1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/config.h> 14 #include <linux/slab.h> 15 #include <linux/module.h> 16 #include <linux/smp_lock.h> 17 #include <linux/init.h> 18 #include <linux/sched.h> 19 #include <linux/fs.h> 20 #include <linux/tty.h> 21 #include <linux/binfmts.h> 22 #include <linux/security.h> 23 #include <linux/syscalls.h> 24 #include <linux/ptrace.h> 25 #include <linux/posix-timers.h> 26 #include <linux/signal.h> 27 #include <linux/audit.h> 28 #include <linux/capability.h> 29 #include <asm/param.h> 30 #include <asm/uaccess.h> 31 #include <asm/unistd.h> 32 #include <asm/siginfo.h> 33 34 /* 35 * SLAB caches for signal bits. 36 */ 37 38 static kmem_cache_t *sigqueue_cachep; 39 40 /* 41 * In POSIX a signal is sent either to a specific thread (Linux task) 42 * or to the process as a whole (Linux thread group). How the signal 43 * is sent determines whether it's to one thread or the whole group, 44 * which determines which signal mask(s) are involved in blocking it 45 * from being delivered until later. When the signal is delivered, 46 * either it's caught or ignored by a user handler or it has a default 47 * effect that applies to the whole thread group (POSIX process). 48 * 49 * The possible effects an unblocked signal set to SIG_DFL can have are: 50 * ignore - Nothing Happens 51 * terminate - kill the process, i.e. all threads in the group, 52 * similar to exit_group. The group leader (only) reports 53 * WIFSIGNALED status to its parent. 54 * coredump - write a core dump file describing all threads using 55 * the same mm and then kill all those threads 56 * stop - stop all the threads in the group, i.e. TASK_STOPPED state 57 * 58 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored. 59 * Other signals when not blocked and set to SIG_DFL behaves as follows. 60 * The job control signals also have other special effects. 61 * 62 * +--------------------+------------------+ 63 * | POSIX signal | default action | 64 * +--------------------+------------------+ 65 * | SIGHUP | terminate | 66 * | SIGINT | terminate | 67 * | SIGQUIT | coredump | 68 * | SIGILL | coredump | 69 * | SIGTRAP | coredump | 70 * | SIGABRT/SIGIOT | coredump | 71 * | SIGBUS | coredump | 72 * | SIGFPE | coredump | 73 * | SIGKILL | terminate(+) | 74 * | SIGUSR1 | terminate | 75 * | SIGSEGV | coredump | 76 * | SIGUSR2 | terminate | 77 * | SIGPIPE | terminate | 78 * | SIGALRM | terminate | 79 * | SIGTERM | terminate | 80 * | SIGCHLD | ignore | 81 * | SIGCONT | ignore(*) | 82 * | SIGSTOP | stop(*)(+) | 83 * | SIGTSTP | stop(*) | 84 * | SIGTTIN | stop(*) | 85 * | SIGTTOU | stop(*) | 86 * | SIGURG | ignore | 87 * | SIGXCPU | coredump | 88 * | SIGXFSZ | coredump | 89 * | SIGVTALRM | terminate | 90 * | SIGPROF | terminate | 91 * | SIGPOLL/SIGIO | terminate | 92 * | SIGSYS/SIGUNUSED | coredump | 93 * | SIGSTKFLT | terminate | 94 * | SIGWINCH | ignore | 95 * | SIGPWR | terminate | 96 * | SIGRTMIN-SIGRTMAX | terminate | 97 * +--------------------+------------------+ 98 * | non-POSIX signal | default action | 99 * +--------------------+------------------+ 100 * | SIGEMT | coredump | 101 * +--------------------+------------------+ 102 * 103 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default". 104 * (*) Special job control effects: 105 * When SIGCONT is sent, it resumes the process (all threads in the group) 106 * from TASK_STOPPED state and also clears any pending/queued stop signals 107 * (any of those marked with "stop(*)"). This happens regardless of blocking, 108 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears 109 * any pending/queued SIGCONT signals; this happens regardless of blocking, 110 * catching, or ignored the stop signal, though (except for SIGSTOP) the 111 * default action of stopping the process may happen later or never. 112 */ 113 114 #ifdef SIGEMT 115 #define M_SIGEMT M(SIGEMT) 116 #else 117 #define M_SIGEMT 0 118 #endif 119 120 #if SIGRTMIN > BITS_PER_LONG 121 #define M(sig) (1ULL << ((sig)-1)) 122 #else 123 #define M(sig) (1UL << ((sig)-1)) 124 #endif 125 #define T(sig, mask) (M(sig) & (mask)) 126 127 #define SIG_KERNEL_ONLY_MASK (\ 128 M(SIGKILL) | M(SIGSTOP) ) 129 130 #define SIG_KERNEL_STOP_MASK (\ 131 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) ) 132 133 #define SIG_KERNEL_COREDUMP_MASK (\ 134 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \ 135 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \ 136 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT ) 137 138 #define SIG_KERNEL_IGNORE_MASK (\ 139 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) ) 140 141 #define sig_kernel_only(sig) \ 142 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK)) 143 #define sig_kernel_coredump(sig) \ 144 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK)) 145 #define sig_kernel_ignore(sig) \ 146 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK)) 147 #define sig_kernel_stop(sig) \ 148 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK)) 149 150 #define sig_user_defined(t, signr) \ 151 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \ 152 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN)) 153 154 #define sig_fatal(t, signr) \ 155 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \ 156 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL) 157 158 static int sig_ignored(struct task_struct *t, int sig) 159 { 160 void __user * handler; 161 162 /* 163 * Tracers always want to know about signals.. 164 */ 165 if (t->ptrace & PT_PTRACED) 166 return 0; 167 168 /* 169 * Blocked signals are never ignored, since the 170 * signal handler may change by the time it is 171 * unblocked. 172 */ 173 if (sigismember(&t->blocked, sig)) 174 return 0; 175 176 /* Is it explicitly or implicitly ignored? */ 177 handler = t->sighand->action[sig-1].sa.sa_handler; 178 return handler == SIG_IGN || 179 (handler == SIG_DFL && sig_kernel_ignore(sig)); 180 } 181 182 /* 183 * Re-calculate pending state from the set of locally pending 184 * signals, globally pending signals, and blocked signals. 185 */ 186 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 187 { 188 unsigned long ready; 189 long i; 190 191 switch (_NSIG_WORDS) { 192 default: 193 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 194 ready |= signal->sig[i] &~ blocked->sig[i]; 195 break; 196 197 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 198 ready |= signal->sig[2] &~ blocked->sig[2]; 199 ready |= signal->sig[1] &~ blocked->sig[1]; 200 ready |= signal->sig[0] &~ blocked->sig[0]; 201 break; 202 203 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 204 ready |= signal->sig[0] &~ blocked->sig[0]; 205 break; 206 207 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 208 } 209 return ready != 0; 210 } 211 212 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 213 214 fastcall void recalc_sigpending_tsk(struct task_struct *t) 215 { 216 if (t->signal->group_stop_count > 0 || 217 (freezing(t)) || 218 PENDING(&t->pending, &t->blocked) || 219 PENDING(&t->signal->shared_pending, &t->blocked)) 220 set_tsk_thread_flag(t, TIF_SIGPENDING); 221 else 222 clear_tsk_thread_flag(t, TIF_SIGPENDING); 223 } 224 225 void recalc_sigpending(void) 226 { 227 recalc_sigpending_tsk(current); 228 } 229 230 /* Given the mask, find the first available signal that should be serviced. */ 231 232 static int 233 next_signal(struct sigpending *pending, sigset_t *mask) 234 { 235 unsigned long i, *s, *m, x; 236 int sig = 0; 237 238 s = pending->signal.sig; 239 m = mask->sig; 240 switch (_NSIG_WORDS) { 241 default: 242 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m) 243 if ((x = *s &~ *m) != 0) { 244 sig = ffz(~x) + i*_NSIG_BPW + 1; 245 break; 246 } 247 break; 248 249 case 2: if ((x = s[0] &~ m[0]) != 0) 250 sig = 1; 251 else if ((x = s[1] &~ m[1]) != 0) 252 sig = _NSIG_BPW + 1; 253 else 254 break; 255 sig += ffz(~x); 256 break; 257 258 case 1: if ((x = *s &~ *m) != 0) 259 sig = ffz(~x) + 1; 260 break; 261 } 262 263 return sig; 264 } 265 266 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags, 267 int override_rlimit) 268 { 269 struct sigqueue *q = NULL; 270 271 atomic_inc(&t->user->sigpending); 272 if (override_rlimit || 273 atomic_read(&t->user->sigpending) <= 274 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur) 275 q = kmem_cache_alloc(sigqueue_cachep, flags); 276 if (unlikely(q == NULL)) { 277 atomic_dec(&t->user->sigpending); 278 } else { 279 INIT_LIST_HEAD(&q->list); 280 q->flags = 0; 281 q->user = get_uid(t->user); 282 } 283 return(q); 284 } 285 286 static void __sigqueue_free(struct sigqueue *q) 287 { 288 if (q->flags & SIGQUEUE_PREALLOC) 289 return; 290 atomic_dec(&q->user->sigpending); 291 free_uid(q->user); 292 kmem_cache_free(sigqueue_cachep, q); 293 } 294 295 static void flush_sigqueue(struct sigpending *queue) 296 { 297 struct sigqueue *q; 298 299 sigemptyset(&queue->signal); 300 while (!list_empty(&queue->list)) { 301 q = list_entry(queue->list.next, struct sigqueue , list); 302 list_del_init(&q->list); 303 __sigqueue_free(q); 304 } 305 } 306 307 /* 308 * Flush all pending signals for a task. 309 */ 310 311 void 312 flush_signals(struct task_struct *t) 313 { 314 unsigned long flags; 315 316 spin_lock_irqsave(&t->sighand->siglock, flags); 317 clear_tsk_thread_flag(t,TIF_SIGPENDING); 318 flush_sigqueue(&t->pending); 319 flush_sigqueue(&t->signal->shared_pending); 320 spin_unlock_irqrestore(&t->sighand->siglock, flags); 321 } 322 323 /* 324 * This function expects the tasklist_lock write-locked. 325 */ 326 void __exit_sighand(struct task_struct *tsk) 327 { 328 struct sighand_struct * sighand = tsk->sighand; 329 330 /* Ok, we're done with the signal handlers */ 331 tsk->sighand = NULL; 332 if (atomic_dec_and_test(&sighand->count)) 333 sighand_free(sighand); 334 } 335 336 void exit_sighand(struct task_struct *tsk) 337 { 338 write_lock_irq(&tasklist_lock); 339 rcu_read_lock(); 340 if (tsk->sighand != NULL) { 341 struct sighand_struct *sighand = rcu_dereference(tsk->sighand); 342 spin_lock(&sighand->siglock); 343 __exit_sighand(tsk); 344 spin_unlock(&sighand->siglock); 345 } 346 rcu_read_unlock(); 347 write_unlock_irq(&tasklist_lock); 348 } 349 350 /* 351 * This function expects the tasklist_lock write-locked. 352 */ 353 void __exit_signal(struct task_struct *tsk) 354 { 355 struct signal_struct * sig = tsk->signal; 356 struct sighand_struct * sighand; 357 358 if (!sig) 359 BUG(); 360 if (!atomic_read(&sig->count)) 361 BUG(); 362 rcu_read_lock(); 363 sighand = rcu_dereference(tsk->sighand); 364 spin_lock(&sighand->siglock); 365 posix_cpu_timers_exit(tsk); 366 if (atomic_dec_and_test(&sig->count)) { 367 posix_cpu_timers_exit_group(tsk); 368 tsk->signal = NULL; 369 __exit_sighand(tsk); 370 spin_unlock(&sighand->siglock); 371 flush_sigqueue(&sig->shared_pending); 372 } else { 373 /* 374 * If there is any task waiting for the group exit 375 * then notify it: 376 */ 377 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) { 378 wake_up_process(sig->group_exit_task); 379 sig->group_exit_task = NULL; 380 } 381 if (tsk == sig->curr_target) 382 sig->curr_target = next_thread(tsk); 383 tsk->signal = NULL; 384 /* 385 * Accumulate here the counters for all threads but the 386 * group leader as they die, so they can be added into 387 * the process-wide totals when those are taken. 388 * The group leader stays around as a zombie as long 389 * as there are other threads. When it gets reaped, 390 * the exit.c code will add its counts into these totals. 391 * We won't ever get here for the group leader, since it 392 * will have been the last reference on the signal_struct. 393 */ 394 sig->utime = cputime_add(sig->utime, tsk->utime); 395 sig->stime = cputime_add(sig->stime, tsk->stime); 396 sig->min_flt += tsk->min_flt; 397 sig->maj_flt += tsk->maj_flt; 398 sig->nvcsw += tsk->nvcsw; 399 sig->nivcsw += tsk->nivcsw; 400 sig->sched_time += tsk->sched_time; 401 __exit_sighand(tsk); 402 spin_unlock(&sighand->siglock); 403 sig = NULL; /* Marker for below. */ 404 } 405 rcu_read_unlock(); 406 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 407 flush_sigqueue(&tsk->pending); 408 if (sig) { 409 /* 410 * We are cleaning up the signal_struct here. 411 */ 412 exit_thread_group_keys(sig); 413 kmem_cache_free(signal_cachep, sig); 414 } 415 } 416 417 void exit_signal(struct task_struct *tsk) 418 { 419 atomic_dec(&tsk->signal->live); 420 421 write_lock_irq(&tasklist_lock); 422 __exit_signal(tsk); 423 write_unlock_irq(&tasklist_lock); 424 } 425 426 /* 427 * Flush all handlers for a task. 428 */ 429 430 void 431 flush_signal_handlers(struct task_struct *t, int force_default) 432 { 433 int i; 434 struct k_sigaction *ka = &t->sighand->action[0]; 435 for (i = _NSIG ; i != 0 ; i--) { 436 if (force_default || ka->sa.sa_handler != SIG_IGN) 437 ka->sa.sa_handler = SIG_DFL; 438 ka->sa.sa_flags = 0; 439 sigemptyset(&ka->sa.sa_mask); 440 ka++; 441 } 442 } 443 444 445 /* Notify the system that a driver wants to block all signals for this 446 * process, and wants to be notified if any signals at all were to be 447 * sent/acted upon. If the notifier routine returns non-zero, then the 448 * signal will be acted upon after all. If the notifier routine returns 0, 449 * then then signal will be blocked. Only one block per process is 450 * allowed. priv is a pointer to private data that the notifier routine 451 * can use to determine if the signal should be blocked or not. */ 452 453 void 454 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) 455 { 456 unsigned long flags; 457 458 spin_lock_irqsave(¤t->sighand->siglock, flags); 459 current->notifier_mask = mask; 460 current->notifier_data = priv; 461 current->notifier = notifier; 462 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 463 } 464 465 /* Notify the system that blocking has ended. */ 466 467 void 468 unblock_all_signals(void) 469 { 470 unsigned long flags; 471 472 spin_lock_irqsave(¤t->sighand->siglock, flags); 473 current->notifier = NULL; 474 current->notifier_data = NULL; 475 recalc_sigpending(); 476 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 477 } 478 479 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info) 480 { 481 struct sigqueue *q, *first = NULL; 482 int still_pending = 0; 483 484 if (unlikely(!sigismember(&list->signal, sig))) 485 return 0; 486 487 /* 488 * Collect the siginfo appropriate to this signal. Check if 489 * there is another siginfo for the same signal. 490 */ 491 list_for_each_entry(q, &list->list, list) { 492 if (q->info.si_signo == sig) { 493 if (first) { 494 still_pending = 1; 495 break; 496 } 497 first = q; 498 } 499 } 500 if (first) { 501 list_del_init(&first->list); 502 copy_siginfo(info, &first->info); 503 __sigqueue_free(first); 504 if (!still_pending) 505 sigdelset(&list->signal, sig); 506 } else { 507 508 /* Ok, it wasn't in the queue. This must be 509 a fast-pathed signal or we must have been 510 out of queue space. So zero out the info. 511 */ 512 sigdelset(&list->signal, sig); 513 info->si_signo = sig; 514 info->si_errno = 0; 515 info->si_code = 0; 516 info->si_pid = 0; 517 info->si_uid = 0; 518 } 519 return 1; 520 } 521 522 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 523 siginfo_t *info) 524 { 525 int sig = 0; 526 527 sig = next_signal(pending, mask); 528 if (sig) { 529 if (current->notifier) { 530 if (sigismember(current->notifier_mask, sig)) { 531 if (!(current->notifier)(current->notifier_data)) { 532 clear_thread_flag(TIF_SIGPENDING); 533 return 0; 534 } 535 } 536 } 537 538 if (!collect_signal(sig, pending, info)) 539 sig = 0; 540 541 } 542 recalc_sigpending(); 543 544 return sig; 545 } 546 547 /* 548 * Dequeue a signal and return the element to the caller, which is 549 * expected to free it. 550 * 551 * All callers have to hold the siglock. 552 */ 553 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 554 { 555 int signr = __dequeue_signal(&tsk->pending, mask, info); 556 if (!signr) 557 signr = __dequeue_signal(&tsk->signal->shared_pending, 558 mask, info); 559 if (signr && unlikely(sig_kernel_stop(signr))) { 560 /* 561 * Set a marker that we have dequeued a stop signal. Our 562 * caller might release the siglock and then the pending 563 * stop signal it is about to process is no longer in the 564 * pending bitmasks, but must still be cleared by a SIGCONT 565 * (and overruled by a SIGKILL). So those cases clear this 566 * shared flag after we've set it. Note that this flag may 567 * remain set after the signal we return is ignored or 568 * handled. That doesn't matter because its only purpose 569 * is to alert stop-signal processing code when another 570 * processor has come along and cleared the flag. 571 */ 572 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) 573 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED; 574 } 575 if ( signr && 576 ((info->si_code & __SI_MASK) == __SI_TIMER) && 577 info->si_sys_private){ 578 /* 579 * Release the siglock to ensure proper locking order 580 * of timer locks outside of siglocks. Note, we leave 581 * irqs disabled here, since the posix-timers code is 582 * about to disable them again anyway. 583 */ 584 spin_unlock(&tsk->sighand->siglock); 585 do_schedule_next_timer(info); 586 spin_lock(&tsk->sighand->siglock); 587 } 588 return signr; 589 } 590 591 /* 592 * Tell a process that it has a new active signal.. 593 * 594 * NOTE! we rely on the previous spin_lock to 595 * lock interrupts for us! We can only be called with 596 * "siglock" held, and the local interrupt must 597 * have been disabled when that got acquired! 598 * 599 * No need to set need_resched since signal event passing 600 * goes through ->blocked 601 */ 602 void signal_wake_up(struct task_struct *t, int resume) 603 { 604 unsigned int mask; 605 606 set_tsk_thread_flag(t, TIF_SIGPENDING); 607 608 /* 609 * For SIGKILL, we want to wake it up in the stopped/traced case. 610 * We don't check t->state here because there is a race with it 611 * executing another processor and just now entering stopped state. 612 * By using wake_up_state, we ensure the process will wake up and 613 * handle its death signal. 614 */ 615 mask = TASK_INTERRUPTIBLE; 616 if (resume) 617 mask |= TASK_STOPPED | TASK_TRACED; 618 if (!wake_up_state(t, mask)) 619 kick_process(t); 620 } 621 622 /* 623 * Remove signals in mask from the pending set and queue. 624 * Returns 1 if any signals were found. 625 * 626 * All callers must be holding the siglock. 627 * 628 * This version takes a sigset mask and looks at all signals, 629 * not just those in the first mask word. 630 */ 631 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s) 632 { 633 struct sigqueue *q, *n; 634 sigset_t m; 635 636 sigandsets(&m, mask, &s->signal); 637 if (sigisemptyset(&m)) 638 return 0; 639 640 signandsets(&s->signal, &s->signal, mask); 641 list_for_each_entry_safe(q, n, &s->list, list) { 642 if (sigismember(mask, q->info.si_signo)) { 643 list_del_init(&q->list); 644 __sigqueue_free(q); 645 } 646 } 647 return 1; 648 } 649 /* 650 * Remove signals in mask from the pending set and queue. 651 * Returns 1 if any signals were found. 652 * 653 * All callers must be holding the siglock. 654 */ 655 static int rm_from_queue(unsigned long mask, struct sigpending *s) 656 { 657 struct sigqueue *q, *n; 658 659 if (!sigtestsetmask(&s->signal, mask)) 660 return 0; 661 662 sigdelsetmask(&s->signal, mask); 663 list_for_each_entry_safe(q, n, &s->list, list) { 664 if (q->info.si_signo < SIGRTMIN && 665 (mask & sigmask(q->info.si_signo))) { 666 list_del_init(&q->list); 667 __sigqueue_free(q); 668 } 669 } 670 return 1; 671 } 672 673 /* 674 * Bad permissions for sending the signal 675 */ 676 static int check_kill_permission(int sig, struct siginfo *info, 677 struct task_struct *t) 678 { 679 int error = -EINVAL; 680 if (!valid_signal(sig)) 681 return error; 682 error = -EPERM; 683 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) 684 && ((sig != SIGCONT) || 685 (current->signal->session != t->signal->session)) 686 && (current->euid ^ t->suid) && (current->euid ^ t->uid) 687 && (current->uid ^ t->suid) && (current->uid ^ t->uid) 688 && !capable(CAP_KILL)) 689 return error; 690 691 error = security_task_kill(t, info, sig); 692 if (!error) 693 audit_signal_info(sig, t); /* Let audit system see the signal */ 694 return error; 695 } 696 697 /* forward decl */ 698 static void do_notify_parent_cldstop(struct task_struct *tsk, 699 int to_self, 700 int why); 701 702 /* 703 * Handle magic process-wide effects of stop/continue signals. 704 * Unlike the signal actions, these happen immediately at signal-generation 705 * time regardless of blocking, ignoring, or handling. This does the 706 * actual continuing for SIGCONT, but not the actual stopping for stop 707 * signals. The process stop is done as a signal action for SIG_DFL. 708 */ 709 static void handle_stop_signal(int sig, struct task_struct *p) 710 { 711 struct task_struct *t; 712 713 if (p->signal->flags & SIGNAL_GROUP_EXIT) 714 /* 715 * The process is in the middle of dying already. 716 */ 717 return; 718 719 if (sig_kernel_stop(sig)) { 720 /* 721 * This is a stop signal. Remove SIGCONT from all queues. 722 */ 723 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending); 724 t = p; 725 do { 726 rm_from_queue(sigmask(SIGCONT), &t->pending); 727 t = next_thread(t); 728 } while (t != p); 729 } else if (sig == SIGCONT) { 730 /* 731 * Remove all stop signals from all queues, 732 * and wake all threads. 733 */ 734 if (unlikely(p->signal->group_stop_count > 0)) { 735 /* 736 * There was a group stop in progress. We'll 737 * pretend it finished before we got here. We are 738 * obliged to report it to the parent: if the 739 * SIGSTOP happened "after" this SIGCONT, then it 740 * would have cleared this pending SIGCONT. If it 741 * happened "before" this SIGCONT, then the parent 742 * got the SIGCHLD about the stop finishing before 743 * the continue happened. We do the notification 744 * now, and it's as if the stop had finished and 745 * the SIGCHLD was pending on entry to this kill. 746 */ 747 p->signal->group_stop_count = 0; 748 p->signal->flags = SIGNAL_STOP_CONTINUED; 749 spin_unlock(&p->sighand->siglock); 750 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_STOPPED); 751 spin_lock(&p->sighand->siglock); 752 } 753 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); 754 t = p; 755 do { 756 unsigned int state; 757 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 758 759 /* 760 * If there is a handler for SIGCONT, we must make 761 * sure that no thread returns to user mode before 762 * we post the signal, in case it was the only 763 * thread eligible to run the signal handler--then 764 * it must not do anything between resuming and 765 * running the handler. With the TIF_SIGPENDING 766 * flag set, the thread will pause and acquire the 767 * siglock that we hold now and until we've queued 768 * the pending signal. 769 * 770 * Wake up the stopped thread _after_ setting 771 * TIF_SIGPENDING 772 */ 773 state = TASK_STOPPED; 774 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) { 775 set_tsk_thread_flag(t, TIF_SIGPENDING); 776 state |= TASK_INTERRUPTIBLE; 777 } 778 wake_up_state(t, state); 779 780 t = next_thread(t); 781 } while (t != p); 782 783 if (p->signal->flags & SIGNAL_STOP_STOPPED) { 784 /* 785 * We were in fact stopped, and are now continued. 786 * Notify the parent with CLD_CONTINUED. 787 */ 788 p->signal->flags = SIGNAL_STOP_CONTINUED; 789 p->signal->group_exit_code = 0; 790 spin_unlock(&p->sighand->siglock); 791 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_CONTINUED); 792 spin_lock(&p->sighand->siglock); 793 } else { 794 /* 795 * We are not stopped, but there could be a stop 796 * signal in the middle of being processed after 797 * being removed from the queue. Clear that too. 798 */ 799 p->signal->flags = 0; 800 } 801 } else if (sig == SIGKILL) { 802 /* 803 * Make sure that any pending stop signal already dequeued 804 * is undone by the wakeup for SIGKILL. 805 */ 806 p->signal->flags = 0; 807 } 808 } 809 810 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 811 struct sigpending *signals) 812 { 813 struct sigqueue * q = NULL; 814 int ret = 0; 815 816 /* 817 * fast-pathed signals for kernel-internal things like SIGSTOP 818 * or SIGKILL. 819 */ 820 if (info == SEND_SIG_FORCED) 821 goto out_set; 822 823 /* Real-time signals must be queued if sent by sigqueue, or 824 some other real-time mechanism. It is implementation 825 defined whether kill() does so. We attempt to do so, on 826 the principle of least surprise, but since kill is not 827 allowed to fail with EAGAIN when low on memory we just 828 make sure at least one signal gets delivered and don't 829 pass on the info struct. */ 830 831 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN && 832 (is_si_special(info) || 833 info->si_code >= 0))); 834 if (q) { 835 list_add_tail(&q->list, &signals->list); 836 switch ((unsigned long) info) { 837 case (unsigned long) SEND_SIG_NOINFO: 838 q->info.si_signo = sig; 839 q->info.si_errno = 0; 840 q->info.si_code = SI_USER; 841 q->info.si_pid = current->pid; 842 q->info.si_uid = current->uid; 843 break; 844 case (unsigned long) SEND_SIG_PRIV: 845 q->info.si_signo = sig; 846 q->info.si_errno = 0; 847 q->info.si_code = SI_KERNEL; 848 q->info.si_pid = 0; 849 q->info.si_uid = 0; 850 break; 851 default: 852 copy_siginfo(&q->info, info); 853 break; 854 } 855 } else if (!is_si_special(info)) { 856 if (sig >= SIGRTMIN && info->si_code != SI_USER) 857 /* 858 * Queue overflow, abort. We may abort if the signal was rt 859 * and sent by user using something other than kill(). 860 */ 861 return -EAGAIN; 862 } 863 864 out_set: 865 sigaddset(&signals->signal, sig); 866 return ret; 867 } 868 869 #define LEGACY_QUEUE(sigptr, sig) \ 870 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig))) 871 872 873 static int 874 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 875 { 876 int ret = 0; 877 878 if (!irqs_disabled()) 879 BUG(); 880 assert_spin_locked(&t->sighand->siglock); 881 882 /* Short-circuit ignored signals. */ 883 if (sig_ignored(t, sig)) 884 goto out; 885 886 /* Support queueing exactly one non-rt signal, so that we 887 can get more detailed information about the cause of 888 the signal. */ 889 if (LEGACY_QUEUE(&t->pending, sig)) 890 goto out; 891 892 ret = send_signal(sig, info, t, &t->pending); 893 if (!ret && !sigismember(&t->blocked, sig)) 894 signal_wake_up(t, sig == SIGKILL); 895 out: 896 return ret; 897 } 898 899 /* 900 * Force a signal that the process can't ignore: if necessary 901 * we unblock the signal and change any SIG_IGN to SIG_DFL. 902 */ 903 904 int 905 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 906 { 907 unsigned long int flags; 908 int ret; 909 910 spin_lock_irqsave(&t->sighand->siglock, flags); 911 if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) { 912 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL; 913 } 914 if (sigismember(&t->blocked, sig)) { 915 sigdelset(&t->blocked, sig); 916 } 917 recalc_sigpending_tsk(t); 918 ret = specific_send_sig_info(sig, info, t); 919 spin_unlock_irqrestore(&t->sighand->siglock, flags); 920 921 return ret; 922 } 923 924 void 925 force_sig_specific(int sig, struct task_struct *t) 926 { 927 force_sig_info(sig, SEND_SIG_FORCED, t); 928 } 929 930 /* 931 * Test if P wants to take SIG. After we've checked all threads with this, 932 * it's equivalent to finding no threads not blocking SIG. Any threads not 933 * blocking SIG were ruled out because they are not running and already 934 * have pending signals. Such threads will dequeue from the shared queue 935 * as soon as they're available, so putting the signal on the shared queue 936 * will be equivalent to sending it to one such thread. 937 */ 938 static inline int wants_signal(int sig, struct task_struct *p) 939 { 940 if (sigismember(&p->blocked, sig)) 941 return 0; 942 if (p->flags & PF_EXITING) 943 return 0; 944 if (sig == SIGKILL) 945 return 1; 946 if (p->state & (TASK_STOPPED | TASK_TRACED)) 947 return 0; 948 return task_curr(p) || !signal_pending(p); 949 } 950 951 static void 952 __group_complete_signal(int sig, struct task_struct *p) 953 { 954 struct task_struct *t; 955 956 /* 957 * Now find a thread we can wake up to take the signal off the queue. 958 * 959 * If the main thread wants the signal, it gets first crack. 960 * Probably the least surprising to the average bear. 961 */ 962 if (wants_signal(sig, p)) 963 t = p; 964 else if (thread_group_empty(p)) 965 /* 966 * There is just one thread and it does not need to be woken. 967 * It will dequeue unblocked signals before it runs again. 968 */ 969 return; 970 else { 971 /* 972 * Otherwise try to find a suitable thread. 973 */ 974 t = p->signal->curr_target; 975 if (t == NULL) 976 /* restart balancing at this thread */ 977 t = p->signal->curr_target = p; 978 BUG_ON(t->tgid != p->tgid); 979 980 while (!wants_signal(sig, t)) { 981 t = next_thread(t); 982 if (t == p->signal->curr_target) 983 /* 984 * No thread needs to be woken. 985 * Any eligible threads will see 986 * the signal in the queue soon. 987 */ 988 return; 989 } 990 p->signal->curr_target = t; 991 } 992 993 /* 994 * Found a killable thread. If the signal will be fatal, 995 * then start taking the whole group down immediately. 996 */ 997 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) && 998 !sigismember(&t->real_blocked, sig) && 999 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) { 1000 /* 1001 * This signal will be fatal to the whole group. 1002 */ 1003 if (!sig_kernel_coredump(sig)) { 1004 /* 1005 * Start a group exit and wake everybody up. 1006 * This way we don't have other threads 1007 * running and doing things after a slower 1008 * thread has the fatal signal pending. 1009 */ 1010 p->signal->flags = SIGNAL_GROUP_EXIT; 1011 p->signal->group_exit_code = sig; 1012 p->signal->group_stop_count = 0; 1013 t = p; 1014 do { 1015 sigaddset(&t->pending.signal, SIGKILL); 1016 signal_wake_up(t, 1); 1017 t = next_thread(t); 1018 } while (t != p); 1019 return; 1020 } 1021 1022 /* 1023 * There will be a core dump. We make all threads other 1024 * than the chosen one go into a group stop so that nothing 1025 * happens until it gets scheduled, takes the signal off 1026 * the shared queue, and does the core dump. This is a 1027 * little more complicated than strictly necessary, but it 1028 * keeps the signal state that winds up in the core dump 1029 * unchanged from the death state, e.g. which thread had 1030 * the core-dump signal unblocked. 1031 */ 1032 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 1033 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); 1034 p->signal->group_stop_count = 0; 1035 p->signal->group_exit_task = t; 1036 t = p; 1037 do { 1038 p->signal->group_stop_count++; 1039 signal_wake_up(t, 0); 1040 t = next_thread(t); 1041 } while (t != p); 1042 wake_up_process(p->signal->group_exit_task); 1043 return; 1044 } 1045 1046 /* 1047 * The signal is already in the shared-pending queue. 1048 * Tell the chosen thread to wake up and dequeue it. 1049 */ 1050 signal_wake_up(t, sig == SIGKILL); 1051 return; 1052 } 1053 1054 int 1055 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1056 { 1057 int ret = 0; 1058 1059 assert_spin_locked(&p->sighand->siglock); 1060 handle_stop_signal(sig, p); 1061 1062 /* Short-circuit ignored signals. */ 1063 if (sig_ignored(p, sig)) 1064 return ret; 1065 1066 if (LEGACY_QUEUE(&p->signal->shared_pending, sig)) 1067 /* This is a non-RT signal and we already have one queued. */ 1068 return ret; 1069 1070 /* 1071 * Put this signal on the shared-pending queue, or fail with EAGAIN. 1072 * We always use the shared queue for process-wide signals, 1073 * to avoid several races. 1074 */ 1075 ret = send_signal(sig, info, p, &p->signal->shared_pending); 1076 if (unlikely(ret)) 1077 return ret; 1078 1079 __group_complete_signal(sig, p); 1080 return 0; 1081 } 1082 1083 /* 1084 * Nuke all other threads in the group. 1085 */ 1086 void zap_other_threads(struct task_struct *p) 1087 { 1088 struct task_struct *t; 1089 1090 p->signal->flags = SIGNAL_GROUP_EXIT; 1091 p->signal->group_stop_count = 0; 1092 1093 if (thread_group_empty(p)) 1094 return; 1095 1096 for (t = next_thread(p); t != p; t = next_thread(t)) { 1097 /* 1098 * Don't bother with already dead threads 1099 */ 1100 if (t->exit_state) 1101 continue; 1102 1103 /* 1104 * We don't want to notify the parent, since we are 1105 * killed as part of a thread group due to another 1106 * thread doing an execve() or similar. So set the 1107 * exit signal to -1 to allow immediate reaping of 1108 * the process. But don't detach the thread group 1109 * leader. 1110 */ 1111 if (t != p->group_leader) 1112 t->exit_signal = -1; 1113 1114 /* SIGKILL will be handled before any pending SIGSTOP */ 1115 sigaddset(&t->pending.signal, SIGKILL); 1116 signal_wake_up(t, 1); 1117 } 1118 } 1119 1120 /* 1121 * Must be called under rcu_read_lock() or with tasklist_lock read-held. 1122 */ 1123 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1124 { 1125 unsigned long flags; 1126 struct sighand_struct *sp; 1127 int ret; 1128 1129 retry: 1130 ret = check_kill_permission(sig, info, p); 1131 if (!ret && sig && (sp = rcu_dereference(p->sighand))) { 1132 spin_lock_irqsave(&sp->siglock, flags); 1133 if (p->sighand != sp) { 1134 spin_unlock_irqrestore(&sp->siglock, flags); 1135 goto retry; 1136 } 1137 if ((atomic_read(&sp->count) == 0) || 1138 (atomic_read(&p->usage) == 0)) { 1139 spin_unlock_irqrestore(&sp->siglock, flags); 1140 return -ESRCH; 1141 } 1142 ret = __group_send_sig_info(sig, info, p); 1143 spin_unlock_irqrestore(&sp->siglock, flags); 1144 } 1145 1146 return ret; 1147 } 1148 1149 /* 1150 * kill_pg_info() sends a signal to a process group: this is what the tty 1151 * control characters do (^C, ^Z etc) 1152 */ 1153 1154 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp) 1155 { 1156 struct task_struct *p = NULL; 1157 int retval, success; 1158 1159 if (pgrp <= 0) 1160 return -EINVAL; 1161 1162 success = 0; 1163 retval = -ESRCH; 1164 do_each_task_pid(pgrp, PIDTYPE_PGID, p) { 1165 int err = group_send_sig_info(sig, info, p); 1166 success |= !err; 1167 retval = err; 1168 } while_each_task_pid(pgrp, PIDTYPE_PGID, p); 1169 return success ? 0 : retval; 1170 } 1171 1172 int 1173 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp) 1174 { 1175 int retval; 1176 1177 read_lock(&tasklist_lock); 1178 retval = __kill_pg_info(sig, info, pgrp); 1179 read_unlock(&tasklist_lock); 1180 1181 return retval; 1182 } 1183 1184 int 1185 kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1186 { 1187 int error; 1188 int acquired_tasklist_lock = 0; 1189 struct task_struct *p; 1190 1191 rcu_read_lock(); 1192 if (unlikely(sig_kernel_stop(sig) || sig == SIGCONT)) { 1193 read_lock(&tasklist_lock); 1194 acquired_tasklist_lock = 1; 1195 } 1196 p = find_task_by_pid(pid); 1197 error = -ESRCH; 1198 if (p) 1199 error = group_send_sig_info(sig, info, p); 1200 if (unlikely(acquired_tasklist_lock)) 1201 read_unlock(&tasklist_lock); 1202 rcu_read_unlock(); 1203 return error; 1204 } 1205 1206 /* like kill_proc_info(), but doesn't use uid/euid of "current" */ 1207 int kill_proc_info_as_uid(int sig, struct siginfo *info, pid_t pid, 1208 uid_t uid, uid_t euid) 1209 { 1210 int ret = -EINVAL; 1211 struct task_struct *p; 1212 1213 if (!valid_signal(sig)) 1214 return ret; 1215 1216 read_lock(&tasklist_lock); 1217 p = find_task_by_pid(pid); 1218 if (!p) { 1219 ret = -ESRCH; 1220 goto out_unlock; 1221 } 1222 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) 1223 && (euid != p->suid) && (euid != p->uid) 1224 && (uid != p->suid) && (uid != p->uid)) { 1225 ret = -EPERM; 1226 goto out_unlock; 1227 } 1228 if (sig && p->sighand) { 1229 unsigned long flags; 1230 spin_lock_irqsave(&p->sighand->siglock, flags); 1231 ret = __group_send_sig_info(sig, info, p); 1232 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1233 } 1234 out_unlock: 1235 read_unlock(&tasklist_lock); 1236 return ret; 1237 } 1238 EXPORT_SYMBOL_GPL(kill_proc_info_as_uid); 1239 1240 /* 1241 * kill_something_info() interprets pid in interesting ways just like kill(2). 1242 * 1243 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1244 * is probably wrong. Should make it like BSD or SYSV. 1245 */ 1246 1247 static int kill_something_info(int sig, struct siginfo *info, int pid) 1248 { 1249 if (!pid) { 1250 return kill_pg_info(sig, info, process_group(current)); 1251 } else if (pid == -1) { 1252 int retval = 0, count = 0; 1253 struct task_struct * p; 1254 1255 read_lock(&tasklist_lock); 1256 for_each_process(p) { 1257 if (p->pid > 1 && p->tgid != current->tgid) { 1258 int err = group_send_sig_info(sig, info, p); 1259 ++count; 1260 if (err != -EPERM) 1261 retval = err; 1262 } 1263 } 1264 read_unlock(&tasklist_lock); 1265 return count ? retval : -ESRCH; 1266 } else if (pid < 0) { 1267 return kill_pg_info(sig, info, -pid); 1268 } else { 1269 return kill_proc_info(sig, info, pid); 1270 } 1271 } 1272 1273 /* 1274 * These are for backward compatibility with the rest of the kernel source. 1275 */ 1276 1277 /* 1278 * These two are the most common entry points. They send a signal 1279 * just to the specific thread. 1280 */ 1281 int 1282 send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1283 { 1284 int ret; 1285 unsigned long flags; 1286 1287 /* 1288 * Make sure legacy kernel users don't send in bad values 1289 * (normal paths check this in check_kill_permission). 1290 */ 1291 if (!valid_signal(sig)) 1292 return -EINVAL; 1293 1294 /* 1295 * We need the tasklist lock even for the specific 1296 * thread case (when we don't need to follow the group 1297 * lists) in order to avoid races with "p->sighand" 1298 * going away or changing from under us. 1299 */ 1300 read_lock(&tasklist_lock); 1301 spin_lock_irqsave(&p->sighand->siglock, flags); 1302 ret = specific_send_sig_info(sig, info, p); 1303 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1304 read_unlock(&tasklist_lock); 1305 return ret; 1306 } 1307 1308 #define __si_special(priv) \ 1309 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1310 1311 int 1312 send_sig(int sig, struct task_struct *p, int priv) 1313 { 1314 return send_sig_info(sig, __si_special(priv), p); 1315 } 1316 1317 /* 1318 * This is the entry point for "process-wide" signals. 1319 * They will go to an appropriate thread in the thread group. 1320 */ 1321 int 1322 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1323 { 1324 int ret; 1325 read_lock(&tasklist_lock); 1326 ret = group_send_sig_info(sig, info, p); 1327 read_unlock(&tasklist_lock); 1328 return ret; 1329 } 1330 1331 void 1332 force_sig(int sig, struct task_struct *p) 1333 { 1334 force_sig_info(sig, SEND_SIG_PRIV, p); 1335 } 1336 1337 /* 1338 * When things go south during signal handling, we 1339 * will force a SIGSEGV. And if the signal that caused 1340 * the problem was already a SIGSEGV, we'll want to 1341 * make sure we don't even try to deliver the signal.. 1342 */ 1343 int 1344 force_sigsegv(int sig, struct task_struct *p) 1345 { 1346 if (sig == SIGSEGV) { 1347 unsigned long flags; 1348 spin_lock_irqsave(&p->sighand->siglock, flags); 1349 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1350 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1351 } 1352 force_sig(SIGSEGV, p); 1353 return 0; 1354 } 1355 1356 int 1357 kill_pg(pid_t pgrp, int sig, int priv) 1358 { 1359 return kill_pg_info(sig, __si_special(priv), pgrp); 1360 } 1361 1362 int 1363 kill_proc(pid_t pid, int sig, int priv) 1364 { 1365 return kill_proc_info(sig, __si_special(priv), pid); 1366 } 1367 1368 /* 1369 * These functions support sending signals using preallocated sigqueue 1370 * structures. This is needed "because realtime applications cannot 1371 * afford to lose notifications of asynchronous events, like timer 1372 * expirations or I/O completions". In the case of Posix Timers 1373 * we allocate the sigqueue structure from the timer_create. If this 1374 * allocation fails we are able to report the failure to the application 1375 * with an EAGAIN error. 1376 */ 1377 1378 struct sigqueue *sigqueue_alloc(void) 1379 { 1380 struct sigqueue *q; 1381 1382 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0))) 1383 q->flags |= SIGQUEUE_PREALLOC; 1384 return(q); 1385 } 1386 1387 void sigqueue_free(struct sigqueue *q) 1388 { 1389 unsigned long flags; 1390 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1391 /* 1392 * If the signal is still pending remove it from the 1393 * pending queue. 1394 */ 1395 if (unlikely(!list_empty(&q->list))) { 1396 spinlock_t *lock = ¤t->sighand->siglock; 1397 read_lock(&tasklist_lock); 1398 spin_lock_irqsave(lock, flags); 1399 if (!list_empty(&q->list)) 1400 list_del_init(&q->list); 1401 spin_unlock_irqrestore(lock, flags); 1402 read_unlock(&tasklist_lock); 1403 } 1404 q->flags &= ~SIGQUEUE_PREALLOC; 1405 __sigqueue_free(q); 1406 } 1407 1408 int 1409 send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) 1410 { 1411 unsigned long flags; 1412 int ret = 0; 1413 struct sighand_struct *sh; 1414 1415 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1416 1417 /* 1418 * The rcu based delayed sighand destroy makes it possible to 1419 * run this without tasklist lock held. The task struct itself 1420 * cannot go away as create_timer did get_task_struct(). 1421 * 1422 * We return -1, when the task is marked exiting, so 1423 * posix_timer_event can redirect it to the group leader 1424 */ 1425 rcu_read_lock(); 1426 1427 if (unlikely(p->flags & PF_EXITING)) { 1428 ret = -1; 1429 goto out_err; 1430 } 1431 1432 retry: 1433 sh = rcu_dereference(p->sighand); 1434 1435 spin_lock_irqsave(&sh->siglock, flags); 1436 if (p->sighand != sh) { 1437 /* We raced with exec() in a multithreaded process... */ 1438 spin_unlock_irqrestore(&sh->siglock, flags); 1439 goto retry; 1440 } 1441 1442 /* 1443 * We do the check here again to handle the following scenario: 1444 * 1445 * CPU 0 CPU 1 1446 * send_sigqueue 1447 * check PF_EXITING 1448 * interrupt exit code running 1449 * __exit_signal 1450 * lock sighand->siglock 1451 * unlock sighand->siglock 1452 * lock sh->siglock 1453 * add(tsk->pending) flush_sigqueue(tsk->pending) 1454 * 1455 */ 1456 1457 if (unlikely(p->flags & PF_EXITING)) { 1458 ret = -1; 1459 goto out; 1460 } 1461 1462 if (unlikely(!list_empty(&q->list))) { 1463 /* 1464 * If an SI_TIMER entry is already queue just increment 1465 * the overrun count. 1466 */ 1467 if (q->info.si_code != SI_TIMER) 1468 BUG(); 1469 q->info.si_overrun++; 1470 goto out; 1471 } 1472 /* Short-circuit ignored signals. */ 1473 if (sig_ignored(p, sig)) { 1474 ret = 1; 1475 goto out; 1476 } 1477 1478 list_add_tail(&q->list, &p->pending.list); 1479 sigaddset(&p->pending.signal, sig); 1480 if (!sigismember(&p->blocked, sig)) 1481 signal_wake_up(p, sig == SIGKILL); 1482 1483 out: 1484 spin_unlock_irqrestore(&sh->siglock, flags); 1485 out_err: 1486 rcu_read_unlock(); 1487 1488 return ret; 1489 } 1490 1491 int 1492 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) 1493 { 1494 unsigned long flags; 1495 int ret = 0; 1496 1497 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1498 1499 read_lock(&tasklist_lock); 1500 /* Since it_lock is held, p->sighand cannot be NULL. */ 1501 spin_lock_irqsave(&p->sighand->siglock, flags); 1502 handle_stop_signal(sig, p); 1503 1504 /* Short-circuit ignored signals. */ 1505 if (sig_ignored(p, sig)) { 1506 ret = 1; 1507 goto out; 1508 } 1509 1510 if (unlikely(!list_empty(&q->list))) { 1511 /* 1512 * If an SI_TIMER entry is already queue just increment 1513 * the overrun count. Other uses should not try to 1514 * send the signal multiple times. 1515 */ 1516 if (q->info.si_code != SI_TIMER) 1517 BUG(); 1518 q->info.si_overrun++; 1519 goto out; 1520 } 1521 1522 /* 1523 * Put this signal on the shared-pending queue. 1524 * We always use the shared queue for process-wide signals, 1525 * to avoid several races. 1526 */ 1527 list_add_tail(&q->list, &p->signal->shared_pending.list); 1528 sigaddset(&p->signal->shared_pending.signal, sig); 1529 1530 __group_complete_signal(sig, p); 1531 out: 1532 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1533 read_unlock(&tasklist_lock); 1534 return ret; 1535 } 1536 1537 /* 1538 * Wake up any threads in the parent blocked in wait* syscalls. 1539 */ 1540 static inline void __wake_up_parent(struct task_struct *p, 1541 struct task_struct *parent) 1542 { 1543 wake_up_interruptible_sync(&parent->signal->wait_chldexit); 1544 } 1545 1546 /* 1547 * Let a parent know about the death of a child. 1548 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1549 */ 1550 1551 void do_notify_parent(struct task_struct *tsk, int sig) 1552 { 1553 struct siginfo info; 1554 unsigned long flags; 1555 struct sighand_struct *psig; 1556 1557 BUG_ON(sig == -1); 1558 1559 /* do_notify_parent_cldstop should have been called instead. */ 1560 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED)); 1561 1562 BUG_ON(!tsk->ptrace && 1563 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1564 1565 info.si_signo = sig; 1566 info.si_errno = 0; 1567 info.si_pid = tsk->pid; 1568 info.si_uid = tsk->uid; 1569 1570 /* FIXME: find out whether or not this is supposed to be c*time. */ 1571 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime, 1572 tsk->signal->utime)); 1573 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime, 1574 tsk->signal->stime)); 1575 1576 info.si_status = tsk->exit_code & 0x7f; 1577 if (tsk->exit_code & 0x80) 1578 info.si_code = CLD_DUMPED; 1579 else if (tsk->exit_code & 0x7f) 1580 info.si_code = CLD_KILLED; 1581 else { 1582 info.si_code = CLD_EXITED; 1583 info.si_status = tsk->exit_code >> 8; 1584 } 1585 1586 psig = tsk->parent->sighand; 1587 spin_lock_irqsave(&psig->siglock, flags); 1588 if (!tsk->ptrace && sig == SIGCHLD && 1589 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1590 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1591 /* 1592 * We are exiting and our parent doesn't care. POSIX.1 1593 * defines special semantics for setting SIGCHLD to SIG_IGN 1594 * or setting the SA_NOCLDWAIT flag: we should be reaped 1595 * automatically and not left for our parent's wait4 call. 1596 * Rather than having the parent do it as a magic kind of 1597 * signal handler, we just set this to tell do_exit that we 1598 * can be cleaned up without becoming a zombie. Note that 1599 * we still call __wake_up_parent in this case, because a 1600 * blocked sys_wait4 might now return -ECHILD. 1601 * 1602 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1603 * is implementation-defined: we do (if you don't want 1604 * it, just use SIG_IGN instead). 1605 */ 1606 tsk->exit_signal = -1; 1607 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1608 sig = 0; 1609 } 1610 if (valid_signal(sig) && sig > 0) 1611 __group_send_sig_info(sig, &info, tsk->parent); 1612 __wake_up_parent(tsk, tsk->parent); 1613 spin_unlock_irqrestore(&psig->siglock, flags); 1614 } 1615 1616 static void do_notify_parent_cldstop(struct task_struct *tsk, int to_self, int why) 1617 { 1618 struct siginfo info; 1619 unsigned long flags; 1620 struct task_struct *parent; 1621 struct sighand_struct *sighand; 1622 1623 if (to_self) 1624 parent = tsk->parent; 1625 else { 1626 tsk = tsk->group_leader; 1627 parent = tsk->real_parent; 1628 } 1629 1630 info.si_signo = SIGCHLD; 1631 info.si_errno = 0; 1632 info.si_pid = tsk->pid; 1633 info.si_uid = tsk->uid; 1634 1635 /* FIXME: find out whether or not this is supposed to be c*time. */ 1636 info.si_utime = cputime_to_jiffies(tsk->utime); 1637 info.si_stime = cputime_to_jiffies(tsk->stime); 1638 1639 info.si_code = why; 1640 switch (why) { 1641 case CLD_CONTINUED: 1642 info.si_status = SIGCONT; 1643 break; 1644 case CLD_STOPPED: 1645 info.si_status = tsk->signal->group_exit_code & 0x7f; 1646 break; 1647 case CLD_TRAPPED: 1648 info.si_status = tsk->exit_code & 0x7f; 1649 break; 1650 default: 1651 BUG(); 1652 } 1653 1654 sighand = parent->sighand; 1655 spin_lock_irqsave(&sighand->siglock, flags); 1656 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1657 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1658 __group_send_sig_info(SIGCHLD, &info, parent); 1659 /* 1660 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1661 */ 1662 __wake_up_parent(tsk, parent); 1663 spin_unlock_irqrestore(&sighand->siglock, flags); 1664 } 1665 1666 /* 1667 * This must be called with current->sighand->siglock held. 1668 * 1669 * This should be the path for all ptrace stops. 1670 * We always set current->last_siginfo while stopped here. 1671 * That makes it a way to test a stopped process for 1672 * being ptrace-stopped vs being job-control-stopped. 1673 * 1674 * If we actually decide not to stop at all because the tracer is gone, 1675 * we leave nostop_code in current->exit_code. 1676 */ 1677 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info) 1678 { 1679 /* 1680 * If there is a group stop in progress, 1681 * we must participate in the bookkeeping. 1682 */ 1683 if (current->signal->group_stop_count > 0) 1684 --current->signal->group_stop_count; 1685 1686 current->last_siginfo = info; 1687 current->exit_code = exit_code; 1688 1689 /* Let the debugger run. */ 1690 set_current_state(TASK_TRACED); 1691 spin_unlock_irq(¤t->sighand->siglock); 1692 read_lock(&tasklist_lock); 1693 if (likely(current->ptrace & PT_PTRACED) && 1694 likely(current->parent != current->real_parent || 1695 !(current->ptrace & PT_ATTACHED)) && 1696 (likely(current->parent->signal != current->signal) || 1697 !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) { 1698 do_notify_parent_cldstop(current, 1, CLD_TRAPPED); 1699 read_unlock(&tasklist_lock); 1700 schedule(); 1701 } else { 1702 /* 1703 * By the time we got the lock, our tracer went away. 1704 * Don't stop here. 1705 */ 1706 read_unlock(&tasklist_lock); 1707 set_current_state(TASK_RUNNING); 1708 current->exit_code = nostop_code; 1709 } 1710 1711 /* 1712 * We are back. Now reacquire the siglock before touching 1713 * last_siginfo, so that we are sure to have synchronized with 1714 * any signal-sending on another CPU that wants to examine it. 1715 */ 1716 spin_lock_irq(¤t->sighand->siglock); 1717 current->last_siginfo = NULL; 1718 1719 /* 1720 * Queued signals ignored us while we were stopped for tracing. 1721 * So check for any that we should take before resuming user mode. 1722 */ 1723 recalc_sigpending(); 1724 } 1725 1726 void ptrace_notify(int exit_code) 1727 { 1728 siginfo_t info; 1729 1730 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1731 1732 memset(&info, 0, sizeof info); 1733 info.si_signo = SIGTRAP; 1734 info.si_code = exit_code; 1735 info.si_pid = current->pid; 1736 info.si_uid = current->uid; 1737 1738 /* Let the debugger run. */ 1739 spin_lock_irq(¤t->sighand->siglock); 1740 ptrace_stop(exit_code, 0, &info); 1741 spin_unlock_irq(¤t->sighand->siglock); 1742 } 1743 1744 static void 1745 finish_stop(int stop_count) 1746 { 1747 int to_self; 1748 1749 /* 1750 * If there are no other threads in the group, or if there is 1751 * a group stop in progress and we are the last to stop, 1752 * report to the parent. When ptraced, every thread reports itself. 1753 */ 1754 if (stop_count < 0 || (current->ptrace & PT_PTRACED)) 1755 to_self = 1; 1756 else if (stop_count == 0) 1757 to_self = 0; 1758 else 1759 goto out; 1760 1761 read_lock(&tasklist_lock); 1762 do_notify_parent_cldstop(current, to_self, CLD_STOPPED); 1763 read_unlock(&tasklist_lock); 1764 1765 out: 1766 schedule(); 1767 /* 1768 * Now we don't run again until continued. 1769 */ 1770 current->exit_code = 0; 1771 } 1772 1773 /* 1774 * This performs the stopping for SIGSTOP and other stop signals. 1775 * We have to stop all threads in the thread group. 1776 * Returns nonzero if we've actually stopped and released the siglock. 1777 * Returns zero if we didn't stop and still hold the siglock. 1778 */ 1779 static int 1780 do_signal_stop(int signr) 1781 { 1782 struct signal_struct *sig = current->signal; 1783 struct sighand_struct *sighand = current->sighand; 1784 int stop_count = -1; 1785 1786 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) 1787 return 0; 1788 1789 if (sig->group_stop_count > 0) { 1790 /* 1791 * There is a group stop in progress. We don't need to 1792 * start another one. 1793 */ 1794 signr = sig->group_exit_code; 1795 stop_count = --sig->group_stop_count; 1796 current->exit_code = signr; 1797 set_current_state(TASK_STOPPED); 1798 if (stop_count == 0) 1799 sig->flags = SIGNAL_STOP_STOPPED; 1800 spin_unlock_irq(&sighand->siglock); 1801 } 1802 else if (thread_group_empty(current)) { 1803 /* 1804 * Lock must be held through transition to stopped state. 1805 */ 1806 current->exit_code = current->signal->group_exit_code = signr; 1807 set_current_state(TASK_STOPPED); 1808 sig->flags = SIGNAL_STOP_STOPPED; 1809 spin_unlock_irq(&sighand->siglock); 1810 } 1811 else { 1812 /* 1813 * There is no group stop already in progress. 1814 * We must initiate one now, but that requires 1815 * dropping siglock to get both the tasklist lock 1816 * and siglock again in the proper order. Note that 1817 * this allows an intervening SIGCONT to be posted. 1818 * We need to check for that and bail out if necessary. 1819 */ 1820 struct task_struct *t; 1821 1822 spin_unlock_irq(&sighand->siglock); 1823 1824 /* signals can be posted during this window */ 1825 1826 read_lock(&tasklist_lock); 1827 spin_lock_irq(&sighand->siglock); 1828 1829 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) { 1830 /* 1831 * Another stop or continue happened while we 1832 * didn't have the lock. We can just swallow this 1833 * signal now. If we raced with a SIGCONT, that 1834 * should have just cleared it now. If we raced 1835 * with another processor delivering a stop signal, 1836 * then the SIGCONT that wakes us up should clear it. 1837 */ 1838 read_unlock(&tasklist_lock); 1839 return 0; 1840 } 1841 1842 if (sig->group_stop_count == 0) { 1843 sig->group_exit_code = signr; 1844 stop_count = 0; 1845 for (t = next_thread(current); t != current; 1846 t = next_thread(t)) 1847 /* 1848 * Setting state to TASK_STOPPED for a group 1849 * stop is always done with the siglock held, 1850 * so this check has no races. 1851 */ 1852 if (!t->exit_state && 1853 !(t->state & (TASK_STOPPED|TASK_TRACED))) { 1854 stop_count++; 1855 signal_wake_up(t, 0); 1856 } 1857 sig->group_stop_count = stop_count; 1858 } 1859 else { 1860 /* A race with another thread while unlocked. */ 1861 signr = sig->group_exit_code; 1862 stop_count = --sig->group_stop_count; 1863 } 1864 1865 current->exit_code = signr; 1866 set_current_state(TASK_STOPPED); 1867 if (stop_count == 0) 1868 sig->flags = SIGNAL_STOP_STOPPED; 1869 1870 spin_unlock_irq(&sighand->siglock); 1871 read_unlock(&tasklist_lock); 1872 } 1873 1874 finish_stop(stop_count); 1875 return 1; 1876 } 1877 1878 /* 1879 * Do appropriate magic when group_stop_count > 0. 1880 * We return nonzero if we stopped, after releasing the siglock. 1881 * We return zero if we still hold the siglock and should look 1882 * for another signal without checking group_stop_count again. 1883 */ 1884 static int handle_group_stop(void) 1885 { 1886 int stop_count; 1887 1888 if (current->signal->group_exit_task == current) { 1889 /* 1890 * Group stop is so we can do a core dump, 1891 * We are the initiating thread, so get on with it. 1892 */ 1893 current->signal->group_exit_task = NULL; 1894 return 0; 1895 } 1896 1897 if (current->signal->flags & SIGNAL_GROUP_EXIT) 1898 /* 1899 * Group stop is so another thread can do a core dump, 1900 * or else we are racing against a death signal. 1901 * Just punt the stop so we can get the next signal. 1902 */ 1903 return 0; 1904 1905 /* 1906 * There is a group stop in progress. We stop 1907 * without any associated signal being in our queue. 1908 */ 1909 stop_count = --current->signal->group_stop_count; 1910 if (stop_count == 0) 1911 current->signal->flags = SIGNAL_STOP_STOPPED; 1912 current->exit_code = current->signal->group_exit_code; 1913 set_current_state(TASK_STOPPED); 1914 spin_unlock_irq(¤t->sighand->siglock); 1915 finish_stop(stop_count); 1916 return 1; 1917 } 1918 1919 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, 1920 struct pt_regs *regs, void *cookie) 1921 { 1922 sigset_t *mask = ¤t->blocked; 1923 int signr = 0; 1924 1925 relock: 1926 spin_lock_irq(¤t->sighand->siglock); 1927 for (;;) { 1928 struct k_sigaction *ka; 1929 1930 if (unlikely(current->signal->group_stop_count > 0) && 1931 handle_group_stop()) 1932 goto relock; 1933 1934 signr = dequeue_signal(current, mask, info); 1935 1936 if (!signr) 1937 break; /* will return 0 */ 1938 1939 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) { 1940 ptrace_signal_deliver(regs, cookie); 1941 1942 /* Let the debugger run. */ 1943 ptrace_stop(signr, signr, info); 1944 1945 /* We're back. Did the debugger cancel the sig or group_exit? */ 1946 signr = current->exit_code; 1947 if (signr == 0 || current->signal->flags & SIGNAL_GROUP_EXIT) 1948 continue; 1949 1950 current->exit_code = 0; 1951 1952 /* Update the siginfo structure if the signal has 1953 changed. If the debugger wanted something 1954 specific in the siginfo structure then it should 1955 have updated *info via PTRACE_SETSIGINFO. */ 1956 if (signr != info->si_signo) { 1957 info->si_signo = signr; 1958 info->si_errno = 0; 1959 info->si_code = SI_USER; 1960 info->si_pid = current->parent->pid; 1961 info->si_uid = current->parent->uid; 1962 } 1963 1964 /* If the (new) signal is now blocked, requeue it. */ 1965 if (sigismember(¤t->blocked, signr)) { 1966 specific_send_sig_info(signr, info, current); 1967 continue; 1968 } 1969 } 1970 1971 ka = ¤t->sighand->action[signr-1]; 1972 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 1973 continue; 1974 if (ka->sa.sa_handler != SIG_DFL) { 1975 /* Run the handler. */ 1976 *return_ka = *ka; 1977 1978 if (ka->sa.sa_flags & SA_ONESHOT) 1979 ka->sa.sa_handler = SIG_DFL; 1980 1981 break; /* will return non-zero "signr" value */ 1982 } 1983 1984 /* 1985 * Now we are doing the default action for this signal. 1986 */ 1987 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 1988 continue; 1989 1990 /* Init gets no signals it doesn't want. */ 1991 if (current->pid == 1) 1992 continue; 1993 1994 if (sig_kernel_stop(signr)) { 1995 /* 1996 * The default action is to stop all threads in 1997 * the thread group. The job control signals 1998 * do nothing in an orphaned pgrp, but SIGSTOP 1999 * always works. Note that siglock needs to be 2000 * dropped during the call to is_orphaned_pgrp() 2001 * because of lock ordering with tasklist_lock. 2002 * This allows an intervening SIGCONT to be posted. 2003 * We need to check for that and bail out if necessary. 2004 */ 2005 if (signr != SIGSTOP) { 2006 spin_unlock_irq(¤t->sighand->siglock); 2007 2008 /* signals can be posted during this window */ 2009 2010 if (is_orphaned_pgrp(process_group(current))) 2011 goto relock; 2012 2013 spin_lock_irq(¤t->sighand->siglock); 2014 } 2015 2016 if (likely(do_signal_stop(signr))) { 2017 /* It released the siglock. */ 2018 goto relock; 2019 } 2020 2021 /* 2022 * We didn't actually stop, due to a race 2023 * with SIGCONT or something like that. 2024 */ 2025 continue; 2026 } 2027 2028 spin_unlock_irq(¤t->sighand->siglock); 2029 2030 /* 2031 * Anything else is fatal, maybe with a core dump. 2032 */ 2033 current->flags |= PF_SIGNALED; 2034 if (sig_kernel_coredump(signr)) { 2035 /* 2036 * If it was able to dump core, this kills all 2037 * other threads in the group and synchronizes with 2038 * their demise. If we lost the race with another 2039 * thread getting here, it set group_exit_code 2040 * first and our do_group_exit call below will use 2041 * that value and ignore the one we pass it. 2042 */ 2043 do_coredump((long)signr, signr, regs); 2044 } 2045 2046 /* 2047 * Death signals, no core dump. 2048 */ 2049 do_group_exit(signr); 2050 /* NOTREACHED */ 2051 } 2052 spin_unlock_irq(¤t->sighand->siglock); 2053 return signr; 2054 } 2055 2056 EXPORT_SYMBOL(recalc_sigpending); 2057 EXPORT_SYMBOL_GPL(dequeue_signal); 2058 EXPORT_SYMBOL(flush_signals); 2059 EXPORT_SYMBOL(force_sig); 2060 EXPORT_SYMBOL(kill_pg); 2061 EXPORT_SYMBOL(kill_proc); 2062 EXPORT_SYMBOL(ptrace_notify); 2063 EXPORT_SYMBOL(send_sig); 2064 EXPORT_SYMBOL(send_sig_info); 2065 EXPORT_SYMBOL(sigprocmask); 2066 EXPORT_SYMBOL(block_all_signals); 2067 EXPORT_SYMBOL(unblock_all_signals); 2068 2069 2070 /* 2071 * System call entry points. 2072 */ 2073 2074 asmlinkage long sys_restart_syscall(void) 2075 { 2076 struct restart_block *restart = ¤t_thread_info()->restart_block; 2077 return restart->fn(restart); 2078 } 2079 2080 long do_no_restart_syscall(struct restart_block *param) 2081 { 2082 return -EINTR; 2083 } 2084 2085 /* 2086 * We don't need to get the kernel lock - this is all local to this 2087 * particular thread.. (and that's good, because this is _heavily_ 2088 * used by various programs) 2089 */ 2090 2091 /* 2092 * This is also useful for kernel threads that want to temporarily 2093 * (or permanently) block certain signals. 2094 * 2095 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2096 * interface happily blocks "unblockable" signals like SIGKILL 2097 * and friends. 2098 */ 2099 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2100 { 2101 int error; 2102 sigset_t old_block; 2103 2104 spin_lock_irq(¤t->sighand->siglock); 2105 old_block = current->blocked; 2106 error = 0; 2107 switch (how) { 2108 case SIG_BLOCK: 2109 sigorsets(¤t->blocked, ¤t->blocked, set); 2110 break; 2111 case SIG_UNBLOCK: 2112 signandsets(¤t->blocked, ¤t->blocked, set); 2113 break; 2114 case SIG_SETMASK: 2115 current->blocked = *set; 2116 break; 2117 default: 2118 error = -EINVAL; 2119 } 2120 recalc_sigpending(); 2121 spin_unlock_irq(¤t->sighand->siglock); 2122 if (oldset) 2123 *oldset = old_block; 2124 return error; 2125 } 2126 2127 asmlinkage long 2128 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize) 2129 { 2130 int error = -EINVAL; 2131 sigset_t old_set, new_set; 2132 2133 /* XXX: Don't preclude handling different sized sigset_t's. */ 2134 if (sigsetsize != sizeof(sigset_t)) 2135 goto out; 2136 2137 if (set) { 2138 error = -EFAULT; 2139 if (copy_from_user(&new_set, set, sizeof(*set))) 2140 goto out; 2141 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2142 2143 error = sigprocmask(how, &new_set, &old_set); 2144 if (error) 2145 goto out; 2146 if (oset) 2147 goto set_old; 2148 } else if (oset) { 2149 spin_lock_irq(¤t->sighand->siglock); 2150 old_set = current->blocked; 2151 spin_unlock_irq(¤t->sighand->siglock); 2152 2153 set_old: 2154 error = -EFAULT; 2155 if (copy_to_user(oset, &old_set, sizeof(*oset))) 2156 goto out; 2157 } 2158 error = 0; 2159 out: 2160 return error; 2161 } 2162 2163 long do_sigpending(void __user *set, unsigned long sigsetsize) 2164 { 2165 long error = -EINVAL; 2166 sigset_t pending; 2167 2168 if (sigsetsize > sizeof(sigset_t)) 2169 goto out; 2170 2171 spin_lock_irq(¤t->sighand->siglock); 2172 sigorsets(&pending, ¤t->pending.signal, 2173 ¤t->signal->shared_pending.signal); 2174 spin_unlock_irq(¤t->sighand->siglock); 2175 2176 /* Outside the lock because only this thread touches it. */ 2177 sigandsets(&pending, ¤t->blocked, &pending); 2178 2179 error = -EFAULT; 2180 if (!copy_to_user(set, &pending, sigsetsize)) 2181 error = 0; 2182 2183 out: 2184 return error; 2185 } 2186 2187 asmlinkage long 2188 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize) 2189 { 2190 return do_sigpending(set, sigsetsize); 2191 } 2192 2193 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2194 2195 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) 2196 { 2197 int err; 2198 2199 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2200 return -EFAULT; 2201 if (from->si_code < 0) 2202 return __copy_to_user(to, from, sizeof(siginfo_t)) 2203 ? -EFAULT : 0; 2204 /* 2205 * If you change siginfo_t structure, please be sure 2206 * this code is fixed accordingly. 2207 * It should never copy any pad contained in the structure 2208 * to avoid security leaks, but must copy the generic 2209 * 3 ints plus the relevant union member. 2210 */ 2211 err = __put_user(from->si_signo, &to->si_signo); 2212 err |= __put_user(from->si_errno, &to->si_errno); 2213 err |= __put_user((short)from->si_code, &to->si_code); 2214 switch (from->si_code & __SI_MASK) { 2215 case __SI_KILL: 2216 err |= __put_user(from->si_pid, &to->si_pid); 2217 err |= __put_user(from->si_uid, &to->si_uid); 2218 break; 2219 case __SI_TIMER: 2220 err |= __put_user(from->si_tid, &to->si_tid); 2221 err |= __put_user(from->si_overrun, &to->si_overrun); 2222 err |= __put_user(from->si_ptr, &to->si_ptr); 2223 break; 2224 case __SI_POLL: 2225 err |= __put_user(from->si_band, &to->si_band); 2226 err |= __put_user(from->si_fd, &to->si_fd); 2227 break; 2228 case __SI_FAULT: 2229 err |= __put_user(from->si_addr, &to->si_addr); 2230 #ifdef __ARCH_SI_TRAPNO 2231 err |= __put_user(from->si_trapno, &to->si_trapno); 2232 #endif 2233 break; 2234 case __SI_CHLD: 2235 err |= __put_user(from->si_pid, &to->si_pid); 2236 err |= __put_user(from->si_uid, &to->si_uid); 2237 err |= __put_user(from->si_status, &to->si_status); 2238 err |= __put_user(from->si_utime, &to->si_utime); 2239 err |= __put_user(from->si_stime, &to->si_stime); 2240 break; 2241 case __SI_RT: /* This is not generated by the kernel as of now. */ 2242 case __SI_MESGQ: /* But this is */ 2243 err |= __put_user(from->si_pid, &to->si_pid); 2244 err |= __put_user(from->si_uid, &to->si_uid); 2245 err |= __put_user(from->si_ptr, &to->si_ptr); 2246 break; 2247 default: /* this is just in case for now ... */ 2248 err |= __put_user(from->si_pid, &to->si_pid); 2249 err |= __put_user(from->si_uid, &to->si_uid); 2250 break; 2251 } 2252 return err; 2253 } 2254 2255 #endif 2256 2257 asmlinkage long 2258 sys_rt_sigtimedwait(const sigset_t __user *uthese, 2259 siginfo_t __user *uinfo, 2260 const struct timespec __user *uts, 2261 size_t sigsetsize) 2262 { 2263 int ret, sig; 2264 sigset_t these; 2265 struct timespec ts; 2266 siginfo_t info; 2267 long timeout = 0; 2268 2269 /* XXX: Don't preclude handling different sized sigset_t's. */ 2270 if (sigsetsize != sizeof(sigset_t)) 2271 return -EINVAL; 2272 2273 if (copy_from_user(&these, uthese, sizeof(these))) 2274 return -EFAULT; 2275 2276 /* 2277 * Invert the set of allowed signals to get those we 2278 * want to block. 2279 */ 2280 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2281 signotset(&these); 2282 2283 if (uts) { 2284 if (copy_from_user(&ts, uts, sizeof(ts))) 2285 return -EFAULT; 2286 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0 2287 || ts.tv_sec < 0) 2288 return -EINVAL; 2289 } 2290 2291 spin_lock_irq(¤t->sighand->siglock); 2292 sig = dequeue_signal(current, &these, &info); 2293 if (!sig) { 2294 timeout = MAX_SCHEDULE_TIMEOUT; 2295 if (uts) 2296 timeout = (timespec_to_jiffies(&ts) 2297 + (ts.tv_sec || ts.tv_nsec)); 2298 2299 if (timeout) { 2300 /* None ready -- temporarily unblock those we're 2301 * interested while we are sleeping in so that we'll 2302 * be awakened when they arrive. */ 2303 current->real_blocked = current->blocked; 2304 sigandsets(¤t->blocked, ¤t->blocked, &these); 2305 recalc_sigpending(); 2306 spin_unlock_irq(¤t->sighand->siglock); 2307 2308 timeout = schedule_timeout_interruptible(timeout); 2309 2310 try_to_freeze(); 2311 spin_lock_irq(¤t->sighand->siglock); 2312 sig = dequeue_signal(current, &these, &info); 2313 current->blocked = current->real_blocked; 2314 siginitset(¤t->real_blocked, 0); 2315 recalc_sigpending(); 2316 } 2317 } 2318 spin_unlock_irq(¤t->sighand->siglock); 2319 2320 if (sig) { 2321 ret = sig; 2322 if (uinfo) { 2323 if (copy_siginfo_to_user(uinfo, &info)) 2324 ret = -EFAULT; 2325 } 2326 } else { 2327 ret = -EAGAIN; 2328 if (timeout) 2329 ret = -EINTR; 2330 } 2331 2332 return ret; 2333 } 2334 2335 asmlinkage long 2336 sys_kill(int pid, int sig) 2337 { 2338 struct siginfo info; 2339 2340 info.si_signo = sig; 2341 info.si_errno = 0; 2342 info.si_code = SI_USER; 2343 info.si_pid = current->tgid; 2344 info.si_uid = current->uid; 2345 2346 return kill_something_info(sig, &info, pid); 2347 } 2348 2349 static int do_tkill(int tgid, int pid, int sig) 2350 { 2351 int error; 2352 struct siginfo info; 2353 struct task_struct *p; 2354 2355 error = -ESRCH; 2356 info.si_signo = sig; 2357 info.si_errno = 0; 2358 info.si_code = SI_TKILL; 2359 info.si_pid = current->tgid; 2360 info.si_uid = current->uid; 2361 2362 read_lock(&tasklist_lock); 2363 p = find_task_by_pid(pid); 2364 if (p && (tgid <= 0 || p->tgid == tgid)) { 2365 error = check_kill_permission(sig, &info, p); 2366 /* 2367 * The null signal is a permissions and process existence 2368 * probe. No signal is actually delivered. 2369 */ 2370 if (!error && sig && p->sighand) { 2371 spin_lock_irq(&p->sighand->siglock); 2372 handle_stop_signal(sig, p); 2373 error = specific_send_sig_info(sig, &info, p); 2374 spin_unlock_irq(&p->sighand->siglock); 2375 } 2376 } 2377 read_unlock(&tasklist_lock); 2378 2379 return error; 2380 } 2381 2382 /** 2383 * sys_tgkill - send signal to one specific thread 2384 * @tgid: the thread group ID of the thread 2385 * @pid: the PID of the thread 2386 * @sig: signal to be sent 2387 * 2388 * This syscall also checks the tgid and returns -ESRCH even if the PID 2389 * exists but it's not belonging to the target process anymore. This 2390 * method solves the problem of threads exiting and PIDs getting reused. 2391 */ 2392 asmlinkage long sys_tgkill(int tgid, int pid, int sig) 2393 { 2394 /* This is only valid for single tasks */ 2395 if (pid <= 0 || tgid <= 0) 2396 return -EINVAL; 2397 2398 return do_tkill(tgid, pid, sig); 2399 } 2400 2401 /* 2402 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2403 */ 2404 asmlinkage long 2405 sys_tkill(int pid, int sig) 2406 { 2407 /* This is only valid for single tasks */ 2408 if (pid <= 0) 2409 return -EINVAL; 2410 2411 return do_tkill(0, pid, sig); 2412 } 2413 2414 asmlinkage long 2415 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo) 2416 { 2417 siginfo_t info; 2418 2419 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2420 return -EFAULT; 2421 2422 /* Not even root can pretend to send signals from the kernel. 2423 Nor can they impersonate a kill(), which adds source info. */ 2424 if (info.si_code >= 0) 2425 return -EPERM; 2426 info.si_signo = sig; 2427 2428 /* POSIX.1b doesn't mention process groups. */ 2429 return kill_proc_info(sig, &info, pid); 2430 } 2431 2432 int 2433 do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 2434 { 2435 struct k_sigaction *k; 2436 sigset_t mask; 2437 2438 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 2439 return -EINVAL; 2440 2441 k = ¤t->sighand->action[sig-1]; 2442 2443 spin_lock_irq(¤t->sighand->siglock); 2444 if (signal_pending(current)) { 2445 /* 2446 * If there might be a fatal signal pending on multiple 2447 * threads, make sure we take it before changing the action. 2448 */ 2449 spin_unlock_irq(¤t->sighand->siglock); 2450 return -ERESTARTNOINTR; 2451 } 2452 2453 if (oact) 2454 *oact = *k; 2455 2456 if (act) { 2457 sigdelsetmask(&act->sa.sa_mask, 2458 sigmask(SIGKILL) | sigmask(SIGSTOP)); 2459 /* 2460 * POSIX 3.3.1.3: 2461 * "Setting a signal action to SIG_IGN for a signal that is 2462 * pending shall cause the pending signal to be discarded, 2463 * whether or not it is blocked." 2464 * 2465 * "Setting a signal action to SIG_DFL for a signal that is 2466 * pending and whose default action is to ignore the signal 2467 * (for example, SIGCHLD), shall cause the pending signal to 2468 * be discarded, whether or not it is blocked" 2469 */ 2470 if (act->sa.sa_handler == SIG_IGN || 2471 (act->sa.sa_handler == SIG_DFL && 2472 sig_kernel_ignore(sig))) { 2473 /* 2474 * This is a fairly rare case, so we only take the 2475 * tasklist_lock once we're sure we'll need it. 2476 * Now we must do this little unlock and relock 2477 * dance to maintain the lock hierarchy. 2478 */ 2479 struct task_struct *t = current; 2480 spin_unlock_irq(&t->sighand->siglock); 2481 read_lock(&tasklist_lock); 2482 spin_lock_irq(&t->sighand->siglock); 2483 *k = *act; 2484 sigemptyset(&mask); 2485 sigaddset(&mask, sig); 2486 rm_from_queue_full(&mask, &t->signal->shared_pending); 2487 do { 2488 rm_from_queue_full(&mask, &t->pending); 2489 recalc_sigpending_tsk(t); 2490 t = next_thread(t); 2491 } while (t != current); 2492 spin_unlock_irq(¤t->sighand->siglock); 2493 read_unlock(&tasklist_lock); 2494 return 0; 2495 } 2496 2497 *k = *act; 2498 } 2499 2500 spin_unlock_irq(¤t->sighand->siglock); 2501 return 0; 2502 } 2503 2504 int 2505 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 2506 { 2507 stack_t oss; 2508 int error; 2509 2510 if (uoss) { 2511 oss.ss_sp = (void __user *) current->sas_ss_sp; 2512 oss.ss_size = current->sas_ss_size; 2513 oss.ss_flags = sas_ss_flags(sp); 2514 } 2515 2516 if (uss) { 2517 void __user *ss_sp; 2518 size_t ss_size; 2519 int ss_flags; 2520 2521 error = -EFAULT; 2522 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)) 2523 || __get_user(ss_sp, &uss->ss_sp) 2524 || __get_user(ss_flags, &uss->ss_flags) 2525 || __get_user(ss_size, &uss->ss_size)) 2526 goto out; 2527 2528 error = -EPERM; 2529 if (on_sig_stack(sp)) 2530 goto out; 2531 2532 error = -EINVAL; 2533 /* 2534 * 2535 * Note - this code used to test ss_flags incorrectly 2536 * old code may have been written using ss_flags==0 2537 * to mean ss_flags==SS_ONSTACK (as this was the only 2538 * way that worked) - this fix preserves that older 2539 * mechanism 2540 */ 2541 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) 2542 goto out; 2543 2544 if (ss_flags == SS_DISABLE) { 2545 ss_size = 0; 2546 ss_sp = NULL; 2547 } else { 2548 error = -ENOMEM; 2549 if (ss_size < MINSIGSTKSZ) 2550 goto out; 2551 } 2552 2553 current->sas_ss_sp = (unsigned long) ss_sp; 2554 current->sas_ss_size = ss_size; 2555 } 2556 2557 if (uoss) { 2558 error = -EFAULT; 2559 if (copy_to_user(uoss, &oss, sizeof(oss))) 2560 goto out; 2561 } 2562 2563 error = 0; 2564 out: 2565 return error; 2566 } 2567 2568 #ifdef __ARCH_WANT_SYS_SIGPENDING 2569 2570 asmlinkage long 2571 sys_sigpending(old_sigset_t __user *set) 2572 { 2573 return do_sigpending(set, sizeof(*set)); 2574 } 2575 2576 #endif 2577 2578 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 2579 /* Some platforms have their own version with special arguments others 2580 support only sys_rt_sigprocmask. */ 2581 2582 asmlinkage long 2583 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset) 2584 { 2585 int error; 2586 old_sigset_t old_set, new_set; 2587 2588 if (set) { 2589 error = -EFAULT; 2590 if (copy_from_user(&new_set, set, sizeof(*set))) 2591 goto out; 2592 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP)); 2593 2594 spin_lock_irq(¤t->sighand->siglock); 2595 old_set = current->blocked.sig[0]; 2596 2597 error = 0; 2598 switch (how) { 2599 default: 2600 error = -EINVAL; 2601 break; 2602 case SIG_BLOCK: 2603 sigaddsetmask(¤t->blocked, new_set); 2604 break; 2605 case SIG_UNBLOCK: 2606 sigdelsetmask(¤t->blocked, new_set); 2607 break; 2608 case SIG_SETMASK: 2609 current->blocked.sig[0] = new_set; 2610 break; 2611 } 2612 2613 recalc_sigpending(); 2614 spin_unlock_irq(¤t->sighand->siglock); 2615 if (error) 2616 goto out; 2617 if (oset) 2618 goto set_old; 2619 } else if (oset) { 2620 old_set = current->blocked.sig[0]; 2621 set_old: 2622 error = -EFAULT; 2623 if (copy_to_user(oset, &old_set, sizeof(*oset))) 2624 goto out; 2625 } 2626 error = 0; 2627 out: 2628 return error; 2629 } 2630 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 2631 2632 #ifdef __ARCH_WANT_SYS_RT_SIGACTION 2633 asmlinkage long 2634 sys_rt_sigaction(int sig, 2635 const struct sigaction __user *act, 2636 struct sigaction __user *oact, 2637 size_t sigsetsize) 2638 { 2639 struct k_sigaction new_sa, old_sa; 2640 int ret = -EINVAL; 2641 2642 /* XXX: Don't preclude handling different sized sigset_t's. */ 2643 if (sigsetsize != sizeof(sigset_t)) 2644 goto out; 2645 2646 if (act) { 2647 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 2648 return -EFAULT; 2649 } 2650 2651 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 2652 2653 if (!ret && oact) { 2654 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 2655 return -EFAULT; 2656 } 2657 out: 2658 return ret; 2659 } 2660 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */ 2661 2662 #ifdef __ARCH_WANT_SYS_SGETMASK 2663 2664 /* 2665 * For backwards compatibility. Functionality superseded by sigprocmask. 2666 */ 2667 asmlinkage long 2668 sys_sgetmask(void) 2669 { 2670 /* SMP safe */ 2671 return current->blocked.sig[0]; 2672 } 2673 2674 asmlinkage long 2675 sys_ssetmask(int newmask) 2676 { 2677 int old; 2678 2679 spin_lock_irq(¤t->sighand->siglock); 2680 old = current->blocked.sig[0]; 2681 2682 siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)| 2683 sigmask(SIGSTOP))); 2684 recalc_sigpending(); 2685 spin_unlock_irq(¤t->sighand->siglock); 2686 2687 return old; 2688 } 2689 #endif /* __ARCH_WANT_SGETMASK */ 2690 2691 #ifdef __ARCH_WANT_SYS_SIGNAL 2692 /* 2693 * For backwards compatibility. Functionality superseded by sigaction. 2694 */ 2695 asmlinkage unsigned long 2696 sys_signal(int sig, __sighandler_t handler) 2697 { 2698 struct k_sigaction new_sa, old_sa; 2699 int ret; 2700 2701 new_sa.sa.sa_handler = handler; 2702 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 2703 sigemptyset(&new_sa.sa.sa_mask); 2704 2705 ret = do_sigaction(sig, &new_sa, &old_sa); 2706 2707 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 2708 } 2709 #endif /* __ARCH_WANT_SYS_SIGNAL */ 2710 2711 #ifdef __ARCH_WANT_SYS_PAUSE 2712 2713 asmlinkage long 2714 sys_pause(void) 2715 { 2716 current->state = TASK_INTERRUPTIBLE; 2717 schedule(); 2718 return -ERESTARTNOHAND; 2719 } 2720 2721 #endif 2722 2723 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND 2724 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize) 2725 { 2726 sigset_t newset; 2727 2728 /* XXX: Don't preclude handling different sized sigset_t's. */ 2729 if (sigsetsize != sizeof(sigset_t)) 2730 return -EINVAL; 2731 2732 if (copy_from_user(&newset, unewset, sizeof(newset))) 2733 return -EFAULT; 2734 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2735 2736 spin_lock_irq(¤t->sighand->siglock); 2737 current->saved_sigmask = current->blocked; 2738 current->blocked = newset; 2739 recalc_sigpending(); 2740 spin_unlock_irq(¤t->sighand->siglock); 2741 2742 current->state = TASK_INTERRUPTIBLE; 2743 schedule(); 2744 set_thread_flag(TIF_RESTORE_SIGMASK); 2745 return -ERESTARTNOHAND; 2746 } 2747 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */ 2748 2749 void __init signals_init(void) 2750 { 2751 sigqueue_cachep = 2752 kmem_cache_create("sigqueue", 2753 sizeof(struct sigqueue), 2754 __alignof__(struct sigqueue), 2755 SLAB_PANIC, NULL, NULL); 2756 } 2757