 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, 1861 struct task_struct *t) 1862 { 1863 struct kernel_siginfo info; 1864 1865 clear_siginfo(&info); 1866 info.si_signo = sig; 1867 info.si_errno = 0; 1868 info.si_code = code; 1869 info.si_addr = addr; 1870 info.si_trapno = trapno; 1871 return send_sig_info(info.si_signo, &info, t); 1872 } 1873 1874 static int kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1875 { 1876 int ret; 1877 read_lock(&tasklist_lock); 1878 ret = __kill_pgrp_info(sig, info, pgrp); 1879 read_unlock(&tasklist_lock); 1880 return ret; 1881 } 1882 1883 int kill_pgrp(struct pid *pid, int sig, int priv) 1884 { 1885 return kill_pgrp_info(sig, __si_special(priv), pid); 1886 } 1887 EXPORT_SYMBOL(kill_pgrp); 1888 1889 int kill_pid(struct pid *pid, int sig, int priv) 1890 { 1891 return kill_pid_info(sig, __si_special(priv), pid); 1892 } 1893 EXPORT_SYMBOL(kill_pid); 1894 1895 #ifdef CONFIG_POSIX_TIMERS 1896 /* 1897 * These functions handle POSIX timer signals. POSIX timers use 1898 * preallocated sigqueue structs for sending signals. 1899 */ 1900 static void __flush_itimer_signals(struct sigpending *pending) 1901 { 1902 sigset_t signal, retain; 1903 struct sigqueue *q, *n; 1904 1905 signal = pending->signal; 1906 sigemptyset(&retain); 1907 1908 list_for_each_entry_safe(q, n, &pending->list, list) { 1909 int sig = q->info.si_signo; 1910 1911 if (likely(q->info.si_code != SI_TIMER)) { 1912 sigaddset(&retain, sig); 1913 } else { 1914 sigdelset(&signal, sig); 1915 list_del_init(&q->list); 1916 __sigqueue_free(q); 1917 } 1918 } 1919 1920 sigorsets(&pending->signal, &signal, &retain); 1921 } 1922 1923 void flush_itimer_signals(void) 1924 { 1925 struct task_struct *tsk = current; 1926 1927 guard(spinlock_irqsave)(&tsk->sighand->siglock); 1928 __flush_itimer_signals(&tsk->pending); 1929 __flush_itimer_signals(&tsk->signal->shared_pending); 1930 } 1931 1932 bool posixtimer_init_sigqueue(struct sigqueue *q) 1933 { 1934 struct ucounts *ucounts = sig_get_ucounts(current, -1, 0); 1935 1936 if (!ucounts) 1937 return false; 1938 clear_siginfo(&q->info); 1939 __sigqueue_init(q, ucounts, SIGQUEUE_PREALLOC); 1940 return true; 1941 } 1942 1943 static void posixtimer_queue_sigqueue(struct sigqueue *q, struct task_struct *t, enum pid_type type) 1944 { 1945 struct sigpending *pending; 1946 int sig = q->info.si_signo; 1947 1948 signalfd_notify(t, sig); 1949 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1950 list_add_tail(&q->list, &pending->list); 1951 sigaddset(&pending->signal, sig); 1952 complete_signal(sig, t, type); 1953 } 1954 1955 /* 1956 * This function is used by POSIX timers to deliver a timer signal. 1957 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID 1958 * set), the signal must be delivered to the specific thread (queues 1959 * into t->pending). 1960 * 1961 * Where type is not PIDTYPE_PID, signals must be delivered to the 1962 * process. In this case, prefer to deliver to current if it is in 1963 * the same thread group as the target process and its sighand is 1964 * stable, which avoids unnecessarily waking up a potentially idle task. 1965 */ 1966 static inline struct task_struct *posixtimer_get_target(struct k_itimer *tmr) 1967 { 1968 struct task_struct *t = pid_task(tmr->it_pid, tmr->it_pid_type); 1969 1970 if (t && tmr->it_pid_type != PIDTYPE_PID && 1971 same_thread_group(t, current) && !current->exit_state) 1972 t = current; 1973 return t; 1974 } 1975 1976 void posixtimer_send_sigqueue(struct k_itimer *tmr) 1977 { 1978 struct sigqueue *q = &tmr->sigq; 1979 int sig = q->info.si_signo; 1980 struct task_struct *t; 1981 unsigned long flags; 1982 int result; 1983 1984 guard(rcu)(); 1985 1986 t = posixtimer_get_target(tmr); 1987 if (!t) 1988 return; 1989 1990 if (!likely(lock_task_sighand(t, &flags))) 1991 return; 1992 1993 /* 1994 * Update @tmr::sigqueue_seq for posix timer signals with sighand 1995 * locked to prevent a race against dequeue_signal(). 1996 */ 1997 tmr->it_sigqueue_seq = tmr->it_signal_seq; 1998 1999 /* 2000 * Set the signal delivery status under sighand lock, so that the 2001 * ignored signal handling can distinguish between a periodic and a 2002 * non-periodic timer. 2003 */ 2004 tmr->it_sig_periodic = tmr->it_status == POSIX_TIMER_REQUEUE_PENDING; 2005 2006 if (!prepare_signal(sig, t, false)) { 2007 result = TRACE_SIGNAL_IGNORED; 2008 2009 if (!list_empty(&q->list)) { 2010 /* 2011 * The signal was ignored and blocked. The timer 2012 * expiry queued it because blocked signals are 2013 * queued independent of the ignored state. 2014 * 2015 * The unblocking set SIGPENDING, but the signal 2016 * was not yet dequeued from the pending list. 2017 * So prepare_signal() sees unblocked and ignored, 2018 * which ends up here. Leave it queued like a 2019 * regular signal. 2020 * 2021 * The same happens when the task group is exiting 2022 * and the signal is already queued. 2023 * prepare_signal() treats SIGNAL_GROUP_EXIT as 2024 * ignored independent of its queued state. This 2025 * gets cleaned up in __exit_signal(). 2026 */ 2027 goto out; 2028 } 2029 2030 /* Periodic timers with SIG_IGN are queued on the ignored list */ 2031 if (tmr->it_sig_periodic) { 2032 /* 2033 * Already queued means the timer was rearmed after 2034 * the previous expiry got it on the ignore list. 2035 * Nothing to do for that case. 2036 */ 2037 if (hlist_unhashed(&tmr->ignored_list)) { 2038 /* 2039 * Take a signal reference and queue it on 2040 * the ignored list. 2041 */ 2042 posixtimer_sigqueue_getref(q); 2043 posixtimer_sig_ignore(t, q); 2044 } 2045 } else if (!hlist_unhashed(&tmr->ignored_list)) { 2046 /* 2047 * Covers the case where a timer was periodic and 2048 * then the signal was ignored. Later it was rearmed 2049 * as oneshot timer. The previous signal is invalid 2050 * now, and this oneshot signal has to be dropped. 2051 * Remove it from the ignored list and drop the 2052 * reference count as the signal is not longer 2053 * queued. 2054 */ 2055 hlist_del_init(&tmr->ignored_list); 2056 posixtimer_putref(tmr); 2057 } 2058 goto out; 2059 } 2060 2061 if (unlikely(!list_empty(&q->list))) { 2062 /* This holds a reference count already */ 2063 result = TRACE_SIGNAL_ALREADY_PENDING; 2064 goto out; 2065 } 2066 2067 /* 2068 * If the signal is on the ignore list, it got blocked after it was 2069 * ignored earlier. But nothing lifted the ignore. Move it back to 2070 * the pending list to be consistent with the regular signal 2071 * handling. This already holds a reference count. 2072 * 2073 * If it's not on the ignore list acquire a reference count. 2074 */ 2075 if (likely(hlist_unhashed(&tmr->ignored_list))) 2076 posixtimer_sigqueue_getref(q); 2077 else 2078 hlist_del_init(&tmr->ignored_list); 2079 2080 posixtimer_queue_sigqueue(q, t, tmr->it_pid_type); 2081 result = TRACE_SIGNAL_DELIVERED; 2082 out: 2083 trace_signal_generate(sig, &q->info, t, tmr->it_pid_type != PIDTYPE_PID, result); 2084 unlock_task_sighand(t, &flags); 2085 } 2086 2087 static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q) 2088 { 2089 struct k_itimer *tmr = container_of(q, struct k_itimer, sigq); 2090 2091 /* 2092 * If the timer is marked deleted already or the signal originates 2093 * from a non-periodic timer, then just drop the reference 2094 * count. Otherwise queue it on the ignored list. 2095 */ 2096 if (posixtimer_valid(tmr) && tmr->it_sig_periodic) 2097 hlist_add_head(&tmr->ignored_list, &tsk->signal->ignored_posix_timers); 2098 else 2099 posixtimer_putref(tmr); 2100 } 2101 2102 static void posixtimer_sig_unignore(struct task_struct *tsk, int sig) 2103 { 2104 struct hlist_head *head = &tsk->signal->ignored_posix_timers; 2105 struct hlist_node *tmp; 2106 struct k_itimer *tmr; 2107 2108 if (likely(hlist_empty(head))) 2109 return; 2110 2111 /* 2112 * Rearming a timer with sighand lock held is not possible due to 2113 * lock ordering vs. tmr::it_lock. Just stick the sigqueue back and 2114 * let the signal delivery path deal with it whether it needs to be 2115 * rearmed or not. This cannot be decided here w/o dropping sighand 2116 * lock and creating a loop retry horror show. 2117 */ 2118 hlist_for_each_entry_safe(tmr, tmp , head, ignored_list) { 2119 struct task_struct *target; 2120 2121 /* 2122 * tmr::sigq.info.si_signo is immutable, so accessing it 2123 * without holding tmr::it_lock is safe. 2124 */ 2125 if (tmr->sigq.info.si_signo != sig) 2126 continue; 2127 2128 hlist_del_init(&tmr->ignored_list); 2129 2130 /* This should never happen and leaks a reference count */ 2131 if (WARN_ON_ONCE(!list_empty(&tmr->sigq.list))) 2132 continue; 2133 2134 /* 2135 * Get the target for the signal. If target is a thread and 2136 * has exited by now, drop the reference count. 2137 */ 2138 guard(rcu)(); 2139 target = posixtimer_get_target(tmr); 2140 if (target) 2141 posixtimer_queue_sigqueue(&tmr->sigq, target, tmr->it_pid_type); 2142 else 2143 posixtimer_putref(tmr); 2144 } 2145 } 2146 #else /* CONFIG_POSIX_TIMERS */ 2147 static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q) { } 2148 static inline void posixtimer_sig_unignore(struct task_struct *tsk, int sig) { } 2149 #endif /* !CONFIG_POSIX_TIMERS */ 2150 2151 void do_notify_pidfd(struct task_struct *task) 2152 { 2153 struct pid *pid = task_pid(task); 2154 2155 WARN_ON(task->exit_state == 0); 2156 2157 __wake_up(&pid->wait_pidfd, TASK_NORMAL, 0, 2158 poll_to_key(EPOLLIN | EPOLLRDNORM)); 2159 } 2160 2161 /* 2162 * Let a parent know about the death of a child. 2163 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 2164 * 2165 * Returns true if our parent ignored us and so we've switched to 2166 * self-reaping. 2167 */ 2168 bool do_notify_parent(struct task_struct *tsk, int sig) 2169 { 2170 struct kernel_siginfo info; 2171 unsigned long flags; 2172 struct sighand_struct *psig; 2173 bool autoreap = false; 2174 u64 utime, stime; 2175 2176 WARN_ON_ONCE(sig == -1); 2177 2178 /* do_notify_parent_cldstop should have been called instead. */ 2179 WARN_ON_ONCE(task_is_stopped_or_traced(tsk)); 2180 2181 WARN_ON_ONCE(!tsk->ptrace && 2182 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 2183 /* 2184 * Notify for thread-group leaders without subthreads. 2185 */ 2186 if (thread_group_empty(tsk)) 2187 do_notify_pidfd(tsk); 2188 2189 if (sig != SIGCHLD) { 2190 /* 2191 * This is only possible if parent == real_parent. 2192 * Check if it has changed security domain. 2193 */ 2194 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) 2195 sig = SIGCHLD; 2196 } 2197 2198 clear_siginfo(&info); 2199 info.si_signo = sig; 2200 info.si_errno = 0; 2201 /* 2202 * We are under tasklist_lock here so our parent is tied to 2203 * us and cannot change. 2204 * 2205 * task_active_pid_ns will always return the same pid namespace 2206 * until a task passes through release_task. 2207 * 2208 * write_lock() currently calls preempt_disable() which is the 2209 * same as rcu_read_lock(), but according to Oleg, this is not 2210 * correct to rely on this 2211 */ 2212 rcu_read_lock(); 2213 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 2214 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 2215 task_uid(tsk)); 2216 rcu_read_unlock(); 2217 2218 task_cputime(tsk, &utime, &stime); 2219 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 2220 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 2221 2222 info.si_status = tsk->exit_code & 0x7f; 2223 if (tsk->exit_code & 0x80) 2224 info.si_code = CLD_DUMPED; 2225 else if (tsk->exit_code & 0x7f) 2226 info.si_code = CLD_KILLED; 2227 else { 2228 info.si_code = CLD_EXITED; 2229 info.si_status = tsk->exit_code >> 8; 2230 } 2231 2232 psig = tsk->parent->sighand; 2233 spin_lock_irqsave(&psig->siglock, flags); 2234 if (!tsk->ptrace && sig == SIGCHLD && 2235 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 2236 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 2237 /* 2238 * We are exiting and our parent doesn't care. POSIX.1 2239 * defines special semantics for setting SIGCHLD to SIG_IGN 2240 * or setting the SA_NOCLDWAIT flag: we should be reaped 2241 * automatically and not left for our parent's wait4 call. 2242 * Rather than having the parent do it as a magic kind of 2243 * signal handler, we just set this to tell do_exit that we 2244 * can be cleaned up without becoming a zombie. Note that 2245 * we still call __wake_up_parent in this case, because a 2246 * blocked sys_wait4 might now return -ECHILD. 2247 * 2248 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 2249 * is implementation-defined: we do (if you don't want 2250 * it, just use SIG_IGN instead). 2251 */ 2252 autoreap = true; 2253 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 2254 sig = 0; 2255 } 2256 /* 2257 * Send with __send_signal as si_pid and si_uid are in the 2258 * parent's namespaces. 2259 */ 2260 if (valid_signal(sig) && sig) 2261 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false); 2262 __wake_up_parent(tsk, tsk->parent); 2263 spin_unlock_irqrestore(&psig->siglock, flags); 2264 2265 return autoreap; 2266 } 2267 2268 /** 2269 * do_notify_parent_cldstop - notify parent of stopped/continued state change 2270 * @tsk: task reporting the state change 2271 * @for_ptracer: the notification is for ptracer 2272 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 2273 * 2274 * Notify @tsk's parent that the stopped/continued state has changed. If 2275 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 2276 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 2277 * 2278 * CONTEXT: 2279 * Must be called with tasklist_lock at least read locked. 2280 */ 2281 static void do_notify_parent_cldstop(struct task_struct *tsk, 2282 bool for_ptracer, int why) 2283 { 2284 struct kernel_siginfo info; 2285 unsigned long flags; 2286 struct task_struct *parent; 2287 struct sighand_struct *sighand; 2288 u64 utime, stime; 2289 2290 if (for_ptracer) { 2291 parent = tsk->parent; 2292 } else { 2293 tsk = tsk->group_leader; 2294 parent = tsk->real_parent; 2295 } 2296 2297 clear_siginfo(&info); 2298 info.si_signo = SIGCHLD; 2299 info.si_errno = 0; 2300 /* 2301 * see comment in do_notify_parent() about the following 4 lines 2302 */ 2303 rcu_read_lock(); 2304 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 2305 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 2306 rcu_read_unlock(); 2307 2308 task_cputime(tsk, &utime, &stime); 2309 info.si_utime = nsec_to_clock_t(utime); 2310 info.si_stime = nsec_to_clock_t(stime); 2311 2312 info.si_code = why; 2313 switch (why) { 2314 case CLD_CONTINUED: 2315 info.si_status = SIGCONT; 2316 break; 2317 case CLD_STOPPED: 2318 info.si_status = tsk->signal->group_exit_code & 0x7f; 2319 break; 2320 case CLD_TRAPPED: 2321 info.si_status = tsk->exit_code & 0x7f; 2322 break; 2323 default: 2324 BUG(); 2325 } 2326 2327 sighand = parent->sighand; 2328 spin_lock_irqsave(&sighand->siglock, flags); 2329 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 2330 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 2331 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID); 2332 /* 2333 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 2334 */ 2335 __wake_up_parent(tsk, parent); 2336 spin_unlock_irqrestore(&sighand->siglock, flags); 2337 } 2338 2339 /* 2340 * This must be called with current->sighand->siglock held. 2341 * 2342 * This should be the path for all ptrace stops. 2343 * We always set current->last_siginfo while stopped here. 2344 * That makes it a way to test a stopped process for 2345 * being ptrace-stopped vs being job-control-stopped. 2346 * 2347 * Returns the signal the ptracer requested the code resume 2348 * with. If the code did not stop because the tracer is gone, 2349 * the stop signal remains unchanged unless clear_code. 2350 */ 2351 static int ptrace_stop(int exit_code, int why, unsigned long message, 2352 kernel_siginfo_t *info) 2353 __releases(¤t->sighand->siglock) 2354 __acquires(¤t->sighand->siglock) 2355 { 2356 bool gstop_done = false; 2357 2358 if (arch_ptrace_stop_needed()) { 2359 /* 2360 * The arch code has something special to do before a 2361 * ptrace stop. This is allowed to block, e.g. for faults 2362 * on user stack pages. We can't keep the siglock while 2363 * calling arch_ptrace_stop, so we must release it now. 2364 * To preserve proper semantics, we must do this before 2365 * any signal bookkeeping like checking group_stop_count. 2366 */ 2367 spin_unlock_irq(¤t->sighand->siglock); 2368 arch_ptrace_stop(); 2369 spin_lock_irq(¤t->sighand->siglock); 2370 } 2371 2372 /* 2373 * After this point ptrace_signal_wake_up or signal_wake_up 2374 * will clear TASK_TRACED if ptrace_unlink happens or a fatal 2375 * signal comes in. Handle previous ptrace_unlinks and fatal 2376 * signals here to prevent ptrace_stop sleeping in schedule. 2377 */ 2378 if (!current->ptrace || __fatal_signal_pending(current)) 2379 return exit_code; 2380 2381 set_special_state(TASK_TRACED); 2382 current->jobctl |= JOBCTL_TRACED; 2383 2384 /* 2385 * We're committing to trapping. TRACED should be visible before 2386 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2387 * Also, transition to TRACED and updates to ->jobctl should be 2388 * atomic with respect to siglock and should be done after the arch 2389 * hook as siglock is released and regrabbed across it. 2390 * 2391 * TRACER TRACEE 2392 * 2393 * ptrace_attach() 2394 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2395 * do_wait() 2396 * set_current_state() smp_wmb(); 2397 * ptrace_do_wait() 2398 * wait_task_stopped() 2399 * task_stopped_code() 2400 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2401 */ 2402 smp_wmb(); 2403 2404 current->ptrace_message = message; 2405 current->last_siginfo = info; 2406 current->exit_code = exit_code; 2407 2408 /* 2409 * If @why is CLD_STOPPED, we're trapping to participate in a group 2410 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2411 * across siglock relocks since INTERRUPT was scheduled, PENDING 2412 * could be clear now. We act as if SIGCONT is received after 2413 * TASK_TRACED is entered - ignore it. 2414 */ 2415 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2416 gstop_done = task_participate_group_stop(current); 2417 2418 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2419 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2420 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2421 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2422 2423 /* entering a trap, clear TRAPPING */ 2424 task_clear_jobctl_trapping(current); 2425 2426 spin_unlock_irq(¤t->sighand->siglock); 2427 read_lock(&tasklist_lock); 2428 /* 2429 * Notify parents of the stop. 2430 * 2431 * While ptraced, there are two parents - the ptracer and 2432 * the real_parent of the group_leader. The ptracer should 2433 * know about every stop while the real parent is only 2434 * interested in the completion of group stop. The states 2435 * for the two don't interact with each other. Notify 2436 * separately unless they're gonna be duplicates. 2437 */ 2438 if (current->ptrace) 2439 do_notify_parent_cldstop(current, true, why); 2440 if (gstop_done && (!current->ptrace || ptrace_reparented(current))) 2441 do_notify_parent_cldstop(current, false, why); 2442 2443 /* 2444 * The previous do_notify_parent_cldstop() invocation woke ptracer. 2445 * One a PREEMPTION kernel this can result in preemption requirement 2446 * which will be fulfilled after read_unlock() and the ptracer will be 2447 * put on the CPU. 2448 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for 2449 * this task wait in schedule(). If this task gets preempted then it 2450 * remains enqueued on the runqueue. The ptracer will observe this and 2451 * then sleep for a delay of one HZ tick. In the meantime this task 2452 * gets scheduled, enters schedule() and will wait for the ptracer. 2453 * 2454 * This preemption point is not bad from a correctness point of 2455 * view but extends the runtime by one HZ tick time due to the 2456 * ptracer's sleep. The preempt-disable section ensures that there 2457 * will be no preemption between unlock and schedule() and so 2458 * improving the performance since the ptracer will observe that 2459 * the tracee is scheduled out once it gets on the CPU. 2460 * 2461 * On PREEMPT_RT locking tasklist_lock does not disable preemption. 2462 * Therefore the task can be preempted after do_notify_parent_cldstop() 2463 * before unlocking tasklist_lock so there is no benefit in doing this. 2464 * 2465 * In fact disabling preemption is harmful on PREEMPT_RT because 2466 * the spinlock_t in cgroup_enter_frozen() must not be acquired 2467 * with preemption disabled due to the 'sleeping' spinlock 2468 * substitution of RT. 2469 */ 2470 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 2471 preempt_disable(); 2472 read_unlock(&tasklist_lock); 2473 cgroup_enter_frozen(); 2474 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 2475 preempt_enable_no_resched(); 2476 schedule(); 2477 cgroup_leave_frozen(true); 2478 2479 /* 2480 * We are back. Now reacquire the siglock before touching 2481 * last_siginfo, so that we are sure to have synchronized with 2482 * any signal-sending on another CPU that wants to examine it. 2483 */ 2484 spin_lock_irq(¤t->sighand->siglock); 2485 exit_code = current->exit_code; 2486 current->last_siginfo = NULL; 2487 current->ptrace_message = 0; 2488 current->exit_code = 0; 2489 2490 /* LISTENING can be set only during STOP traps, clear it */ 2491 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN); 2492 2493 /* 2494 * Queued signals ignored us while we were stopped for tracing. 2495 * So check for any that we should take before resuming user mode. 2496 * This sets TIF_SIGPENDING, but never clears it. 2497 */ 2498 recalc_sigpending_tsk(current); 2499 return exit_code; 2500 } 2501 2502 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message) 2503 { 2504 kernel_siginfo_t info; 2505 2506 clear_siginfo(&info); 2507 info.si_signo = signr; 2508 info.si_code = exit_code; 2509 info.si_pid = task_pid_vnr(current); 2510 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2511 2512 /* Let the debugger run. */ 2513 return ptrace_stop(exit_code, why, message, &info); 2514 } 2515 2516 int ptrace_notify(int exit_code, unsigned long message) 2517 { 2518 int signr; 2519 2520 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2521 if (unlikely(task_work_pending(current))) 2522 task_work_run(); 2523 2524 spin_lock_irq(¤t->sighand->siglock); 2525 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message); 2526 spin_unlock_irq(¤t->sighand->siglock); 2527 return signr; 2528 } 2529 2530 /** 2531 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2532 * @signr: signr causing group stop if initiating 2533 * 2534 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2535 * and participate in it. If already set, participate in the existing 2536 * group stop. If participated in a group stop (and thus slept), %true is 2537 * returned with siglock released. 2538 * 2539 * If ptraced, this function doesn't handle stop itself. Instead, 2540 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2541 * untouched. The caller must ensure that INTERRUPT trap handling takes 2542 * places afterwards. 2543 * 2544 * CONTEXT: 2545 * Must be called with @current->sighand->siglock held, which is released 2546 * on %true return. 2547 * 2548 * RETURNS: 2549 * %false if group stop is already cancelled or ptrace trap is scheduled. 2550 * %true if participated in group stop. 2551 */ 2552 static bool do_signal_stop(int signr) 2553 __releases(¤t->sighand->siglock) 2554 { 2555 struct signal_struct *sig = current->signal; 2556 2557 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2558 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2559 struct task_struct *t; 2560 2561 /* signr will be recorded in task->jobctl for retries */ 2562 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2563 2564 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2565 unlikely(sig->flags & SIGNAL_GROUP_EXIT) || 2566 unlikely(sig->group_exec_task)) 2567 return false; 2568 /* 2569 * There is no group stop already in progress. We must 2570 * initiate one now. 2571 * 2572 * While ptraced, a task may be resumed while group stop is 2573 * still in effect and then receive a stop signal and 2574 * initiate another group stop. This deviates from the 2575 * usual behavior as two consecutive stop signals can't 2576 * cause two group stops when !ptraced. That is why we 2577 * also check !task_is_stopped(t) below. 2578 * 2579 * The condition can be distinguished by testing whether 2580 * SIGNAL_STOP_STOPPED is already set. Don't generate 2581 * group_exit_code in such case. 2582 * 2583 * This is not necessary for SIGNAL_STOP_CONTINUED because 2584 * an intervening stop signal is required to cause two 2585 * continued events regardless of ptrace. 2586 */ 2587 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2588 sig->group_exit_code = signr; 2589 2590 sig->group_stop_count = 0; 2591 if (task_set_jobctl_pending(current, signr | gstop)) 2592 sig->group_stop_count++; 2593 2594 for_other_threads(current, t) { 2595 /* 2596 * Setting state to TASK_STOPPED for a group 2597 * stop is always done with the siglock held, 2598 * so this check has no races. 2599 */ 2600 if (!task_is_stopped(t) && 2601 task_set_jobctl_pending(t, signr | gstop)) { 2602 sig->group_stop_count++; 2603 if (likely(!(t->ptrace & PT_SEIZED))) 2604 signal_wake_up(t, 0); 2605 else 2606 ptrace_trap_notify(t); 2607 } 2608 } 2609 } 2610 2611 if (likely(!current->ptrace)) { 2612 int notify = 0; 2613 2614 /* 2615 * If there are no other threads in the group, or if there 2616 * is a group stop in progress and we are the last to stop, 2617 * report to the parent. 2618 */ 2619 if (task_participate_group_stop(current)) 2620 notify = CLD_STOPPED; 2621 2622 current->jobctl |= JOBCTL_STOPPED; 2623 set_special_state(TASK_STOPPED); 2624 spin_unlock_irq(¤t->sighand->siglock); 2625 2626 /* 2627 * Notify the parent of the group stop completion. Because 2628 * we're not holding either the siglock or tasklist_lock 2629 * here, ptracer may attach inbetween; however, this is for 2630 * group stop and should always be delivered to the real 2631 * parent of the group leader. The new ptracer will get 2632 * its notification when this task transitions into 2633 * TASK_TRACED. 2634 */ 2635 if (notify) { 2636 read_lock(&tasklist_lock); 2637 do_notify_parent_cldstop(current, false, notify); 2638 read_unlock(&tasklist_lock); 2639 } 2640 2641 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2642 cgroup_enter_frozen(); 2643 schedule(); 2644 return true; 2645 } else { 2646 /* 2647 * While ptraced, group stop is handled by STOP trap. 2648 * Schedule it and let the caller deal with it. 2649 */ 2650 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2651 return false; 2652 } 2653 } 2654 2655 /** 2656 * do_jobctl_trap - take care of ptrace jobctl traps 2657 * 2658 * When PT_SEIZED, it's used for both group stop and explicit 2659 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2660 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2661 * the stop signal; otherwise, %SIGTRAP. 2662 * 2663 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2664 * number as exit_code and no siginfo. 2665 * 2666 * CONTEXT: 2667 * Must be called with @current->sighand->siglock held, which may be 2668 * released and re-acquired before returning with intervening sleep. 2669 */ 2670 static void do_jobctl_trap(void) 2671 { 2672 struct signal_struct *signal = current->signal; 2673 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2674 2675 if (current->ptrace & PT_SEIZED) { 2676 if (!signal->group_stop_count && 2677 !(signal->flags & SIGNAL_STOP_STOPPED)) 2678 signr = SIGTRAP; 2679 WARN_ON_ONCE(!signr); 2680 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2681 CLD_STOPPED, 0); 2682 } else { 2683 WARN_ON_ONCE(!signr); 2684 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2685 } 2686 } 2687 2688 /** 2689 * do_freezer_trap - handle the freezer jobctl trap 2690 * 2691 * Puts the task into frozen state, if only the task is not about to quit. 2692 * In this case it drops JOBCTL_TRAP_FREEZE. 2693 * 2694 * CONTEXT: 2695 * Must be called with @current->sighand->siglock held, 2696 * which is always released before returning. 2697 */ 2698 static void do_freezer_trap(void) 2699 __releases(¤t->sighand->siglock) 2700 { 2701 /* 2702 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, 2703 * let's make another loop to give it a chance to be handled. 2704 * In any case, we'll return back. 2705 */ 2706 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != 2707 JOBCTL_TRAP_FREEZE) { 2708 spin_unlock_irq(¤t->sighand->siglock); 2709 return; 2710 } 2711 2712 /* 2713 * Now we're sure that there is no pending fatal signal and no 2714 * pending traps. Clear TIF_SIGPENDING to not get out of schedule() 2715 * immediately (if there is a non-fatal signal pending), and 2716 * put the task into sleep. 2717 */ 2718 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 2719 clear_thread_flag(TIF_SIGPENDING); 2720 spin_unlock_irq(¤t->sighand->siglock); 2721 cgroup_enter_frozen(); 2722 schedule(); 2723 2724 /* 2725 * We could've been woken by task_work, run it to clear 2726 * TIF_NOTIFY_SIGNAL. The caller will retry if necessary. 2727 */ 2728 clear_notify_signal(); 2729 if (unlikely(task_work_pending(current))) 2730 task_work_run(); 2731 } 2732 2733 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type) 2734 { 2735 /* 2736 * We do not check sig_kernel_stop(signr) but set this marker 2737 * unconditionally because we do not know whether debugger will 2738 * change signr. This flag has no meaning unless we are going 2739 * to stop after return from ptrace_stop(). In this case it will 2740 * be checked in do_signal_stop(), we should only stop if it was 2741 * not cleared by SIGCONT while we were sleeping. See also the 2742 * comment in dequeue_signal(). 2743 */ 2744 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2745 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info); 2746 2747 /* We're back. Did the debugger cancel the sig? */ 2748 if (signr == 0) 2749 return signr; 2750 2751 /* 2752 * Update the siginfo structure if the signal has 2753 * changed. If the debugger wanted something 2754 * specific in the siginfo structure then it should 2755 * have updated *info via PTRACE_SETSIGINFO. 2756 */ 2757 if (signr != info->si_signo) { 2758 clear_siginfo(info); 2759 info->si_signo = signr; 2760 info->si_errno = 0; 2761 info->si_code = SI_USER; 2762 rcu_read_lock(); 2763 info->si_pid = task_pid_vnr(current->parent); 2764 info->si_uid = from_kuid_munged(current_user_ns(), 2765 task_uid(current->parent)); 2766 rcu_read_unlock(); 2767 } 2768 2769 /* If the (new) signal is now blocked, requeue it. */ 2770 if (sigismember(¤t->blocked, signr) || 2771 fatal_signal_pending(current)) { 2772 send_signal_locked(signr, info, current, type); 2773 signr = 0; 2774 } 2775 2776 return signr; 2777 } 2778 2779 static void hide_si_addr_tag_bits(struct ksignal *ksig) 2780 { 2781 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) { 2782 case SIL_FAULT: 2783 case SIL_FAULT_TRAPNO: 2784 case SIL_FAULT_MCEERR: 2785 case SIL_FAULT_BNDERR: 2786 case SIL_FAULT_PKUERR: 2787 case SIL_FAULT_PERF_EVENT: 2788 ksig->info.si_addr = arch_untagged_si_addr( 2789 ksig->info.si_addr, ksig->sig, ksig->info.si_code); 2790 break; 2791 case SIL_KILL: 2792 case SIL_TIMER: 2793 case SIL_POLL: 2794 case SIL_CHLD: 2795 case SIL_RT: 2796 case SIL_SYS: 2797 break; 2798 } 2799 } 2800 2801 bool get_signal(struct ksignal *ksig) 2802 { 2803 struct sighand_struct *sighand = current->sighand; 2804 struct signal_struct *signal = current->signal; 2805 int signr; 2806 2807 clear_notify_signal(); 2808 if (unlikely(task_work_pending(current))) 2809 task_work_run(); 2810 2811 if (!task_sigpending(current)) 2812 return false; 2813 2814 if (unlikely(uprobe_deny_signal())) 2815 return false; 2816 2817 /* 2818 * Do this once, we can't return to user-mode if freezing() == T. 2819 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2820 * thus do not need another check after return. 2821 */ 2822 try_to_freeze(); 2823 2824 relock: 2825 spin_lock_irq(&sighand->siglock); 2826 2827 /* 2828 * Every stopped thread goes here after wakeup. Check to see if 2829 * we should notify the parent, prepare_signal(SIGCONT) encodes 2830 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2831 */ 2832 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2833 int why; 2834 2835 if (signal->flags & SIGNAL_CLD_CONTINUED) 2836 why = CLD_CONTINUED; 2837 else 2838 why = CLD_STOPPED; 2839 2840 signal->flags &= ~SIGNAL_CLD_MASK; 2841 2842 spin_unlock_irq(&sighand->siglock); 2843 2844 /* 2845 * Notify the parent that we're continuing. This event is 2846 * always per-process and doesn't make whole lot of sense 2847 * for ptracers, who shouldn't consume the state via 2848 * wait(2) either, but, for backward compatibility, notify 2849 * the ptracer of the group leader too unless it's gonna be 2850 * a duplicate. 2851 */ 2852 read_lock(&tasklist_lock); 2853 do_notify_parent_cldstop(current, false, why); 2854 2855 if (ptrace_reparented(current->group_leader)) 2856 do_notify_parent_cldstop(current->group_leader, 2857 true, why); 2858 read_unlock(&tasklist_lock); 2859 2860 goto relock; 2861 } 2862 2863 for (;;) { 2864 struct k_sigaction *ka; 2865 enum pid_type type; 2866 2867 /* Has this task already been marked for death? */ 2868 if ((signal->flags & SIGNAL_GROUP_EXIT) || 2869 signal->group_exec_task) { 2870 signr = SIGKILL; 2871 sigdelset(¤t->pending.signal, SIGKILL); 2872 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, 2873 &sighand->action[SIGKILL-1]); 2874 recalc_sigpending(); 2875 /* 2876 * implies do_group_exit() or return to PF_USER_WORKER, 2877 * no need to initialize ksig->info/etc. 2878 */ 2879 goto fatal; 2880 } 2881 2882 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2883 do_signal_stop(0)) 2884 goto relock; 2885 2886 if (unlikely(current->jobctl & 2887 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { 2888 if (current->jobctl & JOBCTL_TRAP_MASK) { 2889 do_jobctl_trap(); 2890 spin_unlock_irq(&sighand->siglock); 2891 } else if (current->jobctl & JOBCTL_TRAP_FREEZE) 2892 do_freezer_trap(); 2893 2894 goto relock; 2895 } 2896 2897 /* 2898 * If the task is leaving the frozen state, let's update 2899 * cgroup counters and reset the frozen bit. 2900 */ 2901 if (unlikely(cgroup_task_frozen(current))) { 2902 spin_unlock_irq(&sighand->siglock); 2903 cgroup_leave_frozen(false); 2904 goto relock; 2905 } 2906 2907 /* 2908 * Signals generated by the execution of an instruction 2909 * need to be delivered before any other pending signals 2910 * so that the instruction pointer in the signal stack 2911 * frame points to the faulting instruction. 2912 */ 2913 type = PIDTYPE_PID; 2914 signr = dequeue_synchronous_signal(&ksig->info); 2915 if (!signr) 2916 signr = dequeue_signal(¤t->blocked, &ksig->info, &type); 2917 2918 if (!signr) 2919 break; /* will return 0 */ 2920 2921 if (unlikely(current->ptrace) && (signr != SIGKILL) && 2922 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) { 2923 signr = ptrace_signal(signr, &ksig->info, type); 2924 if (!signr) 2925 continue; 2926 } 2927 2928 ka = &sighand->action[signr-1]; 2929 2930 /* Trace actually delivered signals. */ 2931 trace_signal_deliver(signr, &ksig->info, ka); 2932 2933 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2934 continue; 2935 if (ka->sa.sa_handler != SIG_DFL) { 2936 /* Run the handler. */ 2937 ksig->ka = *ka; 2938 2939 if (ka->sa.sa_flags & SA_ONESHOT) 2940 ka->sa.sa_handler = SIG_DFL; 2941 2942 break; /* will return non-zero "signr" value */ 2943 } 2944 2945 /* 2946 * Now we are doing the default action for this signal. 2947 */ 2948 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2949 continue; 2950 2951 /* 2952 * Global init gets no signals it doesn't want. 2953 * Container-init gets no signals it doesn't want from same 2954 * container. 2955 * 2956 * Note that if global/container-init sees a sig_kernel_only() 2957 * signal here, the signal must have been generated internally 2958 * or must have come from an ancestor namespace. In either 2959 * case, the signal cannot be dropped. 2960 */ 2961 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2962 !sig_kernel_only(signr)) 2963 continue; 2964 2965 if (sig_kernel_stop(signr)) { 2966 /* 2967 * The default action is to stop all threads in 2968 * the thread group. The job control signals 2969 * do nothing in an orphaned pgrp, but SIGSTOP 2970 * always works. Note that siglock needs to be 2971 * dropped during the call to is_orphaned_pgrp() 2972 * because of lock ordering with tasklist_lock. 2973 * This allows an intervening SIGCONT to be posted. 2974 * We need to check for that and bail out if necessary. 2975 */ 2976 if (signr != SIGSTOP) { 2977 spin_unlock_irq(&sighand->siglock); 2978 2979 /* signals can be posted during this window */ 2980 2981 if (is_current_pgrp_orphaned()) 2982 goto relock; 2983 2984 spin_lock_irq(&sighand->siglock); 2985 } 2986 2987 if (likely(do_signal_stop(signr))) { 2988 /* It released the siglock. */ 2989 goto relock; 2990 } 2991 2992 /* 2993 * We didn't actually stop, due to a race 2994 * with SIGCONT or something like that. 2995 */ 2996 continue; 2997 } 2998 2999 fatal: 3000 spin_unlock_irq(&sighand->siglock); 3001 if (unlikely(cgroup_task_frozen(current))) 3002 cgroup_leave_frozen(true); 3003 3004 /* 3005 * Anything else is fatal, maybe with a core dump. 3006 */ 3007 current->flags |= PF_SIGNALED; 3008 3009 if (sig_kernel_coredump(signr)) { 3010 if (print_fatal_signals) 3011 print_fatal_signal(signr); 3012 proc_coredump_connector(current); 3013 /* 3014 * If it was able to dump core, this kills all 3015 * other threads in the group and synchronizes with 3016 * their demise. If we lost the race with another 3017 * thread getting here, it set group_exit_code 3018 * first and our do_group_exit call below will use 3019 * that value and ignore the one we pass it. 3020 */ 3021 do_coredump(&ksig->info); 3022 } 3023 3024 /* 3025 * PF_USER_WORKER threads will catch and exit on fatal signals 3026 * themselves. They have cleanup that must be performed, so we 3027 * cannot call do_exit() on their behalf. Note that ksig won't 3028 * be properly initialized, PF_USER_WORKER's shouldn't use it. 3029 */ 3030 if (current->flags & PF_USER_WORKER) 3031 goto out; 3032 3033 /* 3034 * Death signals, no core dump. 3035 */ 3036 do_group_exit(signr); 3037 /* NOTREACHED */ 3038 } 3039 spin_unlock_irq(&sighand->siglock); 3040 3041 ksig->sig = signr; 3042 3043 if (signr && !(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS)) 3044 hide_si_addr_tag_bits(ksig); 3045 out: 3046 return signr > 0; 3047 } 3048 3049 /** 3050 * signal_delivered - called after signal delivery to update blocked signals 3051 * @ksig: kernel signal struct 3052 * @stepping: nonzero if debugger single-step or block-step in use 3053 * 3054 * This function should be called when a signal has successfully been 3055 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 3056 * is always blocked), and the signal itself is blocked unless %SA_NODEFER 3057 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 3058 */ 3059 static void signal_delivered(struct ksignal *ksig, int stepping) 3060 { 3061 sigset_t blocked; 3062 3063 /* A signal was successfully delivered, and the 3064 saved sigmask was stored on the signal frame, 3065 and will be restored by sigreturn. So we can 3066 simply clear the restore sigmask flag. */ 3067 clear_restore_sigmask(); 3068 3069 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 3070 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 3071 sigaddset(&blocked, ksig->sig); 3072 set_current_blocked(&blocked); 3073 if (current->sas_ss_flags & SS_AUTODISARM) 3074 sas_ss_reset(current); 3075 if (stepping) 3076 ptrace_notify(SIGTRAP, 0); 3077 } 3078 3079 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 3080 { 3081 if (failed) 3082 force_sigsegv(ksig->sig); 3083 else 3084 signal_delivered(ksig, stepping); 3085 } 3086 3087 /* 3088 * It could be that complete_signal() picked us to notify about the 3089 * group-wide signal. Other threads should be notified now to take 3090 * the shared signals in @which since we will not. 3091 */ 3092 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 3093 { 3094 sigset_t retarget; 3095 struct task_struct *t; 3096 3097 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 3098 if (sigisemptyset(&retarget)) 3099 return; 3100 3101 for_other_threads(tsk, t) { 3102 if (t->flags & PF_EXITING) 3103 continue; 3104 3105 if (!has_pending_signals(&retarget, &t->blocked)) 3106 continue; 3107 /* Remove the signals this thread can handle. */ 3108 sigandsets(&retarget, &retarget, &t->blocked); 3109 3110 if (!task_sigpending(t)) 3111 signal_wake_up(t, 0); 3112 3113 if (sigisemptyset(&retarget)) 3114 break; 3115 } 3116 } 3117 3118 void exit_signals(struct task_struct *tsk) 3119 { 3120 int group_stop = 0; 3121 sigset_t unblocked; 3122 3123 /* 3124 * @tsk is about to have PF_EXITING set - lock out users which 3125 * expect stable threadgroup. 3126 */ 3127 cgroup_threadgroup_change_begin(tsk); 3128 3129 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) { 3130 sched_mm_cid_exit_signals(tsk); 3131 tsk->flags |= PF_EXITING; 3132 cgroup_threadgroup_change_end(tsk); 3133 return; 3134 } 3135 3136 spin_lock_irq(&tsk->sighand->siglock); 3137 /* 3138 * From now this task is not visible for group-wide signals, 3139 * see wants_signal(), do_signal_stop(). 3140 */ 3141 sched_mm_cid_exit_signals(tsk); 3142 tsk->flags |= PF_EXITING; 3143 3144 cgroup_threadgroup_change_end(tsk); 3145 3146 if (!task_sigpending(tsk)) 3147 goto out; 3148 3149 unblocked = tsk->blocked; 3150 signotset(&unblocked); 3151 retarget_shared_pending(tsk, &unblocked); 3152 3153 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 3154 task_participate_group_stop(tsk)) 3155 group_stop = CLD_STOPPED; 3156 out: 3157 spin_unlock_irq(&tsk->sighand->siglock); 3158 3159 /* 3160 * If group stop has completed, deliver the notification. This 3161 * should always go to the real parent of the group leader. 3162 */ 3163 if (unlikely(group_stop)) { 3164 read_lock(&tasklist_lock); 3165 do_notify_parent_cldstop(tsk, false, group_stop); 3166 read_unlock(&tasklist_lock); 3167 } 3168 } 3169 3170 /* 3171 * System call entry points. 3172 */ 3173 3174 /** 3175 * sys_restart_syscall - restart a system call 3176 */ 3177 SYSCALL_DEFINE0(restart_syscall) 3178 { 3179 struct restart_block *restart = ¤t->restart_block; 3180 return restart->fn(restart); 3181 } 3182 3183 long do_no_restart_syscall(struct restart_block *param) 3184 { 3185 return -EINTR; 3186 } 3187 3188 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 3189 { 3190 if (task_sigpending(tsk) && !thread_group_empty(tsk)) { 3191 sigset_t newblocked; 3192 /* A set of now blocked but previously unblocked signals. */ 3193 sigandnsets(&newblocked, newset, ¤t->blocked); 3194 retarget_shared_pending(tsk, &newblocked); 3195 } 3196 tsk->blocked = *newset; 3197 recalc_sigpending(); 3198 } 3199 3200 /** 3201 * set_current_blocked - change current->blocked mask 3202 * @newset: new mask 3203 * 3204 * It is wrong to change ->blocked directly, this helper should be used 3205 * to ensure the process can't miss a shared signal we are going to block. 3206 */ 3207 void set_current_blocked(sigset_t *newset) 3208 { 3209 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3210 __set_current_blocked(newset); 3211 } 3212 3213 void __set_current_blocked(const sigset_t *newset) 3214 { 3215 struct task_struct *tsk = current; 3216 3217 /* 3218 * In case the signal mask hasn't changed, there is nothing we need 3219 * to do. The current->blocked shouldn't be modified by other task. 3220 */ 3221 if (sigequalsets(&tsk->blocked, newset)) 3222 return; 3223 3224 spin_lock_irq(&tsk->sighand->siglock); 3225 __set_task_blocked(tsk, newset); 3226 spin_unlock_irq(&tsk->sighand->siglock); 3227 } 3228 3229 /* 3230 * This is also useful for kernel threads that want to temporarily 3231 * (or permanently) block certain signals. 3232 * 3233 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 3234 * interface happily blocks "unblockable" signals like SIGKILL 3235 * and friends. 3236 */ 3237 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 3238 { 3239 struct task_struct *tsk = current; 3240 sigset_t newset; 3241 3242 /* Lockless, only current can change ->blocked, never from irq */ 3243 if (oldset) 3244 *oldset = tsk->blocked; 3245 3246 switch (how) { 3247 case SIG_BLOCK: 3248 sigorsets(&newset, &tsk->blocked, set); 3249 break; 3250 case SIG_UNBLOCK: 3251 sigandnsets(&newset, &tsk->blocked, set); 3252 break; 3253 case SIG_SETMASK: 3254 newset = *set; 3255 break; 3256 default: 3257 return -EINVAL; 3258 } 3259 3260 __set_current_blocked(&newset); 3261 return 0; 3262 } 3263 EXPORT_SYMBOL(sigprocmask); 3264 3265 /* 3266 * The api helps set app-provided sigmasks. 3267 * 3268 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 3269 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 3270 * 3271 * Note that it does set_restore_sigmask() in advance, so it must be always 3272 * paired with restore_saved_sigmask_unless() before return from syscall. 3273 */ 3274 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) 3275 { 3276 sigset_t kmask; 3277 3278 if (!umask) 3279 return 0; 3280 if (sigsetsize != sizeof(sigset_t)) 3281 return -EINVAL; 3282 if (copy_from_user(&kmask, umask, sizeof(sigset_t))) 3283 return -EFAULT; 3284 3285 set_restore_sigmask(); 3286 current->saved_sigmask = current->blocked; 3287 set_current_blocked(&kmask); 3288 3289 return 0; 3290 } 3291 3292 #ifdef CONFIG_COMPAT 3293 int set_compat_user_sigmask(const compat_sigset_t __user *umask, 3294 size_t sigsetsize) 3295 { 3296 sigset_t kmask; 3297 3298 if (!umask) 3299 return 0; 3300 if (sigsetsize != sizeof(compat_sigset_t)) 3301 return -EINVAL; 3302 if (get_compat_sigset(&kmask, umask)) 3303 return -EFAULT; 3304 3305 set_restore_sigmask(); 3306 current->saved_sigmask = current->blocked; 3307 set_current_blocked(&kmask); 3308 3309 return 0; 3310 } 3311 #endif 3312 3313 /** 3314 * sys_rt_sigprocmask - change the list of currently blocked signals 3315 * @how: whether to add, remove, or set signals 3316 * @nset: stores pending signals 3317 * @oset: previous value of signal mask if non-null 3318 * @sigsetsize: size of sigset_t type 3319 */ 3320 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 3321 sigset_t __user *, oset, size_t, sigsetsize) 3322 { 3323 sigset_t old_set, new_set; 3324 int error; 3325 3326 /* XXX: Don't preclude handling different sized sigset_t's. */ 3327 if (sigsetsize != sizeof(sigset_t)) 3328 return -EINVAL; 3329 3330 old_set = current->blocked; 3331 3332 if (nset) { 3333 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 3334 return -EFAULT; 3335 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3336 3337 error = sigprocmask(how, &new_set, NULL); 3338 if (error) 3339 return error; 3340 } 3341 3342 if (oset) { 3343 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 3344 return -EFAULT; 3345 } 3346 3347 return 0; 3348 } 3349 3350 #ifdef CONFIG_COMPAT 3351 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 3352 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 3353 { 3354 sigset_t old_set = current->blocked; 3355 3356 /* XXX: Don't preclude handling different sized sigset_t's. */ 3357 if (sigsetsize != sizeof(sigset_t)) 3358 return -EINVAL; 3359 3360 if (nset) { 3361 sigset_t new_set; 3362 int error; 3363 if (get_compat_sigset(&new_set, nset)) 3364 return -EFAULT; 3365 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3366 3367 error = sigprocmask(how, &new_set, NULL); 3368 if (error) 3369 return error; 3370 } 3371 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 3372 } 3373 #endif 3374 3375 static void do_sigpending(sigset_t *set) 3376 { 3377 spin_lock_irq(¤t->sighand->siglock); 3378 sigorsets(set, ¤t->pending.signal, 3379 ¤t->signal->shared_pending.signal); 3380 spin_unlock_irq(¤t->sighand->siglock); 3381 3382 /* Outside the lock because only this thread touches it. */ 3383 sigandsets(set, ¤t->blocked, set); 3384 } 3385 3386 /** 3387 * sys_rt_sigpending - examine a pending signal that has been raised 3388 * while blocked 3389 * @uset: stores pending signals 3390 * @sigsetsize: size of sigset_t type or larger 3391 */ 3392 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 3393 { 3394 sigset_t set; 3395 3396 if (sigsetsize > sizeof(*uset)) 3397 return -EINVAL; 3398 3399 do_sigpending(&set); 3400 3401 if (copy_to_user(uset, &set, sigsetsize)) 3402 return -EFAULT; 3403 3404 return 0; 3405 } 3406 3407 #ifdef CONFIG_COMPAT 3408 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 3409 compat_size_t, sigsetsize) 3410 { 3411 sigset_t set; 3412 3413 if (sigsetsize > sizeof(*uset)) 3414 return -EINVAL; 3415 3416 do_sigpending(&set); 3417 3418 return put_compat_sigset(uset, &set, sigsetsize); 3419 } 3420 #endif 3421 3422 static const struct { 3423 unsigned char limit, layout; 3424 } sig_sicodes[] = { 3425 [SIGILL] = { NSIGILL, SIL_FAULT }, 3426 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 3427 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 3428 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 3429 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 3430 #if defined(SIGEMT) 3431 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 3432 #endif 3433 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 3434 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 3435 [SIGSYS] = { NSIGSYS, SIL_SYS }, 3436 }; 3437 3438 static bool known_siginfo_layout(unsigned sig, int si_code) 3439 { 3440 if (si_code == SI_KERNEL) 3441 return true; 3442 else if ((si_code > SI_USER)) { 3443 if (sig_specific_sicodes(sig)) { 3444 if (si_code <= sig_sicodes[sig].limit) 3445 return true; 3446 } 3447 else if (si_code <= NSIGPOLL) 3448 return true; 3449 } 3450 else if (si_code >= SI_DETHREAD) 3451 return true; 3452 else if (si_code == SI_ASYNCNL) 3453 return true; 3454 return false; 3455 } 3456 3457 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3458 { 3459 enum siginfo_layout layout = SIL_KILL; 3460 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3461 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3462 (si_code <= sig_sicodes[sig].limit)) { 3463 layout = sig_sicodes[sig].layout; 3464 /* Handle the exceptions */ 3465 if ((sig == SIGBUS) && 3466 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3467 layout = SIL_FAULT_MCEERR; 3468 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3469 layout = SIL_FAULT_BNDERR; 3470 #ifdef SEGV_PKUERR 3471 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3472 layout = SIL_FAULT_PKUERR; 3473 #endif 3474 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF)) 3475 layout = SIL_FAULT_PERF_EVENT; 3476 else if (IS_ENABLED(CONFIG_SPARC) && 3477 (sig == SIGILL) && (si_code == ILL_ILLTRP)) 3478 layout = SIL_FAULT_TRAPNO; 3479 else if (IS_ENABLED(CONFIG_ALPHA) && 3480 ((sig == SIGFPE) || 3481 ((sig == SIGTRAP) && (si_code == TRAP_UNK)))) 3482 layout = SIL_FAULT_TRAPNO; 3483 } 3484 else if (si_code <= NSIGPOLL) 3485 layout = SIL_POLL; 3486 } else { 3487 if (si_code == SI_TIMER) 3488 layout = SIL_TIMER; 3489 else if (si_code == SI_SIGIO) 3490 layout = SIL_POLL; 3491 else if (si_code < 0) 3492 layout = SIL_RT; 3493 } 3494 return layout; 3495 } 3496 3497 static inline char __user *si_expansion(const siginfo_t __user *info) 3498 { 3499 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3500 } 3501 3502 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3503 { 3504 char __user *expansion = si_expansion(to); 3505 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3506 return -EFAULT; 3507 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3508 return -EFAULT; 3509 return 0; 3510 } 3511 3512 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3513 const siginfo_t __user *from) 3514 { 3515 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3516 char __user *expansion = si_expansion(from); 3517 char buf[SI_EXPANSION_SIZE]; 3518 int i; 3519 /* 3520 * An unknown si_code might need more than 3521 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3522 * extra bytes are 0. This guarantees copy_siginfo_to_user 3523 * will return this data to userspace exactly. 3524 */ 3525 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3526 return -EFAULT; 3527 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3528 if (buf[i] != 0) 3529 return -E2BIG; 3530 } 3531 } 3532 return 0; 3533 } 3534 3535 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3536 const siginfo_t __user *from) 3537 { 3538 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3539 return -EFAULT; 3540 to->si_signo = signo; 3541 return post_copy_siginfo_from_user(to, from); 3542 } 3543 3544 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3545 { 3546 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3547 return -EFAULT; 3548 return post_copy_siginfo_from_user(to, from); 3549 } 3550 3551 #ifdef CONFIG_COMPAT 3552 /** 3553 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo 3554 * @to: compat siginfo destination 3555 * @from: kernel siginfo source 3556 * 3557 * Note: This function does not work properly for the SIGCHLD on x32, but 3558 * fortunately it doesn't have to. The only valid callers for this function are 3559 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. 3560 * The latter does not care because SIGCHLD will never cause a coredump. 3561 */ 3562 void copy_siginfo_to_external32(struct compat_siginfo *to, 3563 const struct kernel_siginfo *from) 3564 { 3565 memset(to, 0, sizeof(*to)); 3566 3567 to->si_signo = from->si_signo; 3568 to->si_errno = from->si_errno; 3569 to->si_code = from->si_code; 3570 switch(siginfo_layout(from->si_signo, from->si_code)) { 3571 case SIL_KILL: 3572 to->si_pid = from->si_pid; 3573 to->si_uid = from->si_uid; 3574 break; 3575 case SIL_TIMER: 3576 to->si_tid = from->si_tid; 3577 to->si_overrun = from->si_overrun; 3578 to->si_int = from->si_int; 3579 break; 3580 case SIL_POLL: 3581 to->si_band = from->si_band; 3582 to->si_fd = from->si_fd; 3583 break; 3584 case SIL_FAULT: 3585 to->si_addr = ptr_to_compat(from->si_addr); 3586 break; 3587 case SIL_FAULT_TRAPNO: 3588 to->si_addr = ptr_to_compat(from->si_addr); 3589 to->si_trapno = from->si_trapno; 3590 break; 3591 case SIL_FAULT_MCEERR: 3592 to->si_addr = ptr_to_compat(from->si_addr); 3593 to->si_addr_lsb = from->si_addr_lsb; 3594 break; 3595 case SIL_FAULT_BNDERR: 3596 to->si_addr = ptr_to_compat(from->si_addr); 3597 to->si_lower = ptr_to_compat(from->si_lower); 3598 to->si_upper = ptr_to_compat(from->si_upper); 3599 break; 3600 case SIL_FAULT_PKUERR: 3601 to->si_addr = ptr_to_compat(from->si_addr); 3602 to->si_pkey = from->si_pkey; 3603 break; 3604 case SIL_FAULT_PERF_EVENT: 3605 to->si_addr = ptr_to_compat(from->si_addr); 3606 to->si_perf_data = from->si_perf_data; 3607 to->si_perf_type = from->si_perf_type; 3608 to->si_perf_flags = from->si_perf_flags; 3609 break; 3610 case SIL_CHLD: 3611 to->si_pid = from->si_pid; 3612 to->si_uid = from->si_uid; 3613 to->si_status = from->si_status; 3614 to->si_utime = from->si_utime; 3615 to->si_stime = from->si_stime; 3616 break; 3617 case SIL_RT: 3618 to->si_pid = from->si_pid; 3619 to->si_uid = from->si_uid; 3620 to->si_int = from->si_int; 3621 break; 3622 case SIL_SYS: 3623 to->si_call_addr = ptr_to_compat(from->si_call_addr); 3624 to->si_syscall = from->si_syscall; 3625 to->si_arch = from->si_arch; 3626 break; 3627 } 3628 } 3629 3630 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3631 const struct kernel_siginfo *from) 3632 { 3633 struct compat_siginfo new; 3634 3635 copy_siginfo_to_external32(&new, from); 3636 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3637 return -EFAULT; 3638 return 0; 3639 } 3640 3641 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3642 const struct compat_siginfo *from) 3643 { 3644 clear_siginfo(to); 3645 to->si_signo = from->si_signo; 3646 to->si_errno = from->si_errno; 3647 to->si_code = from->si_code; 3648 switch(siginfo_layout(from->si_signo, from->si_code)) { 3649 case SIL_KILL: 3650 to->si_pid = from->si_pid; 3651 to->si_uid = from->si_uid; 3652 break; 3653 case SIL_TIMER: 3654 to->si_tid = from->si_tid; 3655 to->si_overrun = from->si_overrun; 3656 to->si_int = from->si_int; 3657 break; 3658 case SIL_POLL: 3659 to->si_band = from->si_band; 3660 to->si_fd = from->si_fd; 3661 break; 3662 case SIL_FAULT: 3663 to->si_addr = compat_ptr(from->si_addr); 3664 break; 3665 case SIL_FAULT_TRAPNO: 3666 to->si_addr = compat_ptr(from->si_addr); 3667 to->si_trapno = from->si_trapno; 3668 break; 3669 case SIL_FAULT_MCEERR: 3670 to->si_addr = compat_ptr(from->si_addr); 3671 to->si_addr_lsb = from->si_addr_lsb; 3672 break; 3673 case SIL_FAULT_BNDERR: 3674 to->si_addr = compat_ptr(from->si_addr); 3675 to->si_lower = compat_ptr(from->si_lower); 3676 to->si_upper = compat_ptr(from->si_upper); 3677 break; 3678 case SIL_FAULT_PKUERR: 3679 to->si_addr = compat_ptr(from->si_addr); 3680 to->si_pkey = from->si_pkey; 3681 break; 3682 case SIL_FAULT_PERF_EVENT: 3683 to->si_addr = compat_ptr(from->si_addr); 3684 to->si_perf_data = from->si_perf_data; 3685 to->si_perf_type = from->si_perf_type; 3686 to->si_perf_flags = from->si_perf_flags; 3687 break; 3688 case SIL_CHLD: 3689 to->si_pid = from->si_pid; 3690 to->si_uid = from->si_uid; 3691 to->si_status = from->si_status; 3692 #ifdef CONFIG_X86_X32_ABI 3693 if (in_x32_syscall()) { 3694 to->si_utime = from->_sifields._sigchld_x32._utime; 3695 to->si_stime = from->_sifields._sigchld_x32._stime; 3696 } else 3697 #endif 3698 { 3699 to->si_utime = from->si_utime; 3700 to->si_stime = from->si_stime; 3701 } 3702 break; 3703 case SIL_RT: 3704 to->si_pid = from->si_pid; 3705 to->si_uid = from->si_uid; 3706 to->si_int = from->si_int; 3707 break; 3708 case SIL_SYS: 3709 to->si_call_addr = compat_ptr(from->si_call_addr); 3710 to->si_syscall = from->si_syscall; 3711 to->si_arch = from->si_arch; 3712 break; 3713 } 3714 return 0; 3715 } 3716 3717 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3718 const struct compat_siginfo __user *ufrom) 3719 { 3720 struct compat_siginfo from; 3721 3722 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3723 return -EFAULT; 3724 3725 from.si_signo = signo; 3726 return post_copy_siginfo_from_user32(to, &from); 3727 } 3728 3729 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3730 const struct compat_siginfo __user *ufrom) 3731 { 3732 struct compat_siginfo from; 3733 3734 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3735 return -EFAULT; 3736 3737 return post_copy_siginfo_from_user32(to, &from); 3738 } 3739 #endif /* CONFIG_COMPAT */ 3740 3741 /** 3742 * do_sigtimedwait - wait for queued signals specified in @which 3743 * @which: queued signals to wait for 3744 * @info: if non-null, the signal's siginfo is returned here 3745 * @ts: upper bound on process time suspension 3746 */ 3747 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3748 const struct timespec64 *ts) 3749 { 3750 ktime_t *to = NULL, timeout = KTIME_MAX; 3751 struct task_struct *tsk = current; 3752 sigset_t mask = *which; 3753 enum pid_type type; 3754 int sig, ret = 0; 3755 3756 if (ts) { 3757 if (!timespec64_valid(ts)) 3758 return -EINVAL; 3759 timeout = timespec64_to_ktime(*ts); 3760 to = &timeout; 3761 } 3762 3763 /* 3764 * Invert the set of allowed signals to get those we want to block. 3765 */ 3766 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3767 signotset(&mask); 3768 3769 spin_lock_irq(&tsk->sighand->siglock); 3770 sig = dequeue_signal(&mask, info, &type); 3771 if (!sig && timeout) { 3772 /* 3773 * None ready, temporarily unblock those we're interested 3774 * while we are sleeping in so that we'll be awakened when 3775 * they arrive. Unblocking is always fine, we can avoid 3776 * set_current_blocked(). 3777 */ 3778 tsk->real_blocked = tsk->blocked; 3779 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3780 recalc_sigpending(); 3781 spin_unlock_irq(&tsk->sighand->siglock); 3782 3783 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 3784 ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3785 HRTIMER_MODE_REL); 3786 spin_lock_irq(&tsk->sighand->siglock); 3787 __set_task_blocked(tsk, &tsk->real_blocked); 3788 sigemptyset(&tsk->real_blocked); 3789 sig = dequeue_signal(&mask, info, &type); 3790 } 3791 spin_unlock_irq(&tsk->sighand->siglock); 3792 3793 if (sig) 3794 return sig; 3795 return ret ? -EINTR : -EAGAIN; 3796 } 3797 3798 /** 3799 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3800 * in @uthese 3801 * @uthese: queued signals to wait for 3802 * @uinfo: if non-null, the signal's siginfo is returned here 3803 * @uts: upper bound on process time suspension 3804 * @sigsetsize: size of sigset_t type 3805 */ 3806 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3807 siginfo_t __user *, uinfo, 3808 const struct __kernel_timespec __user *, uts, 3809 size_t, sigsetsize) 3810 { 3811 sigset_t these; 3812 struct timespec64 ts; 3813 kernel_siginfo_t info; 3814 int ret; 3815 3816 /* XXX: Don't preclude handling different sized sigset_t's. */ 3817 if (sigsetsize != sizeof(sigset_t)) 3818 return -EINVAL; 3819 3820 if (copy_from_user(&these, uthese, sizeof(these))) 3821 return -EFAULT; 3822 3823 if (uts) { 3824 if (get_timespec64(&ts, uts)) 3825 return -EFAULT; 3826 } 3827 3828 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3829 3830 if (ret > 0 && uinfo) { 3831 if (copy_siginfo_to_user(uinfo, &info)) 3832 ret = -EFAULT; 3833 } 3834 3835 return ret; 3836 } 3837 3838 #ifdef CONFIG_COMPAT_32BIT_TIME 3839 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3840 siginfo_t __user *, uinfo, 3841 const struct old_timespec32 __user *, uts, 3842 size_t, sigsetsize) 3843 { 3844 sigset_t these; 3845 struct timespec64 ts; 3846 kernel_siginfo_t info; 3847 int ret; 3848 3849 if (sigsetsize != sizeof(sigset_t)) 3850 return -EINVAL; 3851 3852 if (copy_from_user(&these, uthese, sizeof(these))) 3853 return -EFAULT; 3854 3855 if (uts) { 3856 if (get_old_timespec32(&ts, uts)) 3857 return -EFAULT; 3858 } 3859 3860 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3861 3862 if (ret > 0 && uinfo) { 3863 if (copy_siginfo_to_user(uinfo, &info)) 3864 ret = -EFAULT; 3865 } 3866 3867 return ret; 3868 } 3869 #endif 3870 3871 #ifdef CONFIG_COMPAT 3872 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3873 struct compat_siginfo __user *, uinfo, 3874 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3875 { 3876 sigset_t s; 3877 struct timespec64 t; 3878 kernel_siginfo_t info; 3879 long ret; 3880 3881 if (sigsetsize != sizeof(sigset_t)) 3882 return -EINVAL; 3883 3884 if (get_compat_sigset(&s, uthese)) 3885 return -EFAULT; 3886 3887 if (uts) { 3888 if (get_timespec64(&t, uts)) 3889 return -EFAULT; 3890 } 3891 3892 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3893 3894 if (ret > 0 && uinfo) { 3895 if (copy_siginfo_to_user32(uinfo, &info)) 3896 ret = -EFAULT; 3897 } 3898 3899 return ret; 3900 } 3901 3902 #ifdef CONFIG_COMPAT_32BIT_TIME 3903 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3904 struct compat_siginfo __user *, uinfo, 3905 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3906 { 3907 sigset_t s; 3908 struct timespec64 t; 3909 kernel_siginfo_t info; 3910 long ret; 3911 3912 if (sigsetsize != sizeof(sigset_t)) 3913 return -EINVAL; 3914 3915 if (get_compat_sigset(&s, uthese)) 3916 return -EFAULT; 3917 3918 if (uts) { 3919 if (get_old_timespec32(&t, uts)) 3920 return -EFAULT; 3921 } 3922 3923 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3924 3925 if (ret > 0 && uinfo) { 3926 if (copy_siginfo_to_user32(uinfo, &info)) 3927 ret = -EFAULT; 3928 } 3929 3930 return ret; 3931 } 3932 #endif 3933 #endif 3934 3935 static void prepare_kill_siginfo(int sig, struct kernel_siginfo *info, 3936 enum pid_type type) 3937 { 3938 clear_siginfo(info); 3939 info->si_signo = sig; 3940 info->si_errno = 0; 3941 info->si_code = (type == PIDTYPE_PID) ? SI_TKILL : SI_USER; 3942 info->si_pid = task_tgid_vnr(current); 3943 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3944 } 3945 3946 /** 3947 * sys_kill - send a signal to a process 3948 * @pid: the PID of the process 3949 * @sig: signal to be sent 3950 */ 3951 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3952 { 3953 struct kernel_siginfo info; 3954 3955 prepare_kill_siginfo(sig, &info, PIDTYPE_TGID); 3956 3957 return kill_something_info(sig, &info, pid); 3958 } 3959 3960 /* 3961 * Verify that the signaler and signalee either are in the same pid namespace 3962 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3963 * namespace. 3964 */ 3965 static bool access_pidfd_pidns(struct pid *pid) 3966 { 3967 struct pid_namespace *active = task_active_pid_ns(current); 3968 struct pid_namespace *p = ns_of_pid(pid); 3969 3970 for (;;) { 3971 if (!p) 3972 return false; 3973 if (p == active) 3974 break; 3975 p = p->parent; 3976 } 3977 3978 return true; 3979 } 3980 3981 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, 3982 siginfo_t __user *info) 3983 { 3984 #ifdef CONFIG_COMPAT 3985 /* 3986 * Avoid hooking up compat syscalls and instead handle necessary 3987 * conversions here. Note, this is a stop-gap measure and should not be 3988 * considered a generic solution. 3989 */ 3990 if (in_compat_syscall()) 3991 return copy_siginfo_from_user32( 3992 kinfo, (struct compat_siginfo __user *)info); 3993 #endif 3994 return copy_siginfo_from_user(kinfo, info); 3995 } 3996 3997 static struct pid *pidfd_to_pid(const struct file *file) 3998 { 3999 struct pid *pid; 4000 4001 pid = pidfd_pid(file); 4002 if (!IS_ERR(pid)) 4003 return pid; 4004 4005 return tgid_pidfd_to_pid(file); 4006 } 4007 4008 #define PIDFD_SEND_SIGNAL_FLAGS \ 4009 (PIDFD_SIGNAL_THREAD | PIDFD_SIGNAL_THREAD_GROUP | \ 4010 PIDFD_SIGNAL_PROCESS_GROUP) 4011 4012 static int do_pidfd_send_signal(struct pid *pid, int sig, enum pid_type type, 4013 siginfo_t __user *info, unsigned int flags) 4014 { 4015 kernel_siginfo_t kinfo; 4016 4017 switch (flags) { 4018 case PIDFD_SIGNAL_THREAD: 4019 type = PIDTYPE_PID; 4020 break; 4021 case PIDFD_SIGNAL_THREAD_GROUP: 4022 type = PIDTYPE_TGID; 4023 break; 4024 case PIDFD_SIGNAL_PROCESS_GROUP: 4025 type = PIDTYPE_PGID; 4026 break; 4027 } 4028 4029 if (info) { 4030 int ret; 4031 4032 ret = copy_siginfo_from_user_any(&kinfo, info); 4033 if (unlikely(ret)) 4034 return ret; 4035 4036 if (unlikely(sig != kinfo.si_signo)) 4037 return -EINVAL; 4038 4039 /* Only allow sending arbitrary signals to yourself. */ 4040 if ((task_pid(current) != pid || type > PIDTYPE_TGID) && 4041 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) 4042 return -EPERM; 4043 } else { 4044 prepare_kill_siginfo(sig, &kinfo, type); 4045 } 4046 4047 if (type == PIDTYPE_PGID) 4048 return kill_pgrp_info(sig, &kinfo, pid); 4049 4050 return kill_pid_info_type(sig, &kinfo, pid, type); 4051 } 4052 4053 /** 4054 * sys_pidfd_send_signal - Signal a process through a pidfd 4055 * @pidfd: file descriptor of the process 4056 * @sig: signal to send 4057 * @info: signal info 4058 * @flags: future flags 4059 * 4060 * Send the signal to the thread group or to the individual thread depending 4061 * on PIDFD_THREAD. 4062 * In the future extension to @flags may be used to override the default scope 4063 * of @pidfd. 4064 * 4065 * Return: 0 on success, negative errno on failure 4066 */ 4067 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 4068 siginfo_t __user *, info, unsigned int, flags) 4069 { 4070 struct pid *pid; 4071 enum pid_type type; 4072 4073 /* Enforce flags be set to 0 until we add an extension. */ 4074 if (flags & ~PIDFD_SEND_SIGNAL_FLAGS) 4075 return -EINVAL; 4076 4077 /* Ensure that only a single signal scope determining flag is set. */ 4078 if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1) 4079 return -EINVAL; 4080 4081 switch (pidfd) { 4082 case PIDFD_SELF_THREAD: 4083 pid = get_task_pid(current, PIDTYPE_PID); 4084 type = PIDTYPE_PID; 4085 break; 4086 case PIDFD_SELF_THREAD_GROUP: 4087 pid = get_task_pid(current, PIDTYPE_TGID); 4088 type = PIDTYPE_TGID; 4089 break; 4090 default: { 4091 CLASS(fd, f)(pidfd); 4092 if (fd_empty(f)) 4093 return -EBADF; 4094 4095 /* Is this a pidfd? */ 4096 pid = pidfd_to_pid(fd_file(f)); 4097 if (IS_ERR(pid)) 4098 return PTR_ERR(pid); 4099 4100 if (!access_pidfd_pidns(pid)) 4101 return -EINVAL; 4102 4103 /* Infer scope from the type of pidfd. */ 4104 if (fd_file(f)->f_flags & PIDFD_THREAD) 4105 type = PIDTYPE_PID; 4106 else 4107 type = PIDTYPE_TGID; 4108 4109 return do_pidfd_send_signal(pid, sig, type, info, flags); 4110 } 4111 } 4112 4113 return do_pidfd_send_signal(pid, sig, type, info, flags); 4114 } 4115 4116 static int 4117 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 4118 { 4119 struct task_struct *p; 4120 int error = -ESRCH; 4121 4122 rcu_read_lock(); 4123 p = find_task_by_vpid(pid); 4124 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 4125 error = check_kill_permission(sig, info, p); 4126 /* 4127 * The null signal is a permissions and process existence 4128 * probe. No signal is actually delivered. 4129 */ 4130 if (!error && sig) { 4131 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 4132 /* 4133 * If lock_task_sighand() failed we pretend the task 4134 * dies after receiving the signal. The window is tiny, 4135 * and the signal is private anyway. 4136 */ 4137 if (unlikely(error == -ESRCH)) 4138 error = 0; 4139 } 4140 } 4141 rcu_read_unlock(); 4142 4143 return error; 4144 } 4145 4146 static int do_tkill(pid_t tgid, pid_t pid, int sig) 4147 { 4148 struct kernel_siginfo info; 4149 4150 prepare_kill_siginfo(sig, &info, PIDTYPE_PID); 4151 4152 return do_send_specific(tgid, pid, sig, &info); 4153 } 4154 4155 /** 4156 * sys_tgkill - send signal to one specific thread 4157 * @tgid: the thread group ID of the thread 4158 * @pid: the PID of the thread 4159 * @sig: signal to be sent 4160 * 4161 * This syscall also checks the @tgid and returns -ESRCH even if the PID 4162 * exists but it's not belonging to the target process anymore. This 4163 * method solves the problem of threads exiting and PIDs getting reused. 4164 */ 4165 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 4166 { 4167 /* This is only valid for single tasks */ 4168 if (pid <= 0 || tgid <= 0) 4169 return -EINVAL; 4170 4171 return do_tkill(tgid, pid, sig); 4172 } 4173 4174 /** 4175 * sys_tkill - send signal to one specific task 4176 * @pid: the PID of the task 4177 * @sig: signal to be sent 4178 * 4179 * Send a signal to only one task, even if it's a CLONE_THREAD task. 4180 */ 4181 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 4182 { 4183 /* This is only valid for single tasks */ 4184 if (pid <= 0) 4185 return -EINVAL; 4186 4187 return do_tkill(0, pid, sig); 4188 } 4189 4190 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 4191 { 4192 /* Not even root can pretend to send signals from the kernel. 4193 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4194 */ 4195 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4196 (task_pid_vnr(current) != pid)) 4197 return -EPERM; 4198 4199 /* POSIX.1b doesn't mention process groups. */ 4200 return kill_proc_info(sig, info, pid); 4201 } 4202 4203 /** 4204 * sys_rt_sigqueueinfo - send signal information to a signal 4205 * @pid: the PID of the thread 4206 * @sig: signal to be sent 4207 * @uinfo: signal info to be sent 4208 */ 4209 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 4210 siginfo_t __user *, uinfo) 4211 { 4212 kernel_siginfo_t info; 4213 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4214 if (unlikely(ret)) 4215 return ret; 4216 return do_rt_sigqueueinfo(pid, sig, &info); 4217 } 4218 4219 #ifdef CONFIG_COMPAT 4220 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 4221 compat_pid_t, pid, 4222 int, sig, 4223 struct compat_siginfo __user *, uinfo) 4224 { 4225 kernel_siginfo_t info; 4226 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4227 if (unlikely(ret)) 4228 return ret; 4229 return do_rt_sigqueueinfo(pid, sig, &info); 4230 } 4231 #endif 4232 4233 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 4234 { 4235 /* This is only valid for single tasks */ 4236 if (pid <= 0 || tgid <= 0) 4237 return -EINVAL; 4238 4239 /* Not even root can pretend to send signals from the kernel. 4240 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4241 */ 4242 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4243 (task_pid_vnr(current) != pid)) 4244 return -EPERM; 4245 4246 return do_send_specific(tgid, pid, sig, info); 4247 } 4248 4249 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 4250 siginfo_t __user *, uinfo) 4251 { 4252 kernel_siginfo_t info; 4253 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4254 if (unlikely(ret)) 4255 return ret; 4256 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4257 } 4258 4259 #ifdef CONFIG_COMPAT 4260 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 4261 compat_pid_t, tgid, 4262 compat_pid_t, pid, 4263 int, sig, 4264 struct compat_siginfo __user *, uinfo) 4265 { 4266 kernel_siginfo_t info; 4267 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4268 if (unlikely(ret)) 4269 return ret; 4270 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4271 } 4272 #endif 4273 4274 /* 4275 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 4276 */ 4277 void kernel_sigaction(int sig, __sighandler_t action) 4278 { 4279 spin_lock_irq(¤t->sighand->siglock); 4280 current->sighand->action[sig - 1].sa.sa_handler = action; 4281 if (action == SIG_IGN) { 4282 sigset_t mask; 4283 4284 sigemptyset(&mask); 4285 sigaddset(&mask, sig); 4286 4287 flush_sigqueue_mask(current, &mask, ¤t->signal->shared_pending); 4288 flush_sigqueue_mask(current, &mask, ¤t->pending); 4289 recalc_sigpending(); 4290 } 4291 spin_unlock_irq(¤t->sighand->siglock); 4292 } 4293 EXPORT_SYMBOL(kernel_sigaction); 4294 4295 void __weak sigaction_compat_abi(struct k_sigaction *act, 4296 struct k_sigaction *oact) 4297 { 4298 } 4299 4300 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 4301 { 4302 struct task_struct *p = current, *t; 4303 struct k_sigaction *k; 4304 sigset_t mask; 4305 4306 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 4307 return -EINVAL; 4308 4309 k = &p->sighand->action[sig-1]; 4310 4311 spin_lock_irq(&p->sighand->siglock); 4312 if (k->sa.sa_flags & SA_IMMUTABLE) { 4313 spin_unlock_irq(&p->sighand->siglock); 4314 return -EINVAL; 4315 } 4316 if (oact) 4317 *oact = *k; 4318 4319 /* 4320 * Make sure that we never accidentally claim to support SA_UNSUPPORTED, 4321 * e.g. by having an architecture use the bit in their uapi. 4322 */ 4323 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED); 4324 4325 /* 4326 * Clear unknown flag bits in order to allow userspace to detect missing 4327 * support for flag bits and to allow the kernel to use non-uapi bits 4328 * internally. 4329 */ 4330 if (act) 4331 act->sa.sa_flags &= UAPI_SA_FLAGS; 4332 if (oact) 4333 oact->sa.sa_flags &= UAPI_SA_FLAGS; 4334 4335 sigaction_compat_abi(act, oact); 4336 4337 if (act) { 4338 bool was_ignored = k->sa.sa_handler == SIG_IGN; 4339 4340 sigdelsetmask(&act->sa.sa_mask, 4341 sigmask(SIGKILL) | sigmask(SIGSTOP)); 4342 *k = *act; 4343 /* 4344 * POSIX 3.3.1.3: 4345 * "Setting a signal action to SIG_IGN for a signal that is 4346 * pending shall cause the pending signal to be discarded, 4347 * whether or not it is blocked." 4348 * 4349 * "Setting a signal action to SIG_DFL for a signal that is 4350 * pending and whose default action is to ignore the signal 4351 * (for example, SIGCHLD), shall cause the pending signal to 4352 * be discarded, whether or not it is blocked" 4353 */ 4354 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 4355 sigemptyset(&mask); 4356 sigaddset(&mask, sig); 4357 flush_sigqueue_mask(p, &mask, &p->signal->shared_pending); 4358 for_each_thread(p, t) 4359 flush_sigqueue_mask(p, &mask, &t->pending); 4360 } else if (was_ignored) { 4361 posixtimer_sig_unignore(p, sig); 4362 } 4363 } 4364 4365 spin_unlock_irq(&p->sighand->siglock); 4366 return 0; 4367 } 4368 4369 #ifdef CONFIG_DYNAMIC_SIGFRAME 4370 static inline void sigaltstack_lock(void) 4371 __acquires(¤t->sighand->siglock) 4372 { 4373 spin_lock_irq(¤t->sighand->siglock); 4374 } 4375 4376 static inline void sigaltstack_unlock(void) 4377 __releases(¤t->sighand->siglock) 4378 { 4379 spin_unlock_irq(¤t->sighand->siglock); 4380 } 4381 #else 4382 static inline void sigaltstack_lock(void) { } 4383 static inline void sigaltstack_unlock(void) { } 4384 #endif 4385 4386 static int 4387 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 4388 size_t min_ss_size) 4389 { 4390 struct task_struct *t = current; 4391 int ret = 0; 4392 4393 if (oss) { 4394 memset(oss, 0, sizeof(stack_t)); 4395 oss->ss_sp = (void __user *) t->sas_ss_sp; 4396 oss->ss_size = t->sas_ss_size; 4397 oss->ss_flags = sas_ss_flags(sp) | 4398 (current->sas_ss_flags & SS_FLAG_BITS); 4399 } 4400 4401 if (ss) { 4402 void __user *ss_sp = ss->ss_sp; 4403 size_t ss_size = ss->ss_size; 4404 unsigned ss_flags = ss->ss_flags; 4405 int ss_mode; 4406 4407 if (unlikely(on_sig_stack(sp))) 4408 return -EPERM; 4409 4410 ss_mode = ss_flags & ~SS_FLAG_BITS; 4411 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 4412 ss_mode != 0)) 4413 return -EINVAL; 4414 4415 /* 4416 * Return before taking any locks if no actual 4417 * sigaltstack changes were requested. 4418 */ 4419 if (t->sas_ss_sp == (unsigned long)ss_sp && 4420 t->sas_ss_size == ss_size && 4421 t->sas_ss_flags == ss_flags) 4422 return 0; 4423 4424 sigaltstack_lock(); 4425 if (ss_mode == SS_DISABLE) { 4426 ss_size = 0; 4427 ss_sp = NULL; 4428 } else { 4429 if (unlikely(ss_size < min_ss_size)) 4430 ret = -ENOMEM; 4431 if (!sigaltstack_size_valid(ss_size)) 4432 ret = -ENOMEM; 4433 } 4434 if (!ret) { 4435 t->sas_ss_sp = (unsigned long) ss_sp; 4436 t->sas_ss_size = ss_size; 4437 t->sas_ss_flags = ss_flags; 4438 } 4439 sigaltstack_unlock(); 4440 } 4441 return ret; 4442 } 4443 4444 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 4445 { 4446 stack_t new, old; 4447 int err; 4448 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 4449 return -EFAULT; 4450 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 4451 current_user_stack_pointer(), 4452 MINSIGSTKSZ); 4453 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 4454 err = -EFAULT; 4455 return err; 4456 } 4457 4458 int restore_altstack(const stack_t __user *uss) 4459 { 4460 stack_t new; 4461 if (copy_from_user(&new, uss, sizeof(stack_t))) 4462 return -EFAULT; 4463 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 4464 MINSIGSTKSZ); 4465 /* squash all but EFAULT for now */ 4466 return 0; 4467 } 4468 4469 int __save_altstack(stack_t __user *uss, unsigned long sp) 4470 { 4471 struct task_struct *t = current; 4472 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 4473 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4474 __put_user(t->sas_ss_size, &uss->ss_size); 4475 return err; 4476 } 4477 4478 #ifdef CONFIG_COMPAT 4479 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 4480 compat_stack_t __user *uoss_ptr) 4481 { 4482 stack_t uss, uoss; 4483 int ret; 4484 4485 if (uss_ptr) { 4486 compat_stack_t uss32; 4487 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 4488 return -EFAULT; 4489 uss.ss_sp = compat_ptr(uss32.ss_sp); 4490 uss.ss_flags = uss32.ss_flags; 4491 uss.ss_size = uss32.ss_size; 4492 } 4493 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 4494 compat_user_stack_pointer(), 4495 COMPAT_MINSIGSTKSZ); 4496 if (ret >= 0 && uoss_ptr) { 4497 compat_stack_t old; 4498 memset(&old, 0, sizeof(old)); 4499 old.ss_sp = ptr_to_compat(uoss.ss_sp); 4500 old.ss_flags = uoss.ss_flags; 4501 old.ss_size = uoss.ss_size; 4502 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 4503 ret = -EFAULT; 4504 } 4505 return ret; 4506 } 4507 4508 COMPAT_SYSCALL_DEFINE2(sigaltstack, 4509 const compat_stack_t __user *, uss_ptr, 4510 compat_stack_t __user *, uoss_ptr) 4511 { 4512 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 4513 } 4514 4515 int compat_restore_altstack(const compat_stack_t __user *uss) 4516 { 4517 int err = do_compat_sigaltstack(uss, NULL); 4518 /* squash all but -EFAULT for now */ 4519 return err == -EFAULT ? err : 0; 4520 } 4521 4522 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 4523 { 4524 int err; 4525 struct task_struct *t = current; 4526 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 4527 &uss->ss_sp) | 4528 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4529 __put_user(t->sas_ss_size, &uss->ss_size); 4530 return err; 4531 } 4532 #endif 4533 4534 #ifdef __ARCH_WANT_SYS_SIGPENDING 4535 4536 /** 4537 * sys_sigpending - examine pending signals 4538 * @uset: where mask of pending signal is returned 4539 */ 4540 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4541 { 4542 sigset_t set; 4543 4544 if (sizeof(old_sigset_t) > sizeof(*uset)) 4545 return -EINVAL; 4546 4547 do_sigpending(&set); 4548 4549 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4550 return -EFAULT; 4551 4552 return 0; 4553 } 4554 4555 #ifdef CONFIG_COMPAT 4556 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4557 { 4558 sigset_t set; 4559 4560 do_sigpending(&set); 4561 4562 return put_user(set.sig[0], set32); 4563 } 4564 #endif 4565 4566 #endif 4567 4568 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 4569 /** 4570 * sys_sigprocmask - examine and change blocked signals 4571 * @how: whether to add, remove, or set signals 4572 * @nset: signals to add or remove (if non-null) 4573 * @oset: previous value of signal mask if non-null 4574 * 4575 * Some platforms have their own version with special arguments; 4576 * others support only sys_rt_sigprocmask. 4577 */ 4578 4579 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4580 old_sigset_t __user *, oset) 4581 { 4582 old_sigset_t old_set, new_set; 4583 sigset_t new_blocked; 4584 4585 old_set = current->blocked.sig[0]; 4586 4587 if (nset) { 4588 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4589 return -EFAULT; 4590 4591 new_blocked = current->blocked; 4592 4593 switch (how) { 4594 case SIG_BLOCK: 4595 sigaddsetmask(&new_blocked, new_set); 4596 break; 4597 case SIG_UNBLOCK: 4598 sigdelsetmask(&new_blocked, new_set); 4599 break; 4600 case SIG_SETMASK: 4601 new_blocked.sig[0] = new_set; 4602 break; 4603 default: 4604 return -EINVAL; 4605 } 4606 4607 set_current_blocked(&new_blocked); 4608 } 4609 4610 if (oset) { 4611 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4612 return -EFAULT; 4613 } 4614 4615 return 0; 4616 } 4617 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4618 4619 #ifndef CONFIG_ODD_RT_SIGACTION 4620 /** 4621 * sys_rt_sigaction - alter an action taken by a process 4622 * @sig: signal to be sent 4623 * @act: new sigaction 4624 * @oact: used to save the previous sigaction 4625 * @sigsetsize: size of sigset_t type 4626 */ 4627 SYSCALL_DEFINE4(rt_sigaction, int, sig, 4628 const struct sigaction __user *, act, 4629 struct sigaction __user *, oact, 4630 size_t, sigsetsize) 4631 { 4632 struct k_sigaction new_sa, old_sa; 4633 int ret; 4634 4635 /* XXX: Don't preclude handling different sized sigset_t's. */ 4636 if (sigsetsize != sizeof(sigset_t)) 4637 return -EINVAL; 4638 4639 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4640 return -EFAULT; 4641 4642 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4643 if (ret) 4644 return ret; 4645 4646 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4647 return -EFAULT; 4648 4649 return 0; 4650 } 4651 #ifdef CONFIG_COMPAT 4652 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4653 const struct compat_sigaction __user *, act, 4654 struct compat_sigaction __user *, oact, 4655 compat_size_t, sigsetsize) 4656 { 4657 struct k_sigaction new_ka, old_ka; 4658 #ifdef __ARCH_HAS_SA_RESTORER 4659 compat_uptr_t restorer; 4660 #endif 4661 int ret; 4662 4663 /* XXX: Don't preclude handling different sized sigset_t's. */ 4664 if (sigsetsize != sizeof(compat_sigset_t)) 4665 return -EINVAL; 4666 4667 if (act) { 4668 compat_uptr_t handler; 4669 ret = get_user(handler, &act->sa_handler); 4670 new_ka.sa.sa_handler = compat_ptr(handler); 4671 #ifdef __ARCH_HAS_SA_RESTORER 4672 ret |= get_user(restorer, &act->sa_restorer); 4673 new_ka.sa.sa_restorer = compat_ptr(restorer); 4674 #endif 4675 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4676 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4677 if (ret) 4678 return -EFAULT; 4679 } 4680 4681 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4682 if (!ret && oact) { 4683 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4684 &oact->sa_handler); 4685 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4686 sizeof(oact->sa_mask)); 4687 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4688 #ifdef __ARCH_HAS_SA_RESTORER 4689 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4690 &oact->sa_restorer); 4691 #endif 4692 } 4693 return ret; 4694 } 4695 #endif 4696 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4697 4698 #ifdef CONFIG_OLD_SIGACTION 4699 SYSCALL_DEFINE3(sigaction, int, sig, 4700 const struct old_sigaction __user *, act, 4701 struct old_sigaction __user *, oact) 4702 { 4703 struct k_sigaction new_ka, old_ka; 4704 int ret; 4705 4706 if (act) { 4707 old_sigset_t mask; 4708 if (!access_ok(act, sizeof(*act)) || 4709 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4710 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4711 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4712 __get_user(mask, &act->sa_mask)) 4713 return -EFAULT; 4714 #ifdef __ARCH_HAS_KA_RESTORER 4715 new_ka.ka_restorer = NULL; 4716 #endif 4717 siginitset(&new_ka.sa.sa_mask, mask); 4718 } 4719 4720 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4721 4722 if (!ret && oact) { 4723 if (!access_ok(oact, sizeof(*oact)) || 4724 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4725 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4726 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4727 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4728 return -EFAULT; 4729 } 4730 4731 return ret; 4732 } 4733 #endif 4734 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4735 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4736 const struct compat_old_sigaction __user *, act, 4737 struct compat_old_sigaction __user *, oact) 4738 { 4739 struct k_sigaction new_ka, old_ka; 4740 int ret; 4741 compat_old_sigset_t mask; 4742 compat_uptr_t handler, restorer; 4743 4744 if (act) { 4745 if (!access_ok(act, sizeof(*act)) || 4746 __get_user(handler, &act->sa_handler) || 4747 __get_user(restorer, &act->sa_restorer) || 4748 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4749 __get_user(mask, &act->sa_mask)) 4750 return -EFAULT; 4751 4752 #ifdef __ARCH_HAS_KA_RESTORER 4753 new_ka.ka_restorer = NULL; 4754 #endif 4755 new_ka.sa.sa_handler = compat_ptr(handler); 4756 new_ka.sa.sa_restorer = compat_ptr(restorer); 4757 siginitset(&new_ka.sa.sa_mask, mask); 4758 } 4759 4760 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4761 4762 if (!ret && oact) { 4763 if (!access_ok(oact, sizeof(*oact)) || 4764 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4765 &oact->sa_handler) || 4766 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4767 &oact->sa_restorer) || 4768 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4769 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4770 return -EFAULT; 4771 } 4772 return ret; 4773 } 4774 #endif 4775 4776 #ifdef CONFIG_SGETMASK_SYSCALL 4777 4778 /* 4779 * For backwards compatibility. Functionality superseded by sigprocmask. 4780 */ 4781 SYSCALL_DEFINE0(sgetmask) 4782 { 4783 /* SMP safe */ 4784 return current->blocked.sig[0]; 4785 } 4786 4787 SYSCALL_DEFINE1(ssetmask, int, newmask) 4788 { 4789 int old = current->blocked.sig[0]; 4790 sigset_t newset; 4791 4792 siginitset(&newset, newmask); 4793 set_current_blocked(&newset); 4794 4795 return old; 4796 } 4797 #endif /* CONFIG_SGETMASK_SYSCALL */ 4798 4799 #ifdef __ARCH_WANT_SYS_SIGNAL 4800 /* 4801 * For backwards compatibility. Functionality superseded by sigaction. 4802 */ 4803 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4804 { 4805 struct k_sigaction new_sa, old_sa; 4806 int ret; 4807 4808 new_sa.sa.sa_handler = handler; 4809 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4810 sigemptyset(&new_sa.sa.sa_mask); 4811 4812 ret = do_sigaction(sig, &new_sa, &old_sa); 4813 4814 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4815 } 4816 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4817 4818 #ifdef __ARCH_WANT_SYS_PAUSE 4819 4820 SYSCALL_DEFINE0(pause) 4821 { 4822 while (!signal_pending(current)) { 4823 __set_current_state(TASK_INTERRUPTIBLE); 4824 schedule(); 4825 } 4826 return -ERESTARTNOHAND; 4827 } 4828 4829 #endif 4830 4831 static int sigsuspend(sigset_t *set) 4832 { 4833 current->saved_sigmask = current->blocked; 4834 set_current_blocked(set); 4835 4836 while (!signal_pending(current)) { 4837 __set_current_state(TASK_INTERRUPTIBLE); 4838 schedule(); 4839 } 4840 set_restore_sigmask(); 4841 return -ERESTARTNOHAND; 4842 } 4843 4844 /** 4845 * sys_rt_sigsuspend - replace the signal mask for a value with the 4846 * @unewset value until a signal is received 4847 * @unewset: new signal mask value 4848 * @sigsetsize: size of sigset_t type 4849 */ 4850 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4851 { 4852 sigset_t newset; 4853 4854 /* XXX: Don't preclude handling different sized sigset_t's. */ 4855 if (sigsetsize != sizeof(sigset_t)) 4856 return -EINVAL; 4857 4858 if (copy_from_user(&newset, unewset, sizeof(newset))) 4859 return -EFAULT; 4860 return sigsuspend(&newset); 4861 } 4862 4863 #ifdef CONFIG_COMPAT 4864 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4865 { 4866 sigset_t newset; 4867 4868 /* XXX: Don't preclude handling different sized sigset_t's. */ 4869 if (sigsetsize != sizeof(sigset_t)) 4870 return -EINVAL; 4871 4872 if (get_compat_sigset(&newset, unewset)) 4873 return -EFAULT; 4874 return sigsuspend(&newset); 4875 } 4876 #endif 4877 4878 #ifdef CONFIG_OLD_SIGSUSPEND 4879 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4880 { 4881 sigset_t blocked; 4882 siginitset(&blocked, mask); 4883 return sigsuspend(&blocked); 4884 } 4885 #endif 4886 #ifdef CONFIG_OLD_SIGSUSPEND3 4887 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4888 { 4889 sigset_t blocked; 4890 siginitset(&blocked, mask); 4891 return sigsuspend(&blocked); 4892 } 4893 #endif 4894 4895 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4896 { 4897 return NULL; 4898 } 4899 4900 static inline void siginfo_buildtime_checks(void) 4901 { 4902 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4903 4904 /* Verify the offsets in the two siginfos match */ 4905 #define CHECK_OFFSET(field) \ 4906 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4907 4908 /* kill */ 4909 CHECK_OFFSET(si_pid); 4910 CHECK_OFFSET(si_uid); 4911 4912 /* timer */ 4913 CHECK_OFFSET(si_tid); 4914 CHECK_OFFSET(si_overrun); 4915 CHECK_OFFSET(si_value); 4916 4917 /* rt */ 4918 CHECK_OFFSET(si_pid); 4919 CHECK_OFFSET(si_uid); 4920 CHECK_OFFSET(si_value); 4921 4922 /* sigchld */ 4923 CHECK_OFFSET(si_pid); 4924 CHECK_OFFSET(si_uid); 4925 CHECK_OFFSET(si_status); 4926 CHECK_OFFSET(si_utime); 4927 CHECK_OFFSET(si_stime); 4928 4929 /* sigfault */ 4930 CHECK_OFFSET(si_addr); 4931 CHECK_OFFSET(si_trapno); 4932 CHECK_OFFSET(si_addr_lsb); 4933 CHECK_OFFSET(si_lower); 4934 CHECK_OFFSET(si_upper); 4935 CHECK_OFFSET(si_pkey); 4936 CHECK_OFFSET(si_perf_data); 4937 CHECK_OFFSET(si_perf_type); 4938 CHECK_OFFSET(si_perf_flags); 4939 4940 /* sigpoll */ 4941 CHECK_OFFSET(si_band); 4942 CHECK_OFFSET(si_fd); 4943 4944 /* sigsys */ 4945 CHECK_OFFSET(si_call_addr); 4946 CHECK_OFFSET(si_syscall); 4947 CHECK_OFFSET(si_arch); 4948 #undef CHECK_OFFSET 4949 4950 /* usb asyncio */ 4951 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != 4952 offsetof(struct siginfo, si_addr)); 4953 if (sizeof(int) == sizeof(void __user *)) { 4954 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != 4955 sizeof(void __user *)); 4956 } else { 4957 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + 4958 sizeof_field(struct siginfo, si_uid)) != 4959 sizeof(void __user *)); 4960 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != 4961 offsetof(struct siginfo, si_uid)); 4962 } 4963 #ifdef CONFIG_COMPAT 4964 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != 4965 offsetof(struct compat_siginfo, si_addr)); 4966 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4967 sizeof(compat_uptr_t)); 4968 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4969 sizeof_field(struct siginfo, si_pid)); 4970 #endif 4971 } 4972 4973 #if defined(CONFIG_SYSCTL) 4974 static const struct ctl_table signal_debug_table[] = { 4975 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE 4976 { 4977 .procname = "exception-trace", 4978 .data = &show_unhandled_signals, 4979 .maxlen = sizeof(int), 4980 .mode = 0644, 4981 .proc_handler = proc_dointvec 4982 }, 4983 #endif 4984 }; 4985 4986 static int __init init_signal_sysctls(void) 4987 { 4988 register_sysctl_init("debug", signal_debug_table); 4989 return 0; 4990 } 4991 early_initcall(init_signal_sysctls); 4992 #endif /* CONFIG_SYSCTL */ 4993 4994 void __init signals_init(void) 4995 { 4996 siginfo_buildtime_checks(); 4997 4998 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT); 4999 } 5000 5001 #ifdef CONFIG_KGDB_KDB 5002 #include <linux/kdb.h> 5003 /* 5004 * kdb_send_sig - Allows kdb to send signals without exposing 5005 * signal internals. This function checks if the required locks are 5006 * available before calling the main signal code, to avoid kdb 5007 * deadlocks. 5008 */ 5009 void kdb_send_sig(struct task_struct *t, int sig) 5010 { 5011 static struct task_struct *kdb_prev_t; 5012 int new_t, ret; 5013 if (!spin_trylock(&t->sighand->siglock)) { 5014 kdb_printf("Can't do kill command now.\n" 5015 "The sigmask lock is held somewhere else in " 5016 "kernel, try again later\n"); 5017 return; 5018 } 5019 new_t = kdb_prev_t != t; 5020 kdb_prev_t = t; 5021 if (!task_is_running(t) && new_t) { 5022 spin_unlock(&t->sighand->siglock); 5023 kdb_printf("Process is not RUNNING, sending a signal from " 5024 "kdb risks deadlock\n" 5025 "on the run queue locks. " 5026 "The signal has _not_ been sent.\n" 5027 "Reissue the kill command if you want to risk " 5028 "the deadlock.\n"); 5029 return; 5030 } 5031 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 5032 spin_unlock(&t->sighand->siglock); 5033 if (ret) 5034 kdb_printf("Fail to deliver Signal %d to process %d.\n", 5035 sig, t->pid); 5036 else 5037 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 5038 } 5039 #endif /* CONFIG_KGDB_KDB */ 5040