xref: /linux/kernel/signal.c (revision d97b46a64674a267bc41c9e16132ee2a98c3347d)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/ratelimit.h>
26 #include <linux/tracehook.h>
27 #include <linux/capability.h>
28 #include <linux/freezer.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/nsproxy.h>
31 #include <linux/user_namespace.h>
32 #include <linux/uprobes.h>
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/signal.h>
35 
36 #include <asm/param.h>
37 #include <asm/uaccess.h>
38 #include <asm/unistd.h>
39 #include <asm/siginfo.h>
40 #include <asm/cacheflush.h>
41 #include "audit.h"	/* audit_signal_info() */
42 
43 /*
44  * SLAB caches for signal bits.
45  */
46 
47 static struct kmem_cache *sigqueue_cachep;
48 
49 int print_fatal_signals __read_mostly;
50 
51 static void __user *sig_handler(struct task_struct *t, int sig)
52 {
53 	return t->sighand->action[sig - 1].sa.sa_handler;
54 }
55 
56 static int sig_handler_ignored(void __user *handler, int sig)
57 {
58 	/* Is it explicitly or implicitly ignored? */
59 	return handler == SIG_IGN ||
60 		(handler == SIG_DFL && sig_kernel_ignore(sig));
61 }
62 
63 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
64 {
65 	void __user *handler;
66 
67 	handler = sig_handler(t, sig);
68 
69 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
70 			handler == SIG_DFL && !force)
71 		return 1;
72 
73 	return sig_handler_ignored(handler, sig);
74 }
75 
76 static int sig_ignored(struct task_struct *t, int sig, bool force)
77 {
78 	/*
79 	 * Blocked signals are never ignored, since the
80 	 * signal handler may change by the time it is
81 	 * unblocked.
82 	 */
83 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
84 		return 0;
85 
86 	if (!sig_task_ignored(t, sig, force))
87 		return 0;
88 
89 	/*
90 	 * Tracers may want to know about even ignored signals.
91 	 */
92 	return !t->ptrace;
93 }
94 
95 /*
96  * Re-calculate pending state from the set of locally pending
97  * signals, globally pending signals, and blocked signals.
98  */
99 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
100 {
101 	unsigned long ready;
102 	long i;
103 
104 	switch (_NSIG_WORDS) {
105 	default:
106 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
107 			ready |= signal->sig[i] &~ blocked->sig[i];
108 		break;
109 
110 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
111 		ready |= signal->sig[2] &~ blocked->sig[2];
112 		ready |= signal->sig[1] &~ blocked->sig[1];
113 		ready |= signal->sig[0] &~ blocked->sig[0];
114 		break;
115 
116 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
117 		ready |= signal->sig[0] &~ blocked->sig[0];
118 		break;
119 
120 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
121 	}
122 	return ready !=	0;
123 }
124 
125 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
126 
127 static int recalc_sigpending_tsk(struct task_struct *t)
128 {
129 	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
130 	    PENDING(&t->pending, &t->blocked) ||
131 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
132 		set_tsk_thread_flag(t, TIF_SIGPENDING);
133 		return 1;
134 	}
135 	/*
136 	 * We must never clear the flag in another thread, or in current
137 	 * when it's possible the current syscall is returning -ERESTART*.
138 	 * So we don't clear it here, and only callers who know they should do.
139 	 */
140 	return 0;
141 }
142 
143 /*
144  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
145  * This is superfluous when called on current, the wakeup is a harmless no-op.
146  */
147 void recalc_sigpending_and_wake(struct task_struct *t)
148 {
149 	if (recalc_sigpending_tsk(t))
150 		signal_wake_up(t, 0);
151 }
152 
153 void recalc_sigpending(void)
154 {
155 	if (!recalc_sigpending_tsk(current) && !freezing(current))
156 		clear_thread_flag(TIF_SIGPENDING);
157 
158 }
159 
160 /* Given the mask, find the first available signal that should be serviced. */
161 
162 #define SYNCHRONOUS_MASK \
163 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
164 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
165 
166 int next_signal(struct sigpending *pending, sigset_t *mask)
167 {
168 	unsigned long i, *s, *m, x;
169 	int sig = 0;
170 
171 	s = pending->signal.sig;
172 	m = mask->sig;
173 
174 	/*
175 	 * Handle the first word specially: it contains the
176 	 * synchronous signals that need to be dequeued first.
177 	 */
178 	x = *s &~ *m;
179 	if (x) {
180 		if (x & SYNCHRONOUS_MASK)
181 			x &= SYNCHRONOUS_MASK;
182 		sig = ffz(~x) + 1;
183 		return sig;
184 	}
185 
186 	switch (_NSIG_WORDS) {
187 	default:
188 		for (i = 1; i < _NSIG_WORDS; ++i) {
189 			x = *++s &~ *++m;
190 			if (!x)
191 				continue;
192 			sig = ffz(~x) + i*_NSIG_BPW + 1;
193 			break;
194 		}
195 		break;
196 
197 	case 2:
198 		x = s[1] &~ m[1];
199 		if (!x)
200 			break;
201 		sig = ffz(~x) + _NSIG_BPW + 1;
202 		break;
203 
204 	case 1:
205 		/* Nothing to do */
206 		break;
207 	}
208 
209 	return sig;
210 }
211 
212 static inline void print_dropped_signal(int sig)
213 {
214 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
215 
216 	if (!print_fatal_signals)
217 		return;
218 
219 	if (!__ratelimit(&ratelimit_state))
220 		return;
221 
222 	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
223 				current->comm, current->pid, sig);
224 }
225 
226 /**
227  * task_set_jobctl_pending - set jobctl pending bits
228  * @task: target task
229  * @mask: pending bits to set
230  *
231  * Clear @mask from @task->jobctl.  @mask must be subset of
232  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
233  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
234  * cleared.  If @task is already being killed or exiting, this function
235  * becomes noop.
236  *
237  * CONTEXT:
238  * Must be called with @task->sighand->siglock held.
239  *
240  * RETURNS:
241  * %true if @mask is set, %false if made noop because @task was dying.
242  */
243 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
244 {
245 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
246 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
247 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
248 
249 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
250 		return false;
251 
252 	if (mask & JOBCTL_STOP_SIGMASK)
253 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
254 
255 	task->jobctl |= mask;
256 	return true;
257 }
258 
259 /**
260  * task_clear_jobctl_trapping - clear jobctl trapping bit
261  * @task: target task
262  *
263  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
264  * Clear it and wake up the ptracer.  Note that we don't need any further
265  * locking.  @task->siglock guarantees that @task->parent points to the
266  * ptracer.
267  *
268  * CONTEXT:
269  * Must be called with @task->sighand->siglock held.
270  */
271 void task_clear_jobctl_trapping(struct task_struct *task)
272 {
273 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
274 		task->jobctl &= ~JOBCTL_TRAPPING;
275 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
276 	}
277 }
278 
279 /**
280  * task_clear_jobctl_pending - clear jobctl pending bits
281  * @task: target task
282  * @mask: pending bits to clear
283  *
284  * Clear @mask from @task->jobctl.  @mask must be subset of
285  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
286  * STOP bits are cleared together.
287  *
288  * If clearing of @mask leaves no stop or trap pending, this function calls
289  * task_clear_jobctl_trapping().
290  *
291  * CONTEXT:
292  * Must be called with @task->sighand->siglock held.
293  */
294 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
295 {
296 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
297 
298 	if (mask & JOBCTL_STOP_PENDING)
299 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
300 
301 	task->jobctl &= ~mask;
302 
303 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
304 		task_clear_jobctl_trapping(task);
305 }
306 
307 /**
308  * task_participate_group_stop - participate in a group stop
309  * @task: task participating in a group stop
310  *
311  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
312  * Group stop states are cleared and the group stop count is consumed if
313  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
314  * stop, the appropriate %SIGNAL_* flags are set.
315  *
316  * CONTEXT:
317  * Must be called with @task->sighand->siglock held.
318  *
319  * RETURNS:
320  * %true if group stop completion should be notified to the parent, %false
321  * otherwise.
322  */
323 static bool task_participate_group_stop(struct task_struct *task)
324 {
325 	struct signal_struct *sig = task->signal;
326 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
327 
328 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
329 
330 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
331 
332 	if (!consume)
333 		return false;
334 
335 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
336 		sig->group_stop_count--;
337 
338 	/*
339 	 * Tell the caller to notify completion iff we are entering into a
340 	 * fresh group stop.  Read comment in do_signal_stop() for details.
341 	 */
342 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
343 		sig->flags = SIGNAL_STOP_STOPPED;
344 		return true;
345 	}
346 	return false;
347 }
348 
349 /*
350  * allocate a new signal queue record
351  * - this may be called without locks if and only if t == current, otherwise an
352  *   appropriate lock must be held to stop the target task from exiting
353  */
354 static struct sigqueue *
355 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
356 {
357 	struct sigqueue *q = NULL;
358 	struct user_struct *user;
359 
360 	/*
361 	 * Protect access to @t credentials. This can go away when all
362 	 * callers hold rcu read lock.
363 	 */
364 	rcu_read_lock();
365 	user = get_uid(__task_cred(t)->user);
366 	atomic_inc(&user->sigpending);
367 	rcu_read_unlock();
368 
369 	if (override_rlimit ||
370 	    atomic_read(&user->sigpending) <=
371 			task_rlimit(t, RLIMIT_SIGPENDING)) {
372 		q = kmem_cache_alloc(sigqueue_cachep, flags);
373 	} else {
374 		print_dropped_signal(sig);
375 	}
376 
377 	if (unlikely(q == NULL)) {
378 		atomic_dec(&user->sigpending);
379 		free_uid(user);
380 	} else {
381 		INIT_LIST_HEAD(&q->list);
382 		q->flags = 0;
383 		q->user = user;
384 	}
385 
386 	return q;
387 }
388 
389 static void __sigqueue_free(struct sigqueue *q)
390 {
391 	if (q->flags & SIGQUEUE_PREALLOC)
392 		return;
393 	atomic_dec(&q->user->sigpending);
394 	free_uid(q->user);
395 	kmem_cache_free(sigqueue_cachep, q);
396 }
397 
398 void flush_sigqueue(struct sigpending *queue)
399 {
400 	struct sigqueue *q;
401 
402 	sigemptyset(&queue->signal);
403 	while (!list_empty(&queue->list)) {
404 		q = list_entry(queue->list.next, struct sigqueue , list);
405 		list_del_init(&q->list);
406 		__sigqueue_free(q);
407 	}
408 }
409 
410 /*
411  * Flush all pending signals for a task.
412  */
413 void __flush_signals(struct task_struct *t)
414 {
415 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
416 	flush_sigqueue(&t->pending);
417 	flush_sigqueue(&t->signal->shared_pending);
418 }
419 
420 void flush_signals(struct task_struct *t)
421 {
422 	unsigned long flags;
423 
424 	spin_lock_irqsave(&t->sighand->siglock, flags);
425 	__flush_signals(t);
426 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
427 }
428 
429 static void __flush_itimer_signals(struct sigpending *pending)
430 {
431 	sigset_t signal, retain;
432 	struct sigqueue *q, *n;
433 
434 	signal = pending->signal;
435 	sigemptyset(&retain);
436 
437 	list_for_each_entry_safe(q, n, &pending->list, list) {
438 		int sig = q->info.si_signo;
439 
440 		if (likely(q->info.si_code != SI_TIMER)) {
441 			sigaddset(&retain, sig);
442 		} else {
443 			sigdelset(&signal, sig);
444 			list_del_init(&q->list);
445 			__sigqueue_free(q);
446 		}
447 	}
448 
449 	sigorsets(&pending->signal, &signal, &retain);
450 }
451 
452 void flush_itimer_signals(void)
453 {
454 	struct task_struct *tsk = current;
455 	unsigned long flags;
456 
457 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
458 	__flush_itimer_signals(&tsk->pending);
459 	__flush_itimer_signals(&tsk->signal->shared_pending);
460 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
461 }
462 
463 void ignore_signals(struct task_struct *t)
464 {
465 	int i;
466 
467 	for (i = 0; i < _NSIG; ++i)
468 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
469 
470 	flush_signals(t);
471 }
472 
473 /*
474  * Flush all handlers for a task.
475  */
476 
477 void
478 flush_signal_handlers(struct task_struct *t, int force_default)
479 {
480 	int i;
481 	struct k_sigaction *ka = &t->sighand->action[0];
482 	for (i = _NSIG ; i != 0 ; i--) {
483 		if (force_default || ka->sa.sa_handler != SIG_IGN)
484 			ka->sa.sa_handler = SIG_DFL;
485 		ka->sa.sa_flags = 0;
486 		sigemptyset(&ka->sa.sa_mask);
487 		ka++;
488 	}
489 }
490 
491 int unhandled_signal(struct task_struct *tsk, int sig)
492 {
493 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
494 	if (is_global_init(tsk))
495 		return 1;
496 	if (handler != SIG_IGN && handler != SIG_DFL)
497 		return 0;
498 	/* if ptraced, let the tracer determine */
499 	return !tsk->ptrace;
500 }
501 
502 /*
503  * Notify the system that a driver wants to block all signals for this
504  * process, and wants to be notified if any signals at all were to be
505  * sent/acted upon.  If the notifier routine returns non-zero, then the
506  * signal will be acted upon after all.  If the notifier routine returns 0,
507  * then then signal will be blocked.  Only one block per process is
508  * allowed.  priv is a pointer to private data that the notifier routine
509  * can use to determine if the signal should be blocked or not.
510  */
511 void
512 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
513 {
514 	unsigned long flags;
515 
516 	spin_lock_irqsave(&current->sighand->siglock, flags);
517 	current->notifier_mask = mask;
518 	current->notifier_data = priv;
519 	current->notifier = notifier;
520 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
521 }
522 
523 /* Notify the system that blocking has ended. */
524 
525 void
526 unblock_all_signals(void)
527 {
528 	unsigned long flags;
529 
530 	spin_lock_irqsave(&current->sighand->siglock, flags);
531 	current->notifier = NULL;
532 	current->notifier_data = NULL;
533 	recalc_sigpending();
534 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
535 }
536 
537 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
538 {
539 	struct sigqueue *q, *first = NULL;
540 
541 	/*
542 	 * Collect the siginfo appropriate to this signal.  Check if
543 	 * there is another siginfo for the same signal.
544 	*/
545 	list_for_each_entry(q, &list->list, list) {
546 		if (q->info.si_signo == sig) {
547 			if (first)
548 				goto still_pending;
549 			first = q;
550 		}
551 	}
552 
553 	sigdelset(&list->signal, sig);
554 
555 	if (first) {
556 still_pending:
557 		list_del_init(&first->list);
558 		copy_siginfo(info, &first->info);
559 		__sigqueue_free(first);
560 	} else {
561 		/*
562 		 * Ok, it wasn't in the queue.  This must be
563 		 * a fast-pathed signal or we must have been
564 		 * out of queue space.  So zero out the info.
565 		 */
566 		info->si_signo = sig;
567 		info->si_errno = 0;
568 		info->si_code = SI_USER;
569 		info->si_pid = 0;
570 		info->si_uid = 0;
571 	}
572 }
573 
574 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
575 			siginfo_t *info)
576 {
577 	int sig = next_signal(pending, mask);
578 
579 	if (sig) {
580 		if (current->notifier) {
581 			if (sigismember(current->notifier_mask, sig)) {
582 				if (!(current->notifier)(current->notifier_data)) {
583 					clear_thread_flag(TIF_SIGPENDING);
584 					return 0;
585 				}
586 			}
587 		}
588 
589 		collect_signal(sig, pending, info);
590 	}
591 
592 	return sig;
593 }
594 
595 /*
596  * Dequeue a signal and return the element to the caller, which is
597  * expected to free it.
598  *
599  * All callers have to hold the siglock.
600  */
601 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
602 {
603 	int signr;
604 
605 	/* We only dequeue private signals from ourselves, we don't let
606 	 * signalfd steal them
607 	 */
608 	signr = __dequeue_signal(&tsk->pending, mask, info);
609 	if (!signr) {
610 		signr = __dequeue_signal(&tsk->signal->shared_pending,
611 					 mask, info);
612 		/*
613 		 * itimer signal ?
614 		 *
615 		 * itimers are process shared and we restart periodic
616 		 * itimers in the signal delivery path to prevent DoS
617 		 * attacks in the high resolution timer case. This is
618 		 * compliant with the old way of self-restarting
619 		 * itimers, as the SIGALRM is a legacy signal and only
620 		 * queued once. Changing the restart behaviour to
621 		 * restart the timer in the signal dequeue path is
622 		 * reducing the timer noise on heavy loaded !highres
623 		 * systems too.
624 		 */
625 		if (unlikely(signr == SIGALRM)) {
626 			struct hrtimer *tmr = &tsk->signal->real_timer;
627 
628 			if (!hrtimer_is_queued(tmr) &&
629 			    tsk->signal->it_real_incr.tv64 != 0) {
630 				hrtimer_forward(tmr, tmr->base->get_time(),
631 						tsk->signal->it_real_incr);
632 				hrtimer_restart(tmr);
633 			}
634 		}
635 	}
636 
637 	recalc_sigpending();
638 	if (!signr)
639 		return 0;
640 
641 	if (unlikely(sig_kernel_stop(signr))) {
642 		/*
643 		 * Set a marker that we have dequeued a stop signal.  Our
644 		 * caller might release the siglock and then the pending
645 		 * stop signal it is about to process is no longer in the
646 		 * pending bitmasks, but must still be cleared by a SIGCONT
647 		 * (and overruled by a SIGKILL).  So those cases clear this
648 		 * shared flag after we've set it.  Note that this flag may
649 		 * remain set after the signal we return is ignored or
650 		 * handled.  That doesn't matter because its only purpose
651 		 * is to alert stop-signal processing code when another
652 		 * processor has come along and cleared the flag.
653 		 */
654 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
655 	}
656 	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
657 		/*
658 		 * Release the siglock to ensure proper locking order
659 		 * of timer locks outside of siglocks.  Note, we leave
660 		 * irqs disabled here, since the posix-timers code is
661 		 * about to disable them again anyway.
662 		 */
663 		spin_unlock(&tsk->sighand->siglock);
664 		do_schedule_next_timer(info);
665 		spin_lock(&tsk->sighand->siglock);
666 	}
667 	return signr;
668 }
669 
670 /*
671  * Tell a process that it has a new active signal..
672  *
673  * NOTE! we rely on the previous spin_lock to
674  * lock interrupts for us! We can only be called with
675  * "siglock" held, and the local interrupt must
676  * have been disabled when that got acquired!
677  *
678  * No need to set need_resched since signal event passing
679  * goes through ->blocked
680  */
681 void signal_wake_up(struct task_struct *t, int resume)
682 {
683 	unsigned int mask;
684 
685 	set_tsk_thread_flag(t, TIF_SIGPENDING);
686 
687 	/*
688 	 * For SIGKILL, we want to wake it up in the stopped/traced/killable
689 	 * case. We don't check t->state here because there is a race with it
690 	 * executing another processor and just now entering stopped state.
691 	 * By using wake_up_state, we ensure the process will wake up and
692 	 * handle its death signal.
693 	 */
694 	mask = TASK_INTERRUPTIBLE;
695 	if (resume)
696 		mask |= TASK_WAKEKILL;
697 	if (!wake_up_state(t, mask))
698 		kick_process(t);
699 }
700 
701 /*
702  * Remove signals in mask from the pending set and queue.
703  * Returns 1 if any signals were found.
704  *
705  * All callers must be holding the siglock.
706  *
707  * This version takes a sigset mask and looks at all signals,
708  * not just those in the first mask word.
709  */
710 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
711 {
712 	struct sigqueue *q, *n;
713 	sigset_t m;
714 
715 	sigandsets(&m, mask, &s->signal);
716 	if (sigisemptyset(&m))
717 		return 0;
718 
719 	sigandnsets(&s->signal, &s->signal, mask);
720 	list_for_each_entry_safe(q, n, &s->list, list) {
721 		if (sigismember(mask, q->info.si_signo)) {
722 			list_del_init(&q->list);
723 			__sigqueue_free(q);
724 		}
725 	}
726 	return 1;
727 }
728 /*
729  * Remove signals in mask from the pending set and queue.
730  * Returns 1 if any signals were found.
731  *
732  * All callers must be holding the siglock.
733  */
734 static int rm_from_queue(unsigned long mask, struct sigpending *s)
735 {
736 	struct sigqueue *q, *n;
737 
738 	if (!sigtestsetmask(&s->signal, mask))
739 		return 0;
740 
741 	sigdelsetmask(&s->signal, mask);
742 	list_for_each_entry_safe(q, n, &s->list, list) {
743 		if (q->info.si_signo < SIGRTMIN &&
744 		    (mask & sigmask(q->info.si_signo))) {
745 			list_del_init(&q->list);
746 			__sigqueue_free(q);
747 		}
748 	}
749 	return 1;
750 }
751 
752 static inline int is_si_special(const struct siginfo *info)
753 {
754 	return info <= SEND_SIG_FORCED;
755 }
756 
757 static inline bool si_fromuser(const struct siginfo *info)
758 {
759 	return info == SEND_SIG_NOINFO ||
760 		(!is_si_special(info) && SI_FROMUSER(info));
761 }
762 
763 /*
764  * called with RCU read lock from check_kill_permission()
765  */
766 static int kill_ok_by_cred(struct task_struct *t)
767 {
768 	const struct cred *cred = current_cred();
769 	const struct cred *tcred = __task_cred(t);
770 
771 	if (uid_eq(cred->euid, tcred->suid) ||
772 	    uid_eq(cred->euid, tcred->uid)  ||
773 	    uid_eq(cred->uid,  tcred->suid) ||
774 	    uid_eq(cred->uid,  tcred->uid))
775 		return 1;
776 
777 	if (ns_capable(tcred->user_ns, CAP_KILL))
778 		return 1;
779 
780 	return 0;
781 }
782 
783 /*
784  * Bad permissions for sending the signal
785  * - the caller must hold the RCU read lock
786  */
787 static int check_kill_permission(int sig, struct siginfo *info,
788 				 struct task_struct *t)
789 {
790 	struct pid *sid;
791 	int error;
792 
793 	if (!valid_signal(sig))
794 		return -EINVAL;
795 
796 	if (!si_fromuser(info))
797 		return 0;
798 
799 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
800 	if (error)
801 		return error;
802 
803 	if (!same_thread_group(current, t) &&
804 	    !kill_ok_by_cred(t)) {
805 		switch (sig) {
806 		case SIGCONT:
807 			sid = task_session(t);
808 			/*
809 			 * We don't return the error if sid == NULL. The
810 			 * task was unhashed, the caller must notice this.
811 			 */
812 			if (!sid || sid == task_session(current))
813 				break;
814 		default:
815 			return -EPERM;
816 		}
817 	}
818 
819 	return security_task_kill(t, info, sig, 0);
820 }
821 
822 /**
823  * ptrace_trap_notify - schedule trap to notify ptracer
824  * @t: tracee wanting to notify tracer
825  *
826  * This function schedules sticky ptrace trap which is cleared on the next
827  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
828  * ptracer.
829  *
830  * If @t is running, STOP trap will be taken.  If trapped for STOP and
831  * ptracer is listening for events, tracee is woken up so that it can
832  * re-trap for the new event.  If trapped otherwise, STOP trap will be
833  * eventually taken without returning to userland after the existing traps
834  * are finished by PTRACE_CONT.
835  *
836  * CONTEXT:
837  * Must be called with @task->sighand->siglock held.
838  */
839 static void ptrace_trap_notify(struct task_struct *t)
840 {
841 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
842 	assert_spin_locked(&t->sighand->siglock);
843 
844 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
845 	signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
846 }
847 
848 /*
849  * Handle magic process-wide effects of stop/continue signals. Unlike
850  * the signal actions, these happen immediately at signal-generation
851  * time regardless of blocking, ignoring, or handling.  This does the
852  * actual continuing for SIGCONT, but not the actual stopping for stop
853  * signals. The process stop is done as a signal action for SIG_DFL.
854  *
855  * Returns true if the signal should be actually delivered, otherwise
856  * it should be dropped.
857  */
858 static int prepare_signal(int sig, struct task_struct *p, bool force)
859 {
860 	struct signal_struct *signal = p->signal;
861 	struct task_struct *t;
862 
863 	if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
864 		/*
865 		 * The process is in the middle of dying, nothing to do.
866 		 */
867 	} else if (sig_kernel_stop(sig)) {
868 		/*
869 		 * This is a stop signal.  Remove SIGCONT from all queues.
870 		 */
871 		rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
872 		t = p;
873 		do {
874 			rm_from_queue(sigmask(SIGCONT), &t->pending);
875 		} while_each_thread(p, t);
876 	} else if (sig == SIGCONT) {
877 		unsigned int why;
878 		/*
879 		 * Remove all stop signals from all queues, wake all threads.
880 		 */
881 		rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
882 		t = p;
883 		do {
884 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
885 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
886 			if (likely(!(t->ptrace & PT_SEIZED)))
887 				wake_up_state(t, __TASK_STOPPED);
888 			else
889 				ptrace_trap_notify(t);
890 		} while_each_thread(p, t);
891 
892 		/*
893 		 * Notify the parent with CLD_CONTINUED if we were stopped.
894 		 *
895 		 * If we were in the middle of a group stop, we pretend it
896 		 * was already finished, and then continued. Since SIGCHLD
897 		 * doesn't queue we report only CLD_STOPPED, as if the next
898 		 * CLD_CONTINUED was dropped.
899 		 */
900 		why = 0;
901 		if (signal->flags & SIGNAL_STOP_STOPPED)
902 			why |= SIGNAL_CLD_CONTINUED;
903 		else if (signal->group_stop_count)
904 			why |= SIGNAL_CLD_STOPPED;
905 
906 		if (why) {
907 			/*
908 			 * The first thread which returns from do_signal_stop()
909 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
910 			 * notify its parent. See get_signal_to_deliver().
911 			 */
912 			signal->flags = why | SIGNAL_STOP_CONTINUED;
913 			signal->group_stop_count = 0;
914 			signal->group_exit_code = 0;
915 		}
916 	}
917 
918 	return !sig_ignored(p, sig, force);
919 }
920 
921 /*
922  * Test if P wants to take SIG.  After we've checked all threads with this,
923  * it's equivalent to finding no threads not blocking SIG.  Any threads not
924  * blocking SIG were ruled out because they are not running and already
925  * have pending signals.  Such threads will dequeue from the shared queue
926  * as soon as they're available, so putting the signal on the shared queue
927  * will be equivalent to sending it to one such thread.
928  */
929 static inline int wants_signal(int sig, struct task_struct *p)
930 {
931 	if (sigismember(&p->blocked, sig))
932 		return 0;
933 	if (p->flags & PF_EXITING)
934 		return 0;
935 	if (sig == SIGKILL)
936 		return 1;
937 	if (task_is_stopped_or_traced(p))
938 		return 0;
939 	return task_curr(p) || !signal_pending(p);
940 }
941 
942 static void complete_signal(int sig, struct task_struct *p, int group)
943 {
944 	struct signal_struct *signal = p->signal;
945 	struct task_struct *t;
946 
947 	/*
948 	 * Now find a thread we can wake up to take the signal off the queue.
949 	 *
950 	 * If the main thread wants the signal, it gets first crack.
951 	 * Probably the least surprising to the average bear.
952 	 */
953 	if (wants_signal(sig, p))
954 		t = p;
955 	else if (!group || thread_group_empty(p))
956 		/*
957 		 * There is just one thread and it does not need to be woken.
958 		 * It will dequeue unblocked signals before it runs again.
959 		 */
960 		return;
961 	else {
962 		/*
963 		 * Otherwise try to find a suitable thread.
964 		 */
965 		t = signal->curr_target;
966 		while (!wants_signal(sig, t)) {
967 			t = next_thread(t);
968 			if (t == signal->curr_target)
969 				/*
970 				 * No thread needs to be woken.
971 				 * Any eligible threads will see
972 				 * the signal in the queue soon.
973 				 */
974 				return;
975 		}
976 		signal->curr_target = t;
977 	}
978 
979 	/*
980 	 * Found a killable thread.  If the signal will be fatal,
981 	 * then start taking the whole group down immediately.
982 	 */
983 	if (sig_fatal(p, sig) &&
984 	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
985 	    !sigismember(&t->real_blocked, sig) &&
986 	    (sig == SIGKILL || !t->ptrace)) {
987 		/*
988 		 * This signal will be fatal to the whole group.
989 		 */
990 		if (!sig_kernel_coredump(sig)) {
991 			/*
992 			 * Start a group exit and wake everybody up.
993 			 * This way we don't have other threads
994 			 * running and doing things after a slower
995 			 * thread has the fatal signal pending.
996 			 */
997 			signal->flags = SIGNAL_GROUP_EXIT;
998 			signal->group_exit_code = sig;
999 			signal->group_stop_count = 0;
1000 			t = p;
1001 			do {
1002 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1003 				sigaddset(&t->pending.signal, SIGKILL);
1004 				signal_wake_up(t, 1);
1005 			} while_each_thread(p, t);
1006 			return;
1007 		}
1008 	}
1009 
1010 	/*
1011 	 * The signal is already in the shared-pending queue.
1012 	 * Tell the chosen thread to wake up and dequeue it.
1013 	 */
1014 	signal_wake_up(t, sig == SIGKILL);
1015 	return;
1016 }
1017 
1018 static inline int legacy_queue(struct sigpending *signals, int sig)
1019 {
1020 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1021 }
1022 
1023 #ifdef CONFIG_USER_NS
1024 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1025 {
1026 	if (current_user_ns() == task_cred_xxx(t, user_ns))
1027 		return;
1028 
1029 	if (SI_FROMKERNEL(info))
1030 		return;
1031 
1032 	rcu_read_lock();
1033 	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1034 					make_kuid(current_user_ns(), info->si_uid));
1035 	rcu_read_unlock();
1036 }
1037 #else
1038 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1039 {
1040 	return;
1041 }
1042 #endif
1043 
1044 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1045 			int group, int from_ancestor_ns)
1046 {
1047 	struct sigpending *pending;
1048 	struct sigqueue *q;
1049 	int override_rlimit;
1050 	int ret = 0, result;
1051 
1052 	assert_spin_locked(&t->sighand->siglock);
1053 
1054 	result = TRACE_SIGNAL_IGNORED;
1055 	if (!prepare_signal(sig, t,
1056 			from_ancestor_ns || (info == SEND_SIG_FORCED)))
1057 		goto ret;
1058 
1059 	pending = group ? &t->signal->shared_pending : &t->pending;
1060 	/*
1061 	 * Short-circuit ignored signals and support queuing
1062 	 * exactly one non-rt signal, so that we can get more
1063 	 * detailed information about the cause of the signal.
1064 	 */
1065 	result = TRACE_SIGNAL_ALREADY_PENDING;
1066 	if (legacy_queue(pending, sig))
1067 		goto ret;
1068 
1069 	result = TRACE_SIGNAL_DELIVERED;
1070 	/*
1071 	 * fast-pathed signals for kernel-internal things like SIGSTOP
1072 	 * or SIGKILL.
1073 	 */
1074 	if (info == SEND_SIG_FORCED)
1075 		goto out_set;
1076 
1077 	/*
1078 	 * Real-time signals must be queued if sent by sigqueue, or
1079 	 * some other real-time mechanism.  It is implementation
1080 	 * defined whether kill() does so.  We attempt to do so, on
1081 	 * the principle of least surprise, but since kill is not
1082 	 * allowed to fail with EAGAIN when low on memory we just
1083 	 * make sure at least one signal gets delivered and don't
1084 	 * pass on the info struct.
1085 	 */
1086 	if (sig < SIGRTMIN)
1087 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1088 	else
1089 		override_rlimit = 0;
1090 
1091 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1092 		override_rlimit);
1093 	if (q) {
1094 		list_add_tail(&q->list, &pending->list);
1095 		switch ((unsigned long) info) {
1096 		case (unsigned long) SEND_SIG_NOINFO:
1097 			q->info.si_signo = sig;
1098 			q->info.si_errno = 0;
1099 			q->info.si_code = SI_USER;
1100 			q->info.si_pid = task_tgid_nr_ns(current,
1101 							task_active_pid_ns(t));
1102 			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1103 			break;
1104 		case (unsigned long) SEND_SIG_PRIV:
1105 			q->info.si_signo = sig;
1106 			q->info.si_errno = 0;
1107 			q->info.si_code = SI_KERNEL;
1108 			q->info.si_pid = 0;
1109 			q->info.si_uid = 0;
1110 			break;
1111 		default:
1112 			copy_siginfo(&q->info, info);
1113 			if (from_ancestor_ns)
1114 				q->info.si_pid = 0;
1115 			break;
1116 		}
1117 
1118 		userns_fixup_signal_uid(&q->info, t);
1119 
1120 	} else if (!is_si_special(info)) {
1121 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1122 			/*
1123 			 * Queue overflow, abort.  We may abort if the
1124 			 * signal was rt and sent by user using something
1125 			 * other than kill().
1126 			 */
1127 			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1128 			ret = -EAGAIN;
1129 			goto ret;
1130 		} else {
1131 			/*
1132 			 * This is a silent loss of information.  We still
1133 			 * send the signal, but the *info bits are lost.
1134 			 */
1135 			result = TRACE_SIGNAL_LOSE_INFO;
1136 		}
1137 	}
1138 
1139 out_set:
1140 	signalfd_notify(t, sig);
1141 	sigaddset(&pending->signal, sig);
1142 	complete_signal(sig, t, group);
1143 ret:
1144 	trace_signal_generate(sig, info, t, group, result);
1145 	return ret;
1146 }
1147 
1148 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1149 			int group)
1150 {
1151 	int from_ancestor_ns = 0;
1152 
1153 #ifdef CONFIG_PID_NS
1154 	from_ancestor_ns = si_fromuser(info) &&
1155 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1156 #endif
1157 
1158 	return __send_signal(sig, info, t, group, from_ancestor_ns);
1159 }
1160 
1161 static void print_fatal_signal(struct pt_regs *regs, int signr)
1162 {
1163 	printk("%s/%d: potentially unexpected fatal signal %d.\n",
1164 		current->comm, task_pid_nr(current), signr);
1165 
1166 #if defined(__i386__) && !defined(__arch_um__)
1167 	printk("code at %08lx: ", regs->ip);
1168 	{
1169 		int i;
1170 		for (i = 0; i < 16; i++) {
1171 			unsigned char insn;
1172 
1173 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1174 				break;
1175 			printk("%02x ", insn);
1176 		}
1177 	}
1178 #endif
1179 	printk("\n");
1180 	preempt_disable();
1181 	show_regs(regs);
1182 	preempt_enable();
1183 }
1184 
1185 static int __init setup_print_fatal_signals(char *str)
1186 {
1187 	get_option (&str, &print_fatal_signals);
1188 
1189 	return 1;
1190 }
1191 
1192 __setup("print-fatal-signals=", setup_print_fatal_signals);
1193 
1194 int
1195 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1196 {
1197 	return send_signal(sig, info, p, 1);
1198 }
1199 
1200 static int
1201 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1202 {
1203 	return send_signal(sig, info, t, 0);
1204 }
1205 
1206 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1207 			bool group)
1208 {
1209 	unsigned long flags;
1210 	int ret = -ESRCH;
1211 
1212 	if (lock_task_sighand(p, &flags)) {
1213 		ret = send_signal(sig, info, p, group);
1214 		unlock_task_sighand(p, &flags);
1215 	}
1216 
1217 	return ret;
1218 }
1219 
1220 /*
1221  * Force a signal that the process can't ignore: if necessary
1222  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1223  *
1224  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1225  * since we do not want to have a signal handler that was blocked
1226  * be invoked when user space had explicitly blocked it.
1227  *
1228  * We don't want to have recursive SIGSEGV's etc, for example,
1229  * that is why we also clear SIGNAL_UNKILLABLE.
1230  */
1231 int
1232 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1233 {
1234 	unsigned long int flags;
1235 	int ret, blocked, ignored;
1236 	struct k_sigaction *action;
1237 
1238 	spin_lock_irqsave(&t->sighand->siglock, flags);
1239 	action = &t->sighand->action[sig-1];
1240 	ignored = action->sa.sa_handler == SIG_IGN;
1241 	blocked = sigismember(&t->blocked, sig);
1242 	if (blocked || ignored) {
1243 		action->sa.sa_handler = SIG_DFL;
1244 		if (blocked) {
1245 			sigdelset(&t->blocked, sig);
1246 			recalc_sigpending_and_wake(t);
1247 		}
1248 	}
1249 	if (action->sa.sa_handler == SIG_DFL)
1250 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1251 	ret = specific_send_sig_info(sig, info, t);
1252 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1253 
1254 	return ret;
1255 }
1256 
1257 /*
1258  * Nuke all other threads in the group.
1259  */
1260 int zap_other_threads(struct task_struct *p)
1261 {
1262 	struct task_struct *t = p;
1263 	int count = 0;
1264 
1265 	p->signal->group_stop_count = 0;
1266 
1267 	while_each_thread(p, t) {
1268 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1269 		count++;
1270 
1271 		/* Don't bother with already dead threads */
1272 		if (t->exit_state)
1273 			continue;
1274 		sigaddset(&t->pending.signal, SIGKILL);
1275 		signal_wake_up(t, 1);
1276 	}
1277 
1278 	return count;
1279 }
1280 
1281 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1282 					   unsigned long *flags)
1283 {
1284 	struct sighand_struct *sighand;
1285 
1286 	for (;;) {
1287 		local_irq_save(*flags);
1288 		rcu_read_lock();
1289 		sighand = rcu_dereference(tsk->sighand);
1290 		if (unlikely(sighand == NULL)) {
1291 			rcu_read_unlock();
1292 			local_irq_restore(*flags);
1293 			break;
1294 		}
1295 
1296 		spin_lock(&sighand->siglock);
1297 		if (likely(sighand == tsk->sighand)) {
1298 			rcu_read_unlock();
1299 			break;
1300 		}
1301 		spin_unlock(&sighand->siglock);
1302 		rcu_read_unlock();
1303 		local_irq_restore(*flags);
1304 	}
1305 
1306 	return sighand;
1307 }
1308 
1309 /*
1310  * send signal info to all the members of a group
1311  */
1312 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1313 {
1314 	int ret;
1315 
1316 	rcu_read_lock();
1317 	ret = check_kill_permission(sig, info, p);
1318 	rcu_read_unlock();
1319 
1320 	if (!ret && sig)
1321 		ret = do_send_sig_info(sig, info, p, true);
1322 
1323 	return ret;
1324 }
1325 
1326 /*
1327  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1328  * control characters do (^C, ^Z etc)
1329  * - the caller must hold at least a readlock on tasklist_lock
1330  */
1331 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1332 {
1333 	struct task_struct *p = NULL;
1334 	int retval, success;
1335 
1336 	success = 0;
1337 	retval = -ESRCH;
1338 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1339 		int err = group_send_sig_info(sig, info, p);
1340 		success |= !err;
1341 		retval = err;
1342 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1343 	return success ? 0 : retval;
1344 }
1345 
1346 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1347 {
1348 	int error = -ESRCH;
1349 	struct task_struct *p;
1350 
1351 	rcu_read_lock();
1352 retry:
1353 	p = pid_task(pid, PIDTYPE_PID);
1354 	if (p) {
1355 		error = group_send_sig_info(sig, info, p);
1356 		if (unlikely(error == -ESRCH))
1357 			/*
1358 			 * The task was unhashed in between, try again.
1359 			 * If it is dead, pid_task() will return NULL,
1360 			 * if we race with de_thread() it will find the
1361 			 * new leader.
1362 			 */
1363 			goto retry;
1364 	}
1365 	rcu_read_unlock();
1366 
1367 	return error;
1368 }
1369 
1370 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1371 {
1372 	int error;
1373 	rcu_read_lock();
1374 	error = kill_pid_info(sig, info, find_vpid(pid));
1375 	rcu_read_unlock();
1376 	return error;
1377 }
1378 
1379 static int kill_as_cred_perm(const struct cred *cred,
1380 			     struct task_struct *target)
1381 {
1382 	const struct cred *pcred = __task_cred(target);
1383 	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1384 	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1385 		return 0;
1386 	return 1;
1387 }
1388 
1389 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1390 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1391 			 const struct cred *cred, u32 secid)
1392 {
1393 	int ret = -EINVAL;
1394 	struct task_struct *p;
1395 	unsigned long flags;
1396 
1397 	if (!valid_signal(sig))
1398 		return ret;
1399 
1400 	rcu_read_lock();
1401 	p = pid_task(pid, PIDTYPE_PID);
1402 	if (!p) {
1403 		ret = -ESRCH;
1404 		goto out_unlock;
1405 	}
1406 	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1407 		ret = -EPERM;
1408 		goto out_unlock;
1409 	}
1410 	ret = security_task_kill(p, info, sig, secid);
1411 	if (ret)
1412 		goto out_unlock;
1413 
1414 	if (sig) {
1415 		if (lock_task_sighand(p, &flags)) {
1416 			ret = __send_signal(sig, info, p, 1, 0);
1417 			unlock_task_sighand(p, &flags);
1418 		} else
1419 			ret = -ESRCH;
1420 	}
1421 out_unlock:
1422 	rcu_read_unlock();
1423 	return ret;
1424 }
1425 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1426 
1427 /*
1428  * kill_something_info() interprets pid in interesting ways just like kill(2).
1429  *
1430  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1431  * is probably wrong.  Should make it like BSD or SYSV.
1432  */
1433 
1434 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1435 {
1436 	int ret;
1437 
1438 	if (pid > 0) {
1439 		rcu_read_lock();
1440 		ret = kill_pid_info(sig, info, find_vpid(pid));
1441 		rcu_read_unlock();
1442 		return ret;
1443 	}
1444 
1445 	read_lock(&tasklist_lock);
1446 	if (pid != -1) {
1447 		ret = __kill_pgrp_info(sig, info,
1448 				pid ? find_vpid(-pid) : task_pgrp(current));
1449 	} else {
1450 		int retval = 0, count = 0;
1451 		struct task_struct * p;
1452 
1453 		for_each_process(p) {
1454 			if (task_pid_vnr(p) > 1 &&
1455 					!same_thread_group(p, current)) {
1456 				int err = group_send_sig_info(sig, info, p);
1457 				++count;
1458 				if (err != -EPERM)
1459 					retval = err;
1460 			}
1461 		}
1462 		ret = count ? retval : -ESRCH;
1463 	}
1464 	read_unlock(&tasklist_lock);
1465 
1466 	return ret;
1467 }
1468 
1469 /*
1470  * These are for backward compatibility with the rest of the kernel source.
1471  */
1472 
1473 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1474 {
1475 	/*
1476 	 * Make sure legacy kernel users don't send in bad values
1477 	 * (normal paths check this in check_kill_permission).
1478 	 */
1479 	if (!valid_signal(sig))
1480 		return -EINVAL;
1481 
1482 	return do_send_sig_info(sig, info, p, false);
1483 }
1484 
1485 #define __si_special(priv) \
1486 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1487 
1488 int
1489 send_sig(int sig, struct task_struct *p, int priv)
1490 {
1491 	return send_sig_info(sig, __si_special(priv), p);
1492 }
1493 
1494 void
1495 force_sig(int sig, struct task_struct *p)
1496 {
1497 	force_sig_info(sig, SEND_SIG_PRIV, p);
1498 }
1499 
1500 /*
1501  * When things go south during signal handling, we
1502  * will force a SIGSEGV. And if the signal that caused
1503  * the problem was already a SIGSEGV, we'll want to
1504  * make sure we don't even try to deliver the signal..
1505  */
1506 int
1507 force_sigsegv(int sig, struct task_struct *p)
1508 {
1509 	if (sig == SIGSEGV) {
1510 		unsigned long flags;
1511 		spin_lock_irqsave(&p->sighand->siglock, flags);
1512 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1513 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1514 	}
1515 	force_sig(SIGSEGV, p);
1516 	return 0;
1517 }
1518 
1519 int kill_pgrp(struct pid *pid, int sig, int priv)
1520 {
1521 	int ret;
1522 
1523 	read_lock(&tasklist_lock);
1524 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1525 	read_unlock(&tasklist_lock);
1526 
1527 	return ret;
1528 }
1529 EXPORT_SYMBOL(kill_pgrp);
1530 
1531 int kill_pid(struct pid *pid, int sig, int priv)
1532 {
1533 	return kill_pid_info(sig, __si_special(priv), pid);
1534 }
1535 EXPORT_SYMBOL(kill_pid);
1536 
1537 /*
1538  * These functions support sending signals using preallocated sigqueue
1539  * structures.  This is needed "because realtime applications cannot
1540  * afford to lose notifications of asynchronous events, like timer
1541  * expirations or I/O completions".  In the case of POSIX Timers
1542  * we allocate the sigqueue structure from the timer_create.  If this
1543  * allocation fails we are able to report the failure to the application
1544  * with an EAGAIN error.
1545  */
1546 struct sigqueue *sigqueue_alloc(void)
1547 {
1548 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1549 
1550 	if (q)
1551 		q->flags |= SIGQUEUE_PREALLOC;
1552 
1553 	return q;
1554 }
1555 
1556 void sigqueue_free(struct sigqueue *q)
1557 {
1558 	unsigned long flags;
1559 	spinlock_t *lock = &current->sighand->siglock;
1560 
1561 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1562 	/*
1563 	 * We must hold ->siglock while testing q->list
1564 	 * to serialize with collect_signal() or with
1565 	 * __exit_signal()->flush_sigqueue().
1566 	 */
1567 	spin_lock_irqsave(lock, flags);
1568 	q->flags &= ~SIGQUEUE_PREALLOC;
1569 	/*
1570 	 * If it is queued it will be freed when dequeued,
1571 	 * like the "regular" sigqueue.
1572 	 */
1573 	if (!list_empty(&q->list))
1574 		q = NULL;
1575 	spin_unlock_irqrestore(lock, flags);
1576 
1577 	if (q)
1578 		__sigqueue_free(q);
1579 }
1580 
1581 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1582 {
1583 	int sig = q->info.si_signo;
1584 	struct sigpending *pending;
1585 	unsigned long flags;
1586 	int ret, result;
1587 
1588 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1589 
1590 	ret = -1;
1591 	if (!likely(lock_task_sighand(t, &flags)))
1592 		goto ret;
1593 
1594 	ret = 1; /* the signal is ignored */
1595 	result = TRACE_SIGNAL_IGNORED;
1596 	if (!prepare_signal(sig, t, false))
1597 		goto out;
1598 
1599 	ret = 0;
1600 	if (unlikely(!list_empty(&q->list))) {
1601 		/*
1602 		 * If an SI_TIMER entry is already queue just increment
1603 		 * the overrun count.
1604 		 */
1605 		BUG_ON(q->info.si_code != SI_TIMER);
1606 		q->info.si_overrun++;
1607 		result = TRACE_SIGNAL_ALREADY_PENDING;
1608 		goto out;
1609 	}
1610 	q->info.si_overrun = 0;
1611 
1612 	signalfd_notify(t, sig);
1613 	pending = group ? &t->signal->shared_pending : &t->pending;
1614 	list_add_tail(&q->list, &pending->list);
1615 	sigaddset(&pending->signal, sig);
1616 	complete_signal(sig, t, group);
1617 	result = TRACE_SIGNAL_DELIVERED;
1618 out:
1619 	trace_signal_generate(sig, &q->info, t, group, result);
1620 	unlock_task_sighand(t, &flags);
1621 ret:
1622 	return ret;
1623 }
1624 
1625 /*
1626  * Let a parent know about the death of a child.
1627  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1628  *
1629  * Returns true if our parent ignored us and so we've switched to
1630  * self-reaping.
1631  */
1632 bool do_notify_parent(struct task_struct *tsk, int sig)
1633 {
1634 	struct siginfo info;
1635 	unsigned long flags;
1636 	struct sighand_struct *psig;
1637 	bool autoreap = false;
1638 
1639 	BUG_ON(sig == -1);
1640 
1641  	/* do_notify_parent_cldstop should have been called instead.  */
1642  	BUG_ON(task_is_stopped_or_traced(tsk));
1643 
1644 	BUG_ON(!tsk->ptrace &&
1645 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1646 
1647 	if (sig != SIGCHLD) {
1648 		/*
1649 		 * This is only possible if parent == real_parent.
1650 		 * Check if it has changed security domain.
1651 		 */
1652 		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1653 			sig = SIGCHLD;
1654 	}
1655 
1656 	info.si_signo = sig;
1657 	info.si_errno = 0;
1658 	/*
1659 	 * We are under tasklist_lock here so our parent is tied to
1660 	 * us and cannot change.
1661 	 *
1662 	 * task_active_pid_ns will always return the same pid namespace
1663 	 * until a task passes through release_task.
1664 	 *
1665 	 * write_lock() currently calls preempt_disable() which is the
1666 	 * same as rcu_read_lock(), but according to Oleg, this is not
1667 	 * correct to rely on this
1668 	 */
1669 	rcu_read_lock();
1670 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1671 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1672 				       task_uid(tsk));
1673 	rcu_read_unlock();
1674 
1675 	info.si_utime = cputime_to_clock_t(tsk->utime + tsk->signal->utime);
1676 	info.si_stime = cputime_to_clock_t(tsk->stime + tsk->signal->stime);
1677 
1678 	info.si_status = tsk->exit_code & 0x7f;
1679 	if (tsk->exit_code & 0x80)
1680 		info.si_code = CLD_DUMPED;
1681 	else if (tsk->exit_code & 0x7f)
1682 		info.si_code = CLD_KILLED;
1683 	else {
1684 		info.si_code = CLD_EXITED;
1685 		info.si_status = tsk->exit_code >> 8;
1686 	}
1687 
1688 	psig = tsk->parent->sighand;
1689 	spin_lock_irqsave(&psig->siglock, flags);
1690 	if (!tsk->ptrace && sig == SIGCHLD &&
1691 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1692 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1693 		/*
1694 		 * We are exiting and our parent doesn't care.  POSIX.1
1695 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1696 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1697 		 * automatically and not left for our parent's wait4 call.
1698 		 * Rather than having the parent do it as a magic kind of
1699 		 * signal handler, we just set this to tell do_exit that we
1700 		 * can be cleaned up without becoming a zombie.  Note that
1701 		 * we still call __wake_up_parent in this case, because a
1702 		 * blocked sys_wait4 might now return -ECHILD.
1703 		 *
1704 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1705 		 * is implementation-defined: we do (if you don't want
1706 		 * it, just use SIG_IGN instead).
1707 		 */
1708 		autoreap = true;
1709 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1710 			sig = 0;
1711 	}
1712 	if (valid_signal(sig) && sig)
1713 		__group_send_sig_info(sig, &info, tsk->parent);
1714 	__wake_up_parent(tsk, tsk->parent);
1715 	spin_unlock_irqrestore(&psig->siglock, flags);
1716 
1717 	return autoreap;
1718 }
1719 
1720 /**
1721  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1722  * @tsk: task reporting the state change
1723  * @for_ptracer: the notification is for ptracer
1724  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1725  *
1726  * Notify @tsk's parent that the stopped/continued state has changed.  If
1727  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1728  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1729  *
1730  * CONTEXT:
1731  * Must be called with tasklist_lock at least read locked.
1732  */
1733 static void do_notify_parent_cldstop(struct task_struct *tsk,
1734 				     bool for_ptracer, int why)
1735 {
1736 	struct siginfo info;
1737 	unsigned long flags;
1738 	struct task_struct *parent;
1739 	struct sighand_struct *sighand;
1740 
1741 	if (for_ptracer) {
1742 		parent = tsk->parent;
1743 	} else {
1744 		tsk = tsk->group_leader;
1745 		parent = tsk->real_parent;
1746 	}
1747 
1748 	info.si_signo = SIGCHLD;
1749 	info.si_errno = 0;
1750 	/*
1751 	 * see comment in do_notify_parent() about the following 4 lines
1752 	 */
1753 	rcu_read_lock();
1754 	info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1755 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1756 	rcu_read_unlock();
1757 
1758 	info.si_utime = cputime_to_clock_t(tsk->utime);
1759 	info.si_stime = cputime_to_clock_t(tsk->stime);
1760 
1761  	info.si_code = why;
1762  	switch (why) {
1763  	case CLD_CONTINUED:
1764  		info.si_status = SIGCONT;
1765  		break;
1766  	case CLD_STOPPED:
1767  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1768  		break;
1769  	case CLD_TRAPPED:
1770  		info.si_status = tsk->exit_code & 0x7f;
1771  		break;
1772  	default:
1773  		BUG();
1774  	}
1775 
1776 	sighand = parent->sighand;
1777 	spin_lock_irqsave(&sighand->siglock, flags);
1778 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1779 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1780 		__group_send_sig_info(SIGCHLD, &info, parent);
1781 	/*
1782 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1783 	 */
1784 	__wake_up_parent(tsk, parent);
1785 	spin_unlock_irqrestore(&sighand->siglock, flags);
1786 }
1787 
1788 static inline int may_ptrace_stop(void)
1789 {
1790 	if (!likely(current->ptrace))
1791 		return 0;
1792 	/*
1793 	 * Are we in the middle of do_coredump?
1794 	 * If so and our tracer is also part of the coredump stopping
1795 	 * is a deadlock situation, and pointless because our tracer
1796 	 * is dead so don't allow us to stop.
1797 	 * If SIGKILL was already sent before the caller unlocked
1798 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1799 	 * is safe to enter schedule().
1800 	 */
1801 	if (unlikely(current->mm->core_state) &&
1802 	    unlikely(current->mm == current->parent->mm))
1803 		return 0;
1804 
1805 	return 1;
1806 }
1807 
1808 /*
1809  * Return non-zero if there is a SIGKILL that should be waking us up.
1810  * Called with the siglock held.
1811  */
1812 static int sigkill_pending(struct task_struct *tsk)
1813 {
1814 	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1815 		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1816 }
1817 
1818 /*
1819  * This must be called with current->sighand->siglock held.
1820  *
1821  * This should be the path for all ptrace stops.
1822  * We always set current->last_siginfo while stopped here.
1823  * That makes it a way to test a stopped process for
1824  * being ptrace-stopped vs being job-control-stopped.
1825  *
1826  * If we actually decide not to stop at all because the tracer
1827  * is gone, we keep current->exit_code unless clear_code.
1828  */
1829 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1830 	__releases(&current->sighand->siglock)
1831 	__acquires(&current->sighand->siglock)
1832 {
1833 	bool gstop_done = false;
1834 
1835 	if (arch_ptrace_stop_needed(exit_code, info)) {
1836 		/*
1837 		 * The arch code has something special to do before a
1838 		 * ptrace stop.  This is allowed to block, e.g. for faults
1839 		 * on user stack pages.  We can't keep the siglock while
1840 		 * calling arch_ptrace_stop, so we must release it now.
1841 		 * To preserve proper semantics, we must do this before
1842 		 * any signal bookkeeping like checking group_stop_count.
1843 		 * Meanwhile, a SIGKILL could come in before we retake the
1844 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1845 		 * So after regaining the lock, we must check for SIGKILL.
1846 		 */
1847 		spin_unlock_irq(&current->sighand->siglock);
1848 		arch_ptrace_stop(exit_code, info);
1849 		spin_lock_irq(&current->sighand->siglock);
1850 		if (sigkill_pending(current))
1851 			return;
1852 	}
1853 
1854 	/*
1855 	 * We're committing to trapping.  TRACED should be visible before
1856 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1857 	 * Also, transition to TRACED and updates to ->jobctl should be
1858 	 * atomic with respect to siglock and should be done after the arch
1859 	 * hook as siglock is released and regrabbed across it.
1860 	 */
1861 	set_current_state(TASK_TRACED);
1862 
1863 	current->last_siginfo = info;
1864 	current->exit_code = exit_code;
1865 
1866 	/*
1867 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1868 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1869 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1870 	 * could be clear now.  We act as if SIGCONT is received after
1871 	 * TASK_TRACED is entered - ignore it.
1872 	 */
1873 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1874 		gstop_done = task_participate_group_stop(current);
1875 
1876 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1877 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1878 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1879 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1880 
1881 	/* entering a trap, clear TRAPPING */
1882 	task_clear_jobctl_trapping(current);
1883 
1884 	spin_unlock_irq(&current->sighand->siglock);
1885 	read_lock(&tasklist_lock);
1886 	if (may_ptrace_stop()) {
1887 		/*
1888 		 * Notify parents of the stop.
1889 		 *
1890 		 * While ptraced, there are two parents - the ptracer and
1891 		 * the real_parent of the group_leader.  The ptracer should
1892 		 * know about every stop while the real parent is only
1893 		 * interested in the completion of group stop.  The states
1894 		 * for the two don't interact with each other.  Notify
1895 		 * separately unless they're gonna be duplicates.
1896 		 */
1897 		do_notify_parent_cldstop(current, true, why);
1898 		if (gstop_done && ptrace_reparented(current))
1899 			do_notify_parent_cldstop(current, false, why);
1900 
1901 		/*
1902 		 * Don't want to allow preemption here, because
1903 		 * sys_ptrace() needs this task to be inactive.
1904 		 *
1905 		 * XXX: implement read_unlock_no_resched().
1906 		 */
1907 		preempt_disable();
1908 		read_unlock(&tasklist_lock);
1909 		preempt_enable_no_resched();
1910 		schedule();
1911 	} else {
1912 		/*
1913 		 * By the time we got the lock, our tracer went away.
1914 		 * Don't drop the lock yet, another tracer may come.
1915 		 *
1916 		 * If @gstop_done, the ptracer went away between group stop
1917 		 * completion and here.  During detach, it would have set
1918 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1919 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1920 		 * the real parent of the group stop completion is enough.
1921 		 */
1922 		if (gstop_done)
1923 			do_notify_parent_cldstop(current, false, why);
1924 
1925 		__set_current_state(TASK_RUNNING);
1926 		if (clear_code)
1927 			current->exit_code = 0;
1928 		read_unlock(&tasklist_lock);
1929 	}
1930 
1931 	/*
1932 	 * While in TASK_TRACED, we were considered "frozen enough".
1933 	 * Now that we woke up, it's crucial if we're supposed to be
1934 	 * frozen that we freeze now before running anything substantial.
1935 	 */
1936 	try_to_freeze();
1937 
1938 	/*
1939 	 * We are back.  Now reacquire the siglock before touching
1940 	 * last_siginfo, so that we are sure to have synchronized with
1941 	 * any signal-sending on another CPU that wants to examine it.
1942 	 */
1943 	spin_lock_irq(&current->sighand->siglock);
1944 	current->last_siginfo = NULL;
1945 
1946 	/* LISTENING can be set only during STOP traps, clear it */
1947 	current->jobctl &= ~JOBCTL_LISTENING;
1948 
1949 	/*
1950 	 * Queued signals ignored us while we were stopped for tracing.
1951 	 * So check for any that we should take before resuming user mode.
1952 	 * This sets TIF_SIGPENDING, but never clears it.
1953 	 */
1954 	recalc_sigpending_tsk(current);
1955 }
1956 
1957 static void ptrace_do_notify(int signr, int exit_code, int why)
1958 {
1959 	siginfo_t info;
1960 
1961 	memset(&info, 0, sizeof info);
1962 	info.si_signo = signr;
1963 	info.si_code = exit_code;
1964 	info.si_pid = task_pid_vnr(current);
1965 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1966 
1967 	/* Let the debugger run.  */
1968 	ptrace_stop(exit_code, why, 1, &info);
1969 }
1970 
1971 void ptrace_notify(int exit_code)
1972 {
1973 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1974 
1975 	spin_lock_irq(&current->sighand->siglock);
1976 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1977 	spin_unlock_irq(&current->sighand->siglock);
1978 }
1979 
1980 /**
1981  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1982  * @signr: signr causing group stop if initiating
1983  *
1984  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1985  * and participate in it.  If already set, participate in the existing
1986  * group stop.  If participated in a group stop (and thus slept), %true is
1987  * returned with siglock released.
1988  *
1989  * If ptraced, this function doesn't handle stop itself.  Instead,
1990  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1991  * untouched.  The caller must ensure that INTERRUPT trap handling takes
1992  * places afterwards.
1993  *
1994  * CONTEXT:
1995  * Must be called with @current->sighand->siglock held, which is released
1996  * on %true return.
1997  *
1998  * RETURNS:
1999  * %false if group stop is already cancelled or ptrace trap is scheduled.
2000  * %true if participated in group stop.
2001  */
2002 static bool do_signal_stop(int signr)
2003 	__releases(&current->sighand->siglock)
2004 {
2005 	struct signal_struct *sig = current->signal;
2006 
2007 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2008 		unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2009 		struct task_struct *t;
2010 
2011 		/* signr will be recorded in task->jobctl for retries */
2012 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2013 
2014 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2015 		    unlikely(signal_group_exit(sig)))
2016 			return false;
2017 		/*
2018 		 * There is no group stop already in progress.  We must
2019 		 * initiate one now.
2020 		 *
2021 		 * While ptraced, a task may be resumed while group stop is
2022 		 * still in effect and then receive a stop signal and
2023 		 * initiate another group stop.  This deviates from the
2024 		 * usual behavior as two consecutive stop signals can't
2025 		 * cause two group stops when !ptraced.  That is why we
2026 		 * also check !task_is_stopped(t) below.
2027 		 *
2028 		 * The condition can be distinguished by testing whether
2029 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2030 		 * group_exit_code in such case.
2031 		 *
2032 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2033 		 * an intervening stop signal is required to cause two
2034 		 * continued events regardless of ptrace.
2035 		 */
2036 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2037 			sig->group_exit_code = signr;
2038 
2039 		sig->group_stop_count = 0;
2040 
2041 		if (task_set_jobctl_pending(current, signr | gstop))
2042 			sig->group_stop_count++;
2043 
2044 		for (t = next_thread(current); t != current;
2045 		     t = next_thread(t)) {
2046 			/*
2047 			 * Setting state to TASK_STOPPED for a group
2048 			 * stop is always done with the siglock held,
2049 			 * so this check has no races.
2050 			 */
2051 			if (!task_is_stopped(t) &&
2052 			    task_set_jobctl_pending(t, signr | gstop)) {
2053 				sig->group_stop_count++;
2054 				if (likely(!(t->ptrace & PT_SEIZED)))
2055 					signal_wake_up(t, 0);
2056 				else
2057 					ptrace_trap_notify(t);
2058 			}
2059 		}
2060 	}
2061 
2062 	if (likely(!current->ptrace)) {
2063 		int notify = 0;
2064 
2065 		/*
2066 		 * If there are no other threads in the group, or if there
2067 		 * is a group stop in progress and we are the last to stop,
2068 		 * report to the parent.
2069 		 */
2070 		if (task_participate_group_stop(current))
2071 			notify = CLD_STOPPED;
2072 
2073 		__set_current_state(TASK_STOPPED);
2074 		spin_unlock_irq(&current->sighand->siglock);
2075 
2076 		/*
2077 		 * Notify the parent of the group stop completion.  Because
2078 		 * we're not holding either the siglock or tasklist_lock
2079 		 * here, ptracer may attach inbetween; however, this is for
2080 		 * group stop and should always be delivered to the real
2081 		 * parent of the group leader.  The new ptracer will get
2082 		 * its notification when this task transitions into
2083 		 * TASK_TRACED.
2084 		 */
2085 		if (notify) {
2086 			read_lock(&tasklist_lock);
2087 			do_notify_parent_cldstop(current, false, notify);
2088 			read_unlock(&tasklist_lock);
2089 		}
2090 
2091 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2092 		schedule();
2093 		return true;
2094 	} else {
2095 		/*
2096 		 * While ptraced, group stop is handled by STOP trap.
2097 		 * Schedule it and let the caller deal with it.
2098 		 */
2099 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2100 		return false;
2101 	}
2102 }
2103 
2104 /**
2105  * do_jobctl_trap - take care of ptrace jobctl traps
2106  *
2107  * When PT_SEIZED, it's used for both group stop and explicit
2108  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2109  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2110  * the stop signal; otherwise, %SIGTRAP.
2111  *
2112  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2113  * number as exit_code and no siginfo.
2114  *
2115  * CONTEXT:
2116  * Must be called with @current->sighand->siglock held, which may be
2117  * released and re-acquired before returning with intervening sleep.
2118  */
2119 static void do_jobctl_trap(void)
2120 {
2121 	struct signal_struct *signal = current->signal;
2122 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2123 
2124 	if (current->ptrace & PT_SEIZED) {
2125 		if (!signal->group_stop_count &&
2126 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2127 			signr = SIGTRAP;
2128 		WARN_ON_ONCE(!signr);
2129 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2130 				 CLD_STOPPED);
2131 	} else {
2132 		WARN_ON_ONCE(!signr);
2133 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2134 		current->exit_code = 0;
2135 	}
2136 }
2137 
2138 static int ptrace_signal(int signr, siginfo_t *info,
2139 			 struct pt_regs *regs, void *cookie)
2140 {
2141 	ptrace_signal_deliver(regs, cookie);
2142 	/*
2143 	 * We do not check sig_kernel_stop(signr) but set this marker
2144 	 * unconditionally because we do not know whether debugger will
2145 	 * change signr. This flag has no meaning unless we are going
2146 	 * to stop after return from ptrace_stop(). In this case it will
2147 	 * be checked in do_signal_stop(), we should only stop if it was
2148 	 * not cleared by SIGCONT while we were sleeping. See also the
2149 	 * comment in dequeue_signal().
2150 	 */
2151 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2152 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2153 
2154 	/* We're back.  Did the debugger cancel the sig?  */
2155 	signr = current->exit_code;
2156 	if (signr == 0)
2157 		return signr;
2158 
2159 	current->exit_code = 0;
2160 
2161 	/*
2162 	 * Update the siginfo structure if the signal has
2163 	 * changed.  If the debugger wanted something
2164 	 * specific in the siginfo structure then it should
2165 	 * have updated *info via PTRACE_SETSIGINFO.
2166 	 */
2167 	if (signr != info->si_signo) {
2168 		info->si_signo = signr;
2169 		info->si_errno = 0;
2170 		info->si_code = SI_USER;
2171 		rcu_read_lock();
2172 		info->si_pid = task_pid_vnr(current->parent);
2173 		info->si_uid = from_kuid_munged(current_user_ns(),
2174 						task_uid(current->parent));
2175 		rcu_read_unlock();
2176 	}
2177 
2178 	/* If the (new) signal is now blocked, requeue it.  */
2179 	if (sigismember(&current->blocked, signr)) {
2180 		specific_send_sig_info(signr, info, current);
2181 		signr = 0;
2182 	}
2183 
2184 	return signr;
2185 }
2186 
2187 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2188 			  struct pt_regs *regs, void *cookie)
2189 {
2190 	struct sighand_struct *sighand = current->sighand;
2191 	struct signal_struct *signal = current->signal;
2192 	int signr;
2193 
2194 	if (unlikely(uprobe_deny_signal()))
2195 		return 0;
2196 
2197 relock:
2198 	/*
2199 	 * We'll jump back here after any time we were stopped in TASK_STOPPED.
2200 	 * While in TASK_STOPPED, we were considered "frozen enough".
2201 	 * Now that we woke up, it's crucial if we're supposed to be
2202 	 * frozen that we freeze now before running anything substantial.
2203 	 */
2204 	try_to_freeze();
2205 
2206 	spin_lock_irq(&sighand->siglock);
2207 	/*
2208 	 * Every stopped thread goes here after wakeup. Check to see if
2209 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2210 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2211 	 */
2212 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2213 		int why;
2214 
2215 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2216 			why = CLD_CONTINUED;
2217 		else
2218 			why = CLD_STOPPED;
2219 
2220 		signal->flags &= ~SIGNAL_CLD_MASK;
2221 
2222 		spin_unlock_irq(&sighand->siglock);
2223 
2224 		/*
2225 		 * Notify the parent that we're continuing.  This event is
2226 		 * always per-process and doesn't make whole lot of sense
2227 		 * for ptracers, who shouldn't consume the state via
2228 		 * wait(2) either, but, for backward compatibility, notify
2229 		 * the ptracer of the group leader too unless it's gonna be
2230 		 * a duplicate.
2231 		 */
2232 		read_lock(&tasklist_lock);
2233 		do_notify_parent_cldstop(current, false, why);
2234 
2235 		if (ptrace_reparented(current->group_leader))
2236 			do_notify_parent_cldstop(current->group_leader,
2237 						true, why);
2238 		read_unlock(&tasklist_lock);
2239 
2240 		goto relock;
2241 	}
2242 
2243 	for (;;) {
2244 		struct k_sigaction *ka;
2245 
2246 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2247 		    do_signal_stop(0))
2248 			goto relock;
2249 
2250 		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2251 			do_jobctl_trap();
2252 			spin_unlock_irq(&sighand->siglock);
2253 			goto relock;
2254 		}
2255 
2256 		signr = dequeue_signal(current, &current->blocked, info);
2257 
2258 		if (!signr)
2259 			break; /* will return 0 */
2260 
2261 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2262 			signr = ptrace_signal(signr, info,
2263 					      regs, cookie);
2264 			if (!signr)
2265 				continue;
2266 		}
2267 
2268 		ka = &sighand->action[signr-1];
2269 
2270 		/* Trace actually delivered signals. */
2271 		trace_signal_deliver(signr, info, ka);
2272 
2273 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2274 			continue;
2275 		if (ka->sa.sa_handler != SIG_DFL) {
2276 			/* Run the handler.  */
2277 			*return_ka = *ka;
2278 
2279 			if (ka->sa.sa_flags & SA_ONESHOT)
2280 				ka->sa.sa_handler = SIG_DFL;
2281 
2282 			break; /* will return non-zero "signr" value */
2283 		}
2284 
2285 		/*
2286 		 * Now we are doing the default action for this signal.
2287 		 */
2288 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2289 			continue;
2290 
2291 		/*
2292 		 * Global init gets no signals it doesn't want.
2293 		 * Container-init gets no signals it doesn't want from same
2294 		 * container.
2295 		 *
2296 		 * Note that if global/container-init sees a sig_kernel_only()
2297 		 * signal here, the signal must have been generated internally
2298 		 * or must have come from an ancestor namespace. In either
2299 		 * case, the signal cannot be dropped.
2300 		 */
2301 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2302 				!sig_kernel_only(signr))
2303 			continue;
2304 
2305 		if (sig_kernel_stop(signr)) {
2306 			/*
2307 			 * The default action is to stop all threads in
2308 			 * the thread group.  The job control signals
2309 			 * do nothing in an orphaned pgrp, but SIGSTOP
2310 			 * always works.  Note that siglock needs to be
2311 			 * dropped during the call to is_orphaned_pgrp()
2312 			 * because of lock ordering with tasklist_lock.
2313 			 * This allows an intervening SIGCONT to be posted.
2314 			 * We need to check for that and bail out if necessary.
2315 			 */
2316 			if (signr != SIGSTOP) {
2317 				spin_unlock_irq(&sighand->siglock);
2318 
2319 				/* signals can be posted during this window */
2320 
2321 				if (is_current_pgrp_orphaned())
2322 					goto relock;
2323 
2324 				spin_lock_irq(&sighand->siglock);
2325 			}
2326 
2327 			if (likely(do_signal_stop(info->si_signo))) {
2328 				/* It released the siglock.  */
2329 				goto relock;
2330 			}
2331 
2332 			/*
2333 			 * We didn't actually stop, due to a race
2334 			 * with SIGCONT or something like that.
2335 			 */
2336 			continue;
2337 		}
2338 
2339 		spin_unlock_irq(&sighand->siglock);
2340 
2341 		/*
2342 		 * Anything else is fatal, maybe with a core dump.
2343 		 */
2344 		current->flags |= PF_SIGNALED;
2345 
2346 		if (sig_kernel_coredump(signr)) {
2347 			if (print_fatal_signals)
2348 				print_fatal_signal(regs, info->si_signo);
2349 			/*
2350 			 * If it was able to dump core, this kills all
2351 			 * other threads in the group and synchronizes with
2352 			 * their demise.  If we lost the race with another
2353 			 * thread getting here, it set group_exit_code
2354 			 * first and our do_group_exit call below will use
2355 			 * that value and ignore the one we pass it.
2356 			 */
2357 			do_coredump(info->si_signo, info->si_signo, regs);
2358 		}
2359 
2360 		/*
2361 		 * Death signals, no core dump.
2362 		 */
2363 		do_group_exit(info->si_signo);
2364 		/* NOTREACHED */
2365 	}
2366 	spin_unlock_irq(&sighand->siglock);
2367 	return signr;
2368 }
2369 
2370 /**
2371  * block_sigmask - add @ka's signal mask to current->blocked
2372  * @ka: action for @signr
2373  * @signr: signal that has been successfully delivered
2374  *
2375  * This function should be called when a signal has succesfully been
2376  * delivered. It adds the mask of signals for @ka to current->blocked
2377  * so that they are blocked during the execution of the signal
2378  * handler. In addition, @signr will be blocked unless %SA_NODEFER is
2379  * set in @ka->sa.sa_flags.
2380  */
2381 void block_sigmask(struct k_sigaction *ka, int signr)
2382 {
2383 	sigset_t blocked;
2384 
2385 	sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2386 	if (!(ka->sa.sa_flags & SA_NODEFER))
2387 		sigaddset(&blocked, signr);
2388 	set_current_blocked(&blocked);
2389 }
2390 
2391 /*
2392  * It could be that complete_signal() picked us to notify about the
2393  * group-wide signal. Other threads should be notified now to take
2394  * the shared signals in @which since we will not.
2395  */
2396 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2397 {
2398 	sigset_t retarget;
2399 	struct task_struct *t;
2400 
2401 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2402 	if (sigisemptyset(&retarget))
2403 		return;
2404 
2405 	t = tsk;
2406 	while_each_thread(tsk, t) {
2407 		if (t->flags & PF_EXITING)
2408 			continue;
2409 
2410 		if (!has_pending_signals(&retarget, &t->blocked))
2411 			continue;
2412 		/* Remove the signals this thread can handle. */
2413 		sigandsets(&retarget, &retarget, &t->blocked);
2414 
2415 		if (!signal_pending(t))
2416 			signal_wake_up(t, 0);
2417 
2418 		if (sigisemptyset(&retarget))
2419 			break;
2420 	}
2421 }
2422 
2423 void exit_signals(struct task_struct *tsk)
2424 {
2425 	int group_stop = 0;
2426 	sigset_t unblocked;
2427 
2428 	/*
2429 	 * @tsk is about to have PF_EXITING set - lock out users which
2430 	 * expect stable threadgroup.
2431 	 */
2432 	threadgroup_change_begin(tsk);
2433 
2434 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2435 		tsk->flags |= PF_EXITING;
2436 		threadgroup_change_end(tsk);
2437 		return;
2438 	}
2439 
2440 	spin_lock_irq(&tsk->sighand->siglock);
2441 	/*
2442 	 * From now this task is not visible for group-wide signals,
2443 	 * see wants_signal(), do_signal_stop().
2444 	 */
2445 	tsk->flags |= PF_EXITING;
2446 
2447 	threadgroup_change_end(tsk);
2448 
2449 	if (!signal_pending(tsk))
2450 		goto out;
2451 
2452 	unblocked = tsk->blocked;
2453 	signotset(&unblocked);
2454 	retarget_shared_pending(tsk, &unblocked);
2455 
2456 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2457 	    task_participate_group_stop(tsk))
2458 		group_stop = CLD_STOPPED;
2459 out:
2460 	spin_unlock_irq(&tsk->sighand->siglock);
2461 
2462 	/*
2463 	 * If group stop has completed, deliver the notification.  This
2464 	 * should always go to the real parent of the group leader.
2465 	 */
2466 	if (unlikely(group_stop)) {
2467 		read_lock(&tasklist_lock);
2468 		do_notify_parent_cldstop(tsk, false, group_stop);
2469 		read_unlock(&tasklist_lock);
2470 	}
2471 }
2472 
2473 EXPORT_SYMBOL(recalc_sigpending);
2474 EXPORT_SYMBOL_GPL(dequeue_signal);
2475 EXPORT_SYMBOL(flush_signals);
2476 EXPORT_SYMBOL(force_sig);
2477 EXPORT_SYMBOL(send_sig);
2478 EXPORT_SYMBOL(send_sig_info);
2479 EXPORT_SYMBOL(sigprocmask);
2480 EXPORT_SYMBOL(block_all_signals);
2481 EXPORT_SYMBOL(unblock_all_signals);
2482 
2483 
2484 /*
2485  * System call entry points.
2486  */
2487 
2488 /**
2489  *  sys_restart_syscall - restart a system call
2490  */
2491 SYSCALL_DEFINE0(restart_syscall)
2492 {
2493 	struct restart_block *restart = &current_thread_info()->restart_block;
2494 	return restart->fn(restart);
2495 }
2496 
2497 long do_no_restart_syscall(struct restart_block *param)
2498 {
2499 	return -EINTR;
2500 }
2501 
2502 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2503 {
2504 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2505 		sigset_t newblocked;
2506 		/* A set of now blocked but previously unblocked signals. */
2507 		sigandnsets(&newblocked, newset, &current->blocked);
2508 		retarget_shared_pending(tsk, &newblocked);
2509 	}
2510 	tsk->blocked = *newset;
2511 	recalc_sigpending();
2512 }
2513 
2514 /**
2515  * set_current_blocked - change current->blocked mask
2516  * @newset: new mask
2517  *
2518  * It is wrong to change ->blocked directly, this helper should be used
2519  * to ensure the process can't miss a shared signal we are going to block.
2520  */
2521 void set_current_blocked(const sigset_t *newset)
2522 {
2523 	struct task_struct *tsk = current;
2524 
2525 	spin_lock_irq(&tsk->sighand->siglock);
2526 	__set_task_blocked(tsk, newset);
2527 	spin_unlock_irq(&tsk->sighand->siglock);
2528 }
2529 
2530 /*
2531  * This is also useful for kernel threads that want to temporarily
2532  * (or permanently) block certain signals.
2533  *
2534  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2535  * interface happily blocks "unblockable" signals like SIGKILL
2536  * and friends.
2537  */
2538 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2539 {
2540 	struct task_struct *tsk = current;
2541 	sigset_t newset;
2542 
2543 	/* Lockless, only current can change ->blocked, never from irq */
2544 	if (oldset)
2545 		*oldset = tsk->blocked;
2546 
2547 	switch (how) {
2548 	case SIG_BLOCK:
2549 		sigorsets(&newset, &tsk->blocked, set);
2550 		break;
2551 	case SIG_UNBLOCK:
2552 		sigandnsets(&newset, &tsk->blocked, set);
2553 		break;
2554 	case SIG_SETMASK:
2555 		newset = *set;
2556 		break;
2557 	default:
2558 		return -EINVAL;
2559 	}
2560 
2561 	set_current_blocked(&newset);
2562 	return 0;
2563 }
2564 
2565 /**
2566  *  sys_rt_sigprocmask - change the list of currently blocked signals
2567  *  @how: whether to add, remove, or set signals
2568  *  @nset: stores pending signals
2569  *  @oset: previous value of signal mask if non-null
2570  *  @sigsetsize: size of sigset_t type
2571  */
2572 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2573 		sigset_t __user *, oset, size_t, sigsetsize)
2574 {
2575 	sigset_t old_set, new_set;
2576 	int error;
2577 
2578 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2579 	if (sigsetsize != sizeof(sigset_t))
2580 		return -EINVAL;
2581 
2582 	old_set = current->blocked;
2583 
2584 	if (nset) {
2585 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2586 			return -EFAULT;
2587 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2588 
2589 		error = sigprocmask(how, &new_set, NULL);
2590 		if (error)
2591 			return error;
2592 	}
2593 
2594 	if (oset) {
2595 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2596 			return -EFAULT;
2597 	}
2598 
2599 	return 0;
2600 }
2601 
2602 long do_sigpending(void __user *set, unsigned long sigsetsize)
2603 {
2604 	long error = -EINVAL;
2605 	sigset_t pending;
2606 
2607 	if (sigsetsize > sizeof(sigset_t))
2608 		goto out;
2609 
2610 	spin_lock_irq(&current->sighand->siglock);
2611 	sigorsets(&pending, &current->pending.signal,
2612 		  &current->signal->shared_pending.signal);
2613 	spin_unlock_irq(&current->sighand->siglock);
2614 
2615 	/* Outside the lock because only this thread touches it.  */
2616 	sigandsets(&pending, &current->blocked, &pending);
2617 
2618 	error = -EFAULT;
2619 	if (!copy_to_user(set, &pending, sigsetsize))
2620 		error = 0;
2621 
2622 out:
2623 	return error;
2624 }
2625 
2626 /**
2627  *  sys_rt_sigpending - examine a pending signal that has been raised
2628  *			while blocked
2629  *  @set: stores pending signals
2630  *  @sigsetsize: size of sigset_t type or larger
2631  */
2632 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2633 {
2634 	return do_sigpending(set, sigsetsize);
2635 }
2636 
2637 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2638 
2639 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2640 {
2641 	int err;
2642 
2643 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2644 		return -EFAULT;
2645 	if (from->si_code < 0)
2646 		return __copy_to_user(to, from, sizeof(siginfo_t))
2647 			? -EFAULT : 0;
2648 	/*
2649 	 * If you change siginfo_t structure, please be sure
2650 	 * this code is fixed accordingly.
2651 	 * Please remember to update the signalfd_copyinfo() function
2652 	 * inside fs/signalfd.c too, in case siginfo_t changes.
2653 	 * It should never copy any pad contained in the structure
2654 	 * to avoid security leaks, but must copy the generic
2655 	 * 3 ints plus the relevant union member.
2656 	 */
2657 	err = __put_user(from->si_signo, &to->si_signo);
2658 	err |= __put_user(from->si_errno, &to->si_errno);
2659 	err |= __put_user((short)from->si_code, &to->si_code);
2660 	switch (from->si_code & __SI_MASK) {
2661 	case __SI_KILL:
2662 		err |= __put_user(from->si_pid, &to->si_pid);
2663 		err |= __put_user(from->si_uid, &to->si_uid);
2664 		break;
2665 	case __SI_TIMER:
2666 		 err |= __put_user(from->si_tid, &to->si_tid);
2667 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2668 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2669 		break;
2670 	case __SI_POLL:
2671 		err |= __put_user(from->si_band, &to->si_band);
2672 		err |= __put_user(from->si_fd, &to->si_fd);
2673 		break;
2674 	case __SI_FAULT:
2675 		err |= __put_user(from->si_addr, &to->si_addr);
2676 #ifdef __ARCH_SI_TRAPNO
2677 		err |= __put_user(from->si_trapno, &to->si_trapno);
2678 #endif
2679 #ifdef BUS_MCEERR_AO
2680 		/*
2681 		 * Other callers might not initialize the si_lsb field,
2682 		 * so check explicitly for the right codes here.
2683 		 */
2684 		if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2685 			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2686 #endif
2687 		break;
2688 	case __SI_CHLD:
2689 		err |= __put_user(from->si_pid, &to->si_pid);
2690 		err |= __put_user(from->si_uid, &to->si_uid);
2691 		err |= __put_user(from->si_status, &to->si_status);
2692 		err |= __put_user(from->si_utime, &to->si_utime);
2693 		err |= __put_user(from->si_stime, &to->si_stime);
2694 		break;
2695 	case __SI_RT: /* This is not generated by the kernel as of now. */
2696 	case __SI_MESGQ: /* But this is */
2697 		err |= __put_user(from->si_pid, &to->si_pid);
2698 		err |= __put_user(from->si_uid, &to->si_uid);
2699 		err |= __put_user(from->si_ptr, &to->si_ptr);
2700 		break;
2701 #ifdef __ARCH_SIGSYS
2702 	case __SI_SYS:
2703 		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2704 		err |= __put_user(from->si_syscall, &to->si_syscall);
2705 		err |= __put_user(from->si_arch, &to->si_arch);
2706 		break;
2707 #endif
2708 	default: /* this is just in case for now ... */
2709 		err |= __put_user(from->si_pid, &to->si_pid);
2710 		err |= __put_user(from->si_uid, &to->si_uid);
2711 		break;
2712 	}
2713 	return err;
2714 }
2715 
2716 #endif
2717 
2718 /**
2719  *  do_sigtimedwait - wait for queued signals specified in @which
2720  *  @which: queued signals to wait for
2721  *  @info: if non-null, the signal's siginfo is returned here
2722  *  @ts: upper bound on process time suspension
2723  */
2724 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2725 			const struct timespec *ts)
2726 {
2727 	struct task_struct *tsk = current;
2728 	long timeout = MAX_SCHEDULE_TIMEOUT;
2729 	sigset_t mask = *which;
2730 	int sig;
2731 
2732 	if (ts) {
2733 		if (!timespec_valid(ts))
2734 			return -EINVAL;
2735 		timeout = timespec_to_jiffies(ts);
2736 		/*
2737 		 * We can be close to the next tick, add another one
2738 		 * to ensure we will wait at least the time asked for.
2739 		 */
2740 		if (ts->tv_sec || ts->tv_nsec)
2741 			timeout++;
2742 	}
2743 
2744 	/*
2745 	 * Invert the set of allowed signals to get those we want to block.
2746 	 */
2747 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2748 	signotset(&mask);
2749 
2750 	spin_lock_irq(&tsk->sighand->siglock);
2751 	sig = dequeue_signal(tsk, &mask, info);
2752 	if (!sig && timeout) {
2753 		/*
2754 		 * None ready, temporarily unblock those we're interested
2755 		 * while we are sleeping in so that we'll be awakened when
2756 		 * they arrive. Unblocking is always fine, we can avoid
2757 		 * set_current_blocked().
2758 		 */
2759 		tsk->real_blocked = tsk->blocked;
2760 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2761 		recalc_sigpending();
2762 		spin_unlock_irq(&tsk->sighand->siglock);
2763 
2764 		timeout = schedule_timeout_interruptible(timeout);
2765 
2766 		spin_lock_irq(&tsk->sighand->siglock);
2767 		__set_task_blocked(tsk, &tsk->real_blocked);
2768 		siginitset(&tsk->real_blocked, 0);
2769 		sig = dequeue_signal(tsk, &mask, info);
2770 	}
2771 	spin_unlock_irq(&tsk->sighand->siglock);
2772 
2773 	if (sig)
2774 		return sig;
2775 	return timeout ? -EINTR : -EAGAIN;
2776 }
2777 
2778 /**
2779  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2780  *			in @uthese
2781  *  @uthese: queued signals to wait for
2782  *  @uinfo: if non-null, the signal's siginfo is returned here
2783  *  @uts: upper bound on process time suspension
2784  *  @sigsetsize: size of sigset_t type
2785  */
2786 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2787 		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2788 		size_t, sigsetsize)
2789 {
2790 	sigset_t these;
2791 	struct timespec ts;
2792 	siginfo_t info;
2793 	int ret;
2794 
2795 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2796 	if (sigsetsize != sizeof(sigset_t))
2797 		return -EINVAL;
2798 
2799 	if (copy_from_user(&these, uthese, sizeof(these)))
2800 		return -EFAULT;
2801 
2802 	if (uts) {
2803 		if (copy_from_user(&ts, uts, sizeof(ts)))
2804 			return -EFAULT;
2805 	}
2806 
2807 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2808 
2809 	if (ret > 0 && uinfo) {
2810 		if (copy_siginfo_to_user(uinfo, &info))
2811 			ret = -EFAULT;
2812 	}
2813 
2814 	return ret;
2815 }
2816 
2817 /**
2818  *  sys_kill - send a signal to a process
2819  *  @pid: the PID of the process
2820  *  @sig: signal to be sent
2821  */
2822 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2823 {
2824 	struct siginfo info;
2825 
2826 	info.si_signo = sig;
2827 	info.si_errno = 0;
2828 	info.si_code = SI_USER;
2829 	info.si_pid = task_tgid_vnr(current);
2830 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2831 
2832 	return kill_something_info(sig, &info, pid);
2833 }
2834 
2835 static int
2836 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2837 {
2838 	struct task_struct *p;
2839 	int error = -ESRCH;
2840 
2841 	rcu_read_lock();
2842 	p = find_task_by_vpid(pid);
2843 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2844 		error = check_kill_permission(sig, info, p);
2845 		/*
2846 		 * The null signal is a permissions and process existence
2847 		 * probe.  No signal is actually delivered.
2848 		 */
2849 		if (!error && sig) {
2850 			error = do_send_sig_info(sig, info, p, false);
2851 			/*
2852 			 * If lock_task_sighand() failed we pretend the task
2853 			 * dies after receiving the signal. The window is tiny,
2854 			 * and the signal is private anyway.
2855 			 */
2856 			if (unlikely(error == -ESRCH))
2857 				error = 0;
2858 		}
2859 	}
2860 	rcu_read_unlock();
2861 
2862 	return error;
2863 }
2864 
2865 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2866 {
2867 	struct siginfo info;
2868 
2869 	info.si_signo = sig;
2870 	info.si_errno = 0;
2871 	info.si_code = SI_TKILL;
2872 	info.si_pid = task_tgid_vnr(current);
2873 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2874 
2875 	return do_send_specific(tgid, pid, sig, &info);
2876 }
2877 
2878 /**
2879  *  sys_tgkill - send signal to one specific thread
2880  *  @tgid: the thread group ID of the thread
2881  *  @pid: the PID of the thread
2882  *  @sig: signal to be sent
2883  *
2884  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2885  *  exists but it's not belonging to the target process anymore. This
2886  *  method solves the problem of threads exiting and PIDs getting reused.
2887  */
2888 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2889 {
2890 	/* This is only valid for single tasks */
2891 	if (pid <= 0 || tgid <= 0)
2892 		return -EINVAL;
2893 
2894 	return do_tkill(tgid, pid, sig);
2895 }
2896 
2897 /**
2898  *  sys_tkill - send signal to one specific task
2899  *  @pid: the PID of the task
2900  *  @sig: signal to be sent
2901  *
2902  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2903  */
2904 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2905 {
2906 	/* This is only valid for single tasks */
2907 	if (pid <= 0)
2908 		return -EINVAL;
2909 
2910 	return do_tkill(0, pid, sig);
2911 }
2912 
2913 /**
2914  *  sys_rt_sigqueueinfo - send signal information to a signal
2915  *  @pid: the PID of the thread
2916  *  @sig: signal to be sent
2917  *  @uinfo: signal info to be sent
2918  */
2919 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2920 		siginfo_t __user *, uinfo)
2921 {
2922 	siginfo_t info;
2923 
2924 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2925 		return -EFAULT;
2926 
2927 	/* Not even root can pretend to send signals from the kernel.
2928 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2929 	 */
2930 	if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2931 		/* We used to allow any < 0 si_code */
2932 		WARN_ON_ONCE(info.si_code < 0);
2933 		return -EPERM;
2934 	}
2935 	info.si_signo = sig;
2936 
2937 	/* POSIX.1b doesn't mention process groups.  */
2938 	return kill_proc_info(sig, &info, pid);
2939 }
2940 
2941 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2942 {
2943 	/* This is only valid for single tasks */
2944 	if (pid <= 0 || tgid <= 0)
2945 		return -EINVAL;
2946 
2947 	/* Not even root can pretend to send signals from the kernel.
2948 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2949 	 */
2950 	if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2951 		/* We used to allow any < 0 si_code */
2952 		WARN_ON_ONCE(info->si_code < 0);
2953 		return -EPERM;
2954 	}
2955 	info->si_signo = sig;
2956 
2957 	return do_send_specific(tgid, pid, sig, info);
2958 }
2959 
2960 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2961 		siginfo_t __user *, uinfo)
2962 {
2963 	siginfo_t info;
2964 
2965 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2966 		return -EFAULT;
2967 
2968 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2969 }
2970 
2971 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2972 {
2973 	struct task_struct *t = current;
2974 	struct k_sigaction *k;
2975 	sigset_t mask;
2976 
2977 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2978 		return -EINVAL;
2979 
2980 	k = &t->sighand->action[sig-1];
2981 
2982 	spin_lock_irq(&current->sighand->siglock);
2983 	if (oact)
2984 		*oact = *k;
2985 
2986 	if (act) {
2987 		sigdelsetmask(&act->sa.sa_mask,
2988 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
2989 		*k = *act;
2990 		/*
2991 		 * POSIX 3.3.1.3:
2992 		 *  "Setting a signal action to SIG_IGN for a signal that is
2993 		 *   pending shall cause the pending signal to be discarded,
2994 		 *   whether or not it is blocked."
2995 		 *
2996 		 *  "Setting a signal action to SIG_DFL for a signal that is
2997 		 *   pending and whose default action is to ignore the signal
2998 		 *   (for example, SIGCHLD), shall cause the pending signal to
2999 		 *   be discarded, whether or not it is blocked"
3000 		 */
3001 		if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3002 			sigemptyset(&mask);
3003 			sigaddset(&mask, sig);
3004 			rm_from_queue_full(&mask, &t->signal->shared_pending);
3005 			do {
3006 				rm_from_queue_full(&mask, &t->pending);
3007 				t = next_thread(t);
3008 			} while (t != current);
3009 		}
3010 	}
3011 
3012 	spin_unlock_irq(&current->sighand->siglock);
3013 	return 0;
3014 }
3015 
3016 int
3017 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3018 {
3019 	stack_t oss;
3020 	int error;
3021 
3022 	oss.ss_sp = (void __user *) current->sas_ss_sp;
3023 	oss.ss_size = current->sas_ss_size;
3024 	oss.ss_flags = sas_ss_flags(sp);
3025 
3026 	if (uss) {
3027 		void __user *ss_sp;
3028 		size_t ss_size;
3029 		int ss_flags;
3030 
3031 		error = -EFAULT;
3032 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3033 			goto out;
3034 		error = __get_user(ss_sp, &uss->ss_sp) |
3035 			__get_user(ss_flags, &uss->ss_flags) |
3036 			__get_user(ss_size, &uss->ss_size);
3037 		if (error)
3038 			goto out;
3039 
3040 		error = -EPERM;
3041 		if (on_sig_stack(sp))
3042 			goto out;
3043 
3044 		error = -EINVAL;
3045 		/*
3046 		 * Note - this code used to test ss_flags incorrectly:
3047 		 *  	  old code may have been written using ss_flags==0
3048 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
3049 		 *	  way that worked) - this fix preserves that older
3050 		 *	  mechanism.
3051 		 */
3052 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3053 			goto out;
3054 
3055 		if (ss_flags == SS_DISABLE) {
3056 			ss_size = 0;
3057 			ss_sp = NULL;
3058 		} else {
3059 			error = -ENOMEM;
3060 			if (ss_size < MINSIGSTKSZ)
3061 				goto out;
3062 		}
3063 
3064 		current->sas_ss_sp = (unsigned long) ss_sp;
3065 		current->sas_ss_size = ss_size;
3066 	}
3067 
3068 	error = 0;
3069 	if (uoss) {
3070 		error = -EFAULT;
3071 		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3072 			goto out;
3073 		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3074 			__put_user(oss.ss_size, &uoss->ss_size) |
3075 			__put_user(oss.ss_flags, &uoss->ss_flags);
3076 	}
3077 
3078 out:
3079 	return error;
3080 }
3081 
3082 #ifdef __ARCH_WANT_SYS_SIGPENDING
3083 
3084 /**
3085  *  sys_sigpending - examine pending signals
3086  *  @set: where mask of pending signal is returned
3087  */
3088 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3089 {
3090 	return do_sigpending(set, sizeof(*set));
3091 }
3092 
3093 #endif
3094 
3095 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3096 /**
3097  *  sys_sigprocmask - examine and change blocked signals
3098  *  @how: whether to add, remove, or set signals
3099  *  @nset: signals to add or remove (if non-null)
3100  *  @oset: previous value of signal mask if non-null
3101  *
3102  * Some platforms have their own version with special arguments;
3103  * others support only sys_rt_sigprocmask.
3104  */
3105 
3106 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3107 		old_sigset_t __user *, oset)
3108 {
3109 	old_sigset_t old_set, new_set;
3110 	sigset_t new_blocked;
3111 
3112 	old_set = current->blocked.sig[0];
3113 
3114 	if (nset) {
3115 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3116 			return -EFAULT;
3117 		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
3118 
3119 		new_blocked = current->blocked;
3120 
3121 		switch (how) {
3122 		case SIG_BLOCK:
3123 			sigaddsetmask(&new_blocked, new_set);
3124 			break;
3125 		case SIG_UNBLOCK:
3126 			sigdelsetmask(&new_blocked, new_set);
3127 			break;
3128 		case SIG_SETMASK:
3129 			new_blocked.sig[0] = new_set;
3130 			break;
3131 		default:
3132 			return -EINVAL;
3133 		}
3134 
3135 		set_current_blocked(&new_blocked);
3136 	}
3137 
3138 	if (oset) {
3139 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3140 			return -EFAULT;
3141 	}
3142 
3143 	return 0;
3144 }
3145 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3146 
3147 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
3148 /**
3149  *  sys_rt_sigaction - alter an action taken by a process
3150  *  @sig: signal to be sent
3151  *  @act: new sigaction
3152  *  @oact: used to save the previous sigaction
3153  *  @sigsetsize: size of sigset_t type
3154  */
3155 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3156 		const struct sigaction __user *, act,
3157 		struct sigaction __user *, oact,
3158 		size_t, sigsetsize)
3159 {
3160 	struct k_sigaction new_sa, old_sa;
3161 	int ret = -EINVAL;
3162 
3163 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3164 	if (sigsetsize != sizeof(sigset_t))
3165 		goto out;
3166 
3167 	if (act) {
3168 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3169 			return -EFAULT;
3170 	}
3171 
3172 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3173 
3174 	if (!ret && oact) {
3175 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3176 			return -EFAULT;
3177 	}
3178 out:
3179 	return ret;
3180 }
3181 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
3182 
3183 #ifdef __ARCH_WANT_SYS_SGETMASK
3184 
3185 /*
3186  * For backwards compatibility.  Functionality superseded by sigprocmask.
3187  */
3188 SYSCALL_DEFINE0(sgetmask)
3189 {
3190 	/* SMP safe */
3191 	return current->blocked.sig[0];
3192 }
3193 
3194 SYSCALL_DEFINE1(ssetmask, int, newmask)
3195 {
3196 	int old = current->blocked.sig[0];
3197 	sigset_t newset;
3198 
3199 	siginitset(&newset, newmask & ~(sigmask(SIGKILL) | sigmask(SIGSTOP)));
3200 	set_current_blocked(&newset);
3201 
3202 	return old;
3203 }
3204 #endif /* __ARCH_WANT_SGETMASK */
3205 
3206 #ifdef __ARCH_WANT_SYS_SIGNAL
3207 /*
3208  * For backwards compatibility.  Functionality superseded by sigaction.
3209  */
3210 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3211 {
3212 	struct k_sigaction new_sa, old_sa;
3213 	int ret;
3214 
3215 	new_sa.sa.sa_handler = handler;
3216 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3217 	sigemptyset(&new_sa.sa.sa_mask);
3218 
3219 	ret = do_sigaction(sig, &new_sa, &old_sa);
3220 
3221 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3222 }
3223 #endif /* __ARCH_WANT_SYS_SIGNAL */
3224 
3225 #ifdef __ARCH_WANT_SYS_PAUSE
3226 
3227 SYSCALL_DEFINE0(pause)
3228 {
3229 	while (!signal_pending(current)) {
3230 		current->state = TASK_INTERRUPTIBLE;
3231 		schedule();
3232 	}
3233 	return -ERESTARTNOHAND;
3234 }
3235 
3236 #endif
3237 
3238 #ifdef HAVE_SET_RESTORE_SIGMASK
3239 int sigsuspend(sigset_t *set)
3240 {
3241 	sigdelsetmask(set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3242 
3243 	current->saved_sigmask = current->blocked;
3244 	set_current_blocked(set);
3245 
3246 	current->state = TASK_INTERRUPTIBLE;
3247 	schedule();
3248 	set_restore_sigmask();
3249 	return -ERESTARTNOHAND;
3250 }
3251 #endif
3252 
3253 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
3254 /**
3255  *  sys_rt_sigsuspend - replace the signal mask for a value with the
3256  *	@unewset value until a signal is received
3257  *  @unewset: new signal mask value
3258  *  @sigsetsize: size of sigset_t type
3259  */
3260 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3261 {
3262 	sigset_t newset;
3263 
3264 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3265 	if (sigsetsize != sizeof(sigset_t))
3266 		return -EINVAL;
3267 
3268 	if (copy_from_user(&newset, unewset, sizeof(newset)))
3269 		return -EFAULT;
3270 	return sigsuspend(&newset);
3271 }
3272 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
3273 
3274 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3275 {
3276 	return NULL;
3277 }
3278 
3279 void __init signals_init(void)
3280 {
3281 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3282 }
3283 
3284 #ifdef CONFIG_KGDB_KDB
3285 #include <linux/kdb.h>
3286 /*
3287  * kdb_send_sig_info - Allows kdb to send signals without exposing
3288  * signal internals.  This function checks if the required locks are
3289  * available before calling the main signal code, to avoid kdb
3290  * deadlocks.
3291  */
3292 void
3293 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3294 {
3295 	static struct task_struct *kdb_prev_t;
3296 	int sig, new_t;
3297 	if (!spin_trylock(&t->sighand->siglock)) {
3298 		kdb_printf("Can't do kill command now.\n"
3299 			   "The sigmask lock is held somewhere else in "
3300 			   "kernel, try again later\n");
3301 		return;
3302 	}
3303 	spin_unlock(&t->sighand->siglock);
3304 	new_t = kdb_prev_t != t;
3305 	kdb_prev_t = t;
3306 	if (t->state != TASK_RUNNING && new_t) {
3307 		kdb_printf("Process is not RUNNING, sending a signal from "
3308 			   "kdb risks deadlock\n"
3309 			   "on the run queue locks. "
3310 			   "The signal has _not_ been sent.\n"
3311 			   "Reissue the kill command if you want to risk "
3312 			   "the deadlock.\n");
3313 		return;
3314 	}
3315 	sig = info->si_signo;
3316 	if (send_sig_info(sig, info, t))
3317 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3318 			   sig, t->pid);
3319 	else
3320 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3321 }
3322 #endif	/* CONFIG_KGDB_KDB */
3323