1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/export.h> 15 #include <linux/init.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/tty.h> 19 #include <linux/binfmts.h> 20 #include <linux/security.h> 21 #include <linux/syscalls.h> 22 #include <linux/ptrace.h> 23 #include <linux/signal.h> 24 #include <linux/signalfd.h> 25 #include <linux/ratelimit.h> 26 #include <linux/tracehook.h> 27 #include <linux/capability.h> 28 #include <linux/freezer.h> 29 #include <linux/pid_namespace.h> 30 #include <linux/nsproxy.h> 31 #include <linux/user_namespace.h> 32 #include <linux/uprobes.h> 33 #define CREATE_TRACE_POINTS 34 #include <trace/events/signal.h> 35 36 #include <asm/param.h> 37 #include <asm/uaccess.h> 38 #include <asm/unistd.h> 39 #include <asm/siginfo.h> 40 #include <asm/cacheflush.h> 41 #include "audit.h" /* audit_signal_info() */ 42 43 /* 44 * SLAB caches for signal bits. 45 */ 46 47 static struct kmem_cache *sigqueue_cachep; 48 49 int print_fatal_signals __read_mostly; 50 51 static void __user *sig_handler(struct task_struct *t, int sig) 52 { 53 return t->sighand->action[sig - 1].sa.sa_handler; 54 } 55 56 static int sig_handler_ignored(void __user *handler, int sig) 57 { 58 /* Is it explicitly or implicitly ignored? */ 59 return handler == SIG_IGN || 60 (handler == SIG_DFL && sig_kernel_ignore(sig)); 61 } 62 63 static int sig_task_ignored(struct task_struct *t, int sig, bool force) 64 { 65 void __user *handler; 66 67 handler = sig_handler(t, sig); 68 69 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 70 handler == SIG_DFL && !force) 71 return 1; 72 73 return sig_handler_ignored(handler, sig); 74 } 75 76 static int sig_ignored(struct task_struct *t, int sig, bool force) 77 { 78 /* 79 * Blocked signals are never ignored, since the 80 * signal handler may change by the time it is 81 * unblocked. 82 */ 83 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 84 return 0; 85 86 if (!sig_task_ignored(t, sig, force)) 87 return 0; 88 89 /* 90 * Tracers may want to know about even ignored signals. 91 */ 92 return !t->ptrace; 93 } 94 95 /* 96 * Re-calculate pending state from the set of locally pending 97 * signals, globally pending signals, and blocked signals. 98 */ 99 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 100 { 101 unsigned long ready; 102 long i; 103 104 switch (_NSIG_WORDS) { 105 default: 106 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 107 ready |= signal->sig[i] &~ blocked->sig[i]; 108 break; 109 110 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 111 ready |= signal->sig[2] &~ blocked->sig[2]; 112 ready |= signal->sig[1] &~ blocked->sig[1]; 113 ready |= signal->sig[0] &~ blocked->sig[0]; 114 break; 115 116 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 117 ready |= signal->sig[0] &~ blocked->sig[0]; 118 break; 119 120 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 121 } 122 return ready != 0; 123 } 124 125 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 126 127 static int recalc_sigpending_tsk(struct task_struct *t) 128 { 129 if ((t->jobctl & JOBCTL_PENDING_MASK) || 130 PENDING(&t->pending, &t->blocked) || 131 PENDING(&t->signal->shared_pending, &t->blocked)) { 132 set_tsk_thread_flag(t, TIF_SIGPENDING); 133 return 1; 134 } 135 /* 136 * We must never clear the flag in another thread, or in current 137 * when it's possible the current syscall is returning -ERESTART*. 138 * So we don't clear it here, and only callers who know they should do. 139 */ 140 return 0; 141 } 142 143 /* 144 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 145 * This is superfluous when called on current, the wakeup is a harmless no-op. 146 */ 147 void recalc_sigpending_and_wake(struct task_struct *t) 148 { 149 if (recalc_sigpending_tsk(t)) 150 signal_wake_up(t, 0); 151 } 152 153 void recalc_sigpending(void) 154 { 155 if (!recalc_sigpending_tsk(current) && !freezing(current)) 156 clear_thread_flag(TIF_SIGPENDING); 157 158 } 159 160 /* Given the mask, find the first available signal that should be serviced. */ 161 162 #define SYNCHRONOUS_MASK \ 163 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 164 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 165 166 int next_signal(struct sigpending *pending, sigset_t *mask) 167 { 168 unsigned long i, *s, *m, x; 169 int sig = 0; 170 171 s = pending->signal.sig; 172 m = mask->sig; 173 174 /* 175 * Handle the first word specially: it contains the 176 * synchronous signals that need to be dequeued first. 177 */ 178 x = *s &~ *m; 179 if (x) { 180 if (x & SYNCHRONOUS_MASK) 181 x &= SYNCHRONOUS_MASK; 182 sig = ffz(~x) + 1; 183 return sig; 184 } 185 186 switch (_NSIG_WORDS) { 187 default: 188 for (i = 1; i < _NSIG_WORDS; ++i) { 189 x = *++s &~ *++m; 190 if (!x) 191 continue; 192 sig = ffz(~x) + i*_NSIG_BPW + 1; 193 break; 194 } 195 break; 196 197 case 2: 198 x = s[1] &~ m[1]; 199 if (!x) 200 break; 201 sig = ffz(~x) + _NSIG_BPW + 1; 202 break; 203 204 case 1: 205 /* Nothing to do */ 206 break; 207 } 208 209 return sig; 210 } 211 212 static inline void print_dropped_signal(int sig) 213 { 214 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 215 216 if (!print_fatal_signals) 217 return; 218 219 if (!__ratelimit(&ratelimit_state)) 220 return; 221 222 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 223 current->comm, current->pid, sig); 224 } 225 226 /** 227 * task_set_jobctl_pending - set jobctl pending bits 228 * @task: target task 229 * @mask: pending bits to set 230 * 231 * Clear @mask from @task->jobctl. @mask must be subset of 232 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 233 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 234 * cleared. If @task is already being killed or exiting, this function 235 * becomes noop. 236 * 237 * CONTEXT: 238 * Must be called with @task->sighand->siglock held. 239 * 240 * RETURNS: 241 * %true if @mask is set, %false if made noop because @task was dying. 242 */ 243 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask) 244 { 245 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 246 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 247 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 248 249 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 250 return false; 251 252 if (mask & JOBCTL_STOP_SIGMASK) 253 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 254 255 task->jobctl |= mask; 256 return true; 257 } 258 259 /** 260 * task_clear_jobctl_trapping - clear jobctl trapping bit 261 * @task: target task 262 * 263 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 264 * Clear it and wake up the ptracer. Note that we don't need any further 265 * locking. @task->siglock guarantees that @task->parent points to the 266 * ptracer. 267 * 268 * CONTEXT: 269 * Must be called with @task->sighand->siglock held. 270 */ 271 void task_clear_jobctl_trapping(struct task_struct *task) 272 { 273 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 274 task->jobctl &= ~JOBCTL_TRAPPING; 275 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 276 } 277 } 278 279 /** 280 * task_clear_jobctl_pending - clear jobctl pending bits 281 * @task: target task 282 * @mask: pending bits to clear 283 * 284 * Clear @mask from @task->jobctl. @mask must be subset of 285 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 286 * STOP bits are cleared together. 287 * 288 * If clearing of @mask leaves no stop or trap pending, this function calls 289 * task_clear_jobctl_trapping(). 290 * 291 * CONTEXT: 292 * Must be called with @task->sighand->siglock held. 293 */ 294 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask) 295 { 296 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 297 298 if (mask & JOBCTL_STOP_PENDING) 299 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 300 301 task->jobctl &= ~mask; 302 303 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 304 task_clear_jobctl_trapping(task); 305 } 306 307 /** 308 * task_participate_group_stop - participate in a group stop 309 * @task: task participating in a group stop 310 * 311 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 312 * Group stop states are cleared and the group stop count is consumed if 313 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 314 * stop, the appropriate %SIGNAL_* flags are set. 315 * 316 * CONTEXT: 317 * Must be called with @task->sighand->siglock held. 318 * 319 * RETURNS: 320 * %true if group stop completion should be notified to the parent, %false 321 * otherwise. 322 */ 323 static bool task_participate_group_stop(struct task_struct *task) 324 { 325 struct signal_struct *sig = task->signal; 326 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 327 328 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 329 330 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 331 332 if (!consume) 333 return false; 334 335 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 336 sig->group_stop_count--; 337 338 /* 339 * Tell the caller to notify completion iff we are entering into a 340 * fresh group stop. Read comment in do_signal_stop() for details. 341 */ 342 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 343 sig->flags = SIGNAL_STOP_STOPPED; 344 return true; 345 } 346 return false; 347 } 348 349 /* 350 * allocate a new signal queue record 351 * - this may be called without locks if and only if t == current, otherwise an 352 * appropriate lock must be held to stop the target task from exiting 353 */ 354 static struct sigqueue * 355 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) 356 { 357 struct sigqueue *q = NULL; 358 struct user_struct *user; 359 360 /* 361 * Protect access to @t credentials. This can go away when all 362 * callers hold rcu read lock. 363 */ 364 rcu_read_lock(); 365 user = get_uid(__task_cred(t)->user); 366 atomic_inc(&user->sigpending); 367 rcu_read_unlock(); 368 369 if (override_rlimit || 370 atomic_read(&user->sigpending) <= 371 task_rlimit(t, RLIMIT_SIGPENDING)) { 372 q = kmem_cache_alloc(sigqueue_cachep, flags); 373 } else { 374 print_dropped_signal(sig); 375 } 376 377 if (unlikely(q == NULL)) { 378 atomic_dec(&user->sigpending); 379 free_uid(user); 380 } else { 381 INIT_LIST_HEAD(&q->list); 382 q->flags = 0; 383 q->user = user; 384 } 385 386 return q; 387 } 388 389 static void __sigqueue_free(struct sigqueue *q) 390 { 391 if (q->flags & SIGQUEUE_PREALLOC) 392 return; 393 atomic_dec(&q->user->sigpending); 394 free_uid(q->user); 395 kmem_cache_free(sigqueue_cachep, q); 396 } 397 398 void flush_sigqueue(struct sigpending *queue) 399 { 400 struct sigqueue *q; 401 402 sigemptyset(&queue->signal); 403 while (!list_empty(&queue->list)) { 404 q = list_entry(queue->list.next, struct sigqueue , list); 405 list_del_init(&q->list); 406 __sigqueue_free(q); 407 } 408 } 409 410 /* 411 * Flush all pending signals for a task. 412 */ 413 void __flush_signals(struct task_struct *t) 414 { 415 clear_tsk_thread_flag(t, TIF_SIGPENDING); 416 flush_sigqueue(&t->pending); 417 flush_sigqueue(&t->signal->shared_pending); 418 } 419 420 void flush_signals(struct task_struct *t) 421 { 422 unsigned long flags; 423 424 spin_lock_irqsave(&t->sighand->siglock, flags); 425 __flush_signals(t); 426 spin_unlock_irqrestore(&t->sighand->siglock, flags); 427 } 428 429 static void __flush_itimer_signals(struct sigpending *pending) 430 { 431 sigset_t signal, retain; 432 struct sigqueue *q, *n; 433 434 signal = pending->signal; 435 sigemptyset(&retain); 436 437 list_for_each_entry_safe(q, n, &pending->list, list) { 438 int sig = q->info.si_signo; 439 440 if (likely(q->info.si_code != SI_TIMER)) { 441 sigaddset(&retain, sig); 442 } else { 443 sigdelset(&signal, sig); 444 list_del_init(&q->list); 445 __sigqueue_free(q); 446 } 447 } 448 449 sigorsets(&pending->signal, &signal, &retain); 450 } 451 452 void flush_itimer_signals(void) 453 { 454 struct task_struct *tsk = current; 455 unsigned long flags; 456 457 spin_lock_irqsave(&tsk->sighand->siglock, flags); 458 __flush_itimer_signals(&tsk->pending); 459 __flush_itimer_signals(&tsk->signal->shared_pending); 460 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 461 } 462 463 void ignore_signals(struct task_struct *t) 464 { 465 int i; 466 467 for (i = 0; i < _NSIG; ++i) 468 t->sighand->action[i].sa.sa_handler = SIG_IGN; 469 470 flush_signals(t); 471 } 472 473 /* 474 * Flush all handlers for a task. 475 */ 476 477 void 478 flush_signal_handlers(struct task_struct *t, int force_default) 479 { 480 int i; 481 struct k_sigaction *ka = &t->sighand->action[0]; 482 for (i = _NSIG ; i != 0 ; i--) { 483 if (force_default || ka->sa.sa_handler != SIG_IGN) 484 ka->sa.sa_handler = SIG_DFL; 485 ka->sa.sa_flags = 0; 486 sigemptyset(&ka->sa.sa_mask); 487 ka++; 488 } 489 } 490 491 int unhandled_signal(struct task_struct *tsk, int sig) 492 { 493 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 494 if (is_global_init(tsk)) 495 return 1; 496 if (handler != SIG_IGN && handler != SIG_DFL) 497 return 0; 498 /* if ptraced, let the tracer determine */ 499 return !tsk->ptrace; 500 } 501 502 /* 503 * Notify the system that a driver wants to block all signals for this 504 * process, and wants to be notified if any signals at all were to be 505 * sent/acted upon. If the notifier routine returns non-zero, then the 506 * signal will be acted upon after all. If the notifier routine returns 0, 507 * then then signal will be blocked. Only one block per process is 508 * allowed. priv is a pointer to private data that the notifier routine 509 * can use to determine if the signal should be blocked or not. 510 */ 511 void 512 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) 513 { 514 unsigned long flags; 515 516 spin_lock_irqsave(¤t->sighand->siglock, flags); 517 current->notifier_mask = mask; 518 current->notifier_data = priv; 519 current->notifier = notifier; 520 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 521 } 522 523 /* Notify the system that blocking has ended. */ 524 525 void 526 unblock_all_signals(void) 527 { 528 unsigned long flags; 529 530 spin_lock_irqsave(¤t->sighand->siglock, flags); 531 current->notifier = NULL; 532 current->notifier_data = NULL; 533 recalc_sigpending(); 534 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 535 } 536 537 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info) 538 { 539 struct sigqueue *q, *first = NULL; 540 541 /* 542 * Collect the siginfo appropriate to this signal. Check if 543 * there is another siginfo for the same signal. 544 */ 545 list_for_each_entry(q, &list->list, list) { 546 if (q->info.si_signo == sig) { 547 if (first) 548 goto still_pending; 549 first = q; 550 } 551 } 552 553 sigdelset(&list->signal, sig); 554 555 if (first) { 556 still_pending: 557 list_del_init(&first->list); 558 copy_siginfo(info, &first->info); 559 __sigqueue_free(first); 560 } else { 561 /* 562 * Ok, it wasn't in the queue. This must be 563 * a fast-pathed signal or we must have been 564 * out of queue space. So zero out the info. 565 */ 566 info->si_signo = sig; 567 info->si_errno = 0; 568 info->si_code = SI_USER; 569 info->si_pid = 0; 570 info->si_uid = 0; 571 } 572 } 573 574 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 575 siginfo_t *info) 576 { 577 int sig = next_signal(pending, mask); 578 579 if (sig) { 580 if (current->notifier) { 581 if (sigismember(current->notifier_mask, sig)) { 582 if (!(current->notifier)(current->notifier_data)) { 583 clear_thread_flag(TIF_SIGPENDING); 584 return 0; 585 } 586 } 587 } 588 589 collect_signal(sig, pending, info); 590 } 591 592 return sig; 593 } 594 595 /* 596 * Dequeue a signal and return the element to the caller, which is 597 * expected to free it. 598 * 599 * All callers have to hold the siglock. 600 */ 601 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 602 { 603 int signr; 604 605 /* We only dequeue private signals from ourselves, we don't let 606 * signalfd steal them 607 */ 608 signr = __dequeue_signal(&tsk->pending, mask, info); 609 if (!signr) { 610 signr = __dequeue_signal(&tsk->signal->shared_pending, 611 mask, info); 612 /* 613 * itimer signal ? 614 * 615 * itimers are process shared and we restart periodic 616 * itimers in the signal delivery path to prevent DoS 617 * attacks in the high resolution timer case. This is 618 * compliant with the old way of self-restarting 619 * itimers, as the SIGALRM is a legacy signal and only 620 * queued once. Changing the restart behaviour to 621 * restart the timer in the signal dequeue path is 622 * reducing the timer noise on heavy loaded !highres 623 * systems too. 624 */ 625 if (unlikely(signr == SIGALRM)) { 626 struct hrtimer *tmr = &tsk->signal->real_timer; 627 628 if (!hrtimer_is_queued(tmr) && 629 tsk->signal->it_real_incr.tv64 != 0) { 630 hrtimer_forward(tmr, tmr->base->get_time(), 631 tsk->signal->it_real_incr); 632 hrtimer_restart(tmr); 633 } 634 } 635 } 636 637 recalc_sigpending(); 638 if (!signr) 639 return 0; 640 641 if (unlikely(sig_kernel_stop(signr))) { 642 /* 643 * Set a marker that we have dequeued a stop signal. Our 644 * caller might release the siglock and then the pending 645 * stop signal it is about to process is no longer in the 646 * pending bitmasks, but must still be cleared by a SIGCONT 647 * (and overruled by a SIGKILL). So those cases clear this 648 * shared flag after we've set it. Note that this flag may 649 * remain set after the signal we return is ignored or 650 * handled. That doesn't matter because its only purpose 651 * is to alert stop-signal processing code when another 652 * processor has come along and cleared the flag. 653 */ 654 current->jobctl |= JOBCTL_STOP_DEQUEUED; 655 } 656 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) { 657 /* 658 * Release the siglock to ensure proper locking order 659 * of timer locks outside of siglocks. Note, we leave 660 * irqs disabled here, since the posix-timers code is 661 * about to disable them again anyway. 662 */ 663 spin_unlock(&tsk->sighand->siglock); 664 do_schedule_next_timer(info); 665 spin_lock(&tsk->sighand->siglock); 666 } 667 return signr; 668 } 669 670 /* 671 * Tell a process that it has a new active signal.. 672 * 673 * NOTE! we rely on the previous spin_lock to 674 * lock interrupts for us! We can only be called with 675 * "siglock" held, and the local interrupt must 676 * have been disabled when that got acquired! 677 * 678 * No need to set need_resched since signal event passing 679 * goes through ->blocked 680 */ 681 void signal_wake_up(struct task_struct *t, int resume) 682 { 683 unsigned int mask; 684 685 set_tsk_thread_flag(t, TIF_SIGPENDING); 686 687 /* 688 * For SIGKILL, we want to wake it up in the stopped/traced/killable 689 * case. We don't check t->state here because there is a race with it 690 * executing another processor and just now entering stopped state. 691 * By using wake_up_state, we ensure the process will wake up and 692 * handle its death signal. 693 */ 694 mask = TASK_INTERRUPTIBLE; 695 if (resume) 696 mask |= TASK_WAKEKILL; 697 if (!wake_up_state(t, mask)) 698 kick_process(t); 699 } 700 701 /* 702 * Remove signals in mask from the pending set and queue. 703 * Returns 1 if any signals were found. 704 * 705 * All callers must be holding the siglock. 706 * 707 * This version takes a sigset mask and looks at all signals, 708 * not just those in the first mask word. 709 */ 710 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s) 711 { 712 struct sigqueue *q, *n; 713 sigset_t m; 714 715 sigandsets(&m, mask, &s->signal); 716 if (sigisemptyset(&m)) 717 return 0; 718 719 sigandnsets(&s->signal, &s->signal, mask); 720 list_for_each_entry_safe(q, n, &s->list, list) { 721 if (sigismember(mask, q->info.si_signo)) { 722 list_del_init(&q->list); 723 __sigqueue_free(q); 724 } 725 } 726 return 1; 727 } 728 /* 729 * Remove signals in mask from the pending set and queue. 730 * Returns 1 if any signals were found. 731 * 732 * All callers must be holding the siglock. 733 */ 734 static int rm_from_queue(unsigned long mask, struct sigpending *s) 735 { 736 struct sigqueue *q, *n; 737 738 if (!sigtestsetmask(&s->signal, mask)) 739 return 0; 740 741 sigdelsetmask(&s->signal, mask); 742 list_for_each_entry_safe(q, n, &s->list, list) { 743 if (q->info.si_signo < SIGRTMIN && 744 (mask & sigmask(q->info.si_signo))) { 745 list_del_init(&q->list); 746 __sigqueue_free(q); 747 } 748 } 749 return 1; 750 } 751 752 static inline int is_si_special(const struct siginfo *info) 753 { 754 return info <= SEND_SIG_FORCED; 755 } 756 757 static inline bool si_fromuser(const struct siginfo *info) 758 { 759 return info == SEND_SIG_NOINFO || 760 (!is_si_special(info) && SI_FROMUSER(info)); 761 } 762 763 /* 764 * called with RCU read lock from check_kill_permission() 765 */ 766 static int kill_ok_by_cred(struct task_struct *t) 767 { 768 const struct cred *cred = current_cred(); 769 const struct cred *tcred = __task_cred(t); 770 771 if (uid_eq(cred->euid, tcred->suid) || 772 uid_eq(cred->euid, tcred->uid) || 773 uid_eq(cred->uid, tcred->suid) || 774 uid_eq(cred->uid, tcred->uid)) 775 return 1; 776 777 if (ns_capable(tcred->user_ns, CAP_KILL)) 778 return 1; 779 780 return 0; 781 } 782 783 /* 784 * Bad permissions for sending the signal 785 * - the caller must hold the RCU read lock 786 */ 787 static int check_kill_permission(int sig, struct siginfo *info, 788 struct task_struct *t) 789 { 790 struct pid *sid; 791 int error; 792 793 if (!valid_signal(sig)) 794 return -EINVAL; 795 796 if (!si_fromuser(info)) 797 return 0; 798 799 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 800 if (error) 801 return error; 802 803 if (!same_thread_group(current, t) && 804 !kill_ok_by_cred(t)) { 805 switch (sig) { 806 case SIGCONT: 807 sid = task_session(t); 808 /* 809 * We don't return the error if sid == NULL. The 810 * task was unhashed, the caller must notice this. 811 */ 812 if (!sid || sid == task_session(current)) 813 break; 814 default: 815 return -EPERM; 816 } 817 } 818 819 return security_task_kill(t, info, sig, 0); 820 } 821 822 /** 823 * ptrace_trap_notify - schedule trap to notify ptracer 824 * @t: tracee wanting to notify tracer 825 * 826 * This function schedules sticky ptrace trap which is cleared on the next 827 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 828 * ptracer. 829 * 830 * If @t is running, STOP trap will be taken. If trapped for STOP and 831 * ptracer is listening for events, tracee is woken up so that it can 832 * re-trap for the new event. If trapped otherwise, STOP trap will be 833 * eventually taken without returning to userland after the existing traps 834 * are finished by PTRACE_CONT. 835 * 836 * CONTEXT: 837 * Must be called with @task->sighand->siglock held. 838 */ 839 static void ptrace_trap_notify(struct task_struct *t) 840 { 841 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 842 assert_spin_locked(&t->sighand->siglock); 843 844 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 845 signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 846 } 847 848 /* 849 * Handle magic process-wide effects of stop/continue signals. Unlike 850 * the signal actions, these happen immediately at signal-generation 851 * time regardless of blocking, ignoring, or handling. This does the 852 * actual continuing for SIGCONT, but not the actual stopping for stop 853 * signals. The process stop is done as a signal action for SIG_DFL. 854 * 855 * Returns true if the signal should be actually delivered, otherwise 856 * it should be dropped. 857 */ 858 static int prepare_signal(int sig, struct task_struct *p, bool force) 859 { 860 struct signal_struct *signal = p->signal; 861 struct task_struct *t; 862 863 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) { 864 /* 865 * The process is in the middle of dying, nothing to do. 866 */ 867 } else if (sig_kernel_stop(sig)) { 868 /* 869 * This is a stop signal. Remove SIGCONT from all queues. 870 */ 871 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending); 872 t = p; 873 do { 874 rm_from_queue(sigmask(SIGCONT), &t->pending); 875 } while_each_thread(p, t); 876 } else if (sig == SIGCONT) { 877 unsigned int why; 878 /* 879 * Remove all stop signals from all queues, wake all threads. 880 */ 881 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending); 882 t = p; 883 do { 884 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 885 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 886 if (likely(!(t->ptrace & PT_SEIZED))) 887 wake_up_state(t, __TASK_STOPPED); 888 else 889 ptrace_trap_notify(t); 890 } while_each_thread(p, t); 891 892 /* 893 * Notify the parent with CLD_CONTINUED if we were stopped. 894 * 895 * If we were in the middle of a group stop, we pretend it 896 * was already finished, and then continued. Since SIGCHLD 897 * doesn't queue we report only CLD_STOPPED, as if the next 898 * CLD_CONTINUED was dropped. 899 */ 900 why = 0; 901 if (signal->flags & SIGNAL_STOP_STOPPED) 902 why |= SIGNAL_CLD_CONTINUED; 903 else if (signal->group_stop_count) 904 why |= SIGNAL_CLD_STOPPED; 905 906 if (why) { 907 /* 908 * The first thread which returns from do_signal_stop() 909 * will take ->siglock, notice SIGNAL_CLD_MASK, and 910 * notify its parent. See get_signal_to_deliver(). 911 */ 912 signal->flags = why | SIGNAL_STOP_CONTINUED; 913 signal->group_stop_count = 0; 914 signal->group_exit_code = 0; 915 } 916 } 917 918 return !sig_ignored(p, sig, force); 919 } 920 921 /* 922 * Test if P wants to take SIG. After we've checked all threads with this, 923 * it's equivalent to finding no threads not blocking SIG. Any threads not 924 * blocking SIG were ruled out because they are not running and already 925 * have pending signals. Such threads will dequeue from the shared queue 926 * as soon as they're available, so putting the signal on the shared queue 927 * will be equivalent to sending it to one such thread. 928 */ 929 static inline int wants_signal(int sig, struct task_struct *p) 930 { 931 if (sigismember(&p->blocked, sig)) 932 return 0; 933 if (p->flags & PF_EXITING) 934 return 0; 935 if (sig == SIGKILL) 936 return 1; 937 if (task_is_stopped_or_traced(p)) 938 return 0; 939 return task_curr(p) || !signal_pending(p); 940 } 941 942 static void complete_signal(int sig, struct task_struct *p, int group) 943 { 944 struct signal_struct *signal = p->signal; 945 struct task_struct *t; 946 947 /* 948 * Now find a thread we can wake up to take the signal off the queue. 949 * 950 * If the main thread wants the signal, it gets first crack. 951 * Probably the least surprising to the average bear. 952 */ 953 if (wants_signal(sig, p)) 954 t = p; 955 else if (!group || thread_group_empty(p)) 956 /* 957 * There is just one thread and it does not need to be woken. 958 * It will dequeue unblocked signals before it runs again. 959 */ 960 return; 961 else { 962 /* 963 * Otherwise try to find a suitable thread. 964 */ 965 t = signal->curr_target; 966 while (!wants_signal(sig, t)) { 967 t = next_thread(t); 968 if (t == signal->curr_target) 969 /* 970 * No thread needs to be woken. 971 * Any eligible threads will see 972 * the signal in the queue soon. 973 */ 974 return; 975 } 976 signal->curr_target = t; 977 } 978 979 /* 980 * Found a killable thread. If the signal will be fatal, 981 * then start taking the whole group down immediately. 982 */ 983 if (sig_fatal(p, sig) && 984 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) && 985 !sigismember(&t->real_blocked, sig) && 986 (sig == SIGKILL || !t->ptrace)) { 987 /* 988 * This signal will be fatal to the whole group. 989 */ 990 if (!sig_kernel_coredump(sig)) { 991 /* 992 * Start a group exit and wake everybody up. 993 * This way we don't have other threads 994 * running and doing things after a slower 995 * thread has the fatal signal pending. 996 */ 997 signal->flags = SIGNAL_GROUP_EXIT; 998 signal->group_exit_code = sig; 999 signal->group_stop_count = 0; 1000 t = p; 1001 do { 1002 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1003 sigaddset(&t->pending.signal, SIGKILL); 1004 signal_wake_up(t, 1); 1005 } while_each_thread(p, t); 1006 return; 1007 } 1008 } 1009 1010 /* 1011 * The signal is already in the shared-pending queue. 1012 * Tell the chosen thread to wake up and dequeue it. 1013 */ 1014 signal_wake_up(t, sig == SIGKILL); 1015 return; 1016 } 1017 1018 static inline int legacy_queue(struct sigpending *signals, int sig) 1019 { 1020 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1021 } 1022 1023 #ifdef CONFIG_USER_NS 1024 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 1025 { 1026 if (current_user_ns() == task_cred_xxx(t, user_ns)) 1027 return; 1028 1029 if (SI_FROMKERNEL(info)) 1030 return; 1031 1032 rcu_read_lock(); 1033 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns), 1034 make_kuid(current_user_ns(), info->si_uid)); 1035 rcu_read_unlock(); 1036 } 1037 #else 1038 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 1039 { 1040 return; 1041 } 1042 #endif 1043 1044 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t, 1045 int group, int from_ancestor_ns) 1046 { 1047 struct sigpending *pending; 1048 struct sigqueue *q; 1049 int override_rlimit; 1050 int ret = 0, result; 1051 1052 assert_spin_locked(&t->sighand->siglock); 1053 1054 result = TRACE_SIGNAL_IGNORED; 1055 if (!prepare_signal(sig, t, 1056 from_ancestor_ns || (info == SEND_SIG_FORCED))) 1057 goto ret; 1058 1059 pending = group ? &t->signal->shared_pending : &t->pending; 1060 /* 1061 * Short-circuit ignored signals and support queuing 1062 * exactly one non-rt signal, so that we can get more 1063 * detailed information about the cause of the signal. 1064 */ 1065 result = TRACE_SIGNAL_ALREADY_PENDING; 1066 if (legacy_queue(pending, sig)) 1067 goto ret; 1068 1069 result = TRACE_SIGNAL_DELIVERED; 1070 /* 1071 * fast-pathed signals for kernel-internal things like SIGSTOP 1072 * or SIGKILL. 1073 */ 1074 if (info == SEND_SIG_FORCED) 1075 goto out_set; 1076 1077 /* 1078 * Real-time signals must be queued if sent by sigqueue, or 1079 * some other real-time mechanism. It is implementation 1080 * defined whether kill() does so. We attempt to do so, on 1081 * the principle of least surprise, but since kill is not 1082 * allowed to fail with EAGAIN when low on memory we just 1083 * make sure at least one signal gets delivered and don't 1084 * pass on the info struct. 1085 */ 1086 if (sig < SIGRTMIN) 1087 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1088 else 1089 override_rlimit = 0; 1090 1091 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE, 1092 override_rlimit); 1093 if (q) { 1094 list_add_tail(&q->list, &pending->list); 1095 switch ((unsigned long) info) { 1096 case (unsigned long) SEND_SIG_NOINFO: 1097 q->info.si_signo = sig; 1098 q->info.si_errno = 0; 1099 q->info.si_code = SI_USER; 1100 q->info.si_pid = task_tgid_nr_ns(current, 1101 task_active_pid_ns(t)); 1102 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1103 break; 1104 case (unsigned long) SEND_SIG_PRIV: 1105 q->info.si_signo = sig; 1106 q->info.si_errno = 0; 1107 q->info.si_code = SI_KERNEL; 1108 q->info.si_pid = 0; 1109 q->info.si_uid = 0; 1110 break; 1111 default: 1112 copy_siginfo(&q->info, info); 1113 if (from_ancestor_ns) 1114 q->info.si_pid = 0; 1115 break; 1116 } 1117 1118 userns_fixup_signal_uid(&q->info, t); 1119 1120 } else if (!is_si_special(info)) { 1121 if (sig >= SIGRTMIN && info->si_code != SI_USER) { 1122 /* 1123 * Queue overflow, abort. We may abort if the 1124 * signal was rt and sent by user using something 1125 * other than kill(). 1126 */ 1127 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1128 ret = -EAGAIN; 1129 goto ret; 1130 } else { 1131 /* 1132 * This is a silent loss of information. We still 1133 * send the signal, but the *info bits are lost. 1134 */ 1135 result = TRACE_SIGNAL_LOSE_INFO; 1136 } 1137 } 1138 1139 out_set: 1140 signalfd_notify(t, sig); 1141 sigaddset(&pending->signal, sig); 1142 complete_signal(sig, t, group); 1143 ret: 1144 trace_signal_generate(sig, info, t, group, result); 1145 return ret; 1146 } 1147 1148 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 1149 int group) 1150 { 1151 int from_ancestor_ns = 0; 1152 1153 #ifdef CONFIG_PID_NS 1154 from_ancestor_ns = si_fromuser(info) && 1155 !task_pid_nr_ns(current, task_active_pid_ns(t)); 1156 #endif 1157 1158 return __send_signal(sig, info, t, group, from_ancestor_ns); 1159 } 1160 1161 static void print_fatal_signal(struct pt_regs *regs, int signr) 1162 { 1163 printk("%s/%d: potentially unexpected fatal signal %d.\n", 1164 current->comm, task_pid_nr(current), signr); 1165 1166 #if defined(__i386__) && !defined(__arch_um__) 1167 printk("code at %08lx: ", regs->ip); 1168 { 1169 int i; 1170 for (i = 0; i < 16; i++) { 1171 unsigned char insn; 1172 1173 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1174 break; 1175 printk("%02x ", insn); 1176 } 1177 } 1178 #endif 1179 printk("\n"); 1180 preempt_disable(); 1181 show_regs(regs); 1182 preempt_enable(); 1183 } 1184 1185 static int __init setup_print_fatal_signals(char *str) 1186 { 1187 get_option (&str, &print_fatal_signals); 1188 1189 return 1; 1190 } 1191 1192 __setup("print-fatal-signals=", setup_print_fatal_signals); 1193 1194 int 1195 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1196 { 1197 return send_signal(sig, info, p, 1); 1198 } 1199 1200 static int 1201 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1202 { 1203 return send_signal(sig, info, t, 0); 1204 } 1205 1206 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p, 1207 bool group) 1208 { 1209 unsigned long flags; 1210 int ret = -ESRCH; 1211 1212 if (lock_task_sighand(p, &flags)) { 1213 ret = send_signal(sig, info, p, group); 1214 unlock_task_sighand(p, &flags); 1215 } 1216 1217 return ret; 1218 } 1219 1220 /* 1221 * Force a signal that the process can't ignore: if necessary 1222 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1223 * 1224 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1225 * since we do not want to have a signal handler that was blocked 1226 * be invoked when user space had explicitly blocked it. 1227 * 1228 * We don't want to have recursive SIGSEGV's etc, for example, 1229 * that is why we also clear SIGNAL_UNKILLABLE. 1230 */ 1231 int 1232 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1233 { 1234 unsigned long int flags; 1235 int ret, blocked, ignored; 1236 struct k_sigaction *action; 1237 1238 spin_lock_irqsave(&t->sighand->siglock, flags); 1239 action = &t->sighand->action[sig-1]; 1240 ignored = action->sa.sa_handler == SIG_IGN; 1241 blocked = sigismember(&t->blocked, sig); 1242 if (blocked || ignored) { 1243 action->sa.sa_handler = SIG_DFL; 1244 if (blocked) { 1245 sigdelset(&t->blocked, sig); 1246 recalc_sigpending_and_wake(t); 1247 } 1248 } 1249 if (action->sa.sa_handler == SIG_DFL) 1250 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1251 ret = specific_send_sig_info(sig, info, t); 1252 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1253 1254 return ret; 1255 } 1256 1257 /* 1258 * Nuke all other threads in the group. 1259 */ 1260 int zap_other_threads(struct task_struct *p) 1261 { 1262 struct task_struct *t = p; 1263 int count = 0; 1264 1265 p->signal->group_stop_count = 0; 1266 1267 while_each_thread(p, t) { 1268 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1269 count++; 1270 1271 /* Don't bother with already dead threads */ 1272 if (t->exit_state) 1273 continue; 1274 sigaddset(&t->pending.signal, SIGKILL); 1275 signal_wake_up(t, 1); 1276 } 1277 1278 return count; 1279 } 1280 1281 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1282 unsigned long *flags) 1283 { 1284 struct sighand_struct *sighand; 1285 1286 for (;;) { 1287 local_irq_save(*flags); 1288 rcu_read_lock(); 1289 sighand = rcu_dereference(tsk->sighand); 1290 if (unlikely(sighand == NULL)) { 1291 rcu_read_unlock(); 1292 local_irq_restore(*flags); 1293 break; 1294 } 1295 1296 spin_lock(&sighand->siglock); 1297 if (likely(sighand == tsk->sighand)) { 1298 rcu_read_unlock(); 1299 break; 1300 } 1301 spin_unlock(&sighand->siglock); 1302 rcu_read_unlock(); 1303 local_irq_restore(*flags); 1304 } 1305 1306 return sighand; 1307 } 1308 1309 /* 1310 * send signal info to all the members of a group 1311 */ 1312 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1313 { 1314 int ret; 1315 1316 rcu_read_lock(); 1317 ret = check_kill_permission(sig, info, p); 1318 rcu_read_unlock(); 1319 1320 if (!ret && sig) 1321 ret = do_send_sig_info(sig, info, p, true); 1322 1323 return ret; 1324 } 1325 1326 /* 1327 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1328 * control characters do (^C, ^Z etc) 1329 * - the caller must hold at least a readlock on tasklist_lock 1330 */ 1331 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1332 { 1333 struct task_struct *p = NULL; 1334 int retval, success; 1335 1336 success = 0; 1337 retval = -ESRCH; 1338 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1339 int err = group_send_sig_info(sig, info, p); 1340 success |= !err; 1341 retval = err; 1342 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1343 return success ? 0 : retval; 1344 } 1345 1346 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) 1347 { 1348 int error = -ESRCH; 1349 struct task_struct *p; 1350 1351 rcu_read_lock(); 1352 retry: 1353 p = pid_task(pid, PIDTYPE_PID); 1354 if (p) { 1355 error = group_send_sig_info(sig, info, p); 1356 if (unlikely(error == -ESRCH)) 1357 /* 1358 * The task was unhashed in between, try again. 1359 * If it is dead, pid_task() will return NULL, 1360 * if we race with de_thread() it will find the 1361 * new leader. 1362 */ 1363 goto retry; 1364 } 1365 rcu_read_unlock(); 1366 1367 return error; 1368 } 1369 1370 int kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1371 { 1372 int error; 1373 rcu_read_lock(); 1374 error = kill_pid_info(sig, info, find_vpid(pid)); 1375 rcu_read_unlock(); 1376 return error; 1377 } 1378 1379 static int kill_as_cred_perm(const struct cred *cred, 1380 struct task_struct *target) 1381 { 1382 const struct cred *pcred = __task_cred(target); 1383 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) && 1384 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid)) 1385 return 0; 1386 return 1; 1387 } 1388 1389 /* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1390 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid, 1391 const struct cred *cred, u32 secid) 1392 { 1393 int ret = -EINVAL; 1394 struct task_struct *p; 1395 unsigned long flags; 1396 1397 if (!valid_signal(sig)) 1398 return ret; 1399 1400 rcu_read_lock(); 1401 p = pid_task(pid, PIDTYPE_PID); 1402 if (!p) { 1403 ret = -ESRCH; 1404 goto out_unlock; 1405 } 1406 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) { 1407 ret = -EPERM; 1408 goto out_unlock; 1409 } 1410 ret = security_task_kill(p, info, sig, secid); 1411 if (ret) 1412 goto out_unlock; 1413 1414 if (sig) { 1415 if (lock_task_sighand(p, &flags)) { 1416 ret = __send_signal(sig, info, p, 1, 0); 1417 unlock_task_sighand(p, &flags); 1418 } else 1419 ret = -ESRCH; 1420 } 1421 out_unlock: 1422 rcu_read_unlock(); 1423 return ret; 1424 } 1425 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred); 1426 1427 /* 1428 * kill_something_info() interprets pid in interesting ways just like kill(2). 1429 * 1430 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1431 * is probably wrong. Should make it like BSD or SYSV. 1432 */ 1433 1434 static int kill_something_info(int sig, struct siginfo *info, pid_t pid) 1435 { 1436 int ret; 1437 1438 if (pid > 0) { 1439 rcu_read_lock(); 1440 ret = kill_pid_info(sig, info, find_vpid(pid)); 1441 rcu_read_unlock(); 1442 return ret; 1443 } 1444 1445 read_lock(&tasklist_lock); 1446 if (pid != -1) { 1447 ret = __kill_pgrp_info(sig, info, 1448 pid ? find_vpid(-pid) : task_pgrp(current)); 1449 } else { 1450 int retval = 0, count = 0; 1451 struct task_struct * p; 1452 1453 for_each_process(p) { 1454 if (task_pid_vnr(p) > 1 && 1455 !same_thread_group(p, current)) { 1456 int err = group_send_sig_info(sig, info, p); 1457 ++count; 1458 if (err != -EPERM) 1459 retval = err; 1460 } 1461 } 1462 ret = count ? retval : -ESRCH; 1463 } 1464 read_unlock(&tasklist_lock); 1465 1466 return ret; 1467 } 1468 1469 /* 1470 * These are for backward compatibility with the rest of the kernel source. 1471 */ 1472 1473 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1474 { 1475 /* 1476 * Make sure legacy kernel users don't send in bad values 1477 * (normal paths check this in check_kill_permission). 1478 */ 1479 if (!valid_signal(sig)) 1480 return -EINVAL; 1481 1482 return do_send_sig_info(sig, info, p, false); 1483 } 1484 1485 #define __si_special(priv) \ 1486 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1487 1488 int 1489 send_sig(int sig, struct task_struct *p, int priv) 1490 { 1491 return send_sig_info(sig, __si_special(priv), p); 1492 } 1493 1494 void 1495 force_sig(int sig, struct task_struct *p) 1496 { 1497 force_sig_info(sig, SEND_SIG_PRIV, p); 1498 } 1499 1500 /* 1501 * When things go south during signal handling, we 1502 * will force a SIGSEGV. And if the signal that caused 1503 * the problem was already a SIGSEGV, we'll want to 1504 * make sure we don't even try to deliver the signal.. 1505 */ 1506 int 1507 force_sigsegv(int sig, struct task_struct *p) 1508 { 1509 if (sig == SIGSEGV) { 1510 unsigned long flags; 1511 spin_lock_irqsave(&p->sighand->siglock, flags); 1512 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1513 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1514 } 1515 force_sig(SIGSEGV, p); 1516 return 0; 1517 } 1518 1519 int kill_pgrp(struct pid *pid, int sig, int priv) 1520 { 1521 int ret; 1522 1523 read_lock(&tasklist_lock); 1524 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1525 read_unlock(&tasklist_lock); 1526 1527 return ret; 1528 } 1529 EXPORT_SYMBOL(kill_pgrp); 1530 1531 int kill_pid(struct pid *pid, int sig, int priv) 1532 { 1533 return kill_pid_info(sig, __si_special(priv), pid); 1534 } 1535 EXPORT_SYMBOL(kill_pid); 1536 1537 /* 1538 * These functions support sending signals using preallocated sigqueue 1539 * structures. This is needed "because realtime applications cannot 1540 * afford to lose notifications of asynchronous events, like timer 1541 * expirations or I/O completions". In the case of POSIX Timers 1542 * we allocate the sigqueue structure from the timer_create. If this 1543 * allocation fails we are able to report the failure to the application 1544 * with an EAGAIN error. 1545 */ 1546 struct sigqueue *sigqueue_alloc(void) 1547 { 1548 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); 1549 1550 if (q) 1551 q->flags |= SIGQUEUE_PREALLOC; 1552 1553 return q; 1554 } 1555 1556 void sigqueue_free(struct sigqueue *q) 1557 { 1558 unsigned long flags; 1559 spinlock_t *lock = ¤t->sighand->siglock; 1560 1561 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1562 /* 1563 * We must hold ->siglock while testing q->list 1564 * to serialize with collect_signal() or with 1565 * __exit_signal()->flush_sigqueue(). 1566 */ 1567 spin_lock_irqsave(lock, flags); 1568 q->flags &= ~SIGQUEUE_PREALLOC; 1569 /* 1570 * If it is queued it will be freed when dequeued, 1571 * like the "regular" sigqueue. 1572 */ 1573 if (!list_empty(&q->list)) 1574 q = NULL; 1575 spin_unlock_irqrestore(lock, flags); 1576 1577 if (q) 1578 __sigqueue_free(q); 1579 } 1580 1581 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) 1582 { 1583 int sig = q->info.si_signo; 1584 struct sigpending *pending; 1585 unsigned long flags; 1586 int ret, result; 1587 1588 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1589 1590 ret = -1; 1591 if (!likely(lock_task_sighand(t, &flags))) 1592 goto ret; 1593 1594 ret = 1; /* the signal is ignored */ 1595 result = TRACE_SIGNAL_IGNORED; 1596 if (!prepare_signal(sig, t, false)) 1597 goto out; 1598 1599 ret = 0; 1600 if (unlikely(!list_empty(&q->list))) { 1601 /* 1602 * If an SI_TIMER entry is already queue just increment 1603 * the overrun count. 1604 */ 1605 BUG_ON(q->info.si_code != SI_TIMER); 1606 q->info.si_overrun++; 1607 result = TRACE_SIGNAL_ALREADY_PENDING; 1608 goto out; 1609 } 1610 q->info.si_overrun = 0; 1611 1612 signalfd_notify(t, sig); 1613 pending = group ? &t->signal->shared_pending : &t->pending; 1614 list_add_tail(&q->list, &pending->list); 1615 sigaddset(&pending->signal, sig); 1616 complete_signal(sig, t, group); 1617 result = TRACE_SIGNAL_DELIVERED; 1618 out: 1619 trace_signal_generate(sig, &q->info, t, group, result); 1620 unlock_task_sighand(t, &flags); 1621 ret: 1622 return ret; 1623 } 1624 1625 /* 1626 * Let a parent know about the death of a child. 1627 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1628 * 1629 * Returns true if our parent ignored us and so we've switched to 1630 * self-reaping. 1631 */ 1632 bool do_notify_parent(struct task_struct *tsk, int sig) 1633 { 1634 struct siginfo info; 1635 unsigned long flags; 1636 struct sighand_struct *psig; 1637 bool autoreap = false; 1638 1639 BUG_ON(sig == -1); 1640 1641 /* do_notify_parent_cldstop should have been called instead. */ 1642 BUG_ON(task_is_stopped_or_traced(tsk)); 1643 1644 BUG_ON(!tsk->ptrace && 1645 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1646 1647 if (sig != SIGCHLD) { 1648 /* 1649 * This is only possible if parent == real_parent. 1650 * Check if it has changed security domain. 1651 */ 1652 if (tsk->parent_exec_id != tsk->parent->self_exec_id) 1653 sig = SIGCHLD; 1654 } 1655 1656 info.si_signo = sig; 1657 info.si_errno = 0; 1658 /* 1659 * We are under tasklist_lock here so our parent is tied to 1660 * us and cannot change. 1661 * 1662 * task_active_pid_ns will always return the same pid namespace 1663 * until a task passes through release_task. 1664 * 1665 * write_lock() currently calls preempt_disable() which is the 1666 * same as rcu_read_lock(), but according to Oleg, this is not 1667 * correct to rely on this 1668 */ 1669 rcu_read_lock(); 1670 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 1671 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 1672 task_uid(tsk)); 1673 rcu_read_unlock(); 1674 1675 info.si_utime = cputime_to_clock_t(tsk->utime + tsk->signal->utime); 1676 info.si_stime = cputime_to_clock_t(tsk->stime + tsk->signal->stime); 1677 1678 info.si_status = tsk->exit_code & 0x7f; 1679 if (tsk->exit_code & 0x80) 1680 info.si_code = CLD_DUMPED; 1681 else if (tsk->exit_code & 0x7f) 1682 info.si_code = CLD_KILLED; 1683 else { 1684 info.si_code = CLD_EXITED; 1685 info.si_status = tsk->exit_code >> 8; 1686 } 1687 1688 psig = tsk->parent->sighand; 1689 spin_lock_irqsave(&psig->siglock, flags); 1690 if (!tsk->ptrace && sig == SIGCHLD && 1691 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1692 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1693 /* 1694 * We are exiting and our parent doesn't care. POSIX.1 1695 * defines special semantics for setting SIGCHLD to SIG_IGN 1696 * or setting the SA_NOCLDWAIT flag: we should be reaped 1697 * automatically and not left for our parent's wait4 call. 1698 * Rather than having the parent do it as a magic kind of 1699 * signal handler, we just set this to tell do_exit that we 1700 * can be cleaned up without becoming a zombie. Note that 1701 * we still call __wake_up_parent in this case, because a 1702 * blocked sys_wait4 might now return -ECHILD. 1703 * 1704 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1705 * is implementation-defined: we do (if you don't want 1706 * it, just use SIG_IGN instead). 1707 */ 1708 autoreap = true; 1709 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1710 sig = 0; 1711 } 1712 if (valid_signal(sig) && sig) 1713 __group_send_sig_info(sig, &info, tsk->parent); 1714 __wake_up_parent(tsk, tsk->parent); 1715 spin_unlock_irqrestore(&psig->siglock, flags); 1716 1717 return autoreap; 1718 } 1719 1720 /** 1721 * do_notify_parent_cldstop - notify parent of stopped/continued state change 1722 * @tsk: task reporting the state change 1723 * @for_ptracer: the notification is for ptracer 1724 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 1725 * 1726 * Notify @tsk's parent that the stopped/continued state has changed. If 1727 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 1728 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 1729 * 1730 * CONTEXT: 1731 * Must be called with tasklist_lock at least read locked. 1732 */ 1733 static void do_notify_parent_cldstop(struct task_struct *tsk, 1734 bool for_ptracer, int why) 1735 { 1736 struct siginfo info; 1737 unsigned long flags; 1738 struct task_struct *parent; 1739 struct sighand_struct *sighand; 1740 1741 if (for_ptracer) { 1742 parent = tsk->parent; 1743 } else { 1744 tsk = tsk->group_leader; 1745 parent = tsk->real_parent; 1746 } 1747 1748 info.si_signo = SIGCHLD; 1749 info.si_errno = 0; 1750 /* 1751 * see comment in do_notify_parent() about the following 4 lines 1752 */ 1753 rcu_read_lock(); 1754 info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns); 1755 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 1756 rcu_read_unlock(); 1757 1758 info.si_utime = cputime_to_clock_t(tsk->utime); 1759 info.si_stime = cputime_to_clock_t(tsk->stime); 1760 1761 info.si_code = why; 1762 switch (why) { 1763 case CLD_CONTINUED: 1764 info.si_status = SIGCONT; 1765 break; 1766 case CLD_STOPPED: 1767 info.si_status = tsk->signal->group_exit_code & 0x7f; 1768 break; 1769 case CLD_TRAPPED: 1770 info.si_status = tsk->exit_code & 0x7f; 1771 break; 1772 default: 1773 BUG(); 1774 } 1775 1776 sighand = parent->sighand; 1777 spin_lock_irqsave(&sighand->siglock, flags); 1778 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1779 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1780 __group_send_sig_info(SIGCHLD, &info, parent); 1781 /* 1782 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1783 */ 1784 __wake_up_parent(tsk, parent); 1785 spin_unlock_irqrestore(&sighand->siglock, flags); 1786 } 1787 1788 static inline int may_ptrace_stop(void) 1789 { 1790 if (!likely(current->ptrace)) 1791 return 0; 1792 /* 1793 * Are we in the middle of do_coredump? 1794 * If so and our tracer is also part of the coredump stopping 1795 * is a deadlock situation, and pointless because our tracer 1796 * is dead so don't allow us to stop. 1797 * If SIGKILL was already sent before the caller unlocked 1798 * ->siglock we must see ->core_state != NULL. Otherwise it 1799 * is safe to enter schedule(). 1800 */ 1801 if (unlikely(current->mm->core_state) && 1802 unlikely(current->mm == current->parent->mm)) 1803 return 0; 1804 1805 return 1; 1806 } 1807 1808 /* 1809 * Return non-zero if there is a SIGKILL that should be waking us up. 1810 * Called with the siglock held. 1811 */ 1812 static int sigkill_pending(struct task_struct *tsk) 1813 { 1814 return sigismember(&tsk->pending.signal, SIGKILL) || 1815 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 1816 } 1817 1818 /* 1819 * This must be called with current->sighand->siglock held. 1820 * 1821 * This should be the path for all ptrace stops. 1822 * We always set current->last_siginfo while stopped here. 1823 * That makes it a way to test a stopped process for 1824 * being ptrace-stopped vs being job-control-stopped. 1825 * 1826 * If we actually decide not to stop at all because the tracer 1827 * is gone, we keep current->exit_code unless clear_code. 1828 */ 1829 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info) 1830 __releases(¤t->sighand->siglock) 1831 __acquires(¤t->sighand->siglock) 1832 { 1833 bool gstop_done = false; 1834 1835 if (arch_ptrace_stop_needed(exit_code, info)) { 1836 /* 1837 * The arch code has something special to do before a 1838 * ptrace stop. This is allowed to block, e.g. for faults 1839 * on user stack pages. We can't keep the siglock while 1840 * calling arch_ptrace_stop, so we must release it now. 1841 * To preserve proper semantics, we must do this before 1842 * any signal bookkeeping like checking group_stop_count. 1843 * Meanwhile, a SIGKILL could come in before we retake the 1844 * siglock. That must prevent us from sleeping in TASK_TRACED. 1845 * So after regaining the lock, we must check for SIGKILL. 1846 */ 1847 spin_unlock_irq(¤t->sighand->siglock); 1848 arch_ptrace_stop(exit_code, info); 1849 spin_lock_irq(¤t->sighand->siglock); 1850 if (sigkill_pending(current)) 1851 return; 1852 } 1853 1854 /* 1855 * We're committing to trapping. TRACED should be visible before 1856 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 1857 * Also, transition to TRACED and updates to ->jobctl should be 1858 * atomic with respect to siglock and should be done after the arch 1859 * hook as siglock is released and regrabbed across it. 1860 */ 1861 set_current_state(TASK_TRACED); 1862 1863 current->last_siginfo = info; 1864 current->exit_code = exit_code; 1865 1866 /* 1867 * If @why is CLD_STOPPED, we're trapping to participate in a group 1868 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 1869 * across siglock relocks since INTERRUPT was scheduled, PENDING 1870 * could be clear now. We act as if SIGCONT is received after 1871 * TASK_TRACED is entered - ignore it. 1872 */ 1873 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 1874 gstop_done = task_participate_group_stop(current); 1875 1876 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 1877 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 1878 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 1879 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 1880 1881 /* entering a trap, clear TRAPPING */ 1882 task_clear_jobctl_trapping(current); 1883 1884 spin_unlock_irq(¤t->sighand->siglock); 1885 read_lock(&tasklist_lock); 1886 if (may_ptrace_stop()) { 1887 /* 1888 * Notify parents of the stop. 1889 * 1890 * While ptraced, there are two parents - the ptracer and 1891 * the real_parent of the group_leader. The ptracer should 1892 * know about every stop while the real parent is only 1893 * interested in the completion of group stop. The states 1894 * for the two don't interact with each other. Notify 1895 * separately unless they're gonna be duplicates. 1896 */ 1897 do_notify_parent_cldstop(current, true, why); 1898 if (gstop_done && ptrace_reparented(current)) 1899 do_notify_parent_cldstop(current, false, why); 1900 1901 /* 1902 * Don't want to allow preemption here, because 1903 * sys_ptrace() needs this task to be inactive. 1904 * 1905 * XXX: implement read_unlock_no_resched(). 1906 */ 1907 preempt_disable(); 1908 read_unlock(&tasklist_lock); 1909 preempt_enable_no_resched(); 1910 schedule(); 1911 } else { 1912 /* 1913 * By the time we got the lock, our tracer went away. 1914 * Don't drop the lock yet, another tracer may come. 1915 * 1916 * If @gstop_done, the ptracer went away between group stop 1917 * completion and here. During detach, it would have set 1918 * JOBCTL_STOP_PENDING on us and we'll re-enter 1919 * TASK_STOPPED in do_signal_stop() on return, so notifying 1920 * the real parent of the group stop completion is enough. 1921 */ 1922 if (gstop_done) 1923 do_notify_parent_cldstop(current, false, why); 1924 1925 __set_current_state(TASK_RUNNING); 1926 if (clear_code) 1927 current->exit_code = 0; 1928 read_unlock(&tasklist_lock); 1929 } 1930 1931 /* 1932 * While in TASK_TRACED, we were considered "frozen enough". 1933 * Now that we woke up, it's crucial if we're supposed to be 1934 * frozen that we freeze now before running anything substantial. 1935 */ 1936 try_to_freeze(); 1937 1938 /* 1939 * We are back. Now reacquire the siglock before touching 1940 * last_siginfo, so that we are sure to have synchronized with 1941 * any signal-sending on another CPU that wants to examine it. 1942 */ 1943 spin_lock_irq(¤t->sighand->siglock); 1944 current->last_siginfo = NULL; 1945 1946 /* LISTENING can be set only during STOP traps, clear it */ 1947 current->jobctl &= ~JOBCTL_LISTENING; 1948 1949 /* 1950 * Queued signals ignored us while we were stopped for tracing. 1951 * So check for any that we should take before resuming user mode. 1952 * This sets TIF_SIGPENDING, but never clears it. 1953 */ 1954 recalc_sigpending_tsk(current); 1955 } 1956 1957 static void ptrace_do_notify(int signr, int exit_code, int why) 1958 { 1959 siginfo_t info; 1960 1961 memset(&info, 0, sizeof info); 1962 info.si_signo = signr; 1963 info.si_code = exit_code; 1964 info.si_pid = task_pid_vnr(current); 1965 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1966 1967 /* Let the debugger run. */ 1968 ptrace_stop(exit_code, why, 1, &info); 1969 } 1970 1971 void ptrace_notify(int exit_code) 1972 { 1973 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1974 1975 spin_lock_irq(¤t->sighand->siglock); 1976 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 1977 spin_unlock_irq(¤t->sighand->siglock); 1978 } 1979 1980 /** 1981 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 1982 * @signr: signr causing group stop if initiating 1983 * 1984 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 1985 * and participate in it. If already set, participate in the existing 1986 * group stop. If participated in a group stop (and thus slept), %true is 1987 * returned with siglock released. 1988 * 1989 * If ptraced, this function doesn't handle stop itself. Instead, 1990 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 1991 * untouched. The caller must ensure that INTERRUPT trap handling takes 1992 * places afterwards. 1993 * 1994 * CONTEXT: 1995 * Must be called with @current->sighand->siglock held, which is released 1996 * on %true return. 1997 * 1998 * RETURNS: 1999 * %false if group stop is already cancelled or ptrace trap is scheduled. 2000 * %true if participated in group stop. 2001 */ 2002 static bool do_signal_stop(int signr) 2003 __releases(¤t->sighand->siglock) 2004 { 2005 struct signal_struct *sig = current->signal; 2006 2007 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2008 unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2009 struct task_struct *t; 2010 2011 /* signr will be recorded in task->jobctl for retries */ 2012 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2013 2014 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2015 unlikely(signal_group_exit(sig))) 2016 return false; 2017 /* 2018 * There is no group stop already in progress. We must 2019 * initiate one now. 2020 * 2021 * While ptraced, a task may be resumed while group stop is 2022 * still in effect and then receive a stop signal and 2023 * initiate another group stop. This deviates from the 2024 * usual behavior as two consecutive stop signals can't 2025 * cause two group stops when !ptraced. That is why we 2026 * also check !task_is_stopped(t) below. 2027 * 2028 * The condition can be distinguished by testing whether 2029 * SIGNAL_STOP_STOPPED is already set. Don't generate 2030 * group_exit_code in such case. 2031 * 2032 * This is not necessary for SIGNAL_STOP_CONTINUED because 2033 * an intervening stop signal is required to cause two 2034 * continued events regardless of ptrace. 2035 */ 2036 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2037 sig->group_exit_code = signr; 2038 2039 sig->group_stop_count = 0; 2040 2041 if (task_set_jobctl_pending(current, signr | gstop)) 2042 sig->group_stop_count++; 2043 2044 for (t = next_thread(current); t != current; 2045 t = next_thread(t)) { 2046 /* 2047 * Setting state to TASK_STOPPED for a group 2048 * stop is always done with the siglock held, 2049 * so this check has no races. 2050 */ 2051 if (!task_is_stopped(t) && 2052 task_set_jobctl_pending(t, signr | gstop)) { 2053 sig->group_stop_count++; 2054 if (likely(!(t->ptrace & PT_SEIZED))) 2055 signal_wake_up(t, 0); 2056 else 2057 ptrace_trap_notify(t); 2058 } 2059 } 2060 } 2061 2062 if (likely(!current->ptrace)) { 2063 int notify = 0; 2064 2065 /* 2066 * If there are no other threads in the group, or if there 2067 * is a group stop in progress and we are the last to stop, 2068 * report to the parent. 2069 */ 2070 if (task_participate_group_stop(current)) 2071 notify = CLD_STOPPED; 2072 2073 __set_current_state(TASK_STOPPED); 2074 spin_unlock_irq(¤t->sighand->siglock); 2075 2076 /* 2077 * Notify the parent of the group stop completion. Because 2078 * we're not holding either the siglock or tasklist_lock 2079 * here, ptracer may attach inbetween; however, this is for 2080 * group stop and should always be delivered to the real 2081 * parent of the group leader. The new ptracer will get 2082 * its notification when this task transitions into 2083 * TASK_TRACED. 2084 */ 2085 if (notify) { 2086 read_lock(&tasklist_lock); 2087 do_notify_parent_cldstop(current, false, notify); 2088 read_unlock(&tasklist_lock); 2089 } 2090 2091 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2092 schedule(); 2093 return true; 2094 } else { 2095 /* 2096 * While ptraced, group stop is handled by STOP trap. 2097 * Schedule it and let the caller deal with it. 2098 */ 2099 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2100 return false; 2101 } 2102 } 2103 2104 /** 2105 * do_jobctl_trap - take care of ptrace jobctl traps 2106 * 2107 * When PT_SEIZED, it's used for both group stop and explicit 2108 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2109 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2110 * the stop signal; otherwise, %SIGTRAP. 2111 * 2112 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2113 * number as exit_code and no siginfo. 2114 * 2115 * CONTEXT: 2116 * Must be called with @current->sighand->siglock held, which may be 2117 * released and re-acquired before returning with intervening sleep. 2118 */ 2119 static void do_jobctl_trap(void) 2120 { 2121 struct signal_struct *signal = current->signal; 2122 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2123 2124 if (current->ptrace & PT_SEIZED) { 2125 if (!signal->group_stop_count && 2126 !(signal->flags & SIGNAL_STOP_STOPPED)) 2127 signr = SIGTRAP; 2128 WARN_ON_ONCE(!signr); 2129 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2130 CLD_STOPPED); 2131 } else { 2132 WARN_ON_ONCE(!signr); 2133 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2134 current->exit_code = 0; 2135 } 2136 } 2137 2138 static int ptrace_signal(int signr, siginfo_t *info, 2139 struct pt_regs *regs, void *cookie) 2140 { 2141 ptrace_signal_deliver(regs, cookie); 2142 /* 2143 * We do not check sig_kernel_stop(signr) but set this marker 2144 * unconditionally because we do not know whether debugger will 2145 * change signr. This flag has no meaning unless we are going 2146 * to stop after return from ptrace_stop(). In this case it will 2147 * be checked in do_signal_stop(), we should only stop if it was 2148 * not cleared by SIGCONT while we were sleeping. See also the 2149 * comment in dequeue_signal(). 2150 */ 2151 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2152 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2153 2154 /* We're back. Did the debugger cancel the sig? */ 2155 signr = current->exit_code; 2156 if (signr == 0) 2157 return signr; 2158 2159 current->exit_code = 0; 2160 2161 /* 2162 * Update the siginfo structure if the signal has 2163 * changed. If the debugger wanted something 2164 * specific in the siginfo structure then it should 2165 * have updated *info via PTRACE_SETSIGINFO. 2166 */ 2167 if (signr != info->si_signo) { 2168 info->si_signo = signr; 2169 info->si_errno = 0; 2170 info->si_code = SI_USER; 2171 rcu_read_lock(); 2172 info->si_pid = task_pid_vnr(current->parent); 2173 info->si_uid = from_kuid_munged(current_user_ns(), 2174 task_uid(current->parent)); 2175 rcu_read_unlock(); 2176 } 2177 2178 /* If the (new) signal is now blocked, requeue it. */ 2179 if (sigismember(¤t->blocked, signr)) { 2180 specific_send_sig_info(signr, info, current); 2181 signr = 0; 2182 } 2183 2184 return signr; 2185 } 2186 2187 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, 2188 struct pt_regs *regs, void *cookie) 2189 { 2190 struct sighand_struct *sighand = current->sighand; 2191 struct signal_struct *signal = current->signal; 2192 int signr; 2193 2194 if (unlikely(uprobe_deny_signal())) 2195 return 0; 2196 2197 relock: 2198 /* 2199 * We'll jump back here after any time we were stopped in TASK_STOPPED. 2200 * While in TASK_STOPPED, we were considered "frozen enough". 2201 * Now that we woke up, it's crucial if we're supposed to be 2202 * frozen that we freeze now before running anything substantial. 2203 */ 2204 try_to_freeze(); 2205 2206 spin_lock_irq(&sighand->siglock); 2207 /* 2208 * Every stopped thread goes here after wakeup. Check to see if 2209 * we should notify the parent, prepare_signal(SIGCONT) encodes 2210 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2211 */ 2212 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2213 int why; 2214 2215 if (signal->flags & SIGNAL_CLD_CONTINUED) 2216 why = CLD_CONTINUED; 2217 else 2218 why = CLD_STOPPED; 2219 2220 signal->flags &= ~SIGNAL_CLD_MASK; 2221 2222 spin_unlock_irq(&sighand->siglock); 2223 2224 /* 2225 * Notify the parent that we're continuing. This event is 2226 * always per-process and doesn't make whole lot of sense 2227 * for ptracers, who shouldn't consume the state via 2228 * wait(2) either, but, for backward compatibility, notify 2229 * the ptracer of the group leader too unless it's gonna be 2230 * a duplicate. 2231 */ 2232 read_lock(&tasklist_lock); 2233 do_notify_parent_cldstop(current, false, why); 2234 2235 if (ptrace_reparented(current->group_leader)) 2236 do_notify_parent_cldstop(current->group_leader, 2237 true, why); 2238 read_unlock(&tasklist_lock); 2239 2240 goto relock; 2241 } 2242 2243 for (;;) { 2244 struct k_sigaction *ka; 2245 2246 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2247 do_signal_stop(0)) 2248 goto relock; 2249 2250 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) { 2251 do_jobctl_trap(); 2252 spin_unlock_irq(&sighand->siglock); 2253 goto relock; 2254 } 2255 2256 signr = dequeue_signal(current, ¤t->blocked, info); 2257 2258 if (!signr) 2259 break; /* will return 0 */ 2260 2261 if (unlikely(current->ptrace) && signr != SIGKILL) { 2262 signr = ptrace_signal(signr, info, 2263 regs, cookie); 2264 if (!signr) 2265 continue; 2266 } 2267 2268 ka = &sighand->action[signr-1]; 2269 2270 /* Trace actually delivered signals. */ 2271 trace_signal_deliver(signr, info, ka); 2272 2273 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2274 continue; 2275 if (ka->sa.sa_handler != SIG_DFL) { 2276 /* Run the handler. */ 2277 *return_ka = *ka; 2278 2279 if (ka->sa.sa_flags & SA_ONESHOT) 2280 ka->sa.sa_handler = SIG_DFL; 2281 2282 break; /* will return non-zero "signr" value */ 2283 } 2284 2285 /* 2286 * Now we are doing the default action for this signal. 2287 */ 2288 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2289 continue; 2290 2291 /* 2292 * Global init gets no signals it doesn't want. 2293 * Container-init gets no signals it doesn't want from same 2294 * container. 2295 * 2296 * Note that if global/container-init sees a sig_kernel_only() 2297 * signal here, the signal must have been generated internally 2298 * or must have come from an ancestor namespace. In either 2299 * case, the signal cannot be dropped. 2300 */ 2301 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2302 !sig_kernel_only(signr)) 2303 continue; 2304 2305 if (sig_kernel_stop(signr)) { 2306 /* 2307 * The default action is to stop all threads in 2308 * the thread group. The job control signals 2309 * do nothing in an orphaned pgrp, but SIGSTOP 2310 * always works. Note that siglock needs to be 2311 * dropped during the call to is_orphaned_pgrp() 2312 * because of lock ordering with tasklist_lock. 2313 * This allows an intervening SIGCONT to be posted. 2314 * We need to check for that and bail out if necessary. 2315 */ 2316 if (signr != SIGSTOP) { 2317 spin_unlock_irq(&sighand->siglock); 2318 2319 /* signals can be posted during this window */ 2320 2321 if (is_current_pgrp_orphaned()) 2322 goto relock; 2323 2324 spin_lock_irq(&sighand->siglock); 2325 } 2326 2327 if (likely(do_signal_stop(info->si_signo))) { 2328 /* It released the siglock. */ 2329 goto relock; 2330 } 2331 2332 /* 2333 * We didn't actually stop, due to a race 2334 * with SIGCONT or something like that. 2335 */ 2336 continue; 2337 } 2338 2339 spin_unlock_irq(&sighand->siglock); 2340 2341 /* 2342 * Anything else is fatal, maybe with a core dump. 2343 */ 2344 current->flags |= PF_SIGNALED; 2345 2346 if (sig_kernel_coredump(signr)) { 2347 if (print_fatal_signals) 2348 print_fatal_signal(regs, info->si_signo); 2349 /* 2350 * If it was able to dump core, this kills all 2351 * other threads in the group and synchronizes with 2352 * their demise. If we lost the race with another 2353 * thread getting here, it set group_exit_code 2354 * first and our do_group_exit call below will use 2355 * that value and ignore the one we pass it. 2356 */ 2357 do_coredump(info->si_signo, info->si_signo, regs); 2358 } 2359 2360 /* 2361 * Death signals, no core dump. 2362 */ 2363 do_group_exit(info->si_signo); 2364 /* NOTREACHED */ 2365 } 2366 spin_unlock_irq(&sighand->siglock); 2367 return signr; 2368 } 2369 2370 /** 2371 * signal_delivered - 2372 * @sig: number of signal being delivered 2373 * @info: siginfo_t of signal being delivered 2374 * @ka: sigaction setting that chose the handler 2375 * @regs: user register state 2376 * @stepping: nonzero if debugger single-step or block-step in use 2377 * 2378 * This function should be called when a signal has succesfully been 2379 * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask 2380 * is always blocked, and the signal itself is blocked unless %SA_NODEFER 2381 * is set in @ka->sa.sa_flags. Tracing is notified. 2382 */ 2383 void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka, 2384 struct pt_regs *regs, int stepping) 2385 { 2386 sigset_t blocked; 2387 2388 /* A signal was successfully delivered, and the 2389 saved sigmask was stored on the signal frame, 2390 and will be restored by sigreturn. So we can 2391 simply clear the restore sigmask flag. */ 2392 clear_restore_sigmask(); 2393 2394 sigorsets(&blocked, ¤t->blocked, &ka->sa.sa_mask); 2395 if (!(ka->sa.sa_flags & SA_NODEFER)) 2396 sigaddset(&blocked, sig); 2397 set_current_blocked(&blocked); 2398 tracehook_signal_handler(sig, info, ka, regs, stepping); 2399 } 2400 2401 /* 2402 * It could be that complete_signal() picked us to notify about the 2403 * group-wide signal. Other threads should be notified now to take 2404 * the shared signals in @which since we will not. 2405 */ 2406 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2407 { 2408 sigset_t retarget; 2409 struct task_struct *t; 2410 2411 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2412 if (sigisemptyset(&retarget)) 2413 return; 2414 2415 t = tsk; 2416 while_each_thread(tsk, t) { 2417 if (t->flags & PF_EXITING) 2418 continue; 2419 2420 if (!has_pending_signals(&retarget, &t->blocked)) 2421 continue; 2422 /* Remove the signals this thread can handle. */ 2423 sigandsets(&retarget, &retarget, &t->blocked); 2424 2425 if (!signal_pending(t)) 2426 signal_wake_up(t, 0); 2427 2428 if (sigisemptyset(&retarget)) 2429 break; 2430 } 2431 } 2432 2433 void exit_signals(struct task_struct *tsk) 2434 { 2435 int group_stop = 0; 2436 sigset_t unblocked; 2437 2438 /* 2439 * @tsk is about to have PF_EXITING set - lock out users which 2440 * expect stable threadgroup. 2441 */ 2442 threadgroup_change_begin(tsk); 2443 2444 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 2445 tsk->flags |= PF_EXITING; 2446 threadgroup_change_end(tsk); 2447 return; 2448 } 2449 2450 spin_lock_irq(&tsk->sighand->siglock); 2451 /* 2452 * From now this task is not visible for group-wide signals, 2453 * see wants_signal(), do_signal_stop(). 2454 */ 2455 tsk->flags |= PF_EXITING; 2456 2457 threadgroup_change_end(tsk); 2458 2459 if (!signal_pending(tsk)) 2460 goto out; 2461 2462 unblocked = tsk->blocked; 2463 signotset(&unblocked); 2464 retarget_shared_pending(tsk, &unblocked); 2465 2466 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2467 task_participate_group_stop(tsk)) 2468 group_stop = CLD_STOPPED; 2469 out: 2470 spin_unlock_irq(&tsk->sighand->siglock); 2471 2472 /* 2473 * If group stop has completed, deliver the notification. This 2474 * should always go to the real parent of the group leader. 2475 */ 2476 if (unlikely(group_stop)) { 2477 read_lock(&tasklist_lock); 2478 do_notify_parent_cldstop(tsk, false, group_stop); 2479 read_unlock(&tasklist_lock); 2480 } 2481 } 2482 2483 EXPORT_SYMBOL(recalc_sigpending); 2484 EXPORT_SYMBOL_GPL(dequeue_signal); 2485 EXPORT_SYMBOL(flush_signals); 2486 EXPORT_SYMBOL(force_sig); 2487 EXPORT_SYMBOL(send_sig); 2488 EXPORT_SYMBOL(send_sig_info); 2489 EXPORT_SYMBOL(sigprocmask); 2490 EXPORT_SYMBOL(block_all_signals); 2491 EXPORT_SYMBOL(unblock_all_signals); 2492 2493 2494 /* 2495 * System call entry points. 2496 */ 2497 2498 /** 2499 * sys_restart_syscall - restart a system call 2500 */ 2501 SYSCALL_DEFINE0(restart_syscall) 2502 { 2503 struct restart_block *restart = ¤t_thread_info()->restart_block; 2504 return restart->fn(restart); 2505 } 2506 2507 long do_no_restart_syscall(struct restart_block *param) 2508 { 2509 return -EINTR; 2510 } 2511 2512 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 2513 { 2514 if (signal_pending(tsk) && !thread_group_empty(tsk)) { 2515 sigset_t newblocked; 2516 /* A set of now blocked but previously unblocked signals. */ 2517 sigandnsets(&newblocked, newset, ¤t->blocked); 2518 retarget_shared_pending(tsk, &newblocked); 2519 } 2520 tsk->blocked = *newset; 2521 recalc_sigpending(); 2522 } 2523 2524 /** 2525 * set_current_blocked - change current->blocked mask 2526 * @newset: new mask 2527 * 2528 * It is wrong to change ->blocked directly, this helper should be used 2529 * to ensure the process can't miss a shared signal we are going to block. 2530 */ 2531 void set_current_blocked(sigset_t *newset) 2532 { 2533 struct task_struct *tsk = current; 2534 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2535 spin_lock_irq(&tsk->sighand->siglock); 2536 __set_task_blocked(tsk, newset); 2537 spin_unlock_irq(&tsk->sighand->siglock); 2538 } 2539 2540 void __set_current_blocked(const sigset_t *newset) 2541 { 2542 struct task_struct *tsk = current; 2543 2544 spin_lock_irq(&tsk->sighand->siglock); 2545 __set_task_blocked(tsk, newset); 2546 spin_unlock_irq(&tsk->sighand->siglock); 2547 } 2548 2549 /* 2550 * This is also useful for kernel threads that want to temporarily 2551 * (or permanently) block certain signals. 2552 * 2553 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2554 * interface happily blocks "unblockable" signals like SIGKILL 2555 * and friends. 2556 */ 2557 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2558 { 2559 struct task_struct *tsk = current; 2560 sigset_t newset; 2561 2562 /* Lockless, only current can change ->blocked, never from irq */ 2563 if (oldset) 2564 *oldset = tsk->blocked; 2565 2566 switch (how) { 2567 case SIG_BLOCK: 2568 sigorsets(&newset, &tsk->blocked, set); 2569 break; 2570 case SIG_UNBLOCK: 2571 sigandnsets(&newset, &tsk->blocked, set); 2572 break; 2573 case SIG_SETMASK: 2574 newset = *set; 2575 break; 2576 default: 2577 return -EINVAL; 2578 } 2579 2580 __set_current_blocked(&newset); 2581 return 0; 2582 } 2583 2584 /** 2585 * sys_rt_sigprocmask - change the list of currently blocked signals 2586 * @how: whether to add, remove, or set signals 2587 * @nset: stores pending signals 2588 * @oset: previous value of signal mask if non-null 2589 * @sigsetsize: size of sigset_t type 2590 */ 2591 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 2592 sigset_t __user *, oset, size_t, sigsetsize) 2593 { 2594 sigset_t old_set, new_set; 2595 int error; 2596 2597 /* XXX: Don't preclude handling different sized sigset_t's. */ 2598 if (sigsetsize != sizeof(sigset_t)) 2599 return -EINVAL; 2600 2601 old_set = current->blocked; 2602 2603 if (nset) { 2604 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 2605 return -EFAULT; 2606 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2607 2608 error = sigprocmask(how, &new_set, NULL); 2609 if (error) 2610 return error; 2611 } 2612 2613 if (oset) { 2614 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 2615 return -EFAULT; 2616 } 2617 2618 return 0; 2619 } 2620 2621 long do_sigpending(void __user *set, unsigned long sigsetsize) 2622 { 2623 long error = -EINVAL; 2624 sigset_t pending; 2625 2626 if (sigsetsize > sizeof(sigset_t)) 2627 goto out; 2628 2629 spin_lock_irq(¤t->sighand->siglock); 2630 sigorsets(&pending, ¤t->pending.signal, 2631 ¤t->signal->shared_pending.signal); 2632 spin_unlock_irq(¤t->sighand->siglock); 2633 2634 /* Outside the lock because only this thread touches it. */ 2635 sigandsets(&pending, ¤t->blocked, &pending); 2636 2637 error = -EFAULT; 2638 if (!copy_to_user(set, &pending, sigsetsize)) 2639 error = 0; 2640 2641 out: 2642 return error; 2643 } 2644 2645 /** 2646 * sys_rt_sigpending - examine a pending signal that has been raised 2647 * while blocked 2648 * @set: stores pending signals 2649 * @sigsetsize: size of sigset_t type or larger 2650 */ 2651 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize) 2652 { 2653 return do_sigpending(set, sigsetsize); 2654 } 2655 2656 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2657 2658 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) 2659 { 2660 int err; 2661 2662 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2663 return -EFAULT; 2664 if (from->si_code < 0) 2665 return __copy_to_user(to, from, sizeof(siginfo_t)) 2666 ? -EFAULT : 0; 2667 /* 2668 * If you change siginfo_t structure, please be sure 2669 * this code is fixed accordingly. 2670 * Please remember to update the signalfd_copyinfo() function 2671 * inside fs/signalfd.c too, in case siginfo_t changes. 2672 * It should never copy any pad contained in the structure 2673 * to avoid security leaks, but must copy the generic 2674 * 3 ints plus the relevant union member. 2675 */ 2676 err = __put_user(from->si_signo, &to->si_signo); 2677 err |= __put_user(from->si_errno, &to->si_errno); 2678 err |= __put_user((short)from->si_code, &to->si_code); 2679 switch (from->si_code & __SI_MASK) { 2680 case __SI_KILL: 2681 err |= __put_user(from->si_pid, &to->si_pid); 2682 err |= __put_user(from->si_uid, &to->si_uid); 2683 break; 2684 case __SI_TIMER: 2685 err |= __put_user(from->si_tid, &to->si_tid); 2686 err |= __put_user(from->si_overrun, &to->si_overrun); 2687 err |= __put_user(from->si_ptr, &to->si_ptr); 2688 break; 2689 case __SI_POLL: 2690 err |= __put_user(from->si_band, &to->si_band); 2691 err |= __put_user(from->si_fd, &to->si_fd); 2692 break; 2693 case __SI_FAULT: 2694 err |= __put_user(from->si_addr, &to->si_addr); 2695 #ifdef __ARCH_SI_TRAPNO 2696 err |= __put_user(from->si_trapno, &to->si_trapno); 2697 #endif 2698 #ifdef BUS_MCEERR_AO 2699 /* 2700 * Other callers might not initialize the si_lsb field, 2701 * so check explicitly for the right codes here. 2702 */ 2703 if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO) 2704 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb); 2705 #endif 2706 break; 2707 case __SI_CHLD: 2708 err |= __put_user(from->si_pid, &to->si_pid); 2709 err |= __put_user(from->si_uid, &to->si_uid); 2710 err |= __put_user(from->si_status, &to->si_status); 2711 err |= __put_user(from->si_utime, &to->si_utime); 2712 err |= __put_user(from->si_stime, &to->si_stime); 2713 break; 2714 case __SI_RT: /* This is not generated by the kernel as of now. */ 2715 case __SI_MESGQ: /* But this is */ 2716 err |= __put_user(from->si_pid, &to->si_pid); 2717 err |= __put_user(from->si_uid, &to->si_uid); 2718 err |= __put_user(from->si_ptr, &to->si_ptr); 2719 break; 2720 #ifdef __ARCH_SIGSYS 2721 case __SI_SYS: 2722 err |= __put_user(from->si_call_addr, &to->si_call_addr); 2723 err |= __put_user(from->si_syscall, &to->si_syscall); 2724 err |= __put_user(from->si_arch, &to->si_arch); 2725 break; 2726 #endif 2727 default: /* this is just in case for now ... */ 2728 err |= __put_user(from->si_pid, &to->si_pid); 2729 err |= __put_user(from->si_uid, &to->si_uid); 2730 break; 2731 } 2732 return err; 2733 } 2734 2735 #endif 2736 2737 /** 2738 * do_sigtimedwait - wait for queued signals specified in @which 2739 * @which: queued signals to wait for 2740 * @info: if non-null, the signal's siginfo is returned here 2741 * @ts: upper bound on process time suspension 2742 */ 2743 int do_sigtimedwait(const sigset_t *which, siginfo_t *info, 2744 const struct timespec *ts) 2745 { 2746 struct task_struct *tsk = current; 2747 long timeout = MAX_SCHEDULE_TIMEOUT; 2748 sigset_t mask = *which; 2749 int sig; 2750 2751 if (ts) { 2752 if (!timespec_valid(ts)) 2753 return -EINVAL; 2754 timeout = timespec_to_jiffies(ts); 2755 /* 2756 * We can be close to the next tick, add another one 2757 * to ensure we will wait at least the time asked for. 2758 */ 2759 if (ts->tv_sec || ts->tv_nsec) 2760 timeout++; 2761 } 2762 2763 /* 2764 * Invert the set of allowed signals to get those we want to block. 2765 */ 2766 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2767 signotset(&mask); 2768 2769 spin_lock_irq(&tsk->sighand->siglock); 2770 sig = dequeue_signal(tsk, &mask, info); 2771 if (!sig && timeout) { 2772 /* 2773 * None ready, temporarily unblock those we're interested 2774 * while we are sleeping in so that we'll be awakened when 2775 * they arrive. Unblocking is always fine, we can avoid 2776 * set_current_blocked(). 2777 */ 2778 tsk->real_blocked = tsk->blocked; 2779 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 2780 recalc_sigpending(); 2781 spin_unlock_irq(&tsk->sighand->siglock); 2782 2783 timeout = schedule_timeout_interruptible(timeout); 2784 2785 spin_lock_irq(&tsk->sighand->siglock); 2786 __set_task_blocked(tsk, &tsk->real_blocked); 2787 siginitset(&tsk->real_blocked, 0); 2788 sig = dequeue_signal(tsk, &mask, info); 2789 } 2790 spin_unlock_irq(&tsk->sighand->siglock); 2791 2792 if (sig) 2793 return sig; 2794 return timeout ? -EINTR : -EAGAIN; 2795 } 2796 2797 /** 2798 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 2799 * in @uthese 2800 * @uthese: queued signals to wait for 2801 * @uinfo: if non-null, the signal's siginfo is returned here 2802 * @uts: upper bound on process time suspension 2803 * @sigsetsize: size of sigset_t type 2804 */ 2805 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 2806 siginfo_t __user *, uinfo, const struct timespec __user *, uts, 2807 size_t, sigsetsize) 2808 { 2809 sigset_t these; 2810 struct timespec ts; 2811 siginfo_t info; 2812 int ret; 2813 2814 /* XXX: Don't preclude handling different sized sigset_t's. */ 2815 if (sigsetsize != sizeof(sigset_t)) 2816 return -EINVAL; 2817 2818 if (copy_from_user(&these, uthese, sizeof(these))) 2819 return -EFAULT; 2820 2821 if (uts) { 2822 if (copy_from_user(&ts, uts, sizeof(ts))) 2823 return -EFAULT; 2824 } 2825 2826 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 2827 2828 if (ret > 0 && uinfo) { 2829 if (copy_siginfo_to_user(uinfo, &info)) 2830 ret = -EFAULT; 2831 } 2832 2833 return ret; 2834 } 2835 2836 /** 2837 * sys_kill - send a signal to a process 2838 * @pid: the PID of the process 2839 * @sig: signal to be sent 2840 */ 2841 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 2842 { 2843 struct siginfo info; 2844 2845 info.si_signo = sig; 2846 info.si_errno = 0; 2847 info.si_code = SI_USER; 2848 info.si_pid = task_tgid_vnr(current); 2849 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2850 2851 return kill_something_info(sig, &info, pid); 2852 } 2853 2854 static int 2855 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) 2856 { 2857 struct task_struct *p; 2858 int error = -ESRCH; 2859 2860 rcu_read_lock(); 2861 p = find_task_by_vpid(pid); 2862 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 2863 error = check_kill_permission(sig, info, p); 2864 /* 2865 * The null signal is a permissions and process existence 2866 * probe. No signal is actually delivered. 2867 */ 2868 if (!error && sig) { 2869 error = do_send_sig_info(sig, info, p, false); 2870 /* 2871 * If lock_task_sighand() failed we pretend the task 2872 * dies after receiving the signal. The window is tiny, 2873 * and the signal is private anyway. 2874 */ 2875 if (unlikely(error == -ESRCH)) 2876 error = 0; 2877 } 2878 } 2879 rcu_read_unlock(); 2880 2881 return error; 2882 } 2883 2884 static int do_tkill(pid_t tgid, pid_t pid, int sig) 2885 { 2886 struct siginfo info; 2887 2888 info.si_signo = sig; 2889 info.si_errno = 0; 2890 info.si_code = SI_TKILL; 2891 info.si_pid = task_tgid_vnr(current); 2892 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2893 2894 return do_send_specific(tgid, pid, sig, &info); 2895 } 2896 2897 /** 2898 * sys_tgkill - send signal to one specific thread 2899 * @tgid: the thread group ID of the thread 2900 * @pid: the PID of the thread 2901 * @sig: signal to be sent 2902 * 2903 * This syscall also checks the @tgid and returns -ESRCH even if the PID 2904 * exists but it's not belonging to the target process anymore. This 2905 * method solves the problem of threads exiting and PIDs getting reused. 2906 */ 2907 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 2908 { 2909 /* This is only valid for single tasks */ 2910 if (pid <= 0 || tgid <= 0) 2911 return -EINVAL; 2912 2913 return do_tkill(tgid, pid, sig); 2914 } 2915 2916 /** 2917 * sys_tkill - send signal to one specific task 2918 * @pid: the PID of the task 2919 * @sig: signal to be sent 2920 * 2921 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2922 */ 2923 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 2924 { 2925 /* This is only valid for single tasks */ 2926 if (pid <= 0) 2927 return -EINVAL; 2928 2929 return do_tkill(0, pid, sig); 2930 } 2931 2932 /** 2933 * sys_rt_sigqueueinfo - send signal information to a signal 2934 * @pid: the PID of the thread 2935 * @sig: signal to be sent 2936 * @uinfo: signal info to be sent 2937 */ 2938 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 2939 siginfo_t __user *, uinfo) 2940 { 2941 siginfo_t info; 2942 2943 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2944 return -EFAULT; 2945 2946 /* Not even root can pretend to send signals from the kernel. 2947 * Nor can they impersonate a kill()/tgkill(), which adds source info. 2948 */ 2949 if (info.si_code >= 0 || info.si_code == SI_TKILL) { 2950 /* We used to allow any < 0 si_code */ 2951 WARN_ON_ONCE(info.si_code < 0); 2952 return -EPERM; 2953 } 2954 info.si_signo = sig; 2955 2956 /* POSIX.1b doesn't mention process groups. */ 2957 return kill_proc_info(sig, &info, pid); 2958 } 2959 2960 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info) 2961 { 2962 /* This is only valid for single tasks */ 2963 if (pid <= 0 || tgid <= 0) 2964 return -EINVAL; 2965 2966 /* Not even root can pretend to send signals from the kernel. 2967 * Nor can they impersonate a kill()/tgkill(), which adds source info. 2968 */ 2969 if (info->si_code >= 0 || info->si_code == SI_TKILL) { 2970 /* We used to allow any < 0 si_code */ 2971 WARN_ON_ONCE(info->si_code < 0); 2972 return -EPERM; 2973 } 2974 info->si_signo = sig; 2975 2976 return do_send_specific(tgid, pid, sig, info); 2977 } 2978 2979 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 2980 siginfo_t __user *, uinfo) 2981 { 2982 siginfo_t info; 2983 2984 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2985 return -EFAULT; 2986 2987 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 2988 } 2989 2990 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 2991 { 2992 struct task_struct *t = current; 2993 struct k_sigaction *k; 2994 sigset_t mask; 2995 2996 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 2997 return -EINVAL; 2998 2999 k = &t->sighand->action[sig-1]; 3000 3001 spin_lock_irq(¤t->sighand->siglock); 3002 if (oact) 3003 *oact = *k; 3004 3005 if (act) { 3006 sigdelsetmask(&act->sa.sa_mask, 3007 sigmask(SIGKILL) | sigmask(SIGSTOP)); 3008 *k = *act; 3009 /* 3010 * POSIX 3.3.1.3: 3011 * "Setting a signal action to SIG_IGN for a signal that is 3012 * pending shall cause the pending signal to be discarded, 3013 * whether or not it is blocked." 3014 * 3015 * "Setting a signal action to SIG_DFL for a signal that is 3016 * pending and whose default action is to ignore the signal 3017 * (for example, SIGCHLD), shall cause the pending signal to 3018 * be discarded, whether or not it is blocked" 3019 */ 3020 if (sig_handler_ignored(sig_handler(t, sig), sig)) { 3021 sigemptyset(&mask); 3022 sigaddset(&mask, sig); 3023 rm_from_queue_full(&mask, &t->signal->shared_pending); 3024 do { 3025 rm_from_queue_full(&mask, &t->pending); 3026 t = next_thread(t); 3027 } while (t != current); 3028 } 3029 } 3030 3031 spin_unlock_irq(¤t->sighand->siglock); 3032 return 0; 3033 } 3034 3035 int 3036 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 3037 { 3038 stack_t oss; 3039 int error; 3040 3041 oss.ss_sp = (void __user *) current->sas_ss_sp; 3042 oss.ss_size = current->sas_ss_size; 3043 oss.ss_flags = sas_ss_flags(sp); 3044 3045 if (uss) { 3046 void __user *ss_sp; 3047 size_t ss_size; 3048 int ss_flags; 3049 3050 error = -EFAULT; 3051 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))) 3052 goto out; 3053 error = __get_user(ss_sp, &uss->ss_sp) | 3054 __get_user(ss_flags, &uss->ss_flags) | 3055 __get_user(ss_size, &uss->ss_size); 3056 if (error) 3057 goto out; 3058 3059 error = -EPERM; 3060 if (on_sig_stack(sp)) 3061 goto out; 3062 3063 error = -EINVAL; 3064 /* 3065 * Note - this code used to test ss_flags incorrectly: 3066 * old code may have been written using ss_flags==0 3067 * to mean ss_flags==SS_ONSTACK (as this was the only 3068 * way that worked) - this fix preserves that older 3069 * mechanism. 3070 */ 3071 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) 3072 goto out; 3073 3074 if (ss_flags == SS_DISABLE) { 3075 ss_size = 0; 3076 ss_sp = NULL; 3077 } else { 3078 error = -ENOMEM; 3079 if (ss_size < MINSIGSTKSZ) 3080 goto out; 3081 } 3082 3083 current->sas_ss_sp = (unsigned long) ss_sp; 3084 current->sas_ss_size = ss_size; 3085 } 3086 3087 error = 0; 3088 if (uoss) { 3089 error = -EFAULT; 3090 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss))) 3091 goto out; 3092 error = __put_user(oss.ss_sp, &uoss->ss_sp) | 3093 __put_user(oss.ss_size, &uoss->ss_size) | 3094 __put_user(oss.ss_flags, &uoss->ss_flags); 3095 } 3096 3097 out: 3098 return error; 3099 } 3100 3101 #ifdef __ARCH_WANT_SYS_SIGPENDING 3102 3103 /** 3104 * sys_sigpending - examine pending signals 3105 * @set: where mask of pending signal is returned 3106 */ 3107 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set) 3108 { 3109 return do_sigpending(set, sizeof(*set)); 3110 } 3111 3112 #endif 3113 3114 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 3115 /** 3116 * sys_sigprocmask - examine and change blocked signals 3117 * @how: whether to add, remove, or set signals 3118 * @nset: signals to add or remove (if non-null) 3119 * @oset: previous value of signal mask if non-null 3120 * 3121 * Some platforms have their own version with special arguments; 3122 * others support only sys_rt_sigprocmask. 3123 */ 3124 3125 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 3126 old_sigset_t __user *, oset) 3127 { 3128 old_sigset_t old_set, new_set; 3129 sigset_t new_blocked; 3130 3131 old_set = current->blocked.sig[0]; 3132 3133 if (nset) { 3134 if (copy_from_user(&new_set, nset, sizeof(*nset))) 3135 return -EFAULT; 3136 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP)); 3137 3138 new_blocked = current->blocked; 3139 3140 switch (how) { 3141 case SIG_BLOCK: 3142 sigaddsetmask(&new_blocked, new_set); 3143 break; 3144 case SIG_UNBLOCK: 3145 sigdelsetmask(&new_blocked, new_set); 3146 break; 3147 case SIG_SETMASK: 3148 new_blocked.sig[0] = new_set; 3149 break; 3150 default: 3151 return -EINVAL; 3152 } 3153 3154 __set_current_blocked(&new_blocked); 3155 } 3156 3157 if (oset) { 3158 if (copy_to_user(oset, &old_set, sizeof(*oset))) 3159 return -EFAULT; 3160 } 3161 3162 return 0; 3163 } 3164 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 3165 3166 #ifdef __ARCH_WANT_SYS_RT_SIGACTION 3167 /** 3168 * sys_rt_sigaction - alter an action taken by a process 3169 * @sig: signal to be sent 3170 * @act: new sigaction 3171 * @oact: used to save the previous sigaction 3172 * @sigsetsize: size of sigset_t type 3173 */ 3174 SYSCALL_DEFINE4(rt_sigaction, int, sig, 3175 const struct sigaction __user *, act, 3176 struct sigaction __user *, oact, 3177 size_t, sigsetsize) 3178 { 3179 struct k_sigaction new_sa, old_sa; 3180 int ret = -EINVAL; 3181 3182 /* XXX: Don't preclude handling different sized sigset_t's. */ 3183 if (sigsetsize != sizeof(sigset_t)) 3184 goto out; 3185 3186 if (act) { 3187 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 3188 return -EFAULT; 3189 } 3190 3191 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 3192 3193 if (!ret && oact) { 3194 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 3195 return -EFAULT; 3196 } 3197 out: 3198 return ret; 3199 } 3200 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */ 3201 3202 #ifdef __ARCH_WANT_SYS_SGETMASK 3203 3204 /* 3205 * For backwards compatibility. Functionality superseded by sigprocmask. 3206 */ 3207 SYSCALL_DEFINE0(sgetmask) 3208 { 3209 /* SMP safe */ 3210 return current->blocked.sig[0]; 3211 } 3212 3213 SYSCALL_DEFINE1(ssetmask, int, newmask) 3214 { 3215 int old = current->blocked.sig[0]; 3216 sigset_t newset; 3217 3218 set_current_blocked(&newset); 3219 3220 return old; 3221 } 3222 #endif /* __ARCH_WANT_SGETMASK */ 3223 3224 #ifdef __ARCH_WANT_SYS_SIGNAL 3225 /* 3226 * For backwards compatibility. Functionality superseded by sigaction. 3227 */ 3228 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 3229 { 3230 struct k_sigaction new_sa, old_sa; 3231 int ret; 3232 3233 new_sa.sa.sa_handler = handler; 3234 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 3235 sigemptyset(&new_sa.sa.sa_mask); 3236 3237 ret = do_sigaction(sig, &new_sa, &old_sa); 3238 3239 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 3240 } 3241 #endif /* __ARCH_WANT_SYS_SIGNAL */ 3242 3243 #ifdef __ARCH_WANT_SYS_PAUSE 3244 3245 SYSCALL_DEFINE0(pause) 3246 { 3247 while (!signal_pending(current)) { 3248 current->state = TASK_INTERRUPTIBLE; 3249 schedule(); 3250 } 3251 return -ERESTARTNOHAND; 3252 } 3253 3254 #endif 3255 3256 int sigsuspend(sigset_t *set) 3257 { 3258 current->saved_sigmask = current->blocked; 3259 set_current_blocked(set); 3260 3261 current->state = TASK_INTERRUPTIBLE; 3262 schedule(); 3263 set_restore_sigmask(); 3264 return -ERESTARTNOHAND; 3265 } 3266 3267 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND 3268 /** 3269 * sys_rt_sigsuspend - replace the signal mask for a value with the 3270 * @unewset value until a signal is received 3271 * @unewset: new signal mask value 3272 * @sigsetsize: size of sigset_t type 3273 */ 3274 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 3275 { 3276 sigset_t newset; 3277 3278 /* XXX: Don't preclude handling different sized sigset_t's. */ 3279 if (sigsetsize != sizeof(sigset_t)) 3280 return -EINVAL; 3281 3282 if (copy_from_user(&newset, unewset, sizeof(newset))) 3283 return -EFAULT; 3284 return sigsuspend(&newset); 3285 } 3286 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */ 3287 3288 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma) 3289 { 3290 return NULL; 3291 } 3292 3293 void __init signals_init(void) 3294 { 3295 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 3296 } 3297 3298 #ifdef CONFIG_KGDB_KDB 3299 #include <linux/kdb.h> 3300 /* 3301 * kdb_send_sig_info - Allows kdb to send signals without exposing 3302 * signal internals. This function checks if the required locks are 3303 * available before calling the main signal code, to avoid kdb 3304 * deadlocks. 3305 */ 3306 void 3307 kdb_send_sig_info(struct task_struct *t, struct siginfo *info) 3308 { 3309 static struct task_struct *kdb_prev_t; 3310 int sig, new_t; 3311 if (!spin_trylock(&t->sighand->siglock)) { 3312 kdb_printf("Can't do kill command now.\n" 3313 "The sigmask lock is held somewhere else in " 3314 "kernel, try again later\n"); 3315 return; 3316 } 3317 spin_unlock(&t->sighand->siglock); 3318 new_t = kdb_prev_t != t; 3319 kdb_prev_t = t; 3320 if (t->state != TASK_RUNNING && new_t) { 3321 kdb_printf("Process is not RUNNING, sending a signal from " 3322 "kdb risks deadlock\n" 3323 "on the run queue locks. " 3324 "The signal has _not_ been sent.\n" 3325 "Reissue the kill command if you want to risk " 3326 "the deadlock.\n"); 3327 return; 3328 } 3329 sig = info->si_signo; 3330 if (send_sig_info(sig, info, t)) 3331 kdb_printf("Fail to deliver Signal %d to process %d.\n", 3332 sig, t->pid); 3333 else 3334 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 3335 } 3336 #endif /* CONFIG_KGDB_KDB */ 3337