1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/config.h> 14 #include <linux/slab.h> 15 #include <linux/module.h> 16 #include <linux/smp_lock.h> 17 #include <linux/init.h> 18 #include <linux/sched.h> 19 #include <linux/fs.h> 20 #include <linux/tty.h> 21 #include <linux/binfmts.h> 22 #include <linux/security.h> 23 #include <linux/syscalls.h> 24 #include <linux/ptrace.h> 25 #include <linux/signal.h> 26 #include <linux/audit.h> 27 #include <linux/capability.h> 28 #include <asm/param.h> 29 #include <asm/uaccess.h> 30 #include <asm/unistd.h> 31 #include <asm/siginfo.h> 32 33 /* 34 * SLAB caches for signal bits. 35 */ 36 37 static kmem_cache_t *sigqueue_cachep; 38 39 /* 40 * In POSIX a signal is sent either to a specific thread (Linux task) 41 * or to the process as a whole (Linux thread group). How the signal 42 * is sent determines whether it's to one thread or the whole group, 43 * which determines which signal mask(s) are involved in blocking it 44 * from being delivered until later. When the signal is delivered, 45 * either it's caught or ignored by a user handler or it has a default 46 * effect that applies to the whole thread group (POSIX process). 47 * 48 * The possible effects an unblocked signal set to SIG_DFL can have are: 49 * ignore - Nothing Happens 50 * terminate - kill the process, i.e. all threads in the group, 51 * similar to exit_group. The group leader (only) reports 52 * WIFSIGNALED status to its parent. 53 * coredump - write a core dump file describing all threads using 54 * the same mm and then kill all those threads 55 * stop - stop all the threads in the group, i.e. TASK_STOPPED state 56 * 57 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored. 58 * Other signals when not blocked and set to SIG_DFL behaves as follows. 59 * The job control signals also have other special effects. 60 * 61 * +--------------------+------------------+ 62 * | POSIX signal | default action | 63 * +--------------------+------------------+ 64 * | SIGHUP | terminate | 65 * | SIGINT | terminate | 66 * | SIGQUIT | coredump | 67 * | SIGILL | coredump | 68 * | SIGTRAP | coredump | 69 * | SIGABRT/SIGIOT | coredump | 70 * | SIGBUS | coredump | 71 * | SIGFPE | coredump | 72 * | SIGKILL | terminate(+) | 73 * | SIGUSR1 | terminate | 74 * | SIGSEGV | coredump | 75 * | SIGUSR2 | terminate | 76 * | SIGPIPE | terminate | 77 * | SIGALRM | terminate | 78 * | SIGTERM | terminate | 79 * | SIGCHLD | ignore | 80 * | SIGCONT | ignore(*) | 81 * | SIGSTOP | stop(*)(+) | 82 * | SIGTSTP | stop(*) | 83 * | SIGTTIN | stop(*) | 84 * | SIGTTOU | stop(*) | 85 * | SIGURG | ignore | 86 * | SIGXCPU | coredump | 87 * | SIGXFSZ | coredump | 88 * | SIGVTALRM | terminate | 89 * | SIGPROF | terminate | 90 * | SIGPOLL/SIGIO | terminate | 91 * | SIGSYS/SIGUNUSED | coredump | 92 * | SIGSTKFLT | terminate | 93 * | SIGWINCH | ignore | 94 * | SIGPWR | terminate | 95 * | SIGRTMIN-SIGRTMAX | terminate | 96 * +--------------------+------------------+ 97 * | non-POSIX signal | default action | 98 * +--------------------+------------------+ 99 * | SIGEMT | coredump | 100 * +--------------------+------------------+ 101 * 102 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default". 103 * (*) Special job control effects: 104 * When SIGCONT is sent, it resumes the process (all threads in the group) 105 * from TASK_STOPPED state and also clears any pending/queued stop signals 106 * (any of those marked with "stop(*)"). This happens regardless of blocking, 107 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears 108 * any pending/queued SIGCONT signals; this happens regardless of blocking, 109 * catching, or ignored the stop signal, though (except for SIGSTOP) the 110 * default action of stopping the process may happen later or never. 111 */ 112 113 #ifdef SIGEMT 114 #define M_SIGEMT M(SIGEMT) 115 #else 116 #define M_SIGEMT 0 117 #endif 118 119 #if SIGRTMIN > BITS_PER_LONG 120 #define M(sig) (1ULL << ((sig)-1)) 121 #else 122 #define M(sig) (1UL << ((sig)-1)) 123 #endif 124 #define T(sig, mask) (M(sig) & (mask)) 125 126 #define SIG_KERNEL_ONLY_MASK (\ 127 M(SIGKILL) | M(SIGSTOP) ) 128 129 #define SIG_KERNEL_STOP_MASK (\ 130 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) ) 131 132 #define SIG_KERNEL_COREDUMP_MASK (\ 133 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \ 134 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \ 135 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT ) 136 137 #define SIG_KERNEL_IGNORE_MASK (\ 138 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) ) 139 140 #define sig_kernel_only(sig) \ 141 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK)) 142 #define sig_kernel_coredump(sig) \ 143 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK)) 144 #define sig_kernel_ignore(sig) \ 145 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK)) 146 #define sig_kernel_stop(sig) \ 147 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK)) 148 149 #define sig_needs_tasklist(sig) ((sig) == SIGCONT) 150 151 #define sig_user_defined(t, signr) \ 152 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \ 153 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN)) 154 155 #define sig_fatal(t, signr) \ 156 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \ 157 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL) 158 159 static int sig_ignored(struct task_struct *t, int sig) 160 { 161 void __user * handler; 162 163 /* 164 * Tracers always want to know about signals.. 165 */ 166 if (t->ptrace & PT_PTRACED) 167 return 0; 168 169 /* 170 * Blocked signals are never ignored, since the 171 * signal handler may change by the time it is 172 * unblocked. 173 */ 174 if (sigismember(&t->blocked, sig)) 175 return 0; 176 177 /* Is it explicitly or implicitly ignored? */ 178 handler = t->sighand->action[sig-1].sa.sa_handler; 179 return handler == SIG_IGN || 180 (handler == SIG_DFL && sig_kernel_ignore(sig)); 181 } 182 183 /* 184 * Re-calculate pending state from the set of locally pending 185 * signals, globally pending signals, and blocked signals. 186 */ 187 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 188 { 189 unsigned long ready; 190 long i; 191 192 switch (_NSIG_WORDS) { 193 default: 194 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 195 ready |= signal->sig[i] &~ blocked->sig[i]; 196 break; 197 198 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 199 ready |= signal->sig[2] &~ blocked->sig[2]; 200 ready |= signal->sig[1] &~ blocked->sig[1]; 201 ready |= signal->sig[0] &~ blocked->sig[0]; 202 break; 203 204 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 205 ready |= signal->sig[0] &~ blocked->sig[0]; 206 break; 207 208 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 209 } 210 return ready != 0; 211 } 212 213 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 214 215 fastcall void recalc_sigpending_tsk(struct task_struct *t) 216 { 217 if (t->signal->group_stop_count > 0 || 218 (freezing(t)) || 219 PENDING(&t->pending, &t->blocked) || 220 PENDING(&t->signal->shared_pending, &t->blocked)) 221 set_tsk_thread_flag(t, TIF_SIGPENDING); 222 else 223 clear_tsk_thread_flag(t, TIF_SIGPENDING); 224 } 225 226 void recalc_sigpending(void) 227 { 228 recalc_sigpending_tsk(current); 229 } 230 231 /* Given the mask, find the first available signal that should be serviced. */ 232 233 static int 234 next_signal(struct sigpending *pending, sigset_t *mask) 235 { 236 unsigned long i, *s, *m, x; 237 int sig = 0; 238 239 s = pending->signal.sig; 240 m = mask->sig; 241 switch (_NSIG_WORDS) { 242 default: 243 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m) 244 if ((x = *s &~ *m) != 0) { 245 sig = ffz(~x) + i*_NSIG_BPW + 1; 246 break; 247 } 248 break; 249 250 case 2: if ((x = s[0] &~ m[0]) != 0) 251 sig = 1; 252 else if ((x = s[1] &~ m[1]) != 0) 253 sig = _NSIG_BPW + 1; 254 else 255 break; 256 sig += ffz(~x); 257 break; 258 259 case 1: if ((x = *s &~ *m) != 0) 260 sig = ffz(~x) + 1; 261 break; 262 } 263 264 return sig; 265 } 266 267 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags, 268 int override_rlimit) 269 { 270 struct sigqueue *q = NULL; 271 272 atomic_inc(&t->user->sigpending); 273 if (override_rlimit || 274 atomic_read(&t->user->sigpending) <= 275 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur) 276 q = kmem_cache_alloc(sigqueue_cachep, flags); 277 if (unlikely(q == NULL)) { 278 atomic_dec(&t->user->sigpending); 279 } else { 280 INIT_LIST_HEAD(&q->list); 281 q->flags = 0; 282 q->user = get_uid(t->user); 283 } 284 return(q); 285 } 286 287 static void __sigqueue_free(struct sigqueue *q) 288 { 289 if (q->flags & SIGQUEUE_PREALLOC) 290 return; 291 atomic_dec(&q->user->sigpending); 292 free_uid(q->user); 293 kmem_cache_free(sigqueue_cachep, q); 294 } 295 296 void flush_sigqueue(struct sigpending *queue) 297 { 298 struct sigqueue *q; 299 300 sigemptyset(&queue->signal); 301 while (!list_empty(&queue->list)) { 302 q = list_entry(queue->list.next, struct sigqueue , list); 303 list_del_init(&q->list); 304 __sigqueue_free(q); 305 } 306 } 307 308 /* 309 * Flush all pending signals for a task. 310 */ 311 void flush_signals(struct task_struct *t) 312 { 313 unsigned long flags; 314 315 spin_lock_irqsave(&t->sighand->siglock, flags); 316 clear_tsk_thread_flag(t,TIF_SIGPENDING); 317 flush_sigqueue(&t->pending); 318 flush_sigqueue(&t->signal->shared_pending); 319 spin_unlock_irqrestore(&t->sighand->siglock, flags); 320 } 321 322 /* 323 * Flush all handlers for a task. 324 */ 325 326 void 327 flush_signal_handlers(struct task_struct *t, int force_default) 328 { 329 int i; 330 struct k_sigaction *ka = &t->sighand->action[0]; 331 for (i = _NSIG ; i != 0 ; i--) { 332 if (force_default || ka->sa.sa_handler != SIG_IGN) 333 ka->sa.sa_handler = SIG_DFL; 334 ka->sa.sa_flags = 0; 335 sigemptyset(&ka->sa.sa_mask); 336 ka++; 337 } 338 } 339 340 341 /* Notify the system that a driver wants to block all signals for this 342 * process, and wants to be notified if any signals at all were to be 343 * sent/acted upon. If the notifier routine returns non-zero, then the 344 * signal will be acted upon after all. If the notifier routine returns 0, 345 * then then signal will be blocked. Only one block per process is 346 * allowed. priv is a pointer to private data that the notifier routine 347 * can use to determine if the signal should be blocked or not. */ 348 349 void 350 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) 351 { 352 unsigned long flags; 353 354 spin_lock_irqsave(¤t->sighand->siglock, flags); 355 current->notifier_mask = mask; 356 current->notifier_data = priv; 357 current->notifier = notifier; 358 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 359 } 360 361 /* Notify the system that blocking has ended. */ 362 363 void 364 unblock_all_signals(void) 365 { 366 unsigned long flags; 367 368 spin_lock_irqsave(¤t->sighand->siglock, flags); 369 current->notifier = NULL; 370 current->notifier_data = NULL; 371 recalc_sigpending(); 372 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 373 } 374 375 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info) 376 { 377 struct sigqueue *q, *first = NULL; 378 int still_pending = 0; 379 380 if (unlikely(!sigismember(&list->signal, sig))) 381 return 0; 382 383 /* 384 * Collect the siginfo appropriate to this signal. Check if 385 * there is another siginfo for the same signal. 386 */ 387 list_for_each_entry(q, &list->list, list) { 388 if (q->info.si_signo == sig) { 389 if (first) { 390 still_pending = 1; 391 break; 392 } 393 first = q; 394 } 395 } 396 if (first) { 397 list_del_init(&first->list); 398 copy_siginfo(info, &first->info); 399 __sigqueue_free(first); 400 if (!still_pending) 401 sigdelset(&list->signal, sig); 402 } else { 403 404 /* Ok, it wasn't in the queue. This must be 405 a fast-pathed signal or we must have been 406 out of queue space. So zero out the info. 407 */ 408 sigdelset(&list->signal, sig); 409 info->si_signo = sig; 410 info->si_errno = 0; 411 info->si_code = 0; 412 info->si_pid = 0; 413 info->si_uid = 0; 414 } 415 return 1; 416 } 417 418 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 419 siginfo_t *info) 420 { 421 int sig = 0; 422 423 sig = next_signal(pending, mask); 424 if (sig) { 425 if (current->notifier) { 426 if (sigismember(current->notifier_mask, sig)) { 427 if (!(current->notifier)(current->notifier_data)) { 428 clear_thread_flag(TIF_SIGPENDING); 429 return 0; 430 } 431 } 432 } 433 434 if (!collect_signal(sig, pending, info)) 435 sig = 0; 436 437 } 438 recalc_sigpending(); 439 440 return sig; 441 } 442 443 /* 444 * Dequeue a signal and return the element to the caller, which is 445 * expected to free it. 446 * 447 * All callers have to hold the siglock. 448 */ 449 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 450 { 451 int signr = __dequeue_signal(&tsk->pending, mask, info); 452 if (!signr) 453 signr = __dequeue_signal(&tsk->signal->shared_pending, 454 mask, info); 455 if (signr && unlikely(sig_kernel_stop(signr))) { 456 /* 457 * Set a marker that we have dequeued a stop signal. Our 458 * caller might release the siglock and then the pending 459 * stop signal it is about to process is no longer in the 460 * pending bitmasks, but must still be cleared by a SIGCONT 461 * (and overruled by a SIGKILL). So those cases clear this 462 * shared flag after we've set it. Note that this flag may 463 * remain set after the signal we return is ignored or 464 * handled. That doesn't matter because its only purpose 465 * is to alert stop-signal processing code when another 466 * processor has come along and cleared the flag. 467 */ 468 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) 469 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED; 470 } 471 if ( signr && 472 ((info->si_code & __SI_MASK) == __SI_TIMER) && 473 info->si_sys_private){ 474 /* 475 * Release the siglock to ensure proper locking order 476 * of timer locks outside of siglocks. Note, we leave 477 * irqs disabled here, since the posix-timers code is 478 * about to disable them again anyway. 479 */ 480 spin_unlock(&tsk->sighand->siglock); 481 do_schedule_next_timer(info); 482 spin_lock(&tsk->sighand->siglock); 483 } 484 return signr; 485 } 486 487 /* 488 * Tell a process that it has a new active signal.. 489 * 490 * NOTE! we rely on the previous spin_lock to 491 * lock interrupts for us! We can only be called with 492 * "siglock" held, and the local interrupt must 493 * have been disabled when that got acquired! 494 * 495 * No need to set need_resched since signal event passing 496 * goes through ->blocked 497 */ 498 void signal_wake_up(struct task_struct *t, int resume) 499 { 500 unsigned int mask; 501 502 set_tsk_thread_flag(t, TIF_SIGPENDING); 503 504 /* 505 * For SIGKILL, we want to wake it up in the stopped/traced case. 506 * We don't check t->state here because there is a race with it 507 * executing another processor and just now entering stopped state. 508 * By using wake_up_state, we ensure the process will wake up and 509 * handle its death signal. 510 */ 511 mask = TASK_INTERRUPTIBLE; 512 if (resume) 513 mask |= TASK_STOPPED | TASK_TRACED; 514 if (!wake_up_state(t, mask)) 515 kick_process(t); 516 } 517 518 /* 519 * Remove signals in mask from the pending set and queue. 520 * Returns 1 if any signals were found. 521 * 522 * All callers must be holding the siglock. 523 * 524 * This version takes a sigset mask and looks at all signals, 525 * not just those in the first mask word. 526 */ 527 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s) 528 { 529 struct sigqueue *q, *n; 530 sigset_t m; 531 532 sigandsets(&m, mask, &s->signal); 533 if (sigisemptyset(&m)) 534 return 0; 535 536 signandsets(&s->signal, &s->signal, mask); 537 list_for_each_entry_safe(q, n, &s->list, list) { 538 if (sigismember(mask, q->info.si_signo)) { 539 list_del_init(&q->list); 540 __sigqueue_free(q); 541 } 542 } 543 return 1; 544 } 545 /* 546 * Remove signals in mask from the pending set and queue. 547 * Returns 1 if any signals were found. 548 * 549 * All callers must be holding the siglock. 550 */ 551 static int rm_from_queue(unsigned long mask, struct sigpending *s) 552 { 553 struct sigqueue *q, *n; 554 555 if (!sigtestsetmask(&s->signal, mask)) 556 return 0; 557 558 sigdelsetmask(&s->signal, mask); 559 list_for_each_entry_safe(q, n, &s->list, list) { 560 if (q->info.si_signo < SIGRTMIN && 561 (mask & sigmask(q->info.si_signo))) { 562 list_del_init(&q->list); 563 __sigqueue_free(q); 564 } 565 } 566 return 1; 567 } 568 569 /* 570 * Bad permissions for sending the signal 571 */ 572 static int check_kill_permission(int sig, struct siginfo *info, 573 struct task_struct *t) 574 { 575 int error = -EINVAL; 576 if (!valid_signal(sig)) 577 return error; 578 error = -EPERM; 579 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) 580 && ((sig != SIGCONT) || 581 (current->signal->session != t->signal->session)) 582 && (current->euid ^ t->suid) && (current->euid ^ t->uid) 583 && (current->uid ^ t->suid) && (current->uid ^ t->uid) 584 && !capable(CAP_KILL)) 585 return error; 586 587 error = security_task_kill(t, info, sig); 588 if (!error) 589 audit_signal_info(sig, t); /* Let audit system see the signal */ 590 return error; 591 } 592 593 /* forward decl */ 594 static void do_notify_parent_cldstop(struct task_struct *tsk, int why); 595 596 /* 597 * Handle magic process-wide effects of stop/continue signals. 598 * Unlike the signal actions, these happen immediately at signal-generation 599 * time regardless of blocking, ignoring, or handling. This does the 600 * actual continuing for SIGCONT, but not the actual stopping for stop 601 * signals. The process stop is done as a signal action for SIG_DFL. 602 */ 603 static void handle_stop_signal(int sig, struct task_struct *p) 604 { 605 struct task_struct *t; 606 607 if (p->signal->flags & SIGNAL_GROUP_EXIT) 608 /* 609 * The process is in the middle of dying already. 610 */ 611 return; 612 613 if (sig_kernel_stop(sig)) { 614 /* 615 * This is a stop signal. Remove SIGCONT from all queues. 616 */ 617 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending); 618 t = p; 619 do { 620 rm_from_queue(sigmask(SIGCONT), &t->pending); 621 t = next_thread(t); 622 } while (t != p); 623 } else if (sig == SIGCONT) { 624 /* 625 * Remove all stop signals from all queues, 626 * and wake all threads. 627 */ 628 if (unlikely(p->signal->group_stop_count > 0)) { 629 /* 630 * There was a group stop in progress. We'll 631 * pretend it finished before we got here. We are 632 * obliged to report it to the parent: if the 633 * SIGSTOP happened "after" this SIGCONT, then it 634 * would have cleared this pending SIGCONT. If it 635 * happened "before" this SIGCONT, then the parent 636 * got the SIGCHLD about the stop finishing before 637 * the continue happened. We do the notification 638 * now, and it's as if the stop had finished and 639 * the SIGCHLD was pending on entry to this kill. 640 */ 641 p->signal->group_stop_count = 0; 642 p->signal->flags = SIGNAL_STOP_CONTINUED; 643 spin_unlock(&p->sighand->siglock); 644 do_notify_parent_cldstop(p, CLD_STOPPED); 645 spin_lock(&p->sighand->siglock); 646 } 647 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); 648 t = p; 649 do { 650 unsigned int state; 651 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 652 653 /* 654 * If there is a handler for SIGCONT, we must make 655 * sure that no thread returns to user mode before 656 * we post the signal, in case it was the only 657 * thread eligible to run the signal handler--then 658 * it must not do anything between resuming and 659 * running the handler. With the TIF_SIGPENDING 660 * flag set, the thread will pause and acquire the 661 * siglock that we hold now and until we've queued 662 * the pending signal. 663 * 664 * Wake up the stopped thread _after_ setting 665 * TIF_SIGPENDING 666 */ 667 state = TASK_STOPPED; 668 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) { 669 set_tsk_thread_flag(t, TIF_SIGPENDING); 670 state |= TASK_INTERRUPTIBLE; 671 } 672 wake_up_state(t, state); 673 674 t = next_thread(t); 675 } while (t != p); 676 677 if (p->signal->flags & SIGNAL_STOP_STOPPED) { 678 /* 679 * We were in fact stopped, and are now continued. 680 * Notify the parent with CLD_CONTINUED. 681 */ 682 p->signal->flags = SIGNAL_STOP_CONTINUED; 683 p->signal->group_exit_code = 0; 684 spin_unlock(&p->sighand->siglock); 685 do_notify_parent_cldstop(p, CLD_CONTINUED); 686 spin_lock(&p->sighand->siglock); 687 } else { 688 /* 689 * We are not stopped, but there could be a stop 690 * signal in the middle of being processed after 691 * being removed from the queue. Clear that too. 692 */ 693 p->signal->flags = 0; 694 } 695 } else if (sig == SIGKILL) { 696 /* 697 * Make sure that any pending stop signal already dequeued 698 * is undone by the wakeup for SIGKILL. 699 */ 700 p->signal->flags = 0; 701 } 702 } 703 704 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 705 struct sigpending *signals) 706 { 707 struct sigqueue * q = NULL; 708 int ret = 0; 709 710 /* 711 * fast-pathed signals for kernel-internal things like SIGSTOP 712 * or SIGKILL. 713 */ 714 if (info == SEND_SIG_FORCED) 715 goto out_set; 716 717 /* Real-time signals must be queued if sent by sigqueue, or 718 some other real-time mechanism. It is implementation 719 defined whether kill() does so. We attempt to do so, on 720 the principle of least surprise, but since kill is not 721 allowed to fail with EAGAIN when low on memory we just 722 make sure at least one signal gets delivered and don't 723 pass on the info struct. */ 724 725 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN && 726 (is_si_special(info) || 727 info->si_code >= 0))); 728 if (q) { 729 list_add_tail(&q->list, &signals->list); 730 switch ((unsigned long) info) { 731 case (unsigned long) SEND_SIG_NOINFO: 732 q->info.si_signo = sig; 733 q->info.si_errno = 0; 734 q->info.si_code = SI_USER; 735 q->info.si_pid = current->pid; 736 q->info.si_uid = current->uid; 737 break; 738 case (unsigned long) SEND_SIG_PRIV: 739 q->info.si_signo = sig; 740 q->info.si_errno = 0; 741 q->info.si_code = SI_KERNEL; 742 q->info.si_pid = 0; 743 q->info.si_uid = 0; 744 break; 745 default: 746 copy_siginfo(&q->info, info); 747 break; 748 } 749 } else if (!is_si_special(info)) { 750 if (sig >= SIGRTMIN && info->si_code != SI_USER) 751 /* 752 * Queue overflow, abort. We may abort if the signal was rt 753 * and sent by user using something other than kill(). 754 */ 755 return -EAGAIN; 756 } 757 758 out_set: 759 sigaddset(&signals->signal, sig); 760 return ret; 761 } 762 763 #define LEGACY_QUEUE(sigptr, sig) \ 764 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig))) 765 766 767 static int 768 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 769 { 770 int ret = 0; 771 772 BUG_ON(!irqs_disabled()); 773 assert_spin_locked(&t->sighand->siglock); 774 775 /* Short-circuit ignored signals. */ 776 if (sig_ignored(t, sig)) 777 goto out; 778 779 /* Support queueing exactly one non-rt signal, so that we 780 can get more detailed information about the cause of 781 the signal. */ 782 if (LEGACY_QUEUE(&t->pending, sig)) 783 goto out; 784 785 ret = send_signal(sig, info, t, &t->pending); 786 if (!ret && !sigismember(&t->blocked, sig)) 787 signal_wake_up(t, sig == SIGKILL); 788 out: 789 return ret; 790 } 791 792 /* 793 * Force a signal that the process can't ignore: if necessary 794 * we unblock the signal and change any SIG_IGN to SIG_DFL. 795 */ 796 797 int 798 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 799 { 800 unsigned long int flags; 801 int ret; 802 803 spin_lock_irqsave(&t->sighand->siglock, flags); 804 if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) { 805 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL; 806 } 807 if (sigismember(&t->blocked, sig)) { 808 sigdelset(&t->blocked, sig); 809 } 810 recalc_sigpending_tsk(t); 811 ret = specific_send_sig_info(sig, info, t); 812 spin_unlock_irqrestore(&t->sighand->siglock, flags); 813 814 return ret; 815 } 816 817 void 818 force_sig_specific(int sig, struct task_struct *t) 819 { 820 force_sig_info(sig, SEND_SIG_FORCED, t); 821 } 822 823 /* 824 * Test if P wants to take SIG. After we've checked all threads with this, 825 * it's equivalent to finding no threads not blocking SIG. Any threads not 826 * blocking SIG were ruled out because they are not running and already 827 * have pending signals. Such threads will dequeue from the shared queue 828 * as soon as they're available, so putting the signal on the shared queue 829 * will be equivalent to sending it to one such thread. 830 */ 831 static inline int wants_signal(int sig, struct task_struct *p) 832 { 833 if (sigismember(&p->blocked, sig)) 834 return 0; 835 if (p->flags & PF_EXITING) 836 return 0; 837 if (sig == SIGKILL) 838 return 1; 839 if (p->state & (TASK_STOPPED | TASK_TRACED)) 840 return 0; 841 return task_curr(p) || !signal_pending(p); 842 } 843 844 static void 845 __group_complete_signal(int sig, struct task_struct *p) 846 { 847 struct task_struct *t; 848 849 /* 850 * Now find a thread we can wake up to take the signal off the queue. 851 * 852 * If the main thread wants the signal, it gets first crack. 853 * Probably the least surprising to the average bear. 854 */ 855 if (wants_signal(sig, p)) 856 t = p; 857 else if (thread_group_empty(p)) 858 /* 859 * There is just one thread and it does not need to be woken. 860 * It will dequeue unblocked signals before it runs again. 861 */ 862 return; 863 else { 864 /* 865 * Otherwise try to find a suitable thread. 866 */ 867 t = p->signal->curr_target; 868 if (t == NULL) 869 /* restart balancing at this thread */ 870 t = p->signal->curr_target = p; 871 BUG_ON(t->tgid != p->tgid); 872 873 while (!wants_signal(sig, t)) { 874 t = next_thread(t); 875 if (t == p->signal->curr_target) 876 /* 877 * No thread needs to be woken. 878 * Any eligible threads will see 879 * the signal in the queue soon. 880 */ 881 return; 882 } 883 p->signal->curr_target = t; 884 } 885 886 /* 887 * Found a killable thread. If the signal will be fatal, 888 * then start taking the whole group down immediately. 889 */ 890 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) && 891 !sigismember(&t->real_blocked, sig) && 892 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) { 893 /* 894 * This signal will be fatal to the whole group. 895 */ 896 if (!sig_kernel_coredump(sig)) { 897 /* 898 * Start a group exit and wake everybody up. 899 * This way we don't have other threads 900 * running and doing things after a slower 901 * thread has the fatal signal pending. 902 */ 903 p->signal->flags = SIGNAL_GROUP_EXIT; 904 p->signal->group_exit_code = sig; 905 p->signal->group_stop_count = 0; 906 t = p; 907 do { 908 sigaddset(&t->pending.signal, SIGKILL); 909 signal_wake_up(t, 1); 910 t = next_thread(t); 911 } while (t != p); 912 return; 913 } 914 915 /* 916 * There will be a core dump. We make all threads other 917 * than the chosen one go into a group stop so that nothing 918 * happens until it gets scheduled, takes the signal off 919 * the shared queue, and does the core dump. This is a 920 * little more complicated than strictly necessary, but it 921 * keeps the signal state that winds up in the core dump 922 * unchanged from the death state, e.g. which thread had 923 * the core-dump signal unblocked. 924 */ 925 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 926 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); 927 p->signal->group_stop_count = 0; 928 p->signal->group_exit_task = t; 929 t = p; 930 do { 931 p->signal->group_stop_count++; 932 signal_wake_up(t, 0); 933 t = next_thread(t); 934 } while (t != p); 935 wake_up_process(p->signal->group_exit_task); 936 return; 937 } 938 939 /* 940 * The signal is already in the shared-pending queue. 941 * Tell the chosen thread to wake up and dequeue it. 942 */ 943 signal_wake_up(t, sig == SIGKILL); 944 return; 945 } 946 947 int 948 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 949 { 950 int ret = 0; 951 952 assert_spin_locked(&p->sighand->siglock); 953 handle_stop_signal(sig, p); 954 955 /* Short-circuit ignored signals. */ 956 if (sig_ignored(p, sig)) 957 return ret; 958 959 if (LEGACY_QUEUE(&p->signal->shared_pending, sig)) 960 /* This is a non-RT signal and we already have one queued. */ 961 return ret; 962 963 /* 964 * Put this signal on the shared-pending queue, or fail with EAGAIN. 965 * We always use the shared queue for process-wide signals, 966 * to avoid several races. 967 */ 968 ret = send_signal(sig, info, p, &p->signal->shared_pending); 969 if (unlikely(ret)) 970 return ret; 971 972 __group_complete_signal(sig, p); 973 return 0; 974 } 975 976 /* 977 * Nuke all other threads in the group. 978 */ 979 void zap_other_threads(struct task_struct *p) 980 { 981 struct task_struct *t; 982 983 p->signal->flags = SIGNAL_GROUP_EXIT; 984 p->signal->group_stop_count = 0; 985 986 if (thread_group_empty(p)) 987 return; 988 989 for (t = next_thread(p); t != p; t = next_thread(t)) { 990 /* 991 * Don't bother with already dead threads 992 */ 993 if (t->exit_state) 994 continue; 995 996 /* 997 * We don't want to notify the parent, since we are 998 * killed as part of a thread group due to another 999 * thread doing an execve() or similar. So set the 1000 * exit signal to -1 to allow immediate reaping of 1001 * the process. But don't detach the thread group 1002 * leader. 1003 */ 1004 if (t != p->group_leader) 1005 t->exit_signal = -1; 1006 1007 /* SIGKILL will be handled before any pending SIGSTOP */ 1008 sigaddset(&t->pending.signal, SIGKILL); 1009 signal_wake_up(t, 1); 1010 } 1011 } 1012 1013 /* 1014 * Must be called under rcu_read_lock() or with tasklist_lock read-held. 1015 */ 1016 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags) 1017 { 1018 struct sighand_struct *sighand; 1019 1020 for (;;) { 1021 sighand = rcu_dereference(tsk->sighand); 1022 if (unlikely(sighand == NULL)) 1023 break; 1024 1025 spin_lock_irqsave(&sighand->siglock, *flags); 1026 if (likely(sighand == tsk->sighand)) 1027 break; 1028 spin_unlock_irqrestore(&sighand->siglock, *flags); 1029 } 1030 1031 return sighand; 1032 } 1033 1034 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1035 { 1036 unsigned long flags; 1037 int ret; 1038 1039 ret = check_kill_permission(sig, info, p); 1040 1041 if (!ret && sig) { 1042 ret = -ESRCH; 1043 if (lock_task_sighand(p, &flags)) { 1044 ret = __group_send_sig_info(sig, info, p); 1045 unlock_task_sighand(p, &flags); 1046 } 1047 } 1048 1049 return ret; 1050 } 1051 1052 /* 1053 * kill_pg_info() sends a signal to a process group: this is what the tty 1054 * control characters do (^C, ^Z etc) 1055 */ 1056 1057 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp) 1058 { 1059 struct task_struct *p = NULL; 1060 int retval, success; 1061 1062 if (pgrp <= 0) 1063 return -EINVAL; 1064 1065 success = 0; 1066 retval = -ESRCH; 1067 do_each_task_pid(pgrp, PIDTYPE_PGID, p) { 1068 int err = group_send_sig_info(sig, info, p); 1069 success |= !err; 1070 retval = err; 1071 } while_each_task_pid(pgrp, PIDTYPE_PGID, p); 1072 return success ? 0 : retval; 1073 } 1074 1075 int 1076 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp) 1077 { 1078 int retval; 1079 1080 read_lock(&tasklist_lock); 1081 retval = __kill_pg_info(sig, info, pgrp); 1082 read_unlock(&tasklist_lock); 1083 1084 return retval; 1085 } 1086 1087 int 1088 kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1089 { 1090 int error; 1091 int acquired_tasklist_lock = 0; 1092 struct task_struct *p; 1093 1094 rcu_read_lock(); 1095 if (unlikely(sig_needs_tasklist(sig))) { 1096 read_lock(&tasklist_lock); 1097 acquired_tasklist_lock = 1; 1098 } 1099 p = find_task_by_pid(pid); 1100 error = -ESRCH; 1101 if (p) 1102 error = group_send_sig_info(sig, info, p); 1103 if (unlikely(acquired_tasklist_lock)) 1104 read_unlock(&tasklist_lock); 1105 rcu_read_unlock(); 1106 return error; 1107 } 1108 1109 /* like kill_proc_info(), but doesn't use uid/euid of "current" */ 1110 int kill_proc_info_as_uid(int sig, struct siginfo *info, pid_t pid, 1111 uid_t uid, uid_t euid) 1112 { 1113 int ret = -EINVAL; 1114 struct task_struct *p; 1115 1116 if (!valid_signal(sig)) 1117 return ret; 1118 1119 read_lock(&tasklist_lock); 1120 p = find_task_by_pid(pid); 1121 if (!p) { 1122 ret = -ESRCH; 1123 goto out_unlock; 1124 } 1125 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) 1126 && (euid != p->suid) && (euid != p->uid) 1127 && (uid != p->suid) && (uid != p->uid)) { 1128 ret = -EPERM; 1129 goto out_unlock; 1130 } 1131 if (sig && p->sighand) { 1132 unsigned long flags; 1133 spin_lock_irqsave(&p->sighand->siglock, flags); 1134 ret = __group_send_sig_info(sig, info, p); 1135 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1136 } 1137 out_unlock: 1138 read_unlock(&tasklist_lock); 1139 return ret; 1140 } 1141 EXPORT_SYMBOL_GPL(kill_proc_info_as_uid); 1142 1143 /* 1144 * kill_something_info() interprets pid in interesting ways just like kill(2). 1145 * 1146 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1147 * is probably wrong. Should make it like BSD or SYSV. 1148 */ 1149 1150 static int kill_something_info(int sig, struct siginfo *info, int pid) 1151 { 1152 if (!pid) { 1153 return kill_pg_info(sig, info, process_group(current)); 1154 } else if (pid == -1) { 1155 int retval = 0, count = 0; 1156 struct task_struct * p; 1157 1158 read_lock(&tasklist_lock); 1159 for_each_process(p) { 1160 if (p->pid > 1 && p->tgid != current->tgid) { 1161 int err = group_send_sig_info(sig, info, p); 1162 ++count; 1163 if (err != -EPERM) 1164 retval = err; 1165 } 1166 } 1167 read_unlock(&tasklist_lock); 1168 return count ? retval : -ESRCH; 1169 } else if (pid < 0) { 1170 return kill_pg_info(sig, info, -pid); 1171 } else { 1172 return kill_proc_info(sig, info, pid); 1173 } 1174 } 1175 1176 /* 1177 * These are for backward compatibility with the rest of the kernel source. 1178 */ 1179 1180 /* 1181 * These two are the most common entry points. They send a signal 1182 * just to the specific thread. 1183 */ 1184 int 1185 send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1186 { 1187 int ret; 1188 unsigned long flags; 1189 1190 /* 1191 * Make sure legacy kernel users don't send in bad values 1192 * (normal paths check this in check_kill_permission). 1193 */ 1194 if (!valid_signal(sig)) 1195 return -EINVAL; 1196 1197 /* 1198 * We need the tasklist lock even for the specific 1199 * thread case (when we don't need to follow the group 1200 * lists) in order to avoid races with "p->sighand" 1201 * going away or changing from under us. 1202 */ 1203 read_lock(&tasklist_lock); 1204 spin_lock_irqsave(&p->sighand->siglock, flags); 1205 ret = specific_send_sig_info(sig, info, p); 1206 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1207 read_unlock(&tasklist_lock); 1208 return ret; 1209 } 1210 1211 #define __si_special(priv) \ 1212 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1213 1214 int 1215 send_sig(int sig, struct task_struct *p, int priv) 1216 { 1217 return send_sig_info(sig, __si_special(priv), p); 1218 } 1219 1220 /* 1221 * This is the entry point for "process-wide" signals. 1222 * They will go to an appropriate thread in the thread group. 1223 */ 1224 int 1225 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1226 { 1227 int ret; 1228 read_lock(&tasklist_lock); 1229 ret = group_send_sig_info(sig, info, p); 1230 read_unlock(&tasklist_lock); 1231 return ret; 1232 } 1233 1234 void 1235 force_sig(int sig, struct task_struct *p) 1236 { 1237 force_sig_info(sig, SEND_SIG_PRIV, p); 1238 } 1239 1240 /* 1241 * When things go south during signal handling, we 1242 * will force a SIGSEGV. And if the signal that caused 1243 * the problem was already a SIGSEGV, we'll want to 1244 * make sure we don't even try to deliver the signal.. 1245 */ 1246 int 1247 force_sigsegv(int sig, struct task_struct *p) 1248 { 1249 if (sig == SIGSEGV) { 1250 unsigned long flags; 1251 spin_lock_irqsave(&p->sighand->siglock, flags); 1252 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1253 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1254 } 1255 force_sig(SIGSEGV, p); 1256 return 0; 1257 } 1258 1259 int 1260 kill_pg(pid_t pgrp, int sig, int priv) 1261 { 1262 return kill_pg_info(sig, __si_special(priv), pgrp); 1263 } 1264 1265 int 1266 kill_proc(pid_t pid, int sig, int priv) 1267 { 1268 return kill_proc_info(sig, __si_special(priv), pid); 1269 } 1270 1271 /* 1272 * These functions support sending signals using preallocated sigqueue 1273 * structures. This is needed "because realtime applications cannot 1274 * afford to lose notifications of asynchronous events, like timer 1275 * expirations or I/O completions". In the case of Posix Timers 1276 * we allocate the sigqueue structure from the timer_create. If this 1277 * allocation fails we are able to report the failure to the application 1278 * with an EAGAIN error. 1279 */ 1280 1281 struct sigqueue *sigqueue_alloc(void) 1282 { 1283 struct sigqueue *q; 1284 1285 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0))) 1286 q->flags |= SIGQUEUE_PREALLOC; 1287 return(q); 1288 } 1289 1290 void sigqueue_free(struct sigqueue *q) 1291 { 1292 unsigned long flags; 1293 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1294 /* 1295 * If the signal is still pending remove it from the 1296 * pending queue. 1297 */ 1298 if (unlikely(!list_empty(&q->list))) { 1299 spinlock_t *lock = ¤t->sighand->siglock; 1300 read_lock(&tasklist_lock); 1301 spin_lock_irqsave(lock, flags); 1302 if (!list_empty(&q->list)) 1303 list_del_init(&q->list); 1304 spin_unlock_irqrestore(lock, flags); 1305 read_unlock(&tasklist_lock); 1306 } 1307 q->flags &= ~SIGQUEUE_PREALLOC; 1308 __sigqueue_free(q); 1309 } 1310 1311 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) 1312 { 1313 unsigned long flags; 1314 int ret = 0; 1315 1316 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1317 1318 /* 1319 * The rcu based delayed sighand destroy makes it possible to 1320 * run this without tasklist lock held. The task struct itself 1321 * cannot go away as create_timer did get_task_struct(). 1322 * 1323 * We return -1, when the task is marked exiting, so 1324 * posix_timer_event can redirect it to the group leader 1325 */ 1326 rcu_read_lock(); 1327 1328 if (!likely(lock_task_sighand(p, &flags))) { 1329 ret = -1; 1330 goto out_err; 1331 } 1332 1333 if (unlikely(!list_empty(&q->list))) { 1334 /* 1335 * If an SI_TIMER entry is already queue just increment 1336 * the overrun count. 1337 */ 1338 BUG_ON(q->info.si_code != SI_TIMER); 1339 q->info.si_overrun++; 1340 goto out; 1341 } 1342 /* Short-circuit ignored signals. */ 1343 if (sig_ignored(p, sig)) { 1344 ret = 1; 1345 goto out; 1346 } 1347 1348 list_add_tail(&q->list, &p->pending.list); 1349 sigaddset(&p->pending.signal, sig); 1350 if (!sigismember(&p->blocked, sig)) 1351 signal_wake_up(p, sig == SIGKILL); 1352 1353 out: 1354 unlock_task_sighand(p, &flags); 1355 out_err: 1356 rcu_read_unlock(); 1357 1358 return ret; 1359 } 1360 1361 int 1362 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) 1363 { 1364 unsigned long flags; 1365 int ret = 0; 1366 1367 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1368 1369 read_lock(&tasklist_lock); 1370 /* Since it_lock is held, p->sighand cannot be NULL. */ 1371 spin_lock_irqsave(&p->sighand->siglock, flags); 1372 handle_stop_signal(sig, p); 1373 1374 /* Short-circuit ignored signals. */ 1375 if (sig_ignored(p, sig)) { 1376 ret = 1; 1377 goto out; 1378 } 1379 1380 if (unlikely(!list_empty(&q->list))) { 1381 /* 1382 * If an SI_TIMER entry is already queue just increment 1383 * the overrun count. Other uses should not try to 1384 * send the signal multiple times. 1385 */ 1386 BUG_ON(q->info.si_code != SI_TIMER); 1387 q->info.si_overrun++; 1388 goto out; 1389 } 1390 1391 /* 1392 * Put this signal on the shared-pending queue. 1393 * We always use the shared queue for process-wide signals, 1394 * to avoid several races. 1395 */ 1396 list_add_tail(&q->list, &p->signal->shared_pending.list); 1397 sigaddset(&p->signal->shared_pending.signal, sig); 1398 1399 __group_complete_signal(sig, p); 1400 out: 1401 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1402 read_unlock(&tasklist_lock); 1403 return ret; 1404 } 1405 1406 /* 1407 * Wake up any threads in the parent blocked in wait* syscalls. 1408 */ 1409 static inline void __wake_up_parent(struct task_struct *p, 1410 struct task_struct *parent) 1411 { 1412 wake_up_interruptible_sync(&parent->signal->wait_chldexit); 1413 } 1414 1415 /* 1416 * Let a parent know about the death of a child. 1417 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1418 */ 1419 1420 void do_notify_parent(struct task_struct *tsk, int sig) 1421 { 1422 struct siginfo info; 1423 unsigned long flags; 1424 struct sighand_struct *psig; 1425 1426 BUG_ON(sig == -1); 1427 1428 /* do_notify_parent_cldstop should have been called instead. */ 1429 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED)); 1430 1431 BUG_ON(!tsk->ptrace && 1432 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1433 1434 info.si_signo = sig; 1435 info.si_errno = 0; 1436 info.si_pid = tsk->pid; 1437 info.si_uid = tsk->uid; 1438 1439 /* FIXME: find out whether or not this is supposed to be c*time. */ 1440 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime, 1441 tsk->signal->utime)); 1442 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime, 1443 tsk->signal->stime)); 1444 1445 info.si_status = tsk->exit_code & 0x7f; 1446 if (tsk->exit_code & 0x80) 1447 info.si_code = CLD_DUMPED; 1448 else if (tsk->exit_code & 0x7f) 1449 info.si_code = CLD_KILLED; 1450 else { 1451 info.si_code = CLD_EXITED; 1452 info.si_status = tsk->exit_code >> 8; 1453 } 1454 1455 psig = tsk->parent->sighand; 1456 spin_lock_irqsave(&psig->siglock, flags); 1457 if (!tsk->ptrace && sig == SIGCHLD && 1458 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1459 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1460 /* 1461 * We are exiting and our parent doesn't care. POSIX.1 1462 * defines special semantics for setting SIGCHLD to SIG_IGN 1463 * or setting the SA_NOCLDWAIT flag: we should be reaped 1464 * automatically and not left for our parent's wait4 call. 1465 * Rather than having the parent do it as a magic kind of 1466 * signal handler, we just set this to tell do_exit that we 1467 * can be cleaned up without becoming a zombie. Note that 1468 * we still call __wake_up_parent in this case, because a 1469 * blocked sys_wait4 might now return -ECHILD. 1470 * 1471 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1472 * is implementation-defined: we do (if you don't want 1473 * it, just use SIG_IGN instead). 1474 */ 1475 tsk->exit_signal = -1; 1476 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1477 sig = 0; 1478 } 1479 if (valid_signal(sig) && sig > 0) 1480 __group_send_sig_info(sig, &info, tsk->parent); 1481 __wake_up_parent(tsk, tsk->parent); 1482 spin_unlock_irqrestore(&psig->siglock, flags); 1483 } 1484 1485 static void do_notify_parent_cldstop(struct task_struct *tsk, int why) 1486 { 1487 struct siginfo info; 1488 unsigned long flags; 1489 struct task_struct *parent; 1490 struct sighand_struct *sighand; 1491 1492 if (tsk->ptrace & PT_PTRACED) 1493 parent = tsk->parent; 1494 else { 1495 tsk = tsk->group_leader; 1496 parent = tsk->real_parent; 1497 } 1498 1499 info.si_signo = SIGCHLD; 1500 info.si_errno = 0; 1501 info.si_pid = tsk->pid; 1502 info.si_uid = tsk->uid; 1503 1504 /* FIXME: find out whether or not this is supposed to be c*time. */ 1505 info.si_utime = cputime_to_jiffies(tsk->utime); 1506 info.si_stime = cputime_to_jiffies(tsk->stime); 1507 1508 info.si_code = why; 1509 switch (why) { 1510 case CLD_CONTINUED: 1511 info.si_status = SIGCONT; 1512 break; 1513 case CLD_STOPPED: 1514 info.si_status = tsk->signal->group_exit_code & 0x7f; 1515 break; 1516 case CLD_TRAPPED: 1517 info.si_status = tsk->exit_code & 0x7f; 1518 break; 1519 default: 1520 BUG(); 1521 } 1522 1523 sighand = parent->sighand; 1524 spin_lock_irqsave(&sighand->siglock, flags); 1525 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1526 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1527 __group_send_sig_info(SIGCHLD, &info, parent); 1528 /* 1529 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1530 */ 1531 __wake_up_parent(tsk, parent); 1532 spin_unlock_irqrestore(&sighand->siglock, flags); 1533 } 1534 1535 /* 1536 * This must be called with current->sighand->siglock held. 1537 * 1538 * This should be the path for all ptrace stops. 1539 * We always set current->last_siginfo while stopped here. 1540 * That makes it a way to test a stopped process for 1541 * being ptrace-stopped vs being job-control-stopped. 1542 * 1543 * If we actually decide not to stop at all because the tracer is gone, 1544 * we leave nostop_code in current->exit_code. 1545 */ 1546 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info) 1547 { 1548 /* 1549 * If there is a group stop in progress, 1550 * we must participate in the bookkeeping. 1551 */ 1552 if (current->signal->group_stop_count > 0) 1553 --current->signal->group_stop_count; 1554 1555 current->last_siginfo = info; 1556 current->exit_code = exit_code; 1557 1558 /* Let the debugger run. */ 1559 set_current_state(TASK_TRACED); 1560 spin_unlock_irq(¤t->sighand->siglock); 1561 try_to_freeze(); 1562 read_lock(&tasklist_lock); 1563 if (likely(current->ptrace & PT_PTRACED) && 1564 likely(current->parent != current->real_parent || 1565 !(current->ptrace & PT_ATTACHED)) && 1566 (likely(current->parent->signal != current->signal) || 1567 !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) { 1568 do_notify_parent_cldstop(current, CLD_TRAPPED); 1569 read_unlock(&tasklist_lock); 1570 schedule(); 1571 } else { 1572 /* 1573 * By the time we got the lock, our tracer went away. 1574 * Don't stop here. 1575 */ 1576 read_unlock(&tasklist_lock); 1577 set_current_state(TASK_RUNNING); 1578 current->exit_code = nostop_code; 1579 } 1580 1581 /* 1582 * We are back. Now reacquire the siglock before touching 1583 * last_siginfo, so that we are sure to have synchronized with 1584 * any signal-sending on another CPU that wants to examine it. 1585 */ 1586 spin_lock_irq(¤t->sighand->siglock); 1587 current->last_siginfo = NULL; 1588 1589 /* 1590 * Queued signals ignored us while we were stopped for tracing. 1591 * So check for any that we should take before resuming user mode. 1592 */ 1593 recalc_sigpending(); 1594 } 1595 1596 void ptrace_notify(int exit_code) 1597 { 1598 siginfo_t info; 1599 1600 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1601 1602 memset(&info, 0, sizeof info); 1603 info.si_signo = SIGTRAP; 1604 info.si_code = exit_code; 1605 info.si_pid = current->pid; 1606 info.si_uid = current->uid; 1607 1608 /* Let the debugger run. */ 1609 spin_lock_irq(¤t->sighand->siglock); 1610 ptrace_stop(exit_code, 0, &info); 1611 spin_unlock_irq(¤t->sighand->siglock); 1612 } 1613 1614 static void 1615 finish_stop(int stop_count) 1616 { 1617 /* 1618 * If there are no other threads in the group, or if there is 1619 * a group stop in progress and we are the last to stop, 1620 * report to the parent. When ptraced, every thread reports itself. 1621 */ 1622 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) { 1623 read_lock(&tasklist_lock); 1624 do_notify_parent_cldstop(current, CLD_STOPPED); 1625 read_unlock(&tasklist_lock); 1626 } 1627 1628 schedule(); 1629 /* 1630 * Now we don't run again until continued. 1631 */ 1632 current->exit_code = 0; 1633 } 1634 1635 /* 1636 * This performs the stopping for SIGSTOP and other stop signals. 1637 * We have to stop all threads in the thread group. 1638 * Returns nonzero if we've actually stopped and released the siglock. 1639 * Returns zero if we didn't stop and still hold the siglock. 1640 */ 1641 static int do_signal_stop(int signr) 1642 { 1643 struct signal_struct *sig = current->signal; 1644 int stop_count; 1645 1646 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) 1647 return 0; 1648 1649 if (sig->group_stop_count > 0) { 1650 /* 1651 * There is a group stop in progress. We don't need to 1652 * start another one. 1653 */ 1654 stop_count = --sig->group_stop_count; 1655 } else { 1656 /* 1657 * There is no group stop already in progress. 1658 * We must initiate one now. 1659 */ 1660 struct task_struct *t; 1661 1662 sig->group_exit_code = signr; 1663 1664 stop_count = 0; 1665 for (t = next_thread(current); t != current; t = next_thread(t)) 1666 /* 1667 * Setting state to TASK_STOPPED for a group 1668 * stop is always done with the siglock held, 1669 * so this check has no races. 1670 */ 1671 if (!t->exit_state && 1672 !(t->state & (TASK_STOPPED|TASK_TRACED))) { 1673 stop_count++; 1674 signal_wake_up(t, 0); 1675 } 1676 sig->group_stop_count = stop_count; 1677 } 1678 1679 if (stop_count == 0) 1680 sig->flags = SIGNAL_STOP_STOPPED; 1681 current->exit_code = sig->group_exit_code; 1682 __set_current_state(TASK_STOPPED); 1683 1684 spin_unlock_irq(¤t->sighand->siglock); 1685 finish_stop(stop_count); 1686 return 1; 1687 } 1688 1689 /* 1690 * Do appropriate magic when group_stop_count > 0. 1691 * We return nonzero if we stopped, after releasing the siglock. 1692 * We return zero if we still hold the siglock and should look 1693 * for another signal without checking group_stop_count again. 1694 */ 1695 static int handle_group_stop(void) 1696 { 1697 int stop_count; 1698 1699 if (current->signal->group_exit_task == current) { 1700 /* 1701 * Group stop is so we can do a core dump, 1702 * We are the initiating thread, so get on with it. 1703 */ 1704 current->signal->group_exit_task = NULL; 1705 return 0; 1706 } 1707 1708 if (current->signal->flags & SIGNAL_GROUP_EXIT) 1709 /* 1710 * Group stop is so another thread can do a core dump, 1711 * or else we are racing against a death signal. 1712 * Just punt the stop so we can get the next signal. 1713 */ 1714 return 0; 1715 1716 /* 1717 * There is a group stop in progress. We stop 1718 * without any associated signal being in our queue. 1719 */ 1720 stop_count = --current->signal->group_stop_count; 1721 if (stop_count == 0) 1722 current->signal->flags = SIGNAL_STOP_STOPPED; 1723 current->exit_code = current->signal->group_exit_code; 1724 set_current_state(TASK_STOPPED); 1725 spin_unlock_irq(¤t->sighand->siglock); 1726 finish_stop(stop_count); 1727 return 1; 1728 } 1729 1730 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, 1731 struct pt_regs *regs, void *cookie) 1732 { 1733 sigset_t *mask = ¤t->blocked; 1734 int signr = 0; 1735 1736 try_to_freeze(); 1737 1738 relock: 1739 spin_lock_irq(¤t->sighand->siglock); 1740 for (;;) { 1741 struct k_sigaction *ka; 1742 1743 if (unlikely(current->signal->group_stop_count > 0) && 1744 handle_group_stop()) 1745 goto relock; 1746 1747 signr = dequeue_signal(current, mask, info); 1748 1749 if (!signr) 1750 break; /* will return 0 */ 1751 1752 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) { 1753 ptrace_signal_deliver(regs, cookie); 1754 1755 /* Let the debugger run. */ 1756 ptrace_stop(signr, signr, info); 1757 1758 /* We're back. Did the debugger cancel the sig or group_exit? */ 1759 signr = current->exit_code; 1760 if (signr == 0 || current->signal->flags & SIGNAL_GROUP_EXIT) 1761 continue; 1762 1763 current->exit_code = 0; 1764 1765 /* Update the siginfo structure if the signal has 1766 changed. If the debugger wanted something 1767 specific in the siginfo structure then it should 1768 have updated *info via PTRACE_SETSIGINFO. */ 1769 if (signr != info->si_signo) { 1770 info->si_signo = signr; 1771 info->si_errno = 0; 1772 info->si_code = SI_USER; 1773 info->si_pid = current->parent->pid; 1774 info->si_uid = current->parent->uid; 1775 } 1776 1777 /* If the (new) signal is now blocked, requeue it. */ 1778 if (sigismember(¤t->blocked, signr)) { 1779 specific_send_sig_info(signr, info, current); 1780 continue; 1781 } 1782 } 1783 1784 ka = ¤t->sighand->action[signr-1]; 1785 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 1786 continue; 1787 if (ka->sa.sa_handler != SIG_DFL) { 1788 /* Run the handler. */ 1789 *return_ka = *ka; 1790 1791 if (ka->sa.sa_flags & SA_ONESHOT) 1792 ka->sa.sa_handler = SIG_DFL; 1793 1794 break; /* will return non-zero "signr" value */ 1795 } 1796 1797 /* 1798 * Now we are doing the default action for this signal. 1799 */ 1800 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 1801 continue; 1802 1803 /* Init gets no signals it doesn't want. */ 1804 if (current == child_reaper) 1805 continue; 1806 1807 if (sig_kernel_stop(signr)) { 1808 /* 1809 * The default action is to stop all threads in 1810 * the thread group. The job control signals 1811 * do nothing in an orphaned pgrp, but SIGSTOP 1812 * always works. Note that siglock needs to be 1813 * dropped during the call to is_orphaned_pgrp() 1814 * because of lock ordering with tasklist_lock. 1815 * This allows an intervening SIGCONT to be posted. 1816 * We need to check for that and bail out if necessary. 1817 */ 1818 if (signr != SIGSTOP) { 1819 spin_unlock_irq(¤t->sighand->siglock); 1820 1821 /* signals can be posted during this window */ 1822 1823 if (is_orphaned_pgrp(process_group(current))) 1824 goto relock; 1825 1826 spin_lock_irq(¤t->sighand->siglock); 1827 } 1828 1829 if (likely(do_signal_stop(signr))) { 1830 /* It released the siglock. */ 1831 goto relock; 1832 } 1833 1834 /* 1835 * We didn't actually stop, due to a race 1836 * with SIGCONT or something like that. 1837 */ 1838 continue; 1839 } 1840 1841 spin_unlock_irq(¤t->sighand->siglock); 1842 1843 /* 1844 * Anything else is fatal, maybe with a core dump. 1845 */ 1846 current->flags |= PF_SIGNALED; 1847 if (sig_kernel_coredump(signr)) { 1848 /* 1849 * If it was able to dump core, this kills all 1850 * other threads in the group and synchronizes with 1851 * their demise. If we lost the race with another 1852 * thread getting here, it set group_exit_code 1853 * first and our do_group_exit call below will use 1854 * that value and ignore the one we pass it. 1855 */ 1856 do_coredump((long)signr, signr, regs); 1857 } 1858 1859 /* 1860 * Death signals, no core dump. 1861 */ 1862 do_group_exit(signr); 1863 /* NOTREACHED */ 1864 } 1865 spin_unlock_irq(¤t->sighand->siglock); 1866 return signr; 1867 } 1868 1869 EXPORT_SYMBOL(recalc_sigpending); 1870 EXPORT_SYMBOL_GPL(dequeue_signal); 1871 EXPORT_SYMBOL(flush_signals); 1872 EXPORT_SYMBOL(force_sig); 1873 EXPORT_SYMBOL(kill_pg); 1874 EXPORT_SYMBOL(kill_proc); 1875 EXPORT_SYMBOL(ptrace_notify); 1876 EXPORT_SYMBOL(send_sig); 1877 EXPORT_SYMBOL(send_sig_info); 1878 EXPORT_SYMBOL(sigprocmask); 1879 EXPORT_SYMBOL(block_all_signals); 1880 EXPORT_SYMBOL(unblock_all_signals); 1881 1882 1883 /* 1884 * System call entry points. 1885 */ 1886 1887 asmlinkage long sys_restart_syscall(void) 1888 { 1889 struct restart_block *restart = ¤t_thread_info()->restart_block; 1890 return restart->fn(restart); 1891 } 1892 1893 long do_no_restart_syscall(struct restart_block *param) 1894 { 1895 return -EINTR; 1896 } 1897 1898 /* 1899 * We don't need to get the kernel lock - this is all local to this 1900 * particular thread.. (and that's good, because this is _heavily_ 1901 * used by various programs) 1902 */ 1903 1904 /* 1905 * This is also useful for kernel threads that want to temporarily 1906 * (or permanently) block certain signals. 1907 * 1908 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 1909 * interface happily blocks "unblockable" signals like SIGKILL 1910 * and friends. 1911 */ 1912 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 1913 { 1914 int error; 1915 1916 spin_lock_irq(¤t->sighand->siglock); 1917 if (oldset) 1918 *oldset = current->blocked; 1919 1920 error = 0; 1921 switch (how) { 1922 case SIG_BLOCK: 1923 sigorsets(¤t->blocked, ¤t->blocked, set); 1924 break; 1925 case SIG_UNBLOCK: 1926 signandsets(¤t->blocked, ¤t->blocked, set); 1927 break; 1928 case SIG_SETMASK: 1929 current->blocked = *set; 1930 break; 1931 default: 1932 error = -EINVAL; 1933 } 1934 recalc_sigpending(); 1935 spin_unlock_irq(¤t->sighand->siglock); 1936 1937 return error; 1938 } 1939 1940 asmlinkage long 1941 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize) 1942 { 1943 int error = -EINVAL; 1944 sigset_t old_set, new_set; 1945 1946 /* XXX: Don't preclude handling different sized sigset_t's. */ 1947 if (sigsetsize != sizeof(sigset_t)) 1948 goto out; 1949 1950 if (set) { 1951 error = -EFAULT; 1952 if (copy_from_user(&new_set, set, sizeof(*set))) 1953 goto out; 1954 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 1955 1956 error = sigprocmask(how, &new_set, &old_set); 1957 if (error) 1958 goto out; 1959 if (oset) 1960 goto set_old; 1961 } else if (oset) { 1962 spin_lock_irq(¤t->sighand->siglock); 1963 old_set = current->blocked; 1964 spin_unlock_irq(¤t->sighand->siglock); 1965 1966 set_old: 1967 error = -EFAULT; 1968 if (copy_to_user(oset, &old_set, sizeof(*oset))) 1969 goto out; 1970 } 1971 error = 0; 1972 out: 1973 return error; 1974 } 1975 1976 long do_sigpending(void __user *set, unsigned long sigsetsize) 1977 { 1978 long error = -EINVAL; 1979 sigset_t pending; 1980 1981 if (sigsetsize > sizeof(sigset_t)) 1982 goto out; 1983 1984 spin_lock_irq(¤t->sighand->siglock); 1985 sigorsets(&pending, ¤t->pending.signal, 1986 ¤t->signal->shared_pending.signal); 1987 spin_unlock_irq(¤t->sighand->siglock); 1988 1989 /* Outside the lock because only this thread touches it. */ 1990 sigandsets(&pending, ¤t->blocked, &pending); 1991 1992 error = -EFAULT; 1993 if (!copy_to_user(set, &pending, sigsetsize)) 1994 error = 0; 1995 1996 out: 1997 return error; 1998 } 1999 2000 asmlinkage long 2001 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize) 2002 { 2003 return do_sigpending(set, sigsetsize); 2004 } 2005 2006 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2007 2008 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) 2009 { 2010 int err; 2011 2012 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2013 return -EFAULT; 2014 if (from->si_code < 0) 2015 return __copy_to_user(to, from, sizeof(siginfo_t)) 2016 ? -EFAULT : 0; 2017 /* 2018 * If you change siginfo_t structure, please be sure 2019 * this code is fixed accordingly. 2020 * It should never copy any pad contained in the structure 2021 * to avoid security leaks, but must copy the generic 2022 * 3 ints plus the relevant union member. 2023 */ 2024 err = __put_user(from->si_signo, &to->si_signo); 2025 err |= __put_user(from->si_errno, &to->si_errno); 2026 err |= __put_user((short)from->si_code, &to->si_code); 2027 switch (from->si_code & __SI_MASK) { 2028 case __SI_KILL: 2029 err |= __put_user(from->si_pid, &to->si_pid); 2030 err |= __put_user(from->si_uid, &to->si_uid); 2031 break; 2032 case __SI_TIMER: 2033 err |= __put_user(from->si_tid, &to->si_tid); 2034 err |= __put_user(from->si_overrun, &to->si_overrun); 2035 err |= __put_user(from->si_ptr, &to->si_ptr); 2036 break; 2037 case __SI_POLL: 2038 err |= __put_user(from->si_band, &to->si_band); 2039 err |= __put_user(from->si_fd, &to->si_fd); 2040 break; 2041 case __SI_FAULT: 2042 err |= __put_user(from->si_addr, &to->si_addr); 2043 #ifdef __ARCH_SI_TRAPNO 2044 err |= __put_user(from->si_trapno, &to->si_trapno); 2045 #endif 2046 break; 2047 case __SI_CHLD: 2048 err |= __put_user(from->si_pid, &to->si_pid); 2049 err |= __put_user(from->si_uid, &to->si_uid); 2050 err |= __put_user(from->si_status, &to->si_status); 2051 err |= __put_user(from->si_utime, &to->si_utime); 2052 err |= __put_user(from->si_stime, &to->si_stime); 2053 break; 2054 case __SI_RT: /* This is not generated by the kernel as of now. */ 2055 case __SI_MESGQ: /* But this is */ 2056 err |= __put_user(from->si_pid, &to->si_pid); 2057 err |= __put_user(from->si_uid, &to->si_uid); 2058 err |= __put_user(from->si_ptr, &to->si_ptr); 2059 break; 2060 default: /* this is just in case for now ... */ 2061 err |= __put_user(from->si_pid, &to->si_pid); 2062 err |= __put_user(from->si_uid, &to->si_uid); 2063 break; 2064 } 2065 return err; 2066 } 2067 2068 #endif 2069 2070 asmlinkage long 2071 sys_rt_sigtimedwait(const sigset_t __user *uthese, 2072 siginfo_t __user *uinfo, 2073 const struct timespec __user *uts, 2074 size_t sigsetsize) 2075 { 2076 int ret, sig; 2077 sigset_t these; 2078 struct timespec ts; 2079 siginfo_t info; 2080 long timeout = 0; 2081 2082 /* XXX: Don't preclude handling different sized sigset_t's. */ 2083 if (sigsetsize != sizeof(sigset_t)) 2084 return -EINVAL; 2085 2086 if (copy_from_user(&these, uthese, sizeof(these))) 2087 return -EFAULT; 2088 2089 /* 2090 * Invert the set of allowed signals to get those we 2091 * want to block. 2092 */ 2093 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2094 signotset(&these); 2095 2096 if (uts) { 2097 if (copy_from_user(&ts, uts, sizeof(ts))) 2098 return -EFAULT; 2099 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0 2100 || ts.tv_sec < 0) 2101 return -EINVAL; 2102 } 2103 2104 spin_lock_irq(¤t->sighand->siglock); 2105 sig = dequeue_signal(current, &these, &info); 2106 if (!sig) { 2107 timeout = MAX_SCHEDULE_TIMEOUT; 2108 if (uts) 2109 timeout = (timespec_to_jiffies(&ts) 2110 + (ts.tv_sec || ts.tv_nsec)); 2111 2112 if (timeout) { 2113 /* None ready -- temporarily unblock those we're 2114 * interested while we are sleeping in so that we'll 2115 * be awakened when they arrive. */ 2116 current->real_blocked = current->blocked; 2117 sigandsets(¤t->blocked, ¤t->blocked, &these); 2118 recalc_sigpending(); 2119 spin_unlock_irq(¤t->sighand->siglock); 2120 2121 timeout = schedule_timeout_interruptible(timeout); 2122 2123 spin_lock_irq(¤t->sighand->siglock); 2124 sig = dequeue_signal(current, &these, &info); 2125 current->blocked = current->real_blocked; 2126 siginitset(¤t->real_blocked, 0); 2127 recalc_sigpending(); 2128 } 2129 } 2130 spin_unlock_irq(¤t->sighand->siglock); 2131 2132 if (sig) { 2133 ret = sig; 2134 if (uinfo) { 2135 if (copy_siginfo_to_user(uinfo, &info)) 2136 ret = -EFAULT; 2137 } 2138 } else { 2139 ret = -EAGAIN; 2140 if (timeout) 2141 ret = -EINTR; 2142 } 2143 2144 return ret; 2145 } 2146 2147 asmlinkage long 2148 sys_kill(int pid, int sig) 2149 { 2150 struct siginfo info; 2151 2152 info.si_signo = sig; 2153 info.si_errno = 0; 2154 info.si_code = SI_USER; 2155 info.si_pid = current->tgid; 2156 info.si_uid = current->uid; 2157 2158 return kill_something_info(sig, &info, pid); 2159 } 2160 2161 static int do_tkill(int tgid, int pid, int sig) 2162 { 2163 int error; 2164 struct siginfo info; 2165 struct task_struct *p; 2166 2167 error = -ESRCH; 2168 info.si_signo = sig; 2169 info.si_errno = 0; 2170 info.si_code = SI_TKILL; 2171 info.si_pid = current->tgid; 2172 info.si_uid = current->uid; 2173 2174 read_lock(&tasklist_lock); 2175 p = find_task_by_pid(pid); 2176 if (p && (tgid <= 0 || p->tgid == tgid)) { 2177 error = check_kill_permission(sig, &info, p); 2178 /* 2179 * The null signal is a permissions and process existence 2180 * probe. No signal is actually delivered. 2181 */ 2182 if (!error && sig && p->sighand) { 2183 spin_lock_irq(&p->sighand->siglock); 2184 handle_stop_signal(sig, p); 2185 error = specific_send_sig_info(sig, &info, p); 2186 spin_unlock_irq(&p->sighand->siglock); 2187 } 2188 } 2189 read_unlock(&tasklist_lock); 2190 2191 return error; 2192 } 2193 2194 /** 2195 * sys_tgkill - send signal to one specific thread 2196 * @tgid: the thread group ID of the thread 2197 * @pid: the PID of the thread 2198 * @sig: signal to be sent 2199 * 2200 * This syscall also checks the tgid and returns -ESRCH even if the PID 2201 * exists but it's not belonging to the target process anymore. This 2202 * method solves the problem of threads exiting and PIDs getting reused. 2203 */ 2204 asmlinkage long sys_tgkill(int tgid, int pid, int sig) 2205 { 2206 /* This is only valid for single tasks */ 2207 if (pid <= 0 || tgid <= 0) 2208 return -EINVAL; 2209 2210 return do_tkill(tgid, pid, sig); 2211 } 2212 2213 /* 2214 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2215 */ 2216 asmlinkage long 2217 sys_tkill(int pid, int sig) 2218 { 2219 /* This is only valid for single tasks */ 2220 if (pid <= 0) 2221 return -EINVAL; 2222 2223 return do_tkill(0, pid, sig); 2224 } 2225 2226 asmlinkage long 2227 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo) 2228 { 2229 siginfo_t info; 2230 2231 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2232 return -EFAULT; 2233 2234 /* Not even root can pretend to send signals from the kernel. 2235 Nor can they impersonate a kill(), which adds source info. */ 2236 if (info.si_code >= 0) 2237 return -EPERM; 2238 info.si_signo = sig; 2239 2240 /* POSIX.1b doesn't mention process groups. */ 2241 return kill_proc_info(sig, &info, pid); 2242 } 2243 2244 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 2245 { 2246 struct k_sigaction *k; 2247 sigset_t mask; 2248 2249 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 2250 return -EINVAL; 2251 2252 k = ¤t->sighand->action[sig-1]; 2253 2254 spin_lock_irq(¤t->sighand->siglock); 2255 if (signal_pending(current)) { 2256 /* 2257 * If there might be a fatal signal pending on multiple 2258 * threads, make sure we take it before changing the action. 2259 */ 2260 spin_unlock_irq(¤t->sighand->siglock); 2261 return -ERESTARTNOINTR; 2262 } 2263 2264 if (oact) 2265 *oact = *k; 2266 2267 if (act) { 2268 sigdelsetmask(&act->sa.sa_mask, 2269 sigmask(SIGKILL) | sigmask(SIGSTOP)); 2270 *k = *act; 2271 /* 2272 * POSIX 3.3.1.3: 2273 * "Setting a signal action to SIG_IGN for a signal that is 2274 * pending shall cause the pending signal to be discarded, 2275 * whether or not it is blocked." 2276 * 2277 * "Setting a signal action to SIG_DFL for a signal that is 2278 * pending and whose default action is to ignore the signal 2279 * (for example, SIGCHLD), shall cause the pending signal to 2280 * be discarded, whether or not it is blocked" 2281 */ 2282 if (act->sa.sa_handler == SIG_IGN || 2283 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) { 2284 struct task_struct *t = current; 2285 sigemptyset(&mask); 2286 sigaddset(&mask, sig); 2287 rm_from_queue_full(&mask, &t->signal->shared_pending); 2288 do { 2289 rm_from_queue_full(&mask, &t->pending); 2290 recalc_sigpending_tsk(t); 2291 t = next_thread(t); 2292 } while (t != current); 2293 } 2294 } 2295 2296 spin_unlock_irq(¤t->sighand->siglock); 2297 return 0; 2298 } 2299 2300 int 2301 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 2302 { 2303 stack_t oss; 2304 int error; 2305 2306 if (uoss) { 2307 oss.ss_sp = (void __user *) current->sas_ss_sp; 2308 oss.ss_size = current->sas_ss_size; 2309 oss.ss_flags = sas_ss_flags(sp); 2310 } 2311 2312 if (uss) { 2313 void __user *ss_sp; 2314 size_t ss_size; 2315 int ss_flags; 2316 2317 error = -EFAULT; 2318 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)) 2319 || __get_user(ss_sp, &uss->ss_sp) 2320 || __get_user(ss_flags, &uss->ss_flags) 2321 || __get_user(ss_size, &uss->ss_size)) 2322 goto out; 2323 2324 error = -EPERM; 2325 if (on_sig_stack(sp)) 2326 goto out; 2327 2328 error = -EINVAL; 2329 /* 2330 * 2331 * Note - this code used to test ss_flags incorrectly 2332 * old code may have been written using ss_flags==0 2333 * to mean ss_flags==SS_ONSTACK (as this was the only 2334 * way that worked) - this fix preserves that older 2335 * mechanism 2336 */ 2337 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) 2338 goto out; 2339 2340 if (ss_flags == SS_DISABLE) { 2341 ss_size = 0; 2342 ss_sp = NULL; 2343 } else { 2344 error = -ENOMEM; 2345 if (ss_size < MINSIGSTKSZ) 2346 goto out; 2347 } 2348 2349 current->sas_ss_sp = (unsigned long) ss_sp; 2350 current->sas_ss_size = ss_size; 2351 } 2352 2353 if (uoss) { 2354 error = -EFAULT; 2355 if (copy_to_user(uoss, &oss, sizeof(oss))) 2356 goto out; 2357 } 2358 2359 error = 0; 2360 out: 2361 return error; 2362 } 2363 2364 #ifdef __ARCH_WANT_SYS_SIGPENDING 2365 2366 asmlinkage long 2367 sys_sigpending(old_sigset_t __user *set) 2368 { 2369 return do_sigpending(set, sizeof(*set)); 2370 } 2371 2372 #endif 2373 2374 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 2375 /* Some platforms have their own version with special arguments others 2376 support only sys_rt_sigprocmask. */ 2377 2378 asmlinkage long 2379 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset) 2380 { 2381 int error; 2382 old_sigset_t old_set, new_set; 2383 2384 if (set) { 2385 error = -EFAULT; 2386 if (copy_from_user(&new_set, set, sizeof(*set))) 2387 goto out; 2388 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP)); 2389 2390 spin_lock_irq(¤t->sighand->siglock); 2391 old_set = current->blocked.sig[0]; 2392 2393 error = 0; 2394 switch (how) { 2395 default: 2396 error = -EINVAL; 2397 break; 2398 case SIG_BLOCK: 2399 sigaddsetmask(¤t->blocked, new_set); 2400 break; 2401 case SIG_UNBLOCK: 2402 sigdelsetmask(¤t->blocked, new_set); 2403 break; 2404 case SIG_SETMASK: 2405 current->blocked.sig[0] = new_set; 2406 break; 2407 } 2408 2409 recalc_sigpending(); 2410 spin_unlock_irq(¤t->sighand->siglock); 2411 if (error) 2412 goto out; 2413 if (oset) 2414 goto set_old; 2415 } else if (oset) { 2416 old_set = current->blocked.sig[0]; 2417 set_old: 2418 error = -EFAULT; 2419 if (copy_to_user(oset, &old_set, sizeof(*oset))) 2420 goto out; 2421 } 2422 error = 0; 2423 out: 2424 return error; 2425 } 2426 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 2427 2428 #ifdef __ARCH_WANT_SYS_RT_SIGACTION 2429 asmlinkage long 2430 sys_rt_sigaction(int sig, 2431 const struct sigaction __user *act, 2432 struct sigaction __user *oact, 2433 size_t sigsetsize) 2434 { 2435 struct k_sigaction new_sa, old_sa; 2436 int ret = -EINVAL; 2437 2438 /* XXX: Don't preclude handling different sized sigset_t's. */ 2439 if (sigsetsize != sizeof(sigset_t)) 2440 goto out; 2441 2442 if (act) { 2443 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 2444 return -EFAULT; 2445 } 2446 2447 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 2448 2449 if (!ret && oact) { 2450 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 2451 return -EFAULT; 2452 } 2453 out: 2454 return ret; 2455 } 2456 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */ 2457 2458 #ifdef __ARCH_WANT_SYS_SGETMASK 2459 2460 /* 2461 * For backwards compatibility. Functionality superseded by sigprocmask. 2462 */ 2463 asmlinkage long 2464 sys_sgetmask(void) 2465 { 2466 /* SMP safe */ 2467 return current->blocked.sig[0]; 2468 } 2469 2470 asmlinkage long 2471 sys_ssetmask(int newmask) 2472 { 2473 int old; 2474 2475 spin_lock_irq(¤t->sighand->siglock); 2476 old = current->blocked.sig[0]; 2477 2478 siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)| 2479 sigmask(SIGSTOP))); 2480 recalc_sigpending(); 2481 spin_unlock_irq(¤t->sighand->siglock); 2482 2483 return old; 2484 } 2485 #endif /* __ARCH_WANT_SGETMASK */ 2486 2487 #ifdef __ARCH_WANT_SYS_SIGNAL 2488 /* 2489 * For backwards compatibility. Functionality superseded by sigaction. 2490 */ 2491 asmlinkage unsigned long 2492 sys_signal(int sig, __sighandler_t handler) 2493 { 2494 struct k_sigaction new_sa, old_sa; 2495 int ret; 2496 2497 new_sa.sa.sa_handler = handler; 2498 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 2499 sigemptyset(&new_sa.sa.sa_mask); 2500 2501 ret = do_sigaction(sig, &new_sa, &old_sa); 2502 2503 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 2504 } 2505 #endif /* __ARCH_WANT_SYS_SIGNAL */ 2506 2507 #ifdef __ARCH_WANT_SYS_PAUSE 2508 2509 asmlinkage long 2510 sys_pause(void) 2511 { 2512 current->state = TASK_INTERRUPTIBLE; 2513 schedule(); 2514 return -ERESTARTNOHAND; 2515 } 2516 2517 #endif 2518 2519 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND 2520 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize) 2521 { 2522 sigset_t newset; 2523 2524 /* XXX: Don't preclude handling different sized sigset_t's. */ 2525 if (sigsetsize != sizeof(sigset_t)) 2526 return -EINVAL; 2527 2528 if (copy_from_user(&newset, unewset, sizeof(newset))) 2529 return -EFAULT; 2530 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2531 2532 spin_lock_irq(¤t->sighand->siglock); 2533 current->saved_sigmask = current->blocked; 2534 current->blocked = newset; 2535 recalc_sigpending(); 2536 spin_unlock_irq(¤t->sighand->siglock); 2537 2538 current->state = TASK_INTERRUPTIBLE; 2539 schedule(); 2540 set_thread_flag(TIF_RESTORE_SIGMASK); 2541 return -ERESTARTNOHAND; 2542 } 2543 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */ 2544 2545 void __init signals_init(void) 2546 { 2547 sigqueue_cachep = 2548 kmem_cache_create("sigqueue", 2549 sizeof(struct sigqueue), 2550 __alignof__(struct sigqueue), 2551 SLAB_PANIC, NULL, NULL); 2552 } 2553