1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/export.h> 15 #include <linux/init.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/tty.h> 19 #include <linux/binfmts.h> 20 #include <linux/security.h> 21 #include <linux/syscalls.h> 22 #include <linux/ptrace.h> 23 #include <linux/signal.h> 24 #include <linux/signalfd.h> 25 #include <linux/ratelimit.h> 26 #include <linux/tracehook.h> 27 #include <linux/capability.h> 28 #include <linux/freezer.h> 29 #include <linux/pid_namespace.h> 30 #include <linux/nsproxy.h> 31 #include <linux/user_namespace.h> 32 #include <linux/uprobes.h> 33 #define CREATE_TRACE_POINTS 34 #include <trace/events/signal.h> 35 36 #include <asm/param.h> 37 #include <asm/uaccess.h> 38 #include <asm/unistd.h> 39 #include <asm/siginfo.h> 40 #include <asm/cacheflush.h> 41 #include "audit.h" /* audit_signal_info() */ 42 43 /* 44 * SLAB caches for signal bits. 45 */ 46 47 static struct kmem_cache *sigqueue_cachep; 48 49 int print_fatal_signals __read_mostly; 50 51 static void __user *sig_handler(struct task_struct *t, int sig) 52 { 53 return t->sighand->action[sig - 1].sa.sa_handler; 54 } 55 56 static int sig_handler_ignored(void __user *handler, int sig) 57 { 58 /* Is it explicitly or implicitly ignored? */ 59 return handler == SIG_IGN || 60 (handler == SIG_DFL && sig_kernel_ignore(sig)); 61 } 62 63 static int sig_task_ignored(struct task_struct *t, int sig, bool force) 64 { 65 void __user *handler; 66 67 handler = sig_handler(t, sig); 68 69 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 70 handler == SIG_DFL && !force) 71 return 1; 72 73 return sig_handler_ignored(handler, sig); 74 } 75 76 static int sig_ignored(struct task_struct *t, int sig, bool force) 77 { 78 /* 79 * Blocked signals are never ignored, since the 80 * signal handler may change by the time it is 81 * unblocked. 82 */ 83 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 84 return 0; 85 86 if (!sig_task_ignored(t, sig, force)) 87 return 0; 88 89 /* 90 * Tracers may want to know about even ignored signals. 91 */ 92 return !t->ptrace; 93 } 94 95 /* 96 * Re-calculate pending state from the set of locally pending 97 * signals, globally pending signals, and blocked signals. 98 */ 99 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 100 { 101 unsigned long ready; 102 long i; 103 104 switch (_NSIG_WORDS) { 105 default: 106 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 107 ready |= signal->sig[i] &~ blocked->sig[i]; 108 break; 109 110 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 111 ready |= signal->sig[2] &~ blocked->sig[2]; 112 ready |= signal->sig[1] &~ blocked->sig[1]; 113 ready |= signal->sig[0] &~ blocked->sig[0]; 114 break; 115 116 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 117 ready |= signal->sig[0] &~ blocked->sig[0]; 118 break; 119 120 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 121 } 122 return ready != 0; 123 } 124 125 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 126 127 static int recalc_sigpending_tsk(struct task_struct *t) 128 { 129 if ((t->jobctl & JOBCTL_PENDING_MASK) || 130 PENDING(&t->pending, &t->blocked) || 131 PENDING(&t->signal->shared_pending, &t->blocked)) { 132 set_tsk_thread_flag(t, TIF_SIGPENDING); 133 return 1; 134 } 135 /* 136 * We must never clear the flag in another thread, or in current 137 * when it's possible the current syscall is returning -ERESTART*. 138 * So we don't clear it here, and only callers who know they should do. 139 */ 140 return 0; 141 } 142 143 /* 144 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 145 * This is superfluous when called on current, the wakeup is a harmless no-op. 146 */ 147 void recalc_sigpending_and_wake(struct task_struct *t) 148 { 149 if (recalc_sigpending_tsk(t)) 150 signal_wake_up(t, 0); 151 } 152 153 void recalc_sigpending(void) 154 { 155 if (!recalc_sigpending_tsk(current) && !freezing(current)) 156 clear_thread_flag(TIF_SIGPENDING); 157 158 } 159 160 /* Given the mask, find the first available signal that should be serviced. */ 161 162 #define SYNCHRONOUS_MASK \ 163 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 164 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 165 166 int next_signal(struct sigpending *pending, sigset_t *mask) 167 { 168 unsigned long i, *s, *m, x; 169 int sig = 0; 170 171 s = pending->signal.sig; 172 m = mask->sig; 173 174 /* 175 * Handle the first word specially: it contains the 176 * synchronous signals that need to be dequeued first. 177 */ 178 x = *s &~ *m; 179 if (x) { 180 if (x & SYNCHRONOUS_MASK) 181 x &= SYNCHRONOUS_MASK; 182 sig = ffz(~x) + 1; 183 return sig; 184 } 185 186 switch (_NSIG_WORDS) { 187 default: 188 for (i = 1; i < _NSIG_WORDS; ++i) { 189 x = *++s &~ *++m; 190 if (!x) 191 continue; 192 sig = ffz(~x) + i*_NSIG_BPW + 1; 193 break; 194 } 195 break; 196 197 case 2: 198 x = s[1] &~ m[1]; 199 if (!x) 200 break; 201 sig = ffz(~x) + _NSIG_BPW + 1; 202 break; 203 204 case 1: 205 /* Nothing to do */ 206 break; 207 } 208 209 return sig; 210 } 211 212 static inline void print_dropped_signal(int sig) 213 { 214 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 215 216 if (!print_fatal_signals) 217 return; 218 219 if (!__ratelimit(&ratelimit_state)) 220 return; 221 222 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 223 current->comm, current->pid, sig); 224 } 225 226 /** 227 * task_set_jobctl_pending - set jobctl pending bits 228 * @task: target task 229 * @mask: pending bits to set 230 * 231 * Clear @mask from @task->jobctl. @mask must be subset of 232 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 233 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 234 * cleared. If @task is already being killed or exiting, this function 235 * becomes noop. 236 * 237 * CONTEXT: 238 * Must be called with @task->sighand->siglock held. 239 * 240 * RETURNS: 241 * %true if @mask is set, %false if made noop because @task was dying. 242 */ 243 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask) 244 { 245 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 246 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 247 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 248 249 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 250 return false; 251 252 if (mask & JOBCTL_STOP_SIGMASK) 253 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 254 255 task->jobctl |= mask; 256 return true; 257 } 258 259 /** 260 * task_clear_jobctl_trapping - clear jobctl trapping bit 261 * @task: target task 262 * 263 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 264 * Clear it and wake up the ptracer. Note that we don't need any further 265 * locking. @task->siglock guarantees that @task->parent points to the 266 * ptracer. 267 * 268 * CONTEXT: 269 * Must be called with @task->sighand->siglock held. 270 */ 271 void task_clear_jobctl_trapping(struct task_struct *task) 272 { 273 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 274 task->jobctl &= ~JOBCTL_TRAPPING; 275 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 276 } 277 } 278 279 /** 280 * task_clear_jobctl_pending - clear jobctl pending bits 281 * @task: target task 282 * @mask: pending bits to clear 283 * 284 * Clear @mask from @task->jobctl. @mask must be subset of 285 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 286 * STOP bits are cleared together. 287 * 288 * If clearing of @mask leaves no stop or trap pending, this function calls 289 * task_clear_jobctl_trapping(). 290 * 291 * CONTEXT: 292 * Must be called with @task->sighand->siglock held. 293 */ 294 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask) 295 { 296 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 297 298 if (mask & JOBCTL_STOP_PENDING) 299 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 300 301 task->jobctl &= ~mask; 302 303 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 304 task_clear_jobctl_trapping(task); 305 } 306 307 /** 308 * task_participate_group_stop - participate in a group stop 309 * @task: task participating in a group stop 310 * 311 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 312 * Group stop states are cleared and the group stop count is consumed if 313 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 314 * stop, the appropriate %SIGNAL_* flags are set. 315 * 316 * CONTEXT: 317 * Must be called with @task->sighand->siglock held. 318 * 319 * RETURNS: 320 * %true if group stop completion should be notified to the parent, %false 321 * otherwise. 322 */ 323 static bool task_participate_group_stop(struct task_struct *task) 324 { 325 struct signal_struct *sig = task->signal; 326 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 327 328 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 329 330 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 331 332 if (!consume) 333 return false; 334 335 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 336 sig->group_stop_count--; 337 338 /* 339 * Tell the caller to notify completion iff we are entering into a 340 * fresh group stop. Read comment in do_signal_stop() for details. 341 */ 342 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 343 sig->flags = SIGNAL_STOP_STOPPED; 344 return true; 345 } 346 return false; 347 } 348 349 /* 350 * allocate a new signal queue record 351 * - this may be called without locks if and only if t == current, otherwise an 352 * appropriate lock must be held to stop the target task from exiting 353 */ 354 static struct sigqueue * 355 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) 356 { 357 struct sigqueue *q = NULL; 358 struct user_struct *user; 359 360 /* 361 * Protect access to @t credentials. This can go away when all 362 * callers hold rcu read lock. 363 */ 364 rcu_read_lock(); 365 user = get_uid(__task_cred(t)->user); 366 atomic_inc(&user->sigpending); 367 rcu_read_unlock(); 368 369 if (override_rlimit || 370 atomic_read(&user->sigpending) <= 371 task_rlimit(t, RLIMIT_SIGPENDING)) { 372 q = kmem_cache_alloc(sigqueue_cachep, flags); 373 } else { 374 print_dropped_signal(sig); 375 } 376 377 if (unlikely(q == NULL)) { 378 atomic_dec(&user->sigpending); 379 free_uid(user); 380 } else { 381 INIT_LIST_HEAD(&q->list); 382 q->flags = 0; 383 q->user = user; 384 } 385 386 return q; 387 } 388 389 static void __sigqueue_free(struct sigqueue *q) 390 { 391 if (q->flags & SIGQUEUE_PREALLOC) 392 return; 393 atomic_dec(&q->user->sigpending); 394 free_uid(q->user); 395 kmem_cache_free(sigqueue_cachep, q); 396 } 397 398 void flush_sigqueue(struct sigpending *queue) 399 { 400 struct sigqueue *q; 401 402 sigemptyset(&queue->signal); 403 while (!list_empty(&queue->list)) { 404 q = list_entry(queue->list.next, struct sigqueue , list); 405 list_del_init(&q->list); 406 __sigqueue_free(q); 407 } 408 } 409 410 /* 411 * Flush all pending signals for a task. 412 */ 413 void __flush_signals(struct task_struct *t) 414 { 415 clear_tsk_thread_flag(t, TIF_SIGPENDING); 416 flush_sigqueue(&t->pending); 417 flush_sigqueue(&t->signal->shared_pending); 418 } 419 420 void flush_signals(struct task_struct *t) 421 { 422 unsigned long flags; 423 424 spin_lock_irqsave(&t->sighand->siglock, flags); 425 __flush_signals(t); 426 spin_unlock_irqrestore(&t->sighand->siglock, flags); 427 } 428 429 static void __flush_itimer_signals(struct sigpending *pending) 430 { 431 sigset_t signal, retain; 432 struct sigqueue *q, *n; 433 434 signal = pending->signal; 435 sigemptyset(&retain); 436 437 list_for_each_entry_safe(q, n, &pending->list, list) { 438 int sig = q->info.si_signo; 439 440 if (likely(q->info.si_code != SI_TIMER)) { 441 sigaddset(&retain, sig); 442 } else { 443 sigdelset(&signal, sig); 444 list_del_init(&q->list); 445 __sigqueue_free(q); 446 } 447 } 448 449 sigorsets(&pending->signal, &signal, &retain); 450 } 451 452 void flush_itimer_signals(void) 453 { 454 struct task_struct *tsk = current; 455 unsigned long flags; 456 457 spin_lock_irqsave(&tsk->sighand->siglock, flags); 458 __flush_itimer_signals(&tsk->pending); 459 __flush_itimer_signals(&tsk->signal->shared_pending); 460 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 461 } 462 463 void ignore_signals(struct task_struct *t) 464 { 465 int i; 466 467 for (i = 0; i < _NSIG; ++i) 468 t->sighand->action[i].sa.sa_handler = SIG_IGN; 469 470 flush_signals(t); 471 } 472 473 /* 474 * Flush all handlers for a task. 475 */ 476 477 void 478 flush_signal_handlers(struct task_struct *t, int force_default) 479 { 480 int i; 481 struct k_sigaction *ka = &t->sighand->action[0]; 482 for (i = _NSIG ; i != 0 ; i--) { 483 if (force_default || ka->sa.sa_handler != SIG_IGN) 484 ka->sa.sa_handler = SIG_DFL; 485 ka->sa.sa_flags = 0; 486 sigemptyset(&ka->sa.sa_mask); 487 ka++; 488 } 489 } 490 491 int unhandled_signal(struct task_struct *tsk, int sig) 492 { 493 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 494 if (is_global_init(tsk)) 495 return 1; 496 if (handler != SIG_IGN && handler != SIG_DFL) 497 return 0; 498 /* if ptraced, let the tracer determine */ 499 return !tsk->ptrace; 500 } 501 502 /* 503 * Notify the system that a driver wants to block all signals for this 504 * process, and wants to be notified if any signals at all were to be 505 * sent/acted upon. If the notifier routine returns non-zero, then the 506 * signal will be acted upon after all. If the notifier routine returns 0, 507 * then then signal will be blocked. Only one block per process is 508 * allowed. priv is a pointer to private data that the notifier routine 509 * can use to determine if the signal should be blocked or not. 510 */ 511 void 512 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) 513 { 514 unsigned long flags; 515 516 spin_lock_irqsave(¤t->sighand->siglock, flags); 517 current->notifier_mask = mask; 518 current->notifier_data = priv; 519 current->notifier = notifier; 520 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 521 } 522 523 /* Notify the system that blocking has ended. */ 524 525 void 526 unblock_all_signals(void) 527 { 528 unsigned long flags; 529 530 spin_lock_irqsave(¤t->sighand->siglock, flags); 531 current->notifier = NULL; 532 current->notifier_data = NULL; 533 recalc_sigpending(); 534 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 535 } 536 537 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info) 538 { 539 struct sigqueue *q, *first = NULL; 540 541 /* 542 * Collect the siginfo appropriate to this signal. Check if 543 * there is another siginfo for the same signal. 544 */ 545 list_for_each_entry(q, &list->list, list) { 546 if (q->info.si_signo == sig) { 547 if (first) 548 goto still_pending; 549 first = q; 550 } 551 } 552 553 sigdelset(&list->signal, sig); 554 555 if (first) { 556 still_pending: 557 list_del_init(&first->list); 558 copy_siginfo(info, &first->info); 559 __sigqueue_free(first); 560 } else { 561 /* 562 * Ok, it wasn't in the queue. This must be 563 * a fast-pathed signal or we must have been 564 * out of queue space. So zero out the info. 565 */ 566 info->si_signo = sig; 567 info->si_errno = 0; 568 info->si_code = SI_USER; 569 info->si_pid = 0; 570 info->si_uid = 0; 571 } 572 } 573 574 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 575 siginfo_t *info) 576 { 577 int sig = next_signal(pending, mask); 578 579 if (sig) { 580 if (current->notifier) { 581 if (sigismember(current->notifier_mask, sig)) { 582 if (!(current->notifier)(current->notifier_data)) { 583 clear_thread_flag(TIF_SIGPENDING); 584 return 0; 585 } 586 } 587 } 588 589 collect_signal(sig, pending, info); 590 } 591 592 return sig; 593 } 594 595 /* 596 * Dequeue a signal and return the element to the caller, which is 597 * expected to free it. 598 * 599 * All callers have to hold the siglock. 600 */ 601 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 602 { 603 int signr; 604 605 /* We only dequeue private signals from ourselves, we don't let 606 * signalfd steal them 607 */ 608 signr = __dequeue_signal(&tsk->pending, mask, info); 609 if (!signr) { 610 signr = __dequeue_signal(&tsk->signal->shared_pending, 611 mask, info); 612 /* 613 * itimer signal ? 614 * 615 * itimers are process shared and we restart periodic 616 * itimers in the signal delivery path to prevent DoS 617 * attacks in the high resolution timer case. This is 618 * compliant with the old way of self-restarting 619 * itimers, as the SIGALRM is a legacy signal and only 620 * queued once. Changing the restart behaviour to 621 * restart the timer in the signal dequeue path is 622 * reducing the timer noise on heavy loaded !highres 623 * systems too. 624 */ 625 if (unlikely(signr == SIGALRM)) { 626 struct hrtimer *tmr = &tsk->signal->real_timer; 627 628 if (!hrtimer_is_queued(tmr) && 629 tsk->signal->it_real_incr.tv64 != 0) { 630 hrtimer_forward(tmr, tmr->base->get_time(), 631 tsk->signal->it_real_incr); 632 hrtimer_restart(tmr); 633 } 634 } 635 } 636 637 recalc_sigpending(); 638 if (!signr) 639 return 0; 640 641 if (unlikely(sig_kernel_stop(signr))) { 642 /* 643 * Set a marker that we have dequeued a stop signal. Our 644 * caller might release the siglock and then the pending 645 * stop signal it is about to process is no longer in the 646 * pending bitmasks, but must still be cleared by a SIGCONT 647 * (and overruled by a SIGKILL). So those cases clear this 648 * shared flag after we've set it. Note that this flag may 649 * remain set after the signal we return is ignored or 650 * handled. That doesn't matter because its only purpose 651 * is to alert stop-signal processing code when another 652 * processor has come along and cleared the flag. 653 */ 654 current->jobctl |= JOBCTL_STOP_DEQUEUED; 655 } 656 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) { 657 /* 658 * Release the siglock to ensure proper locking order 659 * of timer locks outside of siglocks. Note, we leave 660 * irqs disabled here, since the posix-timers code is 661 * about to disable them again anyway. 662 */ 663 spin_unlock(&tsk->sighand->siglock); 664 do_schedule_next_timer(info); 665 spin_lock(&tsk->sighand->siglock); 666 } 667 return signr; 668 } 669 670 /* 671 * Tell a process that it has a new active signal.. 672 * 673 * NOTE! we rely on the previous spin_lock to 674 * lock interrupts for us! We can only be called with 675 * "siglock" held, and the local interrupt must 676 * have been disabled when that got acquired! 677 * 678 * No need to set need_resched since signal event passing 679 * goes through ->blocked 680 */ 681 void signal_wake_up(struct task_struct *t, int resume) 682 { 683 unsigned int mask; 684 685 set_tsk_thread_flag(t, TIF_SIGPENDING); 686 687 /* 688 * For SIGKILL, we want to wake it up in the stopped/traced/killable 689 * case. We don't check t->state here because there is a race with it 690 * executing another processor and just now entering stopped state. 691 * By using wake_up_state, we ensure the process will wake up and 692 * handle its death signal. 693 */ 694 mask = TASK_INTERRUPTIBLE; 695 if (resume) 696 mask |= TASK_WAKEKILL; 697 if (!wake_up_state(t, mask)) 698 kick_process(t); 699 } 700 701 /* 702 * Remove signals in mask from the pending set and queue. 703 * Returns 1 if any signals were found. 704 * 705 * All callers must be holding the siglock. 706 * 707 * This version takes a sigset mask and looks at all signals, 708 * not just those in the first mask word. 709 */ 710 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s) 711 { 712 struct sigqueue *q, *n; 713 sigset_t m; 714 715 sigandsets(&m, mask, &s->signal); 716 if (sigisemptyset(&m)) 717 return 0; 718 719 sigandnsets(&s->signal, &s->signal, mask); 720 list_for_each_entry_safe(q, n, &s->list, list) { 721 if (sigismember(mask, q->info.si_signo)) { 722 list_del_init(&q->list); 723 __sigqueue_free(q); 724 } 725 } 726 return 1; 727 } 728 /* 729 * Remove signals in mask from the pending set and queue. 730 * Returns 1 if any signals were found. 731 * 732 * All callers must be holding the siglock. 733 */ 734 static int rm_from_queue(unsigned long mask, struct sigpending *s) 735 { 736 struct sigqueue *q, *n; 737 738 if (!sigtestsetmask(&s->signal, mask)) 739 return 0; 740 741 sigdelsetmask(&s->signal, mask); 742 list_for_each_entry_safe(q, n, &s->list, list) { 743 if (q->info.si_signo < SIGRTMIN && 744 (mask & sigmask(q->info.si_signo))) { 745 list_del_init(&q->list); 746 __sigqueue_free(q); 747 } 748 } 749 return 1; 750 } 751 752 static inline int is_si_special(const struct siginfo *info) 753 { 754 return info <= SEND_SIG_FORCED; 755 } 756 757 static inline bool si_fromuser(const struct siginfo *info) 758 { 759 return info == SEND_SIG_NOINFO || 760 (!is_si_special(info) && SI_FROMUSER(info)); 761 } 762 763 /* 764 * called with RCU read lock from check_kill_permission() 765 */ 766 static int kill_ok_by_cred(struct task_struct *t) 767 { 768 const struct cred *cred = current_cred(); 769 const struct cred *tcred = __task_cred(t); 770 771 if (uid_eq(cred->euid, tcred->suid) || 772 uid_eq(cred->euid, tcred->uid) || 773 uid_eq(cred->uid, tcred->suid) || 774 uid_eq(cred->uid, tcred->uid)) 775 return 1; 776 777 if (ns_capable(tcred->user_ns, CAP_KILL)) 778 return 1; 779 780 return 0; 781 } 782 783 /* 784 * Bad permissions for sending the signal 785 * - the caller must hold the RCU read lock 786 */ 787 static int check_kill_permission(int sig, struct siginfo *info, 788 struct task_struct *t) 789 { 790 struct pid *sid; 791 int error; 792 793 if (!valid_signal(sig)) 794 return -EINVAL; 795 796 if (!si_fromuser(info)) 797 return 0; 798 799 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 800 if (error) 801 return error; 802 803 if (!same_thread_group(current, t) && 804 !kill_ok_by_cred(t)) { 805 switch (sig) { 806 case SIGCONT: 807 sid = task_session(t); 808 /* 809 * We don't return the error if sid == NULL. The 810 * task was unhashed, the caller must notice this. 811 */ 812 if (!sid || sid == task_session(current)) 813 break; 814 default: 815 return -EPERM; 816 } 817 } 818 819 return security_task_kill(t, info, sig, 0); 820 } 821 822 /** 823 * ptrace_trap_notify - schedule trap to notify ptracer 824 * @t: tracee wanting to notify tracer 825 * 826 * This function schedules sticky ptrace trap which is cleared on the next 827 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 828 * ptracer. 829 * 830 * If @t is running, STOP trap will be taken. If trapped for STOP and 831 * ptracer is listening for events, tracee is woken up so that it can 832 * re-trap for the new event. If trapped otherwise, STOP trap will be 833 * eventually taken without returning to userland after the existing traps 834 * are finished by PTRACE_CONT. 835 * 836 * CONTEXT: 837 * Must be called with @task->sighand->siglock held. 838 */ 839 static void ptrace_trap_notify(struct task_struct *t) 840 { 841 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 842 assert_spin_locked(&t->sighand->siglock); 843 844 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 845 signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 846 } 847 848 /* 849 * Handle magic process-wide effects of stop/continue signals. Unlike 850 * the signal actions, these happen immediately at signal-generation 851 * time regardless of blocking, ignoring, or handling. This does the 852 * actual continuing for SIGCONT, but not the actual stopping for stop 853 * signals. The process stop is done as a signal action for SIG_DFL. 854 * 855 * Returns true if the signal should be actually delivered, otherwise 856 * it should be dropped. 857 */ 858 static int prepare_signal(int sig, struct task_struct *p, bool force) 859 { 860 struct signal_struct *signal = p->signal; 861 struct task_struct *t; 862 863 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) { 864 /* 865 * The process is in the middle of dying, nothing to do. 866 */ 867 } else if (sig_kernel_stop(sig)) { 868 /* 869 * This is a stop signal. Remove SIGCONT from all queues. 870 */ 871 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending); 872 t = p; 873 do { 874 rm_from_queue(sigmask(SIGCONT), &t->pending); 875 } while_each_thread(p, t); 876 } else if (sig == SIGCONT) { 877 unsigned int why; 878 /* 879 * Remove all stop signals from all queues, wake all threads. 880 */ 881 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending); 882 t = p; 883 do { 884 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 885 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 886 if (likely(!(t->ptrace & PT_SEIZED))) 887 wake_up_state(t, __TASK_STOPPED); 888 else 889 ptrace_trap_notify(t); 890 } while_each_thread(p, t); 891 892 /* 893 * Notify the parent with CLD_CONTINUED if we were stopped. 894 * 895 * If we were in the middle of a group stop, we pretend it 896 * was already finished, and then continued. Since SIGCHLD 897 * doesn't queue we report only CLD_STOPPED, as if the next 898 * CLD_CONTINUED was dropped. 899 */ 900 why = 0; 901 if (signal->flags & SIGNAL_STOP_STOPPED) 902 why |= SIGNAL_CLD_CONTINUED; 903 else if (signal->group_stop_count) 904 why |= SIGNAL_CLD_STOPPED; 905 906 if (why) { 907 /* 908 * The first thread which returns from do_signal_stop() 909 * will take ->siglock, notice SIGNAL_CLD_MASK, and 910 * notify its parent. See get_signal_to_deliver(). 911 */ 912 signal->flags = why | SIGNAL_STOP_CONTINUED; 913 signal->group_stop_count = 0; 914 signal->group_exit_code = 0; 915 } 916 } 917 918 return !sig_ignored(p, sig, force); 919 } 920 921 /* 922 * Test if P wants to take SIG. After we've checked all threads with this, 923 * it's equivalent to finding no threads not blocking SIG. Any threads not 924 * blocking SIG were ruled out because they are not running and already 925 * have pending signals. Such threads will dequeue from the shared queue 926 * as soon as they're available, so putting the signal on the shared queue 927 * will be equivalent to sending it to one such thread. 928 */ 929 static inline int wants_signal(int sig, struct task_struct *p) 930 { 931 if (sigismember(&p->blocked, sig)) 932 return 0; 933 if (p->flags & PF_EXITING) 934 return 0; 935 if (sig == SIGKILL) 936 return 1; 937 if (task_is_stopped_or_traced(p)) 938 return 0; 939 return task_curr(p) || !signal_pending(p); 940 } 941 942 static void complete_signal(int sig, struct task_struct *p, int group) 943 { 944 struct signal_struct *signal = p->signal; 945 struct task_struct *t; 946 947 /* 948 * Now find a thread we can wake up to take the signal off the queue. 949 * 950 * If the main thread wants the signal, it gets first crack. 951 * Probably the least surprising to the average bear. 952 */ 953 if (wants_signal(sig, p)) 954 t = p; 955 else if (!group || thread_group_empty(p)) 956 /* 957 * There is just one thread and it does not need to be woken. 958 * It will dequeue unblocked signals before it runs again. 959 */ 960 return; 961 else { 962 /* 963 * Otherwise try to find a suitable thread. 964 */ 965 t = signal->curr_target; 966 while (!wants_signal(sig, t)) { 967 t = next_thread(t); 968 if (t == signal->curr_target) 969 /* 970 * No thread needs to be woken. 971 * Any eligible threads will see 972 * the signal in the queue soon. 973 */ 974 return; 975 } 976 signal->curr_target = t; 977 } 978 979 /* 980 * Found a killable thread. If the signal will be fatal, 981 * then start taking the whole group down immediately. 982 */ 983 if (sig_fatal(p, sig) && 984 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) && 985 !sigismember(&t->real_blocked, sig) && 986 (sig == SIGKILL || !t->ptrace)) { 987 /* 988 * This signal will be fatal to the whole group. 989 */ 990 if (!sig_kernel_coredump(sig)) { 991 /* 992 * Start a group exit and wake everybody up. 993 * This way we don't have other threads 994 * running and doing things after a slower 995 * thread has the fatal signal pending. 996 */ 997 signal->flags = SIGNAL_GROUP_EXIT; 998 signal->group_exit_code = sig; 999 signal->group_stop_count = 0; 1000 t = p; 1001 do { 1002 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1003 sigaddset(&t->pending.signal, SIGKILL); 1004 signal_wake_up(t, 1); 1005 } while_each_thread(p, t); 1006 return; 1007 } 1008 } 1009 1010 /* 1011 * The signal is already in the shared-pending queue. 1012 * Tell the chosen thread to wake up and dequeue it. 1013 */ 1014 signal_wake_up(t, sig == SIGKILL); 1015 return; 1016 } 1017 1018 static inline int legacy_queue(struct sigpending *signals, int sig) 1019 { 1020 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1021 } 1022 1023 #ifdef CONFIG_USER_NS 1024 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 1025 { 1026 if (current_user_ns() == task_cred_xxx(t, user_ns)) 1027 return; 1028 1029 if (SI_FROMKERNEL(info)) 1030 return; 1031 1032 rcu_read_lock(); 1033 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns), 1034 make_kuid(current_user_ns(), info->si_uid)); 1035 rcu_read_unlock(); 1036 } 1037 #else 1038 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 1039 { 1040 return; 1041 } 1042 #endif 1043 1044 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t, 1045 int group, int from_ancestor_ns) 1046 { 1047 struct sigpending *pending; 1048 struct sigqueue *q; 1049 int override_rlimit; 1050 int ret = 0, result; 1051 1052 assert_spin_locked(&t->sighand->siglock); 1053 1054 result = TRACE_SIGNAL_IGNORED; 1055 if (!prepare_signal(sig, t, 1056 from_ancestor_ns || (info == SEND_SIG_FORCED))) 1057 goto ret; 1058 1059 pending = group ? &t->signal->shared_pending : &t->pending; 1060 /* 1061 * Short-circuit ignored signals and support queuing 1062 * exactly one non-rt signal, so that we can get more 1063 * detailed information about the cause of the signal. 1064 */ 1065 result = TRACE_SIGNAL_ALREADY_PENDING; 1066 if (legacy_queue(pending, sig)) 1067 goto ret; 1068 1069 result = TRACE_SIGNAL_DELIVERED; 1070 /* 1071 * fast-pathed signals for kernel-internal things like SIGSTOP 1072 * or SIGKILL. 1073 */ 1074 if (info == SEND_SIG_FORCED) 1075 goto out_set; 1076 1077 /* 1078 * Real-time signals must be queued if sent by sigqueue, or 1079 * some other real-time mechanism. It is implementation 1080 * defined whether kill() does so. We attempt to do so, on 1081 * the principle of least surprise, but since kill is not 1082 * allowed to fail with EAGAIN when low on memory we just 1083 * make sure at least one signal gets delivered and don't 1084 * pass on the info struct. 1085 */ 1086 if (sig < SIGRTMIN) 1087 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1088 else 1089 override_rlimit = 0; 1090 1091 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE, 1092 override_rlimit); 1093 if (q) { 1094 list_add_tail(&q->list, &pending->list); 1095 switch ((unsigned long) info) { 1096 case (unsigned long) SEND_SIG_NOINFO: 1097 q->info.si_signo = sig; 1098 q->info.si_errno = 0; 1099 q->info.si_code = SI_USER; 1100 q->info.si_pid = task_tgid_nr_ns(current, 1101 task_active_pid_ns(t)); 1102 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1103 break; 1104 case (unsigned long) SEND_SIG_PRIV: 1105 q->info.si_signo = sig; 1106 q->info.si_errno = 0; 1107 q->info.si_code = SI_KERNEL; 1108 q->info.si_pid = 0; 1109 q->info.si_uid = 0; 1110 break; 1111 default: 1112 copy_siginfo(&q->info, info); 1113 if (from_ancestor_ns) 1114 q->info.si_pid = 0; 1115 break; 1116 } 1117 1118 userns_fixup_signal_uid(&q->info, t); 1119 1120 } else if (!is_si_special(info)) { 1121 if (sig >= SIGRTMIN && info->si_code != SI_USER) { 1122 /* 1123 * Queue overflow, abort. We may abort if the 1124 * signal was rt and sent by user using something 1125 * other than kill(). 1126 */ 1127 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1128 ret = -EAGAIN; 1129 goto ret; 1130 } else { 1131 /* 1132 * This is a silent loss of information. We still 1133 * send the signal, but the *info bits are lost. 1134 */ 1135 result = TRACE_SIGNAL_LOSE_INFO; 1136 } 1137 } 1138 1139 out_set: 1140 signalfd_notify(t, sig); 1141 sigaddset(&pending->signal, sig); 1142 complete_signal(sig, t, group); 1143 ret: 1144 trace_signal_generate(sig, info, t, group, result); 1145 return ret; 1146 } 1147 1148 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 1149 int group) 1150 { 1151 int from_ancestor_ns = 0; 1152 1153 #ifdef CONFIG_PID_NS 1154 from_ancestor_ns = si_fromuser(info) && 1155 !task_pid_nr_ns(current, task_active_pid_ns(t)); 1156 #endif 1157 1158 return __send_signal(sig, info, t, group, from_ancestor_ns); 1159 } 1160 1161 static void print_fatal_signal(struct pt_regs *regs, int signr) 1162 { 1163 printk("%s/%d: potentially unexpected fatal signal %d.\n", 1164 current->comm, task_pid_nr(current), signr); 1165 1166 #if defined(__i386__) && !defined(__arch_um__) 1167 printk("code at %08lx: ", regs->ip); 1168 { 1169 int i; 1170 for (i = 0; i < 16; i++) { 1171 unsigned char insn; 1172 1173 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1174 break; 1175 printk("%02x ", insn); 1176 } 1177 } 1178 #endif 1179 printk("\n"); 1180 preempt_disable(); 1181 show_regs(regs); 1182 preempt_enable(); 1183 } 1184 1185 static int __init setup_print_fatal_signals(char *str) 1186 { 1187 get_option (&str, &print_fatal_signals); 1188 1189 return 1; 1190 } 1191 1192 __setup("print-fatal-signals=", setup_print_fatal_signals); 1193 1194 int 1195 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1196 { 1197 return send_signal(sig, info, p, 1); 1198 } 1199 1200 static int 1201 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1202 { 1203 return send_signal(sig, info, t, 0); 1204 } 1205 1206 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p, 1207 bool group) 1208 { 1209 unsigned long flags; 1210 int ret = -ESRCH; 1211 1212 if (lock_task_sighand(p, &flags)) { 1213 ret = send_signal(sig, info, p, group); 1214 unlock_task_sighand(p, &flags); 1215 } 1216 1217 return ret; 1218 } 1219 1220 /* 1221 * Force a signal that the process can't ignore: if necessary 1222 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1223 * 1224 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1225 * since we do not want to have a signal handler that was blocked 1226 * be invoked when user space had explicitly blocked it. 1227 * 1228 * We don't want to have recursive SIGSEGV's etc, for example, 1229 * that is why we also clear SIGNAL_UNKILLABLE. 1230 */ 1231 int 1232 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1233 { 1234 unsigned long int flags; 1235 int ret, blocked, ignored; 1236 struct k_sigaction *action; 1237 1238 spin_lock_irqsave(&t->sighand->siglock, flags); 1239 action = &t->sighand->action[sig-1]; 1240 ignored = action->sa.sa_handler == SIG_IGN; 1241 blocked = sigismember(&t->blocked, sig); 1242 if (blocked || ignored) { 1243 action->sa.sa_handler = SIG_DFL; 1244 if (blocked) { 1245 sigdelset(&t->blocked, sig); 1246 recalc_sigpending_and_wake(t); 1247 } 1248 } 1249 if (action->sa.sa_handler == SIG_DFL) 1250 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1251 ret = specific_send_sig_info(sig, info, t); 1252 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1253 1254 return ret; 1255 } 1256 1257 /* 1258 * Nuke all other threads in the group. 1259 */ 1260 int zap_other_threads(struct task_struct *p) 1261 { 1262 struct task_struct *t = p; 1263 int count = 0; 1264 1265 p->signal->group_stop_count = 0; 1266 1267 while_each_thread(p, t) { 1268 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1269 count++; 1270 1271 /* Don't bother with already dead threads */ 1272 if (t->exit_state) 1273 continue; 1274 sigaddset(&t->pending.signal, SIGKILL); 1275 signal_wake_up(t, 1); 1276 } 1277 1278 return count; 1279 } 1280 1281 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1282 unsigned long *flags) 1283 { 1284 struct sighand_struct *sighand; 1285 1286 for (;;) { 1287 local_irq_save(*flags); 1288 rcu_read_lock(); 1289 sighand = rcu_dereference(tsk->sighand); 1290 if (unlikely(sighand == NULL)) { 1291 rcu_read_unlock(); 1292 local_irq_restore(*flags); 1293 break; 1294 } 1295 1296 spin_lock(&sighand->siglock); 1297 if (likely(sighand == tsk->sighand)) { 1298 rcu_read_unlock(); 1299 break; 1300 } 1301 spin_unlock(&sighand->siglock); 1302 rcu_read_unlock(); 1303 local_irq_restore(*flags); 1304 } 1305 1306 return sighand; 1307 } 1308 1309 /* 1310 * send signal info to all the members of a group 1311 */ 1312 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1313 { 1314 int ret; 1315 1316 rcu_read_lock(); 1317 ret = check_kill_permission(sig, info, p); 1318 rcu_read_unlock(); 1319 1320 if (!ret && sig) 1321 ret = do_send_sig_info(sig, info, p, true); 1322 1323 return ret; 1324 } 1325 1326 /* 1327 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1328 * control characters do (^C, ^Z etc) 1329 * - the caller must hold at least a readlock on tasklist_lock 1330 */ 1331 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1332 { 1333 struct task_struct *p = NULL; 1334 int retval, success; 1335 1336 success = 0; 1337 retval = -ESRCH; 1338 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1339 int err = group_send_sig_info(sig, info, p); 1340 success |= !err; 1341 retval = err; 1342 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1343 return success ? 0 : retval; 1344 } 1345 1346 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) 1347 { 1348 int error = -ESRCH; 1349 struct task_struct *p; 1350 1351 rcu_read_lock(); 1352 retry: 1353 p = pid_task(pid, PIDTYPE_PID); 1354 if (p) { 1355 error = group_send_sig_info(sig, info, p); 1356 if (unlikely(error == -ESRCH)) 1357 /* 1358 * The task was unhashed in between, try again. 1359 * If it is dead, pid_task() will return NULL, 1360 * if we race with de_thread() it will find the 1361 * new leader. 1362 */ 1363 goto retry; 1364 } 1365 rcu_read_unlock(); 1366 1367 return error; 1368 } 1369 1370 int kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1371 { 1372 int error; 1373 rcu_read_lock(); 1374 error = kill_pid_info(sig, info, find_vpid(pid)); 1375 rcu_read_unlock(); 1376 return error; 1377 } 1378 1379 static int kill_as_cred_perm(const struct cred *cred, 1380 struct task_struct *target) 1381 { 1382 const struct cred *pcred = __task_cred(target); 1383 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) && 1384 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid)) 1385 return 0; 1386 return 1; 1387 } 1388 1389 /* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1390 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid, 1391 const struct cred *cred, u32 secid) 1392 { 1393 int ret = -EINVAL; 1394 struct task_struct *p; 1395 unsigned long flags; 1396 1397 if (!valid_signal(sig)) 1398 return ret; 1399 1400 rcu_read_lock(); 1401 p = pid_task(pid, PIDTYPE_PID); 1402 if (!p) { 1403 ret = -ESRCH; 1404 goto out_unlock; 1405 } 1406 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) { 1407 ret = -EPERM; 1408 goto out_unlock; 1409 } 1410 ret = security_task_kill(p, info, sig, secid); 1411 if (ret) 1412 goto out_unlock; 1413 1414 if (sig) { 1415 if (lock_task_sighand(p, &flags)) { 1416 ret = __send_signal(sig, info, p, 1, 0); 1417 unlock_task_sighand(p, &flags); 1418 } else 1419 ret = -ESRCH; 1420 } 1421 out_unlock: 1422 rcu_read_unlock(); 1423 return ret; 1424 } 1425 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred); 1426 1427 /* 1428 * kill_something_info() interprets pid in interesting ways just like kill(2). 1429 * 1430 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1431 * is probably wrong. Should make it like BSD or SYSV. 1432 */ 1433 1434 static int kill_something_info(int sig, struct siginfo *info, pid_t pid) 1435 { 1436 int ret; 1437 1438 if (pid > 0) { 1439 rcu_read_lock(); 1440 ret = kill_pid_info(sig, info, find_vpid(pid)); 1441 rcu_read_unlock(); 1442 return ret; 1443 } 1444 1445 read_lock(&tasklist_lock); 1446 if (pid != -1) { 1447 ret = __kill_pgrp_info(sig, info, 1448 pid ? find_vpid(-pid) : task_pgrp(current)); 1449 } else { 1450 int retval = 0, count = 0; 1451 struct task_struct * p; 1452 1453 for_each_process(p) { 1454 if (task_pid_vnr(p) > 1 && 1455 !same_thread_group(p, current)) { 1456 int err = group_send_sig_info(sig, info, p); 1457 ++count; 1458 if (err != -EPERM) 1459 retval = err; 1460 } 1461 } 1462 ret = count ? retval : -ESRCH; 1463 } 1464 read_unlock(&tasklist_lock); 1465 1466 return ret; 1467 } 1468 1469 /* 1470 * These are for backward compatibility with the rest of the kernel source. 1471 */ 1472 1473 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1474 { 1475 /* 1476 * Make sure legacy kernel users don't send in bad values 1477 * (normal paths check this in check_kill_permission). 1478 */ 1479 if (!valid_signal(sig)) 1480 return -EINVAL; 1481 1482 return do_send_sig_info(sig, info, p, false); 1483 } 1484 1485 #define __si_special(priv) \ 1486 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1487 1488 int 1489 send_sig(int sig, struct task_struct *p, int priv) 1490 { 1491 return send_sig_info(sig, __si_special(priv), p); 1492 } 1493 1494 void 1495 force_sig(int sig, struct task_struct *p) 1496 { 1497 force_sig_info(sig, SEND_SIG_PRIV, p); 1498 } 1499 1500 /* 1501 * When things go south during signal handling, we 1502 * will force a SIGSEGV. And if the signal that caused 1503 * the problem was already a SIGSEGV, we'll want to 1504 * make sure we don't even try to deliver the signal.. 1505 */ 1506 int 1507 force_sigsegv(int sig, struct task_struct *p) 1508 { 1509 if (sig == SIGSEGV) { 1510 unsigned long flags; 1511 spin_lock_irqsave(&p->sighand->siglock, flags); 1512 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1513 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1514 } 1515 force_sig(SIGSEGV, p); 1516 return 0; 1517 } 1518 1519 int kill_pgrp(struct pid *pid, int sig, int priv) 1520 { 1521 int ret; 1522 1523 read_lock(&tasklist_lock); 1524 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1525 read_unlock(&tasklist_lock); 1526 1527 return ret; 1528 } 1529 EXPORT_SYMBOL(kill_pgrp); 1530 1531 int kill_pid(struct pid *pid, int sig, int priv) 1532 { 1533 return kill_pid_info(sig, __si_special(priv), pid); 1534 } 1535 EXPORT_SYMBOL(kill_pid); 1536 1537 /* 1538 * These functions support sending signals using preallocated sigqueue 1539 * structures. This is needed "because realtime applications cannot 1540 * afford to lose notifications of asynchronous events, like timer 1541 * expirations or I/O completions". In the case of POSIX Timers 1542 * we allocate the sigqueue structure from the timer_create. If this 1543 * allocation fails we are able to report the failure to the application 1544 * with an EAGAIN error. 1545 */ 1546 struct sigqueue *sigqueue_alloc(void) 1547 { 1548 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); 1549 1550 if (q) 1551 q->flags |= SIGQUEUE_PREALLOC; 1552 1553 return q; 1554 } 1555 1556 void sigqueue_free(struct sigqueue *q) 1557 { 1558 unsigned long flags; 1559 spinlock_t *lock = ¤t->sighand->siglock; 1560 1561 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1562 /* 1563 * We must hold ->siglock while testing q->list 1564 * to serialize with collect_signal() or with 1565 * __exit_signal()->flush_sigqueue(). 1566 */ 1567 spin_lock_irqsave(lock, flags); 1568 q->flags &= ~SIGQUEUE_PREALLOC; 1569 /* 1570 * If it is queued it will be freed when dequeued, 1571 * like the "regular" sigqueue. 1572 */ 1573 if (!list_empty(&q->list)) 1574 q = NULL; 1575 spin_unlock_irqrestore(lock, flags); 1576 1577 if (q) 1578 __sigqueue_free(q); 1579 } 1580 1581 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) 1582 { 1583 int sig = q->info.si_signo; 1584 struct sigpending *pending; 1585 unsigned long flags; 1586 int ret, result; 1587 1588 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1589 1590 ret = -1; 1591 if (!likely(lock_task_sighand(t, &flags))) 1592 goto ret; 1593 1594 ret = 1; /* the signal is ignored */ 1595 result = TRACE_SIGNAL_IGNORED; 1596 if (!prepare_signal(sig, t, false)) 1597 goto out; 1598 1599 ret = 0; 1600 if (unlikely(!list_empty(&q->list))) { 1601 /* 1602 * If an SI_TIMER entry is already queue just increment 1603 * the overrun count. 1604 */ 1605 BUG_ON(q->info.si_code != SI_TIMER); 1606 q->info.si_overrun++; 1607 result = TRACE_SIGNAL_ALREADY_PENDING; 1608 goto out; 1609 } 1610 q->info.si_overrun = 0; 1611 1612 signalfd_notify(t, sig); 1613 pending = group ? &t->signal->shared_pending : &t->pending; 1614 list_add_tail(&q->list, &pending->list); 1615 sigaddset(&pending->signal, sig); 1616 complete_signal(sig, t, group); 1617 result = TRACE_SIGNAL_DELIVERED; 1618 out: 1619 trace_signal_generate(sig, &q->info, t, group, result); 1620 unlock_task_sighand(t, &flags); 1621 ret: 1622 return ret; 1623 } 1624 1625 /* 1626 * Let a parent know about the death of a child. 1627 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1628 * 1629 * Returns true if our parent ignored us and so we've switched to 1630 * self-reaping. 1631 */ 1632 bool do_notify_parent(struct task_struct *tsk, int sig) 1633 { 1634 struct siginfo info; 1635 unsigned long flags; 1636 struct sighand_struct *psig; 1637 bool autoreap = false; 1638 1639 BUG_ON(sig == -1); 1640 1641 /* do_notify_parent_cldstop should have been called instead. */ 1642 BUG_ON(task_is_stopped_or_traced(tsk)); 1643 1644 BUG_ON(!tsk->ptrace && 1645 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1646 1647 if (sig != SIGCHLD) { 1648 /* 1649 * This is only possible if parent == real_parent. 1650 * Check if it has changed security domain. 1651 */ 1652 if (tsk->parent_exec_id != tsk->parent->self_exec_id) 1653 sig = SIGCHLD; 1654 } 1655 1656 info.si_signo = sig; 1657 info.si_errno = 0; 1658 /* 1659 * We are under tasklist_lock here so our parent is tied to 1660 * us and cannot change. 1661 * 1662 * task_active_pid_ns will always return the same pid namespace 1663 * until a task passes through release_task. 1664 * 1665 * write_lock() currently calls preempt_disable() which is the 1666 * same as rcu_read_lock(), but according to Oleg, this is not 1667 * correct to rely on this 1668 */ 1669 rcu_read_lock(); 1670 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 1671 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 1672 task_uid(tsk)); 1673 rcu_read_unlock(); 1674 1675 info.si_utime = cputime_to_clock_t(tsk->utime + tsk->signal->utime); 1676 info.si_stime = cputime_to_clock_t(tsk->stime + tsk->signal->stime); 1677 1678 info.si_status = tsk->exit_code & 0x7f; 1679 if (tsk->exit_code & 0x80) 1680 info.si_code = CLD_DUMPED; 1681 else if (tsk->exit_code & 0x7f) 1682 info.si_code = CLD_KILLED; 1683 else { 1684 info.si_code = CLD_EXITED; 1685 info.si_status = tsk->exit_code >> 8; 1686 } 1687 1688 psig = tsk->parent->sighand; 1689 spin_lock_irqsave(&psig->siglock, flags); 1690 if (!tsk->ptrace && sig == SIGCHLD && 1691 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1692 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1693 /* 1694 * We are exiting and our parent doesn't care. POSIX.1 1695 * defines special semantics for setting SIGCHLD to SIG_IGN 1696 * or setting the SA_NOCLDWAIT flag: we should be reaped 1697 * automatically and not left for our parent's wait4 call. 1698 * Rather than having the parent do it as a magic kind of 1699 * signal handler, we just set this to tell do_exit that we 1700 * can be cleaned up without becoming a zombie. Note that 1701 * we still call __wake_up_parent in this case, because a 1702 * blocked sys_wait4 might now return -ECHILD. 1703 * 1704 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1705 * is implementation-defined: we do (if you don't want 1706 * it, just use SIG_IGN instead). 1707 */ 1708 autoreap = true; 1709 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1710 sig = 0; 1711 } 1712 if (valid_signal(sig) && sig) 1713 __group_send_sig_info(sig, &info, tsk->parent); 1714 __wake_up_parent(tsk, tsk->parent); 1715 spin_unlock_irqrestore(&psig->siglock, flags); 1716 1717 return autoreap; 1718 } 1719 1720 /** 1721 * do_notify_parent_cldstop - notify parent of stopped/continued state change 1722 * @tsk: task reporting the state change 1723 * @for_ptracer: the notification is for ptracer 1724 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 1725 * 1726 * Notify @tsk's parent that the stopped/continued state has changed. If 1727 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 1728 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 1729 * 1730 * CONTEXT: 1731 * Must be called with tasklist_lock at least read locked. 1732 */ 1733 static void do_notify_parent_cldstop(struct task_struct *tsk, 1734 bool for_ptracer, int why) 1735 { 1736 struct siginfo info; 1737 unsigned long flags; 1738 struct task_struct *parent; 1739 struct sighand_struct *sighand; 1740 1741 if (for_ptracer) { 1742 parent = tsk->parent; 1743 } else { 1744 tsk = tsk->group_leader; 1745 parent = tsk->real_parent; 1746 } 1747 1748 info.si_signo = SIGCHLD; 1749 info.si_errno = 0; 1750 /* 1751 * see comment in do_notify_parent() about the following 4 lines 1752 */ 1753 rcu_read_lock(); 1754 info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns); 1755 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 1756 rcu_read_unlock(); 1757 1758 info.si_utime = cputime_to_clock_t(tsk->utime); 1759 info.si_stime = cputime_to_clock_t(tsk->stime); 1760 1761 info.si_code = why; 1762 switch (why) { 1763 case CLD_CONTINUED: 1764 info.si_status = SIGCONT; 1765 break; 1766 case CLD_STOPPED: 1767 info.si_status = tsk->signal->group_exit_code & 0x7f; 1768 break; 1769 case CLD_TRAPPED: 1770 info.si_status = tsk->exit_code & 0x7f; 1771 break; 1772 default: 1773 BUG(); 1774 } 1775 1776 sighand = parent->sighand; 1777 spin_lock_irqsave(&sighand->siglock, flags); 1778 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1779 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1780 __group_send_sig_info(SIGCHLD, &info, parent); 1781 /* 1782 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1783 */ 1784 __wake_up_parent(tsk, parent); 1785 spin_unlock_irqrestore(&sighand->siglock, flags); 1786 } 1787 1788 static inline int may_ptrace_stop(void) 1789 { 1790 if (!likely(current->ptrace)) 1791 return 0; 1792 /* 1793 * Are we in the middle of do_coredump? 1794 * If so and our tracer is also part of the coredump stopping 1795 * is a deadlock situation, and pointless because our tracer 1796 * is dead so don't allow us to stop. 1797 * If SIGKILL was already sent before the caller unlocked 1798 * ->siglock we must see ->core_state != NULL. Otherwise it 1799 * is safe to enter schedule(). 1800 */ 1801 if (unlikely(current->mm->core_state) && 1802 unlikely(current->mm == current->parent->mm)) 1803 return 0; 1804 1805 return 1; 1806 } 1807 1808 /* 1809 * Return non-zero if there is a SIGKILL that should be waking us up. 1810 * Called with the siglock held. 1811 */ 1812 static int sigkill_pending(struct task_struct *tsk) 1813 { 1814 return sigismember(&tsk->pending.signal, SIGKILL) || 1815 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 1816 } 1817 1818 /* 1819 * This must be called with current->sighand->siglock held. 1820 * 1821 * This should be the path for all ptrace stops. 1822 * We always set current->last_siginfo while stopped here. 1823 * That makes it a way to test a stopped process for 1824 * being ptrace-stopped vs being job-control-stopped. 1825 * 1826 * If we actually decide not to stop at all because the tracer 1827 * is gone, we keep current->exit_code unless clear_code. 1828 */ 1829 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info) 1830 __releases(¤t->sighand->siglock) 1831 __acquires(¤t->sighand->siglock) 1832 { 1833 bool gstop_done = false; 1834 1835 if (arch_ptrace_stop_needed(exit_code, info)) { 1836 /* 1837 * The arch code has something special to do before a 1838 * ptrace stop. This is allowed to block, e.g. for faults 1839 * on user stack pages. We can't keep the siglock while 1840 * calling arch_ptrace_stop, so we must release it now. 1841 * To preserve proper semantics, we must do this before 1842 * any signal bookkeeping like checking group_stop_count. 1843 * Meanwhile, a SIGKILL could come in before we retake the 1844 * siglock. That must prevent us from sleeping in TASK_TRACED. 1845 * So after regaining the lock, we must check for SIGKILL. 1846 */ 1847 spin_unlock_irq(¤t->sighand->siglock); 1848 arch_ptrace_stop(exit_code, info); 1849 spin_lock_irq(¤t->sighand->siglock); 1850 if (sigkill_pending(current)) 1851 return; 1852 } 1853 1854 /* 1855 * We're committing to trapping. TRACED should be visible before 1856 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 1857 * Also, transition to TRACED and updates to ->jobctl should be 1858 * atomic with respect to siglock and should be done after the arch 1859 * hook as siglock is released and regrabbed across it. 1860 */ 1861 set_current_state(TASK_TRACED); 1862 1863 current->last_siginfo = info; 1864 current->exit_code = exit_code; 1865 1866 /* 1867 * If @why is CLD_STOPPED, we're trapping to participate in a group 1868 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 1869 * across siglock relocks since INTERRUPT was scheduled, PENDING 1870 * could be clear now. We act as if SIGCONT is received after 1871 * TASK_TRACED is entered - ignore it. 1872 */ 1873 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 1874 gstop_done = task_participate_group_stop(current); 1875 1876 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 1877 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 1878 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 1879 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 1880 1881 /* entering a trap, clear TRAPPING */ 1882 task_clear_jobctl_trapping(current); 1883 1884 spin_unlock_irq(¤t->sighand->siglock); 1885 read_lock(&tasklist_lock); 1886 if (may_ptrace_stop()) { 1887 /* 1888 * Notify parents of the stop. 1889 * 1890 * While ptraced, there are two parents - the ptracer and 1891 * the real_parent of the group_leader. The ptracer should 1892 * know about every stop while the real parent is only 1893 * interested in the completion of group stop. The states 1894 * for the two don't interact with each other. Notify 1895 * separately unless they're gonna be duplicates. 1896 */ 1897 do_notify_parent_cldstop(current, true, why); 1898 if (gstop_done && ptrace_reparented(current)) 1899 do_notify_parent_cldstop(current, false, why); 1900 1901 /* 1902 * Don't want to allow preemption here, because 1903 * sys_ptrace() needs this task to be inactive. 1904 * 1905 * XXX: implement read_unlock_no_resched(). 1906 */ 1907 preempt_disable(); 1908 read_unlock(&tasklist_lock); 1909 preempt_enable_no_resched(); 1910 schedule(); 1911 } else { 1912 /* 1913 * By the time we got the lock, our tracer went away. 1914 * Don't drop the lock yet, another tracer may come. 1915 * 1916 * If @gstop_done, the ptracer went away between group stop 1917 * completion and here. During detach, it would have set 1918 * JOBCTL_STOP_PENDING on us and we'll re-enter 1919 * TASK_STOPPED in do_signal_stop() on return, so notifying 1920 * the real parent of the group stop completion is enough. 1921 */ 1922 if (gstop_done) 1923 do_notify_parent_cldstop(current, false, why); 1924 1925 __set_current_state(TASK_RUNNING); 1926 if (clear_code) 1927 current->exit_code = 0; 1928 read_unlock(&tasklist_lock); 1929 } 1930 1931 /* 1932 * While in TASK_TRACED, we were considered "frozen enough". 1933 * Now that we woke up, it's crucial if we're supposed to be 1934 * frozen that we freeze now before running anything substantial. 1935 */ 1936 try_to_freeze(); 1937 1938 /* 1939 * We are back. Now reacquire the siglock before touching 1940 * last_siginfo, so that we are sure to have synchronized with 1941 * any signal-sending on another CPU that wants to examine it. 1942 */ 1943 spin_lock_irq(¤t->sighand->siglock); 1944 current->last_siginfo = NULL; 1945 1946 /* LISTENING can be set only during STOP traps, clear it */ 1947 current->jobctl &= ~JOBCTL_LISTENING; 1948 1949 /* 1950 * Queued signals ignored us while we were stopped for tracing. 1951 * So check for any that we should take before resuming user mode. 1952 * This sets TIF_SIGPENDING, but never clears it. 1953 */ 1954 recalc_sigpending_tsk(current); 1955 } 1956 1957 static void ptrace_do_notify(int signr, int exit_code, int why) 1958 { 1959 siginfo_t info; 1960 1961 memset(&info, 0, sizeof info); 1962 info.si_signo = signr; 1963 info.si_code = exit_code; 1964 info.si_pid = task_pid_vnr(current); 1965 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1966 1967 /* Let the debugger run. */ 1968 ptrace_stop(exit_code, why, 1, &info); 1969 } 1970 1971 void ptrace_notify(int exit_code) 1972 { 1973 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1974 1975 spin_lock_irq(¤t->sighand->siglock); 1976 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 1977 spin_unlock_irq(¤t->sighand->siglock); 1978 } 1979 1980 /** 1981 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 1982 * @signr: signr causing group stop if initiating 1983 * 1984 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 1985 * and participate in it. If already set, participate in the existing 1986 * group stop. If participated in a group stop (and thus slept), %true is 1987 * returned with siglock released. 1988 * 1989 * If ptraced, this function doesn't handle stop itself. Instead, 1990 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 1991 * untouched. The caller must ensure that INTERRUPT trap handling takes 1992 * places afterwards. 1993 * 1994 * CONTEXT: 1995 * Must be called with @current->sighand->siglock held, which is released 1996 * on %true return. 1997 * 1998 * RETURNS: 1999 * %false if group stop is already cancelled or ptrace trap is scheduled. 2000 * %true if participated in group stop. 2001 */ 2002 static bool do_signal_stop(int signr) 2003 __releases(¤t->sighand->siglock) 2004 { 2005 struct signal_struct *sig = current->signal; 2006 2007 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2008 unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2009 struct task_struct *t; 2010 2011 /* signr will be recorded in task->jobctl for retries */ 2012 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2013 2014 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2015 unlikely(signal_group_exit(sig))) 2016 return false; 2017 /* 2018 * There is no group stop already in progress. We must 2019 * initiate one now. 2020 * 2021 * While ptraced, a task may be resumed while group stop is 2022 * still in effect and then receive a stop signal and 2023 * initiate another group stop. This deviates from the 2024 * usual behavior as two consecutive stop signals can't 2025 * cause two group stops when !ptraced. That is why we 2026 * also check !task_is_stopped(t) below. 2027 * 2028 * The condition can be distinguished by testing whether 2029 * SIGNAL_STOP_STOPPED is already set. Don't generate 2030 * group_exit_code in such case. 2031 * 2032 * This is not necessary for SIGNAL_STOP_CONTINUED because 2033 * an intervening stop signal is required to cause two 2034 * continued events regardless of ptrace. 2035 */ 2036 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2037 sig->group_exit_code = signr; 2038 2039 sig->group_stop_count = 0; 2040 2041 if (task_set_jobctl_pending(current, signr | gstop)) 2042 sig->group_stop_count++; 2043 2044 for (t = next_thread(current); t != current; 2045 t = next_thread(t)) { 2046 /* 2047 * Setting state to TASK_STOPPED for a group 2048 * stop is always done with the siglock held, 2049 * so this check has no races. 2050 */ 2051 if (!task_is_stopped(t) && 2052 task_set_jobctl_pending(t, signr | gstop)) { 2053 sig->group_stop_count++; 2054 if (likely(!(t->ptrace & PT_SEIZED))) 2055 signal_wake_up(t, 0); 2056 else 2057 ptrace_trap_notify(t); 2058 } 2059 } 2060 } 2061 2062 if (likely(!current->ptrace)) { 2063 int notify = 0; 2064 2065 /* 2066 * If there are no other threads in the group, or if there 2067 * is a group stop in progress and we are the last to stop, 2068 * report to the parent. 2069 */ 2070 if (task_participate_group_stop(current)) 2071 notify = CLD_STOPPED; 2072 2073 __set_current_state(TASK_STOPPED); 2074 spin_unlock_irq(¤t->sighand->siglock); 2075 2076 /* 2077 * Notify the parent of the group stop completion. Because 2078 * we're not holding either the siglock or tasklist_lock 2079 * here, ptracer may attach inbetween; however, this is for 2080 * group stop and should always be delivered to the real 2081 * parent of the group leader. The new ptracer will get 2082 * its notification when this task transitions into 2083 * TASK_TRACED. 2084 */ 2085 if (notify) { 2086 read_lock(&tasklist_lock); 2087 do_notify_parent_cldstop(current, false, notify); 2088 read_unlock(&tasklist_lock); 2089 } 2090 2091 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2092 schedule(); 2093 return true; 2094 } else { 2095 /* 2096 * While ptraced, group stop is handled by STOP trap. 2097 * Schedule it and let the caller deal with it. 2098 */ 2099 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2100 return false; 2101 } 2102 } 2103 2104 /** 2105 * do_jobctl_trap - take care of ptrace jobctl traps 2106 * 2107 * When PT_SEIZED, it's used for both group stop and explicit 2108 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2109 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2110 * the stop signal; otherwise, %SIGTRAP. 2111 * 2112 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2113 * number as exit_code and no siginfo. 2114 * 2115 * CONTEXT: 2116 * Must be called with @current->sighand->siglock held, which may be 2117 * released and re-acquired before returning with intervening sleep. 2118 */ 2119 static void do_jobctl_trap(void) 2120 { 2121 struct signal_struct *signal = current->signal; 2122 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2123 2124 if (current->ptrace & PT_SEIZED) { 2125 if (!signal->group_stop_count && 2126 !(signal->flags & SIGNAL_STOP_STOPPED)) 2127 signr = SIGTRAP; 2128 WARN_ON_ONCE(!signr); 2129 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2130 CLD_STOPPED); 2131 } else { 2132 WARN_ON_ONCE(!signr); 2133 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2134 current->exit_code = 0; 2135 } 2136 } 2137 2138 static int ptrace_signal(int signr, siginfo_t *info, 2139 struct pt_regs *regs, void *cookie) 2140 { 2141 ptrace_signal_deliver(regs, cookie); 2142 /* 2143 * We do not check sig_kernel_stop(signr) but set this marker 2144 * unconditionally because we do not know whether debugger will 2145 * change signr. This flag has no meaning unless we are going 2146 * to stop after return from ptrace_stop(). In this case it will 2147 * be checked in do_signal_stop(), we should only stop if it was 2148 * not cleared by SIGCONT while we were sleeping. See also the 2149 * comment in dequeue_signal(). 2150 */ 2151 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2152 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2153 2154 /* We're back. Did the debugger cancel the sig? */ 2155 signr = current->exit_code; 2156 if (signr == 0) 2157 return signr; 2158 2159 current->exit_code = 0; 2160 2161 /* 2162 * Update the siginfo structure if the signal has 2163 * changed. If the debugger wanted something 2164 * specific in the siginfo structure then it should 2165 * have updated *info via PTRACE_SETSIGINFO. 2166 */ 2167 if (signr != info->si_signo) { 2168 info->si_signo = signr; 2169 info->si_errno = 0; 2170 info->si_code = SI_USER; 2171 rcu_read_lock(); 2172 info->si_pid = task_pid_vnr(current->parent); 2173 info->si_uid = from_kuid_munged(current_user_ns(), 2174 task_uid(current->parent)); 2175 rcu_read_unlock(); 2176 } 2177 2178 /* If the (new) signal is now blocked, requeue it. */ 2179 if (sigismember(¤t->blocked, signr)) { 2180 specific_send_sig_info(signr, info, current); 2181 signr = 0; 2182 } 2183 2184 return signr; 2185 } 2186 2187 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, 2188 struct pt_regs *regs, void *cookie) 2189 { 2190 struct sighand_struct *sighand = current->sighand; 2191 struct signal_struct *signal = current->signal; 2192 int signr; 2193 2194 if (unlikely(uprobe_deny_signal())) 2195 return 0; 2196 2197 relock: 2198 /* 2199 * We'll jump back here after any time we were stopped in TASK_STOPPED. 2200 * While in TASK_STOPPED, we were considered "frozen enough". 2201 * Now that we woke up, it's crucial if we're supposed to be 2202 * frozen that we freeze now before running anything substantial. 2203 */ 2204 try_to_freeze(); 2205 2206 spin_lock_irq(&sighand->siglock); 2207 /* 2208 * Every stopped thread goes here after wakeup. Check to see if 2209 * we should notify the parent, prepare_signal(SIGCONT) encodes 2210 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2211 */ 2212 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2213 int why; 2214 2215 if (signal->flags & SIGNAL_CLD_CONTINUED) 2216 why = CLD_CONTINUED; 2217 else 2218 why = CLD_STOPPED; 2219 2220 signal->flags &= ~SIGNAL_CLD_MASK; 2221 2222 spin_unlock_irq(&sighand->siglock); 2223 2224 /* 2225 * Notify the parent that we're continuing. This event is 2226 * always per-process and doesn't make whole lot of sense 2227 * for ptracers, who shouldn't consume the state via 2228 * wait(2) either, but, for backward compatibility, notify 2229 * the ptracer of the group leader too unless it's gonna be 2230 * a duplicate. 2231 */ 2232 read_lock(&tasklist_lock); 2233 do_notify_parent_cldstop(current, false, why); 2234 2235 if (ptrace_reparented(current->group_leader)) 2236 do_notify_parent_cldstop(current->group_leader, 2237 true, why); 2238 read_unlock(&tasklist_lock); 2239 2240 goto relock; 2241 } 2242 2243 for (;;) { 2244 struct k_sigaction *ka; 2245 2246 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2247 do_signal_stop(0)) 2248 goto relock; 2249 2250 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) { 2251 do_jobctl_trap(); 2252 spin_unlock_irq(&sighand->siglock); 2253 goto relock; 2254 } 2255 2256 signr = dequeue_signal(current, ¤t->blocked, info); 2257 2258 if (!signr) 2259 break; /* will return 0 */ 2260 2261 if (unlikely(current->ptrace) && signr != SIGKILL) { 2262 signr = ptrace_signal(signr, info, 2263 regs, cookie); 2264 if (!signr) 2265 continue; 2266 } 2267 2268 ka = &sighand->action[signr-1]; 2269 2270 /* Trace actually delivered signals. */ 2271 trace_signal_deliver(signr, info, ka); 2272 2273 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2274 continue; 2275 if (ka->sa.sa_handler != SIG_DFL) { 2276 /* Run the handler. */ 2277 *return_ka = *ka; 2278 2279 if (ka->sa.sa_flags & SA_ONESHOT) 2280 ka->sa.sa_handler = SIG_DFL; 2281 2282 break; /* will return non-zero "signr" value */ 2283 } 2284 2285 /* 2286 * Now we are doing the default action for this signal. 2287 */ 2288 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2289 continue; 2290 2291 /* 2292 * Global init gets no signals it doesn't want. 2293 * Container-init gets no signals it doesn't want from same 2294 * container. 2295 * 2296 * Note that if global/container-init sees a sig_kernel_only() 2297 * signal here, the signal must have been generated internally 2298 * or must have come from an ancestor namespace. In either 2299 * case, the signal cannot be dropped. 2300 */ 2301 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2302 !sig_kernel_only(signr)) 2303 continue; 2304 2305 if (sig_kernel_stop(signr)) { 2306 /* 2307 * The default action is to stop all threads in 2308 * the thread group. The job control signals 2309 * do nothing in an orphaned pgrp, but SIGSTOP 2310 * always works. Note that siglock needs to be 2311 * dropped during the call to is_orphaned_pgrp() 2312 * because of lock ordering with tasklist_lock. 2313 * This allows an intervening SIGCONT to be posted. 2314 * We need to check for that and bail out if necessary. 2315 */ 2316 if (signr != SIGSTOP) { 2317 spin_unlock_irq(&sighand->siglock); 2318 2319 /* signals can be posted during this window */ 2320 2321 if (is_current_pgrp_orphaned()) 2322 goto relock; 2323 2324 spin_lock_irq(&sighand->siglock); 2325 } 2326 2327 if (likely(do_signal_stop(info->si_signo))) { 2328 /* It released the siglock. */ 2329 goto relock; 2330 } 2331 2332 /* 2333 * We didn't actually stop, due to a race 2334 * with SIGCONT or something like that. 2335 */ 2336 continue; 2337 } 2338 2339 spin_unlock_irq(&sighand->siglock); 2340 2341 /* 2342 * Anything else is fatal, maybe with a core dump. 2343 */ 2344 current->flags |= PF_SIGNALED; 2345 2346 if (sig_kernel_coredump(signr)) { 2347 if (print_fatal_signals) 2348 print_fatal_signal(regs, info->si_signo); 2349 /* 2350 * If it was able to dump core, this kills all 2351 * other threads in the group and synchronizes with 2352 * their demise. If we lost the race with another 2353 * thread getting here, it set group_exit_code 2354 * first and our do_group_exit call below will use 2355 * that value and ignore the one we pass it. 2356 */ 2357 do_coredump(info->si_signo, info->si_signo, regs); 2358 } 2359 2360 /* 2361 * Death signals, no core dump. 2362 */ 2363 do_group_exit(info->si_signo); 2364 /* NOTREACHED */ 2365 } 2366 spin_unlock_irq(&sighand->siglock); 2367 return signr; 2368 } 2369 2370 /** 2371 * block_sigmask - add @ka's signal mask to current->blocked 2372 * @ka: action for @signr 2373 * @signr: signal that has been successfully delivered 2374 * 2375 * This function should be called when a signal has succesfully been 2376 * delivered. It adds the mask of signals for @ka to current->blocked 2377 * so that they are blocked during the execution of the signal 2378 * handler. In addition, @signr will be blocked unless %SA_NODEFER is 2379 * set in @ka->sa.sa_flags. 2380 */ 2381 void block_sigmask(struct k_sigaction *ka, int signr) 2382 { 2383 sigset_t blocked; 2384 2385 sigorsets(&blocked, ¤t->blocked, &ka->sa.sa_mask); 2386 if (!(ka->sa.sa_flags & SA_NODEFER)) 2387 sigaddset(&blocked, signr); 2388 set_current_blocked(&blocked); 2389 } 2390 2391 /* 2392 * It could be that complete_signal() picked us to notify about the 2393 * group-wide signal. Other threads should be notified now to take 2394 * the shared signals in @which since we will not. 2395 */ 2396 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2397 { 2398 sigset_t retarget; 2399 struct task_struct *t; 2400 2401 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2402 if (sigisemptyset(&retarget)) 2403 return; 2404 2405 t = tsk; 2406 while_each_thread(tsk, t) { 2407 if (t->flags & PF_EXITING) 2408 continue; 2409 2410 if (!has_pending_signals(&retarget, &t->blocked)) 2411 continue; 2412 /* Remove the signals this thread can handle. */ 2413 sigandsets(&retarget, &retarget, &t->blocked); 2414 2415 if (!signal_pending(t)) 2416 signal_wake_up(t, 0); 2417 2418 if (sigisemptyset(&retarget)) 2419 break; 2420 } 2421 } 2422 2423 void exit_signals(struct task_struct *tsk) 2424 { 2425 int group_stop = 0; 2426 sigset_t unblocked; 2427 2428 /* 2429 * @tsk is about to have PF_EXITING set - lock out users which 2430 * expect stable threadgroup. 2431 */ 2432 threadgroup_change_begin(tsk); 2433 2434 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 2435 tsk->flags |= PF_EXITING; 2436 threadgroup_change_end(tsk); 2437 return; 2438 } 2439 2440 spin_lock_irq(&tsk->sighand->siglock); 2441 /* 2442 * From now this task is not visible for group-wide signals, 2443 * see wants_signal(), do_signal_stop(). 2444 */ 2445 tsk->flags |= PF_EXITING; 2446 2447 threadgroup_change_end(tsk); 2448 2449 if (!signal_pending(tsk)) 2450 goto out; 2451 2452 unblocked = tsk->blocked; 2453 signotset(&unblocked); 2454 retarget_shared_pending(tsk, &unblocked); 2455 2456 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2457 task_participate_group_stop(tsk)) 2458 group_stop = CLD_STOPPED; 2459 out: 2460 spin_unlock_irq(&tsk->sighand->siglock); 2461 2462 /* 2463 * If group stop has completed, deliver the notification. This 2464 * should always go to the real parent of the group leader. 2465 */ 2466 if (unlikely(group_stop)) { 2467 read_lock(&tasklist_lock); 2468 do_notify_parent_cldstop(tsk, false, group_stop); 2469 read_unlock(&tasklist_lock); 2470 } 2471 } 2472 2473 EXPORT_SYMBOL(recalc_sigpending); 2474 EXPORT_SYMBOL_GPL(dequeue_signal); 2475 EXPORT_SYMBOL(flush_signals); 2476 EXPORT_SYMBOL(force_sig); 2477 EXPORT_SYMBOL(send_sig); 2478 EXPORT_SYMBOL(send_sig_info); 2479 EXPORT_SYMBOL(sigprocmask); 2480 EXPORT_SYMBOL(block_all_signals); 2481 EXPORT_SYMBOL(unblock_all_signals); 2482 2483 2484 /* 2485 * System call entry points. 2486 */ 2487 2488 /** 2489 * sys_restart_syscall - restart a system call 2490 */ 2491 SYSCALL_DEFINE0(restart_syscall) 2492 { 2493 struct restart_block *restart = ¤t_thread_info()->restart_block; 2494 return restart->fn(restart); 2495 } 2496 2497 long do_no_restart_syscall(struct restart_block *param) 2498 { 2499 return -EINTR; 2500 } 2501 2502 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 2503 { 2504 if (signal_pending(tsk) && !thread_group_empty(tsk)) { 2505 sigset_t newblocked; 2506 /* A set of now blocked but previously unblocked signals. */ 2507 sigandnsets(&newblocked, newset, ¤t->blocked); 2508 retarget_shared_pending(tsk, &newblocked); 2509 } 2510 tsk->blocked = *newset; 2511 recalc_sigpending(); 2512 } 2513 2514 /** 2515 * set_current_blocked - change current->blocked mask 2516 * @newset: new mask 2517 * 2518 * It is wrong to change ->blocked directly, this helper should be used 2519 * to ensure the process can't miss a shared signal we are going to block. 2520 */ 2521 void set_current_blocked(const sigset_t *newset) 2522 { 2523 struct task_struct *tsk = current; 2524 2525 spin_lock_irq(&tsk->sighand->siglock); 2526 __set_task_blocked(tsk, newset); 2527 spin_unlock_irq(&tsk->sighand->siglock); 2528 } 2529 2530 /* 2531 * This is also useful for kernel threads that want to temporarily 2532 * (or permanently) block certain signals. 2533 * 2534 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2535 * interface happily blocks "unblockable" signals like SIGKILL 2536 * and friends. 2537 */ 2538 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2539 { 2540 struct task_struct *tsk = current; 2541 sigset_t newset; 2542 2543 /* Lockless, only current can change ->blocked, never from irq */ 2544 if (oldset) 2545 *oldset = tsk->blocked; 2546 2547 switch (how) { 2548 case SIG_BLOCK: 2549 sigorsets(&newset, &tsk->blocked, set); 2550 break; 2551 case SIG_UNBLOCK: 2552 sigandnsets(&newset, &tsk->blocked, set); 2553 break; 2554 case SIG_SETMASK: 2555 newset = *set; 2556 break; 2557 default: 2558 return -EINVAL; 2559 } 2560 2561 set_current_blocked(&newset); 2562 return 0; 2563 } 2564 2565 /** 2566 * sys_rt_sigprocmask - change the list of currently blocked signals 2567 * @how: whether to add, remove, or set signals 2568 * @nset: stores pending signals 2569 * @oset: previous value of signal mask if non-null 2570 * @sigsetsize: size of sigset_t type 2571 */ 2572 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 2573 sigset_t __user *, oset, size_t, sigsetsize) 2574 { 2575 sigset_t old_set, new_set; 2576 int error; 2577 2578 /* XXX: Don't preclude handling different sized sigset_t's. */ 2579 if (sigsetsize != sizeof(sigset_t)) 2580 return -EINVAL; 2581 2582 old_set = current->blocked; 2583 2584 if (nset) { 2585 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 2586 return -EFAULT; 2587 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2588 2589 error = sigprocmask(how, &new_set, NULL); 2590 if (error) 2591 return error; 2592 } 2593 2594 if (oset) { 2595 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 2596 return -EFAULT; 2597 } 2598 2599 return 0; 2600 } 2601 2602 long do_sigpending(void __user *set, unsigned long sigsetsize) 2603 { 2604 long error = -EINVAL; 2605 sigset_t pending; 2606 2607 if (sigsetsize > sizeof(sigset_t)) 2608 goto out; 2609 2610 spin_lock_irq(¤t->sighand->siglock); 2611 sigorsets(&pending, ¤t->pending.signal, 2612 ¤t->signal->shared_pending.signal); 2613 spin_unlock_irq(¤t->sighand->siglock); 2614 2615 /* Outside the lock because only this thread touches it. */ 2616 sigandsets(&pending, ¤t->blocked, &pending); 2617 2618 error = -EFAULT; 2619 if (!copy_to_user(set, &pending, sigsetsize)) 2620 error = 0; 2621 2622 out: 2623 return error; 2624 } 2625 2626 /** 2627 * sys_rt_sigpending - examine a pending signal that has been raised 2628 * while blocked 2629 * @set: stores pending signals 2630 * @sigsetsize: size of sigset_t type or larger 2631 */ 2632 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize) 2633 { 2634 return do_sigpending(set, sigsetsize); 2635 } 2636 2637 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2638 2639 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) 2640 { 2641 int err; 2642 2643 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2644 return -EFAULT; 2645 if (from->si_code < 0) 2646 return __copy_to_user(to, from, sizeof(siginfo_t)) 2647 ? -EFAULT : 0; 2648 /* 2649 * If you change siginfo_t structure, please be sure 2650 * this code is fixed accordingly. 2651 * Please remember to update the signalfd_copyinfo() function 2652 * inside fs/signalfd.c too, in case siginfo_t changes. 2653 * It should never copy any pad contained in the structure 2654 * to avoid security leaks, but must copy the generic 2655 * 3 ints plus the relevant union member. 2656 */ 2657 err = __put_user(from->si_signo, &to->si_signo); 2658 err |= __put_user(from->si_errno, &to->si_errno); 2659 err |= __put_user((short)from->si_code, &to->si_code); 2660 switch (from->si_code & __SI_MASK) { 2661 case __SI_KILL: 2662 err |= __put_user(from->si_pid, &to->si_pid); 2663 err |= __put_user(from->si_uid, &to->si_uid); 2664 break; 2665 case __SI_TIMER: 2666 err |= __put_user(from->si_tid, &to->si_tid); 2667 err |= __put_user(from->si_overrun, &to->si_overrun); 2668 err |= __put_user(from->si_ptr, &to->si_ptr); 2669 break; 2670 case __SI_POLL: 2671 err |= __put_user(from->si_band, &to->si_band); 2672 err |= __put_user(from->si_fd, &to->si_fd); 2673 break; 2674 case __SI_FAULT: 2675 err |= __put_user(from->si_addr, &to->si_addr); 2676 #ifdef __ARCH_SI_TRAPNO 2677 err |= __put_user(from->si_trapno, &to->si_trapno); 2678 #endif 2679 #ifdef BUS_MCEERR_AO 2680 /* 2681 * Other callers might not initialize the si_lsb field, 2682 * so check explicitly for the right codes here. 2683 */ 2684 if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO) 2685 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb); 2686 #endif 2687 break; 2688 case __SI_CHLD: 2689 err |= __put_user(from->si_pid, &to->si_pid); 2690 err |= __put_user(from->si_uid, &to->si_uid); 2691 err |= __put_user(from->si_status, &to->si_status); 2692 err |= __put_user(from->si_utime, &to->si_utime); 2693 err |= __put_user(from->si_stime, &to->si_stime); 2694 break; 2695 case __SI_RT: /* This is not generated by the kernel as of now. */ 2696 case __SI_MESGQ: /* But this is */ 2697 err |= __put_user(from->si_pid, &to->si_pid); 2698 err |= __put_user(from->si_uid, &to->si_uid); 2699 err |= __put_user(from->si_ptr, &to->si_ptr); 2700 break; 2701 #ifdef __ARCH_SIGSYS 2702 case __SI_SYS: 2703 err |= __put_user(from->si_call_addr, &to->si_call_addr); 2704 err |= __put_user(from->si_syscall, &to->si_syscall); 2705 err |= __put_user(from->si_arch, &to->si_arch); 2706 break; 2707 #endif 2708 default: /* this is just in case for now ... */ 2709 err |= __put_user(from->si_pid, &to->si_pid); 2710 err |= __put_user(from->si_uid, &to->si_uid); 2711 break; 2712 } 2713 return err; 2714 } 2715 2716 #endif 2717 2718 /** 2719 * do_sigtimedwait - wait for queued signals specified in @which 2720 * @which: queued signals to wait for 2721 * @info: if non-null, the signal's siginfo is returned here 2722 * @ts: upper bound on process time suspension 2723 */ 2724 int do_sigtimedwait(const sigset_t *which, siginfo_t *info, 2725 const struct timespec *ts) 2726 { 2727 struct task_struct *tsk = current; 2728 long timeout = MAX_SCHEDULE_TIMEOUT; 2729 sigset_t mask = *which; 2730 int sig; 2731 2732 if (ts) { 2733 if (!timespec_valid(ts)) 2734 return -EINVAL; 2735 timeout = timespec_to_jiffies(ts); 2736 /* 2737 * We can be close to the next tick, add another one 2738 * to ensure we will wait at least the time asked for. 2739 */ 2740 if (ts->tv_sec || ts->tv_nsec) 2741 timeout++; 2742 } 2743 2744 /* 2745 * Invert the set of allowed signals to get those we want to block. 2746 */ 2747 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2748 signotset(&mask); 2749 2750 spin_lock_irq(&tsk->sighand->siglock); 2751 sig = dequeue_signal(tsk, &mask, info); 2752 if (!sig && timeout) { 2753 /* 2754 * None ready, temporarily unblock those we're interested 2755 * while we are sleeping in so that we'll be awakened when 2756 * they arrive. Unblocking is always fine, we can avoid 2757 * set_current_blocked(). 2758 */ 2759 tsk->real_blocked = tsk->blocked; 2760 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 2761 recalc_sigpending(); 2762 spin_unlock_irq(&tsk->sighand->siglock); 2763 2764 timeout = schedule_timeout_interruptible(timeout); 2765 2766 spin_lock_irq(&tsk->sighand->siglock); 2767 __set_task_blocked(tsk, &tsk->real_blocked); 2768 siginitset(&tsk->real_blocked, 0); 2769 sig = dequeue_signal(tsk, &mask, info); 2770 } 2771 spin_unlock_irq(&tsk->sighand->siglock); 2772 2773 if (sig) 2774 return sig; 2775 return timeout ? -EINTR : -EAGAIN; 2776 } 2777 2778 /** 2779 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 2780 * in @uthese 2781 * @uthese: queued signals to wait for 2782 * @uinfo: if non-null, the signal's siginfo is returned here 2783 * @uts: upper bound on process time suspension 2784 * @sigsetsize: size of sigset_t type 2785 */ 2786 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 2787 siginfo_t __user *, uinfo, const struct timespec __user *, uts, 2788 size_t, sigsetsize) 2789 { 2790 sigset_t these; 2791 struct timespec ts; 2792 siginfo_t info; 2793 int ret; 2794 2795 /* XXX: Don't preclude handling different sized sigset_t's. */ 2796 if (sigsetsize != sizeof(sigset_t)) 2797 return -EINVAL; 2798 2799 if (copy_from_user(&these, uthese, sizeof(these))) 2800 return -EFAULT; 2801 2802 if (uts) { 2803 if (copy_from_user(&ts, uts, sizeof(ts))) 2804 return -EFAULT; 2805 } 2806 2807 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 2808 2809 if (ret > 0 && uinfo) { 2810 if (copy_siginfo_to_user(uinfo, &info)) 2811 ret = -EFAULT; 2812 } 2813 2814 return ret; 2815 } 2816 2817 /** 2818 * sys_kill - send a signal to a process 2819 * @pid: the PID of the process 2820 * @sig: signal to be sent 2821 */ 2822 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 2823 { 2824 struct siginfo info; 2825 2826 info.si_signo = sig; 2827 info.si_errno = 0; 2828 info.si_code = SI_USER; 2829 info.si_pid = task_tgid_vnr(current); 2830 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2831 2832 return kill_something_info(sig, &info, pid); 2833 } 2834 2835 static int 2836 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) 2837 { 2838 struct task_struct *p; 2839 int error = -ESRCH; 2840 2841 rcu_read_lock(); 2842 p = find_task_by_vpid(pid); 2843 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 2844 error = check_kill_permission(sig, info, p); 2845 /* 2846 * The null signal is a permissions and process existence 2847 * probe. No signal is actually delivered. 2848 */ 2849 if (!error && sig) { 2850 error = do_send_sig_info(sig, info, p, false); 2851 /* 2852 * If lock_task_sighand() failed we pretend the task 2853 * dies after receiving the signal. The window is tiny, 2854 * and the signal is private anyway. 2855 */ 2856 if (unlikely(error == -ESRCH)) 2857 error = 0; 2858 } 2859 } 2860 rcu_read_unlock(); 2861 2862 return error; 2863 } 2864 2865 static int do_tkill(pid_t tgid, pid_t pid, int sig) 2866 { 2867 struct siginfo info; 2868 2869 info.si_signo = sig; 2870 info.si_errno = 0; 2871 info.si_code = SI_TKILL; 2872 info.si_pid = task_tgid_vnr(current); 2873 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2874 2875 return do_send_specific(tgid, pid, sig, &info); 2876 } 2877 2878 /** 2879 * sys_tgkill - send signal to one specific thread 2880 * @tgid: the thread group ID of the thread 2881 * @pid: the PID of the thread 2882 * @sig: signal to be sent 2883 * 2884 * This syscall also checks the @tgid and returns -ESRCH even if the PID 2885 * exists but it's not belonging to the target process anymore. This 2886 * method solves the problem of threads exiting and PIDs getting reused. 2887 */ 2888 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 2889 { 2890 /* This is only valid for single tasks */ 2891 if (pid <= 0 || tgid <= 0) 2892 return -EINVAL; 2893 2894 return do_tkill(tgid, pid, sig); 2895 } 2896 2897 /** 2898 * sys_tkill - send signal to one specific task 2899 * @pid: the PID of the task 2900 * @sig: signal to be sent 2901 * 2902 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2903 */ 2904 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 2905 { 2906 /* This is only valid for single tasks */ 2907 if (pid <= 0) 2908 return -EINVAL; 2909 2910 return do_tkill(0, pid, sig); 2911 } 2912 2913 /** 2914 * sys_rt_sigqueueinfo - send signal information to a signal 2915 * @pid: the PID of the thread 2916 * @sig: signal to be sent 2917 * @uinfo: signal info to be sent 2918 */ 2919 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 2920 siginfo_t __user *, uinfo) 2921 { 2922 siginfo_t info; 2923 2924 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2925 return -EFAULT; 2926 2927 /* Not even root can pretend to send signals from the kernel. 2928 * Nor can they impersonate a kill()/tgkill(), which adds source info. 2929 */ 2930 if (info.si_code >= 0 || info.si_code == SI_TKILL) { 2931 /* We used to allow any < 0 si_code */ 2932 WARN_ON_ONCE(info.si_code < 0); 2933 return -EPERM; 2934 } 2935 info.si_signo = sig; 2936 2937 /* POSIX.1b doesn't mention process groups. */ 2938 return kill_proc_info(sig, &info, pid); 2939 } 2940 2941 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info) 2942 { 2943 /* This is only valid for single tasks */ 2944 if (pid <= 0 || tgid <= 0) 2945 return -EINVAL; 2946 2947 /* Not even root can pretend to send signals from the kernel. 2948 * Nor can they impersonate a kill()/tgkill(), which adds source info. 2949 */ 2950 if (info->si_code >= 0 || info->si_code == SI_TKILL) { 2951 /* We used to allow any < 0 si_code */ 2952 WARN_ON_ONCE(info->si_code < 0); 2953 return -EPERM; 2954 } 2955 info->si_signo = sig; 2956 2957 return do_send_specific(tgid, pid, sig, info); 2958 } 2959 2960 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 2961 siginfo_t __user *, uinfo) 2962 { 2963 siginfo_t info; 2964 2965 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2966 return -EFAULT; 2967 2968 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 2969 } 2970 2971 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 2972 { 2973 struct task_struct *t = current; 2974 struct k_sigaction *k; 2975 sigset_t mask; 2976 2977 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 2978 return -EINVAL; 2979 2980 k = &t->sighand->action[sig-1]; 2981 2982 spin_lock_irq(¤t->sighand->siglock); 2983 if (oact) 2984 *oact = *k; 2985 2986 if (act) { 2987 sigdelsetmask(&act->sa.sa_mask, 2988 sigmask(SIGKILL) | sigmask(SIGSTOP)); 2989 *k = *act; 2990 /* 2991 * POSIX 3.3.1.3: 2992 * "Setting a signal action to SIG_IGN for a signal that is 2993 * pending shall cause the pending signal to be discarded, 2994 * whether or not it is blocked." 2995 * 2996 * "Setting a signal action to SIG_DFL for a signal that is 2997 * pending and whose default action is to ignore the signal 2998 * (for example, SIGCHLD), shall cause the pending signal to 2999 * be discarded, whether or not it is blocked" 3000 */ 3001 if (sig_handler_ignored(sig_handler(t, sig), sig)) { 3002 sigemptyset(&mask); 3003 sigaddset(&mask, sig); 3004 rm_from_queue_full(&mask, &t->signal->shared_pending); 3005 do { 3006 rm_from_queue_full(&mask, &t->pending); 3007 t = next_thread(t); 3008 } while (t != current); 3009 } 3010 } 3011 3012 spin_unlock_irq(¤t->sighand->siglock); 3013 return 0; 3014 } 3015 3016 int 3017 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 3018 { 3019 stack_t oss; 3020 int error; 3021 3022 oss.ss_sp = (void __user *) current->sas_ss_sp; 3023 oss.ss_size = current->sas_ss_size; 3024 oss.ss_flags = sas_ss_flags(sp); 3025 3026 if (uss) { 3027 void __user *ss_sp; 3028 size_t ss_size; 3029 int ss_flags; 3030 3031 error = -EFAULT; 3032 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))) 3033 goto out; 3034 error = __get_user(ss_sp, &uss->ss_sp) | 3035 __get_user(ss_flags, &uss->ss_flags) | 3036 __get_user(ss_size, &uss->ss_size); 3037 if (error) 3038 goto out; 3039 3040 error = -EPERM; 3041 if (on_sig_stack(sp)) 3042 goto out; 3043 3044 error = -EINVAL; 3045 /* 3046 * Note - this code used to test ss_flags incorrectly: 3047 * old code may have been written using ss_flags==0 3048 * to mean ss_flags==SS_ONSTACK (as this was the only 3049 * way that worked) - this fix preserves that older 3050 * mechanism. 3051 */ 3052 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) 3053 goto out; 3054 3055 if (ss_flags == SS_DISABLE) { 3056 ss_size = 0; 3057 ss_sp = NULL; 3058 } else { 3059 error = -ENOMEM; 3060 if (ss_size < MINSIGSTKSZ) 3061 goto out; 3062 } 3063 3064 current->sas_ss_sp = (unsigned long) ss_sp; 3065 current->sas_ss_size = ss_size; 3066 } 3067 3068 error = 0; 3069 if (uoss) { 3070 error = -EFAULT; 3071 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss))) 3072 goto out; 3073 error = __put_user(oss.ss_sp, &uoss->ss_sp) | 3074 __put_user(oss.ss_size, &uoss->ss_size) | 3075 __put_user(oss.ss_flags, &uoss->ss_flags); 3076 } 3077 3078 out: 3079 return error; 3080 } 3081 3082 #ifdef __ARCH_WANT_SYS_SIGPENDING 3083 3084 /** 3085 * sys_sigpending - examine pending signals 3086 * @set: where mask of pending signal is returned 3087 */ 3088 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set) 3089 { 3090 return do_sigpending(set, sizeof(*set)); 3091 } 3092 3093 #endif 3094 3095 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 3096 /** 3097 * sys_sigprocmask - examine and change blocked signals 3098 * @how: whether to add, remove, or set signals 3099 * @nset: signals to add or remove (if non-null) 3100 * @oset: previous value of signal mask if non-null 3101 * 3102 * Some platforms have their own version with special arguments; 3103 * others support only sys_rt_sigprocmask. 3104 */ 3105 3106 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 3107 old_sigset_t __user *, oset) 3108 { 3109 old_sigset_t old_set, new_set; 3110 sigset_t new_blocked; 3111 3112 old_set = current->blocked.sig[0]; 3113 3114 if (nset) { 3115 if (copy_from_user(&new_set, nset, sizeof(*nset))) 3116 return -EFAULT; 3117 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP)); 3118 3119 new_blocked = current->blocked; 3120 3121 switch (how) { 3122 case SIG_BLOCK: 3123 sigaddsetmask(&new_blocked, new_set); 3124 break; 3125 case SIG_UNBLOCK: 3126 sigdelsetmask(&new_blocked, new_set); 3127 break; 3128 case SIG_SETMASK: 3129 new_blocked.sig[0] = new_set; 3130 break; 3131 default: 3132 return -EINVAL; 3133 } 3134 3135 set_current_blocked(&new_blocked); 3136 } 3137 3138 if (oset) { 3139 if (copy_to_user(oset, &old_set, sizeof(*oset))) 3140 return -EFAULT; 3141 } 3142 3143 return 0; 3144 } 3145 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 3146 3147 #ifdef __ARCH_WANT_SYS_RT_SIGACTION 3148 /** 3149 * sys_rt_sigaction - alter an action taken by a process 3150 * @sig: signal to be sent 3151 * @act: new sigaction 3152 * @oact: used to save the previous sigaction 3153 * @sigsetsize: size of sigset_t type 3154 */ 3155 SYSCALL_DEFINE4(rt_sigaction, int, sig, 3156 const struct sigaction __user *, act, 3157 struct sigaction __user *, oact, 3158 size_t, sigsetsize) 3159 { 3160 struct k_sigaction new_sa, old_sa; 3161 int ret = -EINVAL; 3162 3163 /* XXX: Don't preclude handling different sized sigset_t's. */ 3164 if (sigsetsize != sizeof(sigset_t)) 3165 goto out; 3166 3167 if (act) { 3168 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 3169 return -EFAULT; 3170 } 3171 3172 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 3173 3174 if (!ret && oact) { 3175 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 3176 return -EFAULT; 3177 } 3178 out: 3179 return ret; 3180 } 3181 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */ 3182 3183 #ifdef __ARCH_WANT_SYS_SGETMASK 3184 3185 /* 3186 * For backwards compatibility. Functionality superseded by sigprocmask. 3187 */ 3188 SYSCALL_DEFINE0(sgetmask) 3189 { 3190 /* SMP safe */ 3191 return current->blocked.sig[0]; 3192 } 3193 3194 SYSCALL_DEFINE1(ssetmask, int, newmask) 3195 { 3196 int old = current->blocked.sig[0]; 3197 sigset_t newset; 3198 3199 siginitset(&newset, newmask & ~(sigmask(SIGKILL) | sigmask(SIGSTOP))); 3200 set_current_blocked(&newset); 3201 3202 return old; 3203 } 3204 #endif /* __ARCH_WANT_SGETMASK */ 3205 3206 #ifdef __ARCH_WANT_SYS_SIGNAL 3207 /* 3208 * For backwards compatibility. Functionality superseded by sigaction. 3209 */ 3210 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 3211 { 3212 struct k_sigaction new_sa, old_sa; 3213 int ret; 3214 3215 new_sa.sa.sa_handler = handler; 3216 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 3217 sigemptyset(&new_sa.sa.sa_mask); 3218 3219 ret = do_sigaction(sig, &new_sa, &old_sa); 3220 3221 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 3222 } 3223 #endif /* __ARCH_WANT_SYS_SIGNAL */ 3224 3225 #ifdef __ARCH_WANT_SYS_PAUSE 3226 3227 SYSCALL_DEFINE0(pause) 3228 { 3229 while (!signal_pending(current)) { 3230 current->state = TASK_INTERRUPTIBLE; 3231 schedule(); 3232 } 3233 return -ERESTARTNOHAND; 3234 } 3235 3236 #endif 3237 3238 #ifdef HAVE_SET_RESTORE_SIGMASK 3239 int sigsuspend(sigset_t *set) 3240 { 3241 sigdelsetmask(set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3242 3243 current->saved_sigmask = current->blocked; 3244 set_current_blocked(set); 3245 3246 current->state = TASK_INTERRUPTIBLE; 3247 schedule(); 3248 set_restore_sigmask(); 3249 return -ERESTARTNOHAND; 3250 } 3251 #endif 3252 3253 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND 3254 /** 3255 * sys_rt_sigsuspend - replace the signal mask for a value with the 3256 * @unewset value until a signal is received 3257 * @unewset: new signal mask value 3258 * @sigsetsize: size of sigset_t type 3259 */ 3260 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 3261 { 3262 sigset_t newset; 3263 3264 /* XXX: Don't preclude handling different sized sigset_t's. */ 3265 if (sigsetsize != sizeof(sigset_t)) 3266 return -EINVAL; 3267 3268 if (copy_from_user(&newset, unewset, sizeof(newset))) 3269 return -EFAULT; 3270 return sigsuspend(&newset); 3271 } 3272 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */ 3273 3274 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma) 3275 { 3276 return NULL; 3277 } 3278 3279 void __init signals_init(void) 3280 { 3281 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 3282 } 3283 3284 #ifdef CONFIG_KGDB_KDB 3285 #include <linux/kdb.h> 3286 /* 3287 * kdb_send_sig_info - Allows kdb to send signals without exposing 3288 * signal internals. This function checks if the required locks are 3289 * available before calling the main signal code, to avoid kdb 3290 * deadlocks. 3291 */ 3292 void 3293 kdb_send_sig_info(struct task_struct *t, struct siginfo *info) 3294 { 3295 static struct task_struct *kdb_prev_t; 3296 int sig, new_t; 3297 if (!spin_trylock(&t->sighand->siglock)) { 3298 kdb_printf("Can't do kill command now.\n" 3299 "The sigmask lock is held somewhere else in " 3300 "kernel, try again later\n"); 3301 return; 3302 } 3303 spin_unlock(&t->sighand->siglock); 3304 new_t = kdb_prev_t != t; 3305 kdb_prev_t = t; 3306 if (t->state != TASK_RUNNING && new_t) { 3307 kdb_printf("Process is not RUNNING, sending a signal from " 3308 "kdb risks deadlock\n" 3309 "on the run queue locks. " 3310 "The signal has _not_ been sent.\n" 3311 "Reissue the kill command if you want to risk " 3312 "the deadlock.\n"); 3313 return; 3314 } 3315 sig = info->si_signo; 3316 if (send_sig_info(sig, info, t)) 3317 kdb_printf("Fail to deliver Signal %d to process %d.\n", 3318 sig, t->pid); 3319 else 3320 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 3321 } 3322 #endif /* CONFIG_KGDB_KDB */ 3323