1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/config.h> 14 #include <linux/slab.h> 15 #include <linux/module.h> 16 #include <linux/smp_lock.h> 17 #include <linux/init.h> 18 #include <linux/sched.h> 19 #include <linux/fs.h> 20 #include <linux/tty.h> 21 #include <linux/binfmts.h> 22 #include <linux/security.h> 23 #include <linux/syscalls.h> 24 #include <linux/ptrace.h> 25 #include <linux/posix-timers.h> 26 #include <linux/signal.h> 27 #include <linux/audit.h> 28 #include <asm/param.h> 29 #include <asm/uaccess.h> 30 #include <asm/unistd.h> 31 #include <asm/siginfo.h> 32 33 /* 34 * SLAB caches for signal bits. 35 */ 36 37 static kmem_cache_t *sigqueue_cachep; 38 39 /* 40 * In POSIX a signal is sent either to a specific thread (Linux task) 41 * or to the process as a whole (Linux thread group). How the signal 42 * is sent determines whether it's to one thread or the whole group, 43 * which determines which signal mask(s) are involved in blocking it 44 * from being delivered until later. When the signal is delivered, 45 * either it's caught or ignored by a user handler or it has a default 46 * effect that applies to the whole thread group (POSIX process). 47 * 48 * The possible effects an unblocked signal set to SIG_DFL can have are: 49 * ignore - Nothing Happens 50 * terminate - kill the process, i.e. all threads in the group, 51 * similar to exit_group. The group leader (only) reports 52 * WIFSIGNALED status to its parent. 53 * coredump - write a core dump file describing all threads using 54 * the same mm and then kill all those threads 55 * stop - stop all the threads in the group, i.e. TASK_STOPPED state 56 * 57 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored. 58 * Other signals when not blocked and set to SIG_DFL behaves as follows. 59 * The job control signals also have other special effects. 60 * 61 * +--------------------+------------------+ 62 * | POSIX signal | default action | 63 * +--------------------+------------------+ 64 * | SIGHUP | terminate | 65 * | SIGINT | terminate | 66 * | SIGQUIT | coredump | 67 * | SIGILL | coredump | 68 * | SIGTRAP | coredump | 69 * | SIGABRT/SIGIOT | coredump | 70 * | SIGBUS | coredump | 71 * | SIGFPE | coredump | 72 * | SIGKILL | terminate(+) | 73 * | SIGUSR1 | terminate | 74 * | SIGSEGV | coredump | 75 * | SIGUSR2 | terminate | 76 * | SIGPIPE | terminate | 77 * | SIGALRM | terminate | 78 * | SIGTERM | terminate | 79 * | SIGCHLD | ignore | 80 * | SIGCONT | ignore(*) | 81 * | SIGSTOP | stop(*)(+) | 82 * | SIGTSTP | stop(*) | 83 * | SIGTTIN | stop(*) | 84 * | SIGTTOU | stop(*) | 85 * | SIGURG | ignore | 86 * | SIGXCPU | coredump | 87 * | SIGXFSZ | coredump | 88 * | SIGVTALRM | terminate | 89 * | SIGPROF | terminate | 90 * | SIGPOLL/SIGIO | terminate | 91 * | SIGSYS/SIGUNUSED | coredump | 92 * | SIGSTKFLT | terminate | 93 * | SIGWINCH | ignore | 94 * | SIGPWR | terminate | 95 * | SIGRTMIN-SIGRTMAX | terminate | 96 * +--------------------+------------------+ 97 * | non-POSIX signal | default action | 98 * +--------------------+------------------+ 99 * | SIGEMT | coredump | 100 * +--------------------+------------------+ 101 * 102 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default". 103 * (*) Special job control effects: 104 * When SIGCONT is sent, it resumes the process (all threads in the group) 105 * from TASK_STOPPED state and also clears any pending/queued stop signals 106 * (any of those marked with "stop(*)"). This happens regardless of blocking, 107 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears 108 * any pending/queued SIGCONT signals; this happens regardless of blocking, 109 * catching, or ignored the stop signal, though (except for SIGSTOP) the 110 * default action of stopping the process may happen later or never. 111 */ 112 113 #ifdef SIGEMT 114 #define M_SIGEMT M(SIGEMT) 115 #else 116 #define M_SIGEMT 0 117 #endif 118 119 #if SIGRTMIN > BITS_PER_LONG 120 #define M(sig) (1ULL << ((sig)-1)) 121 #else 122 #define M(sig) (1UL << ((sig)-1)) 123 #endif 124 #define T(sig, mask) (M(sig) & (mask)) 125 126 #define SIG_KERNEL_ONLY_MASK (\ 127 M(SIGKILL) | M(SIGSTOP) ) 128 129 #define SIG_KERNEL_STOP_MASK (\ 130 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) ) 131 132 #define SIG_KERNEL_COREDUMP_MASK (\ 133 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \ 134 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \ 135 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT ) 136 137 #define SIG_KERNEL_IGNORE_MASK (\ 138 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) ) 139 140 #define sig_kernel_only(sig) \ 141 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK)) 142 #define sig_kernel_coredump(sig) \ 143 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK)) 144 #define sig_kernel_ignore(sig) \ 145 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK)) 146 #define sig_kernel_stop(sig) \ 147 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK)) 148 149 #define sig_user_defined(t, signr) \ 150 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \ 151 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN)) 152 153 #define sig_fatal(t, signr) \ 154 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \ 155 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL) 156 157 static int sig_ignored(struct task_struct *t, int sig) 158 { 159 void __user * handler; 160 161 /* 162 * Tracers always want to know about signals.. 163 */ 164 if (t->ptrace & PT_PTRACED) 165 return 0; 166 167 /* 168 * Blocked signals are never ignored, since the 169 * signal handler may change by the time it is 170 * unblocked. 171 */ 172 if (sigismember(&t->blocked, sig)) 173 return 0; 174 175 /* Is it explicitly or implicitly ignored? */ 176 handler = t->sighand->action[sig-1].sa.sa_handler; 177 return handler == SIG_IGN || 178 (handler == SIG_DFL && sig_kernel_ignore(sig)); 179 } 180 181 /* 182 * Re-calculate pending state from the set of locally pending 183 * signals, globally pending signals, and blocked signals. 184 */ 185 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 186 { 187 unsigned long ready; 188 long i; 189 190 switch (_NSIG_WORDS) { 191 default: 192 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 193 ready |= signal->sig[i] &~ blocked->sig[i]; 194 break; 195 196 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 197 ready |= signal->sig[2] &~ blocked->sig[2]; 198 ready |= signal->sig[1] &~ blocked->sig[1]; 199 ready |= signal->sig[0] &~ blocked->sig[0]; 200 break; 201 202 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 203 ready |= signal->sig[0] &~ blocked->sig[0]; 204 break; 205 206 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 207 } 208 return ready != 0; 209 } 210 211 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 212 213 fastcall void recalc_sigpending_tsk(struct task_struct *t) 214 { 215 if (t->signal->group_stop_count > 0 || 216 (freezing(t)) || 217 PENDING(&t->pending, &t->blocked) || 218 PENDING(&t->signal->shared_pending, &t->blocked)) 219 set_tsk_thread_flag(t, TIF_SIGPENDING); 220 else 221 clear_tsk_thread_flag(t, TIF_SIGPENDING); 222 } 223 224 void recalc_sigpending(void) 225 { 226 recalc_sigpending_tsk(current); 227 } 228 229 /* Given the mask, find the first available signal that should be serviced. */ 230 231 static int 232 next_signal(struct sigpending *pending, sigset_t *mask) 233 { 234 unsigned long i, *s, *m, x; 235 int sig = 0; 236 237 s = pending->signal.sig; 238 m = mask->sig; 239 switch (_NSIG_WORDS) { 240 default: 241 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m) 242 if ((x = *s &~ *m) != 0) { 243 sig = ffz(~x) + i*_NSIG_BPW + 1; 244 break; 245 } 246 break; 247 248 case 2: if ((x = s[0] &~ m[0]) != 0) 249 sig = 1; 250 else if ((x = s[1] &~ m[1]) != 0) 251 sig = _NSIG_BPW + 1; 252 else 253 break; 254 sig += ffz(~x); 255 break; 256 257 case 1: if ((x = *s &~ *m) != 0) 258 sig = ffz(~x) + 1; 259 break; 260 } 261 262 return sig; 263 } 264 265 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, unsigned int __nocast flags, 266 int override_rlimit) 267 { 268 struct sigqueue *q = NULL; 269 270 atomic_inc(&t->user->sigpending); 271 if (override_rlimit || 272 atomic_read(&t->user->sigpending) <= 273 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur) 274 q = kmem_cache_alloc(sigqueue_cachep, flags); 275 if (unlikely(q == NULL)) { 276 atomic_dec(&t->user->sigpending); 277 } else { 278 INIT_LIST_HEAD(&q->list); 279 q->flags = 0; 280 q->lock = NULL; 281 q->user = get_uid(t->user); 282 } 283 return(q); 284 } 285 286 static inline void __sigqueue_free(struct sigqueue *q) 287 { 288 if (q->flags & SIGQUEUE_PREALLOC) 289 return; 290 atomic_dec(&q->user->sigpending); 291 free_uid(q->user); 292 kmem_cache_free(sigqueue_cachep, q); 293 } 294 295 static void flush_sigqueue(struct sigpending *queue) 296 { 297 struct sigqueue *q; 298 299 sigemptyset(&queue->signal); 300 while (!list_empty(&queue->list)) { 301 q = list_entry(queue->list.next, struct sigqueue , list); 302 list_del_init(&q->list); 303 __sigqueue_free(q); 304 } 305 } 306 307 /* 308 * Flush all pending signals for a task. 309 */ 310 311 void 312 flush_signals(struct task_struct *t) 313 { 314 unsigned long flags; 315 316 spin_lock_irqsave(&t->sighand->siglock, flags); 317 clear_tsk_thread_flag(t,TIF_SIGPENDING); 318 flush_sigqueue(&t->pending); 319 flush_sigqueue(&t->signal->shared_pending); 320 spin_unlock_irqrestore(&t->sighand->siglock, flags); 321 } 322 323 /* 324 * This function expects the tasklist_lock write-locked. 325 */ 326 void __exit_sighand(struct task_struct *tsk) 327 { 328 struct sighand_struct * sighand = tsk->sighand; 329 330 /* Ok, we're done with the signal handlers */ 331 tsk->sighand = NULL; 332 if (atomic_dec_and_test(&sighand->count)) 333 kmem_cache_free(sighand_cachep, sighand); 334 } 335 336 void exit_sighand(struct task_struct *tsk) 337 { 338 write_lock_irq(&tasklist_lock); 339 __exit_sighand(tsk); 340 write_unlock_irq(&tasklist_lock); 341 } 342 343 /* 344 * This function expects the tasklist_lock write-locked. 345 */ 346 void __exit_signal(struct task_struct *tsk) 347 { 348 struct signal_struct * sig = tsk->signal; 349 struct sighand_struct * sighand = tsk->sighand; 350 351 if (!sig) 352 BUG(); 353 if (!atomic_read(&sig->count)) 354 BUG(); 355 spin_lock(&sighand->siglock); 356 posix_cpu_timers_exit(tsk); 357 if (atomic_dec_and_test(&sig->count)) { 358 posix_cpu_timers_exit_group(tsk); 359 if (tsk == sig->curr_target) 360 sig->curr_target = next_thread(tsk); 361 tsk->signal = NULL; 362 spin_unlock(&sighand->siglock); 363 flush_sigqueue(&sig->shared_pending); 364 } else { 365 /* 366 * If there is any task waiting for the group exit 367 * then notify it: 368 */ 369 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) { 370 wake_up_process(sig->group_exit_task); 371 sig->group_exit_task = NULL; 372 } 373 if (tsk == sig->curr_target) 374 sig->curr_target = next_thread(tsk); 375 tsk->signal = NULL; 376 /* 377 * Accumulate here the counters for all threads but the 378 * group leader as they die, so they can be added into 379 * the process-wide totals when those are taken. 380 * The group leader stays around as a zombie as long 381 * as there are other threads. When it gets reaped, 382 * the exit.c code will add its counts into these totals. 383 * We won't ever get here for the group leader, since it 384 * will have been the last reference on the signal_struct. 385 */ 386 sig->utime = cputime_add(sig->utime, tsk->utime); 387 sig->stime = cputime_add(sig->stime, tsk->stime); 388 sig->min_flt += tsk->min_flt; 389 sig->maj_flt += tsk->maj_flt; 390 sig->nvcsw += tsk->nvcsw; 391 sig->nivcsw += tsk->nivcsw; 392 sig->sched_time += tsk->sched_time; 393 spin_unlock(&sighand->siglock); 394 sig = NULL; /* Marker for below. */ 395 } 396 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 397 flush_sigqueue(&tsk->pending); 398 if (sig) { 399 /* 400 * We are cleaning up the signal_struct here. We delayed 401 * calling exit_itimers until after flush_sigqueue, just in 402 * case our thread-local pending queue contained a queued 403 * timer signal that would have been cleared in 404 * exit_itimers. When that called sigqueue_free, it would 405 * attempt to re-take the tasklist_lock and deadlock. This 406 * can never happen if we ensure that all queues the 407 * timer's signal might be queued on have been flushed 408 * first. The shared_pending queue, and our own pending 409 * queue are the only queues the timer could be on, since 410 * there are no other threads left in the group and timer 411 * signals are constrained to threads inside the group. 412 */ 413 exit_itimers(sig); 414 exit_thread_group_keys(sig); 415 kmem_cache_free(signal_cachep, sig); 416 } 417 } 418 419 void exit_signal(struct task_struct *tsk) 420 { 421 write_lock_irq(&tasklist_lock); 422 __exit_signal(tsk); 423 write_unlock_irq(&tasklist_lock); 424 } 425 426 /* 427 * Flush all handlers for a task. 428 */ 429 430 void 431 flush_signal_handlers(struct task_struct *t, int force_default) 432 { 433 int i; 434 struct k_sigaction *ka = &t->sighand->action[0]; 435 for (i = _NSIG ; i != 0 ; i--) { 436 if (force_default || ka->sa.sa_handler != SIG_IGN) 437 ka->sa.sa_handler = SIG_DFL; 438 ka->sa.sa_flags = 0; 439 sigemptyset(&ka->sa.sa_mask); 440 ka++; 441 } 442 } 443 444 445 /* Notify the system that a driver wants to block all signals for this 446 * process, and wants to be notified if any signals at all were to be 447 * sent/acted upon. If the notifier routine returns non-zero, then the 448 * signal will be acted upon after all. If the notifier routine returns 0, 449 * then then signal will be blocked. Only one block per process is 450 * allowed. priv is a pointer to private data that the notifier routine 451 * can use to determine if the signal should be blocked or not. */ 452 453 void 454 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) 455 { 456 unsigned long flags; 457 458 spin_lock_irqsave(¤t->sighand->siglock, flags); 459 current->notifier_mask = mask; 460 current->notifier_data = priv; 461 current->notifier = notifier; 462 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 463 } 464 465 /* Notify the system that blocking has ended. */ 466 467 void 468 unblock_all_signals(void) 469 { 470 unsigned long flags; 471 472 spin_lock_irqsave(¤t->sighand->siglock, flags); 473 current->notifier = NULL; 474 current->notifier_data = NULL; 475 recalc_sigpending(); 476 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 477 } 478 479 static inline int collect_signal(int sig, struct sigpending *list, siginfo_t *info) 480 { 481 struct sigqueue *q, *first = NULL; 482 int still_pending = 0; 483 484 if (unlikely(!sigismember(&list->signal, sig))) 485 return 0; 486 487 /* 488 * Collect the siginfo appropriate to this signal. Check if 489 * there is another siginfo for the same signal. 490 */ 491 list_for_each_entry(q, &list->list, list) { 492 if (q->info.si_signo == sig) { 493 if (first) { 494 still_pending = 1; 495 break; 496 } 497 first = q; 498 } 499 } 500 if (first) { 501 list_del_init(&first->list); 502 copy_siginfo(info, &first->info); 503 __sigqueue_free(first); 504 if (!still_pending) 505 sigdelset(&list->signal, sig); 506 } else { 507 508 /* Ok, it wasn't in the queue. This must be 509 a fast-pathed signal or we must have been 510 out of queue space. So zero out the info. 511 */ 512 sigdelset(&list->signal, sig); 513 info->si_signo = sig; 514 info->si_errno = 0; 515 info->si_code = 0; 516 info->si_pid = 0; 517 info->si_uid = 0; 518 } 519 return 1; 520 } 521 522 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 523 siginfo_t *info) 524 { 525 int sig = 0; 526 527 /* SIGKILL must have priority, otherwise it is quite easy 528 * to create an unkillable process, sending sig < SIGKILL 529 * to self */ 530 if (unlikely(sigismember(&pending->signal, SIGKILL))) { 531 if (!sigismember(mask, SIGKILL)) 532 sig = SIGKILL; 533 } 534 535 if (likely(!sig)) 536 sig = next_signal(pending, mask); 537 if (sig) { 538 if (current->notifier) { 539 if (sigismember(current->notifier_mask, sig)) { 540 if (!(current->notifier)(current->notifier_data)) { 541 clear_thread_flag(TIF_SIGPENDING); 542 return 0; 543 } 544 } 545 } 546 547 if (!collect_signal(sig, pending, info)) 548 sig = 0; 549 550 } 551 recalc_sigpending(); 552 553 return sig; 554 } 555 556 /* 557 * Dequeue a signal and return the element to the caller, which is 558 * expected to free it. 559 * 560 * All callers have to hold the siglock. 561 */ 562 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 563 { 564 int signr = __dequeue_signal(&tsk->pending, mask, info); 565 if (!signr) 566 signr = __dequeue_signal(&tsk->signal->shared_pending, 567 mask, info); 568 if (signr && unlikely(sig_kernel_stop(signr))) { 569 /* 570 * Set a marker that we have dequeued a stop signal. Our 571 * caller might release the siglock and then the pending 572 * stop signal it is about to process is no longer in the 573 * pending bitmasks, but must still be cleared by a SIGCONT 574 * (and overruled by a SIGKILL). So those cases clear this 575 * shared flag after we've set it. Note that this flag may 576 * remain set after the signal we return is ignored or 577 * handled. That doesn't matter because its only purpose 578 * is to alert stop-signal processing code when another 579 * processor has come along and cleared the flag. 580 */ 581 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED; 582 } 583 if ( signr && 584 ((info->si_code & __SI_MASK) == __SI_TIMER) && 585 info->si_sys_private){ 586 /* 587 * Release the siglock to ensure proper locking order 588 * of timer locks outside of siglocks. Note, we leave 589 * irqs disabled here, since the posix-timers code is 590 * about to disable them again anyway. 591 */ 592 spin_unlock(&tsk->sighand->siglock); 593 do_schedule_next_timer(info); 594 spin_lock(&tsk->sighand->siglock); 595 } 596 return signr; 597 } 598 599 /* 600 * Tell a process that it has a new active signal.. 601 * 602 * NOTE! we rely on the previous spin_lock to 603 * lock interrupts for us! We can only be called with 604 * "siglock" held, and the local interrupt must 605 * have been disabled when that got acquired! 606 * 607 * No need to set need_resched since signal event passing 608 * goes through ->blocked 609 */ 610 void signal_wake_up(struct task_struct *t, int resume) 611 { 612 unsigned int mask; 613 614 set_tsk_thread_flag(t, TIF_SIGPENDING); 615 616 /* 617 * For SIGKILL, we want to wake it up in the stopped/traced case. 618 * We don't check t->state here because there is a race with it 619 * executing another processor and just now entering stopped state. 620 * By using wake_up_state, we ensure the process will wake up and 621 * handle its death signal. 622 */ 623 mask = TASK_INTERRUPTIBLE; 624 if (resume) 625 mask |= TASK_STOPPED | TASK_TRACED; 626 if (!wake_up_state(t, mask)) 627 kick_process(t); 628 } 629 630 /* 631 * Remove signals in mask from the pending set and queue. 632 * Returns 1 if any signals were found. 633 * 634 * All callers must be holding the siglock. 635 */ 636 static int rm_from_queue(unsigned long mask, struct sigpending *s) 637 { 638 struct sigqueue *q, *n; 639 640 if (!sigtestsetmask(&s->signal, mask)) 641 return 0; 642 643 sigdelsetmask(&s->signal, mask); 644 list_for_each_entry_safe(q, n, &s->list, list) { 645 if (q->info.si_signo < SIGRTMIN && 646 (mask & sigmask(q->info.si_signo))) { 647 list_del_init(&q->list); 648 __sigqueue_free(q); 649 } 650 } 651 return 1; 652 } 653 654 /* 655 * Bad permissions for sending the signal 656 */ 657 static int check_kill_permission(int sig, struct siginfo *info, 658 struct task_struct *t) 659 { 660 int error = -EINVAL; 661 if (!valid_signal(sig)) 662 return error; 663 error = -EPERM; 664 if ((!info || ((unsigned long)info != 1 && 665 (unsigned long)info != 2 && SI_FROMUSER(info))) 666 && ((sig != SIGCONT) || 667 (current->signal->session != t->signal->session)) 668 && (current->euid ^ t->suid) && (current->euid ^ t->uid) 669 && (current->uid ^ t->suid) && (current->uid ^ t->uid) 670 && !capable(CAP_KILL)) 671 return error; 672 673 error = security_task_kill(t, info, sig); 674 if (!error) 675 audit_signal_info(sig, t); /* Let audit system see the signal */ 676 return error; 677 } 678 679 /* forward decl */ 680 static void do_notify_parent_cldstop(struct task_struct *tsk, 681 struct task_struct *parent, 682 int why); 683 684 /* 685 * Handle magic process-wide effects of stop/continue signals. 686 * Unlike the signal actions, these happen immediately at signal-generation 687 * time regardless of blocking, ignoring, or handling. This does the 688 * actual continuing for SIGCONT, but not the actual stopping for stop 689 * signals. The process stop is done as a signal action for SIG_DFL. 690 */ 691 static void handle_stop_signal(int sig, struct task_struct *p) 692 { 693 struct task_struct *t; 694 695 if (p->flags & SIGNAL_GROUP_EXIT) 696 /* 697 * The process is in the middle of dying already. 698 */ 699 return; 700 701 if (sig_kernel_stop(sig)) { 702 /* 703 * This is a stop signal. Remove SIGCONT from all queues. 704 */ 705 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending); 706 t = p; 707 do { 708 rm_from_queue(sigmask(SIGCONT), &t->pending); 709 t = next_thread(t); 710 } while (t != p); 711 } else if (sig == SIGCONT) { 712 /* 713 * Remove all stop signals from all queues, 714 * and wake all threads. 715 */ 716 if (unlikely(p->signal->group_stop_count > 0)) { 717 /* 718 * There was a group stop in progress. We'll 719 * pretend it finished before we got here. We are 720 * obliged to report it to the parent: if the 721 * SIGSTOP happened "after" this SIGCONT, then it 722 * would have cleared this pending SIGCONT. If it 723 * happened "before" this SIGCONT, then the parent 724 * got the SIGCHLD about the stop finishing before 725 * the continue happened. We do the notification 726 * now, and it's as if the stop had finished and 727 * the SIGCHLD was pending on entry to this kill. 728 */ 729 p->signal->group_stop_count = 0; 730 p->signal->flags = SIGNAL_STOP_CONTINUED; 731 spin_unlock(&p->sighand->siglock); 732 if (p->ptrace & PT_PTRACED) 733 do_notify_parent_cldstop(p, p->parent, 734 CLD_STOPPED); 735 else 736 do_notify_parent_cldstop( 737 p->group_leader, 738 p->group_leader->real_parent, 739 CLD_STOPPED); 740 spin_lock(&p->sighand->siglock); 741 } 742 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); 743 t = p; 744 do { 745 unsigned int state; 746 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 747 748 /* 749 * If there is a handler for SIGCONT, we must make 750 * sure that no thread returns to user mode before 751 * we post the signal, in case it was the only 752 * thread eligible to run the signal handler--then 753 * it must not do anything between resuming and 754 * running the handler. With the TIF_SIGPENDING 755 * flag set, the thread will pause and acquire the 756 * siglock that we hold now and until we've queued 757 * the pending signal. 758 * 759 * Wake up the stopped thread _after_ setting 760 * TIF_SIGPENDING 761 */ 762 state = TASK_STOPPED; 763 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) { 764 set_tsk_thread_flag(t, TIF_SIGPENDING); 765 state |= TASK_INTERRUPTIBLE; 766 } 767 wake_up_state(t, state); 768 769 t = next_thread(t); 770 } while (t != p); 771 772 if (p->signal->flags & SIGNAL_STOP_STOPPED) { 773 /* 774 * We were in fact stopped, and are now continued. 775 * Notify the parent with CLD_CONTINUED. 776 */ 777 p->signal->flags = SIGNAL_STOP_CONTINUED; 778 p->signal->group_exit_code = 0; 779 spin_unlock(&p->sighand->siglock); 780 if (p->ptrace & PT_PTRACED) 781 do_notify_parent_cldstop(p, p->parent, 782 CLD_CONTINUED); 783 else 784 do_notify_parent_cldstop( 785 p->group_leader, 786 p->group_leader->real_parent, 787 CLD_CONTINUED); 788 spin_lock(&p->sighand->siglock); 789 } else { 790 /* 791 * We are not stopped, but there could be a stop 792 * signal in the middle of being processed after 793 * being removed from the queue. Clear that too. 794 */ 795 p->signal->flags = 0; 796 } 797 } else if (sig == SIGKILL) { 798 /* 799 * Make sure that any pending stop signal already dequeued 800 * is undone by the wakeup for SIGKILL. 801 */ 802 p->signal->flags = 0; 803 } 804 } 805 806 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 807 struct sigpending *signals) 808 { 809 struct sigqueue * q = NULL; 810 int ret = 0; 811 812 /* 813 * fast-pathed signals for kernel-internal things like SIGSTOP 814 * or SIGKILL. 815 */ 816 if ((unsigned long)info == 2) 817 goto out_set; 818 819 /* Real-time signals must be queued if sent by sigqueue, or 820 some other real-time mechanism. It is implementation 821 defined whether kill() does so. We attempt to do so, on 822 the principle of least surprise, but since kill is not 823 allowed to fail with EAGAIN when low on memory we just 824 make sure at least one signal gets delivered and don't 825 pass on the info struct. */ 826 827 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN && 828 ((unsigned long) info < 2 || 829 info->si_code >= 0))); 830 if (q) { 831 list_add_tail(&q->list, &signals->list); 832 switch ((unsigned long) info) { 833 case 0: 834 q->info.si_signo = sig; 835 q->info.si_errno = 0; 836 q->info.si_code = SI_USER; 837 q->info.si_pid = current->pid; 838 q->info.si_uid = current->uid; 839 break; 840 case 1: 841 q->info.si_signo = sig; 842 q->info.si_errno = 0; 843 q->info.si_code = SI_KERNEL; 844 q->info.si_pid = 0; 845 q->info.si_uid = 0; 846 break; 847 default: 848 copy_siginfo(&q->info, info); 849 break; 850 } 851 } else { 852 if (sig >= SIGRTMIN && info && (unsigned long)info != 1 853 && info->si_code != SI_USER) 854 /* 855 * Queue overflow, abort. We may abort if the signal was rt 856 * and sent by user using something other than kill(). 857 */ 858 return -EAGAIN; 859 if (((unsigned long)info > 1) && (info->si_code == SI_TIMER)) 860 /* 861 * Set up a return to indicate that we dropped 862 * the signal. 863 */ 864 ret = info->si_sys_private; 865 } 866 867 out_set: 868 sigaddset(&signals->signal, sig); 869 return ret; 870 } 871 872 #define LEGACY_QUEUE(sigptr, sig) \ 873 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig))) 874 875 876 static int 877 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 878 { 879 int ret = 0; 880 881 if (!irqs_disabled()) 882 BUG(); 883 assert_spin_locked(&t->sighand->siglock); 884 885 if (((unsigned long)info > 2) && (info->si_code == SI_TIMER)) 886 /* 887 * Set up a return to indicate that we dropped the signal. 888 */ 889 ret = info->si_sys_private; 890 891 /* Short-circuit ignored signals. */ 892 if (sig_ignored(t, sig)) 893 goto out; 894 895 /* Support queueing exactly one non-rt signal, so that we 896 can get more detailed information about the cause of 897 the signal. */ 898 if (LEGACY_QUEUE(&t->pending, sig)) 899 goto out; 900 901 ret = send_signal(sig, info, t, &t->pending); 902 if (!ret && !sigismember(&t->blocked, sig)) 903 signal_wake_up(t, sig == SIGKILL); 904 out: 905 return ret; 906 } 907 908 /* 909 * Force a signal that the process can't ignore: if necessary 910 * we unblock the signal and change any SIG_IGN to SIG_DFL. 911 */ 912 913 int 914 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 915 { 916 unsigned long int flags; 917 int ret; 918 919 spin_lock_irqsave(&t->sighand->siglock, flags); 920 if (sigismember(&t->blocked, sig) || t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) { 921 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL; 922 sigdelset(&t->blocked, sig); 923 recalc_sigpending_tsk(t); 924 } 925 ret = specific_send_sig_info(sig, info, t); 926 spin_unlock_irqrestore(&t->sighand->siglock, flags); 927 928 return ret; 929 } 930 931 void 932 force_sig_specific(int sig, struct task_struct *t) 933 { 934 unsigned long int flags; 935 936 spin_lock_irqsave(&t->sighand->siglock, flags); 937 if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) 938 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL; 939 sigdelset(&t->blocked, sig); 940 recalc_sigpending_tsk(t); 941 specific_send_sig_info(sig, (void *)2, t); 942 spin_unlock_irqrestore(&t->sighand->siglock, flags); 943 } 944 945 /* 946 * Test if P wants to take SIG. After we've checked all threads with this, 947 * it's equivalent to finding no threads not blocking SIG. Any threads not 948 * blocking SIG were ruled out because they are not running and already 949 * have pending signals. Such threads will dequeue from the shared queue 950 * as soon as they're available, so putting the signal on the shared queue 951 * will be equivalent to sending it to one such thread. 952 */ 953 #define wants_signal(sig, p, mask) \ 954 (!sigismember(&(p)->blocked, sig) \ 955 && !((p)->state & mask) \ 956 && !((p)->flags & PF_EXITING) \ 957 && (task_curr(p) || !signal_pending(p))) 958 959 960 static void 961 __group_complete_signal(int sig, struct task_struct *p) 962 { 963 unsigned int mask; 964 struct task_struct *t; 965 966 /* 967 * Don't bother traced and stopped tasks (but 968 * SIGKILL will punch through that). 969 */ 970 mask = TASK_STOPPED | TASK_TRACED; 971 if (sig == SIGKILL) 972 mask = 0; 973 974 /* 975 * Now find a thread we can wake up to take the signal off the queue. 976 * 977 * If the main thread wants the signal, it gets first crack. 978 * Probably the least surprising to the average bear. 979 */ 980 if (wants_signal(sig, p, mask)) 981 t = p; 982 else if (thread_group_empty(p)) 983 /* 984 * There is just one thread and it does not need to be woken. 985 * It will dequeue unblocked signals before it runs again. 986 */ 987 return; 988 else { 989 /* 990 * Otherwise try to find a suitable thread. 991 */ 992 t = p->signal->curr_target; 993 if (t == NULL) 994 /* restart balancing at this thread */ 995 t = p->signal->curr_target = p; 996 BUG_ON(t->tgid != p->tgid); 997 998 while (!wants_signal(sig, t, mask)) { 999 t = next_thread(t); 1000 if (t == p->signal->curr_target) 1001 /* 1002 * No thread needs to be woken. 1003 * Any eligible threads will see 1004 * the signal in the queue soon. 1005 */ 1006 return; 1007 } 1008 p->signal->curr_target = t; 1009 } 1010 1011 /* 1012 * Found a killable thread. If the signal will be fatal, 1013 * then start taking the whole group down immediately. 1014 */ 1015 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) && 1016 !sigismember(&t->real_blocked, sig) && 1017 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) { 1018 /* 1019 * This signal will be fatal to the whole group. 1020 */ 1021 if (!sig_kernel_coredump(sig)) { 1022 /* 1023 * Start a group exit and wake everybody up. 1024 * This way we don't have other threads 1025 * running and doing things after a slower 1026 * thread has the fatal signal pending. 1027 */ 1028 p->signal->flags = SIGNAL_GROUP_EXIT; 1029 p->signal->group_exit_code = sig; 1030 p->signal->group_stop_count = 0; 1031 t = p; 1032 do { 1033 sigaddset(&t->pending.signal, SIGKILL); 1034 signal_wake_up(t, 1); 1035 t = next_thread(t); 1036 } while (t != p); 1037 return; 1038 } 1039 1040 /* 1041 * There will be a core dump. We make all threads other 1042 * than the chosen one go into a group stop so that nothing 1043 * happens until it gets scheduled, takes the signal off 1044 * the shared queue, and does the core dump. This is a 1045 * little more complicated than strictly necessary, but it 1046 * keeps the signal state that winds up in the core dump 1047 * unchanged from the death state, e.g. which thread had 1048 * the core-dump signal unblocked. 1049 */ 1050 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 1051 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); 1052 p->signal->group_stop_count = 0; 1053 p->signal->group_exit_task = t; 1054 t = p; 1055 do { 1056 p->signal->group_stop_count++; 1057 signal_wake_up(t, 0); 1058 t = next_thread(t); 1059 } while (t != p); 1060 wake_up_process(p->signal->group_exit_task); 1061 return; 1062 } 1063 1064 /* 1065 * The signal is already in the shared-pending queue. 1066 * Tell the chosen thread to wake up and dequeue it. 1067 */ 1068 signal_wake_up(t, sig == SIGKILL); 1069 return; 1070 } 1071 1072 int 1073 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1074 { 1075 int ret = 0; 1076 1077 assert_spin_locked(&p->sighand->siglock); 1078 handle_stop_signal(sig, p); 1079 1080 if (((unsigned long)info > 2) && (info->si_code == SI_TIMER)) 1081 /* 1082 * Set up a return to indicate that we dropped the signal. 1083 */ 1084 ret = info->si_sys_private; 1085 1086 /* Short-circuit ignored signals. */ 1087 if (sig_ignored(p, sig)) 1088 return ret; 1089 1090 if (LEGACY_QUEUE(&p->signal->shared_pending, sig)) 1091 /* This is a non-RT signal and we already have one queued. */ 1092 return ret; 1093 1094 /* 1095 * Put this signal on the shared-pending queue, or fail with EAGAIN. 1096 * We always use the shared queue for process-wide signals, 1097 * to avoid several races. 1098 */ 1099 ret = send_signal(sig, info, p, &p->signal->shared_pending); 1100 if (unlikely(ret)) 1101 return ret; 1102 1103 __group_complete_signal(sig, p); 1104 return 0; 1105 } 1106 1107 /* 1108 * Nuke all other threads in the group. 1109 */ 1110 void zap_other_threads(struct task_struct *p) 1111 { 1112 struct task_struct *t; 1113 1114 p->signal->flags = SIGNAL_GROUP_EXIT; 1115 p->signal->group_stop_count = 0; 1116 1117 if (thread_group_empty(p)) 1118 return; 1119 1120 for (t = next_thread(p); t != p; t = next_thread(t)) { 1121 /* 1122 * Don't bother with already dead threads 1123 */ 1124 if (t->exit_state) 1125 continue; 1126 1127 /* 1128 * We don't want to notify the parent, since we are 1129 * killed as part of a thread group due to another 1130 * thread doing an execve() or similar. So set the 1131 * exit signal to -1 to allow immediate reaping of 1132 * the process. But don't detach the thread group 1133 * leader. 1134 */ 1135 if (t != p->group_leader) 1136 t->exit_signal = -1; 1137 1138 sigaddset(&t->pending.signal, SIGKILL); 1139 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 1140 signal_wake_up(t, 1); 1141 } 1142 } 1143 1144 /* 1145 * Must be called with the tasklist_lock held for reading! 1146 */ 1147 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1148 { 1149 unsigned long flags; 1150 int ret; 1151 1152 ret = check_kill_permission(sig, info, p); 1153 if (!ret && sig && p->sighand) { 1154 spin_lock_irqsave(&p->sighand->siglock, flags); 1155 ret = __group_send_sig_info(sig, info, p); 1156 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1157 } 1158 1159 return ret; 1160 } 1161 1162 /* 1163 * kill_pg_info() sends a signal to a process group: this is what the tty 1164 * control characters do (^C, ^Z etc) 1165 */ 1166 1167 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp) 1168 { 1169 struct task_struct *p = NULL; 1170 int retval, success; 1171 1172 if (pgrp <= 0) 1173 return -EINVAL; 1174 1175 success = 0; 1176 retval = -ESRCH; 1177 do_each_task_pid(pgrp, PIDTYPE_PGID, p) { 1178 int err = group_send_sig_info(sig, info, p); 1179 success |= !err; 1180 retval = err; 1181 } while_each_task_pid(pgrp, PIDTYPE_PGID, p); 1182 return success ? 0 : retval; 1183 } 1184 1185 int 1186 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp) 1187 { 1188 int retval; 1189 1190 read_lock(&tasklist_lock); 1191 retval = __kill_pg_info(sig, info, pgrp); 1192 read_unlock(&tasklist_lock); 1193 1194 return retval; 1195 } 1196 1197 int 1198 kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1199 { 1200 int error; 1201 struct task_struct *p; 1202 1203 read_lock(&tasklist_lock); 1204 p = find_task_by_pid(pid); 1205 error = -ESRCH; 1206 if (p) 1207 error = group_send_sig_info(sig, info, p); 1208 read_unlock(&tasklist_lock); 1209 return error; 1210 } 1211 1212 1213 /* 1214 * kill_something_info() interprets pid in interesting ways just like kill(2). 1215 * 1216 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1217 * is probably wrong. Should make it like BSD or SYSV. 1218 */ 1219 1220 static int kill_something_info(int sig, struct siginfo *info, int pid) 1221 { 1222 if (!pid) { 1223 return kill_pg_info(sig, info, process_group(current)); 1224 } else if (pid == -1) { 1225 int retval = 0, count = 0; 1226 struct task_struct * p; 1227 1228 read_lock(&tasklist_lock); 1229 for_each_process(p) { 1230 if (p->pid > 1 && p->tgid != current->tgid) { 1231 int err = group_send_sig_info(sig, info, p); 1232 ++count; 1233 if (err != -EPERM) 1234 retval = err; 1235 } 1236 } 1237 read_unlock(&tasklist_lock); 1238 return count ? retval : -ESRCH; 1239 } else if (pid < 0) { 1240 return kill_pg_info(sig, info, -pid); 1241 } else { 1242 return kill_proc_info(sig, info, pid); 1243 } 1244 } 1245 1246 /* 1247 * These are for backward compatibility with the rest of the kernel source. 1248 */ 1249 1250 /* 1251 * These two are the most common entry points. They send a signal 1252 * just to the specific thread. 1253 */ 1254 int 1255 send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1256 { 1257 int ret; 1258 unsigned long flags; 1259 1260 /* 1261 * Make sure legacy kernel users don't send in bad values 1262 * (normal paths check this in check_kill_permission). 1263 */ 1264 if (!valid_signal(sig)) 1265 return -EINVAL; 1266 1267 /* 1268 * We need the tasklist lock even for the specific 1269 * thread case (when we don't need to follow the group 1270 * lists) in order to avoid races with "p->sighand" 1271 * going away or changing from under us. 1272 */ 1273 read_lock(&tasklist_lock); 1274 spin_lock_irqsave(&p->sighand->siglock, flags); 1275 ret = specific_send_sig_info(sig, info, p); 1276 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1277 read_unlock(&tasklist_lock); 1278 return ret; 1279 } 1280 1281 int 1282 send_sig(int sig, struct task_struct *p, int priv) 1283 { 1284 return send_sig_info(sig, (void*)(long)(priv != 0), p); 1285 } 1286 1287 /* 1288 * This is the entry point for "process-wide" signals. 1289 * They will go to an appropriate thread in the thread group. 1290 */ 1291 int 1292 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1293 { 1294 int ret; 1295 read_lock(&tasklist_lock); 1296 ret = group_send_sig_info(sig, info, p); 1297 read_unlock(&tasklist_lock); 1298 return ret; 1299 } 1300 1301 void 1302 force_sig(int sig, struct task_struct *p) 1303 { 1304 force_sig_info(sig, (void*)1L, p); 1305 } 1306 1307 /* 1308 * When things go south during signal handling, we 1309 * will force a SIGSEGV. And if the signal that caused 1310 * the problem was already a SIGSEGV, we'll want to 1311 * make sure we don't even try to deliver the signal.. 1312 */ 1313 int 1314 force_sigsegv(int sig, struct task_struct *p) 1315 { 1316 if (sig == SIGSEGV) { 1317 unsigned long flags; 1318 spin_lock_irqsave(&p->sighand->siglock, flags); 1319 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1320 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1321 } 1322 force_sig(SIGSEGV, p); 1323 return 0; 1324 } 1325 1326 int 1327 kill_pg(pid_t pgrp, int sig, int priv) 1328 { 1329 return kill_pg_info(sig, (void *)(long)(priv != 0), pgrp); 1330 } 1331 1332 int 1333 kill_proc(pid_t pid, int sig, int priv) 1334 { 1335 return kill_proc_info(sig, (void *)(long)(priv != 0), pid); 1336 } 1337 1338 /* 1339 * These functions support sending signals using preallocated sigqueue 1340 * structures. This is needed "because realtime applications cannot 1341 * afford to lose notifications of asynchronous events, like timer 1342 * expirations or I/O completions". In the case of Posix Timers 1343 * we allocate the sigqueue structure from the timer_create. If this 1344 * allocation fails we are able to report the failure to the application 1345 * with an EAGAIN error. 1346 */ 1347 1348 struct sigqueue *sigqueue_alloc(void) 1349 { 1350 struct sigqueue *q; 1351 1352 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0))) 1353 q->flags |= SIGQUEUE_PREALLOC; 1354 return(q); 1355 } 1356 1357 void sigqueue_free(struct sigqueue *q) 1358 { 1359 unsigned long flags; 1360 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1361 /* 1362 * If the signal is still pending remove it from the 1363 * pending queue. 1364 */ 1365 if (unlikely(!list_empty(&q->list))) { 1366 read_lock(&tasklist_lock); 1367 spin_lock_irqsave(q->lock, flags); 1368 if (!list_empty(&q->list)) 1369 list_del_init(&q->list); 1370 spin_unlock_irqrestore(q->lock, flags); 1371 read_unlock(&tasklist_lock); 1372 } 1373 q->flags &= ~SIGQUEUE_PREALLOC; 1374 __sigqueue_free(q); 1375 } 1376 1377 int 1378 send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) 1379 { 1380 unsigned long flags; 1381 int ret = 0; 1382 1383 /* 1384 * We need the tasklist lock even for the specific 1385 * thread case (when we don't need to follow the group 1386 * lists) in order to avoid races with "p->sighand" 1387 * going away or changing from under us. 1388 */ 1389 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1390 read_lock(&tasklist_lock); 1391 spin_lock_irqsave(&p->sighand->siglock, flags); 1392 1393 if (unlikely(!list_empty(&q->list))) { 1394 /* 1395 * If an SI_TIMER entry is already queue just increment 1396 * the overrun count. 1397 */ 1398 if (q->info.si_code != SI_TIMER) 1399 BUG(); 1400 q->info.si_overrun++; 1401 goto out; 1402 } 1403 /* Short-circuit ignored signals. */ 1404 if (sig_ignored(p, sig)) { 1405 ret = 1; 1406 goto out; 1407 } 1408 1409 q->lock = &p->sighand->siglock; 1410 list_add_tail(&q->list, &p->pending.list); 1411 sigaddset(&p->pending.signal, sig); 1412 if (!sigismember(&p->blocked, sig)) 1413 signal_wake_up(p, sig == SIGKILL); 1414 1415 out: 1416 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1417 read_unlock(&tasklist_lock); 1418 return(ret); 1419 } 1420 1421 int 1422 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) 1423 { 1424 unsigned long flags; 1425 int ret = 0; 1426 1427 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1428 read_lock(&tasklist_lock); 1429 spin_lock_irqsave(&p->sighand->siglock, flags); 1430 handle_stop_signal(sig, p); 1431 1432 /* Short-circuit ignored signals. */ 1433 if (sig_ignored(p, sig)) { 1434 ret = 1; 1435 goto out; 1436 } 1437 1438 if (unlikely(!list_empty(&q->list))) { 1439 /* 1440 * If an SI_TIMER entry is already queue just increment 1441 * the overrun count. Other uses should not try to 1442 * send the signal multiple times. 1443 */ 1444 if (q->info.si_code != SI_TIMER) 1445 BUG(); 1446 q->info.si_overrun++; 1447 goto out; 1448 } 1449 1450 /* 1451 * Put this signal on the shared-pending queue. 1452 * We always use the shared queue for process-wide signals, 1453 * to avoid several races. 1454 */ 1455 q->lock = &p->sighand->siglock; 1456 list_add_tail(&q->list, &p->signal->shared_pending.list); 1457 sigaddset(&p->signal->shared_pending.signal, sig); 1458 1459 __group_complete_signal(sig, p); 1460 out: 1461 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1462 read_unlock(&tasklist_lock); 1463 return(ret); 1464 } 1465 1466 /* 1467 * Wake up any threads in the parent blocked in wait* syscalls. 1468 */ 1469 static inline void __wake_up_parent(struct task_struct *p, 1470 struct task_struct *parent) 1471 { 1472 wake_up_interruptible_sync(&parent->signal->wait_chldexit); 1473 } 1474 1475 /* 1476 * Let a parent know about the death of a child. 1477 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1478 */ 1479 1480 void do_notify_parent(struct task_struct *tsk, int sig) 1481 { 1482 struct siginfo info; 1483 unsigned long flags; 1484 struct sighand_struct *psig; 1485 1486 BUG_ON(sig == -1); 1487 1488 /* do_notify_parent_cldstop should have been called instead. */ 1489 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED)); 1490 1491 BUG_ON(!tsk->ptrace && 1492 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1493 1494 info.si_signo = sig; 1495 info.si_errno = 0; 1496 info.si_pid = tsk->pid; 1497 info.si_uid = tsk->uid; 1498 1499 /* FIXME: find out whether or not this is supposed to be c*time. */ 1500 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime, 1501 tsk->signal->utime)); 1502 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime, 1503 tsk->signal->stime)); 1504 1505 info.si_status = tsk->exit_code & 0x7f; 1506 if (tsk->exit_code & 0x80) 1507 info.si_code = CLD_DUMPED; 1508 else if (tsk->exit_code & 0x7f) 1509 info.si_code = CLD_KILLED; 1510 else { 1511 info.si_code = CLD_EXITED; 1512 info.si_status = tsk->exit_code >> 8; 1513 } 1514 1515 psig = tsk->parent->sighand; 1516 spin_lock_irqsave(&psig->siglock, flags); 1517 if (sig == SIGCHLD && 1518 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1519 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1520 /* 1521 * We are exiting and our parent doesn't care. POSIX.1 1522 * defines special semantics for setting SIGCHLD to SIG_IGN 1523 * or setting the SA_NOCLDWAIT flag: we should be reaped 1524 * automatically and not left for our parent's wait4 call. 1525 * Rather than having the parent do it as a magic kind of 1526 * signal handler, we just set this to tell do_exit that we 1527 * can be cleaned up without becoming a zombie. Note that 1528 * we still call __wake_up_parent in this case, because a 1529 * blocked sys_wait4 might now return -ECHILD. 1530 * 1531 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1532 * is implementation-defined: we do (if you don't want 1533 * it, just use SIG_IGN instead). 1534 */ 1535 tsk->exit_signal = -1; 1536 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1537 sig = 0; 1538 } 1539 if (valid_signal(sig) && sig > 0) 1540 __group_send_sig_info(sig, &info, tsk->parent); 1541 __wake_up_parent(tsk, tsk->parent); 1542 spin_unlock_irqrestore(&psig->siglock, flags); 1543 } 1544 1545 static void 1546 do_notify_parent_cldstop(struct task_struct *tsk, struct task_struct *parent, 1547 int why) 1548 { 1549 struct siginfo info; 1550 unsigned long flags; 1551 struct sighand_struct *sighand; 1552 1553 info.si_signo = SIGCHLD; 1554 info.si_errno = 0; 1555 info.si_pid = tsk->pid; 1556 info.si_uid = tsk->uid; 1557 1558 /* FIXME: find out whether or not this is supposed to be c*time. */ 1559 info.si_utime = cputime_to_jiffies(tsk->utime); 1560 info.si_stime = cputime_to_jiffies(tsk->stime); 1561 1562 info.si_code = why; 1563 switch (why) { 1564 case CLD_CONTINUED: 1565 info.si_status = SIGCONT; 1566 break; 1567 case CLD_STOPPED: 1568 info.si_status = tsk->signal->group_exit_code & 0x7f; 1569 break; 1570 case CLD_TRAPPED: 1571 info.si_status = tsk->exit_code & 0x7f; 1572 break; 1573 default: 1574 BUG(); 1575 } 1576 1577 sighand = parent->sighand; 1578 spin_lock_irqsave(&sighand->siglock, flags); 1579 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1580 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1581 __group_send_sig_info(SIGCHLD, &info, parent); 1582 /* 1583 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1584 */ 1585 __wake_up_parent(tsk, parent); 1586 spin_unlock_irqrestore(&sighand->siglock, flags); 1587 } 1588 1589 /* 1590 * This must be called with current->sighand->siglock held. 1591 * 1592 * This should be the path for all ptrace stops. 1593 * We always set current->last_siginfo while stopped here. 1594 * That makes it a way to test a stopped process for 1595 * being ptrace-stopped vs being job-control-stopped. 1596 * 1597 * If we actually decide not to stop at all because the tracer is gone, 1598 * we leave nostop_code in current->exit_code. 1599 */ 1600 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info) 1601 { 1602 /* 1603 * If there is a group stop in progress, 1604 * we must participate in the bookkeeping. 1605 */ 1606 if (current->signal->group_stop_count > 0) 1607 --current->signal->group_stop_count; 1608 1609 current->last_siginfo = info; 1610 current->exit_code = exit_code; 1611 1612 /* Let the debugger run. */ 1613 set_current_state(TASK_TRACED); 1614 spin_unlock_irq(¤t->sighand->siglock); 1615 read_lock(&tasklist_lock); 1616 if (likely(current->ptrace & PT_PTRACED) && 1617 likely(current->parent != current->real_parent || 1618 !(current->ptrace & PT_ATTACHED)) && 1619 (likely(current->parent->signal != current->signal) || 1620 !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) { 1621 do_notify_parent_cldstop(current, current->parent, 1622 CLD_TRAPPED); 1623 read_unlock(&tasklist_lock); 1624 schedule(); 1625 } else { 1626 /* 1627 * By the time we got the lock, our tracer went away. 1628 * Don't stop here. 1629 */ 1630 read_unlock(&tasklist_lock); 1631 set_current_state(TASK_RUNNING); 1632 current->exit_code = nostop_code; 1633 } 1634 1635 /* 1636 * We are back. Now reacquire the siglock before touching 1637 * last_siginfo, so that we are sure to have synchronized with 1638 * any signal-sending on another CPU that wants to examine it. 1639 */ 1640 spin_lock_irq(¤t->sighand->siglock); 1641 current->last_siginfo = NULL; 1642 1643 /* 1644 * Queued signals ignored us while we were stopped for tracing. 1645 * So check for any that we should take before resuming user mode. 1646 */ 1647 recalc_sigpending(); 1648 } 1649 1650 void ptrace_notify(int exit_code) 1651 { 1652 siginfo_t info; 1653 1654 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1655 1656 memset(&info, 0, sizeof info); 1657 info.si_signo = SIGTRAP; 1658 info.si_code = exit_code; 1659 info.si_pid = current->pid; 1660 info.si_uid = current->uid; 1661 1662 /* Let the debugger run. */ 1663 spin_lock_irq(¤t->sighand->siglock); 1664 ptrace_stop(exit_code, 0, &info); 1665 spin_unlock_irq(¤t->sighand->siglock); 1666 } 1667 1668 static void 1669 finish_stop(int stop_count) 1670 { 1671 /* 1672 * If there are no other threads in the group, or if there is 1673 * a group stop in progress and we are the last to stop, 1674 * report to the parent. When ptraced, every thread reports itself. 1675 */ 1676 if (stop_count < 0 || (current->ptrace & PT_PTRACED)) { 1677 read_lock(&tasklist_lock); 1678 do_notify_parent_cldstop(current, current->parent, 1679 CLD_STOPPED); 1680 read_unlock(&tasklist_lock); 1681 } 1682 else if (stop_count == 0) { 1683 read_lock(&tasklist_lock); 1684 do_notify_parent_cldstop(current->group_leader, 1685 current->group_leader->real_parent, 1686 CLD_STOPPED); 1687 read_unlock(&tasklist_lock); 1688 } 1689 1690 schedule(); 1691 /* 1692 * Now we don't run again until continued. 1693 */ 1694 current->exit_code = 0; 1695 } 1696 1697 /* 1698 * This performs the stopping for SIGSTOP and other stop signals. 1699 * We have to stop all threads in the thread group. 1700 * Returns nonzero if we've actually stopped and released the siglock. 1701 * Returns zero if we didn't stop and still hold the siglock. 1702 */ 1703 static int 1704 do_signal_stop(int signr) 1705 { 1706 struct signal_struct *sig = current->signal; 1707 struct sighand_struct *sighand = current->sighand; 1708 int stop_count = -1; 1709 1710 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) 1711 return 0; 1712 1713 if (sig->group_stop_count > 0) { 1714 /* 1715 * There is a group stop in progress. We don't need to 1716 * start another one. 1717 */ 1718 signr = sig->group_exit_code; 1719 stop_count = --sig->group_stop_count; 1720 current->exit_code = signr; 1721 set_current_state(TASK_STOPPED); 1722 if (stop_count == 0) 1723 sig->flags = SIGNAL_STOP_STOPPED; 1724 spin_unlock_irq(&sighand->siglock); 1725 } 1726 else if (thread_group_empty(current)) { 1727 /* 1728 * Lock must be held through transition to stopped state. 1729 */ 1730 current->exit_code = current->signal->group_exit_code = signr; 1731 set_current_state(TASK_STOPPED); 1732 sig->flags = SIGNAL_STOP_STOPPED; 1733 spin_unlock_irq(&sighand->siglock); 1734 } 1735 else { 1736 /* 1737 * There is no group stop already in progress. 1738 * We must initiate one now, but that requires 1739 * dropping siglock to get both the tasklist lock 1740 * and siglock again in the proper order. Note that 1741 * this allows an intervening SIGCONT to be posted. 1742 * We need to check for that and bail out if necessary. 1743 */ 1744 struct task_struct *t; 1745 1746 spin_unlock_irq(&sighand->siglock); 1747 1748 /* signals can be posted during this window */ 1749 1750 read_lock(&tasklist_lock); 1751 spin_lock_irq(&sighand->siglock); 1752 1753 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) { 1754 /* 1755 * Another stop or continue happened while we 1756 * didn't have the lock. We can just swallow this 1757 * signal now. If we raced with a SIGCONT, that 1758 * should have just cleared it now. If we raced 1759 * with another processor delivering a stop signal, 1760 * then the SIGCONT that wakes us up should clear it. 1761 */ 1762 read_unlock(&tasklist_lock); 1763 return 0; 1764 } 1765 1766 if (sig->group_stop_count == 0) { 1767 sig->group_exit_code = signr; 1768 stop_count = 0; 1769 for (t = next_thread(current); t != current; 1770 t = next_thread(t)) 1771 /* 1772 * Setting state to TASK_STOPPED for a group 1773 * stop is always done with the siglock held, 1774 * so this check has no races. 1775 */ 1776 if (t->state < TASK_STOPPED) { 1777 stop_count++; 1778 signal_wake_up(t, 0); 1779 } 1780 sig->group_stop_count = stop_count; 1781 } 1782 else { 1783 /* A race with another thread while unlocked. */ 1784 signr = sig->group_exit_code; 1785 stop_count = --sig->group_stop_count; 1786 } 1787 1788 current->exit_code = signr; 1789 set_current_state(TASK_STOPPED); 1790 if (stop_count == 0) 1791 sig->flags = SIGNAL_STOP_STOPPED; 1792 1793 spin_unlock_irq(&sighand->siglock); 1794 read_unlock(&tasklist_lock); 1795 } 1796 1797 finish_stop(stop_count); 1798 return 1; 1799 } 1800 1801 /* 1802 * Do appropriate magic when group_stop_count > 0. 1803 * We return nonzero if we stopped, after releasing the siglock. 1804 * We return zero if we still hold the siglock and should look 1805 * for another signal without checking group_stop_count again. 1806 */ 1807 static inline int handle_group_stop(void) 1808 { 1809 int stop_count; 1810 1811 if (current->signal->group_exit_task == current) { 1812 /* 1813 * Group stop is so we can do a core dump, 1814 * We are the initiating thread, so get on with it. 1815 */ 1816 current->signal->group_exit_task = NULL; 1817 return 0; 1818 } 1819 1820 if (current->signal->flags & SIGNAL_GROUP_EXIT) 1821 /* 1822 * Group stop is so another thread can do a core dump, 1823 * or else we are racing against a death signal. 1824 * Just punt the stop so we can get the next signal. 1825 */ 1826 return 0; 1827 1828 /* 1829 * There is a group stop in progress. We stop 1830 * without any associated signal being in our queue. 1831 */ 1832 stop_count = --current->signal->group_stop_count; 1833 if (stop_count == 0) 1834 current->signal->flags = SIGNAL_STOP_STOPPED; 1835 current->exit_code = current->signal->group_exit_code; 1836 set_current_state(TASK_STOPPED); 1837 spin_unlock_irq(¤t->sighand->siglock); 1838 finish_stop(stop_count); 1839 return 1; 1840 } 1841 1842 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, 1843 struct pt_regs *regs, void *cookie) 1844 { 1845 sigset_t *mask = ¤t->blocked; 1846 int signr = 0; 1847 1848 relock: 1849 spin_lock_irq(¤t->sighand->siglock); 1850 for (;;) { 1851 struct k_sigaction *ka; 1852 1853 if (unlikely(current->signal->group_stop_count > 0) && 1854 handle_group_stop()) 1855 goto relock; 1856 1857 signr = dequeue_signal(current, mask, info); 1858 1859 if (!signr) 1860 break; /* will return 0 */ 1861 1862 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) { 1863 ptrace_signal_deliver(regs, cookie); 1864 1865 /* Let the debugger run. */ 1866 ptrace_stop(signr, signr, info); 1867 1868 /* We're back. Did the debugger cancel the sig? */ 1869 signr = current->exit_code; 1870 if (signr == 0) 1871 continue; 1872 1873 current->exit_code = 0; 1874 1875 /* Update the siginfo structure if the signal has 1876 changed. If the debugger wanted something 1877 specific in the siginfo structure then it should 1878 have updated *info via PTRACE_SETSIGINFO. */ 1879 if (signr != info->si_signo) { 1880 info->si_signo = signr; 1881 info->si_errno = 0; 1882 info->si_code = SI_USER; 1883 info->si_pid = current->parent->pid; 1884 info->si_uid = current->parent->uid; 1885 } 1886 1887 /* If the (new) signal is now blocked, requeue it. */ 1888 if (sigismember(¤t->blocked, signr)) { 1889 specific_send_sig_info(signr, info, current); 1890 continue; 1891 } 1892 } 1893 1894 ka = ¤t->sighand->action[signr-1]; 1895 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 1896 continue; 1897 if (ka->sa.sa_handler != SIG_DFL) { 1898 /* Run the handler. */ 1899 *return_ka = *ka; 1900 1901 if (ka->sa.sa_flags & SA_ONESHOT) 1902 ka->sa.sa_handler = SIG_DFL; 1903 1904 break; /* will return non-zero "signr" value */ 1905 } 1906 1907 /* 1908 * Now we are doing the default action for this signal. 1909 */ 1910 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 1911 continue; 1912 1913 /* Init gets no signals it doesn't want. */ 1914 if (current->pid == 1) 1915 continue; 1916 1917 if (sig_kernel_stop(signr)) { 1918 /* 1919 * The default action is to stop all threads in 1920 * the thread group. The job control signals 1921 * do nothing in an orphaned pgrp, but SIGSTOP 1922 * always works. Note that siglock needs to be 1923 * dropped during the call to is_orphaned_pgrp() 1924 * because of lock ordering with tasklist_lock. 1925 * This allows an intervening SIGCONT to be posted. 1926 * We need to check for that and bail out if necessary. 1927 */ 1928 if (signr != SIGSTOP) { 1929 spin_unlock_irq(¤t->sighand->siglock); 1930 1931 /* signals can be posted during this window */ 1932 1933 if (is_orphaned_pgrp(process_group(current))) 1934 goto relock; 1935 1936 spin_lock_irq(¤t->sighand->siglock); 1937 } 1938 1939 if (likely(do_signal_stop(signr))) { 1940 /* It released the siglock. */ 1941 goto relock; 1942 } 1943 1944 /* 1945 * We didn't actually stop, due to a race 1946 * with SIGCONT or something like that. 1947 */ 1948 continue; 1949 } 1950 1951 spin_unlock_irq(¤t->sighand->siglock); 1952 1953 /* 1954 * Anything else is fatal, maybe with a core dump. 1955 */ 1956 current->flags |= PF_SIGNALED; 1957 if (sig_kernel_coredump(signr)) { 1958 /* 1959 * If it was able to dump core, this kills all 1960 * other threads in the group and synchronizes with 1961 * their demise. If we lost the race with another 1962 * thread getting here, it set group_exit_code 1963 * first and our do_group_exit call below will use 1964 * that value and ignore the one we pass it. 1965 */ 1966 do_coredump((long)signr, signr, regs); 1967 } 1968 1969 /* 1970 * Death signals, no core dump. 1971 */ 1972 do_group_exit(signr); 1973 /* NOTREACHED */ 1974 } 1975 spin_unlock_irq(¤t->sighand->siglock); 1976 return signr; 1977 } 1978 1979 EXPORT_SYMBOL(recalc_sigpending); 1980 EXPORT_SYMBOL_GPL(dequeue_signal); 1981 EXPORT_SYMBOL(flush_signals); 1982 EXPORT_SYMBOL(force_sig); 1983 EXPORT_SYMBOL(kill_pg); 1984 EXPORT_SYMBOL(kill_proc); 1985 EXPORT_SYMBOL(ptrace_notify); 1986 EXPORT_SYMBOL(send_sig); 1987 EXPORT_SYMBOL(send_sig_info); 1988 EXPORT_SYMBOL(sigprocmask); 1989 EXPORT_SYMBOL(block_all_signals); 1990 EXPORT_SYMBOL(unblock_all_signals); 1991 1992 1993 /* 1994 * System call entry points. 1995 */ 1996 1997 asmlinkage long sys_restart_syscall(void) 1998 { 1999 struct restart_block *restart = ¤t_thread_info()->restart_block; 2000 return restart->fn(restart); 2001 } 2002 2003 long do_no_restart_syscall(struct restart_block *param) 2004 { 2005 return -EINTR; 2006 } 2007 2008 /* 2009 * We don't need to get the kernel lock - this is all local to this 2010 * particular thread.. (and that's good, because this is _heavily_ 2011 * used by various programs) 2012 */ 2013 2014 /* 2015 * This is also useful for kernel threads that want to temporarily 2016 * (or permanently) block certain signals. 2017 * 2018 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2019 * interface happily blocks "unblockable" signals like SIGKILL 2020 * and friends. 2021 */ 2022 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2023 { 2024 int error; 2025 sigset_t old_block; 2026 2027 spin_lock_irq(¤t->sighand->siglock); 2028 old_block = current->blocked; 2029 error = 0; 2030 switch (how) { 2031 case SIG_BLOCK: 2032 sigorsets(¤t->blocked, ¤t->blocked, set); 2033 break; 2034 case SIG_UNBLOCK: 2035 signandsets(¤t->blocked, ¤t->blocked, set); 2036 break; 2037 case SIG_SETMASK: 2038 current->blocked = *set; 2039 break; 2040 default: 2041 error = -EINVAL; 2042 } 2043 recalc_sigpending(); 2044 spin_unlock_irq(¤t->sighand->siglock); 2045 if (oldset) 2046 *oldset = old_block; 2047 return error; 2048 } 2049 2050 asmlinkage long 2051 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize) 2052 { 2053 int error = -EINVAL; 2054 sigset_t old_set, new_set; 2055 2056 /* XXX: Don't preclude handling different sized sigset_t's. */ 2057 if (sigsetsize != sizeof(sigset_t)) 2058 goto out; 2059 2060 if (set) { 2061 error = -EFAULT; 2062 if (copy_from_user(&new_set, set, sizeof(*set))) 2063 goto out; 2064 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2065 2066 error = sigprocmask(how, &new_set, &old_set); 2067 if (error) 2068 goto out; 2069 if (oset) 2070 goto set_old; 2071 } else if (oset) { 2072 spin_lock_irq(¤t->sighand->siglock); 2073 old_set = current->blocked; 2074 spin_unlock_irq(¤t->sighand->siglock); 2075 2076 set_old: 2077 error = -EFAULT; 2078 if (copy_to_user(oset, &old_set, sizeof(*oset))) 2079 goto out; 2080 } 2081 error = 0; 2082 out: 2083 return error; 2084 } 2085 2086 long do_sigpending(void __user *set, unsigned long sigsetsize) 2087 { 2088 long error = -EINVAL; 2089 sigset_t pending; 2090 2091 if (sigsetsize > sizeof(sigset_t)) 2092 goto out; 2093 2094 spin_lock_irq(¤t->sighand->siglock); 2095 sigorsets(&pending, ¤t->pending.signal, 2096 ¤t->signal->shared_pending.signal); 2097 spin_unlock_irq(¤t->sighand->siglock); 2098 2099 /* Outside the lock because only this thread touches it. */ 2100 sigandsets(&pending, ¤t->blocked, &pending); 2101 2102 error = -EFAULT; 2103 if (!copy_to_user(set, &pending, sigsetsize)) 2104 error = 0; 2105 2106 out: 2107 return error; 2108 } 2109 2110 asmlinkage long 2111 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize) 2112 { 2113 return do_sigpending(set, sigsetsize); 2114 } 2115 2116 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2117 2118 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) 2119 { 2120 int err; 2121 2122 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2123 return -EFAULT; 2124 if (from->si_code < 0) 2125 return __copy_to_user(to, from, sizeof(siginfo_t)) 2126 ? -EFAULT : 0; 2127 /* 2128 * If you change siginfo_t structure, please be sure 2129 * this code is fixed accordingly. 2130 * It should never copy any pad contained in the structure 2131 * to avoid security leaks, but must copy the generic 2132 * 3 ints plus the relevant union member. 2133 */ 2134 err = __put_user(from->si_signo, &to->si_signo); 2135 err |= __put_user(from->si_errno, &to->si_errno); 2136 err |= __put_user((short)from->si_code, &to->si_code); 2137 switch (from->si_code & __SI_MASK) { 2138 case __SI_KILL: 2139 err |= __put_user(from->si_pid, &to->si_pid); 2140 err |= __put_user(from->si_uid, &to->si_uid); 2141 break; 2142 case __SI_TIMER: 2143 err |= __put_user(from->si_tid, &to->si_tid); 2144 err |= __put_user(from->si_overrun, &to->si_overrun); 2145 err |= __put_user(from->si_ptr, &to->si_ptr); 2146 break; 2147 case __SI_POLL: 2148 err |= __put_user(from->si_band, &to->si_band); 2149 err |= __put_user(from->si_fd, &to->si_fd); 2150 break; 2151 case __SI_FAULT: 2152 err |= __put_user(from->si_addr, &to->si_addr); 2153 #ifdef __ARCH_SI_TRAPNO 2154 err |= __put_user(from->si_trapno, &to->si_trapno); 2155 #endif 2156 break; 2157 case __SI_CHLD: 2158 err |= __put_user(from->si_pid, &to->si_pid); 2159 err |= __put_user(from->si_uid, &to->si_uid); 2160 err |= __put_user(from->si_status, &to->si_status); 2161 err |= __put_user(from->si_utime, &to->si_utime); 2162 err |= __put_user(from->si_stime, &to->si_stime); 2163 break; 2164 case __SI_RT: /* This is not generated by the kernel as of now. */ 2165 case __SI_MESGQ: /* But this is */ 2166 err |= __put_user(from->si_pid, &to->si_pid); 2167 err |= __put_user(from->si_uid, &to->si_uid); 2168 err |= __put_user(from->si_ptr, &to->si_ptr); 2169 break; 2170 default: /* this is just in case for now ... */ 2171 err |= __put_user(from->si_pid, &to->si_pid); 2172 err |= __put_user(from->si_uid, &to->si_uid); 2173 break; 2174 } 2175 return err; 2176 } 2177 2178 #endif 2179 2180 asmlinkage long 2181 sys_rt_sigtimedwait(const sigset_t __user *uthese, 2182 siginfo_t __user *uinfo, 2183 const struct timespec __user *uts, 2184 size_t sigsetsize) 2185 { 2186 int ret, sig; 2187 sigset_t these; 2188 struct timespec ts; 2189 siginfo_t info; 2190 long timeout = 0; 2191 2192 /* XXX: Don't preclude handling different sized sigset_t's. */ 2193 if (sigsetsize != sizeof(sigset_t)) 2194 return -EINVAL; 2195 2196 if (copy_from_user(&these, uthese, sizeof(these))) 2197 return -EFAULT; 2198 2199 /* 2200 * Invert the set of allowed signals to get those we 2201 * want to block. 2202 */ 2203 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2204 signotset(&these); 2205 2206 if (uts) { 2207 if (copy_from_user(&ts, uts, sizeof(ts))) 2208 return -EFAULT; 2209 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0 2210 || ts.tv_sec < 0) 2211 return -EINVAL; 2212 } 2213 2214 spin_lock_irq(¤t->sighand->siglock); 2215 sig = dequeue_signal(current, &these, &info); 2216 if (!sig) { 2217 timeout = MAX_SCHEDULE_TIMEOUT; 2218 if (uts) 2219 timeout = (timespec_to_jiffies(&ts) 2220 + (ts.tv_sec || ts.tv_nsec)); 2221 2222 if (timeout) { 2223 /* None ready -- temporarily unblock those we're 2224 * interested while we are sleeping in so that we'll 2225 * be awakened when they arrive. */ 2226 current->real_blocked = current->blocked; 2227 sigandsets(¤t->blocked, ¤t->blocked, &these); 2228 recalc_sigpending(); 2229 spin_unlock_irq(¤t->sighand->siglock); 2230 2231 current->state = TASK_INTERRUPTIBLE; 2232 timeout = schedule_timeout(timeout); 2233 2234 try_to_freeze(); 2235 spin_lock_irq(¤t->sighand->siglock); 2236 sig = dequeue_signal(current, &these, &info); 2237 current->blocked = current->real_blocked; 2238 siginitset(¤t->real_blocked, 0); 2239 recalc_sigpending(); 2240 } 2241 } 2242 spin_unlock_irq(¤t->sighand->siglock); 2243 2244 if (sig) { 2245 ret = sig; 2246 if (uinfo) { 2247 if (copy_siginfo_to_user(uinfo, &info)) 2248 ret = -EFAULT; 2249 } 2250 } else { 2251 ret = -EAGAIN; 2252 if (timeout) 2253 ret = -EINTR; 2254 } 2255 2256 return ret; 2257 } 2258 2259 asmlinkage long 2260 sys_kill(int pid, int sig) 2261 { 2262 struct siginfo info; 2263 2264 info.si_signo = sig; 2265 info.si_errno = 0; 2266 info.si_code = SI_USER; 2267 info.si_pid = current->tgid; 2268 info.si_uid = current->uid; 2269 2270 return kill_something_info(sig, &info, pid); 2271 } 2272 2273 /** 2274 * sys_tgkill - send signal to one specific thread 2275 * @tgid: the thread group ID of the thread 2276 * @pid: the PID of the thread 2277 * @sig: signal to be sent 2278 * 2279 * This syscall also checks the tgid and returns -ESRCH even if the PID 2280 * exists but it's not belonging to the target process anymore. This 2281 * method solves the problem of threads exiting and PIDs getting reused. 2282 */ 2283 asmlinkage long sys_tgkill(int tgid, int pid, int sig) 2284 { 2285 struct siginfo info; 2286 int error; 2287 struct task_struct *p; 2288 2289 /* This is only valid for single tasks */ 2290 if (pid <= 0 || tgid <= 0) 2291 return -EINVAL; 2292 2293 info.si_signo = sig; 2294 info.si_errno = 0; 2295 info.si_code = SI_TKILL; 2296 info.si_pid = current->tgid; 2297 info.si_uid = current->uid; 2298 2299 read_lock(&tasklist_lock); 2300 p = find_task_by_pid(pid); 2301 error = -ESRCH; 2302 if (p && (p->tgid == tgid)) { 2303 error = check_kill_permission(sig, &info, p); 2304 /* 2305 * The null signal is a permissions and process existence 2306 * probe. No signal is actually delivered. 2307 */ 2308 if (!error && sig && p->sighand) { 2309 spin_lock_irq(&p->sighand->siglock); 2310 handle_stop_signal(sig, p); 2311 error = specific_send_sig_info(sig, &info, p); 2312 spin_unlock_irq(&p->sighand->siglock); 2313 } 2314 } 2315 read_unlock(&tasklist_lock); 2316 return error; 2317 } 2318 2319 /* 2320 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2321 */ 2322 asmlinkage long 2323 sys_tkill(int pid, int sig) 2324 { 2325 struct siginfo info; 2326 int error; 2327 struct task_struct *p; 2328 2329 /* This is only valid for single tasks */ 2330 if (pid <= 0) 2331 return -EINVAL; 2332 2333 info.si_signo = sig; 2334 info.si_errno = 0; 2335 info.si_code = SI_TKILL; 2336 info.si_pid = current->tgid; 2337 info.si_uid = current->uid; 2338 2339 read_lock(&tasklist_lock); 2340 p = find_task_by_pid(pid); 2341 error = -ESRCH; 2342 if (p) { 2343 error = check_kill_permission(sig, &info, p); 2344 /* 2345 * The null signal is a permissions and process existence 2346 * probe. No signal is actually delivered. 2347 */ 2348 if (!error && sig && p->sighand) { 2349 spin_lock_irq(&p->sighand->siglock); 2350 handle_stop_signal(sig, p); 2351 error = specific_send_sig_info(sig, &info, p); 2352 spin_unlock_irq(&p->sighand->siglock); 2353 } 2354 } 2355 read_unlock(&tasklist_lock); 2356 return error; 2357 } 2358 2359 asmlinkage long 2360 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo) 2361 { 2362 siginfo_t info; 2363 2364 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2365 return -EFAULT; 2366 2367 /* Not even root can pretend to send signals from the kernel. 2368 Nor can they impersonate a kill(), which adds source info. */ 2369 if (info.si_code >= 0) 2370 return -EPERM; 2371 info.si_signo = sig; 2372 2373 /* POSIX.1b doesn't mention process groups. */ 2374 return kill_proc_info(sig, &info, pid); 2375 } 2376 2377 int 2378 do_sigaction(int sig, const struct k_sigaction *act, struct k_sigaction *oact) 2379 { 2380 struct k_sigaction *k; 2381 2382 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 2383 return -EINVAL; 2384 2385 k = ¤t->sighand->action[sig-1]; 2386 2387 spin_lock_irq(¤t->sighand->siglock); 2388 if (signal_pending(current)) { 2389 /* 2390 * If there might be a fatal signal pending on multiple 2391 * threads, make sure we take it before changing the action. 2392 */ 2393 spin_unlock_irq(¤t->sighand->siglock); 2394 return -ERESTARTNOINTR; 2395 } 2396 2397 if (oact) 2398 *oact = *k; 2399 2400 if (act) { 2401 /* 2402 * POSIX 3.3.1.3: 2403 * "Setting a signal action to SIG_IGN for a signal that is 2404 * pending shall cause the pending signal to be discarded, 2405 * whether or not it is blocked." 2406 * 2407 * "Setting a signal action to SIG_DFL for a signal that is 2408 * pending and whose default action is to ignore the signal 2409 * (for example, SIGCHLD), shall cause the pending signal to 2410 * be discarded, whether or not it is blocked" 2411 */ 2412 if (act->sa.sa_handler == SIG_IGN || 2413 (act->sa.sa_handler == SIG_DFL && 2414 sig_kernel_ignore(sig))) { 2415 /* 2416 * This is a fairly rare case, so we only take the 2417 * tasklist_lock once we're sure we'll need it. 2418 * Now we must do this little unlock and relock 2419 * dance to maintain the lock hierarchy. 2420 */ 2421 struct task_struct *t = current; 2422 spin_unlock_irq(&t->sighand->siglock); 2423 read_lock(&tasklist_lock); 2424 spin_lock_irq(&t->sighand->siglock); 2425 *k = *act; 2426 sigdelsetmask(&k->sa.sa_mask, 2427 sigmask(SIGKILL) | sigmask(SIGSTOP)); 2428 rm_from_queue(sigmask(sig), &t->signal->shared_pending); 2429 do { 2430 rm_from_queue(sigmask(sig), &t->pending); 2431 recalc_sigpending_tsk(t); 2432 t = next_thread(t); 2433 } while (t != current); 2434 spin_unlock_irq(¤t->sighand->siglock); 2435 read_unlock(&tasklist_lock); 2436 return 0; 2437 } 2438 2439 *k = *act; 2440 sigdelsetmask(&k->sa.sa_mask, 2441 sigmask(SIGKILL) | sigmask(SIGSTOP)); 2442 } 2443 2444 spin_unlock_irq(¤t->sighand->siglock); 2445 return 0; 2446 } 2447 2448 int 2449 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 2450 { 2451 stack_t oss; 2452 int error; 2453 2454 if (uoss) { 2455 oss.ss_sp = (void __user *) current->sas_ss_sp; 2456 oss.ss_size = current->sas_ss_size; 2457 oss.ss_flags = sas_ss_flags(sp); 2458 } 2459 2460 if (uss) { 2461 void __user *ss_sp; 2462 size_t ss_size; 2463 int ss_flags; 2464 2465 error = -EFAULT; 2466 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)) 2467 || __get_user(ss_sp, &uss->ss_sp) 2468 || __get_user(ss_flags, &uss->ss_flags) 2469 || __get_user(ss_size, &uss->ss_size)) 2470 goto out; 2471 2472 error = -EPERM; 2473 if (on_sig_stack(sp)) 2474 goto out; 2475 2476 error = -EINVAL; 2477 /* 2478 * 2479 * Note - this code used to test ss_flags incorrectly 2480 * old code may have been written using ss_flags==0 2481 * to mean ss_flags==SS_ONSTACK (as this was the only 2482 * way that worked) - this fix preserves that older 2483 * mechanism 2484 */ 2485 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) 2486 goto out; 2487 2488 if (ss_flags == SS_DISABLE) { 2489 ss_size = 0; 2490 ss_sp = NULL; 2491 } else { 2492 error = -ENOMEM; 2493 if (ss_size < MINSIGSTKSZ) 2494 goto out; 2495 } 2496 2497 current->sas_ss_sp = (unsigned long) ss_sp; 2498 current->sas_ss_size = ss_size; 2499 } 2500 2501 if (uoss) { 2502 error = -EFAULT; 2503 if (copy_to_user(uoss, &oss, sizeof(oss))) 2504 goto out; 2505 } 2506 2507 error = 0; 2508 out: 2509 return error; 2510 } 2511 2512 #ifdef __ARCH_WANT_SYS_SIGPENDING 2513 2514 asmlinkage long 2515 sys_sigpending(old_sigset_t __user *set) 2516 { 2517 return do_sigpending(set, sizeof(*set)); 2518 } 2519 2520 #endif 2521 2522 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 2523 /* Some platforms have their own version with special arguments others 2524 support only sys_rt_sigprocmask. */ 2525 2526 asmlinkage long 2527 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset) 2528 { 2529 int error; 2530 old_sigset_t old_set, new_set; 2531 2532 if (set) { 2533 error = -EFAULT; 2534 if (copy_from_user(&new_set, set, sizeof(*set))) 2535 goto out; 2536 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP)); 2537 2538 spin_lock_irq(¤t->sighand->siglock); 2539 old_set = current->blocked.sig[0]; 2540 2541 error = 0; 2542 switch (how) { 2543 default: 2544 error = -EINVAL; 2545 break; 2546 case SIG_BLOCK: 2547 sigaddsetmask(¤t->blocked, new_set); 2548 break; 2549 case SIG_UNBLOCK: 2550 sigdelsetmask(¤t->blocked, new_set); 2551 break; 2552 case SIG_SETMASK: 2553 current->blocked.sig[0] = new_set; 2554 break; 2555 } 2556 2557 recalc_sigpending(); 2558 spin_unlock_irq(¤t->sighand->siglock); 2559 if (error) 2560 goto out; 2561 if (oset) 2562 goto set_old; 2563 } else if (oset) { 2564 old_set = current->blocked.sig[0]; 2565 set_old: 2566 error = -EFAULT; 2567 if (copy_to_user(oset, &old_set, sizeof(*oset))) 2568 goto out; 2569 } 2570 error = 0; 2571 out: 2572 return error; 2573 } 2574 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 2575 2576 #ifdef __ARCH_WANT_SYS_RT_SIGACTION 2577 asmlinkage long 2578 sys_rt_sigaction(int sig, 2579 const struct sigaction __user *act, 2580 struct sigaction __user *oact, 2581 size_t sigsetsize) 2582 { 2583 struct k_sigaction new_sa, old_sa; 2584 int ret = -EINVAL; 2585 2586 /* XXX: Don't preclude handling different sized sigset_t's. */ 2587 if (sigsetsize != sizeof(sigset_t)) 2588 goto out; 2589 2590 if (act) { 2591 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 2592 return -EFAULT; 2593 } 2594 2595 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 2596 2597 if (!ret && oact) { 2598 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 2599 return -EFAULT; 2600 } 2601 out: 2602 return ret; 2603 } 2604 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */ 2605 2606 #ifdef __ARCH_WANT_SYS_SGETMASK 2607 2608 /* 2609 * For backwards compatibility. Functionality superseded by sigprocmask. 2610 */ 2611 asmlinkage long 2612 sys_sgetmask(void) 2613 { 2614 /* SMP safe */ 2615 return current->blocked.sig[0]; 2616 } 2617 2618 asmlinkage long 2619 sys_ssetmask(int newmask) 2620 { 2621 int old; 2622 2623 spin_lock_irq(¤t->sighand->siglock); 2624 old = current->blocked.sig[0]; 2625 2626 siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)| 2627 sigmask(SIGSTOP))); 2628 recalc_sigpending(); 2629 spin_unlock_irq(¤t->sighand->siglock); 2630 2631 return old; 2632 } 2633 #endif /* __ARCH_WANT_SGETMASK */ 2634 2635 #ifdef __ARCH_WANT_SYS_SIGNAL 2636 /* 2637 * For backwards compatibility. Functionality superseded by sigaction. 2638 */ 2639 asmlinkage unsigned long 2640 sys_signal(int sig, __sighandler_t handler) 2641 { 2642 struct k_sigaction new_sa, old_sa; 2643 int ret; 2644 2645 new_sa.sa.sa_handler = handler; 2646 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 2647 2648 ret = do_sigaction(sig, &new_sa, &old_sa); 2649 2650 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 2651 } 2652 #endif /* __ARCH_WANT_SYS_SIGNAL */ 2653 2654 #ifdef __ARCH_WANT_SYS_PAUSE 2655 2656 asmlinkage long 2657 sys_pause(void) 2658 { 2659 current->state = TASK_INTERRUPTIBLE; 2660 schedule(); 2661 return -ERESTARTNOHAND; 2662 } 2663 2664 #endif 2665 2666 void __init signals_init(void) 2667 { 2668 sigqueue_cachep = 2669 kmem_cache_create("sigqueue", 2670 sizeof(struct sigqueue), 2671 __alignof__(struct sigqueue), 2672 SLAB_PANIC, NULL, NULL); 2673 } 2674