xref: /linux/kernel/signal.c (revision d09560435cb712c9ec1e62b8a43a79b0af69fe77)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/tracehook.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/cgroup.h>
47 #include <linux/audit.h>
48 
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/signal.h>
51 
52 #include <asm/param.h>
53 #include <linux/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/siginfo.h>
56 #include <asm/cacheflush.h>
57 
58 /*
59  * SLAB caches for signal bits.
60  */
61 
62 static struct kmem_cache *sigqueue_cachep;
63 
64 int print_fatal_signals __read_mostly;
65 
66 static void __user *sig_handler(struct task_struct *t, int sig)
67 {
68 	return t->sighand->action[sig - 1].sa.sa_handler;
69 }
70 
71 static inline bool sig_handler_ignored(void __user *handler, int sig)
72 {
73 	/* Is it explicitly or implicitly ignored? */
74 	return handler == SIG_IGN ||
75 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
76 }
77 
78 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
79 {
80 	void __user *handler;
81 
82 	handler = sig_handler(t, sig);
83 
84 	/* SIGKILL and SIGSTOP may not be sent to the global init */
85 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
86 		return true;
87 
88 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
89 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
90 		return true;
91 
92 	/* Only allow kernel generated signals to this kthread */
93 	if (unlikely((t->flags & PF_KTHREAD) &&
94 		     (handler == SIG_KTHREAD_KERNEL) && !force))
95 		return true;
96 
97 	return sig_handler_ignored(handler, sig);
98 }
99 
100 static bool sig_ignored(struct task_struct *t, int sig, bool force)
101 {
102 	/*
103 	 * Blocked signals are never ignored, since the
104 	 * signal handler may change by the time it is
105 	 * unblocked.
106 	 */
107 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
108 		return false;
109 
110 	/*
111 	 * Tracers may want to know about even ignored signal unless it
112 	 * is SIGKILL which can't be reported anyway but can be ignored
113 	 * by SIGNAL_UNKILLABLE task.
114 	 */
115 	if (t->ptrace && sig != SIGKILL)
116 		return false;
117 
118 	return sig_task_ignored(t, sig, force);
119 }
120 
121 /*
122  * Re-calculate pending state from the set of locally pending
123  * signals, globally pending signals, and blocked signals.
124  */
125 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
126 {
127 	unsigned long ready;
128 	long i;
129 
130 	switch (_NSIG_WORDS) {
131 	default:
132 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
133 			ready |= signal->sig[i] &~ blocked->sig[i];
134 		break;
135 
136 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
137 		ready |= signal->sig[2] &~ blocked->sig[2];
138 		ready |= signal->sig[1] &~ blocked->sig[1];
139 		ready |= signal->sig[0] &~ blocked->sig[0];
140 		break;
141 
142 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
143 		ready |= signal->sig[0] &~ blocked->sig[0];
144 		break;
145 
146 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
147 	}
148 	return ready !=	0;
149 }
150 
151 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
152 
153 static bool recalc_sigpending_tsk(struct task_struct *t)
154 {
155 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
156 	    PENDING(&t->pending, &t->blocked) ||
157 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
158 	    cgroup_task_frozen(t)) {
159 		set_tsk_thread_flag(t, TIF_SIGPENDING);
160 		return true;
161 	}
162 
163 	/*
164 	 * We must never clear the flag in another thread, or in current
165 	 * when it's possible the current syscall is returning -ERESTART*.
166 	 * So we don't clear it here, and only callers who know they should do.
167 	 */
168 	return false;
169 }
170 
171 /*
172  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
173  * This is superfluous when called on current, the wakeup is a harmless no-op.
174  */
175 void recalc_sigpending_and_wake(struct task_struct *t)
176 {
177 	if (recalc_sigpending_tsk(t))
178 		signal_wake_up(t, 0);
179 }
180 
181 void recalc_sigpending(void)
182 {
183 	if (!recalc_sigpending_tsk(current) && !freezing(current))
184 		clear_thread_flag(TIF_SIGPENDING);
185 
186 }
187 EXPORT_SYMBOL(recalc_sigpending);
188 
189 void calculate_sigpending(void)
190 {
191 	/* Have any signals or users of TIF_SIGPENDING been delayed
192 	 * until after fork?
193 	 */
194 	spin_lock_irq(&current->sighand->siglock);
195 	set_tsk_thread_flag(current, TIF_SIGPENDING);
196 	recalc_sigpending();
197 	spin_unlock_irq(&current->sighand->siglock);
198 }
199 
200 /* Given the mask, find the first available signal that should be serviced. */
201 
202 #define SYNCHRONOUS_MASK \
203 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
204 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
205 
206 int next_signal(struct sigpending *pending, sigset_t *mask)
207 {
208 	unsigned long i, *s, *m, x;
209 	int sig = 0;
210 
211 	s = pending->signal.sig;
212 	m = mask->sig;
213 
214 	/*
215 	 * Handle the first word specially: it contains the
216 	 * synchronous signals that need to be dequeued first.
217 	 */
218 	x = *s &~ *m;
219 	if (x) {
220 		if (x & SYNCHRONOUS_MASK)
221 			x &= SYNCHRONOUS_MASK;
222 		sig = ffz(~x) + 1;
223 		return sig;
224 	}
225 
226 	switch (_NSIG_WORDS) {
227 	default:
228 		for (i = 1; i < _NSIG_WORDS; ++i) {
229 			x = *++s &~ *++m;
230 			if (!x)
231 				continue;
232 			sig = ffz(~x) + i*_NSIG_BPW + 1;
233 			break;
234 		}
235 		break;
236 
237 	case 2:
238 		x = s[1] &~ m[1];
239 		if (!x)
240 			break;
241 		sig = ffz(~x) + _NSIG_BPW + 1;
242 		break;
243 
244 	case 1:
245 		/* Nothing to do */
246 		break;
247 	}
248 
249 	return sig;
250 }
251 
252 static inline void print_dropped_signal(int sig)
253 {
254 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
255 
256 	if (!print_fatal_signals)
257 		return;
258 
259 	if (!__ratelimit(&ratelimit_state))
260 		return;
261 
262 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
263 				current->comm, current->pid, sig);
264 }
265 
266 /**
267  * task_set_jobctl_pending - set jobctl pending bits
268  * @task: target task
269  * @mask: pending bits to set
270  *
271  * Clear @mask from @task->jobctl.  @mask must be subset of
272  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
273  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
274  * cleared.  If @task is already being killed or exiting, this function
275  * becomes noop.
276  *
277  * CONTEXT:
278  * Must be called with @task->sighand->siglock held.
279  *
280  * RETURNS:
281  * %true if @mask is set, %false if made noop because @task was dying.
282  */
283 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
284 {
285 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
286 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
287 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
288 
289 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
290 		return false;
291 
292 	if (mask & JOBCTL_STOP_SIGMASK)
293 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
294 
295 	task->jobctl |= mask;
296 	return true;
297 }
298 
299 /**
300  * task_clear_jobctl_trapping - clear jobctl trapping bit
301  * @task: target task
302  *
303  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
304  * Clear it and wake up the ptracer.  Note that we don't need any further
305  * locking.  @task->siglock guarantees that @task->parent points to the
306  * ptracer.
307  *
308  * CONTEXT:
309  * Must be called with @task->sighand->siglock held.
310  */
311 void task_clear_jobctl_trapping(struct task_struct *task)
312 {
313 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
314 		task->jobctl &= ~JOBCTL_TRAPPING;
315 		smp_mb();	/* advised by wake_up_bit() */
316 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
317 	}
318 }
319 
320 /**
321  * task_clear_jobctl_pending - clear jobctl pending bits
322  * @task: target task
323  * @mask: pending bits to clear
324  *
325  * Clear @mask from @task->jobctl.  @mask must be subset of
326  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
327  * STOP bits are cleared together.
328  *
329  * If clearing of @mask leaves no stop or trap pending, this function calls
330  * task_clear_jobctl_trapping().
331  *
332  * CONTEXT:
333  * Must be called with @task->sighand->siglock held.
334  */
335 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
336 {
337 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
338 
339 	if (mask & JOBCTL_STOP_PENDING)
340 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
341 
342 	task->jobctl &= ~mask;
343 
344 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
345 		task_clear_jobctl_trapping(task);
346 }
347 
348 /**
349  * task_participate_group_stop - participate in a group stop
350  * @task: task participating in a group stop
351  *
352  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
353  * Group stop states are cleared and the group stop count is consumed if
354  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
355  * stop, the appropriate `SIGNAL_*` flags are set.
356  *
357  * CONTEXT:
358  * Must be called with @task->sighand->siglock held.
359  *
360  * RETURNS:
361  * %true if group stop completion should be notified to the parent, %false
362  * otherwise.
363  */
364 static bool task_participate_group_stop(struct task_struct *task)
365 {
366 	struct signal_struct *sig = task->signal;
367 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
368 
369 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
370 
371 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
372 
373 	if (!consume)
374 		return false;
375 
376 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
377 		sig->group_stop_count--;
378 
379 	/*
380 	 * Tell the caller to notify completion iff we are entering into a
381 	 * fresh group stop.  Read comment in do_signal_stop() for details.
382 	 */
383 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
384 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
385 		return true;
386 	}
387 	return false;
388 }
389 
390 void task_join_group_stop(struct task_struct *task)
391 {
392 	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
393 	struct signal_struct *sig = current->signal;
394 
395 	if (sig->group_stop_count) {
396 		sig->group_stop_count++;
397 		mask |= JOBCTL_STOP_CONSUME;
398 	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
399 		return;
400 
401 	/* Have the new thread join an on-going signal group stop */
402 	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
403 }
404 
405 /*
406  * allocate a new signal queue record
407  * - this may be called without locks if and only if t == current, otherwise an
408  *   appropriate lock must be held to stop the target task from exiting
409  */
410 static struct sigqueue *
411 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
412 		 int override_rlimit, const unsigned int sigqueue_flags)
413 {
414 	struct sigqueue *q = NULL;
415 	struct ucounts *ucounts = NULL;
416 	long sigpending;
417 
418 	/*
419 	 * Protect access to @t credentials. This can go away when all
420 	 * callers hold rcu read lock.
421 	 *
422 	 * NOTE! A pending signal will hold on to the user refcount,
423 	 * and we get/put the refcount only when the sigpending count
424 	 * changes from/to zero.
425 	 */
426 	rcu_read_lock();
427 	ucounts = task_ucounts(t);
428 	sigpending = inc_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING, 1);
429 	switch (sigpending) {
430 	case 1:
431 		if (likely(get_ucounts(ucounts)))
432 			break;
433 		fallthrough;
434 	case LONG_MAX:
435 		/*
436 		 * we need to decrease the ucount in the userns tree on any
437 		 * failure to avoid counts leaking.
438 		 */
439 		dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING, 1);
440 		rcu_read_unlock();
441 		return NULL;
442 	}
443 	rcu_read_unlock();
444 
445 	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
446 		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
447 	} else {
448 		print_dropped_signal(sig);
449 	}
450 
451 	if (unlikely(q == NULL)) {
452 		if (dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING, 1))
453 			put_ucounts(ucounts);
454 	} else {
455 		INIT_LIST_HEAD(&q->list);
456 		q->flags = sigqueue_flags;
457 		q->ucounts = ucounts;
458 	}
459 	return q;
460 }
461 
462 static void __sigqueue_free(struct sigqueue *q)
463 {
464 	if (q->flags & SIGQUEUE_PREALLOC)
465 		return;
466 	if (q->ucounts && dec_rlimit_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING, 1)) {
467 		put_ucounts(q->ucounts);
468 		q->ucounts = NULL;
469 	}
470 	kmem_cache_free(sigqueue_cachep, q);
471 }
472 
473 void flush_sigqueue(struct sigpending *queue)
474 {
475 	struct sigqueue *q;
476 
477 	sigemptyset(&queue->signal);
478 	while (!list_empty(&queue->list)) {
479 		q = list_entry(queue->list.next, struct sigqueue , list);
480 		list_del_init(&q->list);
481 		__sigqueue_free(q);
482 	}
483 }
484 
485 /*
486  * Flush all pending signals for this kthread.
487  */
488 void flush_signals(struct task_struct *t)
489 {
490 	unsigned long flags;
491 
492 	spin_lock_irqsave(&t->sighand->siglock, flags);
493 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
494 	flush_sigqueue(&t->pending);
495 	flush_sigqueue(&t->signal->shared_pending);
496 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
497 }
498 EXPORT_SYMBOL(flush_signals);
499 
500 #ifdef CONFIG_POSIX_TIMERS
501 static void __flush_itimer_signals(struct sigpending *pending)
502 {
503 	sigset_t signal, retain;
504 	struct sigqueue *q, *n;
505 
506 	signal = pending->signal;
507 	sigemptyset(&retain);
508 
509 	list_for_each_entry_safe(q, n, &pending->list, list) {
510 		int sig = q->info.si_signo;
511 
512 		if (likely(q->info.si_code != SI_TIMER)) {
513 			sigaddset(&retain, sig);
514 		} else {
515 			sigdelset(&signal, sig);
516 			list_del_init(&q->list);
517 			__sigqueue_free(q);
518 		}
519 	}
520 
521 	sigorsets(&pending->signal, &signal, &retain);
522 }
523 
524 void flush_itimer_signals(void)
525 {
526 	struct task_struct *tsk = current;
527 	unsigned long flags;
528 
529 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
530 	__flush_itimer_signals(&tsk->pending);
531 	__flush_itimer_signals(&tsk->signal->shared_pending);
532 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
533 }
534 #endif
535 
536 void ignore_signals(struct task_struct *t)
537 {
538 	int i;
539 
540 	for (i = 0; i < _NSIG; ++i)
541 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
542 
543 	flush_signals(t);
544 }
545 
546 /*
547  * Flush all handlers for a task.
548  */
549 
550 void
551 flush_signal_handlers(struct task_struct *t, int force_default)
552 {
553 	int i;
554 	struct k_sigaction *ka = &t->sighand->action[0];
555 	for (i = _NSIG ; i != 0 ; i--) {
556 		if (force_default || ka->sa.sa_handler != SIG_IGN)
557 			ka->sa.sa_handler = SIG_DFL;
558 		ka->sa.sa_flags = 0;
559 #ifdef __ARCH_HAS_SA_RESTORER
560 		ka->sa.sa_restorer = NULL;
561 #endif
562 		sigemptyset(&ka->sa.sa_mask);
563 		ka++;
564 	}
565 }
566 
567 bool unhandled_signal(struct task_struct *tsk, int sig)
568 {
569 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
570 	if (is_global_init(tsk))
571 		return true;
572 
573 	if (handler != SIG_IGN && handler != SIG_DFL)
574 		return false;
575 
576 	/* if ptraced, let the tracer determine */
577 	return !tsk->ptrace;
578 }
579 
580 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
581 			   bool *resched_timer)
582 {
583 	struct sigqueue *q, *first = NULL;
584 
585 	/*
586 	 * Collect the siginfo appropriate to this signal.  Check if
587 	 * there is another siginfo for the same signal.
588 	*/
589 	list_for_each_entry(q, &list->list, list) {
590 		if (q->info.si_signo == sig) {
591 			if (first)
592 				goto still_pending;
593 			first = q;
594 		}
595 	}
596 
597 	sigdelset(&list->signal, sig);
598 
599 	if (first) {
600 still_pending:
601 		list_del_init(&first->list);
602 		copy_siginfo(info, &first->info);
603 
604 		*resched_timer =
605 			(first->flags & SIGQUEUE_PREALLOC) &&
606 			(info->si_code == SI_TIMER) &&
607 			(info->si_sys_private);
608 
609 		__sigqueue_free(first);
610 	} else {
611 		/*
612 		 * Ok, it wasn't in the queue.  This must be
613 		 * a fast-pathed signal or we must have been
614 		 * out of queue space.  So zero out the info.
615 		 */
616 		clear_siginfo(info);
617 		info->si_signo = sig;
618 		info->si_errno = 0;
619 		info->si_code = SI_USER;
620 		info->si_pid = 0;
621 		info->si_uid = 0;
622 	}
623 }
624 
625 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
626 			kernel_siginfo_t *info, bool *resched_timer)
627 {
628 	int sig = next_signal(pending, mask);
629 
630 	if (sig)
631 		collect_signal(sig, pending, info, resched_timer);
632 	return sig;
633 }
634 
635 /*
636  * Dequeue a signal and return the element to the caller, which is
637  * expected to free it.
638  *
639  * All callers have to hold the siglock.
640  */
641 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
642 {
643 	bool resched_timer = false;
644 	int signr;
645 
646 	/* We only dequeue private signals from ourselves, we don't let
647 	 * signalfd steal them
648 	 */
649 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
650 	if (!signr) {
651 		signr = __dequeue_signal(&tsk->signal->shared_pending,
652 					 mask, info, &resched_timer);
653 #ifdef CONFIG_POSIX_TIMERS
654 		/*
655 		 * itimer signal ?
656 		 *
657 		 * itimers are process shared and we restart periodic
658 		 * itimers in the signal delivery path to prevent DoS
659 		 * attacks in the high resolution timer case. This is
660 		 * compliant with the old way of self-restarting
661 		 * itimers, as the SIGALRM is a legacy signal and only
662 		 * queued once. Changing the restart behaviour to
663 		 * restart the timer in the signal dequeue path is
664 		 * reducing the timer noise on heavy loaded !highres
665 		 * systems too.
666 		 */
667 		if (unlikely(signr == SIGALRM)) {
668 			struct hrtimer *tmr = &tsk->signal->real_timer;
669 
670 			if (!hrtimer_is_queued(tmr) &&
671 			    tsk->signal->it_real_incr != 0) {
672 				hrtimer_forward(tmr, tmr->base->get_time(),
673 						tsk->signal->it_real_incr);
674 				hrtimer_restart(tmr);
675 			}
676 		}
677 #endif
678 	}
679 
680 	recalc_sigpending();
681 	if (!signr)
682 		return 0;
683 
684 	if (unlikely(sig_kernel_stop(signr))) {
685 		/*
686 		 * Set a marker that we have dequeued a stop signal.  Our
687 		 * caller might release the siglock and then the pending
688 		 * stop signal it is about to process is no longer in the
689 		 * pending bitmasks, but must still be cleared by a SIGCONT
690 		 * (and overruled by a SIGKILL).  So those cases clear this
691 		 * shared flag after we've set it.  Note that this flag may
692 		 * remain set after the signal we return is ignored or
693 		 * handled.  That doesn't matter because its only purpose
694 		 * is to alert stop-signal processing code when another
695 		 * processor has come along and cleared the flag.
696 		 */
697 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
698 	}
699 #ifdef CONFIG_POSIX_TIMERS
700 	if (resched_timer) {
701 		/*
702 		 * Release the siglock to ensure proper locking order
703 		 * of timer locks outside of siglocks.  Note, we leave
704 		 * irqs disabled here, since the posix-timers code is
705 		 * about to disable them again anyway.
706 		 */
707 		spin_unlock(&tsk->sighand->siglock);
708 		posixtimer_rearm(info);
709 		spin_lock(&tsk->sighand->siglock);
710 
711 		/* Don't expose the si_sys_private value to userspace */
712 		info->si_sys_private = 0;
713 	}
714 #endif
715 	return signr;
716 }
717 EXPORT_SYMBOL_GPL(dequeue_signal);
718 
719 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
720 {
721 	struct task_struct *tsk = current;
722 	struct sigpending *pending = &tsk->pending;
723 	struct sigqueue *q, *sync = NULL;
724 
725 	/*
726 	 * Might a synchronous signal be in the queue?
727 	 */
728 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
729 		return 0;
730 
731 	/*
732 	 * Return the first synchronous signal in the queue.
733 	 */
734 	list_for_each_entry(q, &pending->list, list) {
735 		/* Synchronous signals have a positive si_code */
736 		if ((q->info.si_code > SI_USER) &&
737 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
738 			sync = q;
739 			goto next;
740 		}
741 	}
742 	return 0;
743 next:
744 	/*
745 	 * Check if there is another siginfo for the same signal.
746 	 */
747 	list_for_each_entry_continue(q, &pending->list, list) {
748 		if (q->info.si_signo == sync->info.si_signo)
749 			goto still_pending;
750 	}
751 
752 	sigdelset(&pending->signal, sync->info.si_signo);
753 	recalc_sigpending();
754 still_pending:
755 	list_del_init(&sync->list);
756 	copy_siginfo(info, &sync->info);
757 	__sigqueue_free(sync);
758 	return info->si_signo;
759 }
760 
761 /*
762  * Tell a process that it has a new active signal..
763  *
764  * NOTE! we rely on the previous spin_lock to
765  * lock interrupts for us! We can only be called with
766  * "siglock" held, and the local interrupt must
767  * have been disabled when that got acquired!
768  *
769  * No need to set need_resched since signal event passing
770  * goes through ->blocked
771  */
772 void signal_wake_up_state(struct task_struct *t, unsigned int state)
773 {
774 	set_tsk_thread_flag(t, TIF_SIGPENDING);
775 	/*
776 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
777 	 * case. We don't check t->state here because there is a race with it
778 	 * executing another processor and just now entering stopped state.
779 	 * By using wake_up_state, we ensure the process will wake up and
780 	 * handle its death signal.
781 	 */
782 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
783 		kick_process(t);
784 }
785 
786 /*
787  * Remove signals in mask from the pending set and queue.
788  * Returns 1 if any signals were found.
789  *
790  * All callers must be holding the siglock.
791  */
792 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
793 {
794 	struct sigqueue *q, *n;
795 	sigset_t m;
796 
797 	sigandsets(&m, mask, &s->signal);
798 	if (sigisemptyset(&m))
799 		return;
800 
801 	sigandnsets(&s->signal, &s->signal, mask);
802 	list_for_each_entry_safe(q, n, &s->list, list) {
803 		if (sigismember(mask, q->info.si_signo)) {
804 			list_del_init(&q->list);
805 			__sigqueue_free(q);
806 		}
807 	}
808 }
809 
810 static inline int is_si_special(const struct kernel_siginfo *info)
811 {
812 	return info <= SEND_SIG_PRIV;
813 }
814 
815 static inline bool si_fromuser(const struct kernel_siginfo *info)
816 {
817 	return info == SEND_SIG_NOINFO ||
818 		(!is_si_special(info) && SI_FROMUSER(info));
819 }
820 
821 /*
822  * called with RCU read lock from check_kill_permission()
823  */
824 static bool kill_ok_by_cred(struct task_struct *t)
825 {
826 	const struct cred *cred = current_cred();
827 	const struct cred *tcred = __task_cred(t);
828 
829 	return uid_eq(cred->euid, tcred->suid) ||
830 	       uid_eq(cred->euid, tcred->uid) ||
831 	       uid_eq(cred->uid, tcred->suid) ||
832 	       uid_eq(cred->uid, tcred->uid) ||
833 	       ns_capable(tcred->user_ns, CAP_KILL);
834 }
835 
836 /*
837  * Bad permissions for sending the signal
838  * - the caller must hold the RCU read lock
839  */
840 static int check_kill_permission(int sig, struct kernel_siginfo *info,
841 				 struct task_struct *t)
842 {
843 	struct pid *sid;
844 	int error;
845 
846 	if (!valid_signal(sig))
847 		return -EINVAL;
848 
849 	if (!si_fromuser(info))
850 		return 0;
851 
852 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
853 	if (error)
854 		return error;
855 
856 	if (!same_thread_group(current, t) &&
857 	    !kill_ok_by_cred(t)) {
858 		switch (sig) {
859 		case SIGCONT:
860 			sid = task_session(t);
861 			/*
862 			 * We don't return the error if sid == NULL. The
863 			 * task was unhashed, the caller must notice this.
864 			 */
865 			if (!sid || sid == task_session(current))
866 				break;
867 			fallthrough;
868 		default:
869 			return -EPERM;
870 		}
871 	}
872 
873 	return security_task_kill(t, info, sig, NULL);
874 }
875 
876 /**
877  * ptrace_trap_notify - schedule trap to notify ptracer
878  * @t: tracee wanting to notify tracer
879  *
880  * This function schedules sticky ptrace trap which is cleared on the next
881  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
882  * ptracer.
883  *
884  * If @t is running, STOP trap will be taken.  If trapped for STOP and
885  * ptracer is listening for events, tracee is woken up so that it can
886  * re-trap for the new event.  If trapped otherwise, STOP trap will be
887  * eventually taken without returning to userland after the existing traps
888  * are finished by PTRACE_CONT.
889  *
890  * CONTEXT:
891  * Must be called with @task->sighand->siglock held.
892  */
893 static void ptrace_trap_notify(struct task_struct *t)
894 {
895 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
896 	assert_spin_locked(&t->sighand->siglock);
897 
898 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
899 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
900 }
901 
902 /*
903  * Handle magic process-wide effects of stop/continue signals. Unlike
904  * the signal actions, these happen immediately at signal-generation
905  * time regardless of blocking, ignoring, or handling.  This does the
906  * actual continuing for SIGCONT, but not the actual stopping for stop
907  * signals. The process stop is done as a signal action for SIG_DFL.
908  *
909  * Returns true if the signal should be actually delivered, otherwise
910  * it should be dropped.
911  */
912 static bool prepare_signal(int sig, struct task_struct *p, bool force)
913 {
914 	struct signal_struct *signal = p->signal;
915 	struct task_struct *t;
916 	sigset_t flush;
917 
918 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
919 		if (!(signal->flags & SIGNAL_GROUP_EXIT))
920 			return sig == SIGKILL;
921 		/*
922 		 * The process is in the middle of dying, nothing to do.
923 		 */
924 	} else if (sig_kernel_stop(sig)) {
925 		/*
926 		 * This is a stop signal.  Remove SIGCONT from all queues.
927 		 */
928 		siginitset(&flush, sigmask(SIGCONT));
929 		flush_sigqueue_mask(&flush, &signal->shared_pending);
930 		for_each_thread(p, t)
931 			flush_sigqueue_mask(&flush, &t->pending);
932 	} else if (sig == SIGCONT) {
933 		unsigned int why;
934 		/*
935 		 * Remove all stop signals from all queues, wake all threads.
936 		 */
937 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
938 		flush_sigqueue_mask(&flush, &signal->shared_pending);
939 		for_each_thread(p, t) {
940 			flush_sigqueue_mask(&flush, &t->pending);
941 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
942 			if (likely(!(t->ptrace & PT_SEIZED)))
943 				wake_up_state(t, __TASK_STOPPED);
944 			else
945 				ptrace_trap_notify(t);
946 		}
947 
948 		/*
949 		 * Notify the parent with CLD_CONTINUED if we were stopped.
950 		 *
951 		 * If we were in the middle of a group stop, we pretend it
952 		 * was already finished, and then continued. Since SIGCHLD
953 		 * doesn't queue we report only CLD_STOPPED, as if the next
954 		 * CLD_CONTINUED was dropped.
955 		 */
956 		why = 0;
957 		if (signal->flags & SIGNAL_STOP_STOPPED)
958 			why |= SIGNAL_CLD_CONTINUED;
959 		else if (signal->group_stop_count)
960 			why |= SIGNAL_CLD_STOPPED;
961 
962 		if (why) {
963 			/*
964 			 * The first thread which returns from do_signal_stop()
965 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
966 			 * notify its parent. See get_signal().
967 			 */
968 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
969 			signal->group_stop_count = 0;
970 			signal->group_exit_code = 0;
971 		}
972 	}
973 
974 	return !sig_ignored(p, sig, force);
975 }
976 
977 /*
978  * Test if P wants to take SIG.  After we've checked all threads with this,
979  * it's equivalent to finding no threads not blocking SIG.  Any threads not
980  * blocking SIG were ruled out because they are not running and already
981  * have pending signals.  Such threads will dequeue from the shared queue
982  * as soon as they're available, so putting the signal on the shared queue
983  * will be equivalent to sending it to one such thread.
984  */
985 static inline bool wants_signal(int sig, struct task_struct *p)
986 {
987 	if (sigismember(&p->blocked, sig))
988 		return false;
989 
990 	if (p->flags & PF_EXITING)
991 		return false;
992 
993 	if (sig == SIGKILL)
994 		return true;
995 
996 	if (task_is_stopped_or_traced(p))
997 		return false;
998 
999 	return task_curr(p) || !task_sigpending(p);
1000 }
1001 
1002 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
1003 {
1004 	struct signal_struct *signal = p->signal;
1005 	struct task_struct *t;
1006 
1007 	/*
1008 	 * Now find a thread we can wake up to take the signal off the queue.
1009 	 *
1010 	 * If the main thread wants the signal, it gets first crack.
1011 	 * Probably the least surprising to the average bear.
1012 	 */
1013 	if (wants_signal(sig, p))
1014 		t = p;
1015 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1016 		/*
1017 		 * There is just one thread and it does not need to be woken.
1018 		 * It will dequeue unblocked signals before it runs again.
1019 		 */
1020 		return;
1021 	else {
1022 		/*
1023 		 * Otherwise try to find a suitable thread.
1024 		 */
1025 		t = signal->curr_target;
1026 		while (!wants_signal(sig, t)) {
1027 			t = next_thread(t);
1028 			if (t == signal->curr_target)
1029 				/*
1030 				 * No thread needs to be woken.
1031 				 * Any eligible threads will see
1032 				 * the signal in the queue soon.
1033 				 */
1034 				return;
1035 		}
1036 		signal->curr_target = t;
1037 	}
1038 
1039 	/*
1040 	 * Found a killable thread.  If the signal will be fatal,
1041 	 * then start taking the whole group down immediately.
1042 	 */
1043 	if (sig_fatal(p, sig) &&
1044 	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1045 	    !sigismember(&t->real_blocked, sig) &&
1046 	    (sig == SIGKILL || !p->ptrace)) {
1047 		/*
1048 		 * This signal will be fatal to the whole group.
1049 		 */
1050 		if (!sig_kernel_coredump(sig)) {
1051 			/*
1052 			 * Start a group exit and wake everybody up.
1053 			 * This way we don't have other threads
1054 			 * running and doing things after a slower
1055 			 * thread has the fatal signal pending.
1056 			 */
1057 			signal->flags = SIGNAL_GROUP_EXIT;
1058 			signal->group_exit_code = sig;
1059 			signal->group_stop_count = 0;
1060 			t = p;
1061 			do {
1062 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1063 				sigaddset(&t->pending.signal, SIGKILL);
1064 				signal_wake_up(t, 1);
1065 			} while_each_thread(p, t);
1066 			return;
1067 		}
1068 	}
1069 
1070 	/*
1071 	 * The signal is already in the shared-pending queue.
1072 	 * Tell the chosen thread to wake up and dequeue it.
1073 	 */
1074 	signal_wake_up(t, sig == SIGKILL);
1075 	return;
1076 }
1077 
1078 static inline bool legacy_queue(struct sigpending *signals, int sig)
1079 {
1080 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1081 }
1082 
1083 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1084 			enum pid_type type, bool force)
1085 {
1086 	struct sigpending *pending;
1087 	struct sigqueue *q;
1088 	int override_rlimit;
1089 	int ret = 0, result;
1090 
1091 	assert_spin_locked(&t->sighand->siglock);
1092 
1093 	result = TRACE_SIGNAL_IGNORED;
1094 	if (!prepare_signal(sig, t, force))
1095 		goto ret;
1096 
1097 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1098 	/*
1099 	 * Short-circuit ignored signals and support queuing
1100 	 * exactly one non-rt signal, so that we can get more
1101 	 * detailed information about the cause of the signal.
1102 	 */
1103 	result = TRACE_SIGNAL_ALREADY_PENDING;
1104 	if (legacy_queue(pending, sig))
1105 		goto ret;
1106 
1107 	result = TRACE_SIGNAL_DELIVERED;
1108 	/*
1109 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1110 	 */
1111 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1112 		goto out_set;
1113 
1114 	/*
1115 	 * Real-time signals must be queued if sent by sigqueue, or
1116 	 * some other real-time mechanism.  It is implementation
1117 	 * defined whether kill() does so.  We attempt to do so, on
1118 	 * the principle of least surprise, but since kill is not
1119 	 * allowed to fail with EAGAIN when low on memory we just
1120 	 * make sure at least one signal gets delivered and don't
1121 	 * pass on the info struct.
1122 	 */
1123 	if (sig < SIGRTMIN)
1124 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1125 	else
1126 		override_rlimit = 0;
1127 
1128 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1129 
1130 	if (q) {
1131 		list_add_tail(&q->list, &pending->list);
1132 		switch ((unsigned long) info) {
1133 		case (unsigned long) SEND_SIG_NOINFO:
1134 			clear_siginfo(&q->info);
1135 			q->info.si_signo = sig;
1136 			q->info.si_errno = 0;
1137 			q->info.si_code = SI_USER;
1138 			q->info.si_pid = task_tgid_nr_ns(current,
1139 							task_active_pid_ns(t));
1140 			rcu_read_lock();
1141 			q->info.si_uid =
1142 				from_kuid_munged(task_cred_xxx(t, user_ns),
1143 						 current_uid());
1144 			rcu_read_unlock();
1145 			break;
1146 		case (unsigned long) SEND_SIG_PRIV:
1147 			clear_siginfo(&q->info);
1148 			q->info.si_signo = sig;
1149 			q->info.si_errno = 0;
1150 			q->info.si_code = SI_KERNEL;
1151 			q->info.si_pid = 0;
1152 			q->info.si_uid = 0;
1153 			break;
1154 		default:
1155 			copy_siginfo(&q->info, info);
1156 			break;
1157 		}
1158 	} else if (!is_si_special(info) &&
1159 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1160 		/*
1161 		 * Queue overflow, abort.  We may abort if the
1162 		 * signal was rt and sent by user using something
1163 		 * other than kill().
1164 		 */
1165 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1166 		ret = -EAGAIN;
1167 		goto ret;
1168 	} else {
1169 		/*
1170 		 * This is a silent loss of information.  We still
1171 		 * send the signal, but the *info bits are lost.
1172 		 */
1173 		result = TRACE_SIGNAL_LOSE_INFO;
1174 	}
1175 
1176 out_set:
1177 	signalfd_notify(t, sig);
1178 	sigaddset(&pending->signal, sig);
1179 
1180 	/* Let multiprocess signals appear after on-going forks */
1181 	if (type > PIDTYPE_TGID) {
1182 		struct multiprocess_signals *delayed;
1183 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1184 			sigset_t *signal = &delayed->signal;
1185 			/* Can't queue both a stop and a continue signal */
1186 			if (sig == SIGCONT)
1187 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1188 			else if (sig_kernel_stop(sig))
1189 				sigdelset(signal, SIGCONT);
1190 			sigaddset(signal, sig);
1191 		}
1192 	}
1193 
1194 	complete_signal(sig, t, type);
1195 ret:
1196 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1197 	return ret;
1198 }
1199 
1200 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1201 {
1202 	bool ret = false;
1203 	switch (siginfo_layout(info->si_signo, info->si_code)) {
1204 	case SIL_KILL:
1205 	case SIL_CHLD:
1206 	case SIL_RT:
1207 		ret = true;
1208 		break;
1209 	case SIL_TIMER:
1210 	case SIL_POLL:
1211 	case SIL_FAULT:
1212 	case SIL_FAULT_TRAPNO:
1213 	case SIL_FAULT_MCEERR:
1214 	case SIL_FAULT_BNDERR:
1215 	case SIL_FAULT_PKUERR:
1216 	case SIL_PERF_EVENT:
1217 	case SIL_SYS:
1218 		ret = false;
1219 		break;
1220 	}
1221 	return ret;
1222 }
1223 
1224 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1225 			enum pid_type type)
1226 {
1227 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1228 	bool force = false;
1229 
1230 	if (info == SEND_SIG_NOINFO) {
1231 		/* Force if sent from an ancestor pid namespace */
1232 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1233 	} else if (info == SEND_SIG_PRIV) {
1234 		/* Don't ignore kernel generated signals */
1235 		force = true;
1236 	} else if (has_si_pid_and_uid(info)) {
1237 		/* SIGKILL and SIGSTOP is special or has ids */
1238 		struct user_namespace *t_user_ns;
1239 
1240 		rcu_read_lock();
1241 		t_user_ns = task_cred_xxx(t, user_ns);
1242 		if (current_user_ns() != t_user_ns) {
1243 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1244 			info->si_uid = from_kuid_munged(t_user_ns, uid);
1245 		}
1246 		rcu_read_unlock();
1247 
1248 		/* A kernel generated signal? */
1249 		force = (info->si_code == SI_KERNEL);
1250 
1251 		/* From an ancestor pid namespace? */
1252 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1253 			info->si_pid = 0;
1254 			force = true;
1255 		}
1256 	}
1257 	return __send_signal(sig, info, t, type, force);
1258 }
1259 
1260 static void print_fatal_signal(int signr)
1261 {
1262 	struct pt_regs *regs = signal_pt_regs();
1263 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1264 
1265 #if defined(__i386__) && !defined(__arch_um__)
1266 	pr_info("code at %08lx: ", regs->ip);
1267 	{
1268 		int i;
1269 		for (i = 0; i < 16; i++) {
1270 			unsigned char insn;
1271 
1272 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1273 				break;
1274 			pr_cont("%02x ", insn);
1275 		}
1276 	}
1277 	pr_cont("\n");
1278 #endif
1279 	preempt_disable();
1280 	show_regs(regs);
1281 	preempt_enable();
1282 }
1283 
1284 static int __init setup_print_fatal_signals(char *str)
1285 {
1286 	get_option (&str, &print_fatal_signals);
1287 
1288 	return 1;
1289 }
1290 
1291 __setup("print-fatal-signals=", setup_print_fatal_signals);
1292 
1293 int
1294 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1295 {
1296 	return send_signal(sig, info, p, PIDTYPE_TGID);
1297 }
1298 
1299 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1300 			enum pid_type type)
1301 {
1302 	unsigned long flags;
1303 	int ret = -ESRCH;
1304 
1305 	if (lock_task_sighand(p, &flags)) {
1306 		ret = send_signal(sig, info, p, type);
1307 		unlock_task_sighand(p, &flags);
1308 	}
1309 
1310 	return ret;
1311 }
1312 
1313 /*
1314  * Force a signal that the process can't ignore: if necessary
1315  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1316  *
1317  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1318  * since we do not want to have a signal handler that was blocked
1319  * be invoked when user space had explicitly blocked it.
1320  *
1321  * We don't want to have recursive SIGSEGV's etc, for example,
1322  * that is why we also clear SIGNAL_UNKILLABLE.
1323  */
1324 static int
1325 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
1326 {
1327 	unsigned long int flags;
1328 	int ret, blocked, ignored;
1329 	struct k_sigaction *action;
1330 	int sig = info->si_signo;
1331 
1332 	spin_lock_irqsave(&t->sighand->siglock, flags);
1333 	action = &t->sighand->action[sig-1];
1334 	ignored = action->sa.sa_handler == SIG_IGN;
1335 	blocked = sigismember(&t->blocked, sig);
1336 	if (blocked || ignored) {
1337 		action->sa.sa_handler = SIG_DFL;
1338 		if (blocked) {
1339 			sigdelset(&t->blocked, sig);
1340 			recalc_sigpending_and_wake(t);
1341 		}
1342 	}
1343 	/*
1344 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1345 	 * debugging to leave init killable.
1346 	 */
1347 	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1348 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1349 	ret = send_signal(sig, info, t, PIDTYPE_PID);
1350 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1351 
1352 	return ret;
1353 }
1354 
1355 int force_sig_info(struct kernel_siginfo *info)
1356 {
1357 	return force_sig_info_to_task(info, current);
1358 }
1359 
1360 /*
1361  * Nuke all other threads in the group.
1362  */
1363 int zap_other_threads(struct task_struct *p)
1364 {
1365 	struct task_struct *t = p;
1366 	int count = 0;
1367 
1368 	p->signal->group_stop_count = 0;
1369 
1370 	while_each_thread(p, t) {
1371 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1372 		count++;
1373 
1374 		/* Don't bother with already dead threads */
1375 		if (t->exit_state)
1376 			continue;
1377 		sigaddset(&t->pending.signal, SIGKILL);
1378 		signal_wake_up(t, 1);
1379 	}
1380 
1381 	return count;
1382 }
1383 
1384 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1385 					   unsigned long *flags)
1386 {
1387 	struct sighand_struct *sighand;
1388 
1389 	rcu_read_lock();
1390 	for (;;) {
1391 		sighand = rcu_dereference(tsk->sighand);
1392 		if (unlikely(sighand == NULL))
1393 			break;
1394 
1395 		/*
1396 		 * This sighand can be already freed and even reused, but
1397 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1398 		 * initializes ->siglock: this slab can't go away, it has
1399 		 * the same object type, ->siglock can't be reinitialized.
1400 		 *
1401 		 * We need to ensure that tsk->sighand is still the same
1402 		 * after we take the lock, we can race with de_thread() or
1403 		 * __exit_signal(). In the latter case the next iteration
1404 		 * must see ->sighand == NULL.
1405 		 */
1406 		spin_lock_irqsave(&sighand->siglock, *flags);
1407 		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1408 			break;
1409 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1410 	}
1411 	rcu_read_unlock();
1412 
1413 	return sighand;
1414 }
1415 
1416 /*
1417  * send signal info to all the members of a group
1418  */
1419 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1420 			struct task_struct *p, enum pid_type type)
1421 {
1422 	int ret;
1423 
1424 	rcu_read_lock();
1425 	ret = check_kill_permission(sig, info, p);
1426 	rcu_read_unlock();
1427 
1428 	if (!ret && sig)
1429 		ret = do_send_sig_info(sig, info, p, type);
1430 
1431 	return ret;
1432 }
1433 
1434 /*
1435  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1436  * control characters do (^C, ^Z etc)
1437  * - the caller must hold at least a readlock on tasklist_lock
1438  */
1439 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1440 {
1441 	struct task_struct *p = NULL;
1442 	int retval, success;
1443 
1444 	success = 0;
1445 	retval = -ESRCH;
1446 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1447 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1448 		success |= !err;
1449 		retval = err;
1450 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1451 	return success ? 0 : retval;
1452 }
1453 
1454 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1455 {
1456 	int error = -ESRCH;
1457 	struct task_struct *p;
1458 
1459 	for (;;) {
1460 		rcu_read_lock();
1461 		p = pid_task(pid, PIDTYPE_PID);
1462 		if (p)
1463 			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1464 		rcu_read_unlock();
1465 		if (likely(!p || error != -ESRCH))
1466 			return error;
1467 
1468 		/*
1469 		 * The task was unhashed in between, try again.  If it
1470 		 * is dead, pid_task() will return NULL, if we race with
1471 		 * de_thread() it will find the new leader.
1472 		 */
1473 	}
1474 }
1475 
1476 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1477 {
1478 	int error;
1479 	rcu_read_lock();
1480 	error = kill_pid_info(sig, info, find_vpid(pid));
1481 	rcu_read_unlock();
1482 	return error;
1483 }
1484 
1485 static inline bool kill_as_cred_perm(const struct cred *cred,
1486 				     struct task_struct *target)
1487 {
1488 	const struct cred *pcred = __task_cred(target);
1489 
1490 	return uid_eq(cred->euid, pcred->suid) ||
1491 	       uid_eq(cred->euid, pcred->uid) ||
1492 	       uid_eq(cred->uid, pcred->suid) ||
1493 	       uid_eq(cred->uid, pcred->uid);
1494 }
1495 
1496 /*
1497  * The usb asyncio usage of siginfo is wrong.  The glibc support
1498  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1499  * AKA after the generic fields:
1500  *	kernel_pid_t	si_pid;
1501  *	kernel_uid32_t	si_uid;
1502  *	sigval_t	si_value;
1503  *
1504  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1505  * after the generic fields is:
1506  *	void __user 	*si_addr;
1507  *
1508  * This is a practical problem when there is a 64bit big endian kernel
1509  * and a 32bit userspace.  As the 32bit address will encoded in the low
1510  * 32bits of the pointer.  Those low 32bits will be stored at higher
1511  * address than appear in a 32 bit pointer.  So userspace will not
1512  * see the address it was expecting for it's completions.
1513  *
1514  * There is nothing in the encoding that can allow
1515  * copy_siginfo_to_user32 to detect this confusion of formats, so
1516  * handle this by requiring the caller of kill_pid_usb_asyncio to
1517  * notice when this situration takes place and to store the 32bit
1518  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1519  * parameter.
1520  */
1521 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1522 			 struct pid *pid, const struct cred *cred)
1523 {
1524 	struct kernel_siginfo info;
1525 	struct task_struct *p;
1526 	unsigned long flags;
1527 	int ret = -EINVAL;
1528 
1529 	if (!valid_signal(sig))
1530 		return ret;
1531 
1532 	clear_siginfo(&info);
1533 	info.si_signo = sig;
1534 	info.si_errno = errno;
1535 	info.si_code = SI_ASYNCIO;
1536 	*((sigval_t *)&info.si_pid) = addr;
1537 
1538 	rcu_read_lock();
1539 	p = pid_task(pid, PIDTYPE_PID);
1540 	if (!p) {
1541 		ret = -ESRCH;
1542 		goto out_unlock;
1543 	}
1544 	if (!kill_as_cred_perm(cred, p)) {
1545 		ret = -EPERM;
1546 		goto out_unlock;
1547 	}
1548 	ret = security_task_kill(p, &info, sig, cred);
1549 	if (ret)
1550 		goto out_unlock;
1551 
1552 	if (sig) {
1553 		if (lock_task_sighand(p, &flags)) {
1554 			ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1555 			unlock_task_sighand(p, &flags);
1556 		} else
1557 			ret = -ESRCH;
1558 	}
1559 out_unlock:
1560 	rcu_read_unlock();
1561 	return ret;
1562 }
1563 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1564 
1565 /*
1566  * kill_something_info() interprets pid in interesting ways just like kill(2).
1567  *
1568  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1569  * is probably wrong.  Should make it like BSD or SYSV.
1570  */
1571 
1572 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1573 {
1574 	int ret;
1575 
1576 	if (pid > 0)
1577 		return kill_proc_info(sig, info, pid);
1578 
1579 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1580 	if (pid == INT_MIN)
1581 		return -ESRCH;
1582 
1583 	read_lock(&tasklist_lock);
1584 	if (pid != -1) {
1585 		ret = __kill_pgrp_info(sig, info,
1586 				pid ? find_vpid(-pid) : task_pgrp(current));
1587 	} else {
1588 		int retval = 0, count = 0;
1589 		struct task_struct * p;
1590 
1591 		for_each_process(p) {
1592 			if (task_pid_vnr(p) > 1 &&
1593 					!same_thread_group(p, current)) {
1594 				int err = group_send_sig_info(sig, info, p,
1595 							      PIDTYPE_MAX);
1596 				++count;
1597 				if (err != -EPERM)
1598 					retval = err;
1599 			}
1600 		}
1601 		ret = count ? retval : -ESRCH;
1602 	}
1603 	read_unlock(&tasklist_lock);
1604 
1605 	return ret;
1606 }
1607 
1608 /*
1609  * These are for backward compatibility with the rest of the kernel source.
1610  */
1611 
1612 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1613 {
1614 	/*
1615 	 * Make sure legacy kernel users don't send in bad values
1616 	 * (normal paths check this in check_kill_permission).
1617 	 */
1618 	if (!valid_signal(sig))
1619 		return -EINVAL;
1620 
1621 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1622 }
1623 EXPORT_SYMBOL(send_sig_info);
1624 
1625 #define __si_special(priv) \
1626 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1627 
1628 int
1629 send_sig(int sig, struct task_struct *p, int priv)
1630 {
1631 	return send_sig_info(sig, __si_special(priv), p);
1632 }
1633 EXPORT_SYMBOL(send_sig);
1634 
1635 void force_sig(int sig)
1636 {
1637 	struct kernel_siginfo info;
1638 
1639 	clear_siginfo(&info);
1640 	info.si_signo = sig;
1641 	info.si_errno = 0;
1642 	info.si_code = SI_KERNEL;
1643 	info.si_pid = 0;
1644 	info.si_uid = 0;
1645 	force_sig_info(&info);
1646 }
1647 EXPORT_SYMBOL(force_sig);
1648 
1649 /*
1650  * When things go south during signal handling, we
1651  * will force a SIGSEGV. And if the signal that caused
1652  * the problem was already a SIGSEGV, we'll want to
1653  * make sure we don't even try to deliver the signal..
1654  */
1655 void force_sigsegv(int sig)
1656 {
1657 	struct task_struct *p = current;
1658 
1659 	if (sig == SIGSEGV) {
1660 		unsigned long flags;
1661 		spin_lock_irqsave(&p->sighand->siglock, flags);
1662 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1663 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1664 	}
1665 	force_sig(SIGSEGV);
1666 }
1667 
1668 int force_sig_fault_to_task(int sig, int code, void __user *addr
1669 	___ARCH_SI_TRAPNO(int trapno)
1670 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1671 	, struct task_struct *t)
1672 {
1673 	struct kernel_siginfo info;
1674 
1675 	clear_siginfo(&info);
1676 	info.si_signo = sig;
1677 	info.si_errno = 0;
1678 	info.si_code  = code;
1679 	info.si_addr  = addr;
1680 #ifdef __ARCH_SI_TRAPNO
1681 	info.si_trapno = trapno;
1682 #endif
1683 #ifdef __ia64__
1684 	info.si_imm = imm;
1685 	info.si_flags = flags;
1686 	info.si_isr = isr;
1687 #endif
1688 	return force_sig_info_to_task(&info, t);
1689 }
1690 
1691 int force_sig_fault(int sig, int code, void __user *addr
1692 	___ARCH_SI_TRAPNO(int trapno)
1693 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1694 {
1695 	return force_sig_fault_to_task(sig, code, addr
1696 				       ___ARCH_SI_TRAPNO(trapno)
1697 				       ___ARCH_SI_IA64(imm, flags, isr), current);
1698 }
1699 
1700 int send_sig_fault(int sig, int code, void __user *addr
1701 	___ARCH_SI_TRAPNO(int trapno)
1702 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1703 	, struct task_struct *t)
1704 {
1705 	struct kernel_siginfo info;
1706 
1707 	clear_siginfo(&info);
1708 	info.si_signo = sig;
1709 	info.si_errno = 0;
1710 	info.si_code  = code;
1711 	info.si_addr  = addr;
1712 #ifdef __ARCH_SI_TRAPNO
1713 	info.si_trapno = trapno;
1714 #endif
1715 #ifdef __ia64__
1716 	info.si_imm = imm;
1717 	info.si_flags = flags;
1718 	info.si_isr = isr;
1719 #endif
1720 	return send_sig_info(info.si_signo, &info, t);
1721 }
1722 
1723 int force_sig_mceerr(int code, void __user *addr, short lsb)
1724 {
1725 	struct kernel_siginfo info;
1726 
1727 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1728 	clear_siginfo(&info);
1729 	info.si_signo = SIGBUS;
1730 	info.si_errno = 0;
1731 	info.si_code = code;
1732 	info.si_addr = addr;
1733 	info.si_addr_lsb = lsb;
1734 	return force_sig_info(&info);
1735 }
1736 
1737 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1738 {
1739 	struct kernel_siginfo info;
1740 
1741 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1742 	clear_siginfo(&info);
1743 	info.si_signo = SIGBUS;
1744 	info.si_errno = 0;
1745 	info.si_code = code;
1746 	info.si_addr = addr;
1747 	info.si_addr_lsb = lsb;
1748 	return send_sig_info(info.si_signo, &info, t);
1749 }
1750 EXPORT_SYMBOL(send_sig_mceerr);
1751 
1752 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1753 {
1754 	struct kernel_siginfo info;
1755 
1756 	clear_siginfo(&info);
1757 	info.si_signo = SIGSEGV;
1758 	info.si_errno = 0;
1759 	info.si_code  = SEGV_BNDERR;
1760 	info.si_addr  = addr;
1761 	info.si_lower = lower;
1762 	info.si_upper = upper;
1763 	return force_sig_info(&info);
1764 }
1765 
1766 #ifdef SEGV_PKUERR
1767 int force_sig_pkuerr(void __user *addr, u32 pkey)
1768 {
1769 	struct kernel_siginfo info;
1770 
1771 	clear_siginfo(&info);
1772 	info.si_signo = SIGSEGV;
1773 	info.si_errno = 0;
1774 	info.si_code  = SEGV_PKUERR;
1775 	info.si_addr  = addr;
1776 	info.si_pkey  = pkey;
1777 	return force_sig_info(&info);
1778 }
1779 #endif
1780 
1781 int force_sig_perf(void __user *addr, u32 type, u64 sig_data)
1782 {
1783 	struct kernel_siginfo info;
1784 
1785 	clear_siginfo(&info);
1786 	info.si_signo     = SIGTRAP;
1787 	info.si_errno     = 0;
1788 	info.si_code      = TRAP_PERF;
1789 	info.si_addr      = addr;
1790 	info.si_perf_data = sig_data;
1791 	info.si_perf_type = type;
1792 
1793 	return force_sig_info(&info);
1794 }
1795 
1796 /* For the crazy architectures that include trap information in
1797  * the errno field, instead of an actual errno value.
1798  */
1799 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1800 {
1801 	struct kernel_siginfo info;
1802 
1803 	clear_siginfo(&info);
1804 	info.si_signo = SIGTRAP;
1805 	info.si_errno = errno;
1806 	info.si_code  = TRAP_HWBKPT;
1807 	info.si_addr  = addr;
1808 	return force_sig_info(&info);
1809 }
1810 
1811 int kill_pgrp(struct pid *pid, int sig, int priv)
1812 {
1813 	int ret;
1814 
1815 	read_lock(&tasklist_lock);
1816 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1817 	read_unlock(&tasklist_lock);
1818 
1819 	return ret;
1820 }
1821 EXPORT_SYMBOL(kill_pgrp);
1822 
1823 int kill_pid(struct pid *pid, int sig, int priv)
1824 {
1825 	return kill_pid_info(sig, __si_special(priv), pid);
1826 }
1827 EXPORT_SYMBOL(kill_pid);
1828 
1829 /*
1830  * These functions support sending signals using preallocated sigqueue
1831  * structures.  This is needed "because realtime applications cannot
1832  * afford to lose notifications of asynchronous events, like timer
1833  * expirations or I/O completions".  In the case of POSIX Timers
1834  * we allocate the sigqueue structure from the timer_create.  If this
1835  * allocation fails we are able to report the failure to the application
1836  * with an EAGAIN error.
1837  */
1838 struct sigqueue *sigqueue_alloc(void)
1839 {
1840 	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1841 }
1842 
1843 void sigqueue_free(struct sigqueue *q)
1844 {
1845 	unsigned long flags;
1846 	spinlock_t *lock = &current->sighand->siglock;
1847 
1848 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1849 	/*
1850 	 * We must hold ->siglock while testing q->list
1851 	 * to serialize with collect_signal() or with
1852 	 * __exit_signal()->flush_sigqueue().
1853 	 */
1854 	spin_lock_irqsave(lock, flags);
1855 	q->flags &= ~SIGQUEUE_PREALLOC;
1856 	/*
1857 	 * If it is queued it will be freed when dequeued,
1858 	 * like the "regular" sigqueue.
1859 	 */
1860 	if (!list_empty(&q->list))
1861 		q = NULL;
1862 	spin_unlock_irqrestore(lock, flags);
1863 
1864 	if (q)
1865 		__sigqueue_free(q);
1866 }
1867 
1868 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1869 {
1870 	int sig = q->info.si_signo;
1871 	struct sigpending *pending;
1872 	struct task_struct *t;
1873 	unsigned long flags;
1874 	int ret, result;
1875 
1876 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1877 
1878 	ret = -1;
1879 	rcu_read_lock();
1880 	t = pid_task(pid, type);
1881 	if (!t || !likely(lock_task_sighand(t, &flags)))
1882 		goto ret;
1883 
1884 	ret = 1; /* the signal is ignored */
1885 	result = TRACE_SIGNAL_IGNORED;
1886 	if (!prepare_signal(sig, t, false))
1887 		goto out;
1888 
1889 	ret = 0;
1890 	if (unlikely(!list_empty(&q->list))) {
1891 		/*
1892 		 * If an SI_TIMER entry is already queue just increment
1893 		 * the overrun count.
1894 		 */
1895 		BUG_ON(q->info.si_code != SI_TIMER);
1896 		q->info.si_overrun++;
1897 		result = TRACE_SIGNAL_ALREADY_PENDING;
1898 		goto out;
1899 	}
1900 	q->info.si_overrun = 0;
1901 
1902 	signalfd_notify(t, sig);
1903 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1904 	list_add_tail(&q->list, &pending->list);
1905 	sigaddset(&pending->signal, sig);
1906 	complete_signal(sig, t, type);
1907 	result = TRACE_SIGNAL_DELIVERED;
1908 out:
1909 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1910 	unlock_task_sighand(t, &flags);
1911 ret:
1912 	rcu_read_unlock();
1913 	return ret;
1914 }
1915 
1916 static void do_notify_pidfd(struct task_struct *task)
1917 {
1918 	struct pid *pid;
1919 
1920 	WARN_ON(task->exit_state == 0);
1921 	pid = task_pid(task);
1922 	wake_up_all(&pid->wait_pidfd);
1923 }
1924 
1925 /*
1926  * Let a parent know about the death of a child.
1927  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1928  *
1929  * Returns true if our parent ignored us and so we've switched to
1930  * self-reaping.
1931  */
1932 bool do_notify_parent(struct task_struct *tsk, int sig)
1933 {
1934 	struct kernel_siginfo info;
1935 	unsigned long flags;
1936 	struct sighand_struct *psig;
1937 	bool autoreap = false;
1938 	u64 utime, stime;
1939 
1940 	BUG_ON(sig == -1);
1941 
1942  	/* do_notify_parent_cldstop should have been called instead.  */
1943  	BUG_ON(task_is_stopped_or_traced(tsk));
1944 
1945 	BUG_ON(!tsk->ptrace &&
1946 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1947 
1948 	/* Wake up all pidfd waiters */
1949 	do_notify_pidfd(tsk);
1950 
1951 	if (sig != SIGCHLD) {
1952 		/*
1953 		 * This is only possible if parent == real_parent.
1954 		 * Check if it has changed security domain.
1955 		 */
1956 		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
1957 			sig = SIGCHLD;
1958 	}
1959 
1960 	clear_siginfo(&info);
1961 	info.si_signo = sig;
1962 	info.si_errno = 0;
1963 	/*
1964 	 * We are under tasklist_lock here so our parent is tied to
1965 	 * us and cannot change.
1966 	 *
1967 	 * task_active_pid_ns will always return the same pid namespace
1968 	 * until a task passes through release_task.
1969 	 *
1970 	 * write_lock() currently calls preempt_disable() which is the
1971 	 * same as rcu_read_lock(), but according to Oleg, this is not
1972 	 * correct to rely on this
1973 	 */
1974 	rcu_read_lock();
1975 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1976 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1977 				       task_uid(tsk));
1978 	rcu_read_unlock();
1979 
1980 	task_cputime(tsk, &utime, &stime);
1981 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1982 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1983 
1984 	info.si_status = tsk->exit_code & 0x7f;
1985 	if (tsk->exit_code & 0x80)
1986 		info.si_code = CLD_DUMPED;
1987 	else if (tsk->exit_code & 0x7f)
1988 		info.si_code = CLD_KILLED;
1989 	else {
1990 		info.si_code = CLD_EXITED;
1991 		info.si_status = tsk->exit_code >> 8;
1992 	}
1993 
1994 	psig = tsk->parent->sighand;
1995 	spin_lock_irqsave(&psig->siglock, flags);
1996 	if (!tsk->ptrace && sig == SIGCHLD &&
1997 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1998 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1999 		/*
2000 		 * We are exiting and our parent doesn't care.  POSIX.1
2001 		 * defines special semantics for setting SIGCHLD to SIG_IGN
2002 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2003 		 * automatically and not left for our parent's wait4 call.
2004 		 * Rather than having the parent do it as a magic kind of
2005 		 * signal handler, we just set this to tell do_exit that we
2006 		 * can be cleaned up without becoming a zombie.  Note that
2007 		 * we still call __wake_up_parent in this case, because a
2008 		 * blocked sys_wait4 might now return -ECHILD.
2009 		 *
2010 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2011 		 * is implementation-defined: we do (if you don't want
2012 		 * it, just use SIG_IGN instead).
2013 		 */
2014 		autoreap = true;
2015 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2016 			sig = 0;
2017 	}
2018 	/*
2019 	 * Send with __send_signal as si_pid and si_uid are in the
2020 	 * parent's namespaces.
2021 	 */
2022 	if (valid_signal(sig) && sig)
2023 		__send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2024 	__wake_up_parent(tsk, tsk->parent);
2025 	spin_unlock_irqrestore(&psig->siglock, flags);
2026 
2027 	return autoreap;
2028 }
2029 
2030 /**
2031  * do_notify_parent_cldstop - notify parent of stopped/continued state change
2032  * @tsk: task reporting the state change
2033  * @for_ptracer: the notification is for ptracer
2034  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2035  *
2036  * Notify @tsk's parent that the stopped/continued state has changed.  If
2037  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2038  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2039  *
2040  * CONTEXT:
2041  * Must be called with tasklist_lock at least read locked.
2042  */
2043 static void do_notify_parent_cldstop(struct task_struct *tsk,
2044 				     bool for_ptracer, int why)
2045 {
2046 	struct kernel_siginfo info;
2047 	unsigned long flags;
2048 	struct task_struct *parent;
2049 	struct sighand_struct *sighand;
2050 	u64 utime, stime;
2051 
2052 	if (for_ptracer) {
2053 		parent = tsk->parent;
2054 	} else {
2055 		tsk = tsk->group_leader;
2056 		parent = tsk->real_parent;
2057 	}
2058 
2059 	clear_siginfo(&info);
2060 	info.si_signo = SIGCHLD;
2061 	info.si_errno = 0;
2062 	/*
2063 	 * see comment in do_notify_parent() about the following 4 lines
2064 	 */
2065 	rcu_read_lock();
2066 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2067 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2068 	rcu_read_unlock();
2069 
2070 	task_cputime(tsk, &utime, &stime);
2071 	info.si_utime = nsec_to_clock_t(utime);
2072 	info.si_stime = nsec_to_clock_t(stime);
2073 
2074  	info.si_code = why;
2075  	switch (why) {
2076  	case CLD_CONTINUED:
2077  		info.si_status = SIGCONT;
2078  		break;
2079  	case CLD_STOPPED:
2080  		info.si_status = tsk->signal->group_exit_code & 0x7f;
2081  		break;
2082  	case CLD_TRAPPED:
2083  		info.si_status = tsk->exit_code & 0x7f;
2084  		break;
2085  	default:
2086  		BUG();
2087  	}
2088 
2089 	sighand = parent->sighand;
2090 	spin_lock_irqsave(&sighand->siglock, flags);
2091 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2092 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2093 		__group_send_sig_info(SIGCHLD, &info, parent);
2094 	/*
2095 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2096 	 */
2097 	__wake_up_parent(tsk, parent);
2098 	spin_unlock_irqrestore(&sighand->siglock, flags);
2099 }
2100 
2101 static inline bool may_ptrace_stop(void)
2102 {
2103 	if (!likely(current->ptrace))
2104 		return false;
2105 	/*
2106 	 * Are we in the middle of do_coredump?
2107 	 * If so and our tracer is also part of the coredump stopping
2108 	 * is a deadlock situation, and pointless because our tracer
2109 	 * is dead so don't allow us to stop.
2110 	 * If SIGKILL was already sent before the caller unlocked
2111 	 * ->siglock we must see ->core_state != NULL. Otherwise it
2112 	 * is safe to enter schedule().
2113 	 *
2114 	 * This is almost outdated, a task with the pending SIGKILL can't
2115 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2116 	 * after SIGKILL was already dequeued.
2117 	 */
2118 	if (unlikely(current->mm->core_state) &&
2119 	    unlikely(current->mm == current->parent->mm))
2120 		return false;
2121 
2122 	return true;
2123 }
2124 
2125 /*
2126  * Return non-zero if there is a SIGKILL that should be waking us up.
2127  * Called with the siglock held.
2128  */
2129 static bool sigkill_pending(struct task_struct *tsk)
2130 {
2131 	return sigismember(&tsk->pending.signal, SIGKILL) ||
2132 	       sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2133 }
2134 
2135 /*
2136  * This must be called with current->sighand->siglock held.
2137  *
2138  * This should be the path for all ptrace stops.
2139  * We always set current->last_siginfo while stopped here.
2140  * That makes it a way to test a stopped process for
2141  * being ptrace-stopped vs being job-control-stopped.
2142  *
2143  * If we actually decide not to stop at all because the tracer
2144  * is gone, we keep current->exit_code unless clear_code.
2145  */
2146 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2147 	__releases(&current->sighand->siglock)
2148 	__acquires(&current->sighand->siglock)
2149 {
2150 	bool gstop_done = false;
2151 
2152 	if (arch_ptrace_stop_needed(exit_code, info)) {
2153 		/*
2154 		 * The arch code has something special to do before a
2155 		 * ptrace stop.  This is allowed to block, e.g. for faults
2156 		 * on user stack pages.  We can't keep the siglock while
2157 		 * calling arch_ptrace_stop, so we must release it now.
2158 		 * To preserve proper semantics, we must do this before
2159 		 * any signal bookkeeping like checking group_stop_count.
2160 		 * Meanwhile, a SIGKILL could come in before we retake the
2161 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
2162 		 * So after regaining the lock, we must check for SIGKILL.
2163 		 */
2164 		spin_unlock_irq(&current->sighand->siglock);
2165 		arch_ptrace_stop(exit_code, info);
2166 		spin_lock_irq(&current->sighand->siglock);
2167 		if (sigkill_pending(current))
2168 			return;
2169 	}
2170 
2171 	set_special_state(TASK_TRACED);
2172 
2173 	/*
2174 	 * We're committing to trapping.  TRACED should be visible before
2175 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2176 	 * Also, transition to TRACED and updates to ->jobctl should be
2177 	 * atomic with respect to siglock and should be done after the arch
2178 	 * hook as siglock is released and regrabbed across it.
2179 	 *
2180 	 *     TRACER				    TRACEE
2181 	 *
2182 	 *     ptrace_attach()
2183 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2184 	 *     do_wait()
2185 	 *       set_current_state()                smp_wmb();
2186 	 *       ptrace_do_wait()
2187 	 *         wait_task_stopped()
2188 	 *           task_stopped_code()
2189 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2190 	 */
2191 	smp_wmb();
2192 
2193 	current->last_siginfo = info;
2194 	current->exit_code = exit_code;
2195 
2196 	/*
2197 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2198 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2199 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2200 	 * could be clear now.  We act as if SIGCONT is received after
2201 	 * TASK_TRACED is entered - ignore it.
2202 	 */
2203 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2204 		gstop_done = task_participate_group_stop(current);
2205 
2206 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2207 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2208 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2209 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2210 
2211 	/* entering a trap, clear TRAPPING */
2212 	task_clear_jobctl_trapping(current);
2213 
2214 	spin_unlock_irq(&current->sighand->siglock);
2215 	read_lock(&tasklist_lock);
2216 	if (may_ptrace_stop()) {
2217 		/*
2218 		 * Notify parents of the stop.
2219 		 *
2220 		 * While ptraced, there are two parents - the ptracer and
2221 		 * the real_parent of the group_leader.  The ptracer should
2222 		 * know about every stop while the real parent is only
2223 		 * interested in the completion of group stop.  The states
2224 		 * for the two don't interact with each other.  Notify
2225 		 * separately unless they're gonna be duplicates.
2226 		 */
2227 		do_notify_parent_cldstop(current, true, why);
2228 		if (gstop_done && ptrace_reparented(current))
2229 			do_notify_parent_cldstop(current, false, why);
2230 
2231 		/*
2232 		 * Don't want to allow preemption here, because
2233 		 * sys_ptrace() needs this task to be inactive.
2234 		 *
2235 		 * XXX: implement read_unlock_no_resched().
2236 		 */
2237 		preempt_disable();
2238 		read_unlock(&tasklist_lock);
2239 		cgroup_enter_frozen();
2240 		preempt_enable_no_resched();
2241 		freezable_schedule();
2242 		cgroup_leave_frozen(true);
2243 	} else {
2244 		/*
2245 		 * By the time we got the lock, our tracer went away.
2246 		 * Don't drop the lock yet, another tracer may come.
2247 		 *
2248 		 * If @gstop_done, the ptracer went away between group stop
2249 		 * completion and here.  During detach, it would have set
2250 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2251 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2252 		 * the real parent of the group stop completion is enough.
2253 		 */
2254 		if (gstop_done)
2255 			do_notify_parent_cldstop(current, false, why);
2256 
2257 		/* tasklist protects us from ptrace_freeze_traced() */
2258 		__set_current_state(TASK_RUNNING);
2259 		if (clear_code)
2260 			current->exit_code = 0;
2261 		read_unlock(&tasklist_lock);
2262 	}
2263 
2264 	/*
2265 	 * We are back.  Now reacquire the siglock before touching
2266 	 * last_siginfo, so that we are sure to have synchronized with
2267 	 * any signal-sending on another CPU that wants to examine it.
2268 	 */
2269 	spin_lock_irq(&current->sighand->siglock);
2270 	current->last_siginfo = NULL;
2271 
2272 	/* LISTENING can be set only during STOP traps, clear it */
2273 	current->jobctl &= ~JOBCTL_LISTENING;
2274 
2275 	/*
2276 	 * Queued signals ignored us while we were stopped for tracing.
2277 	 * So check for any that we should take before resuming user mode.
2278 	 * This sets TIF_SIGPENDING, but never clears it.
2279 	 */
2280 	recalc_sigpending_tsk(current);
2281 }
2282 
2283 static void ptrace_do_notify(int signr, int exit_code, int why)
2284 {
2285 	kernel_siginfo_t info;
2286 
2287 	clear_siginfo(&info);
2288 	info.si_signo = signr;
2289 	info.si_code = exit_code;
2290 	info.si_pid = task_pid_vnr(current);
2291 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2292 
2293 	/* Let the debugger run.  */
2294 	ptrace_stop(exit_code, why, 1, &info);
2295 }
2296 
2297 void ptrace_notify(int exit_code)
2298 {
2299 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2300 	if (unlikely(current->task_works))
2301 		task_work_run();
2302 
2303 	spin_lock_irq(&current->sighand->siglock);
2304 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2305 	spin_unlock_irq(&current->sighand->siglock);
2306 }
2307 
2308 /**
2309  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2310  * @signr: signr causing group stop if initiating
2311  *
2312  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2313  * and participate in it.  If already set, participate in the existing
2314  * group stop.  If participated in a group stop (and thus slept), %true is
2315  * returned with siglock released.
2316  *
2317  * If ptraced, this function doesn't handle stop itself.  Instead,
2318  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2319  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2320  * places afterwards.
2321  *
2322  * CONTEXT:
2323  * Must be called with @current->sighand->siglock held, which is released
2324  * on %true return.
2325  *
2326  * RETURNS:
2327  * %false if group stop is already cancelled or ptrace trap is scheduled.
2328  * %true if participated in group stop.
2329  */
2330 static bool do_signal_stop(int signr)
2331 	__releases(&current->sighand->siglock)
2332 {
2333 	struct signal_struct *sig = current->signal;
2334 
2335 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2336 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2337 		struct task_struct *t;
2338 
2339 		/* signr will be recorded in task->jobctl for retries */
2340 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2341 
2342 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2343 		    unlikely(signal_group_exit(sig)))
2344 			return false;
2345 		/*
2346 		 * There is no group stop already in progress.  We must
2347 		 * initiate one now.
2348 		 *
2349 		 * While ptraced, a task may be resumed while group stop is
2350 		 * still in effect and then receive a stop signal and
2351 		 * initiate another group stop.  This deviates from the
2352 		 * usual behavior as two consecutive stop signals can't
2353 		 * cause two group stops when !ptraced.  That is why we
2354 		 * also check !task_is_stopped(t) below.
2355 		 *
2356 		 * The condition can be distinguished by testing whether
2357 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2358 		 * group_exit_code in such case.
2359 		 *
2360 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2361 		 * an intervening stop signal is required to cause two
2362 		 * continued events regardless of ptrace.
2363 		 */
2364 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2365 			sig->group_exit_code = signr;
2366 
2367 		sig->group_stop_count = 0;
2368 
2369 		if (task_set_jobctl_pending(current, signr | gstop))
2370 			sig->group_stop_count++;
2371 
2372 		t = current;
2373 		while_each_thread(current, t) {
2374 			/*
2375 			 * Setting state to TASK_STOPPED for a group
2376 			 * stop is always done with the siglock held,
2377 			 * so this check has no races.
2378 			 */
2379 			if (!task_is_stopped(t) &&
2380 			    task_set_jobctl_pending(t, signr | gstop)) {
2381 				sig->group_stop_count++;
2382 				if (likely(!(t->ptrace & PT_SEIZED)))
2383 					signal_wake_up(t, 0);
2384 				else
2385 					ptrace_trap_notify(t);
2386 			}
2387 		}
2388 	}
2389 
2390 	if (likely(!current->ptrace)) {
2391 		int notify = 0;
2392 
2393 		/*
2394 		 * If there are no other threads in the group, or if there
2395 		 * is a group stop in progress and we are the last to stop,
2396 		 * report to the parent.
2397 		 */
2398 		if (task_participate_group_stop(current))
2399 			notify = CLD_STOPPED;
2400 
2401 		set_special_state(TASK_STOPPED);
2402 		spin_unlock_irq(&current->sighand->siglock);
2403 
2404 		/*
2405 		 * Notify the parent of the group stop completion.  Because
2406 		 * we're not holding either the siglock or tasklist_lock
2407 		 * here, ptracer may attach inbetween; however, this is for
2408 		 * group stop and should always be delivered to the real
2409 		 * parent of the group leader.  The new ptracer will get
2410 		 * its notification when this task transitions into
2411 		 * TASK_TRACED.
2412 		 */
2413 		if (notify) {
2414 			read_lock(&tasklist_lock);
2415 			do_notify_parent_cldstop(current, false, notify);
2416 			read_unlock(&tasklist_lock);
2417 		}
2418 
2419 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2420 		cgroup_enter_frozen();
2421 		freezable_schedule();
2422 		return true;
2423 	} else {
2424 		/*
2425 		 * While ptraced, group stop is handled by STOP trap.
2426 		 * Schedule it and let the caller deal with it.
2427 		 */
2428 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2429 		return false;
2430 	}
2431 }
2432 
2433 /**
2434  * do_jobctl_trap - take care of ptrace jobctl traps
2435  *
2436  * When PT_SEIZED, it's used for both group stop and explicit
2437  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2438  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2439  * the stop signal; otherwise, %SIGTRAP.
2440  *
2441  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2442  * number as exit_code and no siginfo.
2443  *
2444  * CONTEXT:
2445  * Must be called with @current->sighand->siglock held, which may be
2446  * released and re-acquired before returning with intervening sleep.
2447  */
2448 static void do_jobctl_trap(void)
2449 {
2450 	struct signal_struct *signal = current->signal;
2451 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2452 
2453 	if (current->ptrace & PT_SEIZED) {
2454 		if (!signal->group_stop_count &&
2455 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2456 			signr = SIGTRAP;
2457 		WARN_ON_ONCE(!signr);
2458 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2459 				 CLD_STOPPED);
2460 	} else {
2461 		WARN_ON_ONCE(!signr);
2462 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2463 		current->exit_code = 0;
2464 	}
2465 }
2466 
2467 /**
2468  * do_freezer_trap - handle the freezer jobctl trap
2469  *
2470  * Puts the task into frozen state, if only the task is not about to quit.
2471  * In this case it drops JOBCTL_TRAP_FREEZE.
2472  *
2473  * CONTEXT:
2474  * Must be called with @current->sighand->siglock held,
2475  * which is always released before returning.
2476  */
2477 static void do_freezer_trap(void)
2478 	__releases(&current->sighand->siglock)
2479 {
2480 	/*
2481 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2482 	 * let's make another loop to give it a chance to be handled.
2483 	 * In any case, we'll return back.
2484 	 */
2485 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2486 	     JOBCTL_TRAP_FREEZE) {
2487 		spin_unlock_irq(&current->sighand->siglock);
2488 		return;
2489 	}
2490 
2491 	/*
2492 	 * Now we're sure that there is no pending fatal signal and no
2493 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2494 	 * immediately (if there is a non-fatal signal pending), and
2495 	 * put the task into sleep.
2496 	 */
2497 	__set_current_state(TASK_INTERRUPTIBLE);
2498 	clear_thread_flag(TIF_SIGPENDING);
2499 	spin_unlock_irq(&current->sighand->siglock);
2500 	cgroup_enter_frozen();
2501 	freezable_schedule();
2502 }
2503 
2504 static int ptrace_signal(int signr, kernel_siginfo_t *info)
2505 {
2506 	/*
2507 	 * We do not check sig_kernel_stop(signr) but set this marker
2508 	 * unconditionally because we do not know whether debugger will
2509 	 * change signr. This flag has no meaning unless we are going
2510 	 * to stop after return from ptrace_stop(). In this case it will
2511 	 * be checked in do_signal_stop(), we should only stop if it was
2512 	 * not cleared by SIGCONT while we were sleeping. See also the
2513 	 * comment in dequeue_signal().
2514 	 */
2515 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2516 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2517 
2518 	/* We're back.  Did the debugger cancel the sig?  */
2519 	signr = current->exit_code;
2520 	if (signr == 0)
2521 		return signr;
2522 
2523 	current->exit_code = 0;
2524 
2525 	/*
2526 	 * Update the siginfo structure if the signal has
2527 	 * changed.  If the debugger wanted something
2528 	 * specific in the siginfo structure then it should
2529 	 * have updated *info via PTRACE_SETSIGINFO.
2530 	 */
2531 	if (signr != info->si_signo) {
2532 		clear_siginfo(info);
2533 		info->si_signo = signr;
2534 		info->si_errno = 0;
2535 		info->si_code = SI_USER;
2536 		rcu_read_lock();
2537 		info->si_pid = task_pid_vnr(current->parent);
2538 		info->si_uid = from_kuid_munged(current_user_ns(),
2539 						task_uid(current->parent));
2540 		rcu_read_unlock();
2541 	}
2542 
2543 	/* If the (new) signal is now blocked, requeue it.  */
2544 	if (sigismember(&current->blocked, signr)) {
2545 		send_signal(signr, info, current, PIDTYPE_PID);
2546 		signr = 0;
2547 	}
2548 
2549 	return signr;
2550 }
2551 
2552 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2553 {
2554 	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2555 	case SIL_FAULT:
2556 	case SIL_FAULT_TRAPNO:
2557 	case SIL_FAULT_MCEERR:
2558 	case SIL_FAULT_BNDERR:
2559 	case SIL_FAULT_PKUERR:
2560 	case SIL_PERF_EVENT:
2561 		ksig->info.si_addr = arch_untagged_si_addr(
2562 			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2563 		break;
2564 	case SIL_KILL:
2565 	case SIL_TIMER:
2566 	case SIL_POLL:
2567 	case SIL_CHLD:
2568 	case SIL_RT:
2569 	case SIL_SYS:
2570 		break;
2571 	}
2572 }
2573 
2574 bool get_signal(struct ksignal *ksig)
2575 {
2576 	struct sighand_struct *sighand = current->sighand;
2577 	struct signal_struct *signal = current->signal;
2578 	int signr;
2579 
2580 	if (unlikely(current->task_works))
2581 		task_work_run();
2582 
2583 	/*
2584 	 * For non-generic architectures, check for TIF_NOTIFY_SIGNAL so
2585 	 * that the arch handlers don't all have to do it. If we get here
2586 	 * without TIF_SIGPENDING, just exit after running signal work.
2587 	 */
2588 	if (!IS_ENABLED(CONFIG_GENERIC_ENTRY)) {
2589 		if (test_thread_flag(TIF_NOTIFY_SIGNAL))
2590 			tracehook_notify_signal();
2591 		if (!task_sigpending(current))
2592 			return false;
2593 	}
2594 
2595 	if (unlikely(uprobe_deny_signal()))
2596 		return false;
2597 
2598 	/*
2599 	 * Do this once, we can't return to user-mode if freezing() == T.
2600 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2601 	 * thus do not need another check after return.
2602 	 */
2603 	try_to_freeze();
2604 
2605 relock:
2606 	spin_lock_irq(&sighand->siglock);
2607 
2608 	/*
2609 	 * Every stopped thread goes here after wakeup. Check to see if
2610 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2611 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2612 	 */
2613 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2614 		int why;
2615 
2616 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2617 			why = CLD_CONTINUED;
2618 		else
2619 			why = CLD_STOPPED;
2620 
2621 		signal->flags &= ~SIGNAL_CLD_MASK;
2622 
2623 		spin_unlock_irq(&sighand->siglock);
2624 
2625 		/*
2626 		 * Notify the parent that we're continuing.  This event is
2627 		 * always per-process and doesn't make whole lot of sense
2628 		 * for ptracers, who shouldn't consume the state via
2629 		 * wait(2) either, but, for backward compatibility, notify
2630 		 * the ptracer of the group leader too unless it's gonna be
2631 		 * a duplicate.
2632 		 */
2633 		read_lock(&tasklist_lock);
2634 		do_notify_parent_cldstop(current, false, why);
2635 
2636 		if (ptrace_reparented(current->group_leader))
2637 			do_notify_parent_cldstop(current->group_leader,
2638 						true, why);
2639 		read_unlock(&tasklist_lock);
2640 
2641 		goto relock;
2642 	}
2643 
2644 	/* Has this task already been marked for death? */
2645 	if (signal_group_exit(signal)) {
2646 		ksig->info.si_signo = signr = SIGKILL;
2647 		sigdelset(&current->pending.signal, SIGKILL);
2648 		trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2649 				&sighand->action[SIGKILL - 1]);
2650 		recalc_sigpending();
2651 		goto fatal;
2652 	}
2653 
2654 	for (;;) {
2655 		struct k_sigaction *ka;
2656 
2657 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2658 		    do_signal_stop(0))
2659 			goto relock;
2660 
2661 		if (unlikely(current->jobctl &
2662 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2663 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2664 				do_jobctl_trap();
2665 				spin_unlock_irq(&sighand->siglock);
2666 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2667 				do_freezer_trap();
2668 
2669 			goto relock;
2670 		}
2671 
2672 		/*
2673 		 * If the task is leaving the frozen state, let's update
2674 		 * cgroup counters and reset the frozen bit.
2675 		 */
2676 		if (unlikely(cgroup_task_frozen(current))) {
2677 			spin_unlock_irq(&sighand->siglock);
2678 			cgroup_leave_frozen(false);
2679 			goto relock;
2680 		}
2681 
2682 		/*
2683 		 * Signals generated by the execution of an instruction
2684 		 * need to be delivered before any other pending signals
2685 		 * so that the instruction pointer in the signal stack
2686 		 * frame points to the faulting instruction.
2687 		 */
2688 		signr = dequeue_synchronous_signal(&ksig->info);
2689 		if (!signr)
2690 			signr = dequeue_signal(current, &current->blocked, &ksig->info);
2691 
2692 		if (!signr)
2693 			break; /* will return 0 */
2694 
2695 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2696 			signr = ptrace_signal(signr, &ksig->info);
2697 			if (!signr)
2698 				continue;
2699 		}
2700 
2701 		ka = &sighand->action[signr-1];
2702 
2703 		/* Trace actually delivered signals. */
2704 		trace_signal_deliver(signr, &ksig->info, ka);
2705 
2706 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2707 			continue;
2708 		if (ka->sa.sa_handler != SIG_DFL) {
2709 			/* Run the handler.  */
2710 			ksig->ka = *ka;
2711 
2712 			if (ka->sa.sa_flags & SA_ONESHOT)
2713 				ka->sa.sa_handler = SIG_DFL;
2714 
2715 			break; /* will return non-zero "signr" value */
2716 		}
2717 
2718 		/*
2719 		 * Now we are doing the default action for this signal.
2720 		 */
2721 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2722 			continue;
2723 
2724 		/*
2725 		 * Global init gets no signals it doesn't want.
2726 		 * Container-init gets no signals it doesn't want from same
2727 		 * container.
2728 		 *
2729 		 * Note that if global/container-init sees a sig_kernel_only()
2730 		 * signal here, the signal must have been generated internally
2731 		 * or must have come from an ancestor namespace. In either
2732 		 * case, the signal cannot be dropped.
2733 		 */
2734 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2735 				!sig_kernel_only(signr))
2736 			continue;
2737 
2738 		if (sig_kernel_stop(signr)) {
2739 			/*
2740 			 * The default action is to stop all threads in
2741 			 * the thread group.  The job control signals
2742 			 * do nothing in an orphaned pgrp, but SIGSTOP
2743 			 * always works.  Note that siglock needs to be
2744 			 * dropped during the call to is_orphaned_pgrp()
2745 			 * because of lock ordering with tasklist_lock.
2746 			 * This allows an intervening SIGCONT to be posted.
2747 			 * We need to check for that and bail out if necessary.
2748 			 */
2749 			if (signr != SIGSTOP) {
2750 				spin_unlock_irq(&sighand->siglock);
2751 
2752 				/* signals can be posted during this window */
2753 
2754 				if (is_current_pgrp_orphaned())
2755 					goto relock;
2756 
2757 				spin_lock_irq(&sighand->siglock);
2758 			}
2759 
2760 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2761 				/* It released the siglock.  */
2762 				goto relock;
2763 			}
2764 
2765 			/*
2766 			 * We didn't actually stop, due to a race
2767 			 * with SIGCONT or something like that.
2768 			 */
2769 			continue;
2770 		}
2771 
2772 	fatal:
2773 		spin_unlock_irq(&sighand->siglock);
2774 		if (unlikely(cgroup_task_frozen(current)))
2775 			cgroup_leave_frozen(true);
2776 
2777 		/*
2778 		 * Anything else is fatal, maybe with a core dump.
2779 		 */
2780 		current->flags |= PF_SIGNALED;
2781 
2782 		if (sig_kernel_coredump(signr)) {
2783 			if (print_fatal_signals)
2784 				print_fatal_signal(ksig->info.si_signo);
2785 			proc_coredump_connector(current);
2786 			/*
2787 			 * If it was able to dump core, this kills all
2788 			 * other threads in the group and synchronizes with
2789 			 * their demise.  If we lost the race with another
2790 			 * thread getting here, it set group_exit_code
2791 			 * first and our do_group_exit call below will use
2792 			 * that value and ignore the one we pass it.
2793 			 */
2794 			do_coredump(&ksig->info);
2795 		}
2796 
2797 		/*
2798 		 * PF_IO_WORKER threads will catch and exit on fatal signals
2799 		 * themselves. They have cleanup that must be performed, so
2800 		 * we cannot call do_exit() on their behalf.
2801 		 */
2802 		if (current->flags & PF_IO_WORKER)
2803 			goto out;
2804 
2805 		/*
2806 		 * Death signals, no core dump.
2807 		 */
2808 		do_group_exit(ksig->info.si_signo);
2809 		/* NOTREACHED */
2810 	}
2811 	spin_unlock_irq(&sighand->siglock);
2812 out:
2813 	ksig->sig = signr;
2814 
2815 	if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2816 		hide_si_addr_tag_bits(ksig);
2817 
2818 	return ksig->sig > 0;
2819 }
2820 
2821 /**
2822  * signal_delivered -
2823  * @ksig:		kernel signal struct
2824  * @stepping:		nonzero if debugger single-step or block-step in use
2825  *
2826  * This function should be called when a signal has successfully been
2827  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2828  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2829  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2830  */
2831 static void signal_delivered(struct ksignal *ksig, int stepping)
2832 {
2833 	sigset_t blocked;
2834 
2835 	/* A signal was successfully delivered, and the
2836 	   saved sigmask was stored on the signal frame,
2837 	   and will be restored by sigreturn.  So we can
2838 	   simply clear the restore sigmask flag.  */
2839 	clear_restore_sigmask();
2840 
2841 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2842 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2843 		sigaddset(&blocked, ksig->sig);
2844 	set_current_blocked(&blocked);
2845 	if (current->sas_ss_flags & SS_AUTODISARM)
2846 		sas_ss_reset(current);
2847 	tracehook_signal_handler(stepping);
2848 }
2849 
2850 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2851 {
2852 	if (failed)
2853 		force_sigsegv(ksig->sig);
2854 	else
2855 		signal_delivered(ksig, stepping);
2856 }
2857 
2858 /*
2859  * It could be that complete_signal() picked us to notify about the
2860  * group-wide signal. Other threads should be notified now to take
2861  * the shared signals in @which since we will not.
2862  */
2863 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2864 {
2865 	sigset_t retarget;
2866 	struct task_struct *t;
2867 
2868 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2869 	if (sigisemptyset(&retarget))
2870 		return;
2871 
2872 	t = tsk;
2873 	while_each_thread(tsk, t) {
2874 		if (t->flags & PF_EXITING)
2875 			continue;
2876 
2877 		if (!has_pending_signals(&retarget, &t->blocked))
2878 			continue;
2879 		/* Remove the signals this thread can handle. */
2880 		sigandsets(&retarget, &retarget, &t->blocked);
2881 
2882 		if (!task_sigpending(t))
2883 			signal_wake_up(t, 0);
2884 
2885 		if (sigisemptyset(&retarget))
2886 			break;
2887 	}
2888 }
2889 
2890 void exit_signals(struct task_struct *tsk)
2891 {
2892 	int group_stop = 0;
2893 	sigset_t unblocked;
2894 
2895 	/*
2896 	 * @tsk is about to have PF_EXITING set - lock out users which
2897 	 * expect stable threadgroup.
2898 	 */
2899 	cgroup_threadgroup_change_begin(tsk);
2900 
2901 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2902 		tsk->flags |= PF_EXITING;
2903 		cgroup_threadgroup_change_end(tsk);
2904 		return;
2905 	}
2906 
2907 	spin_lock_irq(&tsk->sighand->siglock);
2908 	/*
2909 	 * From now this task is not visible for group-wide signals,
2910 	 * see wants_signal(), do_signal_stop().
2911 	 */
2912 	tsk->flags |= PF_EXITING;
2913 
2914 	cgroup_threadgroup_change_end(tsk);
2915 
2916 	if (!task_sigpending(tsk))
2917 		goto out;
2918 
2919 	unblocked = tsk->blocked;
2920 	signotset(&unblocked);
2921 	retarget_shared_pending(tsk, &unblocked);
2922 
2923 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2924 	    task_participate_group_stop(tsk))
2925 		group_stop = CLD_STOPPED;
2926 out:
2927 	spin_unlock_irq(&tsk->sighand->siglock);
2928 
2929 	/*
2930 	 * If group stop has completed, deliver the notification.  This
2931 	 * should always go to the real parent of the group leader.
2932 	 */
2933 	if (unlikely(group_stop)) {
2934 		read_lock(&tasklist_lock);
2935 		do_notify_parent_cldstop(tsk, false, group_stop);
2936 		read_unlock(&tasklist_lock);
2937 	}
2938 }
2939 
2940 /*
2941  * System call entry points.
2942  */
2943 
2944 /**
2945  *  sys_restart_syscall - restart a system call
2946  */
2947 SYSCALL_DEFINE0(restart_syscall)
2948 {
2949 	struct restart_block *restart = &current->restart_block;
2950 	return restart->fn(restart);
2951 }
2952 
2953 long do_no_restart_syscall(struct restart_block *param)
2954 {
2955 	return -EINTR;
2956 }
2957 
2958 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2959 {
2960 	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
2961 		sigset_t newblocked;
2962 		/* A set of now blocked but previously unblocked signals. */
2963 		sigandnsets(&newblocked, newset, &current->blocked);
2964 		retarget_shared_pending(tsk, &newblocked);
2965 	}
2966 	tsk->blocked = *newset;
2967 	recalc_sigpending();
2968 }
2969 
2970 /**
2971  * set_current_blocked - change current->blocked mask
2972  * @newset: new mask
2973  *
2974  * It is wrong to change ->blocked directly, this helper should be used
2975  * to ensure the process can't miss a shared signal we are going to block.
2976  */
2977 void set_current_blocked(sigset_t *newset)
2978 {
2979 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2980 	__set_current_blocked(newset);
2981 }
2982 
2983 void __set_current_blocked(const sigset_t *newset)
2984 {
2985 	struct task_struct *tsk = current;
2986 
2987 	/*
2988 	 * In case the signal mask hasn't changed, there is nothing we need
2989 	 * to do. The current->blocked shouldn't be modified by other task.
2990 	 */
2991 	if (sigequalsets(&tsk->blocked, newset))
2992 		return;
2993 
2994 	spin_lock_irq(&tsk->sighand->siglock);
2995 	__set_task_blocked(tsk, newset);
2996 	spin_unlock_irq(&tsk->sighand->siglock);
2997 }
2998 
2999 /*
3000  * This is also useful for kernel threads that want to temporarily
3001  * (or permanently) block certain signals.
3002  *
3003  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3004  * interface happily blocks "unblockable" signals like SIGKILL
3005  * and friends.
3006  */
3007 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3008 {
3009 	struct task_struct *tsk = current;
3010 	sigset_t newset;
3011 
3012 	/* Lockless, only current can change ->blocked, never from irq */
3013 	if (oldset)
3014 		*oldset = tsk->blocked;
3015 
3016 	switch (how) {
3017 	case SIG_BLOCK:
3018 		sigorsets(&newset, &tsk->blocked, set);
3019 		break;
3020 	case SIG_UNBLOCK:
3021 		sigandnsets(&newset, &tsk->blocked, set);
3022 		break;
3023 	case SIG_SETMASK:
3024 		newset = *set;
3025 		break;
3026 	default:
3027 		return -EINVAL;
3028 	}
3029 
3030 	__set_current_blocked(&newset);
3031 	return 0;
3032 }
3033 EXPORT_SYMBOL(sigprocmask);
3034 
3035 /*
3036  * The api helps set app-provided sigmasks.
3037  *
3038  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3039  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3040  *
3041  * Note that it does set_restore_sigmask() in advance, so it must be always
3042  * paired with restore_saved_sigmask_unless() before return from syscall.
3043  */
3044 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3045 {
3046 	sigset_t kmask;
3047 
3048 	if (!umask)
3049 		return 0;
3050 	if (sigsetsize != sizeof(sigset_t))
3051 		return -EINVAL;
3052 	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3053 		return -EFAULT;
3054 
3055 	set_restore_sigmask();
3056 	current->saved_sigmask = current->blocked;
3057 	set_current_blocked(&kmask);
3058 
3059 	return 0;
3060 }
3061 
3062 #ifdef CONFIG_COMPAT
3063 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3064 			    size_t sigsetsize)
3065 {
3066 	sigset_t kmask;
3067 
3068 	if (!umask)
3069 		return 0;
3070 	if (sigsetsize != sizeof(compat_sigset_t))
3071 		return -EINVAL;
3072 	if (get_compat_sigset(&kmask, umask))
3073 		return -EFAULT;
3074 
3075 	set_restore_sigmask();
3076 	current->saved_sigmask = current->blocked;
3077 	set_current_blocked(&kmask);
3078 
3079 	return 0;
3080 }
3081 #endif
3082 
3083 /**
3084  *  sys_rt_sigprocmask - change the list of currently blocked signals
3085  *  @how: whether to add, remove, or set signals
3086  *  @nset: stores pending signals
3087  *  @oset: previous value of signal mask if non-null
3088  *  @sigsetsize: size of sigset_t type
3089  */
3090 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3091 		sigset_t __user *, oset, size_t, sigsetsize)
3092 {
3093 	sigset_t old_set, new_set;
3094 	int error;
3095 
3096 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3097 	if (sigsetsize != sizeof(sigset_t))
3098 		return -EINVAL;
3099 
3100 	old_set = current->blocked;
3101 
3102 	if (nset) {
3103 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3104 			return -EFAULT;
3105 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3106 
3107 		error = sigprocmask(how, &new_set, NULL);
3108 		if (error)
3109 			return error;
3110 	}
3111 
3112 	if (oset) {
3113 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3114 			return -EFAULT;
3115 	}
3116 
3117 	return 0;
3118 }
3119 
3120 #ifdef CONFIG_COMPAT
3121 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3122 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3123 {
3124 	sigset_t old_set = current->blocked;
3125 
3126 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3127 	if (sigsetsize != sizeof(sigset_t))
3128 		return -EINVAL;
3129 
3130 	if (nset) {
3131 		sigset_t new_set;
3132 		int error;
3133 		if (get_compat_sigset(&new_set, nset))
3134 			return -EFAULT;
3135 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3136 
3137 		error = sigprocmask(how, &new_set, NULL);
3138 		if (error)
3139 			return error;
3140 	}
3141 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3142 }
3143 #endif
3144 
3145 static void do_sigpending(sigset_t *set)
3146 {
3147 	spin_lock_irq(&current->sighand->siglock);
3148 	sigorsets(set, &current->pending.signal,
3149 		  &current->signal->shared_pending.signal);
3150 	spin_unlock_irq(&current->sighand->siglock);
3151 
3152 	/* Outside the lock because only this thread touches it.  */
3153 	sigandsets(set, &current->blocked, set);
3154 }
3155 
3156 /**
3157  *  sys_rt_sigpending - examine a pending signal that has been raised
3158  *			while blocked
3159  *  @uset: stores pending signals
3160  *  @sigsetsize: size of sigset_t type or larger
3161  */
3162 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3163 {
3164 	sigset_t set;
3165 
3166 	if (sigsetsize > sizeof(*uset))
3167 		return -EINVAL;
3168 
3169 	do_sigpending(&set);
3170 
3171 	if (copy_to_user(uset, &set, sigsetsize))
3172 		return -EFAULT;
3173 
3174 	return 0;
3175 }
3176 
3177 #ifdef CONFIG_COMPAT
3178 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3179 		compat_size_t, sigsetsize)
3180 {
3181 	sigset_t set;
3182 
3183 	if (sigsetsize > sizeof(*uset))
3184 		return -EINVAL;
3185 
3186 	do_sigpending(&set);
3187 
3188 	return put_compat_sigset(uset, &set, sigsetsize);
3189 }
3190 #endif
3191 
3192 static const struct {
3193 	unsigned char limit, layout;
3194 } sig_sicodes[] = {
3195 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3196 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3197 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3198 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3199 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3200 #if defined(SIGEMT)
3201 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3202 #endif
3203 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3204 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3205 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3206 };
3207 
3208 static bool known_siginfo_layout(unsigned sig, int si_code)
3209 {
3210 	if (si_code == SI_KERNEL)
3211 		return true;
3212 	else if ((si_code > SI_USER)) {
3213 		if (sig_specific_sicodes(sig)) {
3214 			if (si_code <= sig_sicodes[sig].limit)
3215 				return true;
3216 		}
3217 		else if (si_code <= NSIGPOLL)
3218 			return true;
3219 	}
3220 	else if (si_code >= SI_DETHREAD)
3221 		return true;
3222 	else if (si_code == SI_ASYNCNL)
3223 		return true;
3224 	return false;
3225 }
3226 
3227 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3228 {
3229 	enum siginfo_layout layout = SIL_KILL;
3230 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3231 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3232 		    (si_code <= sig_sicodes[sig].limit)) {
3233 			layout = sig_sicodes[sig].layout;
3234 			/* Handle the exceptions */
3235 			if ((sig == SIGBUS) &&
3236 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3237 				layout = SIL_FAULT_MCEERR;
3238 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3239 				layout = SIL_FAULT_BNDERR;
3240 #ifdef SEGV_PKUERR
3241 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3242 				layout = SIL_FAULT_PKUERR;
3243 #endif
3244 			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3245 				layout = SIL_PERF_EVENT;
3246 #ifdef __ARCH_SI_TRAPNO
3247 			else if (layout == SIL_FAULT)
3248 				layout = SIL_FAULT_TRAPNO;
3249 #endif
3250 		}
3251 		else if (si_code <= NSIGPOLL)
3252 			layout = SIL_POLL;
3253 	} else {
3254 		if (si_code == SI_TIMER)
3255 			layout = SIL_TIMER;
3256 		else if (si_code == SI_SIGIO)
3257 			layout = SIL_POLL;
3258 		else if (si_code < 0)
3259 			layout = SIL_RT;
3260 	}
3261 	return layout;
3262 }
3263 
3264 static inline char __user *si_expansion(const siginfo_t __user *info)
3265 {
3266 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3267 }
3268 
3269 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3270 {
3271 	char __user *expansion = si_expansion(to);
3272 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3273 		return -EFAULT;
3274 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3275 		return -EFAULT;
3276 	return 0;
3277 }
3278 
3279 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3280 				       const siginfo_t __user *from)
3281 {
3282 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3283 		char __user *expansion = si_expansion(from);
3284 		char buf[SI_EXPANSION_SIZE];
3285 		int i;
3286 		/*
3287 		 * An unknown si_code might need more than
3288 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3289 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3290 		 * will return this data to userspace exactly.
3291 		 */
3292 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3293 			return -EFAULT;
3294 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3295 			if (buf[i] != 0)
3296 				return -E2BIG;
3297 		}
3298 	}
3299 	return 0;
3300 }
3301 
3302 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3303 				    const siginfo_t __user *from)
3304 {
3305 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3306 		return -EFAULT;
3307 	to->si_signo = signo;
3308 	return post_copy_siginfo_from_user(to, from);
3309 }
3310 
3311 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3312 {
3313 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3314 		return -EFAULT;
3315 	return post_copy_siginfo_from_user(to, from);
3316 }
3317 
3318 #ifdef CONFIG_COMPAT
3319 /**
3320  * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3321  * @to: compat siginfo destination
3322  * @from: kernel siginfo source
3323  *
3324  * Note: This function does not work properly for the SIGCHLD on x32, but
3325  * fortunately it doesn't have to.  The only valid callers for this function are
3326  * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3327  * The latter does not care because SIGCHLD will never cause a coredump.
3328  */
3329 void copy_siginfo_to_external32(struct compat_siginfo *to,
3330 		const struct kernel_siginfo *from)
3331 {
3332 	memset(to, 0, sizeof(*to));
3333 
3334 	to->si_signo = from->si_signo;
3335 	to->si_errno = from->si_errno;
3336 	to->si_code  = from->si_code;
3337 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3338 	case SIL_KILL:
3339 		to->si_pid = from->si_pid;
3340 		to->si_uid = from->si_uid;
3341 		break;
3342 	case SIL_TIMER:
3343 		to->si_tid     = from->si_tid;
3344 		to->si_overrun = from->si_overrun;
3345 		to->si_int     = from->si_int;
3346 		break;
3347 	case SIL_POLL:
3348 		to->si_band = from->si_band;
3349 		to->si_fd   = from->si_fd;
3350 		break;
3351 	case SIL_FAULT:
3352 		to->si_addr = ptr_to_compat(from->si_addr);
3353 		break;
3354 	case SIL_FAULT_TRAPNO:
3355 		to->si_addr = ptr_to_compat(from->si_addr);
3356 		to->si_trapno = from->si_trapno;
3357 		break;
3358 	case SIL_FAULT_MCEERR:
3359 		to->si_addr = ptr_to_compat(from->si_addr);
3360 		to->si_addr_lsb = from->si_addr_lsb;
3361 		break;
3362 	case SIL_FAULT_BNDERR:
3363 		to->si_addr = ptr_to_compat(from->si_addr);
3364 		to->si_lower = ptr_to_compat(from->si_lower);
3365 		to->si_upper = ptr_to_compat(from->si_upper);
3366 		break;
3367 	case SIL_FAULT_PKUERR:
3368 		to->si_addr = ptr_to_compat(from->si_addr);
3369 		to->si_pkey = from->si_pkey;
3370 		break;
3371 	case SIL_PERF_EVENT:
3372 		to->si_addr = ptr_to_compat(from->si_addr);
3373 		to->si_perf_data = from->si_perf_data;
3374 		to->si_perf_type = from->si_perf_type;
3375 		break;
3376 	case SIL_CHLD:
3377 		to->si_pid = from->si_pid;
3378 		to->si_uid = from->si_uid;
3379 		to->si_status = from->si_status;
3380 		to->si_utime = from->si_utime;
3381 		to->si_stime = from->si_stime;
3382 		break;
3383 	case SIL_RT:
3384 		to->si_pid = from->si_pid;
3385 		to->si_uid = from->si_uid;
3386 		to->si_int = from->si_int;
3387 		break;
3388 	case SIL_SYS:
3389 		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3390 		to->si_syscall   = from->si_syscall;
3391 		to->si_arch      = from->si_arch;
3392 		break;
3393 	}
3394 }
3395 
3396 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3397 			   const struct kernel_siginfo *from)
3398 {
3399 	struct compat_siginfo new;
3400 
3401 	copy_siginfo_to_external32(&new, from);
3402 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3403 		return -EFAULT;
3404 	return 0;
3405 }
3406 
3407 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3408 					 const struct compat_siginfo *from)
3409 {
3410 	clear_siginfo(to);
3411 	to->si_signo = from->si_signo;
3412 	to->si_errno = from->si_errno;
3413 	to->si_code  = from->si_code;
3414 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3415 	case SIL_KILL:
3416 		to->si_pid = from->si_pid;
3417 		to->si_uid = from->si_uid;
3418 		break;
3419 	case SIL_TIMER:
3420 		to->si_tid     = from->si_tid;
3421 		to->si_overrun = from->si_overrun;
3422 		to->si_int     = from->si_int;
3423 		break;
3424 	case SIL_POLL:
3425 		to->si_band = from->si_band;
3426 		to->si_fd   = from->si_fd;
3427 		break;
3428 	case SIL_FAULT:
3429 		to->si_addr = compat_ptr(from->si_addr);
3430 		break;
3431 	case SIL_FAULT_TRAPNO:
3432 		to->si_addr = compat_ptr(from->si_addr);
3433 		to->si_trapno = from->si_trapno;
3434 		break;
3435 	case SIL_FAULT_MCEERR:
3436 		to->si_addr = compat_ptr(from->si_addr);
3437 		to->si_addr_lsb = from->si_addr_lsb;
3438 		break;
3439 	case SIL_FAULT_BNDERR:
3440 		to->si_addr = compat_ptr(from->si_addr);
3441 		to->si_lower = compat_ptr(from->si_lower);
3442 		to->si_upper = compat_ptr(from->si_upper);
3443 		break;
3444 	case SIL_FAULT_PKUERR:
3445 		to->si_addr = compat_ptr(from->si_addr);
3446 		to->si_pkey = from->si_pkey;
3447 		break;
3448 	case SIL_PERF_EVENT:
3449 		to->si_addr = compat_ptr(from->si_addr);
3450 		to->si_perf_data = from->si_perf_data;
3451 		to->si_perf_type = from->si_perf_type;
3452 		break;
3453 	case SIL_CHLD:
3454 		to->si_pid    = from->si_pid;
3455 		to->si_uid    = from->si_uid;
3456 		to->si_status = from->si_status;
3457 #ifdef CONFIG_X86_X32_ABI
3458 		if (in_x32_syscall()) {
3459 			to->si_utime = from->_sifields._sigchld_x32._utime;
3460 			to->si_stime = from->_sifields._sigchld_x32._stime;
3461 		} else
3462 #endif
3463 		{
3464 			to->si_utime = from->si_utime;
3465 			to->si_stime = from->si_stime;
3466 		}
3467 		break;
3468 	case SIL_RT:
3469 		to->si_pid = from->si_pid;
3470 		to->si_uid = from->si_uid;
3471 		to->si_int = from->si_int;
3472 		break;
3473 	case SIL_SYS:
3474 		to->si_call_addr = compat_ptr(from->si_call_addr);
3475 		to->si_syscall   = from->si_syscall;
3476 		to->si_arch      = from->si_arch;
3477 		break;
3478 	}
3479 	return 0;
3480 }
3481 
3482 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3483 				      const struct compat_siginfo __user *ufrom)
3484 {
3485 	struct compat_siginfo from;
3486 
3487 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3488 		return -EFAULT;
3489 
3490 	from.si_signo = signo;
3491 	return post_copy_siginfo_from_user32(to, &from);
3492 }
3493 
3494 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3495 			     const struct compat_siginfo __user *ufrom)
3496 {
3497 	struct compat_siginfo from;
3498 
3499 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3500 		return -EFAULT;
3501 
3502 	return post_copy_siginfo_from_user32(to, &from);
3503 }
3504 #endif /* CONFIG_COMPAT */
3505 
3506 /**
3507  *  do_sigtimedwait - wait for queued signals specified in @which
3508  *  @which: queued signals to wait for
3509  *  @info: if non-null, the signal's siginfo is returned here
3510  *  @ts: upper bound on process time suspension
3511  */
3512 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3513 		    const struct timespec64 *ts)
3514 {
3515 	ktime_t *to = NULL, timeout = KTIME_MAX;
3516 	struct task_struct *tsk = current;
3517 	sigset_t mask = *which;
3518 	int sig, ret = 0;
3519 
3520 	if (ts) {
3521 		if (!timespec64_valid(ts))
3522 			return -EINVAL;
3523 		timeout = timespec64_to_ktime(*ts);
3524 		to = &timeout;
3525 	}
3526 
3527 	/*
3528 	 * Invert the set of allowed signals to get those we want to block.
3529 	 */
3530 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3531 	signotset(&mask);
3532 
3533 	spin_lock_irq(&tsk->sighand->siglock);
3534 	sig = dequeue_signal(tsk, &mask, info);
3535 	if (!sig && timeout) {
3536 		/*
3537 		 * None ready, temporarily unblock those we're interested
3538 		 * while we are sleeping in so that we'll be awakened when
3539 		 * they arrive. Unblocking is always fine, we can avoid
3540 		 * set_current_blocked().
3541 		 */
3542 		tsk->real_blocked = tsk->blocked;
3543 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3544 		recalc_sigpending();
3545 		spin_unlock_irq(&tsk->sighand->siglock);
3546 
3547 		__set_current_state(TASK_INTERRUPTIBLE);
3548 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3549 							 HRTIMER_MODE_REL);
3550 		spin_lock_irq(&tsk->sighand->siglock);
3551 		__set_task_blocked(tsk, &tsk->real_blocked);
3552 		sigemptyset(&tsk->real_blocked);
3553 		sig = dequeue_signal(tsk, &mask, info);
3554 	}
3555 	spin_unlock_irq(&tsk->sighand->siglock);
3556 
3557 	if (sig)
3558 		return sig;
3559 	return ret ? -EINTR : -EAGAIN;
3560 }
3561 
3562 /**
3563  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3564  *			in @uthese
3565  *  @uthese: queued signals to wait for
3566  *  @uinfo: if non-null, the signal's siginfo is returned here
3567  *  @uts: upper bound on process time suspension
3568  *  @sigsetsize: size of sigset_t type
3569  */
3570 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3571 		siginfo_t __user *, uinfo,
3572 		const struct __kernel_timespec __user *, uts,
3573 		size_t, sigsetsize)
3574 {
3575 	sigset_t these;
3576 	struct timespec64 ts;
3577 	kernel_siginfo_t info;
3578 	int ret;
3579 
3580 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3581 	if (sigsetsize != sizeof(sigset_t))
3582 		return -EINVAL;
3583 
3584 	if (copy_from_user(&these, uthese, sizeof(these)))
3585 		return -EFAULT;
3586 
3587 	if (uts) {
3588 		if (get_timespec64(&ts, uts))
3589 			return -EFAULT;
3590 	}
3591 
3592 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3593 
3594 	if (ret > 0 && uinfo) {
3595 		if (copy_siginfo_to_user(uinfo, &info))
3596 			ret = -EFAULT;
3597 	}
3598 
3599 	return ret;
3600 }
3601 
3602 #ifdef CONFIG_COMPAT_32BIT_TIME
3603 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3604 		siginfo_t __user *, uinfo,
3605 		const struct old_timespec32 __user *, uts,
3606 		size_t, sigsetsize)
3607 {
3608 	sigset_t these;
3609 	struct timespec64 ts;
3610 	kernel_siginfo_t info;
3611 	int ret;
3612 
3613 	if (sigsetsize != sizeof(sigset_t))
3614 		return -EINVAL;
3615 
3616 	if (copy_from_user(&these, uthese, sizeof(these)))
3617 		return -EFAULT;
3618 
3619 	if (uts) {
3620 		if (get_old_timespec32(&ts, uts))
3621 			return -EFAULT;
3622 	}
3623 
3624 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3625 
3626 	if (ret > 0 && uinfo) {
3627 		if (copy_siginfo_to_user(uinfo, &info))
3628 			ret = -EFAULT;
3629 	}
3630 
3631 	return ret;
3632 }
3633 #endif
3634 
3635 #ifdef CONFIG_COMPAT
3636 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3637 		struct compat_siginfo __user *, uinfo,
3638 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3639 {
3640 	sigset_t s;
3641 	struct timespec64 t;
3642 	kernel_siginfo_t info;
3643 	long ret;
3644 
3645 	if (sigsetsize != sizeof(sigset_t))
3646 		return -EINVAL;
3647 
3648 	if (get_compat_sigset(&s, uthese))
3649 		return -EFAULT;
3650 
3651 	if (uts) {
3652 		if (get_timespec64(&t, uts))
3653 			return -EFAULT;
3654 	}
3655 
3656 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3657 
3658 	if (ret > 0 && uinfo) {
3659 		if (copy_siginfo_to_user32(uinfo, &info))
3660 			ret = -EFAULT;
3661 	}
3662 
3663 	return ret;
3664 }
3665 
3666 #ifdef CONFIG_COMPAT_32BIT_TIME
3667 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3668 		struct compat_siginfo __user *, uinfo,
3669 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3670 {
3671 	sigset_t s;
3672 	struct timespec64 t;
3673 	kernel_siginfo_t info;
3674 	long ret;
3675 
3676 	if (sigsetsize != sizeof(sigset_t))
3677 		return -EINVAL;
3678 
3679 	if (get_compat_sigset(&s, uthese))
3680 		return -EFAULT;
3681 
3682 	if (uts) {
3683 		if (get_old_timespec32(&t, uts))
3684 			return -EFAULT;
3685 	}
3686 
3687 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3688 
3689 	if (ret > 0 && uinfo) {
3690 		if (copy_siginfo_to_user32(uinfo, &info))
3691 			ret = -EFAULT;
3692 	}
3693 
3694 	return ret;
3695 }
3696 #endif
3697 #endif
3698 
3699 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3700 {
3701 	clear_siginfo(info);
3702 	info->si_signo = sig;
3703 	info->si_errno = 0;
3704 	info->si_code = SI_USER;
3705 	info->si_pid = task_tgid_vnr(current);
3706 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3707 }
3708 
3709 /**
3710  *  sys_kill - send a signal to a process
3711  *  @pid: the PID of the process
3712  *  @sig: signal to be sent
3713  */
3714 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3715 {
3716 	struct kernel_siginfo info;
3717 
3718 	prepare_kill_siginfo(sig, &info);
3719 
3720 	return kill_something_info(sig, &info, pid);
3721 }
3722 
3723 /*
3724  * Verify that the signaler and signalee either are in the same pid namespace
3725  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3726  * namespace.
3727  */
3728 static bool access_pidfd_pidns(struct pid *pid)
3729 {
3730 	struct pid_namespace *active = task_active_pid_ns(current);
3731 	struct pid_namespace *p = ns_of_pid(pid);
3732 
3733 	for (;;) {
3734 		if (!p)
3735 			return false;
3736 		if (p == active)
3737 			break;
3738 		p = p->parent;
3739 	}
3740 
3741 	return true;
3742 }
3743 
3744 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3745 		siginfo_t __user *info)
3746 {
3747 #ifdef CONFIG_COMPAT
3748 	/*
3749 	 * Avoid hooking up compat syscalls and instead handle necessary
3750 	 * conversions here. Note, this is a stop-gap measure and should not be
3751 	 * considered a generic solution.
3752 	 */
3753 	if (in_compat_syscall())
3754 		return copy_siginfo_from_user32(
3755 			kinfo, (struct compat_siginfo __user *)info);
3756 #endif
3757 	return copy_siginfo_from_user(kinfo, info);
3758 }
3759 
3760 static struct pid *pidfd_to_pid(const struct file *file)
3761 {
3762 	struct pid *pid;
3763 
3764 	pid = pidfd_pid(file);
3765 	if (!IS_ERR(pid))
3766 		return pid;
3767 
3768 	return tgid_pidfd_to_pid(file);
3769 }
3770 
3771 /**
3772  * sys_pidfd_send_signal - Signal a process through a pidfd
3773  * @pidfd:  file descriptor of the process
3774  * @sig:    signal to send
3775  * @info:   signal info
3776  * @flags:  future flags
3777  *
3778  * The syscall currently only signals via PIDTYPE_PID which covers
3779  * kill(<positive-pid>, <signal>. It does not signal threads or process
3780  * groups.
3781  * In order to extend the syscall to threads and process groups the @flags
3782  * argument should be used. In essence, the @flags argument will determine
3783  * what is signaled and not the file descriptor itself. Put in other words,
3784  * grouping is a property of the flags argument not a property of the file
3785  * descriptor.
3786  *
3787  * Return: 0 on success, negative errno on failure
3788  */
3789 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3790 		siginfo_t __user *, info, unsigned int, flags)
3791 {
3792 	int ret;
3793 	struct fd f;
3794 	struct pid *pid;
3795 	kernel_siginfo_t kinfo;
3796 
3797 	/* Enforce flags be set to 0 until we add an extension. */
3798 	if (flags)
3799 		return -EINVAL;
3800 
3801 	f = fdget(pidfd);
3802 	if (!f.file)
3803 		return -EBADF;
3804 
3805 	/* Is this a pidfd? */
3806 	pid = pidfd_to_pid(f.file);
3807 	if (IS_ERR(pid)) {
3808 		ret = PTR_ERR(pid);
3809 		goto err;
3810 	}
3811 
3812 	ret = -EINVAL;
3813 	if (!access_pidfd_pidns(pid))
3814 		goto err;
3815 
3816 	if (info) {
3817 		ret = copy_siginfo_from_user_any(&kinfo, info);
3818 		if (unlikely(ret))
3819 			goto err;
3820 
3821 		ret = -EINVAL;
3822 		if (unlikely(sig != kinfo.si_signo))
3823 			goto err;
3824 
3825 		/* Only allow sending arbitrary signals to yourself. */
3826 		ret = -EPERM;
3827 		if ((task_pid(current) != pid) &&
3828 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3829 			goto err;
3830 	} else {
3831 		prepare_kill_siginfo(sig, &kinfo);
3832 	}
3833 
3834 	ret = kill_pid_info(sig, &kinfo, pid);
3835 
3836 err:
3837 	fdput(f);
3838 	return ret;
3839 }
3840 
3841 static int
3842 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3843 {
3844 	struct task_struct *p;
3845 	int error = -ESRCH;
3846 
3847 	rcu_read_lock();
3848 	p = find_task_by_vpid(pid);
3849 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3850 		error = check_kill_permission(sig, info, p);
3851 		/*
3852 		 * The null signal is a permissions and process existence
3853 		 * probe.  No signal is actually delivered.
3854 		 */
3855 		if (!error && sig) {
3856 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3857 			/*
3858 			 * If lock_task_sighand() failed we pretend the task
3859 			 * dies after receiving the signal. The window is tiny,
3860 			 * and the signal is private anyway.
3861 			 */
3862 			if (unlikely(error == -ESRCH))
3863 				error = 0;
3864 		}
3865 	}
3866 	rcu_read_unlock();
3867 
3868 	return error;
3869 }
3870 
3871 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3872 {
3873 	struct kernel_siginfo info;
3874 
3875 	clear_siginfo(&info);
3876 	info.si_signo = sig;
3877 	info.si_errno = 0;
3878 	info.si_code = SI_TKILL;
3879 	info.si_pid = task_tgid_vnr(current);
3880 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3881 
3882 	return do_send_specific(tgid, pid, sig, &info);
3883 }
3884 
3885 /**
3886  *  sys_tgkill - send signal to one specific thread
3887  *  @tgid: the thread group ID of the thread
3888  *  @pid: the PID of the thread
3889  *  @sig: signal to be sent
3890  *
3891  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3892  *  exists but it's not belonging to the target process anymore. This
3893  *  method solves the problem of threads exiting and PIDs getting reused.
3894  */
3895 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3896 {
3897 	/* This is only valid for single tasks */
3898 	if (pid <= 0 || tgid <= 0)
3899 		return -EINVAL;
3900 
3901 	return do_tkill(tgid, pid, sig);
3902 }
3903 
3904 /**
3905  *  sys_tkill - send signal to one specific task
3906  *  @pid: the PID of the task
3907  *  @sig: signal to be sent
3908  *
3909  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3910  */
3911 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3912 {
3913 	/* This is only valid for single tasks */
3914 	if (pid <= 0)
3915 		return -EINVAL;
3916 
3917 	return do_tkill(0, pid, sig);
3918 }
3919 
3920 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3921 {
3922 	/* Not even root can pretend to send signals from the kernel.
3923 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3924 	 */
3925 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3926 	    (task_pid_vnr(current) != pid))
3927 		return -EPERM;
3928 
3929 	/* POSIX.1b doesn't mention process groups.  */
3930 	return kill_proc_info(sig, info, pid);
3931 }
3932 
3933 /**
3934  *  sys_rt_sigqueueinfo - send signal information to a signal
3935  *  @pid: the PID of the thread
3936  *  @sig: signal to be sent
3937  *  @uinfo: signal info to be sent
3938  */
3939 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3940 		siginfo_t __user *, uinfo)
3941 {
3942 	kernel_siginfo_t info;
3943 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3944 	if (unlikely(ret))
3945 		return ret;
3946 	return do_rt_sigqueueinfo(pid, sig, &info);
3947 }
3948 
3949 #ifdef CONFIG_COMPAT
3950 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3951 			compat_pid_t, pid,
3952 			int, sig,
3953 			struct compat_siginfo __user *, uinfo)
3954 {
3955 	kernel_siginfo_t info;
3956 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3957 	if (unlikely(ret))
3958 		return ret;
3959 	return do_rt_sigqueueinfo(pid, sig, &info);
3960 }
3961 #endif
3962 
3963 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3964 {
3965 	/* This is only valid for single tasks */
3966 	if (pid <= 0 || tgid <= 0)
3967 		return -EINVAL;
3968 
3969 	/* Not even root can pretend to send signals from the kernel.
3970 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3971 	 */
3972 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3973 	    (task_pid_vnr(current) != pid))
3974 		return -EPERM;
3975 
3976 	return do_send_specific(tgid, pid, sig, info);
3977 }
3978 
3979 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3980 		siginfo_t __user *, uinfo)
3981 {
3982 	kernel_siginfo_t info;
3983 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3984 	if (unlikely(ret))
3985 		return ret;
3986 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3987 }
3988 
3989 #ifdef CONFIG_COMPAT
3990 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3991 			compat_pid_t, tgid,
3992 			compat_pid_t, pid,
3993 			int, sig,
3994 			struct compat_siginfo __user *, uinfo)
3995 {
3996 	kernel_siginfo_t info;
3997 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3998 	if (unlikely(ret))
3999 		return ret;
4000 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4001 }
4002 #endif
4003 
4004 /*
4005  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4006  */
4007 void kernel_sigaction(int sig, __sighandler_t action)
4008 {
4009 	spin_lock_irq(&current->sighand->siglock);
4010 	current->sighand->action[sig - 1].sa.sa_handler = action;
4011 	if (action == SIG_IGN) {
4012 		sigset_t mask;
4013 
4014 		sigemptyset(&mask);
4015 		sigaddset(&mask, sig);
4016 
4017 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4018 		flush_sigqueue_mask(&mask, &current->pending);
4019 		recalc_sigpending();
4020 	}
4021 	spin_unlock_irq(&current->sighand->siglock);
4022 }
4023 EXPORT_SYMBOL(kernel_sigaction);
4024 
4025 void __weak sigaction_compat_abi(struct k_sigaction *act,
4026 		struct k_sigaction *oact)
4027 {
4028 }
4029 
4030 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4031 {
4032 	struct task_struct *p = current, *t;
4033 	struct k_sigaction *k;
4034 	sigset_t mask;
4035 
4036 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4037 		return -EINVAL;
4038 
4039 	k = &p->sighand->action[sig-1];
4040 
4041 	spin_lock_irq(&p->sighand->siglock);
4042 	if (oact)
4043 		*oact = *k;
4044 
4045 	/*
4046 	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4047 	 * e.g. by having an architecture use the bit in their uapi.
4048 	 */
4049 	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4050 
4051 	/*
4052 	 * Clear unknown flag bits in order to allow userspace to detect missing
4053 	 * support for flag bits and to allow the kernel to use non-uapi bits
4054 	 * internally.
4055 	 */
4056 	if (act)
4057 		act->sa.sa_flags &= UAPI_SA_FLAGS;
4058 	if (oact)
4059 		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4060 
4061 	sigaction_compat_abi(act, oact);
4062 
4063 	if (act) {
4064 		sigdelsetmask(&act->sa.sa_mask,
4065 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4066 		*k = *act;
4067 		/*
4068 		 * POSIX 3.3.1.3:
4069 		 *  "Setting a signal action to SIG_IGN for a signal that is
4070 		 *   pending shall cause the pending signal to be discarded,
4071 		 *   whether or not it is blocked."
4072 		 *
4073 		 *  "Setting a signal action to SIG_DFL for a signal that is
4074 		 *   pending and whose default action is to ignore the signal
4075 		 *   (for example, SIGCHLD), shall cause the pending signal to
4076 		 *   be discarded, whether or not it is blocked"
4077 		 */
4078 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4079 			sigemptyset(&mask);
4080 			sigaddset(&mask, sig);
4081 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4082 			for_each_thread(p, t)
4083 				flush_sigqueue_mask(&mask, &t->pending);
4084 		}
4085 	}
4086 
4087 	spin_unlock_irq(&p->sighand->siglock);
4088 	return 0;
4089 }
4090 
4091 static int
4092 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4093 		size_t min_ss_size)
4094 {
4095 	struct task_struct *t = current;
4096 
4097 	if (oss) {
4098 		memset(oss, 0, sizeof(stack_t));
4099 		oss->ss_sp = (void __user *) t->sas_ss_sp;
4100 		oss->ss_size = t->sas_ss_size;
4101 		oss->ss_flags = sas_ss_flags(sp) |
4102 			(current->sas_ss_flags & SS_FLAG_BITS);
4103 	}
4104 
4105 	if (ss) {
4106 		void __user *ss_sp = ss->ss_sp;
4107 		size_t ss_size = ss->ss_size;
4108 		unsigned ss_flags = ss->ss_flags;
4109 		int ss_mode;
4110 
4111 		if (unlikely(on_sig_stack(sp)))
4112 			return -EPERM;
4113 
4114 		ss_mode = ss_flags & ~SS_FLAG_BITS;
4115 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4116 				ss_mode != 0))
4117 			return -EINVAL;
4118 
4119 		if (ss_mode == SS_DISABLE) {
4120 			ss_size = 0;
4121 			ss_sp = NULL;
4122 		} else {
4123 			if (unlikely(ss_size < min_ss_size))
4124 				return -ENOMEM;
4125 		}
4126 
4127 		t->sas_ss_sp = (unsigned long) ss_sp;
4128 		t->sas_ss_size = ss_size;
4129 		t->sas_ss_flags = ss_flags;
4130 	}
4131 	return 0;
4132 }
4133 
4134 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4135 {
4136 	stack_t new, old;
4137 	int err;
4138 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4139 		return -EFAULT;
4140 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4141 			      current_user_stack_pointer(),
4142 			      MINSIGSTKSZ);
4143 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4144 		err = -EFAULT;
4145 	return err;
4146 }
4147 
4148 int restore_altstack(const stack_t __user *uss)
4149 {
4150 	stack_t new;
4151 	if (copy_from_user(&new, uss, sizeof(stack_t)))
4152 		return -EFAULT;
4153 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4154 			     MINSIGSTKSZ);
4155 	/* squash all but EFAULT for now */
4156 	return 0;
4157 }
4158 
4159 int __save_altstack(stack_t __user *uss, unsigned long sp)
4160 {
4161 	struct task_struct *t = current;
4162 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4163 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4164 		__put_user(t->sas_ss_size, &uss->ss_size);
4165 	return err;
4166 }
4167 
4168 #ifdef CONFIG_COMPAT
4169 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4170 				 compat_stack_t __user *uoss_ptr)
4171 {
4172 	stack_t uss, uoss;
4173 	int ret;
4174 
4175 	if (uss_ptr) {
4176 		compat_stack_t uss32;
4177 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4178 			return -EFAULT;
4179 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4180 		uss.ss_flags = uss32.ss_flags;
4181 		uss.ss_size = uss32.ss_size;
4182 	}
4183 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4184 			     compat_user_stack_pointer(),
4185 			     COMPAT_MINSIGSTKSZ);
4186 	if (ret >= 0 && uoss_ptr)  {
4187 		compat_stack_t old;
4188 		memset(&old, 0, sizeof(old));
4189 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4190 		old.ss_flags = uoss.ss_flags;
4191 		old.ss_size = uoss.ss_size;
4192 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4193 			ret = -EFAULT;
4194 	}
4195 	return ret;
4196 }
4197 
4198 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4199 			const compat_stack_t __user *, uss_ptr,
4200 			compat_stack_t __user *, uoss_ptr)
4201 {
4202 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4203 }
4204 
4205 int compat_restore_altstack(const compat_stack_t __user *uss)
4206 {
4207 	int err = do_compat_sigaltstack(uss, NULL);
4208 	/* squash all but -EFAULT for now */
4209 	return err == -EFAULT ? err : 0;
4210 }
4211 
4212 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4213 {
4214 	int err;
4215 	struct task_struct *t = current;
4216 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4217 			 &uss->ss_sp) |
4218 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4219 		__put_user(t->sas_ss_size, &uss->ss_size);
4220 	return err;
4221 }
4222 #endif
4223 
4224 #ifdef __ARCH_WANT_SYS_SIGPENDING
4225 
4226 /**
4227  *  sys_sigpending - examine pending signals
4228  *  @uset: where mask of pending signal is returned
4229  */
4230 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4231 {
4232 	sigset_t set;
4233 
4234 	if (sizeof(old_sigset_t) > sizeof(*uset))
4235 		return -EINVAL;
4236 
4237 	do_sigpending(&set);
4238 
4239 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4240 		return -EFAULT;
4241 
4242 	return 0;
4243 }
4244 
4245 #ifdef CONFIG_COMPAT
4246 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4247 {
4248 	sigset_t set;
4249 
4250 	do_sigpending(&set);
4251 
4252 	return put_user(set.sig[0], set32);
4253 }
4254 #endif
4255 
4256 #endif
4257 
4258 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4259 /**
4260  *  sys_sigprocmask - examine and change blocked signals
4261  *  @how: whether to add, remove, or set signals
4262  *  @nset: signals to add or remove (if non-null)
4263  *  @oset: previous value of signal mask if non-null
4264  *
4265  * Some platforms have their own version with special arguments;
4266  * others support only sys_rt_sigprocmask.
4267  */
4268 
4269 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4270 		old_sigset_t __user *, oset)
4271 {
4272 	old_sigset_t old_set, new_set;
4273 	sigset_t new_blocked;
4274 
4275 	old_set = current->blocked.sig[0];
4276 
4277 	if (nset) {
4278 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4279 			return -EFAULT;
4280 
4281 		new_blocked = current->blocked;
4282 
4283 		switch (how) {
4284 		case SIG_BLOCK:
4285 			sigaddsetmask(&new_blocked, new_set);
4286 			break;
4287 		case SIG_UNBLOCK:
4288 			sigdelsetmask(&new_blocked, new_set);
4289 			break;
4290 		case SIG_SETMASK:
4291 			new_blocked.sig[0] = new_set;
4292 			break;
4293 		default:
4294 			return -EINVAL;
4295 		}
4296 
4297 		set_current_blocked(&new_blocked);
4298 	}
4299 
4300 	if (oset) {
4301 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4302 			return -EFAULT;
4303 	}
4304 
4305 	return 0;
4306 }
4307 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4308 
4309 #ifndef CONFIG_ODD_RT_SIGACTION
4310 /**
4311  *  sys_rt_sigaction - alter an action taken by a process
4312  *  @sig: signal to be sent
4313  *  @act: new sigaction
4314  *  @oact: used to save the previous sigaction
4315  *  @sigsetsize: size of sigset_t type
4316  */
4317 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4318 		const struct sigaction __user *, act,
4319 		struct sigaction __user *, oact,
4320 		size_t, sigsetsize)
4321 {
4322 	struct k_sigaction new_sa, old_sa;
4323 	int ret;
4324 
4325 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4326 	if (sigsetsize != sizeof(sigset_t))
4327 		return -EINVAL;
4328 
4329 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4330 		return -EFAULT;
4331 
4332 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4333 	if (ret)
4334 		return ret;
4335 
4336 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4337 		return -EFAULT;
4338 
4339 	return 0;
4340 }
4341 #ifdef CONFIG_COMPAT
4342 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4343 		const struct compat_sigaction __user *, act,
4344 		struct compat_sigaction __user *, oact,
4345 		compat_size_t, sigsetsize)
4346 {
4347 	struct k_sigaction new_ka, old_ka;
4348 #ifdef __ARCH_HAS_SA_RESTORER
4349 	compat_uptr_t restorer;
4350 #endif
4351 	int ret;
4352 
4353 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4354 	if (sigsetsize != sizeof(compat_sigset_t))
4355 		return -EINVAL;
4356 
4357 	if (act) {
4358 		compat_uptr_t handler;
4359 		ret = get_user(handler, &act->sa_handler);
4360 		new_ka.sa.sa_handler = compat_ptr(handler);
4361 #ifdef __ARCH_HAS_SA_RESTORER
4362 		ret |= get_user(restorer, &act->sa_restorer);
4363 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4364 #endif
4365 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4366 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4367 		if (ret)
4368 			return -EFAULT;
4369 	}
4370 
4371 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4372 	if (!ret && oact) {
4373 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4374 			       &oact->sa_handler);
4375 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4376 					 sizeof(oact->sa_mask));
4377 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4378 #ifdef __ARCH_HAS_SA_RESTORER
4379 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4380 				&oact->sa_restorer);
4381 #endif
4382 	}
4383 	return ret;
4384 }
4385 #endif
4386 #endif /* !CONFIG_ODD_RT_SIGACTION */
4387 
4388 #ifdef CONFIG_OLD_SIGACTION
4389 SYSCALL_DEFINE3(sigaction, int, sig,
4390 		const struct old_sigaction __user *, act,
4391 	        struct old_sigaction __user *, oact)
4392 {
4393 	struct k_sigaction new_ka, old_ka;
4394 	int ret;
4395 
4396 	if (act) {
4397 		old_sigset_t mask;
4398 		if (!access_ok(act, sizeof(*act)) ||
4399 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4400 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4401 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4402 		    __get_user(mask, &act->sa_mask))
4403 			return -EFAULT;
4404 #ifdef __ARCH_HAS_KA_RESTORER
4405 		new_ka.ka_restorer = NULL;
4406 #endif
4407 		siginitset(&new_ka.sa.sa_mask, mask);
4408 	}
4409 
4410 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4411 
4412 	if (!ret && oact) {
4413 		if (!access_ok(oact, sizeof(*oact)) ||
4414 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4415 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4416 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4417 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4418 			return -EFAULT;
4419 	}
4420 
4421 	return ret;
4422 }
4423 #endif
4424 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4425 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4426 		const struct compat_old_sigaction __user *, act,
4427 	        struct compat_old_sigaction __user *, oact)
4428 {
4429 	struct k_sigaction new_ka, old_ka;
4430 	int ret;
4431 	compat_old_sigset_t mask;
4432 	compat_uptr_t handler, restorer;
4433 
4434 	if (act) {
4435 		if (!access_ok(act, sizeof(*act)) ||
4436 		    __get_user(handler, &act->sa_handler) ||
4437 		    __get_user(restorer, &act->sa_restorer) ||
4438 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4439 		    __get_user(mask, &act->sa_mask))
4440 			return -EFAULT;
4441 
4442 #ifdef __ARCH_HAS_KA_RESTORER
4443 		new_ka.ka_restorer = NULL;
4444 #endif
4445 		new_ka.sa.sa_handler = compat_ptr(handler);
4446 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4447 		siginitset(&new_ka.sa.sa_mask, mask);
4448 	}
4449 
4450 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4451 
4452 	if (!ret && oact) {
4453 		if (!access_ok(oact, sizeof(*oact)) ||
4454 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4455 			       &oact->sa_handler) ||
4456 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4457 			       &oact->sa_restorer) ||
4458 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4459 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4460 			return -EFAULT;
4461 	}
4462 	return ret;
4463 }
4464 #endif
4465 
4466 #ifdef CONFIG_SGETMASK_SYSCALL
4467 
4468 /*
4469  * For backwards compatibility.  Functionality superseded by sigprocmask.
4470  */
4471 SYSCALL_DEFINE0(sgetmask)
4472 {
4473 	/* SMP safe */
4474 	return current->blocked.sig[0];
4475 }
4476 
4477 SYSCALL_DEFINE1(ssetmask, int, newmask)
4478 {
4479 	int old = current->blocked.sig[0];
4480 	sigset_t newset;
4481 
4482 	siginitset(&newset, newmask);
4483 	set_current_blocked(&newset);
4484 
4485 	return old;
4486 }
4487 #endif /* CONFIG_SGETMASK_SYSCALL */
4488 
4489 #ifdef __ARCH_WANT_SYS_SIGNAL
4490 /*
4491  * For backwards compatibility.  Functionality superseded by sigaction.
4492  */
4493 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4494 {
4495 	struct k_sigaction new_sa, old_sa;
4496 	int ret;
4497 
4498 	new_sa.sa.sa_handler = handler;
4499 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4500 	sigemptyset(&new_sa.sa.sa_mask);
4501 
4502 	ret = do_sigaction(sig, &new_sa, &old_sa);
4503 
4504 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4505 }
4506 #endif /* __ARCH_WANT_SYS_SIGNAL */
4507 
4508 #ifdef __ARCH_WANT_SYS_PAUSE
4509 
4510 SYSCALL_DEFINE0(pause)
4511 {
4512 	while (!signal_pending(current)) {
4513 		__set_current_state(TASK_INTERRUPTIBLE);
4514 		schedule();
4515 	}
4516 	return -ERESTARTNOHAND;
4517 }
4518 
4519 #endif
4520 
4521 static int sigsuspend(sigset_t *set)
4522 {
4523 	current->saved_sigmask = current->blocked;
4524 	set_current_blocked(set);
4525 
4526 	while (!signal_pending(current)) {
4527 		__set_current_state(TASK_INTERRUPTIBLE);
4528 		schedule();
4529 	}
4530 	set_restore_sigmask();
4531 	return -ERESTARTNOHAND;
4532 }
4533 
4534 /**
4535  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4536  *	@unewset value until a signal is received
4537  *  @unewset: new signal mask value
4538  *  @sigsetsize: size of sigset_t type
4539  */
4540 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4541 {
4542 	sigset_t newset;
4543 
4544 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4545 	if (sigsetsize != sizeof(sigset_t))
4546 		return -EINVAL;
4547 
4548 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4549 		return -EFAULT;
4550 	return sigsuspend(&newset);
4551 }
4552 
4553 #ifdef CONFIG_COMPAT
4554 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4555 {
4556 	sigset_t newset;
4557 
4558 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4559 	if (sigsetsize != sizeof(sigset_t))
4560 		return -EINVAL;
4561 
4562 	if (get_compat_sigset(&newset, unewset))
4563 		return -EFAULT;
4564 	return sigsuspend(&newset);
4565 }
4566 #endif
4567 
4568 #ifdef CONFIG_OLD_SIGSUSPEND
4569 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4570 {
4571 	sigset_t blocked;
4572 	siginitset(&blocked, mask);
4573 	return sigsuspend(&blocked);
4574 }
4575 #endif
4576 #ifdef CONFIG_OLD_SIGSUSPEND3
4577 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4578 {
4579 	sigset_t blocked;
4580 	siginitset(&blocked, mask);
4581 	return sigsuspend(&blocked);
4582 }
4583 #endif
4584 
4585 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4586 {
4587 	return NULL;
4588 }
4589 
4590 static inline void siginfo_buildtime_checks(void)
4591 {
4592 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4593 
4594 	/* Verify the offsets in the two siginfos match */
4595 #define CHECK_OFFSET(field) \
4596 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4597 
4598 	/* kill */
4599 	CHECK_OFFSET(si_pid);
4600 	CHECK_OFFSET(si_uid);
4601 
4602 	/* timer */
4603 	CHECK_OFFSET(si_tid);
4604 	CHECK_OFFSET(si_overrun);
4605 	CHECK_OFFSET(si_value);
4606 
4607 	/* rt */
4608 	CHECK_OFFSET(si_pid);
4609 	CHECK_OFFSET(si_uid);
4610 	CHECK_OFFSET(si_value);
4611 
4612 	/* sigchld */
4613 	CHECK_OFFSET(si_pid);
4614 	CHECK_OFFSET(si_uid);
4615 	CHECK_OFFSET(si_status);
4616 	CHECK_OFFSET(si_utime);
4617 	CHECK_OFFSET(si_stime);
4618 
4619 	/* sigfault */
4620 	CHECK_OFFSET(si_addr);
4621 	CHECK_OFFSET(si_trapno);
4622 	CHECK_OFFSET(si_addr_lsb);
4623 	CHECK_OFFSET(si_lower);
4624 	CHECK_OFFSET(si_upper);
4625 	CHECK_OFFSET(si_pkey);
4626 	CHECK_OFFSET(si_perf_data);
4627 	CHECK_OFFSET(si_perf_type);
4628 
4629 	/* sigpoll */
4630 	CHECK_OFFSET(si_band);
4631 	CHECK_OFFSET(si_fd);
4632 
4633 	/* sigsys */
4634 	CHECK_OFFSET(si_call_addr);
4635 	CHECK_OFFSET(si_syscall);
4636 	CHECK_OFFSET(si_arch);
4637 #undef CHECK_OFFSET
4638 
4639 	/* usb asyncio */
4640 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4641 		     offsetof(struct siginfo, si_addr));
4642 	if (sizeof(int) == sizeof(void __user *)) {
4643 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4644 			     sizeof(void __user *));
4645 	} else {
4646 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4647 			      sizeof_field(struct siginfo, si_uid)) !=
4648 			     sizeof(void __user *));
4649 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4650 			     offsetof(struct siginfo, si_uid));
4651 	}
4652 #ifdef CONFIG_COMPAT
4653 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4654 		     offsetof(struct compat_siginfo, si_addr));
4655 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4656 		     sizeof(compat_uptr_t));
4657 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4658 		     sizeof_field(struct siginfo, si_pid));
4659 #endif
4660 }
4661 
4662 void __init signals_init(void)
4663 {
4664 	siginfo_buildtime_checks();
4665 
4666 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4667 }
4668 
4669 #ifdef CONFIG_KGDB_KDB
4670 #include <linux/kdb.h>
4671 /*
4672  * kdb_send_sig - Allows kdb to send signals without exposing
4673  * signal internals.  This function checks if the required locks are
4674  * available before calling the main signal code, to avoid kdb
4675  * deadlocks.
4676  */
4677 void kdb_send_sig(struct task_struct *t, int sig)
4678 {
4679 	static struct task_struct *kdb_prev_t;
4680 	int new_t, ret;
4681 	if (!spin_trylock(&t->sighand->siglock)) {
4682 		kdb_printf("Can't do kill command now.\n"
4683 			   "The sigmask lock is held somewhere else in "
4684 			   "kernel, try again later\n");
4685 		return;
4686 	}
4687 	new_t = kdb_prev_t != t;
4688 	kdb_prev_t = t;
4689 	if (!task_is_running(t) && new_t) {
4690 		spin_unlock(&t->sighand->siglock);
4691 		kdb_printf("Process is not RUNNING, sending a signal from "
4692 			   "kdb risks deadlock\n"
4693 			   "on the run queue locks. "
4694 			   "The signal has _not_ been sent.\n"
4695 			   "Reissue the kill command if you want to risk "
4696 			   "the deadlock.\n");
4697 		return;
4698 	}
4699 	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4700 	spin_unlock(&t->sighand->siglock);
4701 	if (ret)
4702 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4703 			   sig, t->pid);
4704 	else
4705 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4706 }
4707 #endif	/* CONFIG_KGDB_KDB */
4708