xref: /linux/kernel/signal.c (revision ccea15f45eb0ab12d658f88b5d4be005cb2bb1a7)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/config.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/smp_lock.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
19 #include <linux/fs.h>
20 #include <linux/tty.h>
21 #include <linux/binfmts.h>
22 #include <linux/security.h>
23 #include <linux/syscalls.h>
24 #include <linux/ptrace.h>
25 #include <linux/signal.h>
26 #include <linux/audit.h>
27 #include <linux/capability.h>
28 #include <asm/param.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/siginfo.h>
32 
33 /*
34  * SLAB caches for signal bits.
35  */
36 
37 static kmem_cache_t *sigqueue_cachep;
38 
39 /*
40  * In POSIX a signal is sent either to a specific thread (Linux task)
41  * or to the process as a whole (Linux thread group).  How the signal
42  * is sent determines whether it's to one thread or the whole group,
43  * which determines which signal mask(s) are involved in blocking it
44  * from being delivered until later.  When the signal is delivered,
45  * either it's caught or ignored by a user handler or it has a default
46  * effect that applies to the whole thread group (POSIX process).
47  *
48  * The possible effects an unblocked signal set to SIG_DFL can have are:
49  *   ignore	- Nothing Happens
50  *   terminate	- kill the process, i.e. all threads in the group,
51  * 		  similar to exit_group.  The group leader (only) reports
52  *		  WIFSIGNALED status to its parent.
53  *   coredump	- write a core dump file describing all threads using
54  *		  the same mm and then kill all those threads
55  *   stop 	- stop all the threads in the group, i.e. TASK_STOPPED state
56  *
57  * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
58  * Other signals when not blocked and set to SIG_DFL behaves as follows.
59  * The job control signals also have other special effects.
60  *
61  *	+--------------------+------------------+
62  *	|  POSIX signal      |  default action  |
63  *	+--------------------+------------------+
64  *	|  SIGHUP            |  terminate	|
65  *	|  SIGINT            |	terminate	|
66  *	|  SIGQUIT           |	coredump 	|
67  *	|  SIGILL            |	coredump 	|
68  *	|  SIGTRAP           |	coredump 	|
69  *	|  SIGABRT/SIGIOT    |	coredump 	|
70  *	|  SIGBUS            |	coredump 	|
71  *	|  SIGFPE            |	coredump 	|
72  *	|  SIGKILL           |	terminate(+)	|
73  *	|  SIGUSR1           |	terminate	|
74  *	|  SIGSEGV           |	coredump 	|
75  *	|  SIGUSR2           |	terminate	|
76  *	|  SIGPIPE           |	terminate	|
77  *	|  SIGALRM           |	terminate	|
78  *	|  SIGTERM           |	terminate	|
79  *	|  SIGCHLD           |	ignore   	|
80  *	|  SIGCONT           |	ignore(*)	|
81  *	|  SIGSTOP           |	stop(*)(+)  	|
82  *	|  SIGTSTP           |	stop(*)  	|
83  *	|  SIGTTIN           |	stop(*)  	|
84  *	|  SIGTTOU           |	stop(*)  	|
85  *	|  SIGURG            |	ignore   	|
86  *	|  SIGXCPU           |	coredump 	|
87  *	|  SIGXFSZ           |	coredump 	|
88  *	|  SIGVTALRM         |	terminate	|
89  *	|  SIGPROF           |	terminate	|
90  *	|  SIGPOLL/SIGIO     |	terminate	|
91  *	|  SIGSYS/SIGUNUSED  |	coredump 	|
92  *	|  SIGSTKFLT         |	terminate	|
93  *	|  SIGWINCH          |	ignore   	|
94  *	|  SIGPWR            |	terminate	|
95  *	|  SIGRTMIN-SIGRTMAX |	terminate       |
96  *	+--------------------+------------------+
97  *	|  non-POSIX signal  |  default action  |
98  *	+--------------------+------------------+
99  *	|  SIGEMT            |  coredump	|
100  *	+--------------------+------------------+
101  *
102  * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
103  * (*) Special job control effects:
104  * When SIGCONT is sent, it resumes the process (all threads in the group)
105  * from TASK_STOPPED state and also clears any pending/queued stop signals
106  * (any of those marked with "stop(*)").  This happens regardless of blocking,
107  * catching, or ignoring SIGCONT.  When any stop signal is sent, it clears
108  * any pending/queued SIGCONT signals; this happens regardless of blocking,
109  * catching, or ignored the stop signal, though (except for SIGSTOP) the
110  * default action of stopping the process may happen later or never.
111  */
112 
113 #ifdef SIGEMT
114 #define M_SIGEMT	M(SIGEMT)
115 #else
116 #define M_SIGEMT	0
117 #endif
118 
119 #if SIGRTMIN > BITS_PER_LONG
120 #define M(sig) (1ULL << ((sig)-1))
121 #else
122 #define M(sig) (1UL << ((sig)-1))
123 #endif
124 #define T(sig, mask) (M(sig) & (mask))
125 
126 #define SIG_KERNEL_ONLY_MASK (\
127 	M(SIGKILL)   |  M(SIGSTOP)                                   )
128 
129 #define SIG_KERNEL_STOP_MASK (\
130 	M(SIGSTOP)   |  M(SIGTSTP)   |  M(SIGTTIN)   |  M(SIGTTOU)   )
131 
132 #define SIG_KERNEL_COREDUMP_MASK (\
133         M(SIGQUIT)   |  M(SIGILL)    |  M(SIGTRAP)   |  M(SIGABRT)   | \
134         M(SIGFPE)    |  M(SIGSEGV)   |  M(SIGBUS)    |  M(SIGSYS)    | \
135         M(SIGXCPU)   |  M(SIGXFSZ)   |  M_SIGEMT                     )
136 
137 #define SIG_KERNEL_IGNORE_MASK (\
138         M(SIGCONT)   |  M(SIGCHLD)   |  M(SIGWINCH)  |  M(SIGURG)    )
139 
140 #define sig_kernel_only(sig) \
141 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_ONLY_MASK))
142 #define sig_kernel_coredump(sig) \
143 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_COREDUMP_MASK))
144 #define sig_kernel_ignore(sig) \
145 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_IGNORE_MASK))
146 #define sig_kernel_stop(sig) \
147 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_STOP_MASK))
148 
149 #define sig_needs_tasklist(sig)	((sig) == SIGCONT)
150 
151 #define sig_user_defined(t, signr) \
152 	(((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) &&	\
153 	 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
154 
155 #define sig_fatal(t, signr) \
156 	(!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
157 	 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
158 
159 static int sig_ignored(struct task_struct *t, int sig)
160 {
161 	void __user * handler;
162 
163 	/*
164 	 * Tracers always want to know about signals..
165 	 */
166 	if (t->ptrace & PT_PTRACED)
167 		return 0;
168 
169 	/*
170 	 * Blocked signals are never ignored, since the
171 	 * signal handler may change by the time it is
172 	 * unblocked.
173 	 */
174 	if (sigismember(&t->blocked, sig))
175 		return 0;
176 
177 	/* Is it explicitly or implicitly ignored? */
178 	handler = t->sighand->action[sig-1].sa.sa_handler;
179 	return   handler == SIG_IGN ||
180 		(handler == SIG_DFL && sig_kernel_ignore(sig));
181 }
182 
183 /*
184  * Re-calculate pending state from the set of locally pending
185  * signals, globally pending signals, and blocked signals.
186  */
187 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
188 {
189 	unsigned long ready;
190 	long i;
191 
192 	switch (_NSIG_WORDS) {
193 	default:
194 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
195 			ready |= signal->sig[i] &~ blocked->sig[i];
196 		break;
197 
198 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
199 		ready |= signal->sig[2] &~ blocked->sig[2];
200 		ready |= signal->sig[1] &~ blocked->sig[1];
201 		ready |= signal->sig[0] &~ blocked->sig[0];
202 		break;
203 
204 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
205 		ready |= signal->sig[0] &~ blocked->sig[0];
206 		break;
207 
208 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
209 	}
210 	return ready !=	0;
211 }
212 
213 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
214 
215 fastcall void recalc_sigpending_tsk(struct task_struct *t)
216 {
217 	if (t->signal->group_stop_count > 0 ||
218 	    (freezing(t)) ||
219 	    PENDING(&t->pending, &t->blocked) ||
220 	    PENDING(&t->signal->shared_pending, &t->blocked))
221 		set_tsk_thread_flag(t, TIF_SIGPENDING);
222 	else
223 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
224 }
225 
226 void recalc_sigpending(void)
227 {
228 	recalc_sigpending_tsk(current);
229 }
230 
231 /* Given the mask, find the first available signal that should be serviced. */
232 
233 static int
234 next_signal(struct sigpending *pending, sigset_t *mask)
235 {
236 	unsigned long i, *s, *m, x;
237 	int sig = 0;
238 
239 	s = pending->signal.sig;
240 	m = mask->sig;
241 	switch (_NSIG_WORDS) {
242 	default:
243 		for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
244 			if ((x = *s &~ *m) != 0) {
245 				sig = ffz(~x) + i*_NSIG_BPW + 1;
246 				break;
247 			}
248 		break;
249 
250 	case 2: if ((x = s[0] &~ m[0]) != 0)
251 			sig = 1;
252 		else if ((x = s[1] &~ m[1]) != 0)
253 			sig = _NSIG_BPW + 1;
254 		else
255 			break;
256 		sig += ffz(~x);
257 		break;
258 
259 	case 1: if ((x = *s &~ *m) != 0)
260 			sig = ffz(~x) + 1;
261 		break;
262 	}
263 
264 	return sig;
265 }
266 
267 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
268 					 int override_rlimit)
269 {
270 	struct sigqueue *q = NULL;
271 
272 	atomic_inc(&t->user->sigpending);
273 	if (override_rlimit ||
274 	    atomic_read(&t->user->sigpending) <=
275 			t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
276 		q = kmem_cache_alloc(sigqueue_cachep, flags);
277 	if (unlikely(q == NULL)) {
278 		atomic_dec(&t->user->sigpending);
279 	} else {
280 		INIT_LIST_HEAD(&q->list);
281 		q->flags = 0;
282 		q->user = get_uid(t->user);
283 	}
284 	return(q);
285 }
286 
287 static void __sigqueue_free(struct sigqueue *q)
288 {
289 	if (q->flags & SIGQUEUE_PREALLOC)
290 		return;
291 	atomic_dec(&q->user->sigpending);
292 	free_uid(q->user);
293 	kmem_cache_free(sigqueue_cachep, q);
294 }
295 
296 void flush_sigqueue(struct sigpending *queue)
297 {
298 	struct sigqueue *q;
299 
300 	sigemptyset(&queue->signal);
301 	while (!list_empty(&queue->list)) {
302 		q = list_entry(queue->list.next, struct sigqueue , list);
303 		list_del_init(&q->list);
304 		__sigqueue_free(q);
305 	}
306 }
307 
308 /*
309  * Flush all pending signals for a task.
310  */
311 void flush_signals(struct task_struct *t)
312 {
313 	unsigned long flags;
314 
315 	spin_lock_irqsave(&t->sighand->siglock, flags);
316 	clear_tsk_thread_flag(t,TIF_SIGPENDING);
317 	flush_sigqueue(&t->pending);
318 	flush_sigqueue(&t->signal->shared_pending);
319 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
320 }
321 
322 /*
323  * Flush all handlers for a task.
324  */
325 
326 void
327 flush_signal_handlers(struct task_struct *t, int force_default)
328 {
329 	int i;
330 	struct k_sigaction *ka = &t->sighand->action[0];
331 	for (i = _NSIG ; i != 0 ; i--) {
332 		if (force_default || ka->sa.sa_handler != SIG_IGN)
333 			ka->sa.sa_handler = SIG_DFL;
334 		ka->sa.sa_flags = 0;
335 		sigemptyset(&ka->sa.sa_mask);
336 		ka++;
337 	}
338 }
339 
340 
341 /* Notify the system that a driver wants to block all signals for this
342  * process, and wants to be notified if any signals at all were to be
343  * sent/acted upon.  If the notifier routine returns non-zero, then the
344  * signal will be acted upon after all.  If the notifier routine returns 0,
345  * then then signal will be blocked.  Only one block per process is
346  * allowed.  priv is a pointer to private data that the notifier routine
347  * can use to determine if the signal should be blocked or not.  */
348 
349 void
350 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
351 {
352 	unsigned long flags;
353 
354 	spin_lock_irqsave(&current->sighand->siglock, flags);
355 	current->notifier_mask = mask;
356 	current->notifier_data = priv;
357 	current->notifier = notifier;
358 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
359 }
360 
361 /* Notify the system that blocking has ended. */
362 
363 void
364 unblock_all_signals(void)
365 {
366 	unsigned long flags;
367 
368 	spin_lock_irqsave(&current->sighand->siglock, flags);
369 	current->notifier = NULL;
370 	current->notifier_data = NULL;
371 	recalc_sigpending();
372 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
373 }
374 
375 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
376 {
377 	struct sigqueue *q, *first = NULL;
378 	int still_pending = 0;
379 
380 	if (unlikely(!sigismember(&list->signal, sig)))
381 		return 0;
382 
383 	/*
384 	 * Collect the siginfo appropriate to this signal.  Check if
385 	 * there is another siginfo for the same signal.
386 	*/
387 	list_for_each_entry(q, &list->list, list) {
388 		if (q->info.si_signo == sig) {
389 			if (first) {
390 				still_pending = 1;
391 				break;
392 			}
393 			first = q;
394 		}
395 	}
396 	if (first) {
397 		list_del_init(&first->list);
398 		copy_siginfo(info, &first->info);
399 		__sigqueue_free(first);
400 		if (!still_pending)
401 			sigdelset(&list->signal, sig);
402 	} else {
403 
404 		/* Ok, it wasn't in the queue.  This must be
405 		   a fast-pathed signal or we must have been
406 		   out of queue space.  So zero out the info.
407 		 */
408 		sigdelset(&list->signal, sig);
409 		info->si_signo = sig;
410 		info->si_errno = 0;
411 		info->si_code = 0;
412 		info->si_pid = 0;
413 		info->si_uid = 0;
414 	}
415 	return 1;
416 }
417 
418 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
419 			siginfo_t *info)
420 {
421 	int sig = 0;
422 
423 	sig = next_signal(pending, mask);
424 	if (sig) {
425 		if (current->notifier) {
426 			if (sigismember(current->notifier_mask, sig)) {
427 				if (!(current->notifier)(current->notifier_data)) {
428 					clear_thread_flag(TIF_SIGPENDING);
429 					return 0;
430 				}
431 			}
432 		}
433 
434 		if (!collect_signal(sig, pending, info))
435 			sig = 0;
436 
437 	}
438 	recalc_sigpending();
439 
440 	return sig;
441 }
442 
443 /*
444  * Dequeue a signal and return the element to the caller, which is
445  * expected to free it.
446  *
447  * All callers have to hold the siglock.
448  */
449 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
450 {
451 	int signr = __dequeue_signal(&tsk->pending, mask, info);
452 	if (!signr)
453 		signr = __dequeue_signal(&tsk->signal->shared_pending,
454 					 mask, info);
455  	if (signr && unlikely(sig_kernel_stop(signr))) {
456  		/*
457  		 * Set a marker that we have dequeued a stop signal.  Our
458  		 * caller might release the siglock and then the pending
459  		 * stop signal it is about to process is no longer in the
460  		 * pending bitmasks, but must still be cleared by a SIGCONT
461  		 * (and overruled by a SIGKILL).  So those cases clear this
462  		 * shared flag after we've set it.  Note that this flag may
463  		 * remain set after the signal we return is ignored or
464  		 * handled.  That doesn't matter because its only purpose
465  		 * is to alert stop-signal processing code when another
466  		 * processor has come along and cleared the flag.
467  		 */
468  		if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
469  			tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
470  	}
471 	if ( signr &&
472 	     ((info->si_code & __SI_MASK) == __SI_TIMER) &&
473 	     info->si_sys_private){
474 		/*
475 		 * Release the siglock to ensure proper locking order
476 		 * of timer locks outside of siglocks.  Note, we leave
477 		 * irqs disabled here, since the posix-timers code is
478 		 * about to disable them again anyway.
479 		 */
480 		spin_unlock(&tsk->sighand->siglock);
481 		do_schedule_next_timer(info);
482 		spin_lock(&tsk->sighand->siglock);
483 	}
484 	return signr;
485 }
486 
487 /*
488  * Tell a process that it has a new active signal..
489  *
490  * NOTE! we rely on the previous spin_lock to
491  * lock interrupts for us! We can only be called with
492  * "siglock" held, and the local interrupt must
493  * have been disabled when that got acquired!
494  *
495  * No need to set need_resched since signal event passing
496  * goes through ->blocked
497  */
498 void signal_wake_up(struct task_struct *t, int resume)
499 {
500 	unsigned int mask;
501 
502 	set_tsk_thread_flag(t, TIF_SIGPENDING);
503 
504 	/*
505 	 * For SIGKILL, we want to wake it up in the stopped/traced case.
506 	 * We don't check t->state here because there is a race with it
507 	 * executing another processor and just now entering stopped state.
508 	 * By using wake_up_state, we ensure the process will wake up and
509 	 * handle its death signal.
510 	 */
511 	mask = TASK_INTERRUPTIBLE;
512 	if (resume)
513 		mask |= TASK_STOPPED | TASK_TRACED;
514 	if (!wake_up_state(t, mask))
515 		kick_process(t);
516 }
517 
518 /*
519  * Remove signals in mask from the pending set and queue.
520  * Returns 1 if any signals were found.
521  *
522  * All callers must be holding the siglock.
523  *
524  * This version takes a sigset mask and looks at all signals,
525  * not just those in the first mask word.
526  */
527 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
528 {
529 	struct sigqueue *q, *n;
530 	sigset_t m;
531 
532 	sigandsets(&m, mask, &s->signal);
533 	if (sigisemptyset(&m))
534 		return 0;
535 
536 	signandsets(&s->signal, &s->signal, mask);
537 	list_for_each_entry_safe(q, n, &s->list, list) {
538 		if (sigismember(mask, q->info.si_signo)) {
539 			list_del_init(&q->list);
540 			__sigqueue_free(q);
541 		}
542 	}
543 	return 1;
544 }
545 /*
546  * Remove signals in mask from the pending set and queue.
547  * Returns 1 if any signals were found.
548  *
549  * All callers must be holding the siglock.
550  */
551 static int rm_from_queue(unsigned long mask, struct sigpending *s)
552 {
553 	struct sigqueue *q, *n;
554 
555 	if (!sigtestsetmask(&s->signal, mask))
556 		return 0;
557 
558 	sigdelsetmask(&s->signal, mask);
559 	list_for_each_entry_safe(q, n, &s->list, list) {
560 		if (q->info.si_signo < SIGRTMIN &&
561 		    (mask & sigmask(q->info.si_signo))) {
562 			list_del_init(&q->list);
563 			__sigqueue_free(q);
564 		}
565 	}
566 	return 1;
567 }
568 
569 /*
570  * Bad permissions for sending the signal
571  */
572 static int check_kill_permission(int sig, struct siginfo *info,
573 				 struct task_struct *t)
574 {
575 	int error = -EINVAL;
576 	if (!valid_signal(sig))
577 		return error;
578 	error = -EPERM;
579 	if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
580 	    && ((sig != SIGCONT) ||
581 		(current->signal->session != t->signal->session))
582 	    && (current->euid ^ t->suid) && (current->euid ^ t->uid)
583 	    && (current->uid ^ t->suid) && (current->uid ^ t->uid)
584 	    && !capable(CAP_KILL))
585 		return error;
586 
587 	error = security_task_kill(t, info, sig);
588 	if (!error)
589 		audit_signal_info(sig, t); /* Let audit system see the signal */
590 	return error;
591 }
592 
593 /* forward decl */
594 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
595 
596 /*
597  * Handle magic process-wide effects of stop/continue signals.
598  * Unlike the signal actions, these happen immediately at signal-generation
599  * time regardless of blocking, ignoring, or handling.  This does the
600  * actual continuing for SIGCONT, but not the actual stopping for stop
601  * signals.  The process stop is done as a signal action for SIG_DFL.
602  */
603 static void handle_stop_signal(int sig, struct task_struct *p)
604 {
605 	struct task_struct *t;
606 
607 	if (p->signal->flags & SIGNAL_GROUP_EXIT)
608 		/*
609 		 * The process is in the middle of dying already.
610 		 */
611 		return;
612 
613 	if (sig_kernel_stop(sig)) {
614 		/*
615 		 * This is a stop signal.  Remove SIGCONT from all queues.
616 		 */
617 		rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
618 		t = p;
619 		do {
620 			rm_from_queue(sigmask(SIGCONT), &t->pending);
621 			t = next_thread(t);
622 		} while (t != p);
623 	} else if (sig == SIGCONT) {
624 		/*
625 		 * Remove all stop signals from all queues,
626 		 * and wake all threads.
627 		 */
628 		if (unlikely(p->signal->group_stop_count > 0)) {
629 			/*
630 			 * There was a group stop in progress.  We'll
631 			 * pretend it finished before we got here.  We are
632 			 * obliged to report it to the parent: if the
633 			 * SIGSTOP happened "after" this SIGCONT, then it
634 			 * would have cleared this pending SIGCONT.  If it
635 			 * happened "before" this SIGCONT, then the parent
636 			 * got the SIGCHLD about the stop finishing before
637 			 * the continue happened.  We do the notification
638 			 * now, and it's as if the stop had finished and
639 			 * the SIGCHLD was pending on entry to this kill.
640 			 */
641 			p->signal->group_stop_count = 0;
642 			p->signal->flags = SIGNAL_STOP_CONTINUED;
643 			spin_unlock(&p->sighand->siglock);
644 			do_notify_parent_cldstop(p, CLD_STOPPED);
645 			spin_lock(&p->sighand->siglock);
646 		}
647 		rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
648 		t = p;
649 		do {
650 			unsigned int state;
651 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
652 
653 			/*
654 			 * If there is a handler for SIGCONT, we must make
655 			 * sure that no thread returns to user mode before
656 			 * we post the signal, in case it was the only
657 			 * thread eligible to run the signal handler--then
658 			 * it must not do anything between resuming and
659 			 * running the handler.  With the TIF_SIGPENDING
660 			 * flag set, the thread will pause and acquire the
661 			 * siglock that we hold now and until we've queued
662 			 * the pending signal.
663 			 *
664 			 * Wake up the stopped thread _after_ setting
665 			 * TIF_SIGPENDING
666 			 */
667 			state = TASK_STOPPED;
668 			if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
669 				set_tsk_thread_flag(t, TIF_SIGPENDING);
670 				state |= TASK_INTERRUPTIBLE;
671 			}
672 			wake_up_state(t, state);
673 
674 			t = next_thread(t);
675 		} while (t != p);
676 
677 		if (p->signal->flags & SIGNAL_STOP_STOPPED) {
678 			/*
679 			 * We were in fact stopped, and are now continued.
680 			 * Notify the parent with CLD_CONTINUED.
681 			 */
682 			p->signal->flags = SIGNAL_STOP_CONTINUED;
683 			p->signal->group_exit_code = 0;
684 			spin_unlock(&p->sighand->siglock);
685 			do_notify_parent_cldstop(p, CLD_CONTINUED);
686 			spin_lock(&p->sighand->siglock);
687 		} else {
688 			/*
689 			 * We are not stopped, but there could be a stop
690 			 * signal in the middle of being processed after
691 			 * being removed from the queue.  Clear that too.
692 			 */
693 			p->signal->flags = 0;
694 		}
695 	} else if (sig == SIGKILL) {
696 		/*
697 		 * Make sure that any pending stop signal already dequeued
698 		 * is undone by the wakeup for SIGKILL.
699 		 */
700 		p->signal->flags = 0;
701 	}
702 }
703 
704 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
705 			struct sigpending *signals)
706 {
707 	struct sigqueue * q = NULL;
708 	int ret = 0;
709 
710 	/*
711 	 * fast-pathed signals for kernel-internal things like SIGSTOP
712 	 * or SIGKILL.
713 	 */
714 	if (info == SEND_SIG_FORCED)
715 		goto out_set;
716 
717 	/* Real-time signals must be queued if sent by sigqueue, or
718 	   some other real-time mechanism.  It is implementation
719 	   defined whether kill() does so.  We attempt to do so, on
720 	   the principle of least surprise, but since kill is not
721 	   allowed to fail with EAGAIN when low on memory we just
722 	   make sure at least one signal gets delivered and don't
723 	   pass on the info struct.  */
724 
725 	q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
726 					     (is_si_special(info) ||
727 					      info->si_code >= 0)));
728 	if (q) {
729 		list_add_tail(&q->list, &signals->list);
730 		switch ((unsigned long) info) {
731 		case (unsigned long) SEND_SIG_NOINFO:
732 			q->info.si_signo = sig;
733 			q->info.si_errno = 0;
734 			q->info.si_code = SI_USER;
735 			q->info.si_pid = current->pid;
736 			q->info.si_uid = current->uid;
737 			break;
738 		case (unsigned long) SEND_SIG_PRIV:
739 			q->info.si_signo = sig;
740 			q->info.si_errno = 0;
741 			q->info.si_code = SI_KERNEL;
742 			q->info.si_pid = 0;
743 			q->info.si_uid = 0;
744 			break;
745 		default:
746 			copy_siginfo(&q->info, info);
747 			break;
748 		}
749 	} else if (!is_si_special(info)) {
750 		if (sig >= SIGRTMIN && info->si_code != SI_USER)
751 		/*
752 		 * Queue overflow, abort.  We may abort if the signal was rt
753 		 * and sent by user using something other than kill().
754 		 */
755 			return -EAGAIN;
756 	}
757 
758 out_set:
759 	sigaddset(&signals->signal, sig);
760 	return ret;
761 }
762 
763 #define LEGACY_QUEUE(sigptr, sig) \
764 	(((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
765 
766 
767 static int
768 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
769 {
770 	int ret = 0;
771 
772 	BUG_ON(!irqs_disabled());
773 	assert_spin_locked(&t->sighand->siglock);
774 
775 	/* Short-circuit ignored signals.  */
776 	if (sig_ignored(t, sig))
777 		goto out;
778 
779 	/* Support queueing exactly one non-rt signal, so that we
780 	   can get more detailed information about the cause of
781 	   the signal. */
782 	if (LEGACY_QUEUE(&t->pending, sig))
783 		goto out;
784 
785 	ret = send_signal(sig, info, t, &t->pending);
786 	if (!ret && !sigismember(&t->blocked, sig))
787 		signal_wake_up(t, sig == SIGKILL);
788 out:
789 	return ret;
790 }
791 
792 /*
793  * Force a signal that the process can't ignore: if necessary
794  * we unblock the signal and change any SIG_IGN to SIG_DFL.
795  */
796 
797 int
798 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
799 {
800 	unsigned long int flags;
801 	int ret;
802 
803 	spin_lock_irqsave(&t->sighand->siglock, flags);
804 	if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
805 		t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
806 	}
807 	if (sigismember(&t->blocked, sig)) {
808 		sigdelset(&t->blocked, sig);
809 	}
810 	recalc_sigpending_tsk(t);
811 	ret = specific_send_sig_info(sig, info, t);
812 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
813 
814 	return ret;
815 }
816 
817 void
818 force_sig_specific(int sig, struct task_struct *t)
819 {
820 	force_sig_info(sig, SEND_SIG_FORCED, t);
821 }
822 
823 /*
824  * Test if P wants to take SIG.  After we've checked all threads with this,
825  * it's equivalent to finding no threads not blocking SIG.  Any threads not
826  * blocking SIG were ruled out because they are not running and already
827  * have pending signals.  Such threads will dequeue from the shared queue
828  * as soon as they're available, so putting the signal on the shared queue
829  * will be equivalent to sending it to one such thread.
830  */
831 static inline int wants_signal(int sig, struct task_struct *p)
832 {
833 	if (sigismember(&p->blocked, sig))
834 		return 0;
835 	if (p->flags & PF_EXITING)
836 		return 0;
837 	if (sig == SIGKILL)
838 		return 1;
839 	if (p->state & (TASK_STOPPED | TASK_TRACED))
840 		return 0;
841 	return task_curr(p) || !signal_pending(p);
842 }
843 
844 static void
845 __group_complete_signal(int sig, struct task_struct *p)
846 {
847 	struct task_struct *t;
848 
849 	/*
850 	 * Now find a thread we can wake up to take the signal off the queue.
851 	 *
852 	 * If the main thread wants the signal, it gets first crack.
853 	 * Probably the least surprising to the average bear.
854 	 */
855 	if (wants_signal(sig, p))
856 		t = p;
857 	else if (thread_group_empty(p))
858 		/*
859 		 * There is just one thread and it does not need to be woken.
860 		 * It will dequeue unblocked signals before it runs again.
861 		 */
862 		return;
863 	else {
864 		/*
865 		 * Otherwise try to find a suitable thread.
866 		 */
867 		t = p->signal->curr_target;
868 		if (t == NULL)
869 			/* restart balancing at this thread */
870 			t = p->signal->curr_target = p;
871 		BUG_ON(t->tgid != p->tgid);
872 
873 		while (!wants_signal(sig, t)) {
874 			t = next_thread(t);
875 			if (t == p->signal->curr_target)
876 				/*
877 				 * No thread needs to be woken.
878 				 * Any eligible threads will see
879 				 * the signal in the queue soon.
880 				 */
881 				return;
882 		}
883 		p->signal->curr_target = t;
884 	}
885 
886 	/*
887 	 * Found a killable thread.  If the signal will be fatal,
888 	 * then start taking the whole group down immediately.
889 	 */
890 	if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
891 	    !sigismember(&t->real_blocked, sig) &&
892 	    (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
893 		/*
894 		 * This signal will be fatal to the whole group.
895 		 */
896 		if (!sig_kernel_coredump(sig)) {
897 			/*
898 			 * Start a group exit and wake everybody up.
899 			 * This way we don't have other threads
900 			 * running and doing things after a slower
901 			 * thread has the fatal signal pending.
902 			 */
903 			p->signal->flags = SIGNAL_GROUP_EXIT;
904 			p->signal->group_exit_code = sig;
905 			p->signal->group_stop_count = 0;
906 			t = p;
907 			do {
908 				sigaddset(&t->pending.signal, SIGKILL);
909 				signal_wake_up(t, 1);
910 				t = next_thread(t);
911 			} while (t != p);
912 			return;
913 		}
914 
915 		/*
916 		 * There will be a core dump.  We make all threads other
917 		 * than the chosen one go into a group stop so that nothing
918 		 * happens until it gets scheduled, takes the signal off
919 		 * the shared queue, and does the core dump.  This is a
920 		 * little more complicated than strictly necessary, but it
921 		 * keeps the signal state that winds up in the core dump
922 		 * unchanged from the death state, e.g. which thread had
923 		 * the core-dump signal unblocked.
924 		 */
925 		rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
926 		rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
927 		p->signal->group_stop_count = 0;
928 		p->signal->group_exit_task = t;
929 		t = p;
930 		do {
931 			p->signal->group_stop_count++;
932 			signal_wake_up(t, 0);
933 			t = next_thread(t);
934 		} while (t != p);
935 		wake_up_process(p->signal->group_exit_task);
936 		return;
937 	}
938 
939 	/*
940 	 * The signal is already in the shared-pending queue.
941 	 * Tell the chosen thread to wake up and dequeue it.
942 	 */
943 	signal_wake_up(t, sig == SIGKILL);
944 	return;
945 }
946 
947 int
948 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
949 {
950 	int ret = 0;
951 
952 	assert_spin_locked(&p->sighand->siglock);
953 	handle_stop_signal(sig, p);
954 
955 	/* Short-circuit ignored signals.  */
956 	if (sig_ignored(p, sig))
957 		return ret;
958 
959 	if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
960 		/* This is a non-RT signal and we already have one queued.  */
961 		return ret;
962 
963 	/*
964 	 * Put this signal on the shared-pending queue, or fail with EAGAIN.
965 	 * We always use the shared queue for process-wide signals,
966 	 * to avoid several races.
967 	 */
968 	ret = send_signal(sig, info, p, &p->signal->shared_pending);
969 	if (unlikely(ret))
970 		return ret;
971 
972 	__group_complete_signal(sig, p);
973 	return 0;
974 }
975 
976 /*
977  * Nuke all other threads in the group.
978  */
979 void zap_other_threads(struct task_struct *p)
980 {
981 	struct task_struct *t;
982 
983 	p->signal->flags = SIGNAL_GROUP_EXIT;
984 	p->signal->group_stop_count = 0;
985 
986 	if (thread_group_empty(p))
987 		return;
988 
989 	for (t = next_thread(p); t != p; t = next_thread(t)) {
990 		/*
991 		 * Don't bother with already dead threads
992 		 */
993 		if (t->exit_state)
994 			continue;
995 
996 		/*
997 		 * We don't want to notify the parent, since we are
998 		 * killed as part of a thread group due to another
999 		 * thread doing an execve() or similar. So set the
1000 		 * exit signal to -1 to allow immediate reaping of
1001 		 * the process.  But don't detach the thread group
1002 		 * leader.
1003 		 */
1004 		if (t != p->group_leader)
1005 			t->exit_signal = -1;
1006 
1007 		/* SIGKILL will be handled before any pending SIGSTOP */
1008 		sigaddset(&t->pending.signal, SIGKILL);
1009 		signal_wake_up(t, 1);
1010 	}
1011 }
1012 
1013 /*
1014  * Must be called under rcu_read_lock() or with tasklist_lock read-held.
1015  */
1016 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1017 {
1018 	struct sighand_struct *sighand;
1019 
1020 	for (;;) {
1021 		sighand = rcu_dereference(tsk->sighand);
1022 		if (unlikely(sighand == NULL))
1023 			break;
1024 
1025 		spin_lock_irqsave(&sighand->siglock, *flags);
1026 		if (likely(sighand == tsk->sighand))
1027 			break;
1028 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1029 	}
1030 
1031 	return sighand;
1032 }
1033 
1034 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1035 {
1036 	unsigned long flags;
1037 	int ret;
1038 
1039 	ret = check_kill_permission(sig, info, p);
1040 
1041 	if (!ret && sig) {
1042 		ret = -ESRCH;
1043 		if (lock_task_sighand(p, &flags)) {
1044 			ret = __group_send_sig_info(sig, info, p);
1045 			unlock_task_sighand(p, &flags);
1046 		}
1047 	}
1048 
1049 	return ret;
1050 }
1051 
1052 /*
1053  * kill_pg_info() sends a signal to a process group: this is what the tty
1054  * control characters do (^C, ^Z etc)
1055  */
1056 
1057 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1058 {
1059 	struct task_struct *p = NULL;
1060 	int retval, success;
1061 
1062 	if (pgrp <= 0)
1063 		return -EINVAL;
1064 
1065 	success = 0;
1066 	retval = -ESRCH;
1067 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1068 		int err = group_send_sig_info(sig, info, p);
1069 		success |= !err;
1070 		retval = err;
1071 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1072 	return success ? 0 : retval;
1073 }
1074 
1075 int
1076 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1077 {
1078 	int retval;
1079 
1080 	read_lock(&tasklist_lock);
1081 	retval = __kill_pg_info(sig, info, pgrp);
1082 	read_unlock(&tasklist_lock);
1083 
1084 	return retval;
1085 }
1086 
1087 int
1088 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1089 {
1090 	int error;
1091 	int acquired_tasklist_lock = 0;
1092 	struct task_struct *p;
1093 
1094 	rcu_read_lock();
1095 	if (unlikely(sig_needs_tasklist(sig))) {
1096 		read_lock(&tasklist_lock);
1097 		acquired_tasklist_lock = 1;
1098 	}
1099 	p = find_task_by_pid(pid);
1100 	error = -ESRCH;
1101 	if (p)
1102 		error = group_send_sig_info(sig, info, p);
1103 	if (unlikely(acquired_tasklist_lock))
1104 		read_unlock(&tasklist_lock);
1105 	rcu_read_unlock();
1106 	return error;
1107 }
1108 
1109 /* like kill_proc_info(), but doesn't use uid/euid of "current" */
1110 int kill_proc_info_as_uid(int sig, struct siginfo *info, pid_t pid,
1111 		      uid_t uid, uid_t euid)
1112 {
1113 	int ret = -EINVAL;
1114 	struct task_struct *p;
1115 
1116 	if (!valid_signal(sig))
1117 		return ret;
1118 
1119 	read_lock(&tasklist_lock);
1120 	p = find_task_by_pid(pid);
1121 	if (!p) {
1122 		ret = -ESRCH;
1123 		goto out_unlock;
1124 	}
1125 	if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1126 	    && (euid != p->suid) && (euid != p->uid)
1127 	    && (uid != p->suid) && (uid != p->uid)) {
1128 		ret = -EPERM;
1129 		goto out_unlock;
1130 	}
1131 	if (sig && p->sighand) {
1132 		unsigned long flags;
1133 		spin_lock_irqsave(&p->sighand->siglock, flags);
1134 		ret = __group_send_sig_info(sig, info, p);
1135 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1136 	}
1137 out_unlock:
1138 	read_unlock(&tasklist_lock);
1139 	return ret;
1140 }
1141 EXPORT_SYMBOL_GPL(kill_proc_info_as_uid);
1142 
1143 /*
1144  * kill_something_info() interprets pid in interesting ways just like kill(2).
1145  *
1146  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1147  * is probably wrong.  Should make it like BSD or SYSV.
1148  */
1149 
1150 static int kill_something_info(int sig, struct siginfo *info, int pid)
1151 {
1152 	if (!pid) {
1153 		return kill_pg_info(sig, info, process_group(current));
1154 	} else if (pid == -1) {
1155 		int retval = 0, count = 0;
1156 		struct task_struct * p;
1157 
1158 		read_lock(&tasklist_lock);
1159 		for_each_process(p) {
1160 			if (p->pid > 1 && p->tgid != current->tgid) {
1161 				int err = group_send_sig_info(sig, info, p);
1162 				++count;
1163 				if (err != -EPERM)
1164 					retval = err;
1165 			}
1166 		}
1167 		read_unlock(&tasklist_lock);
1168 		return count ? retval : -ESRCH;
1169 	} else if (pid < 0) {
1170 		return kill_pg_info(sig, info, -pid);
1171 	} else {
1172 		return kill_proc_info(sig, info, pid);
1173 	}
1174 }
1175 
1176 /*
1177  * These are for backward compatibility with the rest of the kernel source.
1178  */
1179 
1180 /*
1181  * These two are the most common entry points.  They send a signal
1182  * just to the specific thread.
1183  */
1184 int
1185 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1186 {
1187 	int ret;
1188 	unsigned long flags;
1189 
1190 	/*
1191 	 * Make sure legacy kernel users don't send in bad values
1192 	 * (normal paths check this in check_kill_permission).
1193 	 */
1194 	if (!valid_signal(sig))
1195 		return -EINVAL;
1196 
1197 	/*
1198 	 * We need the tasklist lock even for the specific
1199 	 * thread case (when we don't need to follow the group
1200 	 * lists) in order to avoid races with "p->sighand"
1201 	 * going away or changing from under us.
1202 	 */
1203 	read_lock(&tasklist_lock);
1204 	spin_lock_irqsave(&p->sighand->siglock, flags);
1205 	ret = specific_send_sig_info(sig, info, p);
1206 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
1207 	read_unlock(&tasklist_lock);
1208 	return ret;
1209 }
1210 
1211 #define __si_special(priv) \
1212 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1213 
1214 int
1215 send_sig(int sig, struct task_struct *p, int priv)
1216 {
1217 	return send_sig_info(sig, __si_special(priv), p);
1218 }
1219 
1220 /*
1221  * This is the entry point for "process-wide" signals.
1222  * They will go to an appropriate thread in the thread group.
1223  */
1224 int
1225 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1226 {
1227 	int ret;
1228 	read_lock(&tasklist_lock);
1229 	ret = group_send_sig_info(sig, info, p);
1230 	read_unlock(&tasklist_lock);
1231 	return ret;
1232 }
1233 
1234 void
1235 force_sig(int sig, struct task_struct *p)
1236 {
1237 	force_sig_info(sig, SEND_SIG_PRIV, p);
1238 }
1239 
1240 /*
1241  * When things go south during signal handling, we
1242  * will force a SIGSEGV. And if the signal that caused
1243  * the problem was already a SIGSEGV, we'll want to
1244  * make sure we don't even try to deliver the signal..
1245  */
1246 int
1247 force_sigsegv(int sig, struct task_struct *p)
1248 {
1249 	if (sig == SIGSEGV) {
1250 		unsigned long flags;
1251 		spin_lock_irqsave(&p->sighand->siglock, flags);
1252 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1253 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1254 	}
1255 	force_sig(SIGSEGV, p);
1256 	return 0;
1257 }
1258 
1259 int
1260 kill_pg(pid_t pgrp, int sig, int priv)
1261 {
1262 	return kill_pg_info(sig, __si_special(priv), pgrp);
1263 }
1264 
1265 int
1266 kill_proc(pid_t pid, int sig, int priv)
1267 {
1268 	return kill_proc_info(sig, __si_special(priv), pid);
1269 }
1270 
1271 /*
1272  * These functions support sending signals using preallocated sigqueue
1273  * structures.  This is needed "because realtime applications cannot
1274  * afford to lose notifications of asynchronous events, like timer
1275  * expirations or I/O completions".  In the case of Posix Timers
1276  * we allocate the sigqueue structure from the timer_create.  If this
1277  * allocation fails we are able to report the failure to the application
1278  * with an EAGAIN error.
1279  */
1280 
1281 struct sigqueue *sigqueue_alloc(void)
1282 {
1283 	struct sigqueue *q;
1284 
1285 	if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1286 		q->flags |= SIGQUEUE_PREALLOC;
1287 	return(q);
1288 }
1289 
1290 void sigqueue_free(struct sigqueue *q)
1291 {
1292 	unsigned long flags;
1293 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1294 	/*
1295 	 * If the signal is still pending remove it from the
1296 	 * pending queue.
1297 	 */
1298 	if (unlikely(!list_empty(&q->list))) {
1299 		spinlock_t *lock = &current->sighand->siglock;
1300 		read_lock(&tasklist_lock);
1301 		spin_lock_irqsave(lock, flags);
1302 		if (!list_empty(&q->list))
1303 			list_del_init(&q->list);
1304 		spin_unlock_irqrestore(lock, flags);
1305 		read_unlock(&tasklist_lock);
1306 	}
1307 	q->flags &= ~SIGQUEUE_PREALLOC;
1308 	__sigqueue_free(q);
1309 }
1310 
1311 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1312 {
1313 	unsigned long flags;
1314 	int ret = 0;
1315 
1316 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1317 
1318 	/*
1319 	 * The rcu based delayed sighand destroy makes it possible to
1320 	 * run this without tasklist lock held. The task struct itself
1321 	 * cannot go away as create_timer did get_task_struct().
1322 	 *
1323 	 * We return -1, when the task is marked exiting, so
1324 	 * posix_timer_event can redirect it to the group leader
1325 	 */
1326 	rcu_read_lock();
1327 
1328 	if (!likely(lock_task_sighand(p, &flags))) {
1329 		ret = -1;
1330 		goto out_err;
1331 	}
1332 
1333 	if (unlikely(!list_empty(&q->list))) {
1334 		/*
1335 		 * If an SI_TIMER entry is already queue just increment
1336 		 * the overrun count.
1337 		 */
1338 		BUG_ON(q->info.si_code != SI_TIMER);
1339 		q->info.si_overrun++;
1340 		goto out;
1341 	}
1342 	/* Short-circuit ignored signals.  */
1343 	if (sig_ignored(p, sig)) {
1344 		ret = 1;
1345 		goto out;
1346 	}
1347 
1348 	list_add_tail(&q->list, &p->pending.list);
1349 	sigaddset(&p->pending.signal, sig);
1350 	if (!sigismember(&p->blocked, sig))
1351 		signal_wake_up(p, sig == SIGKILL);
1352 
1353 out:
1354 	unlock_task_sighand(p, &flags);
1355 out_err:
1356 	rcu_read_unlock();
1357 
1358 	return ret;
1359 }
1360 
1361 int
1362 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1363 {
1364 	unsigned long flags;
1365 	int ret = 0;
1366 
1367 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1368 
1369 	read_lock(&tasklist_lock);
1370 	/* Since it_lock is held, p->sighand cannot be NULL. */
1371 	spin_lock_irqsave(&p->sighand->siglock, flags);
1372 	handle_stop_signal(sig, p);
1373 
1374 	/* Short-circuit ignored signals.  */
1375 	if (sig_ignored(p, sig)) {
1376 		ret = 1;
1377 		goto out;
1378 	}
1379 
1380 	if (unlikely(!list_empty(&q->list))) {
1381 		/*
1382 		 * If an SI_TIMER entry is already queue just increment
1383 		 * the overrun count.  Other uses should not try to
1384 		 * send the signal multiple times.
1385 		 */
1386 		BUG_ON(q->info.si_code != SI_TIMER);
1387 		q->info.si_overrun++;
1388 		goto out;
1389 	}
1390 
1391 	/*
1392 	 * Put this signal on the shared-pending queue.
1393 	 * We always use the shared queue for process-wide signals,
1394 	 * to avoid several races.
1395 	 */
1396 	list_add_tail(&q->list, &p->signal->shared_pending.list);
1397 	sigaddset(&p->signal->shared_pending.signal, sig);
1398 
1399 	__group_complete_signal(sig, p);
1400 out:
1401 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
1402 	read_unlock(&tasklist_lock);
1403 	return ret;
1404 }
1405 
1406 /*
1407  * Wake up any threads in the parent blocked in wait* syscalls.
1408  */
1409 static inline void __wake_up_parent(struct task_struct *p,
1410 				    struct task_struct *parent)
1411 {
1412 	wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1413 }
1414 
1415 /*
1416  * Let a parent know about the death of a child.
1417  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1418  */
1419 
1420 void do_notify_parent(struct task_struct *tsk, int sig)
1421 {
1422 	struct siginfo info;
1423 	unsigned long flags;
1424 	struct sighand_struct *psig;
1425 
1426 	BUG_ON(sig == -1);
1427 
1428  	/* do_notify_parent_cldstop should have been called instead.  */
1429  	BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1430 
1431 	BUG_ON(!tsk->ptrace &&
1432 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1433 
1434 	info.si_signo = sig;
1435 	info.si_errno = 0;
1436 	info.si_pid = tsk->pid;
1437 	info.si_uid = tsk->uid;
1438 
1439 	/* FIXME: find out whether or not this is supposed to be c*time. */
1440 	info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1441 						       tsk->signal->utime));
1442 	info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1443 						       tsk->signal->stime));
1444 
1445 	info.si_status = tsk->exit_code & 0x7f;
1446 	if (tsk->exit_code & 0x80)
1447 		info.si_code = CLD_DUMPED;
1448 	else if (tsk->exit_code & 0x7f)
1449 		info.si_code = CLD_KILLED;
1450 	else {
1451 		info.si_code = CLD_EXITED;
1452 		info.si_status = tsk->exit_code >> 8;
1453 	}
1454 
1455 	psig = tsk->parent->sighand;
1456 	spin_lock_irqsave(&psig->siglock, flags);
1457 	if (!tsk->ptrace && sig == SIGCHLD &&
1458 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1459 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1460 		/*
1461 		 * We are exiting and our parent doesn't care.  POSIX.1
1462 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1463 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1464 		 * automatically and not left for our parent's wait4 call.
1465 		 * Rather than having the parent do it as a magic kind of
1466 		 * signal handler, we just set this to tell do_exit that we
1467 		 * can be cleaned up without becoming a zombie.  Note that
1468 		 * we still call __wake_up_parent in this case, because a
1469 		 * blocked sys_wait4 might now return -ECHILD.
1470 		 *
1471 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1472 		 * is implementation-defined: we do (if you don't want
1473 		 * it, just use SIG_IGN instead).
1474 		 */
1475 		tsk->exit_signal = -1;
1476 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1477 			sig = 0;
1478 	}
1479 	if (valid_signal(sig) && sig > 0)
1480 		__group_send_sig_info(sig, &info, tsk->parent);
1481 	__wake_up_parent(tsk, tsk->parent);
1482 	spin_unlock_irqrestore(&psig->siglock, flags);
1483 }
1484 
1485 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1486 {
1487 	struct siginfo info;
1488 	unsigned long flags;
1489 	struct task_struct *parent;
1490 	struct sighand_struct *sighand;
1491 
1492 	if (tsk->ptrace & PT_PTRACED)
1493 		parent = tsk->parent;
1494 	else {
1495 		tsk = tsk->group_leader;
1496 		parent = tsk->real_parent;
1497 	}
1498 
1499 	info.si_signo = SIGCHLD;
1500 	info.si_errno = 0;
1501 	info.si_pid = tsk->pid;
1502 	info.si_uid = tsk->uid;
1503 
1504 	/* FIXME: find out whether or not this is supposed to be c*time. */
1505 	info.si_utime = cputime_to_jiffies(tsk->utime);
1506 	info.si_stime = cputime_to_jiffies(tsk->stime);
1507 
1508  	info.si_code = why;
1509  	switch (why) {
1510  	case CLD_CONTINUED:
1511  		info.si_status = SIGCONT;
1512  		break;
1513  	case CLD_STOPPED:
1514  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1515  		break;
1516  	case CLD_TRAPPED:
1517  		info.si_status = tsk->exit_code & 0x7f;
1518  		break;
1519  	default:
1520  		BUG();
1521  	}
1522 
1523 	sighand = parent->sighand;
1524 	spin_lock_irqsave(&sighand->siglock, flags);
1525 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1526 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1527 		__group_send_sig_info(SIGCHLD, &info, parent);
1528 	/*
1529 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1530 	 */
1531 	__wake_up_parent(tsk, parent);
1532 	spin_unlock_irqrestore(&sighand->siglock, flags);
1533 }
1534 
1535 /*
1536  * This must be called with current->sighand->siglock held.
1537  *
1538  * This should be the path for all ptrace stops.
1539  * We always set current->last_siginfo while stopped here.
1540  * That makes it a way to test a stopped process for
1541  * being ptrace-stopped vs being job-control-stopped.
1542  *
1543  * If we actually decide not to stop at all because the tracer is gone,
1544  * we leave nostop_code in current->exit_code.
1545  */
1546 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1547 {
1548 	/*
1549 	 * If there is a group stop in progress,
1550 	 * we must participate in the bookkeeping.
1551 	 */
1552 	if (current->signal->group_stop_count > 0)
1553 		--current->signal->group_stop_count;
1554 
1555 	current->last_siginfo = info;
1556 	current->exit_code = exit_code;
1557 
1558 	/* Let the debugger run.  */
1559 	set_current_state(TASK_TRACED);
1560 	spin_unlock_irq(&current->sighand->siglock);
1561 	try_to_freeze();
1562 	read_lock(&tasklist_lock);
1563 	if (likely(current->ptrace & PT_PTRACED) &&
1564 	    likely(current->parent != current->real_parent ||
1565 		   !(current->ptrace & PT_ATTACHED)) &&
1566 	    (likely(current->parent->signal != current->signal) ||
1567 	     !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) {
1568 		do_notify_parent_cldstop(current, CLD_TRAPPED);
1569 		read_unlock(&tasklist_lock);
1570 		schedule();
1571 	} else {
1572 		/*
1573 		 * By the time we got the lock, our tracer went away.
1574 		 * Don't stop here.
1575 		 */
1576 		read_unlock(&tasklist_lock);
1577 		set_current_state(TASK_RUNNING);
1578 		current->exit_code = nostop_code;
1579 	}
1580 
1581 	/*
1582 	 * We are back.  Now reacquire the siglock before touching
1583 	 * last_siginfo, so that we are sure to have synchronized with
1584 	 * any signal-sending on another CPU that wants to examine it.
1585 	 */
1586 	spin_lock_irq(&current->sighand->siglock);
1587 	current->last_siginfo = NULL;
1588 
1589 	/*
1590 	 * Queued signals ignored us while we were stopped for tracing.
1591 	 * So check for any that we should take before resuming user mode.
1592 	 */
1593 	recalc_sigpending();
1594 }
1595 
1596 void ptrace_notify(int exit_code)
1597 {
1598 	siginfo_t info;
1599 
1600 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1601 
1602 	memset(&info, 0, sizeof info);
1603 	info.si_signo = SIGTRAP;
1604 	info.si_code = exit_code;
1605 	info.si_pid = current->pid;
1606 	info.si_uid = current->uid;
1607 
1608 	/* Let the debugger run.  */
1609 	spin_lock_irq(&current->sighand->siglock);
1610 	ptrace_stop(exit_code, 0, &info);
1611 	spin_unlock_irq(&current->sighand->siglock);
1612 }
1613 
1614 static void
1615 finish_stop(int stop_count)
1616 {
1617 	/*
1618 	 * If there are no other threads in the group, or if there is
1619 	 * a group stop in progress and we are the last to stop,
1620 	 * report to the parent.  When ptraced, every thread reports itself.
1621 	 */
1622 	if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1623 		read_lock(&tasklist_lock);
1624 		do_notify_parent_cldstop(current, CLD_STOPPED);
1625 		read_unlock(&tasklist_lock);
1626 	}
1627 
1628 	schedule();
1629 	/*
1630 	 * Now we don't run again until continued.
1631 	 */
1632 	current->exit_code = 0;
1633 }
1634 
1635 /*
1636  * This performs the stopping for SIGSTOP and other stop signals.
1637  * We have to stop all threads in the thread group.
1638  * Returns nonzero if we've actually stopped and released the siglock.
1639  * Returns zero if we didn't stop and still hold the siglock.
1640  */
1641 static int do_signal_stop(int signr)
1642 {
1643 	struct signal_struct *sig = current->signal;
1644 	int stop_count;
1645 
1646 	if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1647 		return 0;
1648 
1649 	if (sig->group_stop_count > 0) {
1650 		/*
1651 		 * There is a group stop in progress.  We don't need to
1652 		 * start another one.
1653 		 */
1654 		stop_count = --sig->group_stop_count;
1655 	} else {
1656 		/*
1657 		 * There is no group stop already in progress.
1658 		 * We must initiate one now.
1659 		 */
1660 		struct task_struct *t;
1661 
1662 		sig->group_exit_code = signr;
1663 
1664 		stop_count = 0;
1665 		for (t = next_thread(current); t != current; t = next_thread(t))
1666 			/*
1667 			 * Setting state to TASK_STOPPED for a group
1668 			 * stop is always done with the siglock held,
1669 			 * so this check has no races.
1670 			 */
1671 			if (!t->exit_state &&
1672 			    !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1673 				stop_count++;
1674 				signal_wake_up(t, 0);
1675 			}
1676 		sig->group_stop_count = stop_count;
1677 	}
1678 
1679 	if (stop_count == 0)
1680 		sig->flags = SIGNAL_STOP_STOPPED;
1681 	current->exit_code = sig->group_exit_code;
1682 	__set_current_state(TASK_STOPPED);
1683 
1684 	spin_unlock_irq(&current->sighand->siglock);
1685 	finish_stop(stop_count);
1686 	return 1;
1687 }
1688 
1689 /*
1690  * Do appropriate magic when group_stop_count > 0.
1691  * We return nonzero if we stopped, after releasing the siglock.
1692  * We return zero if we still hold the siglock and should look
1693  * for another signal without checking group_stop_count again.
1694  */
1695 static int handle_group_stop(void)
1696 {
1697 	int stop_count;
1698 
1699 	if (current->signal->group_exit_task == current) {
1700 		/*
1701 		 * Group stop is so we can do a core dump,
1702 		 * We are the initiating thread, so get on with it.
1703 		 */
1704 		current->signal->group_exit_task = NULL;
1705 		return 0;
1706 	}
1707 
1708 	if (current->signal->flags & SIGNAL_GROUP_EXIT)
1709 		/*
1710 		 * Group stop is so another thread can do a core dump,
1711 		 * or else we are racing against a death signal.
1712 		 * Just punt the stop so we can get the next signal.
1713 		 */
1714 		return 0;
1715 
1716 	/*
1717 	 * There is a group stop in progress.  We stop
1718 	 * without any associated signal being in our queue.
1719 	 */
1720 	stop_count = --current->signal->group_stop_count;
1721 	if (stop_count == 0)
1722 		current->signal->flags = SIGNAL_STOP_STOPPED;
1723 	current->exit_code = current->signal->group_exit_code;
1724 	set_current_state(TASK_STOPPED);
1725 	spin_unlock_irq(&current->sighand->siglock);
1726 	finish_stop(stop_count);
1727 	return 1;
1728 }
1729 
1730 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1731 			  struct pt_regs *regs, void *cookie)
1732 {
1733 	sigset_t *mask = &current->blocked;
1734 	int signr = 0;
1735 
1736 	try_to_freeze();
1737 
1738 relock:
1739 	spin_lock_irq(&current->sighand->siglock);
1740 	for (;;) {
1741 		struct k_sigaction *ka;
1742 
1743 		if (unlikely(current->signal->group_stop_count > 0) &&
1744 		    handle_group_stop())
1745 			goto relock;
1746 
1747 		signr = dequeue_signal(current, mask, info);
1748 
1749 		if (!signr)
1750 			break; /* will return 0 */
1751 
1752 		if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1753 			ptrace_signal_deliver(regs, cookie);
1754 
1755 			/* Let the debugger run.  */
1756 			ptrace_stop(signr, signr, info);
1757 
1758 			/* We're back.  Did the debugger cancel the sig or group_exit? */
1759 			signr = current->exit_code;
1760 			if (signr == 0 || current->signal->flags & SIGNAL_GROUP_EXIT)
1761 				continue;
1762 
1763 			current->exit_code = 0;
1764 
1765 			/* Update the siginfo structure if the signal has
1766 			   changed.  If the debugger wanted something
1767 			   specific in the siginfo structure then it should
1768 			   have updated *info via PTRACE_SETSIGINFO.  */
1769 			if (signr != info->si_signo) {
1770 				info->si_signo = signr;
1771 				info->si_errno = 0;
1772 				info->si_code = SI_USER;
1773 				info->si_pid = current->parent->pid;
1774 				info->si_uid = current->parent->uid;
1775 			}
1776 
1777 			/* If the (new) signal is now blocked, requeue it.  */
1778 			if (sigismember(&current->blocked, signr)) {
1779 				specific_send_sig_info(signr, info, current);
1780 				continue;
1781 			}
1782 		}
1783 
1784 		ka = &current->sighand->action[signr-1];
1785 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
1786 			continue;
1787 		if (ka->sa.sa_handler != SIG_DFL) {
1788 			/* Run the handler.  */
1789 			*return_ka = *ka;
1790 
1791 			if (ka->sa.sa_flags & SA_ONESHOT)
1792 				ka->sa.sa_handler = SIG_DFL;
1793 
1794 			break; /* will return non-zero "signr" value */
1795 		}
1796 
1797 		/*
1798 		 * Now we are doing the default action for this signal.
1799 		 */
1800 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
1801 			continue;
1802 
1803 		/* Init gets no signals it doesn't want.  */
1804 		if (current == child_reaper)
1805 			continue;
1806 
1807 		if (sig_kernel_stop(signr)) {
1808 			/*
1809 			 * The default action is to stop all threads in
1810 			 * the thread group.  The job control signals
1811 			 * do nothing in an orphaned pgrp, but SIGSTOP
1812 			 * always works.  Note that siglock needs to be
1813 			 * dropped during the call to is_orphaned_pgrp()
1814 			 * because of lock ordering with tasklist_lock.
1815 			 * This allows an intervening SIGCONT to be posted.
1816 			 * We need to check for that and bail out if necessary.
1817 			 */
1818 			if (signr != SIGSTOP) {
1819 				spin_unlock_irq(&current->sighand->siglock);
1820 
1821 				/* signals can be posted during this window */
1822 
1823 				if (is_orphaned_pgrp(process_group(current)))
1824 					goto relock;
1825 
1826 				spin_lock_irq(&current->sighand->siglock);
1827 			}
1828 
1829 			if (likely(do_signal_stop(signr))) {
1830 				/* It released the siglock.  */
1831 				goto relock;
1832 			}
1833 
1834 			/*
1835 			 * We didn't actually stop, due to a race
1836 			 * with SIGCONT or something like that.
1837 			 */
1838 			continue;
1839 		}
1840 
1841 		spin_unlock_irq(&current->sighand->siglock);
1842 
1843 		/*
1844 		 * Anything else is fatal, maybe with a core dump.
1845 		 */
1846 		current->flags |= PF_SIGNALED;
1847 		if (sig_kernel_coredump(signr)) {
1848 			/*
1849 			 * If it was able to dump core, this kills all
1850 			 * other threads in the group and synchronizes with
1851 			 * their demise.  If we lost the race with another
1852 			 * thread getting here, it set group_exit_code
1853 			 * first and our do_group_exit call below will use
1854 			 * that value and ignore the one we pass it.
1855 			 */
1856 			do_coredump((long)signr, signr, regs);
1857 		}
1858 
1859 		/*
1860 		 * Death signals, no core dump.
1861 		 */
1862 		do_group_exit(signr);
1863 		/* NOTREACHED */
1864 	}
1865 	spin_unlock_irq(&current->sighand->siglock);
1866 	return signr;
1867 }
1868 
1869 EXPORT_SYMBOL(recalc_sigpending);
1870 EXPORT_SYMBOL_GPL(dequeue_signal);
1871 EXPORT_SYMBOL(flush_signals);
1872 EXPORT_SYMBOL(force_sig);
1873 EXPORT_SYMBOL(kill_pg);
1874 EXPORT_SYMBOL(kill_proc);
1875 EXPORT_SYMBOL(ptrace_notify);
1876 EXPORT_SYMBOL(send_sig);
1877 EXPORT_SYMBOL(send_sig_info);
1878 EXPORT_SYMBOL(sigprocmask);
1879 EXPORT_SYMBOL(block_all_signals);
1880 EXPORT_SYMBOL(unblock_all_signals);
1881 
1882 
1883 /*
1884  * System call entry points.
1885  */
1886 
1887 asmlinkage long sys_restart_syscall(void)
1888 {
1889 	struct restart_block *restart = &current_thread_info()->restart_block;
1890 	return restart->fn(restart);
1891 }
1892 
1893 long do_no_restart_syscall(struct restart_block *param)
1894 {
1895 	return -EINTR;
1896 }
1897 
1898 /*
1899  * We don't need to get the kernel lock - this is all local to this
1900  * particular thread.. (and that's good, because this is _heavily_
1901  * used by various programs)
1902  */
1903 
1904 /*
1905  * This is also useful for kernel threads that want to temporarily
1906  * (or permanently) block certain signals.
1907  *
1908  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1909  * interface happily blocks "unblockable" signals like SIGKILL
1910  * and friends.
1911  */
1912 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1913 {
1914 	int error;
1915 
1916 	spin_lock_irq(&current->sighand->siglock);
1917 	if (oldset)
1918 		*oldset = current->blocked;
1919 
1920 	error = 0;
1921 	switch (how) {
1922 	case SIG_BLOCK:
1923 		sigorsets(&current->blocked, &current->blocked, set);
1924 		break;
1925 	case SIG_UNBLOCK:
1926 		signandsets(&current->blocked, &current->blocked, set);
1927 		break;
1928 	case SIG_SETMASK:
1929 		current->blocked = *set;
1930 		break;
1931 	default:
1932 		error = -EINVAL;
1933 	}
1934 	recalc_sigpending();
1935 	spin_unlock_irq(&current->sighand->siglock);
1936 
1937 	return error;
1938 }
1939 
1940 asmlinkage long
1941 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
1942 {
1943 	int error = -EINVAL;
1944 	sigset_t old_set, new_set;
1945 
1946 	/* XXX: Don't preclude handling different sized sigset_t's.  */
1947 	if (sigsetsize != sizeof(sigset_t))
1948 		goto out;
1949 
1950 	if (set) {
1951 		error = -EFAULT;
1952 		if (copy_from_user(&new_set, set, sizeof(*set)))
1953 			goto out;
1954 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
1955 
1956 		error = sigprocmask(how, &new_set, &old_set);
1957 		if (error)
1958 			goto out;
1959 		if (oset)
1960 			goto set_old;
1961 	} else if (oset) {
1962 		spin_lock_irq(&current->sighand->siglock);
1963 		old_set = current->blocked;
1964 		spin_unlock_irq(&current->sighand->siglock);
1965 
1966 	set_old:
1967 		error = -EFAULT;
1968 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
1969 			goto out;
1970 	}
1971 	error = 0;
1972 out:
1973 	return error;
1974 }
1975 
1976 long do_sigpending(void __user *set, unsigned long sigsetsize)
1977 {
1978 	long error = -EINVAL;
1979 	sigset_t pending;
1980 
1981 	if (sigsetsize > sizeof(sigset_t))
1982 		goto out;
1983 
1984 	spin_lock_irq(&current->sighand->siglock);
1985 	sigorsets(&pending, &current->pending.signal,
1986 		  &current->signal->shared_pending.signal);
1987 	spin_unlock_irq(&current->sighand->siglock);
1988 
1989 	/* Outside the lock because only this thread touches it.  */
1990 	sigandsets(&pending, &current->blocked, &pending);
1991 
1992 	error = -EFAULT;
1993 	if (!copy_to_user(set, &pending, sigsetsize))
1994 		error = 0;
1995 
1996 out:
1997 	return error;
1998 }
1999 
2000 asmlinkage long
2001 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2002 {
2003 	return do_sigpending(set, sigsetsize);
2004 }
2005 
2006 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2007 
2008 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2009 {
2010 	int err;
2011 
2012 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2013 		return -EFAULT;
2014 	if (from->si_code < 0)
2015 		return __copy_to_user(to, from, sizeof(siginfo_t))
2016 			? -EFAULT : 0;
2017 	/*
2018 	 * If you change siginfo_t structure, please be sure
2019 	 * this code is fixed accordingly.
2020 	 * It should never copy any pad contained in the structure
2021 	 * to avoid security leaks, but must copy the generic
2022 	 * 3 ints plus the relevant union member.
2023 	 */
2024 	err = __put_user(from->si_signo, &to->si_signo);
2025 	err |= __put_user(from->si_errno, &to->si_errno);
2026 	err |= __put_user((short)from->si_code, &to->si_code);
2027 	switch (from->si_code & __SI_MASK) {
2028 	case __SI_KILL:
2029 		err |= __put_user(from->si_pid, &to->si_pid);
2030 		err |= __put_user(from->si_uid, &to->si_uid);
2031 		break;
2032 	case __SI_TIMER:
2033 		 err |= __put_user(from->si_tid, &to->si_tid);
2034 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2035 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2036 		break;
2037 	case __SI_POLL:
2038 		err |= __put_user(from->si_band, &to->si_band);
2039 		err |= __put_user(from->si_fd, &to->si_fd);
2040 		break;
2041 	case __SI_FAULT:
2042 		err |= __put_user(from->si_addr, &to->si_addr);
2043 #ifdef __ARCH_SI_TRAPNO
2044 		err |= __put_user(from->si_trapno, &to->si_trapno);
2045 #endif
2046 		break;
2047 	case __SI_CHLD:
2048 		err |= __put_user(from->si_pid, &to->si_pid);
2049 		err |= __put_user(from->si_uid, &to->si_uid);
2050 		err |= __put_user(from->si_status, &to->si_status);
2051 		err |= __put_user(from->si_utime, &to->si_utime);
2052 		err |= __put_user(from->si_stime, &to->si_stime);
2053 		break;
2054 	case __SI_RT: /* This is not generated by the kernel as of now. */
2055 	case __SI_MESGQ: /* But this is */
2056 		err |= __put_user(from->si_pid, &to->si_pid);
2057 		err |= __put_user(from->si_uid, &to->si_uid);
2058 		err |= __put_user(from->si_ptr, &to->si_ptr);
2059 		break;
2060 	default: /* this is just in case for now ... */
2061 		err |= __put_user(from->si_pid, &to->si_pid);
2062 		err |= __put_user(from->si_uid, &to->si_uid);
2063 		break;
2064 	}
2065 	return err;
2066 }
2067 
2068 #endif
2069 
2070 asmlinkage long
2071 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2072 		    siginfo_t __user *uinfo,
2073 		    const struct timespec __user *uts,
2074 		    size_t sigsetsize)
2075 {
2076 	int ret, sig;
2077 	sigset_t these;
2078 	struct timespec ts;
2079 	siginfo_t info;
2080 	long timeout = 0;
2081 
2082 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2083 	if (sigsetsize != sizeof(sigset_t))
2084 		return -EINVAL;
2085 
2086 	if (copy_from_user(&these, uthese, sizeof(these)))
2087 		return -EFAULT;
2088 
2089 	/*
2090 	 * Invert the set of allowed signals to get those we
2091 	 * want to block.
2092 	 */
2093 	sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2094 	signotset(&these);
2095 
2096 	if (uts) {
2097 		if (copy_from_user(&ts, uts, sizeof(ts)))
2098 			return -EFAULT;
2099 		if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2100 		    || ts.tv_sec < 0)
2101 			return -EINVAL;
2102 	}
2103 
2104 	spin_lock_irq(&current->sighand->siglock);
2105 	sig = dequeue_signal(current, &these, &info);
2106 	if (!sig) {
2107 		timeout = MAX_SCHEDULE_TIMEOUT;
2108 		if (uts)
2109 			timeout = (timespec_to_jiffies(&ts)
2110 				   + (ts.tv_sec || ts.tv_nsec));
2111 
2112 		if (timeout) {
2113 			/* None ready -- temporarily unblock those we're
2114 			 * interested while we are sleeping in so that we'll
2115 			 * be awakened when they arrive.  */
2116 			current->real_blocked = current->blocked;
2117 			sigandsets(&current->blocked, &current->blocked, &these);
2118 			recalc_sigpending();
2119 			spin_unlock_irq(&current->sighand->siglock);
2120 
2121 			timeout = schedule_timeout_interruptible(timeout);
2122 
2123 			spin_lock_irq(&current->sighand->siglock);
2124 			sig = dequeue_signal(current, &these, &info);
2125 			current->blocked = current->real_blocked;
2126 			siginitset(&current->real_blocked, 0);
2127 			recalc_sigpending();
2128 		}
2129 	}
2130 	spin_unlock_irq(&current->sighand->siglock);
2131 
2132 	if (sig) {
2133 		ret = sig;
2134 		if (uinfo) {
2135 			if (copy_siginfo_to_user(uinfo, &info))
2136 				ret = -EFAULT;
2137 		}
2138 	} else {
2139 		ret = -EAGAIN;
2140 		if (timeout)
2141 			ret = -EINTR;
2142 	}
2143 
2144 	return ret;
2145 }
2146 
2147 asmlinkage long
2148 sys_kill(int pid, int sig)
2149 {
2150 	struct siginfo info;
2151 
2152 	info.si_signo = sig;
2153 	info.si_errno = 0;
2154 	info.si_code = SI_USER;
2155 	info.si_pid = current->tgid;
2156 	info.si_uid = current->uid;
2157 
2158 	return kill_something_info(sig, &info, pid);
2159 }
2160 
2161 static int do_tkill(int tgid, int pid, int sig)
2162 {
2163 	int error;
2164 	struct siginfo info;
2165 	struct task_struct *p;
2166 
2167 	error = -ESRCH;
2168 	info.si_signo = sig;
2169 	info.si_errno = 0;
2170 	info.si_code = SI_TKILL;
2171 	info.si_pid = current->tgid;
2172 	info.si_uid = current->uid;
2173 
2174 	read_lock(&tasklist_lock);
2175 	p = find_task_by_pid(pid);
2176 	if (p && (tgid <= 0 || p->tgid == tgid)) {
2177 		error = check_kill_permission(sig, &info, p);
2178 		/*
2179 		 * The null signal is a permissions and process existence
2180 		 * probe.  No signal is actually delivered.
2181 		 */
2182 		if (!error && sig && p->sighand) {
2183 			spin_lock_irq(&p->sighand->siglock);
2184 			handle_stop_signal(sig, p);
2185 			error = specific_send_sig_info(sig, &info, p);
2186 			spin_unlock_irq(&p->sighand->siglock);
2187 		}
2188 	}
2189 	read_unlock(&tasklist_lock);
2190 
2191 	return error;
2192 }
2193 
2194 /**
2195  *  sys_tgkill - send signal to one specific thread
2196  *  @tgid: the thread group ID of the thread
2197  *  @pid: the PID of the thread
2198  *  @sig: signal to be sent
2199  *
2200  *  This syscall also checks the tgid and returns -ESRCH even if the PID
2201  *  exists but it's not belonging to the target process anymore. This
2202  *  method solves the problem of threads exiting and PIDs getting reused.
2203  */
2204 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2205 {
2206 	/* This is only valid for single tasks */
2207 	if (pid <= 0 || tgid <= 0)
2208 		return -EINVAL;
2209 
2210 	return do_tkill(tgid, pid, sig);
2211 }
2212 
2213 /*
2214  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2215  */
2216 asmlinkage long
2217 sys_tkill(int pid, int sig)
2218 {
2219 	/* This is only valid for single tasks */
2220 	if (pid <= 0)
2221 		return -EINVAL;
2222 
2223 	return do_tkill(0, pid, sig);
2224 }
2225 
2226 asmlinkage long
2227 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2228 {
2229 	siginfo_t info;
2230 
2231 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2232 		return -EFAULT;
2233 
2234 	/* Not even root can pretend to send signals from the kernel.
2235 	   Nor can they impersonate a kill(), which adds source info.  */
2236 	if (info.si_code >= 0)
2237 		return -EPERM;
2238 	info.si_signo = sig;
2239 
2240 	/* POSIX.1b doesn't mention process groups.  */
2241 	return kill_proc_info(sig, &info, pid);
2242 }
2243 
2244 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2245 {
2246 	struct k_sigaction *k;
2247 	sigset_t mask;
2248 
2249 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2250 		return -EINVAL;
2251 
2252 	k = &current->sighand->action[sig-1];
2253 
2254 	spin_lock_irq(&current->sighand->siglock);
2255 	if (signal_pending(current)) {
2256 		/*
2257 		 * If there might be a fatal signal pending on multiple
2258 		 * threads, make sure we take it before changing the action.
2259 		 */
2260 		spin_unlock_irq(&current->sighand->siglock);
2261 		return -ERESTARTNOINTR;
2262 	}
2263 
2264 	if (oact)
2265 		*oact = *k;
2266 
2267 	if (act) {
2268 		sigdelsetmask(&act->sa.sa_mask,
2269 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
2270 		*k = *act;
2271 		/*
2272 		 * POSIX 3.3.1.3:
2273 		 *  "Setting a signal action to SIG_IGN for a signal that is
2274 		 *   pending shall cause the pending signal to be discarded,
2275 		 *   whether or not it is blocked."
2276 		 *
2277 		 *  "Setting a signal action to SIG_DFL for a signal that is
2278 		 *   pending and whose default action is to ignore the signal
2279 		 *   (for example, SIGCHLD), shall cause the pending signal to
2280 		 *   be discarded, whether or not it is blocked"
2281 		 */
2282 		if (act->sa.sa_handler == SIG_IGN ||
2283 		   (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2284 			struct task_struct *t = current;
2285 			sigemptyset(&mask);
2286 			sigaddset(&mask, sig);
2287 			rm_from_queue_full(&mask, &t->signal->shared_pending);
2288 			do {
2289 				rm_from_queue_full(&mask, &t->pending);
2290 				recalc_sigpending_tsk(t);
2291 				t = next_thread(t);
2292 			} while (t != current);
2293 		}
2294 	}
2295 
2296 	spin_unlock_irq(&current->sighand->siglock);
2297 	return 0;
2298 }
2299 
2300 int
2301 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2302 {
2303 	stack_t oss;
2304 	int error;
2305 
2306 	if (uoss) {
2307 		oss.ss_sp = (void __user *) current->sas_ss_sp;
2308 		oss.ss_size = current->sas_ss_size;
2309 		oss.ss_flags = sas_ss_flags(sp);
2310 	}
2311 
2312 	if (uss) {
2313 		void __user *ss_sp;
2314 		size_t ss_size;
2315 		int ss_flags;
2316 
2317 		error = -EFAULT;
2318 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2319 		    || __get_user(ss_sp, &uss->ss_sp)
2320 		    || __get_user(ss_flags, &uss->ss_flags)
2321 		    || __get_user(ss_size, &uss->ss_size))
2322 			goto out;
2323 
2324 		error = -EPERM;
2325 		if (on_sig_stack(sp))
2326 			goto out;
2327 
2328 		error = -EINVAL;
2329 		/*
2330 		 *
2331 		 * Note - this code used to test ss_flags incorrectly
2332 		 *  	  old code may have been written using ss_flags==0
2333 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
2334 		 *	  way that worked) - this fix preserves that older
2335 		 *	  mechanism
2336 		 */
2337 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2338 			goto out;
2339 
2340 		if (ss_flags == SS_DISABLE) {
2341 			ss_size = 0;
2342 			ss_sp = NULL;
2343 		} else {
2344 			error = -ENOMEM;
2345 			if (ss_size < MINSIGSTKSZ)
2346 				goto out;
2347 		}
2348 
2349 		current->sas_ss_sp = (unsigned long) ss_sp;
2350 		current->sas_ss_size = ss_size;
2351 	}
2352 
2353 	if (uoss) {
2354 		error = -EFAULT;
2355 		if (copy_to_user(uoss, &oss, sizeof(oss)))
2356 			goto out;
2357 	}
2358 
2359 	error = 0;
2360 out:
2361 	return error;
2362 }
2363 
2364 #ifdef __ARCH_WANT_SYS_SIGPENDING
2365 
2366 asmlinkage long
2367 sys_sigpending(old_sigset_t __user *set)
2368 {
2369 	return do_sigpending(set, sizeof(*set));
2370 }
2371 
2372 #endif
2373 
2374 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2375 /* Some platforms have their own version with special arguments others
2376    support only sys_rt_sigprocmask.  */
2377 
2378 asmlinkage long
2379 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2380 {
2381 	int error;
2382 	old_sigset_t old_set, new_set;
2383 
2384 	if (set) {
2385 		error = -EFAULT;
2386 		if (copy_from_user(&new_set, set, sizeof(*set)))
2387 			goto out;
2388 		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2389 
2390 		spin_lock_irq(&current->sighand->siglock);
2391 		old_set = current->blocked.sig[0];
2392 
2393 		error = 0;
2394 		switch (how) {
2395 		default:
2396 			error = -EINVAL;
2397 			break;
2398 		case SIG_BLOCK:
2399 			sigaddsetmask(&current->blocked, new_set);
2400 			break;
2401 		case SIG_UNBLOCK:
2402 			sigdelsetmask(&current->blocked, new_set);
2403 			break;
2404 		case SIG_SETMASK:
2405 			current->blocked.sig[0] = new_set;
2406 			break;
2407 		}
2408 
2409 		recalc_sigpending();
2410 		spin_unlock_irq(&current->sighand->siglock);
2411 		if (error)
2412 			goto out;
2413 		if (oset)
2414 			goto set_old;
2415 	} else if (oset) {
2416 		old_set = current->blocked.sig[0];
2417 	set_old:
2418 		error = -EFAULT;
2419 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
2420 			goto out;
2421 	}
2422 	error = 0;
2423 out:
2424 	return error;
2425 }
2426 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2427 
2428 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2429 asmlinkage long
2430 sys_rt_sigaction(int sig,
2431 		 const struct sigaction __user *act,
2432 		 struct sigaction __user *oact,
2433 		 size_t sigsetsize)
2434 {
2435 	struct k_sigaction new_sa, old_sa;
2436 	int ret = -EINVAL;
2437 
2438 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2439 	if (sigsetsize != sizeof(sigset_t))
2440 		goto out;
2441 
2442 	if (act) {
2443 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2444 			return -EFAULT;
2445 	}
2446 
2447 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2448 
2449 	if (!ret && oact) {
2450 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2451 			return -EFAULT;
2452 	}
2453 out:
2454 	return ret;
2455 }
2456 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2457 
2458 #ifdef __ARCH_WANT_SYS_SGETMASK
2459 
2460 /*
2461  * For backwards compatibility.  Functionality superseded by sigprocmask.
2462  */
2463 asmlinkage long
2464 sys_sgetmask(void)
2465 {
2466 	/* SMP safe */
2467 	return current->blocked.sig[0];
2468 }
2469 
2470 asmlinkage long
2471 sys_ssetmask(int newmask)
2472 {
2473 	int old;
2474 
2475 	spin_lock_irq(&current->sighand->siglock);
2476 	old = current->blocked.sig[0];
2477 
2478 	siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2479 						  sigmask(SIGSTOP)));
2480 	recalc_sigpending();
2481 	spin_unlock_irq(&current->sighand->siglock);
2482 
2483 	return old;
2484 }
2485 #endif /* __ARCH_WANT_SGETMASK */
2486 
2487 #ifdef __ARCH_WANT_SYS_SIGNAL
2488 /*
2489  * For backwards compatibility.  Functionality superseded by sigaction.
2490  */
2491 asmlinkage unsigned long
2492 sys_signal(int sig, __sighandler_t handler)
2493 {
2494 	struct k_sigaction new_sa, old_sa;
2495 	int ret;
2496 
2497 	new_sa.sa.sa_handler = handler;
2498 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2499 	sigemptyset(&new_sa.sa.sa_mask);
2500 
2501 	ret = do_sigaction(sig, &new_sa, &old_sa);
2502 
2503 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2504 }
2505 #endif /* __ARCH_WANT_SYS_SIGNAL */
2506 
2507 #ifdef __ARCH_WANT_SYS_PAUSE
2508 
2509 asmlinkage long
2510 sys_pause(void)
2511 {
2512 	current->state = TASK_INTERRUPTIBLE;
2513 	schedule();
2514 	return -ERESTARTNOHAND;
2515 }
2516 
2517 #endif
2518 
2519 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2520 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2521 {
2522 	sigset_t newset;
2523 
2524 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2525 	if (sigsetsize != sizeof(sigset_t))
2526 		return -EINVAL;
2527 
2528 	if (copy_from_user(&newset, unewset, sizeof(newset)))
2529 		return -EFAULT;
2530 	sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2531 
2532 	spin_lock_irq(&current->sighand->siglock);
2533 	current->saved_sigmask = current->blocked;
2534 	current->blocked = newset;
2535 	recalc_sigpending();
2536 	spin_unlock_irq(&current->sighand->siglock);
2537 
2538 	current->state = TASK_INTERRUPTIBLE;
2539 	schedule();
2540 	set_thread_flag(TIF_RESTORE_SIGMASK);
2541 	return -ERESTARTNOHAND;
2542 }
2543 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2544 
2545 void __init signals_init(void)
2546 {
2547 	sigqueue_cachep =
2548 		kmem_cache_create("sigqueue",
2549 				  sizeof(struct sigqueue),
2550 				  __alignof__(struct sigqueue),
2551 				  SLAB_PANIC, NULL, NULL);
2552 }
2553