1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/export.h> 15 #include <linux/init.h> 16 #include <linux/sched/mm.h> 17 #include <linux/sched/user.h> 18 #include <linux/sched/debug.h> 19 #include <linux/sched/task.h> 20 #include <linux/sched/task_stack.h> 21 #include <linux/sched/cputime.h> 22 #include <linux/fs.h> 23 #include <linux/tty.h> 24 #include <linux/binfmts.h> 25 #include <linux/coredump.h> 26 #include <linux/security.h> 27 #include <linux/syscalls.h> 28 #include <linux/ptrace.h> 29 #include <linux/signal.h> 30 #include <linux/signalfd.h> 31 #include <linux/ratelimit.h> 32 #include <linux/tracehook.h> 33 #include <linux/capability.h> 34 #include <linux/freezer.h> 35 #include <linux/pid_namespace.h> 36 #include <linux/nsproxy.h> 37 #include <linux/user_namespace.h> 38 #include <linux/uprobes.h> 39 #include <linux/compat.h> 40 #include <linux/cn_proc.h> 41 #include <linux/compiler.h> 42 #include <linux/posix-timers.h> 43 #include <linux/livepatch.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/signal.h> 47 48 #include <asm/param.h> 49 #include <linux/uaccess.h> 50 #include <asm/unistd.h> 51 #include <asm/siginfo.h> 52 #include <asm/cacheflush.h> 53 #include "audit.h" /* audit_signal_info() */ 54 55 /* 56 * SLAB caches for signal bits. 57 */ 58 59 static struct kmem_cache *sigqueue_cachep; 60 61 int print_fatal_signals __read_mostly; 62 63 static void __user *sig_handler(struct task_struct *t, int sig) 64 { 65 return t->sighand->action[sig - 1].sa.sa_handler; 66 } 67 68 static int sig_handler_ignored(void __user *handler, int sig) 69 { 70 /* Is it explicitly or implicitly ignored? */ 71 return handler == SIG_IGN || 72 (handler == SIG_DFL && sig_kernel_ignore(sig)); 73 } 74 75 static int sig_task_ignored(struct task_struct *t, int sig, bool force) 76 { 77 void __user *handler; 78 79 handler = sig_handler(t, sig); 80 81 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 82 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 83 return 1; 84 85 return sig_handler_ignored(handler, sig); 86 } 87 88 static int sig_ignored(struct task_struct *t, int sig, bool force) 89 { 90 /* 91 * Blocked signals are never ignored, since the 92 * signal handler may change by the time it is 93 * unblocked. 94 */ 95 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 96 return 0; 97 98 /* 99 * Tracers may want to know about even ignored signal unless it 100 * is SIGKILL which can't be reported anyway but can be ignored 101 * by SIGNAL_UNKILLABLE task. 102 */ 103 if (t->ptrace && sig != SIGKILL) 104 return 0; 105 106 return sig_task_ignored(t, sig, force); 107 } 108 109 /* 110 * Re-calculate pending state from the set of locally pending 111 * signals, globally pending signals, and blocked signals. 112 */ 113 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 114 { 115 unsigned long ready; 116 long i; 117 118 switch (_NSIG_WORDS) { 119 default: 120 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 121 ready |= signal->sig[i] &~ blocked->sig[i]; 122 break; 123 124 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 125 ready |= signal->sig[2] &~ blocked->sig[2]; 126 ready |= signal->sig[1] &~ blocked->sig[1]; 127 ready |= signal->sig[0] &~ blocked->sig[0]; 128 break; 129 130 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 131 ready |= signal->sig[0] &~ blocked->sig[0]; 132 break; 133 134 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 135 } 136 return ready != 0; 137 } 138 139 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 140 141 static int recalc_sigpending_tsk(struct task_struct *t) 142 { 143 if ((t->jobctl & JOBCTL_PENDING_MASK) || 144 PENDING(&t->pending, &t->blocked) || 145 PENDING(&t->signal->shared_pending, &t->blocked)) { 146 set_tsk_thread_flag(t, TIF_SIGPENDING); 147 return 1; 148 } 149 /* 150 * We must never clear the flag in another thread, or in current 151 * when it's possible the current syscall is returning -ERESTART*. 152 * So we don't clear it here, and only callers who know they should do. 153 */ 154 return 0; 155 } 156 157 /* 158 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 159 * This is superfluous when called on current, the wakeup is a harmless no-op. 160 */ 161 void recalc_sigpending_and_wake(struct task_struct *t) 162 { 163 if (recalc_sigpending_tsk(t)) 164 signal_wake_up(t, 0); 165 } 166 167 void recalc_sigpending(void) 168 { 169 if (!recalc_sigpending_tsk(current) && !freezing(current) && 170 !klp_patch_pending(current)) 171 clear_thread_flag(TIF_SIGPENDING); 172 173 } 174 175 /* Given the mask, find the first available signal that should be serviced. */ 176 177 #define SYNCHRONOUS_MASK \ 178 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 179 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 180 181 int next_signal(struct sigpending *pending, sigset_t *mask) 182 { 183 unsigned long i, *s, *m, x; 184 int sig = 0; 185 186 s = pending->signal.sig; 187 m = mask->sig; 188 189 /* 190 * Handle the first word specially: it contains the 191 * synchronous signals that need to be dequeued first. 192 */ 193 x = *s &~ *m; 194 if (x) { 195 if (x & SYNCHRONOUS_MASK) 196 x &= SYNCHRONOUS_MASK; 197 sig = ffz(~x) + 1; 198 return sig; 199 } 200 201 switch (_NSIG_WORDS) { 202 default: 203 for (i = 1; i < _NSIG_WORDS; ++i) { 204 x = *++s &~ *++m; 205 if (!x) 206 continue; 207 sig = ffz(~x) + i*_NSIG_BPW + 1; 208 break; 209 } 210 break; 211 212 case 2: 213 x = s[1] &~ m[1]; 214 if (!x) 215 break; 216 sig = ffz(~x) + _NSIG_BPW + 1; 217 break; 218 219 case 1: 220 /* Nothing to do */ 221 break; 222 } 223 224 return sig; 225 } 226 227 static inline void print_dropped_signal(int sig) 228 { 229 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 230 231 if (!print_fatal_signals) 232 return; 233 234 if (!__ratelimit(&ratelimit_state)) 235 return; 236 237 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 238 current->comm, current->pid, sig); 239 } 240 241 /** 242 * task_set_jobctl_pending - set jobctl pending bits 243 * @task: target task 244 * @mask: pending bits to set 245 * 246 * Clear @mask from @task->jobctl. @mask must be subset of 247 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 248 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 249 * cleared. If @task is already being killed or exiting, this function 250 * becomes noop. 251 * 252 * CONTEXT: 253 * Must be called with @task->sighand->siglock held. 254 * 255 * RETURNS: 256 * %true if @mask is set, %false if made noop because @task was dying. 257 */ 258 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 259 { 260 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 261 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 262 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 263 264 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 265 return false; 266 267 if (mask & JOBCTL_STOP_SIGMASK) 268 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 269 270 task->jobctl |= mask; 271 return true; 272 } 273 274 /** 275 * task_clear_jobctl_trapping - clear jobctl trapping bit 276 * @task: target task 277 * 278 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 279 * Clear it and wake up the ptracer. Note that we don't need any further 280 * locking. @task->siglock guarantees that @task->parent points to the 281 * ptracer. 282 * 283 * CONTEXT: 284 * Must be called with @task->sighand->siglock held. 285 */ 286 void task_clear_jobctl_trapping(struct task_struct *task) 287 { 288 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 289 task->jobctl &= ~JOBCTL_TRAPPING; 290 smp_mb(); /* advised by wake_up_bit() */ 291 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 292 } 293 } 294 295 /** 296 * task_clear_jobctl_pending - clear jobctl pending bits 297 * @task: target task 298 * @mask: pending bits to clear 299 * 300 * Clear @mask from @task->jobctl. @mask must be subset of 301 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 302 * STOP bits are cleared together. 303 * 304 * If clearing of @mask leaves no stop or trap pending, this function calls 305 * task_clear_jobctl_trapping(). 306 * 307 * CONTEXT: 308 * Must be called with @task->sighand->siglock held. 309 */ 310 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 311 { 312 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 313 314 if (mask & JOBCTL_STOP_PENDING) 315 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 316 317 task->jobctl &= ~mask; 318 319 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 320 task_clear_jobctl_trapping(task); 321 } 322 323 /** 324 * task_participate_group_stop - participate in a group stop 325 * @task: task participating in a group stop 326 * 327 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 328 * Group stop states are cleared and the group stop count is consumed if 329 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 330 * stop, the appropriate %SIGNAL_* flags are set. 331 * 332 * CONTEXT: 333 * Must be called with @task->sighand->siglock held. 334 * 335 * RETURNS: 336 * %true if group stop completion should be notified to the parent, %false 337 * otherwise. 338 */ 339 static bool task_participate_group_stop(struct task_struct *task) 340 { 341 struct signal_struct *sig = task->signal; 342 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 343 344 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 345 346 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 347 348 if (!consume) 349 return false; 350 351 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 352 sig->group_stop_count--; 353 354 /* 355 * Tell the caller to notify completion iff we are entering into a 356 * fresh group stop. Read comment in do_signal_stop() for details. 357 */ 358 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 359 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 360 return true; 361 } 362 return false; 363 } 364 365 /* 366 * allocate a new signal queue record 367 * - this may be called without locks if and only if t == current, otherwise an 368 * appropriate lock must be held to stop the target task from exiting 369 */ 370 static struct sigqueue * 371 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) 372 { 373 struct sigqueue *q = NULL; 374 struct user_struct *user; 375 376 /* 377 * Protect access to @t credentials. This can go away when all 378 * callers hold rcu read lock. 379 */ 380 rcu_read_lock(); 381 user = get_uid(__task_cred(t)->user); 382 atomic_inc(&user->sigpending); 383 rcu_read_unlock(); 384 385 if (override_rlimit || 386 atomic_read(&user->sigpending) <= 387 task_rlimit(t, RLIMIT_SIGPENDING)) { 388 q = kmem_cache_alloc(sigqueue_cachep, flags); 389 } else { 390 print_dropped_signal(sig); 391 } 392 393 if (unlikely(q == NULL)) { 394 atomic_dec(&user->sigpending); 395 free_uid(user); 396 } else { 397 INIT_LIST_HEAD(&q->list); 398 q->flags = 0; 399 q->user = user; 400 } 401 402 return q; 403 } 404 405 static void __sigqueue_free(struct sigqueue *q) 406 { 407 if (q->flags & SIGQUEUE_PREALLOC) 408 return; 409 atomic_dec(&q->user->sigpending); 410 free_uid(q->user); 411 kmem_cache_free(sigqueue_cachep, q); 412 } 413 414 void flush_sigqueue(struct sigpending *queue) 415 { 416 struct sigqueue *q; 417 418 sigemptyset(&queue->signal); 419 while (!list_empty(&queue->list)) { 420 q = list_entry(queue->list.next, struct sigqueue , list); 421 list_del_init(&q->list); 422 __sigqueue_free(q); 423 } 424 } 425 426 /* 427 * Flush all pending signals for this kthread. 428 */ 429 void flush_signals(struct task_struct *t) 430 { 431 unsigned long flags; 432 433 spin_lock_irqsave(&t->sighand->siglock, flags); 434 clear_tsk_thread_flag(t, TIF_SIGPENDING); 435 flush_sigqueue(&t->pending); 436 flush_sigqueue(&t->signal->shared_pending); 437 spin_unlock_irqrestore(&t->sighand->siglock, flags); 438 } 439 440 #ifdef CONFIG_POSIX_TIMERS 441 static void __flush_itimer_signals(struct sigpending *pending) 442 { 443 sigset_t signal, retain; 444 struct sigqueue *q, *n; 445 446 signal = pending->signal; 447 sigemptyset(&retain); 448 449 list_for_each_entry_safe(q, n, &pending->list, list) { 450 int sig = q->info.si_signo; 451 452 if (likely(q->info.si_code != SI_TIMER)) { 453 sigaddset(&retain, sig); 454 } else { 455 sigdelset(&signal, sig); 456 list_del_init(&q->list); 457 __sigqueue_free(q); 458 } 459 } 460 461 sigorsets(&pending->signal, &signal, &retain); 462 } 463 464 void flush_itimer_signals(void) 465 { 466 struct task_struct *tsk = current; 467 unsigned long flags; 468 469 spin_lock_irqsave(&tsk->sighand->siglock, flags); 470 __flush_itimer_signals(&tsk->pending); 471 __flush_itimer_signals(&tsk->signal->shared_pending); 472 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 473 } 474 #endif 475 476 void ignore_signals(struct task_struct *t) 477 { 478 int i; 479 480 for (i = 0; i < _NSIG; ++i) 481 t->sighand->action[i].sa.sa_handler = SIG_IGN; 482 483 flush_signals(t); 484 } 485 486 /* 487 * Flush all handlers for a task. 488 */ 489 490 void 491 flush_signal_handlers(struct task_struct *t, int force_default) 492 { 493 int i; 494 struct k_sigaction *ka = &t->sighand->action[0]; 495 for (i = _NSIG ; i != 0 ; i--) { 496 if (force_default || ka->sa.sa_handler != SIG_IGN) 497 ka->sa.sa_handler = SIG_DFL; 498 ka->sa.sa_flags = 0; 499 #ifdef __ARCH_HAS_SA_RESTORER 500 ka->sa.sa_restorer = NULL; 501 #endif 502 sigemptyset(&ka->sa.sa_mask); 503 ka++; 504 } 505 } 506 507 int unhandled_signal(struct task_struct *tsk, int sig) 508 { 509 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 510 if (is_global_init(tsk)) 511 return 1; 512 if (handler != SIG_IGN && handler != SIG_DFL) 513 return 0; 514 /* if ptraced, let the tracer determine */ 515 return !tsk->ptrace; 516 } 517 518 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info, 519 bool *resched_timer) 520 { 521 struct sigqueue *q, *first = NULL; 522 523 /* 524 * Collect the siginfo appropriate to this signal. Check if 525 * there is another siginfo for the same signal. 526 */ 527 list_for_each_entry(q, &list->list, list) { 528 if (q->info.si_signo == sig) { 529 if (first) 530 goto still_pending; 531 first = q; 532 } 533 } 534 535 sigdelset(&list->signal, sig); 536 537 if (first) { 538 still_pending: 539 list_del_init(&first->list); 540 copy_siginfo(info, &first->info); 541 542 *resched_timer = 543 (first->flags & SIGQUEUE_PREALLOC) && 544 (info->si_code == SI_TIMER) && 545 (info->si_sys_private); 546 547 __sigqueue_free(first); 548 } else { 549 /* 550 * Ok, it wasn't in the queue. This must be 551 * a fast-pathed signal or we must have been 552 * out of queue space. So zero out the info. 553 */ 554 clear_siginfo(info); 555 info->si_signo = sig; 556 info->si_errno = 0; 557 info->si_code = SI_USER; 558 info->si_pid = 0; 559 info->si_uid = 0; 560 } 561 } 562 563 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 564 siginfo_t *info, bool *resched_timer) 565 { 566 int sig = next_signal(pending, mask); 567 568 if (sig) 569 collect_signal(sig, pending, info, resched_timer); 570 return sig; 571 } 572 573 /* 574 * Dequeue a signal and return the element to the caller, which is 575 * expected to free it. 576 * 577 * All callers have to hold the siglock. 578 */ 579 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 580 { 581 bool resched_timer = false; 582 int signr; 583 584 /* We only dequeue private signals from ourselves, we don't let 585 * signalfd steal them 586 */ 587 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 588 if (!signr) { 589 signr = __dequeue_signal(&tsk->signal->shared_pending, 590 mask, info, &resched_timer); 591 #ifdef CONFIG_POSIX_TIMERS 592 /* 593 * itimer signal ? 594 * 595 * itimers are process shared and we restart periodic 596 * itimers in the signal delivery path to prevent DoS 597 * attacks in the high resolution timer case. This is 598 * compliant with the old way of self-restarting 599 * itimers, as the SIGALRM is a legacy signal and only 600 * queued once. Changing the restart behaviour to 601 * restart the timer in the signal dequeue path is 602 * reducing the timer noise on heavy loaded !highres 603 * systems too. 604 */ 605 if (unlikely(signr == SIGALRM)) { 606 struct hrtimer *tmr = &tsk->signal->real_timer; 607 608 if (!hrtimer_is_queued(tmr) && 609 tsk->signal->it_real_incr != 0) { 610 hrtimer_forward(tmr, tmr->base->get_time(), 611 tsk->signal->it_real_incr); 612 hrtimer_restart(tmr); 613 } 614 } 615 #endif 616 } 617 618 recalc_sigpending(); 619 if (!signr) 620 return 0; 621 622 if (unlikely(sig_kernel_stop(signr))) { 623 /* 624 * Set a marker that we have dequeued a stop signal. Our 625 * caller might release the siglock and then the pending 626 * stop signal it is about to process is no longer in the 627 * pending bitmasks, but must still be cleared by a SIGCONT 628 * (and overruled by a SIGKILL). So those cases clear this 629 * shared flag after we've set it. Note that this flag may 630 * remain set after the signal we return is ignored or 631 * handled. That doesn't matter because its only purpose 632 * is to alert stop-signal processing code when another 633 * processor has come along and cleared the flag. 634 */ 635 current->jobctl |= JOBCTL_STOP_DEQUEUED; 636 } 637 #ifdef CONFIG_POSIX_TIMERS 638 if (resched_timer) { 639 /* 640 * Release the siglock to ensure proper locking order 641 * of timer locks outside of siglocks. Note, we leave 642 * irqs disabled here, since the posix-timers code is 643 * about to disable them again anyway. 644 */ 645 spin_unlock(&tsk->sighand->siglock); 646 posixtimer_rearm(info); 647 spin_lock(&tsk->sighand->siglock); 648 649 /* Don't expose the si_sys_private value to userspace */ 650 info->si_sys_private = 0; 651 } 652 #endif 653 return signr; 654 } 655 656 /* 657 * Tell a process that it has a new active signal.. 658 * 659 * NOTE! we rely on the previous spin_lock to 660 * lock interrupts for us! We can only be called with 661 * "siglock" held, and the local interrupt must 662 * have been disabled when that got acquired! 663 * 664 * No need to set need_resched since signal event passing 665 * goes through ->blocked 666 */ 667 void signal_wake_up_state(struct task_struct *t, unsigned int state) 668 { 669 set_tsk_thread_flag(t, TIF_SIGPENDING); 670 /* 671 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 672 * case. We don't check t->state here because there is a race with it 673 * executing another processor and just now entering stopped state. 674 * By using wake_up_state, we ensure the process will wake up and 675 * handle its death signal. 676 */ 677 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 678 kick_process(t); 679 } 680 681 /* 682 * Remove signals in mask from the pending set and queue. 683 * Returns 1 if any signals were found. 684 * 685 * All callers must be holding the siglock. 686 */ 687 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 688 { 689 struct sigqueue *q, *n; 690 sigset_t m; 691 692 sigandsets(&m, mask, &s->signal); 693 if (sigisemptyset(&m)) 694 return 0; 695 696 sigandnsets(&s->signal, &s->signal, mask); 697 list_for_each_entry_safe(q, n, &s->list, list) { 698 if (sigismember(mask, q->info.si_signo)) { 699 list_del_init(&q->list); 700 __sigqueue_free(q); 701 } 702 } 703 return 1; 704 } 705 706 static inline int is_si_special(const struct siginfo *info) 707 { 708 return info <= SEND_SIG_FORCED; 709 } 710 711 static inline bool si_fromuser(const struct siginfo *info) 712 { 713 return info == SEND_SIG_NOINFO || 714 (!is_si_special(info) && SI_FROMUSER(info)); 715 } 716 717 /* 718 * called with RCU read lock from check_kill_permission() 719 */ 720 static int kill_ok_by_cred(struct task_struct *t) 721 { 722 const struct cred *cred = current_cred(); 723 const struct cred *tcred = __task_cred(t); 724 725 if (uid_eq(cred->euid, tcred->suid) || 726 uid_eq(cred->euid, tcred->uid) || 727 uid_eq(cred->uid, tcred->suid) || 728 uid_eq(cred->uid, tcred->uid)) 729 return 1; 730 731 if (ns_capable(tcred->user_ns, CAP_KILL)) 732 return 1; 733 734 return 0; 735 } 736 737 /* 738 * Bad permissions for sending the signal 739 * - the caller must hold the RCU read lock 740 */ 741 static int check_kill_permission(int sig, struct siginfo *info, 742 struct task_struct *t) 743 { 744 struct pid *sid; 745 int error; 746 747 if (!valid_signal(sig)) 748 return -EINVAL; 749 750 if (!si_fromuser(info)) 751 return 0; 752 753 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 754 if (error) 755 return error; 756 757 if (!same_thread_group(current, t) && 758 !kill_ok_by_cred(t)) { 759 switch (sig) { 760 case SIGCONT: 761 sid = task_session(t); 762 /* 763 * We don't return the error if sid == NULL. The 764 * task was unhashed, the caller must notice this. 765 */ 766 if (!sid || sid == task_session(current)) 767 break; 768 default: 769 return -EPERM; 770 } 771 } 772 773 return security_task_kill(t, info, sig, NULL); 774 } 775 776 /** 777 * ptrace_trap_notify - schedule trap to notify ptracer 778 * @t: tracee wanting to notify tracer 779 * 780 * This function schedules sticky ptrace trap which is cleared on the next 781 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 782 * ptracer. 783 * 784 * If @t is running, STOP trap will be taken. If trapped for STOP and 785 * ptracer is listening for events, tracee is woken up so that it can 786 * re-trap for the new event. If trapped otherwise, STOP trap will be 787 * eventually taken without returning to userland after the existing traps 788 * are finished by PTRACE_CONT. 789 * 790 * CONTEXT: 791 * Must be called with @task->sighand->siglock held. 792 */ 793 static void ptrace_trap_notify(struct task_struct *t) 794 { 795 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 796 assert_spin_locked(&t->sighand->siglock); 797 798 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 799 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 800 } 801 802 /* 803 * Handle magic process-wide effects of stop/continue signals. Unlike 804 * the signal actions, these happen immediately at signal-generation 805 * time regardless of blocking, ignoring, or handling. This does the 806 * actual continuing for SIGCONT, but not the actual stopping for stop 807 * signals. The process stop is done as a signal action for SIG_DFL. 808 * 809 * Returns true if the signal should be actually delivered, otherwise 810 * it should be dropped. 811 */ 812 static bool prepare_signal(int sig, struct task_struct *p, bool force) 813 { 814 struct signal_struct *signal = p->signal; 815 struct task_struct *t; 816 sigset_t flush; 817 818 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) { 819 if (!(signal->flags & SIGNAL_GROUP_EXIT)) 820 return sig == SIGKILL; 821 /* 822 * The process is in the middle of dying, nothing to do. 823 */ 824 } else if (sig_kernel_stop(sig)) { 825 /* 826 * This is a stop signal. Remove SIGCONT from all queues. 827 */ 828 siginitset(&flush, sigmask(SIGCONT)); 829 flush_sigqueue_mask(&flush, &signal->shared_pending); 830 for_each_thread(p, t) 831 flush_sigqueue_mask(&flush, &t->pending); 832 } else if (sig == SIGCONT) { 833 unsigned int why; 834 /* 835 * Remove all stop signals from all queues, wake all threads. 836 */ 837 siginitset(&flush, SIG_KERNEL_STOP_MASK); 838 flush_sigqueue_mask(&flush, &signal->shared_pending); 839 for_each_thread(p, t) { 840 flush_sigqueue_mask(&flush, &t->pending); 841 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 842 if (likely(!(t->ptrace & PT_SEIZED))) 843 wake_up_state(t, __TASK_STOPPED); 844 else 845 ptrace_trap_notify(t); 846 } 847 848 /* 849 * Notify the parent with CLD_CONTINUED if we were stopped. 850 * 851 * If we were in the middle of a group stop, we pretend it 852 * was already finished, and then continued. Since SIGCHLD 853 * doesn't queue we report only CLD_STOPPED, as if the next 854 * CLD_CONTINUED was dropped. 855 */ 856 why = 0; 857 if (signal->flags & SIGNAL_STOP_STOPPED) 858 why |= SIGNAL_CLD_CONTINUED; 859 else if (signal->group_stop_count) 860 why |= SIGNAL_CLD_STOPPED; 861 862 if (why) { 863 /* 864 * The first thread which returns from do_signal_stop() 865 * will take ->siglock, notice SIGNAL_CLD_MASK, and 866 * notify its parent. See get_signal_to_deliver(). 867 */ 868 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 869 signal->group_stop_count = 0; 870 signal->group_exit_code = 0; 871 } 872 } 873 874 return !sig_ignored(p, sig, force); 875 } 876 877 /* 878 * Test if P wants to take SIG. After we've checked all threads with this, 879 * it's equivalent to finding no threads not blocking SIG. Any threads not 880 * blocking SIG were ruled out because they are not running and already 881 * have pending signals. Such threads will dequeue from the shared queue 882 * as soon as they're available, so putting the signal on the shared queue 883 * will be equivalent to sending it to one such thread. 884 */ 885 static inline int wants_signal(int sig, struct task_struct *p) 886 { 887 if (sigismember(&p->blocked, sig)) 888 return 0; 889 if (p->flags & PF_EXITING) 890 return 0; 891 if (sig == SIGKILL) 892 return 1; 893 if (task_is_stopped_or_traced(p)) 894 return 0; 895 return task_curr(p) || !signal_pending(p); 896 } 897 898 static void complete_signal(int sig, struct task_struct *p, int group) 899 { 900 struct signal_struct *signal = p->signal; 901 struct task_struct *t; 902 903 /* 904 * Now find a thread we can wake up to take the signal off the queue. 905 * 906 * If the main thread wants the signal, it gets first crack. 907 * Probably the least surprising to the average bear. 908 */ 909 if (wants_signal(sig, p)) 910 t = p; 911 else if (!group || thread_group_empty(p)) 912 /* 913 * There is just one thread and it does not need to be woken. 914 * It will dequeue unblocked signals before it runs again. 915 */ 916 return; 917 else { 918 /* 919 * Otherwise try to find a suitable thread. 920 */ 921 t = signal->curr_target; 922 while (!wants_signal(sig, t)) { 923 t = next_thread(t); 924 if (t == signal->curr_target) 925 /* 926 * No thread needs to be woken. 927 * Any eligible threads will see 928 * the signal in the queue soon. 929 */ 930 return; 931 } 932 signal->curr_target = t; 933 } 934 935 /* 936 * Found a killable thread. If the signal will be fatal, 937 * then start taking the whole group down immediately. 938 */ 939 if (sig_fatal(p, sig) && 940 !(signal->flags & SIGNAL_GROUP_EXIT) && 941 !sigismember(&t->real_blocked, sig) && 942 (sig == SIGKILL || !p->ptrace)) { 943 /* 944 * This signal will be fatal to the whole group. 945 */ 946 if (!sig_kernel_coredump(sig)) { 947 /* 948 * Start a group exit and wake everybody up. 949 * This way we don't have other threads 950 * running and doing things after a slower 951 * thread has the fatal signal pending. 952 */ 953 signal->flags = SIGNAL_GROUP_EXIT; 954 signal->group_exit_code = sig; 955 signal->group_stop_count = 0; 956 t = p; 957 do { 958 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 959 sigaddset(&t->pending.signal, SIGKILL); 960 signal_wake_up(t, 1); 961 } while_each_thread(p, t); 962 return; 963 } 964 } 965 966 /* 967 * The signal is already in the shared-pending queue. 968 * Tell the chosen thread to wake up and dequeue it. 969 */ 970 signal_wake_up(t, sig == SIGKILL); 971 return; 972 } 973 974 static inline int legacy_queue(struct sigpending *signals, int sig) 975 { 976 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 977 } 978 979 #ifdef CONFIG_USER_NS 980 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 981 { 982 if (current_user_ns() == task_cred_xxx(t, user_ns)) 983 return; 984 985 if (SI_FROMKERNEL(info)) 986 return; 987 988 rcu_read_lock(); 989 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns), 990 make_kuid(current_user_ns(), info->si_uid)); 991 rcu_read_unlock(); 992 } 993 #else 994 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 995 { 996 return; 997 } 998 #endif 999 1000 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t, 1001 int group, int from_ancestor_ns) 1002 { 1003 struct sigpending *pending; 1004 struct sigqueue *q; 1005 int override_rlimit; 1006 int ret = 0, result; 1007 1008 assert_spin_locked(&t->sighand->siglock); 1009 1010 result = TRACE_SIGNAL_IGNORED; 1011 if (!prepare_signal(sig, t, 1012 from_ancestor_ns || (info == SEND_SIG_FORCED))) 1013 goto ret; 1014 1015 pending = group ? &t->signal->shared_pending : &t->pending; 1016 /* 1017 * Short-circuit ignored signals and support queuing 1018 * exactly one non-rt signal, so that we can get more 1019 * detailed information about the cause of the signal. 1020 */ 1021 result = TRACE_SIGNAL_ALREADY_PENDING; 1022 if (legacy_queue(pending, sig)) 1023 goto ret; 1024 1025 result = TRACE_SIGNAL_DELIVERED; 1026 /* 1027 * fast-pathed signals for kernel-internal things like SIGSTOP 1028 * or SIGKILL. 1029 */ 1030 if (info == SEND_SIG_FORCED) 1031 goto out_set; 1032 1033 /* 1034 * Real-time signals must be queued if sent by sigqueue, or 1035 * some other real-time mechanism. It is implementation 1036 * defined whether kill() does so. We attempt to do so, on 1037 * the principle of least surprise, but since kill is not 1038 * allowed to fail with EAGAIN when low on memory we just 1039 * make sure at least one signal gets delivered and don't 1040 * pass on the info struct. 1041 */ 1042 if (sig < SIGRTMIN) 1043 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1044 else 1045 override_rlimit = 0; 1046 1047 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit); 1048 if (q) { 1049 list_add_tail(&q->list, &pending->list); 1050 switch ((unsigned long) info) { 1051 case (unsigned long) SEND_SIG_NOINFO: 1052 clear_siginfo(&q->info); 1053 q->info.si_signo = sig; 1054 q->info.si_errno = 0; 1055 q->info.si_code = SI_USER; 1056 q->info.si_pid = task_tgid_nr_ns(current, 1057 task_active_pid_ns(t)); 1058 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1059 break; 1060 case (unsigned long) SEND_SIG_PRIV: 1061 clear_siginfo(&q->info); 1062 q->info.si_signo = sig; 1063 q->info.si_errno = 0; 1064 q->info.si_code = SI_KERNEL; 1065 q->info.si_pid = 0; 1066 q->info.si_uid = 0; 1067 break; 1068 default: 1069 copy_siginfo(&q->info, info); 1070 if (from_ancestor_ns) 1071 q->info.si_pid = 0; 1072 break; 1073 } 1074 1075 userns_fixup_signal_uid(&q->info, t); 1076 1077 } else if (!is_si_special(info)) { 1078 if (sig >= SIGRTMIN && info->si_code != SI_USER) { 1079 /* 1080 * Queue overflow, abort. We may abort if the 1081 * signal was rt and sent by user using something 1082 * other than kill(). 1083 */ 1084 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1085 ret = -EAGAIN; 1086 goto ret; 1087 } else { 1088 /* 1089 * This is a silent loss of information. We still 1090 * send the signal, but the *info bits are lost. 1091 */ 1092 result = TRACE_SIGNAL_LOSE_INFO; 1093 } 1094 } 1095 1096 out_set: 1097 signalfd_notify(t, sig); 1098 sigaddset(&pending->signal, sig); 1099 complete_signal(sig, t, group); 1100 ret: 1101 trace_signal_generate(sig, info, t, group, result); 1102 return ret; 1103 } 1104 1105 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 1106 int group) 1107 { 1108 int from_ancestor_ns = 0; 1109 1110 #ifdef CONFIG_PID_NS 1111 from_ancestor_ns = si_fromuser(info) && 1112 !task_pid_nr_ns(current, task_active_pid_ns(t)); 1113 #endif 1114 1115 return __send_signal(sig, info, t, group, from_ancestor_ns); 1116 } 1117 1118 static void print_fatal_signal(int signr) 1119 { 1120 struct pt_regs *regs = signal_pt_regs(); 1121 pr_info("potentially unexpected fatal signal %d.\n", signr); 1122 1123 #if defined(__i386__) && !defined(__arch_um__) 1124 pr_info("code at %08lx: ", regs->ip); 1125 { 1126 int i; 1127 for (i = 0; i < 16; i++) { 1128 unsigned char insn; 1129 1130 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1131 break; 1132 pr_cont("%02x ", insn); 1133 } 1134 } 1135 pr_cont("\n"); 1136 #endif 1137 preempt_disable(); 1138 show_regs(regs); 1139 preempt_enable(); 1140 } 1141 1142 static int __init setup_print_fatal_signals(char *str) 1143 { 1144 get_option (&str, &print_fatal_signals); 1145 1146 return 1; 1147 } 1148 1149 __setup("print-fatal-signals=", setup_print_fatal_signals); 1150 1151 int 1152 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1153 { 1154 return send_signal(sig, info, p, 1); 1155 } 1156 1157 static int 1158 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1159 { 1160 return send_signal(sig, info, t, 0); 1161 } 1162 1163 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p, 1164 bool group) 1165 { 1166 unsigned long flags; 1167 int ret = -ESRCH; 1168 1169 if (lock_task_sighand(p, &flags)) { 1170 ret = send_signal(sig, info, p, group); 1171 unlock_task_sighand(p, &flags); 1172 } 1173 1174 return ret; 1175 } 1176 1177 /* 1178 * Force a signal that the process can't ignore: if necessary 1179 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1180 * 1181 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1182 * since we do not want to have a signal handler that was blocked 1183 * be invoked when user space had explicitly blocked it. 1184 * 1185 * We don't want to have recursive SIGSEGV's etc, for example, 1186 * that is why we also clear SIGNAL_UNKILLABLE. 1187 */ 1188 int 1189 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1190 { 1191 unsigned long int flags; 1192 int ret, blocked, ignored; 1193 struct k_sigaction *action; 1194 1195 spin_lock_irqsave(&t->sighand->siglock, flags); 1196 action = &t->sighand->action[sig-1]; 1197 ignored = action->sa.sa_handler == SIG_IGN; 1198 blocked = sigismember(&t->blocked, sig); 1199 if (blocked || ignored) { 1200 action->sa.sa_handler = SIG_DFL; 1201 if (blocked) { 1202 sigdelset(&t->blocked, sig); 1203 recalc_sigpending_and_wake(t); 1204 } 1205 } 1206 /* 1207 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1208 * debugging to leave init killable. 1209 */ 1210 if (action->sa.sa_handler == SIG_DFL && !t->ptrace) 1211 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1212 ret = specific_send_sig_info(sig, info, t); 1213 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1214 1215 return ret; 1216 } 1217 1218 /* 1219 * Nuke all other threads in the group. 1220 */ 1221 int zap_other_threads(struct task_struct *p) 1222 { 1223 struct task_struct *t = p; 1224 int count = 0; 1225 1226 p->signal->group_stop_count = 0; 1227 1228 while_each_thread(p, t) { 1229 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1230 count++; 1231 1232 /* Don't bother with already dead threads */ 1233 if (t->exit_state) 1234 continue; 1235 sigaddset(&t->pending.signal, SIGKILL); 1236 signal_wake_up(t, 1); 1237 } 1238 1239 return count; 1240 } 1241 1242 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1243 unsigned long *flags) 1244 { 1245 struct sighand_struct *sighand; 1246 1247 for (;;) { 1248 /* 1249 * Disable interrupts early to avoid deadlocks. 1250 * See rcu_read_unlock() comment header for details. 1251 */ 1252 local_irq_save(*flags); 1253 rcu_read_lock(); 1254 sighand = rcu_dereference(tsk->sighand); 1255 if (unlikely(sighand == NULL)) { 1256 rcu_read_unlock(); 1257 local_irq_restore(*flags); 1258 break; 1259 } 1260 /* 1261 * This sighand can be already freed and even reused, but 1262 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1263 * initializes ->siglock: this slab can't go away, it has 1264 * the same object type, ->siglock can't be reinitialized. 1265 * 1266 * We need to ensure that tsk->sighand is still the same 1267 * after we take the lock, we can race with de_thread() or 1268 * __exit_signal(). In the latter case the next iteration 1269 * must see ->sighand == NULL. 1270 */ 1271 spin_lock(&sighand->siglock); 1272 if (likely(sighand == tsk->sighand)) { 1273 rcu_read_unlock(); 1274 break; 1275 } 1276 spin_unlock(&sighand->siglock); 1277 rcu_read_unlock(); 1278 local_irq_restore(*flags); 1279 } 1280 1281 return sighand; 1282 } 1283 1284 /* 1285 * send signal info to all the members of a group 1286 */ 1287 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1288 { 1289 int ret; 1290 1291 rcu_read_lock(); 1292 ret = check_kill_permission(sig, info, p); 1293 rcu_read_unlock(); 1294 1295 if (!ret && sig) 1296 ret = do_send_sig_info(sig, info, p, true); 1297 1298 return ret; 1299 } 1300 1301 /* 1302 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1303 * control characters do (^C, ^Z etc) 1304 * - the caller must hold at least a readlock on tasklist_lock 1305 */ 1306 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1307 { 1308 struct task_struct *p = NULL; 1309 int retval, success; 1310 1311 success = 0; 1312 retval = -ESRCH; 1313 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1314 int err = group_send_sig_info(sig, info, p); 1315 success |= !err; 1316 retval = err; 1317 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1318 return success ? 0 : retval; 1319 } 1320 1321 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) 1322 { 1323 int error = -ESRCH; 1324 struct task_struct *p; 1325 1326 for (;;) { 1327 rcu_read_lock(); 1328 p = pid_task(pid, PIDTYPE_PID); 1329 if (p) 1330 error = group_send_sig_info(sig, info, p); 1331 rcu_read_unlock(); 1332 if (likely(!p || error != -ESRCH)) 1333 return error; 1334 1335 /* 1336 * The task was unhashed in between, try again. If it 1337 * is dead, pid_task() will return NULL, if we race with 1338 * de_thread() it will find the new leader. 1339 */ 1340 } 1341 } 1342 1343 static int kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1344 { 1345 int error; 1346 rcu_read_lock(); 1347 error = kill_pid_info(sig, info, find_vpid(pid)); 1348 rcu_read_unlock(); 1349 return error; 1350 } 1351 1352 static int kill_as_cred_perm(const struct cred *cred, 1353 struct task_struct *target) 1354 { 1355 const struct cred *pcred = __task_cred(target); 1356 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) && 1357 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid)) 1358 return 0; 1359 return 1; 1360 } 1361 1362 /* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1363 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid, 1364 const struct cred *cred) 1365 { 1366 int ret = -EINVAL; 1367 struct task_struct *p; 1368 unsigned long flags; 1369 1370 if (!valid_signal(sig)) 1371 return ret; 1372 1373 rcu_read_lock(); 1374 p = pid_task(pid, PIDTYPE_PID); 1375 if (!p) { 1376 ret = -ESRCH; 1377 goto out_unlock; 1378 } 1379 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) { 1380 ret = -EPERM; 1381 goto out_unlock; 1382 } 1383 ret = security_task_kill(p, info, sig, cred); 1384 if (ret) 1385 goto out_unlock; 1386 1387 if (sig) { 1388 if (lock_task_sighand(p, &flags)) { 1389 ret = __send_signal(sig, info, p, 1, 0); 1390 unlock_task_sighand(p, &flags); 1391 } else 1392 ret = -ESRCH; 1393 } 1394 out_unlock: 1395 rcu_read_unlock(); 1396 return ret; 1397 } 1398 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred); 1399 1400 /* 1401 * kill_something_info() interprets pid in interesting ways just like kill(2). 1402 * 1403 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1404 * is probably wrong. Should make it like BSD or SYSV. 1405 */ 1406 1407 static int kill_something_info(int sig, struct siginfo *info, pid_t pid) 1408 { 1409 int ret; 1410 1411 if (pid > 0) { 1412 rcu_read_lock(); 1413 ret = kill_pid_info(sig, info, find_vpid(pid)); 1414 rcu_read_unlock(); 1415 return ret; 1416 } 1417 1418 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1419 if (pid == INT_MIN) 1420 return -ESRCH; 1421 1422 read_lock(&tasklist_lock); 1423 if (pid != -1) { 1424 ret = __kill_pgrp_info(sig, info, 1425 pid ? find_vpid(-pid) : task_pgrp(current)); 1426 } else { 1427 int retval = 0, count = 0; 1428 struct task_struct * p; 1429 1430 for_each_process(p) { 1431 if (task_pid_vnr(p) > 1 && 1432 !same_thread_group(p, current)) { 1433 int err = group_send_sig_info(sig, info, p); 1434 ++count; 1435 if (err != -EPERM) 1436 retval = err; 1437 } 1438 } 1439 ret = count ? retval : -ESRCH; 1440 } 1441 read_unlock(&tasklist_lock); 1442 1443 return ret; 1444 } 1445 1446 /* 1447 * These are for backward compatibility with the rest of the kernel source. 1448 */ 1449 1450 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1451 { 1452 /* 1453 * Make sure legacy kernel users don't send in bad values 1454 * (normal paths check this in check_kill_permission). 1455 */ 1456 if (!valid_signal(sig)) 1457 return -EINVAL; 1458 1459 return do_send_sig_info(sig, info, p, false); 1460 } 1461 1462 #define __si_special(priv) \ 1463 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1464 1465 int 1466 send_sig(int sig, struct task_struct *p, int priv) 1467 { 1468 return send_sig_info(sig, __si_special(priv), p); 1469 } 1470 1471 void 1472 force_sig(int sig, struct task_struct *p) 1473 { 1474 force_sig_info(sig, SEND_SIG_PRIV, p); 1475 } 1476 1477 /* 1478 * When things go south during signal handling, we 1479 * will force a SIGSEGV. And if the signal that caused 1480 * the problem was already a SIGSEGV, we'll want to 1481 * make sure we don't even try to deliver the signal.. 1482 */ 1483 int 1484 force_sigsegv(int sig, struct task_struct *p) 1485 { 1486 if (sig == SIGSEGV) { 1487 unsigned long flags; 1488 spin_lock_irqsave(&p->sighand->siglock, flags); 1489 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1490 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1491 } 1492 force_sig(SIGSEGV, p); 1493 return 0; 1494 } 1495 1496 int force_sig_fault(int sig, int code, void __user *addr 1497 ___ARCH_SI_TRAPNO(int trapno) 1498 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1499 , struct task_struct *t) 1500 { 1501 struct siginfo info; 1502 1503 clear_siginfo(&info); 1504 info.si_signo = sig; 1505 info.si_errno = 0; 1506 info.si_code = code; 1507 info.si_addr = addr; 1508 #ifdef __ARCH_SI_TRAPNO 1509 info.si_trapno = trapno; 1510 #endif 1511 #ifdef __ia64__ 1512 info.si_imm = imm; 1513 info.si_flags = flags; 1514 info.si_isr = isr; 1515 #endif 1516 return force_sig_info(info.si_signo, &info, t); 1517 } 1518 1519 int send_sig_fault(int sig, int code, void __user *addr 1520 ___ARCH_SI_TRAPNO(int trapno) 1521 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1522 , struct task_struct *t) 1523 { 1524 struct siginfo info; 1525 1526 clear_siginfo(&info); 1527 info.si_signo = sig; 1528 info.si_errno = 0; 1529 info.si_code = code; 1530 info.si_addr = addr; 1531 #ifdef __ARCH_SI_TRAPNO 1532 info.si_trapno = trapno; 1533 #endif 1534 #ifdef __ia64__ 1535 info.si_imm = imm; 1536 info.si_flags = flags; 1537 info.si_isr = isr; 1538 #endif 1539 return send_sig_info(info.si_signo, &info, t); 1540 } 1541 1542 #if defined(BUS_MCEERR_AO) && defined(BUS_MCEERR_AR) 1543 int force_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1544 { 1545 struct siginfo info; 1546 1547 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1548 clear_siginfo(&info); 1549 info.si_signo = SIGBUS; 1550 info.si_errno = 0; 1551 info.si_code = code; 1552 info.si_addr = addr; 1553 info.si_addr_lsb = lsb; 1554 return force_sig_info(info.si_signo, &info, t); 1555 } 1556 1557 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1558 { 1559 struct siginfo info; 1560 1561 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1562 clear_siginfo(&info); 1563 info.si_signo = SIGBUS; 1564 info.si_errno = 0; 1565 info.si_code = code; 1566 info.si_addr = addr; 1567 info.si_addr_lsb = lsb; 1568 return send_sig_info(info.si_signo, &info, t); 1569 } 1570 EXPORT_SYMBOL(send_sig_mceerr); 1571 #endif 1572 1573 #ifdef SEGV_BNDERR 1574 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1575 { 1576 struct siginfo info; 1577 1578 clear_siginfo(&info); 1579 info.si_signo = SIGSEGV; 1580 info.si_errno = 0; 1581 info.si_code = SEGV_BNDERR; 1582 info.si_addr = addr; 1583 info.si_lower = lower; 1584 info.si_upper = upper; 1585 return force_sig_info(info.si_signo, &info, current); 1586 } 1587 #endif 1588 1589 #ifdef SEGV_PKUERR 1590 int force_sig_pkuerr(void __user *addr, u32 pkey) 1591 { 1592 struct siginfo info; 1593 1594 clear_siginfo(&info); 1595 info.si_signo = SIGSEGV; 1596 info.si_errno = 0; 1597 info.si_code = SEGV_PKUERR; 1598 info.si_addr = addr; 1599 info.si_pkey = pkey; 1600 return force_sig_info(info.si_signo, &info, current); 1601 } 1602 #endif 1603 1604 /* For the crazy architectures that include trap information in 1605 * the errno field, instead of an actual errno value. 1606 */ 1607 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1608 { 1609 struct siginfo info; 1610 1611 clear_siginfo(&info); 1612 info.si_signo = SIGTRAP; 1613 info.si_errno = errno; 1614 info.si_code = TRAP_HWBKPT; 1615 info.si_addr = addr; 1616 return force_sig_info(info.si_signo, &info, current); 1617 } 1618 1619 int kill_pgrp(struct pid *pid, int sig, int priv) 1620 { 1621 int ret; 1622 1623 read_lock(&tasklist_lock); 1624 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1625 read_unlock(&tasklist_lock); 1626 1627 return ret; 1628 } 1629 EXPORT_SYMBOL(kill_pgrp); 1630 1631 int kill_pid(struct pid *pid, int sig, int priv) 1632 { 1633 return kill_pid_info(sig, __si_special(priv), pid); 1634 } 1635 EXPORT_SYMBOL(kill_pid); 1636 1637 /* 1638 * These functions support sending signals using preallocated sigqueue 1639 * structures. This is needed "because realtime applications cannot 1640 * afford to lose notifications of asynchronous events, like timer 1641 * expirations or I/O completions". In the case of POSIX Timers 1642 * we allocate the sigqueue structure from the timer_create. If this 1643 * allocation fails we are able to report the failure to the application 1644 * with an EAGAIN error. 1645 */ 1646 struct sigqueue *sigqueue_alloc(void) 1647 { 1648 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); 1649 1650 if (q) 1651 q->flags |= SIGQUEUE_PREALLOC; 1652 1653 return q; 1654 } 1655 1656 void sigqueue_free(struct sigqueue *q) 1657 { 1658 unsigned long flags; 1659 spinlock_t *lock = ¤t->sighand->siglock; 1660 1661 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1662 /* 1663 * We must hold ->siglock while testing q->list 1664 * to serialize with collect_signal() or with 1665 * __exit_signal()->flush_sigqueue(). 1666 */ 1667 spin_lock_irqsave(lock, flags); 1668 q->flags &= ~SIGQUEUE_PREALLOC; 1669 /* 1670 * If it is queued it will be freed when dequeued, 1671 * like the "regular" sigqueue. 1672 */ 1673 if (!list_empty(&q->list)) 1674 q = NULL; 1675 spin_unlock_irqrestore(lock, flags); 1676 1677 if (q) 1678 __sigqueue_free(q); 1679 } 1680 1681 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) 1682 { 1683 int sig = q->info.si_signo; 1684 struct sigpending *pending; 1685 unsigned long flags; 1686 int ret, result; 1687 1688 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1689 1690 ret = -1; 1691 if (!likely(lock_task_sighand(t, &flags))) 1692 goto ret; 1693 1694 ret = 1; /* the signal is ignored */ 1695 result = TRACE_SIGNAL_IGNORED; 1696 if (!prepare_signal(sig, t, false)) 1697 goto out; 1698 1699 ret = 0; 1700 if (unlikely(!list_empty(&q->list))) { 1701 /* 1702 * If an SI_TIMER entry is already queue just increment 1703 * the overrun count. 1704 */ 1705 BUG_ON(q->info.si_code != SI_TIMER); 1706 q->info.si_overrun++; 1707 result = TRACE_SIGNAL_ALREADY_PENDING; 1708 goto out; 1709 } 1710 q->info.si_overrun = 0; 1711 1712 signalfd_notify(t, sig); 1713 pending = group ? &t->signal->shared_pending : &t->pending; 1714 list_add_tail(&q->list, &pending->list); 1715 sigaddset(&pending->signal, sig); 1716 complete_signal(sig, t, group); 1717 result = TRACE_SIGNAL_DELIVERED; 1718 out: 1719 trace_signal_generate(sig, &q->info, t, group, result); 1720 unlock_task_sighand(t, &flags); 1721 ret: 1722 return ret; 1723 } 1724 1725 /* 1726 * Let a parent know about the death of a child. 1727 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1728 * 1729 * Returns true if our parent ignored us and so we've switched to 1730 * self-reaping. 1731 */ 1732 bool do_notify_parent(struct task_struct *tsk, int sig) 1733 { 1734 struct siginfo info; 1735 unsigned long flags; 1736 struct sighand_struct *psig; 1737 bool autoreap = false; 1738 u64 utime, stime; 1739 1740 BUG_ON(sig == -1); 1741 1742 /* do_notify_parent_cldstop should have been called instead. */ 1743 BUG_ON(task_is_stopped_or_traced(tsk)); 1744 1745 BUG_ON(!tsk->ptrace && 1746 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1747 1748 if (sig != SIGCHLD) { 1749 /* 1750 * This is only possible if parent == real_parent. 1751 * Check if it has changed security domain. 1752 */ 1753 if (tsk->parent_exec_id != tsk->parent->self_exec_id) 1754 sig = SIGCHLD; 1755 } 1756 1757 clear_siginfo(&info); 1758 info.si_signo = sig; 1759 info.si_errno = 0; 1760 /* 1761 * We are under tasklist_lock here so our parent is tied to 1762 * us and cannot change. 1763 * 1764 * task_active_pid_ns will always return the same pid namespace 1765 * until a task passes through release_task. 1766 * 1767 * write_lock() currently calls preempt_disable() which is the 1768 * same as rcu_read_lock(), but according to Oleg, this is not 1769 * correct to rely on this 1770 */ 1771 rcu_read_lock(); 1772 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 1773 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 1774 task_uid(tsk)); 1775 rcu_read_unlock(); 1776 1777 task_cputime(tsk, &utime, &stime); 1778 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 1779 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 1780 1781 info.si_status = tsk->exit_code & 0x7f; 1782 if (tsk->exit_code & 0x80) 1783 info.si_code = CLD_DUMPED; 1784 else if (tsk->exit_code & 0x7f) 1785 info.si_code = CLD_KILLED; 1786 else { 1787 info.si_code = CLD_EXITED; 1788 info.si_status = tsk->exit_code >> 8; 1789 } 1790 1791 psig = tsk->parent->sighand; 1792 spin_lock_irqsave(&psig->siglock, flags); 1793 if (!tsk->ptrace && sig == SIGCHLD && 1794 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1795 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1796 /* 1797 * We are exiting and our parent doesn't care. POSIX.1 1798 * defines special semantics for setting SIGCHLD to SIG_IGN 1799 * or setting the SA_NOCLDWAIT flag: we should be reaped 1800 * automatically and not left for our parent's wait4 call. 1801 * Rather than having the parent do it as a magic kind of 1802 * signal handler, we just set this to tell do_exit that we 1803 * can be cleaned up without becoming a zombie. Note that 1804 * we still call __wake_up_parent in this case, because a 1805 * blocked sys_wait4 might now return -ECHILD. 1806 * 1807 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1808 * is implementation-defined: we do (if you don't want 1809 * it, just use SIG_IGN instead). 1810 */ 1811 autoreap = true; 1812 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1813 sig = 0; 1814 } 1815 if (valid_signal(sig) && sig) 1816 __group_send_sig_info(sig, &info, tsk->parent); 1817 __wake_up_parent(tsk, tsk->parent); 1818 spin_unlock_irqrestore(&psig->siglock, flags); 1819 1820 return autoreap; 1821 } 1822 1823 /** 1824 * do_notify_parent_cldstop - notify parent of stopped/continued state change 1825 * @tsk: task reporting the state change 1826 * @for_ptracer: the notification is for ptracer 1827 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 1828 * 1829 * Notify @tsk's parent that the stopped/continued state has changed. If 1830 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 1831 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 1832 * 1833 * CONTEXT: 1834 * Must be called with tasklist_lock at least read locked. 1835 */ 1836 static void do_notify_parent_cldstop(struct task_struct *tsk, 1837 bool for_ptracer, int why) 1838 { 1839 struct siginfo info; 1840 unsigned long flags; 1841 struct task_struct *parent; 1842 struct sighand_struct *sighand; 1843 u64 utime, stime; 1844 1845 if (for_ptracer) { 1846 parent = tsk->parent; 1847 } else { 1848 tsk = tsk->group_leader; 1849 parent = tsk->real_parent; 1850 } 1851 1852 clear_siginfo(&info); 1853 info.si_signo = SIGCHLD; 1854 info.si_errno = 0; 1855 /* 1856 * see comment in do_notify_parent() about the following 4 lines 1857 */ 1858 rcu_read_lock(); 1859 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 1860 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 1861 rcu_read_unlock(); 1862 1863 task_cputime(tsk, &utime, &stime); 1864 info.si_utime = nsec_to_clock_t(utime); 1865 info.si_stime = nsec_to_clock_t(stime); 1866 1867 info.si_code = why; 1868 switch (why) { 1869 case CLD_CONTINUED: 1870 info.si_status = SIGCONT; 1871 break; 1872 case CLD_STOPPED: 1873 info.si_status = tsk->signal->group_exit_code & 0x7f; 1874 break; 1875 case CLD_TRAPPED: 1876 info.si_status = tsk->exit_code & 0x7f; 1877 break; 1878 default: 1879 BUG(); 1880 } 1881 1882 sighand = parent->sighand; 1883 spin_lock_irqsave(&sighand->siglock, flags); 1884 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1885 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1886 __group_send_sig_info(SIGCHLD, &info, parent); 1887 /* 1888 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1889 */ 1890 __wake_up_parent(tsk, parent); 1891 spin_unlock_irqrestore(&sighand->siglock, flags); 1892 } 1893 1894 static inline int may_ptrace_stop(void) 1895 { 1896 if (!likely(current->ptrace)) 1897 return 0; 1898 /* 1899 * Are we in the middle of do_coredump? 1900 * If so and our tracer is also part of the coredump stopping 1901 * is a deadlock situation, and pointless because our tracer 1902 * is dead so don't allow us to stop. 1903 * If SIGKILL was already sent before the caller unlocked 1904 * ->siglock we must see ->core_state != NULL. Otherwise it 1905 * is safe to enter schedule(). 1906 * 1907 * This is almost outdated, a task with the pending SIGKILL can't 1908 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported 1909 * after SIGKILL was already dequeued. 1910 */ 1911 if (unlikely(current->mm->core_state) && 1912 unlikely(current->mm == current->parent->mm)) 1913 return 0; 1914 1915 return 1; 1916 } 1917 1918 /* 1919 * Return non-zero if there is a SIGKILL that should be waking us up. 1920 * Called with the siglock held. 1921 */ 1922 static int sigkill_pending(struct task_struct *tsk) 1923 { 1924 return sigismember(&tsk->pending.signal, SIGKILL) || 1925 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 1926 } 1927 1928 /* 1929 * This must be called with current->sighand->siglock held. 1930 * 1931 * This should be the path for all ptrace stops. 1932 * We always set current->last_siginfo while stopped here. 1933 * That makes it a way to test a stopped process for 1934 * being ptrace-stopped vs being job-control-stopped. 1935 * 1936 * If we actually decide not to stop at all because the tracer 1937 * is gone, we keep current->exit_code unless clear_code. 1938 */ 1939 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info) 1940 __releases(¤t->sighand->siglock) 1941 __acquires(¤t->sighand->siglock) 1942 { 1943 bool gstop_done = false; 1944 1945 if (arch_ptrace_stop_needed(exit_code, info)) { 1946 /* 1947 * The arch code has something special to do before a 1948 * ptrace stop. This is allowed to block, e.g. for faults 1949 * on user stack pages. We can't keep the siglock while 1950 * calling arch_ptrace_stop, so we must release it now. 1951 * To preserve proper semantics, we must do this before 1952 * any signal bookkeeping like checking group_stop_count. 1953 * Meanwhile, a SIGKILL could come in before we retake the 1954 * siglock. That must prevent us from sleeping in TASK_TRACED. 1955 * So after regaining the lock, we must check for SIGKILL. 1956 */ 1957 spin_unlock_irq(¤t->sighand->siglock); 1958 arch_ptrace_stop(exit_code, info); 1959 spin_lock_irq(¤t->sighand->siglock); 1960 if (sigkill_pending(current)) 1961 return; 1962 } 1963 1964 set_special_state(TASK_TRACED); 1965 1966 /* 1967 * We're committing to trapping. TRACED should be visible before 1968 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 1969 * Also, transition to TRACED and updates to ->jobctl should be 1970 * atomic with respect to siglock and should be done after the arch 1971 * hook as siglock is released and regrabbed across it. 1972 * 1973 * TRACER TRACEE 1974 * 1975 * ptrace_attach() 1976 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 1977 * do_wait() 1978 * set_current_state() smp_wmb(); 1979 * ptrace_do_wait() 1980 * wait_task_stopped() 1981 * task_stopped_code() 1982 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 1983 */ 1984 smp_wmb(); 1985 1986 current->last_siginfo = info; 1987 current->exit_code = exit_code; 1988 1989 /* 1990 * If @why is CLD_STOPPED, we're trapping to participate in a group 1991 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 1992 * across siglock relocks since INTERRUPT was scheduled, PENDING 1993 * could be clear now. We act as if SIGCONT is received after 1994 * TASK_TRACED is entered - ignore it. 1995 */ 1996 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 1997 gstop_done = task_participate_group_stop(current); 1998 1999 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2000 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2001 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2002 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2003 2004 /* entering a trap, clear TRAPPING */ 2005 task_clear_jobctl_trapping(current); 2006 2007 spin_unlock_irq(¤t->sighand->siglock); 2008 read_lock(&tasklist_lock); 2009 if (may_ptrace_stop()) { 2010 /* 2011 * Notify parents of the stop. 2012 * 2013 * While ptraced, there are two parents - the ptracer and 2014 * the real_parent of the group_leader. The ptracer should 2015 * know about every stop while the real parent is only 2016 * interested in the completion of group stop. The states 2017 * for the two don't interact with each other. Notify 2018 * separately unless they're gonna be duplicates. 2019 */ 2020 do_notify_parent_cldstop(current, true, why); 2021 if (gstop_done && ptrace_reparented(current)) 2022 do_notify_parent_cldstop(current, false, why); 2023 2024 /* 2025 * Don't want to allow preemption here, because 2026 * sys_ptrace() needs this task to be inactive. 2027 * 2028 * XXX: implement read_unlock_no_resched(). 2029 */ 2030 preempt_disable(); 2031 read_unlock(&tasklist_lock); 2032 preempt_enable_no_resched(); 2033 freezable_schedule(); 2034 } else { 2035 /* 2036 * By the time we got the lock, our tracer went away. 2037 * Don't drop the lock yet, another tracer may come. 2038 * 2039 * If @gstop_done, the ptracer went away between group stop 2040 * completion and here. During detach, it would have set 2041 * JOBCTL_STOP_PENDING on us and we'll re-enter 2042 * TASK_STOPPED in do_signal_stop() on return, so notifying 2043 * the real parent of the group stop completion is enough. 2044 */ 2045 if (gstop_done) 2046 do_notify_parent_cldstop(current, false, why); 2047 2048 /* tasklist protects us from ptrace_freeze_traced() */ 2049 __set_current_state(TASK_RUNNING); 2050 if (clear_code) 2051 current->exit_code = 0; 2052 read_unlock(&tasklist_lock); 2053 } 2054 2055 /* 2056 * We are back. Now reacquire the siglock before touching 2057 * last_siginfo, so that we are sure to have synchronized with 2058 * any signal-sending on another CPU that wants to examine it. 2059 */ 2060 spin_lock_irq(¤t->sighand->siglock); 2061 current->last_siginfo = NULL; 2062 2063 /* LISTENING can be set only during STOP traps, clear it */ 2064 current->jobctl &= ~JOBCTL_LISTENING; 2065 2066 /* 2067 * Queued signals ignored us while we were stopped for tracing. 2068 * So check for any that we should take before resuming user mode. 2069 * This sets TIF_SIGPENDING, but never clears it. 2070 */ 2071 recalc_sigpending_tsk(current); 2072 } 2073 2074 static void ptrace_do_notify(int signr, int exit_code, int why) 2075 { 2076 siginfo_t info; 2077 2078 clear_siginfo(&info); 2079 info.si_signo = signr; 2080 info.si_code = exit_code; 2081 info.si_pid = task_pid_vnr(current); 2082 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2083 2084 /* Let the debugger run. */ 2085 ptrace_stop(exit_code, why, 1, &info); 2086 } 2087 2088 void ptrace_notify(int exit_code) 2089 { 2090 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2091 if (unlikely(current->task_works)) 2092 task_work_run(); 2093 2094 spin_lock_irq(¤t->sighand->siglock); 2095 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 2096 spin_unlock_irq(¤t->sighand->siglock); 2097 } 2098 2099 /** 2100 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2101 * @signr: signr causing group stop if initiating 2102 * 2103 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2104 * and participate in it. If already set, participate in the existing 2105 * group stop. If participated in a group stop (and thus slept), %true is 2106 * returned with siglock released. 2107 * 2108 * If ptraced, this function doesn't handle stop itself. Instead, 2109 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2110 * untouched. The caller must ensure that INTERRUPT trap handling takes 2111 * places afterwards. 2112 * 2113 * CONTEXT: 2114 * Must be called with @current->sighand->siglock held, which is released 2115 * on %true return. 2116 * 2117 * RETURNS: 2118 * %false if group stop is already cancelled or ptrace trap is scheduled. 2119 * %true if participated in group stop. 2120 */ 2121 static bool do_signal_stop(int signr) 2122 __releases(¤t->sighand->siglock) 2123 { 2124 struct signal_struct *sig = current->signal; 2125 2126 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2127 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2128 struct task_struct *t; 2129 2130 /* signr will be recorded in task->jobctl for retries */ 2131 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2132 2133 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2134 unlikely(signal_group_exit(sig))) 2135 return false; 2136 /* 2137 * There is no group stop already in progress. We must 2138 * initiate one now. 2139 * 2140 * While ptraced, a task may be resumed while group stop is 2141 * still in effect and then receive a stop signal and 2142 * initiate another group stop. This deviates from the 2143 * usual behavior as two consecutive stop signals can't 2144 * cause two group stops when !ptraced. That is why we 2145 * also check !task_is_stopped(t) below. 2146 * 2147 * The condition can be distinguished by testing whether 2148 * SIGNAL_STOP_STOPPED is already set. Don't generate 2149 * group_exit_code in such case. 2150 * 2151 * This is not necessary for SIGNAL_STOP_CONTINUED because 2152 * an intervening stop signal is required to cause two 2153 * continued events regardless of ptrace. 2154 */ 2155 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2156 sig->group_exit_code = signr; 2157 2158 sig->group_stop_count = 0; 2159 2160 if (task_set_jobctl_pending(current, signr | gstop)) 2161 sig->group_stop_count++; 2162 2163 t = current; 2164 while_each_thread(current, t) { 2165 /* 2166 * Setting state to TASK_STOPPED for a group 2167 * stop is always done with the siglock held, 2168 * so this check has no races. 2169 */ 2170 if (!task_is_stopped(t) && 2171 task_set_jobctl_pending(t, signr | gstop)) { 2172 sig->group_stop_count++; 2173 if (likely(!(t->ptrace & PT_SEIZED))) 2174 signal_wake_up(t, 0); 2175 else 2176 ptrace_trap_notify(t); 2177 } 2178 } 2179 } 2180 2181 if (likely(!current->ptrace)) { 2182 int notify = 0; 2183 2184 /* 2185 * If there are no other threads in the group, or if there 2186 * is a group stop in progress and we are the last to stop, 2187 * report to the parent. 2188 */ 2189 if (task_participate_group_stop(current)) 2190 notify = CLD_STOPPED; 2191 2192 set_special_state(TASK_STOPPED); 2193 spin_unlock_irq(¤t->sighand->siglock); 2194 2195 /* 2196 * Notify the parent of the group stop completion. Because 2197 * we're not holding either the siglock or tasklist_lock 2198 * here, ptracer may attach inbetween; however, this is for 2199 * group stop and should always be delivered to the real 2200 * parent of the group leader. The new ptracer will get 2201 * its notification when this task transitions into 2202 * TASK_TRACED. 2203 */ 2204 if (notify) { 2205 read_lock(&tasklist_lock); 2206 do_notify_parent_cldstop(current, false, notify); 2207 read_unlock(&tasklist_lock); 2208 } 2209 2210 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2211 freezable_schedule(); 2212 return true; 2213 } else { 2214 /* 2215 * While ptraced, group stop is handled by STOP trap. 2216 * Schedule it and let the caller deal with it. 2217 */ 2218 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2219 return false; 2220 } 2221 } 2222 2223 /** 2224 * do_jobctl_trap - take care of ptrace jobctl traps 2225 * 2226 * When PT_SEIZED, it's used for both group stop and explicit 2227 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2228 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2229 * the stop signal; otherwise, %SIGTRAP. 2230 * 2231 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2232 * number as exit_code and no siginfo. 2233 * 2234 * CONTEXT: 2235 * Must be called with @current->sighand->siglock held, which may be 2236 * released and re-acquired before returning with intervening sleep. 2237 */ 2238 static void do_jobctl_trap(void) 2239 { 2240 struct signal_struct *signal = current->signal; 2241 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2242 2243 if (current->ptrace & PT_SEIZED) { 2244 if (!signal->group_stop_count && 2245 !(signal->flags & SIGNAL_STOP_STOPPED)) 2246 signr = SIGTRAP; 2247 WARN_ON_ONCE(!signr); 2248 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2249 CLD_STOPPED); 2250 } else { 2251 WARN_ON_ONCE(!signr); 2252 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2253 current->exit_code = 0; 2254 } 2255 } 2256 2257 static int ptrace_signal(int signr, siginfo_t *info) 2258 { 2259 /* 2260 * We do not check sig_kernel_stop(signr) but set this marker 2261 * unconditionally because we do not know whether debugger will 2262 * change signr. This flag has no meaning unless we are going 2263 * to stop after return from ptrace_stop(). In this case it will 2264 * be checked in do_signal_stop(), we should only stop if it was 2265 * not cleared by SIGCONT while we were sleeping. See also the 2266 * comment in dequeue_signal(). 2267 */ 2268 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2269 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2270 2271 /* We're back. Did the debugger cancel the sig? */ 2272 signr = current->exit_code; 2273 if (signr == 0) 2274 return signr; 2275 2276 current->exit_code = 0; 2277 2278 /* 2279 * Update the siginfo structure if the signal has 2280 * changed. If the debugger wanted something 2281 * specific in the siginfo structure then it should 2282 * have updated *info via PTRACE_SETSIGINFO. 2283 */ 2284 if (signr != info->si_signo) { 2285 clear_siginfo(info); 2286 info->si_signo = signr; 2287 info->si_errno = 0; 2288 info->si_code = SI_USER; 2289 rcu_read_lock(); 2290 info->si_pid = task_pid_vnr(current->parent); 2291 info->si_uid = from_kuid_munged(current_user_ns(), 2292 task_uid(current->parent)); 2293 rcu_read_unlock(); 2294 } 2295 2296 /* If the (new) signal is now blocked, requeue it. */ 2297 if (sigismember(¤t->blocked, signr)) { 2298 specific_send_sig_info(signr, info, current); 2299 signr = 0; 2300 } 2301 2302 return signr; 2303 } 2304 2305 int get_signal(struct ksignal *ksig) 2306 { 2307 struct sighand_struct *sighand = current->sighand; 2308 struct signal_struct *signal = current->signal; 2309 int signr; 2310 2311 if (unlikely(current->task_works)) 2312 task_work_run(); 2313 2314 if (unlikely(uprobe_deny_signal())) 2315 return 0; 2316 2317 /* 2318 * Do this once, we can't return to user-mode if freezing() == T. 2319 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2320 * thus do not need another check after return. 2321 */ 2322 try_to_freeze(); 2323 2324 relock: 2325 spin_lock_irq(&sighand->siglock); 2326 /* 2327 * Every stopped thread goes here after wakeup. Check to see if 2328 * we should notify the parent, prepare_signal(SIGCONT) encodes 2329 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2330 */ 2331 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2332 int why; 2333 2334 if (signal->flags & SIGNAL_CLD_CONTINUED) 2335 why = CLD_CONTINUED; 2336 else 2337 why = CLD_STOPPED; 2338 2339 signal->flags &= ~SIGNAL_CLD_MASK; 2340 2341 spin_unlock_irq(&sighand->siglock); 2342 2343 /* 2344 * Notify the parent that we're continuing. This event is 2345 * always per-process and doesn't make whole lot of sense 2346 * for ptracers, who shouldn't consume the state via 2347 * wait(2) either, but, for backward compatibility, notify 2348 * the ptracer of the group leader too unless it's gonna be 2349 * a duplicate. 2350 */ 2351 read_lock(&tasklist_lock); 2352 do_notify_parent_cldstop(current, false, why); 2353 2354 if (ptrace_reparented(current->group_leader)) 2355 do_notify_parent_cldstop(current->group_leader, 2356 true, why); 2357 read_unlock(&tasklist_lock); 2358 2359 goto relock; 2360 } 2361 2362 for (;;) { 2363 struct k_sigaction *ka; 2364 2365 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2366 do_signal_stop(0)) 2367 goto relock; 2368 2369 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) { 2370 do_jobctl_trap(); 2371 spin_unlock_irq(&sighand->siglock); 2372 goto relock; 2373 } 2374 2375 signr = dequeue_signal(current, ¤t->blocked, &ksig->info); 2376 2377 if (!signr) 2378 break; /* will return 0 */ 2379 2380 if (unlikely(current->ptrace) && signr != SIGKILL) { 2381 signr = ptrace_signal(signr, &ksig->info); 2382 if (!signr) 2383 continue; 2384 } 2385 2386 ka = &sighand->action[signr-1]; 2387 2388 /* Trace actually delivered signals. */ 2389 trace_signal_deliver(signr, &ksig->info, ka); 2390 2391 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2392 continue; 2393 if (ka->sa.sa_handler != SIG_DFL) { 2394 /* Run the handler. */ 2395 ksig->ka = *ka; 2396 2397 if (ka->sa.sa_flags & SA_ONESHOT) 2398 ka->sa.sa_handler = SIG_DFL; 2399 2400 break; /* will return non-zero "signr" value */ 2401 } 2402 2403 /* 2404 * Now we are doing the default action for this signal. 2405 */ 2406 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2407 continue; 2408 2409 /* 2410 * Global init gets no signals it doesn't want. 2411 * Container-init gets no signals it doesn't want from same 2412 * container. 2413 * 2414 * Note that if global/container-init sees a sig_kernel_only() 2415 * signal here, the signal must have been generated internally 2416 * or must have come from an ancestor namespace. In either 2417 * case, the signal cannot be dropped. 2418 */ 2419 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2420 !sig_kernel_only(signr)) 2421 continue; 2422 2423 if (sig_kernel_stop(signr)) { 2424 /* 2425 * The default action is to stop all threads in 2426 * the thread group. The job control signals 2427 * do nothing in an orphaned pgrp, but SIGSTOP 2428 * always works. Note that siglock needs to be 2429 * dropped during the call to is_orphaned_pgrp() 2430 * because of lock ordering with tasklist_lock. 2431 * This allows an intervening SIGCONT to be posted. 2432 * We need to check for that and bail out if necessary. 2433 */ 2434 if (signr != SIGSTOP) { 2435 spin_unlock_irq(&sighand->siglock); 2436 2437 /* signals can be posted during this window */ 2438 2439 if (is_current_pgrp_orphaned()) 2440 goto relock; 2441 2442 spin_lock_irq(&sighand->siglock); 2443 } 2444 2445 if (likely(do_signal_stop(ksig->info.si_signo))) { 2446 /* It released the siglock. */ 2447 goto relock; 2448 } 2449 2450 /* 2451 * We didn't actually stop, due to a race 2452 * with SIGCONT or something like that. 2453 */ 2454 continue; 2455 } 2456 2457 spin_unlock_irq(&sighand->siglock); 2458 2459 /* 2460 * Anything else is fatal, maybe with a core dump. 2461 */ 2462 current->flags |= PF_SIGNALED; 2463 2464 if (sig_kernel_coredump(signr)) { 2465 if (print_fatal_signals) 2466 print_fatal_signal(ksig->info.si_signo); 2467 proc_coredump_connector(current); 2468 /* 2469 * If it was able to dump core, this kills all 2470 * other threads in the group and synchronizes with 2471 * their demise. If we lost the race with another 2472 * thread getting here, it set group_exit_code 2473 * first and our do_group_exit call below will use 2474 * that value and ignore the one we pass it. 2475 */ 2476 do_coredump(&ksig->info); 2477 } 2478 2479 /* 2480 * Death signals, no core dump. 2481 */ 2482 do_group_exit(ksig->info.si_signo); 2483 /* NOTREACHED */ 2484 } 2485 spin_unlock_irq(&sighand->siglock); 2486 2487 ksig->sig = signr; 2488 return ksig->sig > 0; 2489 } 2490 2491 /** 2492 * signal_delivered - 2493 * @ksig: kernel signal struct 2494 * @stepping: nonzero if debugger single-step or block-step in use 2495 * 2496 * This function should be called when a signal has successfully been 2497 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2498 * is always blocked, and the signal itself is blocked unless %SA_NODEFER 2499 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2500 */ 2501 static void signal_delivered(struct ksignal *ksig, int stepping) 2502 { 2503 sigset_t blocked; 2504 2505 /* A signal was successfully delivered, and the 2506 saved sigmask was stored on the signal frame, 2507 and will be restored by sigreturn. So we can 2508 simply clear the restore sigmask flag. */ 2509 clear_restore_sigmask(); 2510 2511 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2512 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2513 sigaddset(&blocked, ksig->sig); 2514 set_current_blocked(&blocked); 2515 tracehook_signal_handler(stepping); 2516 } 2517 2518 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2519 { 2520 if (failed) 2521 force_sigsegv(ksig->sig, current); 2522 else 2523 signal_delivered(ksig, stepping); 2524 } 2525 2526 /* 2527 * It could be that complete_signal() picked us to notify about the 2528 * group-wide signal. Other threads should be notified now to take 2529 * the shared signals in @which since we will not. 2530 */ 2531 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2532 { 2533 sigset_t retarget; 2534 struct task_struct *t; 2535 2536 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2537 if (sigisemptyset(&retarget)) 2538 return; 2539 2540 t = tsk; 2541 while_each_thread(tsk, t) { 2542 if (t->flags & PF_EXITING) 2543 continue; 2544 2545 if (!has_pending_signals(&retarget, &t->blocked)) 2546 continue; 2547 /* Remove the signals this thread can handle. */ 2548 sigandsets(&retarget, &retarget, &t->blocked); 2549 2550 if (!signal_pending(t)) 2551 signal_wake_up(t, 0); 2552 2553 if (sigisemptyset(&retarget)) 2554 break; 2555 } 2556 } 2557 2558 void exit_signals(struct task_struct *tsk) 2559 { 2560 int group_stop = 0; 2561 sigset_t unblocked; 2562 2563 /* 2564 * @tsk is about to have PF_EXITING set - lock out users which 2565 * expect stable threadgroup. 2566 */ 2567 cgroup_threadgroup_change_begin(tsk); 2568 2569 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 2570 tsk->flags |= PF_EXITING; 2571 cgroup_threadgroup_change_end(tsk); 2572 return; 2573 } 2574 2575 spin_lock_irq(&tsk->sighand->siglock); 2576 /* 2577 * From now this task is not visible for group-wide signals, 2578 * see wants_signal(), do_signal_stop(). 2579 */ 2580 tsk->flags |= PF_EXITING; 2581 2582 cgroup_threadgroup_change_end(tsk); 2583 2584 if (!signal_pending(tsk)) 2585 goto out; 2586 2587 unblocked = tsk->blocked; 2588 signotset(&unblocked); 2589 retarget_shared_pending(tsk, &unblocked); 2590 2591 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2592 task_participate_group_stop(tsk)) 2593 group_stop = CLD_STOPPED; 2594 out: 2595 spin_unlock_irq(&tsk->sighand->siglock); 2596 2597 /* 2598 * If group stop has completed, deliver the notification. This 2599 * should always go to the real parent of the group leader. 2600 */ 2601 if (unlikely(group_stop)) { 2602 read_lock(&tasklist_lock); 2603 do_notify_parent_cldstop(tsk, false, group_stop); 2604 read_unlock(&tasklist_lock); 2605 } 2606 } 2607 2608 EXPORT_SYMBOL(recalc_sigpending); 2609 EXPORT_SYMBOL_GPL(dequeue_signal); 2610 EXPORT_SYMBOL(flush_signals); 2611 EXPORT_SYMBOL(force_sig); 2612 EXPORT_SYMBOL(send_sig); 2613 EXPORT_SYMBOL(send_sig_info); 2614 EXPORT_SYMBOL(sigprocmask); 2615 2616 /* 2617 * System call entry points. 2618 */ 2619 2620 /** 2621 * sys_restart_syscall - restart a system call 2622 */ 2623 SYSCALL_DEFINE0(restart_syscall) 2624 { 2625 struct restart_block *restart = ¤t->restart_block; 2626 return restart->fn(restart); 2627 } 2628 2629 long do_no_restart_syscall(struct restart_block *param) 2630 { 2631 return -EINTR; 2632 } 2633 2634 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 2635 { 2636 if (signal_pending(tsk) && !thread_group_empty(tsk)) { 2637 sigset_t newblocked; 2638 /* A set of now blocked but previously unblocked signals. */ 2639 sigandnsets(&newblocked, newset, ¤t->blocked); 2640 retarget_shared_pending(tsk, &newblocked); 2641 } 2642 tsk->blocked = *newset; 2643 recalc_sigpending(); 2644 } 2645 2646 /** 2647 * set_current_blocked - change current->blocked mask 2648 * @newset: new mask 2649 * 2650 * It is wrong to change ->blocked directly, this helper should be used 2651 * to ensure the process can't miss a shared signal we are going to block. 2652 */ 2653 void set_current_blocked(sigset_t *newset) 2654 { 2655 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2656 __set_current_blocked(newset); 2657 } 2658 2659 void __set_current_blocked(const sigset_t *newset) 2660 { 2661 struct task_struct *tsk = current; 2662 2663 /* 2664 * In case the signal mask hasn't changed, there is nothing we need 2665 * to do. The current->blocked shouldn't be modified by other task. 2666 */ 2667 if (sigequalsets(&tsk->blocked, newset)) 2668 return; 2669 2670 spin_lock_irq(&tsk->sighand->siglock); 2671 __set_task_blocked(tsk, newset); 2672 spin_unlock_irq(&tsk->sighand->siglock); 2673 } 2674 2675 /* 2676 * This is also useful for kernel threads that want to temporarily 2677 * (or permanently) block certain signals. 2678 * 2679 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2680 * interface happily blocks "unblockable" signals like SIGKILL 2681 * and friends. 2682 */ 2683 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2684 { 2685 struct task_struct *tsk = current; 2686 sigset_t newset; 2687 2688 /* Lockless, only current can change ->blocked, never from irq */ 2689 if (oldset) 2690 *oldset = tsk->blocked; 2691 2692 switch (how) { 2693 case SIG_BLOCK: 2694 sigorsets(&newset, &tsk->blocked, set); 2695 break; 2696 case SIG_UNBLOCK: 2697 sigandnsets(&newset, &tsk->blocked, set); 2698 break; 2699 case SIG_SETMASK: 2700 newset = *set; 2701 break; 2702 default: 2703 return -EINVAL; 2704 } 2705 2706 __set_current_blocked(&newset); 2707 return 0; 2708 } 2709 2710 /** 2711 * sys_rt_sigprocmask - change the list of currently blocked signals 2712 * @how: whether to add, remove, or set signals 2713 * @nset: stores pending signals 2714 * @oset: previous value of signal mask if non-null 2715 * @sigsetsize: size of sigset_t type 2716 */ 2717 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 2718 sigset_t __user *, oset, size_t, sigsetsize) 2719 { 2720 sigset_t old_set, new_set; 2721 int error; 2722 2723 /* XXX: Don't preclude handling different sized sigset_t's. */ 2724 if (sigsetsize != sizeof(sigset_t)) 2725 return -EINVAL; 2726 2727 old_set = current->blocked; 2728 2729 if (nset) { 2730 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 2731 return -EFAULT; 2732 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2733 2734 error = sigprocmask(how, &new_set, NULL); 2735 if (error) 2736 return error; 2737 } 2738 2739 if (oset) { 2740 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 2741 return -EFAULT; 2742 } 2743 2744 return 0; 2745 } 2746 2747 #ifdef CONFIG_COMPAT 2748 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 2749 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 2750 { 2751 sigset_t old_set = current->blocked; 2752 2753 /* XXX: Don't preclude handling different sized sigset_t's. */ 2754 if (sigsetsize != sizeof(sigset_t)) 2755 return -EINVAL; 2756 2757 if (nset) { 2758 sigset_t new_set; 2759 int error; 2760 if (get_compat_sigset(&new_set, nset)) 2761 return -EFAULT; 2762 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2763 2764 error = sigprocmask(how, &new_set, NULL); 2765 if (error) 2766 return error; 2767 } 2768 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 2769 } 2770 #endif 2771 2772 static int do_sigpending(sigset_t *set) 2773 { 2774 spin_lock_irq(¤t->sighand->siglock); 2775 sigorsets(set, ¤t->pending.signal, 2776 ¤t->signal->shared_pending.signal); 2777 spin_unlock_irq(¤t->sighand->siglock); 2778 2779 /* Outside the lock because only this thread touches it. */ 2780 sigandsets(set, ¤t->blocked, set); 2781 return 0; 2782 } 2783 2784 /** 2785 * sys_rt_sigpending - examine a pending signal that has been raised 2786 * while blocked 2787 * @uset: stores pending signals 2788 * @sigsetsize: size of sigset_t type or larger 2789 */ 2790 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 2791 { 2792 sigset_t set; 2793 int err; 2794 2795 if (sigsetsize > sizeof(*uset)) 2796 return -EINVAL; 2797 2798 err = do_sigpending(&set); 2799 if (!err && copy_to_user(uset, &set, sigsetsize)) 2800 err = -EFAULT; 2801 return err; 2802 } 2803 2804 #ifdef CONFIG_COMPAT 2805 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 2806 compat_size_t, sigsetsize) 2807 { 2808 sigset_t set; 2809 int err; 2810 2811 if (sigsetsize > sizeof(*uset)) 2812 return -EINVAL; 2813 2814 err = do_sigpending(&set); 2815 if (!err) 2816 err = put_compat_sigset(uset, &set, sigsetsize); 2817 return err; 2818 } 2819 #endif 2820 2821 enum siginfo_layout siginfo_layout(int sig, int si_code) 2822 { 2823 enum siginfo_layout layout = SIL_KILL; 2824 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 2825 static const struct { 2826 unsigned char limit, layout; 2827 } filter[] = { 2828 [SIGILL] = { NSIGILL, SIL_FAULT }, 2829 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 2830 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 2831 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 2832 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 2833 #if defined(SIGEMT) && defined(NSIGEMT) 2834 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 2835 #endif 2836 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 2837 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 2838 [SIGSYS] = { NSIGSYS, SIL_SYS }, 2839 }; 2840 if ((sig < ARRAY_SIZE(filter)) && (si_code <= filter[sig].limit)) 2841 layout = filter[sig].layout; 2842 else if (si_code <= NSIGPOLL) 2843 layout = SIL_POLL; 2844 } else { 2845 if (si_code == SI_TIMER) 2846 layout = SIL_TIMER; 2847 else if (si_code == SI_SIGIO) 2848 layout = SIL_POLL; 2849 else if (si_code < 0) 2850 layout = SIL_RT; 2851 /* Tests to support buggy kernel ABIs */ 2852 #ifdef TRAP_FIXME 2853 if ((sig == SIGTRAP) && (si_code == TRAP_FIXME)) 2854 layout = SIL_FAULT; 2855 #endif 2856 #ifdef FPE_FIXME 2857 if ((sig == SIGFPE) && (si_code == FPE_FIXME)) 2858 layout = SIL_FAULT; 2859 #endif 2860 } 2861 return layout; 2862 } 2863 2864 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from) 2865 { 2866 int err; 2867 2868 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2869 return -EFAULT; 2870 if (from->si_code < 0) 2871 return __copy_to_user(to, from, sizeof(siginfo_t)) 2872 ? -EFAULT : 0; 2873 /* 2874 * If you change siginfo_t structure, please be sure 2875 * this code is fixed accordingly. 2876 * Please remember to update the signalfd_copyinfo() function 2877 * inside fs/signalfd.c too, in case siginfo_t changes. 2878 * It should never copy any pad contained in the structure 2879 * to avoid security leaks, but must copy the generic 2880 * 3 ints plus the relevant union member. 2881 */ 2882 err = __put_user(from->si_signo, &to->si_signo); 2883 err |= __put_user(from->si_errno, &to->si_errno); 2884 err |= __put_user(from->si_code, &to->si_code); 2885 switch (siginfo_layout(from->si_signo, from->si_code)) { 2886 case SIL_KILL: 2887 err |= __put_user(from->si_pid, &to->si_pid); 2888 err |= __put_user(from->si_uid, &to->si_uid); 2889 break; 2890 case SIL_TIMER: 2891 /* Unreached SI_TIMER is negative */ 2892 break; 2893 case SIL_POLL: 2894 err |= __put_user(from->si_band, &to->si_band); 2895 err |= __put_user(from->si_fd, &to->si_fd); 2896 break; 2897 case SIL_FAULT: 2898 err |= __put_user(from->si_addr, &to->si_addr); 2899 #ifdef __ARCH_SI_TRAPNO 2900 err |= __put_user(from->si_trapno, &to->si_trapno); 2901 #endif 2902 #ifdef __ia64__ 2903 err |= __put_user(from->si_imm, &to->si_imm); 2904 err |= __put_user(from->si_flags, &to->si_flags); 2905 err |= __put_user(from->si_isr, &to->si_isr); 2906 #endif 2907 /* 2908 * Other callers might not initialize the si_lsb field, 2909 * so check explicitly for the right codes here. 2910 */ 2911 #ifdef BUS_MCEERR_AR 2912 if (from->si_signo == SIGBUS && from->si_code == BUS_MCEERR_AR) 2913 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb); 2914 #endif 2915 #ifdef BUS_MCEERR_AO 2916 if (from->si_signo == SIGBUS && from->si_code == BUS_MCEERR_AO) 2917 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb); 2918 #endif 2919 #ifdef SEGV_BNDERR 2920 if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) { 2921 err |= __put_user(from->si_lower, &to->si_lower); 2922 err |= __put_user(from->si_upper, &to->si_upper); 2923 } 2924 #endif 2925 #ifdef SEGV_PKUERR 2926 if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR) 2927 err |= __put_user(from->si_pkey, &to->si_pkey); 2928 #endif 2929 break; 2930 case SIL_CHLD: 2931 err |= __put_user(from->si_pid, &to->si_pid); 2932 err |= __put_user(from->si_uid, &to->si_uid); 2933 err |= __put_user(from->si_status, &to->si_status); 2934 err |= __put_user(from->si_utime, &to->si_utime); 2935 err |= __put_user(from->si_stime, &to->si_stime); 2936 break; 2937 case SIL_RT: 2938 err |= __put_user(from->si_pid, &to->si_pid); 2939 err |= __put_user(from->si_uid, &to->si_uid); 2940 err |= __put_user(from->si_ptr, &to->si_ptr); 2941 break; 2942 case SIL_SYS: 2943 err |= __put_user(from->si_call_addr, &to->si_call_addr); 2944 err |= __put_user(from->si_syscall, &to->si_syscall); 2945 err |= __put_user(from->si_arch, &to->si_arch); 2946 break; 2947 } 2948 return err; 2949 } 2950 2951 #ifdef CONFIG_COMPAT 2952 int copy_siginfo_to_user32(struct compat_siginfo __user *to, 2953 const struct siginfo *from) 2954 #if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION) 2955 { 2956 return __copy_siginfo_to_user32(to, from, in_x32_syscall()); 2957 } 2958 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 2959 const struct siginfo *from, bool x32_ABI) 2960 #endif 2961 { 2962 struct compat_siginfo new; 2963 memset(&new, 0, sizeof(new)); 2964 2965 new.si_signo = from->si_signo; 2966 new.si_errno = from->si_errno; 2967 new.si_code = from->si_code; 2968 switch(siginfo_layout(from->si_signo, from->si_code)) { 2969 case SIL_KILL: 2970 new.si_pid = from->si_pid; 2971 new.si_uid = from->si_uid; 2972 break; 2973 case SIL_TIMER: 2974 new.si_tid = from->si_tid; 2975 new.si_overrun = from->si_overrun; 2976 new.si_int = from->si_int; 2977 break; 2978 case SIL_POLL: 2979 new.si_band = from->si_band; 2980 new.si_fd = from->si_fd; 2981 break; 2982 case SIL_FAULT: 2983 new.si_addr = ptr_to_compat(from->si_addr); 2984 #ifdef __ARCH_SI_TRAPNO 2985 new.si_trapno = from->si_trapno; 2986 #endif 2987 #ifdef BUS_MCEERR_AR 2988 if ((from->si_signo == SIGBUS) && (from->si_code == BUS_MCEERR_AR)) 2989 new.si_addr_lsb = from->si_addr_lsb; 2990 #endif 2991 #ifdef BUS_MCEERR_AO 2992 if ((from->si_signo == SIGBUS) && (from->si_code == BUS_MCEERR_AO)) 2993 new.si_addr_lsb = from->si_addr_lsb; 2994 #endif 2995 #ifdef SEGV_BNDERR 2996 if ((from->si_signo == SIGSEGV) && 2997 (from->si_code == SEGV_BNDERR)) { 2998 new.si_lower = ptr_to_compat(from->si_lower); 2999 new.si_upper = ptr_to_compat(from->si_upper); 3000 } 3001 #endif 3002 #ifdef SEGV_PKUERR 3003 if ((from->si_signo == SIGSEGV) && 3004 (from->si_code == SEGV_PKUERR)) 3005 new.si_pkey = from->si_pkey; 3006 #endif 3007 3008 break; 3009 case SIL_CHLD: 3010 new.si_pid = from->si_pid; 3011 new.si_uid = from->si_uid; 3012 new.si_status = from->si_status; 3013 #ifdef CONFIG_X86_X32_ABI 3014 if (x32_ABI) { 3015 new._sifields._sigchld_x32._utime = from->si_utime; 3016 new._sifields._sigchld_x32._stime = from->si_stime; 3017 } else 3018 #endif 3019 { 3020 new.si_utime = from->si_utime; 3021 new.si_stime = from->si_stime; 3022 } 3023 break; 3024 case SIL_RT: 3025 new.si_pid = from->si_pid; 3026 new.si_uid = from->si_uid; 3027 new.si_int = from->si_int; 3028 break; 3029 case SIL_SYS: 3030 new.si_call_addr = ptr_to_compat(from->si_call_addr); 3031 new.si_syscall = from->si_syscall; 3032 new.si_arch = from->si_arch; 3033 break; 3034 } 3035 3036 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3037 return -EFAULT; 3038 3039 return 0; 3040 } 3041 3042 int copy_siginfo_from_user32(struct siginfo *to, 3043 const struct compat_siginfo __user *ufrom) 3044 { 3045 struct compat_siginfo from; 3046 3047 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3048 return -EFAULT; 3049 3050 clear_siginfo(to); 3051 to->si_signo = from.si_signo; 3052 to->si_errno = from.si_errno; 3053 to->si_code = from.si_code; 3054 switch(siginfo_layout(from.si_signo, from.si_code)) { 3055 case SIL_KILL: 3056 to->si_pid = from.si_pid; 3057 to->si_uid = from.si_uid; 3058 break; 3059 case SIL_TIMER: 3060 to->si_tid = from.si_tid; 3061 to->si_overrun = from.si_overrun; 3062 to->si_int = from.si_int; 3063 break; 3064 case SIL_POLL: 3065 to->si_band = from.si_band; 3066 to->si_fd = from.si_fd; 3067 break; 3068 case SIL_FAULT: 3069 to->si_addr = compat_ptr(from.si_addr); 3070 #ifdef __ARCH_SI_TRAPNO 3071 to->si_trapno = from.si_trapno; 3072 #endif 3073 #ifdef BUS_MCEERR_AR 3074 if ((from.si_signo == SIGBUS) && (from.si_code == BUS_MCEERR_AR)) 3075 to->si_addr_lsb = from.si_addr_lsb; 3076 #endif 3077 #ifdef BUS_MCEER_AO 3078 if ((from.si_signo == SIGBUS) && (from.si_code == BUS_MCEERR_AO)) 3079 to->si_addr_lsb = from.si_addr_lsb; 3080 #endif 3081 #ifdef SEGV_BNDERR 3082 if ((from.si_signo == SIGSEGV) && (from.si_code == SEGV_BNDERR)) { 3083 to->si_lower = compat_ptr(from.si_lower); 3084 to->si_upper = compat_ptr(from.si_upper); 3085 } 3086 #endif 3087 #ifdef SEGV_PKUERR 3088 if ((from.si_signo == SIGSEGV) && (from.si_code == SEGV_PKUERR)) 3089 to->si_pkey = from.si_pkey; 3090 #endif 3091 break; 3092 case SIL_CHLD: 3093 to->si_pid = from.si_pid; 3094 to->si_uid = from.si_uid; 3095 to->si_status = from.si_status; 3096 #ifdef CONFIG_X86_X32_ABI 3097 if (in_x32_syscall()) { 3098 to->si_utime = from._sifields._sigchld_x32._utime; 3099 to->si_stime = from._sifields._sigchld_x32._stime; 3100 } else 3101 #endif 3102 { 3103 to->si_utime = from.si_utime; 3104 to->si_stime = from.si_stime; 3105 } 3106 break; 3107 case SIL_RT: 3108 to->si_pid = from.si_pid; 3109 to->si_uid = from.si_uid; 3110 to->si_int = from.si_int; 3111 break; 3112 case SIL_SYS: 3113 to->si_call_addr = compat_ptr(from.si_call_addr); 3114 to->si_syscall = from.si_syscall; 3115 to->si_arch = from.si_arch; 3116 break; 3117 } 3118 return 0; 3119 } 3120 #endif /* CONFIG_COMPAT */ 3121 3122 /** 3123 * do_sigtimedwait - wait for queued signals specified in @which 3124 * @which: queued signals to wait for 3125 * @info: if non-null, the signal's siginfo is returned here 3126 * @ts: upper bound on process time suspension 3127 */ 3128 static int do_sigtimedwait(const sigset_t *which, siginfo_t *info, 3129 const struct timespec *ts) 3130 { 3131 ktime_t *to = NULL, timeout = KTIME_MAX; 3132 struct task_struct *tsk = current; 3133 sigset_t mask = *which; 3134 int sig, ret = 0; 3135 3136 if (ts) { 3137 if (!timespec_valid(ts)) 3138 return -EINVAL; 3139 timeout = timespec_to_ktime(*ts); 3140 to = &timeout; 3141 } 3142 3143 /* 3144 * Invert the set of allowed signals to get those we want to block. 3145 */ 3146 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3147 signotset(&mask); 3148 3149 spin_lock_irq(&tsk->sighand->siglock); 3150 sig = dequeue_signal(tsk, &mask, info); 3151 if (!sig && timeout) { 3152 /* 3153 * None ready, temporarily unblock those we're interested 3154 * while we are sleeping in so that we'll be awakened when 3155 * they arrive. Unblocking is always fine, we can avoid 3156 * set_current_blocked(). 3157 */ 3158 tsk->real_blocked = tsk->blocked; 3159 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3160 recalc_sigpending(); 3161 spin_unlock_irq(&tsk->sighand->siglock); 3162 3163 __set_current_state(TASK_INTERRUPTIBLE); 3164 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3165 HRTIMER_MODE_REL); 3166 spin_lock_irq(&tsk->sighand->siglock); 3167 __set_task_blocked(tsk, &tsk->real_blocked); 3168 sigemptyset(&tsk->real_blocked); 3169 sig = dequeue_signal(tsk, &mask, info); 3170 } 3171 spin_unlock_irq(&tsk->sighand->siglock); 3172 3173 if (sig) 3174 return sig; 3175 return ret ? -EINTR : -EAGAIN; 3176 } 3177 3178 /** 3179 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3180 * in @uthese 3181 * @uthese: queued signals to wait for 3182 * @uinfo: if non-null, the signal's siginfo is returned here 3183 * @uts: upper bound on process time suspension 3184 * @sigsetsize: size of sigset_t type 3185 */ 3186 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3187 siginfo_t __user *, uinfo, const struct timespec __user *, uts, 3188 size_t, sigsetsize) 3189 { 3190 sigset_t these; 3191 struct timespec ts; 3192 siginfo_t info; 3193 int ret; 3194 3195 /* XXX: Don't preclude handling different sized sigset_t's. */ 3196 if (sigsetsize != sizeof(sigset_t)) 3197 return -EINVAL; 3198 3199 if (copy_from_user(&these, uthese, sizeof(these))) 3200 return -EFAULT; 3201 3202 if (uts) { 3203 if (copy_from_user(&ts, uts, sizeof(ts))) 3204 return -EFAULT; 3205 } 3206 3207 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3208 3209 if (ret > 0 && uinfo) { 3210 if (copy_siginfo_to_user(uinfo, &info)) 3211 ret = -EFAULT; 3212 } 3213 3214 return ret; 3215 } 3216 3217 #ifdef CONFIG_COMPAT 3218 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait, compat_sigset_t __user *, uthese, 3219 struct compat_siginfo __user *, uinfo, 3220 struct compat_timespec __user *, uts, compat_size_t, sigsetsize) 3221 { 3222 sigset_t s; 3223 struct timespec t; 3224 siginfo_t info; 3225 long ret; 3226 3227 if (sigsetsize != sizeof(sigset_t)) 3228 return -EINVAL; 3229 3230 if (get_compat_sigset(&s, uthese)) 3231 return -EFAULT; 3232 3233 if (uts) { 3234 if (compat_get_timespec(&t, uts)) 3235 return -EFAULT; 3236 } 3237 3238 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3239 3240 if (ret > 0 && uinfo) { 3241 if (copy_siginfo_to_user32(uinfo, &info)) 3242 ret = -EFAULT; 3243 } 3244 3245 return ret; 3246 } 3247 #endif 3248 3249 /** 3250 * sys_kill - send a signal to a process 3251 * @pid: the PID of the process 3252 * @sig: signal to be sent 3253 */ 3254 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3255 { 3256 struct siginfo info; 3257 3258 clear_siginfo(&info); 3259 info.si_signo = sig; 3260 info.si_errno = 0; 3261 info.si_code = SI_USER; 3262 info.si_pid = task_tgid_vnr(current); 3263 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3264 3265 return kill_something_info(sig, &info, pid); 3266 } 3267 3268 static int 3269 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) 3270 { 3271 struct task_struct *p; 3272 int error = -ESRCH; 3273 3274 rcu_read_lock(); 3275 p = find_task_by_vpid(pid); 3276 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 3277 error = check_kill_permission(sig, info, p); 3278 /* 3279 * The null signal is a permissions and process existence 3280 * probe. No signal is actually delivered. 3281 */ 3282 if (!error && sig) { 3283 error = do_send_sig_info(sig, info, p, false); 3284 /* 3285 * If lock_task_sighand() failed we pretend the task 3286 * dies after receiving the signal. The window is tiny, 3287 * and the signal is private anyway. 3288 */ 3289 if (unlikely(error == -ESRCH)) 3290 error = 0; 3291 } 3292 } 3293 rcu_read_unlock(); 3294 3295 return error; 3296 } 3297 3298 static int do_tkill(pid_t tgid, pid_t pid, int sig) 3299 { 3300 struct siginfo info; 3301 3302 clear_siginfo(&info); 3303 info.si_signo = sig; 3304 info.si_errno = 0; 3305 info.si_code = SI_TKILL; 3306 info.si_pid = task_tgid_vnr(current); 3307 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3308 3309 return do_send_specific(tgid, pid, sig, &info); 3310 } 3311 3312 /** 3313 * sys_tgkill - send signal to one specific thread 3314 * @tgid: the thread group ID of the thread 3315 * @pid: the PID of the thread 3316 * @sig: signal to be sent 3317 * 3318 * This syscall also checks the @tgid and returns -ESRCH even if the PID 3319 * exists but it's not belonging to the target process anymore. This 3320 * method solves the problem of threads exiting and PIDs getting reused. 3321 */ 3322 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 3323 { 3324 /* This is only valid for single tasks */ 3325 if (pid <= 0 || tgid <= 0) 3326 return -EINVAL; 3327 3328 return do_tkill(tgid, pid, sig); 3329 } 3330 3331 /** 3332 * sys_tkill - send signal to one specific task 3333 * @pid: the PID of the task 3334 * @sig: signal to be sent 3335 * 3336 * Send a signal to only one task, even if it's a CLONE_THREAD task. 3337 */ 3338 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 3339 { 3340 /* This is only valid for single tasks */ 3341 if (pid <= 0) 3342 return -EINVAL; 3343 3344 return do_tkill(0, pid, sig); 3345 } 3346 3347 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info) 3348 { 3349 /* Not even root can pretend to send signals from the kernel. 3350 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3351 */ 3352 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3353 (task_pid_vnr(current) != pid)) 3354 return -EPERM; 3355 3356 info->si_signo = sig; 3357 3358 /* POSIX.1b doesn't mention process groups. */ 3359 return kill_proc_info(sig, info, pid); 3360 } 3361 3362 /** 3363 * sys_rt_sigqueueinfo - send signal information to a signal 3364 * @pid: the PID of the thread 3365 * @sig: signal to be sent 3366 * @uinfo: signal info to be sent 3367 */ 3368 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 3369 siginfo_t __user *, uinfo) 3370 { 3371 siginfo_t info; 3372 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 3373 return -EFAULT; 3374 return do_rt_sigqueueinfo(pid, sig, &info); 3375 } 3376 3377 #ifdef CONFIG_COMPAT 3378 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 3379 compat_pid_t, pid, 3380 int, sig, 3381 struct compat_siginfo __user *, uinfo) 3382 { 3383 siginfo_t info; 3384 int ret = copy_siginfo_from_user32(&info, uinfo); 3385 if (unlikely(ret)) 3386 return ret; 3387 return do_rt_sigqueueinfo(pid, sig, &info); 3388 } 3389 #endif 3390 3391 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info) 3392 { 3393 /* This is only valid for single tasks */ 3394 if (pid <= 0 || tgid <= 0) 3395 return -EINVAL; 3396 3397 /* Not even root can pretend to send signals from the kernel. 3398 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3399 */ 3400 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3401 (task_pid_vnr(current) != pid)) 3402 return -EPERM; 3403 3404 info->si_signo = sig; 3405 3406 return do_send_specific(tgid, pid, sig, info); 3407 } 3408 3409 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 3410 siginfo_t __user *, uinfo) 3411 { 3412 siginfo_t info; 3413 3414 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 3415 return -EFAULT; 3416 3417 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3418 } 3419 3420 #ifdef CONFIG_COMPAT 3421 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 3422 compat_pid_t, tgid, 3423 compat_pid_t, pid, 3424 int, sig, 3425 struct compat_siginfo __user *, uinfo) 3426 { 3427 siginfo_t info; 3428 3429 if (copy_siginfo_from_user32(&info, uinfo)) 3430 return -EFAULT; 3431 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3432 } 3433 #endif 3434 3435 /* 3436 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 3437 */ 3438 void kernel_sigaction(int sig, __sighandler_t action) 3439 { 3440 spin_lock_irq(¤t->sighand->siglock); 3441 current->sighand->action[sig - 1].sa.sa_handler = action; 3442 if (action == SIG_IGN) { 3443 sigset_t mask; 3444 3445 sigemptyset(&mask); 3446 sigaddset(&mask, sig); 3447 3448 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 3449 flush_sigqueue_mask(&mask, ¤t->pending); 3450 recalc_sigpending(); 3451 } 3452 spin_unlock_irq(¤t->sighand->siglock); 3453 } 3454 EXPORT_SYMBOL(kernel_sigaction); 3455 3456 void __weak sigaction_compat_abi(struct k_sigaction *act, 3457 struct k_sigaction *oact) 3458 { 3459 } 3460 3461 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 3462 { 3463 struct task_struct *p = current, *t; 3464 struct k_sigaction *k; 3465 sigset_t mask; 3466 3467 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 3468 return -EINVAL; 3469 3470 k = &p->sighand->action[sig-1]; 3471 3472 spin_lock_irq(&p->sighand->siglock); 3473 if (oact) 3474 *oact = *k; 3475 3476 sigaction_compat_abi(act, oact); 3477 3478 if (act) { 3479 sigdelsetmask(&act->sa.sa_mask, 3480 sigmask(SIGKILL) | sigmask(SIGSTOP)); 3481 *k = *act; 3482 /* 3483 * POSIX 3.3.1.3: 3484 * "Setting a signal action to SIG_IGN for a signal that is 3485 * pending shall cause the pending signal to be discarded, 3486 * whether or not it is blocked." 3487 * 3488 * "Setting a signal action to SIG_DFL for a signal that is 3489 * pending and whose default action is to ignore the signal 3490 * (for example, SIGCHLD), shall cause the pending signal to 3491 * be discarded, whether or not it is blocked" 3492 */ 3493 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 3494 sigemptyset(&mask); 3495 sigaddset(&mask, sig); 3496 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 3497 for_each_thread(p, t) 3498 flush_sigqueue_mask(&mask, &t->pending); 3499 } 3500 } 3501 3502 spin_unlock_irq(&p->sighand->siglock); 3503 return 0; 3504 } 3505 3506 static int 3507 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp) 3508 { 3509 struct task_struct *t = current; 3510 3511 if (oss) { 3512 memset(oss, 0, sizeof(stack_t)); 3513 oss->ss_sp = (void __user *) t->sas_ss_sp; 3514 oss->ss_size = t->sas_ss_size; 3515 oss->ss_flags = sas_ss_flags(sp) | 3516 (current->sas_ss_flags & SS_FLAG_BITS); 3517 } 3518 3519 if (ss) { 3520 void __user *ss_sp = ss->ss_sp; 3521 size_t ss_size = ss->ss_size; 3522 unsigned ss_flags = ss->ss_flags; 3523 int ss_mode; 3524 3525 if (unlikely(on_sig_stack(sp))) 3526 return -EPERM; 3527 3528 ss_mode = ss_flags & ~SS_FLAG_BITS; 3529 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 3530 ss_mode != 0)) 3531 return -EINVAL; 3532 3533 if (ss_mode == SS_DISABLE) { 3534 ss_size = 0; 3535 ss_sp = NULL; 3536 } else { 3537 if (unlikely(ss_size < MINSIGSTKSZ)) 3538 return -ENOMEM; 3539 } 3540 3541 t->sas_ss_sp = (unsigned long) ss_sp; 3542 t->sas_ss_size = ss_size; 3543 t->sas_ss_flags = ss_flags; 3544 } 3545 return 0; 3546 } 3547 3548 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 3549 { 3550 stack_t new, old; 3551 int err; 3552 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 3553 return -EFAULT; 3554 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 3555 current_user_stack_pointer()); 3556 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 3557 err = -EFAULT; 3558 return err; 3559 } 3560 3561 int restore_altstack(const stack_t __user *uss) 3562 { 3563 stack_t new; 3564 if (copy_from_user(&new, uss, sizeof(stack_t))) 3565 return -EFAULT; 3566 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer()); 3567 /* squash all but EFAULT for now */ 3568 return 0; 3569 } 3570 3571 int __save_altstack(stack_t __user *uss, unsigned long sp) 3572 { 3573 struct task_struct *t = current; 3574 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 3575 __put_user(t->sas_ss_flags, &uss->ss_flags) | 3576 __put_user(t->sas_ss_size, &uss->ss_size); 3577 if (err) 3578 return err; 3579 if (t->sas_ss_flags & SS_AUTODISARM) 3580 sas_ss_reset(t); 3581 return 0; 3582 } 3583 3584 #ifdef CONFIG_COMPAT 3585 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 3586 compat_stack_t __user *uoss_ptr) 3587 { 3588 stack_t uss, uoss; 3589 int ret; 3590 3591 if (uss_ptr) { 3592 compat_stack_t uss32; 3593 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 3594 return -EFAULT; 3595 uss.ss_sp = compat_ptr(uss32.ss_sp); 3596 uss.ss_flags = uss32.ss_flags; 3597 uss.ss_size = uss32.ss_size; 3598 } 3599 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 3600 compat_user_stack_pointer()); 3601 if (ret >= 0 && uoss_ptr) { 3602 compat_stack_t old; 3603 memset(&old, 0, sizeof(old)); 3604 old.ss_sp = ptr_to_compat(uoss.ss_sp); 3605 old.ss_flags = uoss.ss_flags; 3606 old.ss_size = uoss.ss_size; 3607 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 3608 ret = -EFAULT; 3609 } 3610 return ret; 3611 } 3612 3613 COMPAT_SYSCALL_DEFINE2(sigaltstack, 3614 const compat_stack_t __user *, uss_ptr, 3615 compat_stack_t __user *, uoss_ptr) 3616 { 3617 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 3618 } 3619 3620 int compat_restore_altstack(const compat_stack_t __user *uss) 3621 { 3622 int err = do_compat_sigaltstack(uss, NULL); 3623 /* squash all but -EFAULT for now */ 3624 return err == -EFAULT ? err : 0; 3625 } 3626 3627 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 3628 { 3629 int err; 3630 struct task_struct *t = current; 3631 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 3632 &uss->ss_sp) | 3633 __put_user(t->sas_ss_flags, &uss->ss_flags) | 3634 __put_user(t->sas_ss_size, &uss->ss_size); 3635 if (err) 3636 return err; 3637 if (t->sas_ss_flags & SS_AUTODISARM) 3638 sas_ss_reset(t); 3639 return 0; 3640 } 3641 #endif 3642 3643 #ifdef __ARCH_WANT_SYS_SIGPENDING 3644 3645 /** 3646 * sys_sigpending - examine pending signals 3647 * @uset: where mask of pending signal is returned 3648 */ 3649 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 3650 { 3651 sigset_t set; 3652 int err; 3653 3654 if (sizeof(old_sigset_t) > sizeof(*uset)) 3655 return -EINVAL; 3656 3657 err = do_sigpending(&set); 3658 if (!err && copy_to_user(uset, &set, sizeof(old_sigset_t))) 3659 err = -EFAULT; 3660 return err; 3661 } 3662 3663 #ifdef CONFIG_COMPAT 3664 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 3665 { 3666 sigset_t set; 3667 int err = do_sigpending(&set); 3668 if (!err) 3669 err = put_user(set.sig[0], set32); 3670 return err; 3671 } 3672 #endif 3673 3674 #endif 3675 3676 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 3677 /** 3678 * sys_sigprocmask - examine and change blocked signals 3679 * @how: whether to add, remove, or set signals 3680 * @nset: signals to add or remove (if non-null) 3681 * @oset: previous value of signal mask if non-null 3682 * 3683 * Some platforms have their own version with special arguments; 3684 * others support only sys_rt_sigprocmask. 3685 */ 3686 3687 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 3688 old_sigset_t __user *, oset) 3689 { 3690 old_sigset_t old_set, new_set; 3691 sigset_t new_blocked; 3692 3693 old_set = current->blocked.sig[0]; 3694 3695 if (nset) { 3696 if (copy_from_user(&new_set, nset, sizeof(*nset))) 3697 return -EFAULT; 3698 3699 new_blocked = current->blocked; 3700 3701 switch (how) { 3702 case SIG_BLOCK: 3703 sigaddsetmask(&new_blocked, new_set); 3704 break; 3705 case SIG_UNBLOCK: 3706 sigdelsetmask(&new_blocked, new_set); 3707 break; 3708 case SIG_SETMASK: 3709 new_blocked.sig[0] = new_set; 3710 break; 3711 default: 3712 return -EINVAL; 3713 } 3714 3715 set_current_blocked(&new_blocked); 3716 } 3717 3718 if (oset) { 3719 if (copy_to_user(oset, &old_set, sizeof(*oset))) 3720 return -EFAULT; 3721 } 3722 3723 return 0; 3724 } 3725 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 3726 3727 #ifndef CONFIG_ODD_RT_SIGACTION 3728 /** 3729 * sys_rt_sigaction - alter an action taken by a process 3730 * @sig: signal to be sent 3731 * @act: new sigaction 3732 * @oact: used to save the previous sigaction 3733 * @sigsetsize: size of sigset_t type 3734 */ 3735 SYSCALL_DEFINE4(rt_sigaction, int, sig, 3736 const struct sigaction __user *, act, 3737 struct sigaction __user *, oact, 3738 size_t, sigsetsize) 3739 { 3740 struct k_sigaction new_sa, old_sa; 3741 int ret = -EINVAL; 3742 3743 /* XXX: Don't preclude handling different sized sigset_t's. */ 3744 if (sigsetsize != sizeof(sigset_t)) 3745 goto out; 3746 3747 if (act) { 3748 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 3749 return -EFAULT; 3750 } 3751 3752 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 3753 3754 if (!ret && oact) { 3755 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 3756 return -EFAULT; 3757 } 3758 out: 3759 return ret; 3760 } 3761 #ifdef CONFIG_COMPAT 3762 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 3763 const struct compat_sigaction __user *, act, 3764 struct compat_sigaction __user *, oact, 3765 compat_size_t, sigsetsize) 3766 { 3767 struct k_sigaction new_ka, old_ka; 3768 #ifdef __ARCH_HAS_SA_RESTORER 3769 compat_uptr_t restorer; 3770 #endif 3771 int ret; 3772 3773 /* XXX: Don't preclude handling different sized sigset_t's. */ 3774 if (sigsetsize != sizeof(compat_sigset_t)) 3775 return -EINVAL; 3776 3777 if (act) { 3778 compat_uptr_t handler; 3779 ret = get_user(handler, &act->sa_handler); 3780 new_ka.sa.sa_handler = compat_ptr(handler); 3781 #ifdef __ARCH_HAS_SA_RESTORER 3782 ret |= get_user(restorer, &act->sa_restorer); 3783 new_ka.sa.sa_restorer = compat_ptr(restorer); 3784 #endif 3785 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 3786 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 3787 if (ret) 3788 return -EFAULT; 3789 } 3790 3791 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3792 if (!ret && oact) { 3793 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 3794 &oact->sa_handler); 3795 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 3796 sizeof(oact->sa_mask)); 3797 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 3798 #ifdef __ARCH_HAS_SA_RESTORER 3799 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 3800 &oact->sa_restorer); 3801 #endif 3802 } 3803 return ret; 3804 } 3805 #endif 3806 #endif /* !CONFIG_ODD_RT_SIGACTION */ 3807 3808 #ifdef CONFIG_OLD_SIGACTION 3809 SYSCALL_DEFINE3(sigaction, int, sig, 3810 const struct old_sigaction __user *, act, 3811 struct old_sigaction __user *, oact) 3812 { 3813 struct k_sigaction new_ka, old_ka; 3814 int ret; 3815 3816 if (act) { 3817 old_sigset_t mask; 3818 if (!access_ok(VERIFY_READ, act, sizeof(*act)) || 3819 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 3820 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 3821 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 3822 __get_user(mask, &act->sa_mask)) 3823 return -EFAULT; 3824 #ifdef __ARCH_HAS_KA_RESTORER 3825 new_ka.ka_restorer = NULL; 3826 #endif 3827 siginitset(&new_ka.sa.sa_mask, mask); 3828 } 3829 3830 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3831 3832 if (!ret && oact) { 3833 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) || 3834 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 3835 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 3836 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 3837 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 3838 return -EFAULT; 3839 } 3840 3841 return ret; 3842 } 3843 #endif 3844 #ifdef CONFIG_COMPAT_OLD_SIGACTION 3845 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 3846 const struct compat_old_sigaction __user *, act, 3847 struct compat_old_sigaction __user *, oact) 3848 { 3849 struct k_sigaction new_ka, old_ka; 3850 int ret; 3851 compat_old_sigset_t mask; 3852 compat_uptr_t handler, restorer; 3853 3854 if (act) { 3855 if (!access_ok(VERIFY_READ, act, sizeof(*act)) || 3856 __get_user(handler, &act->sa_handler) || 3857 __get_user(restorer, &act->sa_restorer) || 3858 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 3859 __get_user(mask, &act->sa_mask)) 3860 return -EFAULT; 3861 3862 #ifdef __ARCH_HAS_KA_RESTORER 3863 new_ka.ka_restorer = NULL; 3864 #endif 3865 new_ka.sa.sa_handler = compat_ptr(handler); 3866 new_ka.sa.sa_restorer = compat_ptr(restorer); 3867 siginitset(&new_ka.sa.sa_mask, mask); 3868 } 3869 3870 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3871 3872 if (!ret && oact) { 3873 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) || 3874 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 3875 &oact->sa_handler) || 3876 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 3877 &oact->sa_restorer) || 3878 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 3879 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 3880 return -EFAULT; 3881 } 3882 return ret; 3883 } 3884 #endif 3885 3886 #ifdef CONFIG_SGETMASK_SYSCALL 3887 3888 /* 3889 * For backwards compatibility. Functionality superseded by sigprocmask. 3890 */ 3891 SYSCALL_DEFINE0(sgetmask) 3892 { 3893 /* SMP safe */ 3894 return current->blocked.sig[0]; 3895 } 3896 3897 SYSCALL_DEFINE1(ssetmask, int, newmask) 3898 { 3899 int old = current->blocked.sig[0]; 3900 sigset_t newset; 3901 3902 siginitset(&newset, newmask); 3903 set_current_blocked(&newset); 3904 3905 return old; 3906 } 3907 #endif /* CONFIG_SGETMASK_SYSCALL */ 3908 3909 #ifdef __ARCH_WANT_SYS_SIGNAL 3910 /* 3911 * For backwards compatibility. Functionality superseded by sigaction. 3912 */ 3913 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 3914 { 3915 struct k_sigaction new_sa, old_sa; 3916 int ret; 3917 3918 new_sa.sa.sa_handler = handler; 3919 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 3920 sigemptyset(&new_sa.sa.sa_mask); 3921 3922 ret = do_sigaction(sig, &new_sa, &old_sa); 3923 3924 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 3925 } 3926 #endif /* __ARCH_WANT_SYS_SIGNAL */ 3927 3928 #ifdef __ARCH_WANT_SYS_PAUSE 3929 3930 SYSCALL_DEFINE0(pause) 3931 { 3932 while (!signal_pending(current)) { 3933 __set_current_state(TASK_INTERRUPTIBLE); 3934 schedule(); 3935 } 3936 return -ERESTARTNOHAND; 3937 } 3938 3939 #endif 3940 3941 static int sigsuspend(sigset_t *set) 3942 { 3943 current->saved_sigmask = current->blocked; 3944 set_current_blocked(set); 3945 3946 while (!signal_pending(current)) { 3947 __set_current_state(TASK_INTERRUPTIBLE); 3948 schedule(); 3949 } 3950 set_restore_sigmask(); 3951 return -ERESTARTNOHAND; 3952 } 3953 3954 /** 3955 * sys_rt_sigsuspend - replace the signal mask for a value with the 3956 * @unewset value until a signal is received 3957 * @unewset: new signal mask value 3958 * @sigsetsize: size of sigset_t type 3959 */ 3960 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 3961 { 3962 sigset_t newset; 3963 3964 /* XXX: Don't preclude handling different sized sigset_t's. */ 3965 if (sigsetsize != sizeof(sigset_t)) 3966 return -EINVAL; 3967 3968 if (copy_from_user(&newset, unewset, sizeof(newset))) 3969 return -EFAULT; 3970 return sigsuspend(&newset); 3971 } 3972 3973 #ifdef CONFIG_COMPAT 3974 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 3975 { 3976 sigset_t newset; 3977 3978 /* XXX: Don't preclude handling different sized sigset_t's. */ 3979 if (sigsetsize != sizeof(sigset_t)) 3980 return -EINVAL; 3981 3982 if (get_compat_sigset(&newset, unewset)) 3983 return -EFAULT; 3984 return sigsuspend(&newset); 3985 } 3986 #endif 3987 3988 #ifdef CONFIG_OLD_SIGSUSPEND 3989 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 3990 { 3991 sigset_t blocked; 3992 siginitset(&blocked, mask); 3993 return sigsuspend(&blocked); 3994 } 3995 #endif 3996 #ifdef CONFIG_OLD_SIGSUSPEND3 3997 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 3998 { 3999 sigset_t blocked; 4000 siginitset(&blocked, mask); 4001 return sigsuspend(&blocked); 4002 } 4003 #endif 4004 4005 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4006 { 4007 return NULL; 4008 } 4009 4010 void __init signals_init(void) 4011 { 4012 /* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */ 4013 BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE 4014 != offsetof(struct siginfo, _sifields._pad)); 4015 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4016 4017 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 4018 } 4019 4020 #ifdef CONFIG_KGDB_KDB 4021 #include <linux/kdb.h> 4022 /* 4023 * kdb_send_sig - Allows kdb to send signals without exposing 4024 * signal internals. This function checks if the required locks are 4025 * available before calling the main signal code, to avoid kdb 4026 * deadlocks. 4027 */ 4028 void kdb_send_sig(struct task_struct *t, int sig) 4029 { 4030 static struct task_struct *kdb_prev_t; 4031 int new_t, ret; 4032 if (!spin_trylock(&t->sighand->siglock)) { 4033 kdb_printf("Can't do kill command now.\n" 4034 "The sigmask lock is held somewhere else in " 4035 "kernel, try again later\n"); 4036 return; 4037 } 4038 new_t = kdb_prev_t != t; 4039 kdb_prev_t = t; 4040 if (t->state != TASK_RUNNING && new_t) { 4041 spin_unlock(&t->sighand->siglock); 4042 kdb_printf("Process is not RUNNING, sending a signal from " 4043 "kdb risks deadlock\n" 4044 "on the run queue locks. " 4045 "The signal has _not_ been sent.\n" 4046 "Reissue the kill command if you want to risk " 4047 "the deadlock.\n"); 4048 return; 4049 } 4050 ret = send_signal(sig, SEND_SIG_PRIV, t, false); 4051 spin_unlock(&t->sighand->siglock); 4052 if (ret) 4053 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4054 sig, t->pid); 4055 else 4056 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4057 } 4058 #endif /* CONFIG_KGDB_KDB */ 4059