1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/tty.h> 19 #include <linux/binfmts.h> 20 #include <linux/security.h> 21 #include <linux/syscalls.h> 22 #include <linux/ptrace.h> 23 #include <linux/signal.h> 24 #include <linux/signalfd.h> 25 #include <linux/capability.h> 26 #include <linux/freezer.h> 27 #include <linux/pid_namespace.h> 28 #include <linux/nsproxy.h> 29 30 #include <asm/param.h> 31 #include <asm/uaccess.h> 32 #include <asm/unistd.h> 33 #include <asm/siginfo.h> 34 #include "audit.h" /* audit_signal_info() */ 35 36 /* 37 * SLAB caches for signal bits. 38 */ 39 40 static struct kmem_cache *sigqueue_cachep; 41 42 43 static int sig_ignored(struct task_struct *t, int sig) 44 { 45 void __user * handler; 46 47 /* 48 * Tracers always want to know about signals.. 49 */ 50 if (t->ptrace & PT_PTRACED) 51 return 0; 52 53 /* 54 * Blocked signals are never ignored, since the 55 * signal handler may change by the time it is 56 * unblocked. 57 */ 58 if (sigismember(&t->blocked, sig)) 59 return 0; 60 61 /* Is it explicitly or implicitly ignored? */ 62 handler = t->sighand->action[sig-1].sa.sa_handler; 63 return handler == SIG_IGN || 64 (handler == SIG_DFL && sig_kernel_ignore(sig)); 65 } 66 67 /* 68 * Re-calculate pending state from the set of locally pending 69 * signals, globally pending signals, and blocked signals. 70 */ 71 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 72 { 73 unsigned long ready; 74 long i; 75 76 switch (_NSIG_WORDS) { 77 default: 78 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 79 ready |= signal->sig[i] &~ blocked->sig[i]; 80 break; 81 82 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 83 ready |= signal->sig[2] &~ blocked->sig[2]; 84 ready |= signal->sig[1] &~ blocked->sig[1]; 85 ready |= signal->sig[0] &~ blocked->sig[0]; 86 break; 87 88 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 89 ready |= signal->sig[0] &~ blocked->sig[0]; 90 break; 91 92 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 93 } 94 return ready != 0; 95 } 96 97 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 98 99 static int recalc_sigpending_tsk(struct task_struct *t) 100 { 101 if (t->signal->group_stop_count > 0 || 102 PENDING(&t->pending, &t->blocked) || 103 PENDING(&t->signal->shared_pending, &t->blocked)) { 104 set_tsk_thread_flag(t, TIF_SIGPENDING); 105 return 1; 106 } 107 /* 108 * We must never clear the flag in another thread, or in current 109 * when it's possible the current syscall is returning -ERESTART*. 110 * So we don't clear it here, and only callers who know they should do. 111 */ 112 return 0; 113 } 114 115 /* 116 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 117 * This is superfluous when called on current, the wakeup is a harmless no-op. 118 */ 119 void recalc_sigpending_and_wake(struct task_struct *t) 120 { 121 if (recalc_sigpending_tsk(t)) 122 signal_wake_up(t, 0); 123 } 124 125 void recalc_sigpending(void) 126 { 127 if (!recalc_sigpending_tsk(current)) 128 clear_thread_flag(TIF_SIGPENDING); 129 130 } 131 132 /* Given the mask, find the first available signal that should be serviced. */ 133 134 int next_signal(struct sigpending *pending, sigset_t *mask) 135 { 136 unsigned long i, *s, *m, x; 137 int sig = 0; 138 139 s = pending->signal.sig; 140 m = mask->sig; 141 switch (_NSIG_WORDS) { 142 default: 143 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m) 144 if ((x = *s &~ *m) != 0) { 145 sig = ffz(~x) + i*_NSIG_BPW + 1; 146 break; 147 } 148 break; 149 150 case 2: if ((x = s[0] &~ m[0]) != 0) 151 sig = 1; 152 else if ((x = s[1] &~ m[1]) != 0) 153 sig = _NSIG_BPW + 1; 154 else 155 break; 156 sig += ffz(~x); 157 break; 158 159 case 1: if ((x = *s &~ *m) != 0) 160 sig = ffz(~x) + 1; 161 break; 162 } 163 164 return sig; 165 } 166 167 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags, 168 int override_rlimit) 169 { 170 struct sigqueue *q = NULL; 171 struct user_struct *user; 172 173 /* 174 * In order to avoid problems with "switch_user()", we want to make 175 * sure that the compiler doesn't re-load "t->user" 176 */ 177 user = t->user; 178 barrier(); 179 atomic_inc(&user->sigpending); 180 if (override_rlimit || 181 atomic_read(&user->sigpending) <= 182 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur) 183 q = kmem_cache_alloc(sigqueue_cachep, flags); 184 if (unlikely(q == NULL)) { 185 atomic_dec(&user->sigpending); 186 } else { 187 INIT_LIST_HEAD(&q->list); 188 q->flags = 0; 189 q->user = get_uid(user); 190 } 191 return(q); 192 } 193 194 static void __sigqueue_free(struct sigqueue *q) 195 { 196 if (q->flags & SIGQUEUE_PREALLOC) 197 return; 198 atomic_dec(&q->user->sigpending); 199 free_uid(q->user); 200 kmem_cache_free(sigqueue_cachep, q); 201 } 202 203 void flush_sigqueue(struct sigpending *queue) 204 { 205 struct sigqueue *q; 206 207 sigemptyset(&queue->signal); 208 while (!list_empty(&queue->list)) { 209 q = list_entry(queue->list.next, struct sigqueue , list); 210 list_del_init(&q->list); 211 __sigqueue_free(q); 212 } 213 } 214 215 /* 216 * Flush all pending signals for a task. 217 */ 218 void flush_signals(struct task_struct *t) 219 { 220 unsigned long flags; 221 222 spin_lock_irqsave(&t->sighand->siglock, flags); 223 clear_tsk_thread_flag(t,TIF_SIGPENDING); 224 flush_sigqueue(&t->pending); 225 flush_sigqueue(&t->signal->shared_pending); 226 spin_unlock_irqrestore(&t->sighand->siglock, flags); 227 } 228 229 void ignore_signals(struct task_struct *t) 230 { 231 int i; 232 233 for (i = 0; i < _NSIG; ++i) 234 t->sighand->action[i].sa.sa_handler = SIG_IGN; 235 236 flush_signals(t); 237 } 238 239 /* 240 * Flush all handlers for a task. 241 */ 242 243 void 244 flush_signal_handlers(struct task_struct *t, int force_default) 245 { 246 int i; 247 struct k_sigaction *ka = &t->sighand->action[0]; 248 for (i = _NSIG ; i != 0 ; i--) { 249 if (force_default || ka->sa.sa_handler != SIG_IGN) 250 ka->sa.sa_handler = SIG_DFL; 251 ka->sa.sa_flags = 0; 252 sigemptyset(&ka->sa.sa_mask); 253 ka++; 254 } 255 } 256 257 int unhandled_signal(struct task_struct *tsk, int sig) 258 { 259 if (is_init(tsk)) 260 return 1; 261 if (tsk->ptrace & PT_PTRACED) 262 return 0; 263 return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) || 264 (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL); 265 } 266 267 268 /* Notify the system that a driver wants to block all signals for this 269 * process, and wants to be notified if any signals at all were to be 270 * sent/acted upon. If the notifier routine returns non-zero, then the 271 * signal will be acted upon after all. If the notifier routine returns 0, 272 * then then signal will be blocked. Only one block per process is 273 * allowed. priv is a pointer to private data that the notifier routine 274 * can use to determine if the signal should be blocked or not. */ 275 276 void 277 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) 278 { 279 unsigned long flags; 280 281 spin_lock_irqsave(¤t->sighand->siglock, flags); 282 current->notifier_mask = mask; 283 current->notifier_data = priv; 284 current->notifier = notifier; 285 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 286 } 287 288 /* Notify the system that blocking has ended. */ 289 290 void 291 unblock_all_signals(void) 292 { 293 unsigned long flags; 294 295 spin_lock_irqsave(¤t->sighand->siglock, flags); 296 current->notifier = NULL; 297 current->notifier_data = NULL; 298 recalc_sigpending(); 299 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 300 } 301 302 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info) 303 { 304 struct sigqueue *q, *first = NULL; 305 int still_pending = 0; 306 307 if (unlikely(!sigismember(&list->signal, sig))) 308 return 0; 309 310 /* 311 * Collect the siginfo appropriate to this signal. Check if 312 * there is another siginfo for the same signal. 313 */ 314 list_for_each_entry(q, &list->list, list) { 315 if (q->info.si_signo == sig) { 316 if (first) { 317 still_pending = 1; 318 break; 319 } 320 first = q; 321 } 322 } 323 if (first) { 324 list_del_init(&first->list); 325 copy_siginfo(info, &first->info); 326 __sigqueue_free(first); 327 if (!still_pending) 328 sigdelset(&list->signal, sig); 329 } else { 330 331 /* Ok, it wasn't in the queue. This must be 332 a fast-pathed signal or we must have been 333 out of queue space. So zero out the info. 334 */ 335 sigdelset(&list->signal, sig); 336 info->si_signo = sig; 337 info->si_errno = 0; 338 info->si_code = 0; 339 info->si_pid = 0; 340 info->si_uid = 0; 341 } 342 return 1; 343 } 344 345 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 346 siginfo_t *info) 347 { 348 int sig = next_signal(pending, mask); 349 350 if (sig) { 351 if (current->notifier) { 352 if (sigismember(current->notifier_mask, sig)) { 353 if (!(current->notifier)(current->notifier_data)) { 354 clear_thread_flag(TIF_SIGPENDING); 355 return 0; 356 } 357 } 358 } 359 360 if (!collect_signal(sig, pending, info)) 361 sig = 0; 362 } 363 364 return sig; 365 } 366 367 /* 368 * Dequeue a signal and return the element to the caller, which is 369 * expected to free it. 370 * 371 * All callers have to hold the siglock. 372 */ 373 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 374 { 375 int signr = 0; 376 377 /* We only dequeue private signals from ourselves, we don't let 378 * signalfd steal them 379 */ 380 signr = __dequeue_signal(&tsk->pending, mask, info); 381 if (!signr) { 382 signr = __dequeue_signal(&tsk->signal->shared_pending, 383 mask, info); 384 /* 385 * itimer signal ? 386 * 387 * itimers are process shared and we restart periodic 388 * itimers in the signal delivery path to prevent DoS 389 * attacks in the high resolution timer case. This is 390 * compliant with the old way of self restarting 391 * itimers, as the SIGALRM is a legacy signal and only 392 * queued once. Changing the restart behaviour to 393 * restart the timer in the signal dequeue path is 394 * reducing the timer noise on heavy loaded !highres 395 * systems too. 396 */ 397 if (unlikely(signr == SIGALRM)) { 398 struct hrtimer *tmr = &tsk->signal->real_timer; 399 400 if (!hrtimer_is_queued(tmr) && 401 tsk->signal->it_real_incr.tv64 != 0) { 402 hrtimer_forward(tmr, tmr->base->get_time(), 403 tsk->signal->it_real_incr); 404 hrtimer_restart(tmr); 405 } 406 } 407 } 408 recalc_sigpending(); 409 if (signr && unlikely(sig_kernel_stop(signr))) { 410 /* 411 * Set a marker that we have dequeued a stop signal. Our 412 * caller might release the siglock and then the pending 413 * stop signal it is about to process is no longer in the 414 * pending bitmasks, but must still be cleared by a SIGCONT 415 * (and overruled by a SIGKILL). So those cases clear this 416 * shared flag after we've set it. Note that this flag may 417 * remain set after the signal we return is ignored or 418 * handled. That doesn't matter because its only purpose 419 * is to alert stop-signal processing code when another 420 * processor has come along and cleared the flag. 421 */ 422 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) 423 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED; 424 } 425 if (signr && 426 ((info->si_code & __SI_MASK) == __SI_TIMER) && 427 info->si_sys_private){ 428 /* 429 * Release the siglock to ensure proper locking order 430 * of timer locks outside of siglocks. Note, we leave 431 * irqs disabled here, since the posix-timers code is 432 * about to disable them again anyway. 433 */ 434 spin_unlock(&tsk->sighand->siglock); 435 do_schedule_next_timer(info); 436 spin_lock(&tsk->sighand->siglock); 437 } 438 return signr; 439 } 440 441 /* 442 * Tell a process that it has a new active signal.. 443 * 444 * NOTE! we rely on the previous spin_lock to 445 * lock interrupts for us! We can only be called with 446 * "siglock" held, and the local interrupt must 447 * have been disabled when that got acquired! 448 * 449 * No need to set need_resched since signal event passing 450 * goes through ->blocked 451 */ 452 void signal_wake_up(struct task_struct *t, int resume) 453 { 454 unsigned int mask; 455 456 set_tsk_thread_flag(t, TIF_SIGPENDING); 457 458 /* 459 * For SIGKILL, we want to wake it up in the stopped/traced case. 460 * We don't check t->state here because there is a race with it 461 * executing another processor and just now entering stopped state. 462 * By using wake_up_state, we ensure the process will wake up and 463 * handle its death signal. 464 */ 465 mask = TASK_INTERRUPTIBLE; 466 if (resume) 467 mask |= TASK_STOPPED | TASK_TRACED; 468 if (!wake_up_state(t, mask)) 469 kick_process(t); 470 } 471 472 /* 473 * Remove signals in mask from the pending set and queue. 474 * Returns 1 if any signals were found. 475 * 476 * All callers must be holding the siglock. 477 * 478 * This version takes a sigset mask and looks at all signals, 479 * not just those in the first mask word. 480 */ 481 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s) 482 { 483 struct sigqueue *q, *n; 484 sigset_t m; 485 486 sigandsets(&m, mask, &s->signal); 487 if (sigisemptyset(&m)) 488 return 0; 489 490 signandsets(&s->signal, &s->signal, mask); 491 list_for_each_entry_safe(q, n, &s->list, list) { 492 if (sigismember(mask, q->info.si_signo)) { 493 list_del_init(&q->list); 494 __sigqueue_free(q); 495 } 496 } 497 return 1; 498 } 499 /* 500 * Remove signals in mask from the pending set and queue. 501 * Returns 1 if any signals were found. 502 * 503 * All callers must be holding the siglock. 504 */ 505 static int rm_from_queue(unsigned long mask, struct sigpending *s) 506 { 507 struct sigqueue *q, *n; 508 509 if (!sigtestsetmask(&s->signal, mask)) 510 return 0; 511 512 sigdelsetmask(&s->signal, mask); 513 list_for_each_entry_safe(q, n, &s->list, list) { 514 if (q->info.si_signo < SIGRTMIN && 515 (mask & sigmask(q->info.si_signo))) { 516 list_del_init(&q->list); 517 __sigqueue_free(q); 518 } 519 } 520 return 1; 521 } 522 523 /* 524 * Bad permissions for sending the signal 525 */ 526 static int check_kill_permission(int sig, struct siginfo *info, 527 struct task_struct *t) 528 { 529 int error = -EINVAL; 530 if (!valid_signal(sig)) 531 return error; 532 533 if (info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) { 534 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 535 if (error) 536 return error; 537 error = -EPERM; 538 if (((sig != SIGCONT) || 539 (process_session(current) != process_session(t))) 540 && (current->euid ^ t->suid) && (current->euid ^ t->uid) 541 && (current->uid ^ t->suid) && (current->uid ^ t->uid) 542 && !capable(CAP_KILL)) 543 return error; 544 } 545 546 return security_task_kill(t, info, sig, 0); 547 } 548 549 /* forward decl */ 550 static void do_notify_parent_cldstop(struct task_struct *tsk, int why); 551 552 /* 553 * Handle magic process-wide effects of stop/continue signals. 554 * Unlike the signal actions, these happen immediately at signal-generation 555 * time regardless of blocking, ignoring, or handling. This does the 556 * actual continuing for SIGCONT, but not the actual stopping for stop 557 * signals. The process stop is done as a signal action for SIG_DFL. 558 */ 559 static void handle_stop_signal(int sig, struct task_struct *p) 560 { 561 struct task_struct *t; 562 563 if (p->signal->flags & SIGNAL_GROUP_EXIT) 564 /* 565 * The process is in the middle of dying already. 566 */ 567 return; 568 569 if (sig_kernel_stop(sig)) { 570 /* 571 * This is a stop signal. Remove SIGCONT from all queues. 572 */ 573 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending); 574 t = p; 575 do { 576 rm_from_queue(sigmask(SIGCONT), &t->pending); 577 t = next_thread(t); 578 } while (t != p); 579 } else if (sig == SIGCONT) { 580 /* 581 * Remove all stop signals from all queues, 582 * and wake all threads. 583 */ 584 if (unlikely(p->signal->group_stop_count > 0)) { 585 /* 586 * There was a group stop in progress. We'll 587 * pretend it finished before we got here. We are 588 * obliged to report it to the parent: if the 589 * SIGSTOP happened "after" this SIGCONT, then it 590 * would have cleared this pending SIGCONT. If it 591 * happened "before" this SIGCONT, then the parent 592 * got the SIGCHLD about the stop finishing before 593 * the continue happened. We do the notification 594 * now, and it's as if the stop had finished and 595 * the SIGCHLD was pending on entry to this kill. 596 */ 597 p->signal->group_stop_count = 0; 598 p->signal->flags = SIGNAL_STOP_CONTINUED; 599 spin_unlock(&p->sighand->siglock); 600 do_notify_parent_cldstop(p, CLD_STOPPED); 601 spin_lock(&p->sighand->siglock); 602 } 603 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); 604 t = p; 605 do { 606 unsigned int state; 607 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 608 609 /* 610 * If there is a handler for SIGCONT, we must make 611 * sure that no thread returns to user mode before 612 * we post the signal, in case it was the only 613 * thread eligible to run the signal handler--then 614 * it must not do anything between resuming and 615 * running the handler. With the TIF_SIGPENDING 616 * flag set, the thread will pause and acquire the 617 * siglock that we hold now and until we've queued 618 * the pending signal. 619 * 620 * Wake up the stopped thread _after_ setting 621 * TIF_SIGPENDING 622 */ 623 state = TASK_STOPPED; 624 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) { 625 set_tsk_thread_flag(t, TIF_SIGPENDING); 626 state |= TASK_INTERRUPTIBLE; 627 } 628 wake_up_state(t, state); 629 630 t = next_thread(t); 631 } while (t != p); 632 633 if (p->signal->flags & SIGNAL_STOP_STOPPED) { 634 /* 635 * We were in fact stopped, and are now continued. 636 * Notify the parent with CLD_CONTINUED. 637 */ 638 p->signal->flags = SIGNAL_STOP_CONTINUED; 639 p->signal->group_exit_code = 0; 640 spin_unlock(&p->sighand->siglock); 641 do_notify_parent_cldstop(p, CLD_CONTINUED); 642 spin_lock(&p->sighand->siglock); 643 } else { 644 /* 645 * We are not stopped, but there could be a stop 646 * signal in the middle of being processed after 647 * being removed from the queue. Clear that too. 648 */ 649 p->signal->flags = 0; 650 } 651 } else if (sig == SIGKILL) { 652 /* 653 * Make sure that any pending stop signal already dequeued 654 * is undone by the wakeup for SIGKILL. 655 */ 656 p->signal->flags = 0; 657 } 658 } 659 660 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 661 struct sigpending *signals) 662 { 663 struct sigqueue * q = NULL; 664 int ret = 0; 665 666 /* 667 * Deliver the signal to listening signalfds. This must be called 668 * with the sighand lock held. 669 */ 670 signalfd_notify(t, sig); 671 672 /* 673 * fast-pathed signals for kernel-internal things like SIGSTOP 674 * or SIGKILL. 675 */ 676 if (info == SEND_SIG_FORCED) 677 goto out_set; 678 679 /* Real-time signals must be queued if sent by sigqueue, or 680 some other real-time mechanism. It is implementation 681 defined whether kill() does so. We attempt to do so, on 682 the principle of least surprise, but since kill is not 683 allowed to fail with EAGAIN when low on memory we just 684 make sure at least one signal gets delivered and don't 685 pass on the info struct. */ 686 687 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN && 688 (is_si_special(info) || 689 info->si_code >= 0))); 690 if (q) { 691 list_add_tail(&q->list, &signals->list); 692 switch ((unsigned long) info) { 693 case (unsigned long) SEND_SIG_NOINFO: 694 q->info.si_signo = sig; 695 q->info.si_errno = 0; 696 q->info.si_code = SI_USER; 697 q->info.si_pid = current->pid; 698 q->info.si_uid = current->uid; 699 break; 700 case (unsigned long) SEND_SIG_PRIV: 701 q->info.si_signo = sig; 702 q->info.si_errno = 0; 703 q->info.si_code = SI_KERNEL; 704 q->info.si_pid = 0; 705 q->info.si_uid = 0; 706 break; 707 default: 708 copy_siginfo(&q->info, info); 709 break; 710 } 711 } else if (!is_si_special(info)) { 712 if (sig >= SIGRTMIN && info->si_code != SI_USER) 713 /* 714 * Queue overflow, abort. We may abort if the signal was rt 715 * and sent by user using something other than kill(). 716 */ 717 return -EAGAIN; 718 } 719 720 out_set: 721 sigaddset(&signals->signal, sig); 722 return ret; 723 } 724 725 #define LEGACY_QUEUE(sigptr, sig) \ 726 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig))) 727 728 int print_fatal_signals; 729 730 static void print_fatal_signal(struct pt_regs *regs, int signr) 731 { 732 printk("%s/%d: potentially unexpected fatal signal %d.\n", 733 current->comm, current->pid, signr); 734 735 #ifdef __i386__ 736 printk("code at %08lx: ", regs->eip); 737 { 738 int i; 739 for (i = 0; i < 16; i++) { 740 unsigned char insn; 741 742 __get_user(insn, (unsigned char *)(regs->eip + i)); 743 printk("%02x ", insn); 744 } 745 } 746 #endif 747 printk("\n"); 748 show_regs(regs); 749 } 750 751 static int __init setup_print_fatal_signals(char *str) 752 { 753 get_option (&str, &print_fatal_signals); 754 755 return 1; 756 } 757 758 __setup("print-fatal-signals=", setup_print_fatal_signals); 759 760 static int 761 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 762 { 763 int ret = 0; 764 765 BUG_ON(!irqs_disabled()); 766 assert_spin_locked(&t->sighand->siglock); 767 768 /* Short-circuit ignored signals. */ 769 if (sig_ignored(t, sig)) 770 goto out; 771 772 /* Support queueing exactly one non-rt signal, so that we 773 can get more detailed information about the cause of 774 the signal. */ 775 if (LEGACY_QUEUE(&t->pending, sig)) 776 goto out; 777 778 ret = send_signal(sig, info, t, &t->pending); 779 if (!ret && !sigismember(&t->blocked, sig)) 780 signal_wake_up(t, sig == SIGKILL); 781 out: 782 return ret; 783 } 784 785 /* 786 * Force a signal that the process can't ignore: if necessary 787 * we unblock the signal and change any SIG_IGN to SIG_DFL. 788 * 789 * Note: If we unblock the signal, we always reset it to SIG_DFL, 790 * since we do not want to have a signal handler that was blocked 791 * be invoked when user space had explicitly blocked it. 792 * 793 * We don't want to have recursive SIGSEGV's etc, for example. 794 */ 795 int 796 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 797 { 798 unsigned long int flags; 799 int ret, blocked, ignored; 800 struct k_sigaction *action; 801 802 spin_lock_irqsave(&t->sighand->siglock, flags); 803 action = &t->sighand->action[sig-1]; 804 ignored = action->sa.sa_handler == SIG_IGN; 805 blocked = sigismember(&t->blocked, sig); 806 if (blocked || ignored) { 807 action->sa.sa_handler = SIG_DFL; 808 if (blocked) { 809 sigdelset(&t->blocked, sig); 810 recalc_sigpending_and_wake(t); 811 } 812 } 813 ret = specific_send_sig_info(sig, info, t); 814 spin_unlock_irqrestore(&t->sighand->siglock, flags); 815 816 return ret; 817 } 818 819 void 820 force_sig_specific(int sig, struct task_struct *t) 821 { 822 force_sig_info(sig, SEND_SIG_FORCED, t); 823 } 824 825 /* 826 * Test if P wants to take SIG. After we've checked all threads with this, 827 * it's equivalent to finding no threads not blocking SIG. Any threads not 828 * blocking SIG were ruled out because they are not running and already 829 * have pending signals. Such threads will dequeue from the shared queue 830 * as soon as they're available, so putting the signal on the shared queue 831 * will be equivalent to sending it to one such thread. 832 */ 833 static inline int wants_signal(int sig, struct task_struct *p) 834 { 835 if (sigismember(&p->blocked, sig)) 836 return 0; 837 if (p->flags & PF_EXITING) 838 return 0; 839 if (sig == SIGKILL) 840 return 1; 841 if (p->state & (TASK_STOPPED | TASK_TRACED)) 842 return 0; 843 return task_curr(p) || !signal_pending(p); 844 } 845 846 static void 847 __group_complete_signal(int sig, struct task_struct *p) 848 { 849 struct task_struct *t; 850 851 /* 852 * Now find a thread we can wake up to take the signal off the queue. 853 * 854 * If the main thread wants the signal, it gets first crack. 855 * Probably the least surprising to the average bear. 856 */ 857 if (wants_signal(sig, p)) 858 t = p; 859 else if (thread_group_empty(p)) 860 /* 861 * There is just one thread and it does not need to be woken. 862 * It will dequeue unblocked signals before it runs again. 863 */ 864 return; 865 else { 866 /* 867 * Otherwise try to find a suitable thread. 868 */ 869 t = p->signal->curr_target; 870 if (t == NULL) 871 /* restart balancing at this thread */ 872 t = p->signal->curr_target = p; 873 874 while (!wants_signal(sig, t)) { 875 t = next_thread(t); 876 if (t == p->signal->curr_target) 877 /* 878 * No thread needs to be woken. 879 * Any eligible threads will see 880 * the signal in the queue soon. 881 */ 882 return; 883 } 884 p->signal->curr_target = t; 885 } 886 887 /* 888 * Found a killable thread. If the signal will be fatal, 889 * then start taking the whole group down immediately. 890 */ 891 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) && 892 !sigismember(&t->real_blocked, sig) && 893 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) { 894 /* 895 * This signal will be fatal to the whole group. 896 */ 897 if (!sig_kernel_coredump(sig)) { 898 /* 899 * Start a group exit and wake everybody up. 900 * This way we don't have other threads 901 * running and doing things after a slower 902 * thread has the fatal signal pending. 903 */ 904 p->signal->flags = SIGNAL_GROUP_EXIT; 905 p->signal->group_exit_code = sig; 906 p->signal->group_stop_count = 0; 907 t = p; 908 do { 909 sigaddset(&t->pending.signal, SIGKILL); 910 signal_wake_up(t, 1); 911 } while_each_thread(p, t); 912 return; 913 } 914 915 /* 916 * There will be a core dump. We make all threads other 917 * than the chosen one go into a group stop so that nothing 918 * happens until it gets scheduled, takes the signal off 919 * the shared queue, and does the core dump. This is a 920 * little more complicated than strictly necessary, but it 921 * keeps the signal state that winds up in the core dump 922 * unchanged from the death state, e.g. which thread had 923 * the core-dump signal unblocked. 924 */ 925 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 926 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); 927 p->signal->group_stop_count = 0; 928 p->signal->group_exit_task = t; 929 p = t; 930 do { 931 p->signal->group_stop_count++; 932 signal_wake_up(t, t == p); 933 } while_each_thread(p, t); 934 return; 935 } 936 937 /* 938 * The signal is already in the shared-pending queue. 939 * Tell the chosen thread to wake up and dequeue it. 940 */ 941 signal_wake_up(t, sig == SIGKILL); 942 return; 943 } 944 945 int 946 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 947 { 948 int ret = 0; 949 950 assert_spin_locked(&p->sighand->siglock); 951 handle_stop_signal(sig, p); 952 953 /* Short-circuit ignored signals. */ 954 if (sig_ignored(p, sig)) 955 return ret; 956 957 if (LEGACY_QUEUE(&p->signal->shared_pending, sig)) 958 /* This is a non-RT signal and we already have one queued. */ 959 return ret; 960 961 /* 962 * Put this signal on the shared-pending queue, or fail with EAGAIN. 963 * We always use the shared queue for process-wide signals, 964 * to avoid several races. 965 */ 966 ret = send_signal(sig, info, p, &p->signal->shared_pending); 967 if (unlikely(ret)) 968 return ret; 969 970 __group_complete_signal(sig, p); 971 return 0; 972 } 973 974 /* 975 * Nuke all other threads in the group. 976 */ 977 void zap_other_threads(struct task_struct *p) 978 { 979 struct task_struct *t; 980 981 p->signal->flags = SIGNAL_GROUP_EXIT; 982 p->signal->group_stop_count = 0; 983 984 for (t = next_thread(p); t != p; t = next_thread(t)) { 985 /* 986 * Don't bother with already dead threads 987 */ 988 if (t->exit_state) 989 continue; 990 991 /* SIGKILL will be handled before any pending SIGSTOP */ 992 sigaddset(&t->pending.signal, SIGKILL); 993 signal_wake_up(t, 1); 994 } 995 } 996 997 /* 998 * Must be called under rcu_read_lock() or with tasklist_lock read-held. 999 */ 1000 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags) 1001 { 1002 struct sighand_struct *sighand; 1003 1004 for (;;) { 1005 sighand = rcu_dereference(tsk->sighand); 1006 if (unlikely(sighand == NULL)) 1007 break; 1008 1009 spin_lock_irqsave(&sighand->siglock, *flags); 1010 if (likely(sighand == tsk->sighand)) 1011 break; 1012 spin_unlock_irqrestore(&sighand->siglock, *flags); 1013 } 1014 1015 return sighand; 1016 } 1017 1018 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1019 { 1020 unsigned long flags; 1021 int ret; 1022 1023 ret = check_kill_permission(sig, info, p); 1024 1025 if (!ret && sig) { 1026 ret = -ESRCH; 1027 if (lock_task_sighand(p, &flags)) { 1028 ret = __group_send_sig_info(sig, info, p); 1029 unlock_task_sighand(p, &flags); 1030 } 1031 } 1032 1033 return ret; 1034 } 1035 1036 /* 1037 * kill_pgrp_info() sends a signal to a process group: this is what the tty 1038 * control characters do (^C, ^Z etc) 1039 */ 1040 1041 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1042 { 1043 struct task_struct *p = NULL; 1044 int retval, success; 1045 1046 success = 0; 1047 retval = -ESRCH; 1048 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1049 int err = group_send_sig_info(sig, info, p); 1050 success |= !err; 1051 retval = err; 1052 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1053 return success ? 0 : retval; 1054 } 1055 1056 int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1057 { 1058 int retval; 1059 1060 read_lock(&tasklist_lock); 1061 retval = __kill_pgrp_info(sig, info, pgrp); 1062 read_unlock(&tasklist_lock); 1063 1064 return retval; 1065 } 1066 1067 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) 1068 { 1069 int error; 1070 struct task_struct *p; 1071 1072 rcu_read_lock(); 1073 if (unlikely(sig_needs_tasklist(sig))) 1074 read_lock(&tasklist_lock); 1075 1076 p = pid_task(pid, PIDTYPE_PID); 1077 error = -ESRCH; 1078 if (p) 1079 error = group_send_sig_info(sig, info, p); 1080 1081 if (unlikely(sig_needs_tasklist(sig))) 1082 read_unlock(&tasklist_lock); 1083 rcu_read_unlock(); 1084 return error; 1085 } 1086 1087 int 1088 kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1089 { 1090 int error; 1091 rcu_read_lock(); 1092 error = kill_pid_info(sig, info, find_pid(pid)); 1093 rcu_read_unlock(); 1094 return error; 1095 } 1096 1097 /* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1098 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid, 1099 uid_t uid, uid_t euid, u32 secid) 1100 { 1101 int ret = -EINVAL; 1102 struct task_struct *p; 1103 1104 if (!valid_signal(sig)) 1105 return ret; 1106 1107 read_lock(&tasklist_lock); 1108 p = pid_task(pid, PIDTYPE_PID); 1109 if (!p) { 1110 ret = -ESRCH; 1111 goto out_unlock; 1112 } 1113 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) 1114 && (euid != p->suid) && (euid != p->uid) 1115 && (uid != p->suid) && (uid != p->uid)) { 1116 ret = -EPERM; 1117 goto out_unlock; 1118 } 1119 ret = security_task_kill(p, info, sig, secid); 1120 if (ret) 1121 goto out_unlock; 1122 if (sig && p->sighand) { 1123 unsigned long flags; 1124 spin_lock_irqsave(&p->sighand->siglock, flags); 1125 ret = __group_send_sig_info(sig, info, p); 1126 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1127 } 1128 out_unlock: 1129 read_unlock(&tasklist_lock); 1130 return ret; 1131 } 1132 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid); 1133 1134 /* 1135 * kill_something_info() interprets pid in interesting ways just like kill(2). 1136 * 1137 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1138 * is probably wrong. Should make it like BSD or SYSV. 1139 */ 1140 1141 static int kill_something_info(int sig, struct siginfo *info, int pid) 1142 { 1143 int ret; 1144 rcu_read_lock(); 1145 if (!pid) { 1146 ret = kill_pgrp_info(sig, info, task_pgrp(current)); 1147 } else if (pid == -1) { 1148 int retval = 0, count = 0; 1149 struct task_struct * p; 1150 1151 read_lock(&tasklist_lock); 1152 for_each_process(p) { 1153 if (p->pid > 1 && p->tgid != current->tgid) { 1154 int err = group_send_sig_info(sig, info, p); 1155 ++count; 1156 if (err != -EPERM) 1157 retval = err; 1158 } 1159 } 1160 read_unlock(&tasklist_lock); 1161 ret = count ? retval : -ESRCH; 1162 } else if (pid < 0) { 1163 ret = kill_pgrp_info(sig, info, find_pid(-pid)); 1164 } else { 1165 ret = kill_pid_info(sig, info, find_pid(pid)); 1166 } 1167 rcu_read_unlock(); 1168 return ret; 1169 } 1170 1171 /* 1172 * These are for backward compatibility with the rest of the kernel source. 1173 */ 1174 1175 /* 1176 * These two are the most common entry points. They send a signal 1177 * just to the specific thread. 1178 */ 1179 int 1180 send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1181 { 1182 int ret; 1183 unsigned long flags; 1184 1185 /* 1186 * Make sure legacy kernel users don't send in bad values 1187 * (normal paths check this in check_kill_permission). 1188 */ 1189 if (!valid_signal(sig)) 1190 return -EINVAL; 1191 1192 /* 1193 * We need the tasklist lock even for the specific 1194 * thread case (when we don't need to follow the group 1195 * lists) in order to avoid races with "p->sighand" 1196 * going away or changing from under us. 1197 */ 1198 read_lock(&tasklist_lock); 1199 spin_lock_irqsave(&p->sighand->siglock, flags); 1200 ret = specific_send_sig_info(sig, info, p); 1201 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1202 read_unlock(&tasklist_lock); 1203 return ret; 1204 } 1205 1206 #define __si_special(priv) \ 1207 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1208 1209 int 1210 send_sig(int sig, struct task_struct *p, int priv) 1211 { 1212 return send_sig_info(sig, __si_special(priv), p); 1213 } 1214 1215 /* 1216 * This is the entry point for "process-wide" signals. 1217 * They will go to an appropriate thread in the thread group. 1218 */ 1219 int 1220 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1221 { 1222 int ret; 1223 read_lock(&tasklist_lock); 1224 ret = group_send_sig_info(sig, info, p); 1225 read_unlock(&tasklist_lock); 1226 return ret; 1227 } 1228 1229 void 1230 force_sig(int sig, struct task_struct *p) 1231 { 1232 force_sig_info(sig, SEND_SIG_PRIV, p); 1233 } 1234 1235 /* 1236 * When things go south during signal handling, we 1237 * will force a SIGSEGV. And if the signal that caused 1238 * the problem was already a SIGSEGV, we'll want to 1239 * make sure we don't even try to deliver the signal.. 1240 */ 1241 int 1242 force_sigsegv(int sig, struct task_struct *p) 1243 { 1244 if (sig == SIGSEGV) { 1245 unsigned long flags; 1246 spin_lock_irqsave(&p->sighand->siglock, flags); 1247 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1248 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1249 } 1250 force_sig(SIGSEGV, p); 1251 return 0; 1252 } 1253 1254 int kill_pgrp(struct pid *pid, int sig, int priv) 1255 { 1256 return kill_pgrp_info(sig, __si_special(priv), pid); 1257 } 1258 EXPORT_SYMBOL(kill_pgrp); 1259 1260 int kill_pid(struct pid *pid, int sig, int priv) 1261 { 1262 return kill_pid_info(sig, __si_special(priv), pid); 1263 } 1264 EXPORT_SYMBOL(kill_pid); 1265 1266 int 1267 kill_proc(pid_t pid, int sig, int priv) 1268 { 1269 return kill_proc_info(sig, __si_special(priv), pid); 1270 } 1271 1272 /* 1273 * These functions support sending signals using preallocated sigqueue 1274 * structures. This is needed "because realtime applications cannot 1275 * afford to lose notifications of asynchronous events, like timer 1276 * expirations or I/O completions". In the case of Posix Timers 1277 * we allocate the sigqueue structure from the timer_create. If this 1278 * allocation fails we are able to report the failure to the application 1279 * with an EAGAIN error. 1280 */ 1281 1282 struct sigqueue *sigqueue_alloc(void) 1283 { 1284 struct sigqueue *q; 1285 1286 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0))) 1287 q->flags |= SIGQUEUE_PREALLOC; 1288 return(q); 1289 } 1290 1291 void sigqueue_free(struct sigqueue *q) 1292 { 1293 unsigned long flags; 1294 spinlock_t *lock = ¤t->sighand->siglock; 1295 1296 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1297 /* 1298 * If the signal is still pending remove it from the 1299 * pending queue. We must hold ->siglock while testing 1300 * q->list to serialize with collect_signal(). 1301 */ 1302 spin_lock_irqsave(lock, flags); 1303 if (!list_empty(&q->list)) 1304 list_del_init(&q->list); 1305 spin_unlock_irqrestore(lock, flags); 1306 1307 q->flags &= ~SIGQUEUE_PREALLOC; 1308 __sigqueue_free(q); 1309 } 1310 1311 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) 1312 { 1313 unsigned long flags; 1314 int ret = 0; 1315 1316 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1317 1318 /* 1319 * The rcu based delayed sighand destroy makes it possible to 1320 * run this without tasklist lock held. The task struct itself 1321 * cannot go away as create_timer did get_task_struct(). 1322 * 1323 * We return -1, when the task is marked exiting, so 1324 * posix_timer_event can redirect it to the group leader 1325 */ 1326 rcu_read_lock(); 1327 1328 if (!likely(lock_task_sighand(p, &flags))) { 1329 ret = -1; 1330 goto out_err; 1331 } 1332 1333 if (unlikely(!list_empty(&q->list))) { 1334 /* 1335 * If an SI_TIMER entry is already queue just increment 1336 * the overrun count. 1337 */ 1338 BUG_ON(q->info.si_code != SI_TIMER); 1339 q->info.si_overrun++; 1340 goto out; 1341 } 1342 /* Short-circuit ignored signals. */ 1343 if (sig_ignored(p, sig)) { 1344 ret = 1; 1345 goto out; 1346 } 1347 /* 1348 * Deliver the signal to listening signalfds. This must be called 1349 * with the sighand lock held. 1350 */ 1351 signalfd_notify(p, sig); 1352 1353 list_add_tail(&q->list, &p->pending.list); 1354 sigaddset(&p->pending.signal, sig); 1355 if (!sigismember(&p->blocked, sig)) 1356 signal_wake_up(p, sig == SIGKILL); 1357 1358 out: 1359 unlock_task_sighand(p, &flags); 1360 out_err: 1361 rcu_read_unlock(); 1362 1363 return ret; 1364 } 1365 1366 int 1367 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) 1368 { 1369 unsigned long flags; 1370 int ret = 0; 1371 1372 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1373 1374 read_lock(&tasklist_lock); 1375 /* Since it_lock is held, p->sighand cannot be NULL. */ 1376 spin_lock_irqsave(&p->sighand->siglock, flags); 1377 handle_stop_signal(sig, p); 1378 1379 /* Short-circuit ignored signals. */ 1380 if (sig_ignored(p, sig)) { 1381 ret = 1; 1382 goto out; 1383 } 1384 1385 if (unlikely(!list_empty(&q->list))) { 1386 /* 1387 * If an SI_TIMER entry is already queue just increment 1388 * the overrun count. Other uses should not try to 1389 * send the signal multiple times. 1390 */ 1391 BUG_ON(q->info.si_code != SI_TIMER); 1392 q->info.si_overrun++; 1393 goto out; 1394 } 1395 /* 1396 * Deliver the signal to listening signalfds. This must be called 1397 * with the sighand lock held. 1398 */ 1399 signalfd_notify(p, sig); 1400 1401 /* 1402 * Put this signal on the shared-pending queue. 1403 * We always use the shared queue for process-wide signals, 1404 * to avoid several races. 1405 */ 1406 list_add_tail(&q->list, &p->signal->shared_pending.list); 1407 sigaddset(&p->signal->shared_pending.signal, sig); 1408 1409 __group_complete_signal(sig, p); 1410 out: 1411 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1412 read_unlock(&tasklist_lock); 1413 return ret; 1414 } 1415 1416 /* 1417 * Wake up any threads in the parent blocked in wait* syscalls. 1418 */ 1419 static inline void __wake_up_parent(struct task_struct *p, 1420 struct task_struct *parent) 1421 { 1422 wake_up_interruptible_sync(&parent->signal->wait_chldexit); 1423 } 1424 1425 /* 1426 * Let a parent know about the death of a child. 1427 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1428 */ 1429 1430 void do_notify_parent(struct task_struct *tsk, int sig) 1431 { 1432 struct siginfo info; 1433 unsigned long flags; 1434 struct sighand_struct *psig; 1435 1436 BUG_ON(sig == -1); 1437 1438 /* do_notify_parent_cldstop should have been called instead. */ 1439 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED)); 1440 1441 BUG_ON(!tsk->ptrace && 1442 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1443 1444 info.si_signo = sig; 1445 info.si_errno = 0; 1446 info.si_pid = tsk->pid; 1447 info.si_uid = tsk->uid; 1448 1449 /* FIXME: find out whether or not this is supposed to be c*time. */ 1450 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime, 1451 tsk->signal->utime)); 1452 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime, 1453 tsk->signal->stime)); 1454 1455 info.si_status = tsk->exit_code & 0x7f; 1456 if (tsk->exit_code & 0x80) 1457 info.si_code = CLD_DUMPED; 1458 else if (tsk->exit_code & 0x7f) 1459 info.si_code = CLD_KILLED; 1460 else { 1461 info.si_code = CLD_EXITED; 1462 info.si_status = tsk->exit_code >> 8; 1463 } 1464 1465 psig = tsk->parent->sighand; 1466 spin_lock_irqsave(&psig->siglock, flags); 1467 if (!tsk->ptrace && sig == SIGCHLD && 1468 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1469 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1470 /* 1471 * We are exiting and our parent doesn't care. POSIX.1 1472 * defines special semantics for setting SIGCHLD to SIG_IGN 1473 * or setting the SA_NOCLDWAIT flag: we should be reaped 1474 * automatically and not left for our parent's wait4 call. 1475 * Rather than having the parent do it as a magic kind of 1476 * signal handler, we just set this to tell do_exit that we 1477 * can be cleaned up without becoming a zombie. Note that 1478 * we still call __wake_up_parent in this case, because a 1479 * blocked sys_wait4 might now return -ECHILD. 1480 * 1481 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1482 * is implementation-defined: we do (if you don't want 1483 * it, just use SIG_IGN instead). 1484 */ 1485 tsk->exit_signal = -1; 1486 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1487 sig = 0; 1488 } 1489 if (valid_signal(sig) && sig > 0) 1490 __group_send_sig_info(sig, &info, tsk->parent); 1491 __wake_up_parent(tsk, tsk->parent); 1492 spin_unlock_irqrestore(&psig->siglock, flags); 1493 } 1494 1495 static void do_notify_parent_cldstop(struct task_struct *tsk, int why) 1496 { 1497 struct siginfo info; 1498 unsigned long flags; 1499 struct task_struct *parent; 1500 struct sighand_struct *sighand; 1501 1502 if (tsk->ptrace & PT_PTRACED) 1503 parent = tsk->parent; 1504 else { 1505 tsk = tsk->group_leader; 1506 parent = tsk->real_parent; 1507 } 1508 1509 info.si_signo = SIGCHLD; 1510 info.si_errno = 0; 1511 info.si_pid = tsk->pid; 1512 info.si_uid = tsk->uid; 1513 1514 /* FIXME: find out whether or not this is supposed to be c*time. */ 1515 info.si_utime = cputime_to_jiffies(tsk->utime); 1516 info.si_stime = cputime_to_jiffies(tsk->stime); 1517 1518 info.si_code = why; 1519 switch (why) { 1520 case CLD_CONTINUED: 1521 info.si_status = SIGCONT; 1522 break; 1523 case CLD_STOPPED: 1524 info.si_status = tsk->signal->group_exit_code & 0x7f; 1525 break; 1526 case CLD_TRAPPED: 1527 info.si_status = tsk->exit_code & 0x7f; 1528 break; 1529 default: 1530 BUG(); 1531 } 1532 1533 sighand = parent->sighand; 1534 spin_lock_irqsave(&sighand->siglock, flags); 1535 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1536 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1537 __group_send_sig_info(SIGCHLD, &info, parent); 1538 /* 1539 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1540 */ 1541 __wake_up_parent(tsk, parent); 1542 spin_unlock_irqrestore(&sighand->siglock, flags); 1543 } 1544 1545 static inline int may_ptrace_stop(void) 1546 { 1547 if (!likely(current->ptrace & PT_PTRACED)) 1548 return 0; 1549 1550 if (unlikely(current->parent == current->real_parent && 1551 (current->ptrace & PT_ATTACHED))) 1552 return 0; 1553 1554 /* 1555 * Are we in the middle of do_coredump? 1556 * If so and our tracer is also part of the coredump stopping 1557 * is a deadlock situation, and pointless because our tracer 1558 * is dead so don't allow us to stop. 1559 * If SIGKILL was already sent before the caller unlocked 1560 * ->siglock we must see ->core_waiters != 0. Otherwise it 1561 * is safe to enter schedule(). 1562 */ 1563 if (unlikely(current->mm->core_waiters) && 1564 unlikely(current->mm == current->parent->mm)) 1565 return 0; 1566 1567 return 1; 1568 } 1569 1570 /* 1571 * This must be called with current->sighand->siglock held. 1572 * 1573 * This should be the path for all ptrace stops. 1574 * We always set current->last_siginfo while stopped here. 1575 * That makes it a way to test a stopped process for 1576 * being ptrace-stopped vs being job-control-stopped. 1577 * 1578 * If we actually decide not to stop at all because the tracer is gone, 1579 * we leave nostop_code in current->exit_code. 1580 */ 1581 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info) 1582 { 1583 /* 1584 * If there is a group stop in progress, 1585 * we must participate in the bookkeeping. 1586 */ 1587 if (current->signal->group_stop_count > 0) 1588 --current->signal->group_stop_count; 1589 1590 current->last_siginfo = info; 1591 current->exit_code = exit_code; 1592 1593 /* Let the debugger run. */ 1594 set_current_state(TASK_TRACED); 1595 spin_unlock_irq(¤t->sighand->siglock); 1596 try_to_freeze(); 1597 read_lock(&tasklist_lock); 1598 if (may_ptrace_stop()) { 1599 do_notify_parent_cldstop(current, CLD_TRAPPED); 1600 read_unlock(&tasklist_lock); 1601 schedule(); 1602 } else { 1603 /* 1604 * By the time we got the lock, our tracer went away. 1605 * Don't stop here. 1606 */ 1607 read_unlock(&tasklist_lock); 1608 set_current_state(TASK_RUNNING); 1609 current->exit_code = nostop_code; 1610 } 1611 1612 /* 1613 * We are back. Now reacquire the siglock before touching 1614 * last_siginfo, so that we are sure to have synchronized with 1615 * any signal-sending on another CPU that wants to examine it. 1616 */ 1617 spin_lock_irq(¤t->sighand->siglock); 1618 current->last_siginfo = NULL; 1619 1620 /* 1621 * Queued signals ignored us while we were stopped for tracing. 1622 * So check for any that we should take before resuming user mode. 1623 * This sets TIF_SIGPENDING, but never clears it. 1624 */ 1625 recalc_sigpending_tsk(current); 1626 } 1627 1628 void ptrace_notify(int exit_code) 1629 { 1630 siginfo_t info; 1631 1632 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1633 1634 memset(&info, 0, sizeof info); 1635 info.si_signo = SIGTRAP; 1636 info.si_code = exit_code; 1637 info.si_pid = current->pid; 1638 info.si_uid = current->uid; 1639 1640 /* Let the debugger run. */ 1641 spin_lock_irq(¤t->sighand->siglock); 1642 ptrace_stop(exit_code, 0, &info); 1643 spin_unlock_irq(¤t->sighand->siglock); 1644 } 1645 1646 static void 1647 finish_stop(int stop_count) 1648 { 1649 /* 1650 * If there are no other threads in the group, or if there is 1651 * a group stop in progress and we are the last to stop, 1652 * report to the parent. When ptraced, every thread reports itself. 1653 */ 1654 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) { 1655 read_lock(&tasklist_lock); 1656 do_notify_parent_cldstop(current, CLD_STOPPED); 1657 read_unlock(&tasklist_lock); 1658 } 1659 1660 do { 1661 schedule(); 1662 } while (try_to_freeze()); 1663 /* 1664 * Now we don't run again until continued. 1665 */ 1666 current->exit_code = 0; 1667 } 1668 1669 /* 1670 * This performs the stopping for SIGSTOP and other stop signals. 1671 * We have to stop all threads in the thread group. 1672 * Returns nonzero if we've actually stopped and released the siglock. 1673 * Returns zero if we didn't stop and still hold the siglock. 1674 */ 1675 static int do_signal_stop(int signr) 1676 { 1677 struct signal_struct *sig = current->signal; 1678 int stop_count; 1679 1680 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) 1681 return 0; 1682 1683 if (sig->group_stop_count > 0) { 1684 /* 1685 * There is a group stop in progress. We don't need to 1686 * start another one. 1687 */ 1688 stop_count = --sig->group_stop_count; 1689 } else { 1690 /* 1691 * There is no group stop already in progress. 1692 * We must initiate one now. 1693 */ 1694 struct task_struct *t; 1695 1696 sig->group_exit_code = signr; 1697 1698 stop_count = 0; 1699 for (t = next_thread(current); t != current; t = next_thread(t)) 1700 /* 1701 * Setting state to TASK_STOPPED for a group 1702 * stop is always done with the siglock held, 1703 * so this check has no races. 1704 */ 1705 if (!t->exit_state && 1706 !(t->state & (TASK_STOPPED|TASK_TRACED))) { 1707 stop_count++; 1708 signal_wake_up(t, 0); 1709 } 1710 sig->group_stop_count = stop_count; 1711 } 1712 1713 if (stop_count == 0) 1714 sig->flags = SIGNAL_STOP_STOPPED; 1715 current->exit_code = sig->group_exit_code; 1716 __set_current_state(TASK_STOPPED); 1717 1718 spin_unlock_irq(¤t->sighand->siglock); 1719 finish_stop(stop_count); 1720 return 1; 1721 } 1722 1723 /* 1724 * Do appropriate magic when group_stop_count > 0. 1725 * We return nonzero if we stopped, after releasing the siglock. 1726 * We return zero if we still hold the siglock and should look 1727 * for another signal without checking group_stop_count again. 1728 */ 1729 static int handle_group_stop(void) 1730 { 1731 int stop_count; 1732 1733 if (current->signal->group_exit_task == current) { 1734 /* 1735 * Group stop is so we can do a core dump, 1736 * We are the initiating thread, so get on with it. 1737 */ 1738 current->signal->group_exit_task = NULL; 1739 return 0; 1740 } 1741 1742 if (current->signal->flags & SIGNAL_GROUP_EXIT) 1743 /* 1744 * Group stop is so another thread can do a core dump, 1745 * or else we are racing against a death signal. 1746 * Just punt the stop so we can get the next signal. 1747 */ 1748 return 0; 1749 1750 /* 1751 * There is a group stop in progress. We stop 1752 * without any associated signal being in our queue. 1753 */ 1754 stop_count = --current->signal->group_stop_count; 1755 if (stop_count == 0) 1756 current->signal->flags = SIGNAL_STOP_STOPPED; 1757 current->exit_code = current->signal->group_exit_code; 1758 set_current_state(TASK_STOPPED); 1759 spin_unlock_irq(¤t->sighand->siglock); 1760 finish_stop(stop_count); 1761 return 1; 1762 } 1763 1764 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, 1765 struct pt_regs *regs, void *cookie) 1766 { 1767 sigset_t *mask = ¤t->blocked; 1768 int signr = 0; 1769 1770 try_to_freeze(); 1771 1772 relock: 1773 spin_lock_irq(¤t->sighand->siglock); 1774 for (;;) { 1775 struct k_sigaction *ka; 1776 1777 if (unlikely(current->signal->group_stop_count > 0) && 1778 handle_group_stop()) 1779 goto relock; 1780 1781 signr = dequeue_signal(current, mask, info); 1782 1783 if (!signr) 1784 break; /* will return 0 */ 1785 1786 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) { 1787 ptrace_signal_deliver(regs, cookie); 1788 1789 /* Let the debugger run. */ 1790 ptrace_stop(signr, signr, info); 1791 1792 /* We're back. Did the debugger cancel the sig? */ 1793 signr = current->exit_code; 1794 if (signr == 0) 1795 continue; 1796 1797 current->exit_code = 0; 1798 1799 /* Update the siginfo structure if the signal has 1800 changed. If the debugger wanted something 1801 specific in the siginfo structure then it should 1802 have updated *info via PTRACE_SETSIGINFO. */ 1803 if (signr != info->si_signo) { 1804 info->si_signo = signr; 1805 info->si_errno = 0; 1806 info->si_code = SI_USER; 1807 info->si_pid = current->parent->pid; 1808 info->si_uid = current->parent->uid; 1809 } 1810 1811 /* If the (new) signal is now blocked, requeue it. */ 1812 if (sigismember(¤t->blocked, signr)) { 1813 specific_send_sig_info(signr, info, current); 1814 continue; 1815 } 1816 } 1817 1818 ka = ¤t->sighand->action[signr-1]; 1819 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 1820 continue; 1821 if (ka->sa.sa_handler != SIG_DFL) { 1822 /* Run the handler. */ 1823 *return_ka = *ka; 1824 1825 if (ka->sa.sa_flags & SA_ONESHOT) 1826 ka->sa.sa_handler = SIG_DFL; 1827 1828 break; /* will return non-zero "signr" value */ 1829 } 1830 1831 /* 1832 * Now we are doing the default action for this signal. 1833 */ 1834 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 1835 continue; 1836 1837 /* 1838 * Init of a pid space gets no signals it doesn't want from 1839 * within that pid space. It can of course get signals from 1840 * its parent pid space. 1841 */ 1842 if (current == child_reaper(current)) 1843 continue; 1844 1845 if (sig_kernel_stop(signr)) { 1846 /* 1847 * The default action is to stop all threads in 1848 * the thread group. The job control signals 1849 * do nothing in an orphaned pgrp, but SIGSTOP 1850 * always works. Note that siglock needs to be 1851 * dropped during the call to is_orphaned_pgrp() 1852 * because of lock ordering with tasklist_lock. 1853 * This allows an intervening SIGCONT to be posted. 1854 * We need to check for that and bail out if necessary. 1855 */ 1856 if (signr != SIGSTOP) { 1857 spin_unlock_irq(¤t->sighand->siglock); 1858 1859 /* signals can be posted during this window */ 1860 1861 if (is_current_pgrp_orphaned()) 1862 goto relock; 1863 1864 spin_lock_irq(¤t->sighand->siglock); 1865 } 1866 1867 if (likely(do_signal_stop(signr))) { 1868 /* It released the siglock. */ 1869 goto relock; 1870 } 1871 1872 /* 1873 * We didn't actually stop, due to a race 1874 * with SIGCONT or something like that. 1875 */ 1876 continue; 1877 } 1878 1879 spin_unlock_irq(¤t->sighand->siglock); 1880 1881 /* 1882 * Anything else is fatal, maybe with a core dump. 1883 */ 1884 current->flags |= PF_SIGNALED; 1885 if ((signr != SIGKILL) && print_fatal_signals) 1886 print_fatal_signal(regs, signr); 1887 if (sig_kernel_coredump(signr)) { 1888 /* 1889 * If it was able to dump core, this kills all 1890 * other threads in the group and synchronizes with 1891 * their demise. If we lost the race with another 1892 * thread getting here, it set group_exit_code 1893 * first and our do_group_exit call below will use 1894 * that value and ignore the one we pass it. 1895 */ 1896 do_coredump((long)signr, signr, regs); 1897 } 1898 1899 /* 1900 * Death signals, no core dump. 1901 */ 1902 do_group_exit(signr); 1903 /* NOTREACHED */ 1904 } 1905 spin_unlock_irq(¤t->sighand->siglock); 1906 return signr; 1907 } 1908 1909 EXPORT_SYMBOL(recalc_sigpending); 1910 EXPORT_SYMBOL_GPL(dequeue_signal); 1911 EXPORT_SYMBOL(flush_signals); 1912 EXPORT_SYMBOL(force_sig); 1913 EXPORT_SYMBOL(kill_proc); 1914 EXPORT_SYMBOL(ptrace_notify); 1915 EXPORT_SYMBOL(send_sig); 1916 EXPORT_SYMBOL(send_sig_info); 1917 EXPORT_SYMBOL(sigprocmask); 1918 EXPORT_SYMBOL(block_all_signals); 1919 EXPORT_SYMBOL(unblock_all_signals); 1920 1921 1922 /* 1923 * System call entry points. 1924 */ 1925 1926 asmlinkage long sys_restart_syscall(void) 1927 { 1928 struct restart_block *restart = ¤t_thread_info()->restart_block; 1929 return restart->fn(restart); 1930 } 1931 1932 long do_no_restart_syscall(struct restart_block *param) 1933 { 1934 return -EINTR; 1935 } 1936 1937 /* 1938 * We don't need to get the kernel lock - this is all local to this 1939 * particular thread.. (and that's good, because this is _heavily_ 1940 * used by various programs) 1941 */ 1942 1943 /* 1944 * This is also useful for kernel threads that want to temporarily 1945 * (or permanently) block certain signals. 1946 * 1947 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 1948 * interface happily blocks "unblockable" signals like SIGKILL 1949 * and friends. 1950 */ 1951 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 1952 { 1953 int error; 1954 1955 spin_lock_irq(¤t->sighand->siglock); 1956 if (oldset) 1957 *oldset = current->blocked; 1958 1959 error = 0; 1960 switch (how) { 1961 case SIG_BLOCK: 1962 sigorsets(¤t->blocked, ¤t->blocked, set); 1963 break; 1964 case SIG_UNBLOCK: 1965 signandsets(¤t->blocked, ¤t->blocked, set); 1966 break; 1967 case SIG_SETMASK: 1968 current->blocked = *set; 1969 break; 1970 default: 1971 error = -EINVAL; 1972 } 1973 recalc_sigpending(); 1974 spin_unlock_irq(¤t->sighand->siglock); 1975 1976 return error; 1977 } 1978 1979 asmlinkage long 1980 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize) 1981 { 1982 int error = -EINVAL; 1983 sigset_t old_set, new_set; 1984 1985 /* XXX: Don't preclude handling different sized sigset_t's. */ 1986 if (sigsetsize != sizeof(sigset_t)) 1987 goto out; 1988 1989 if (set) { 1990 error = -EFAULT; 1991 if (copy_from_user(&new_set, set, sizeof(*set))) 1992 goto out; 1993 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 1994 1995 error = sigprocmask(how, &new_set, &old_set); 1996 if (error) 1997 goto out; 1998 if (oset) 1999 goto set_old; 2000 } else if (oset) { 2001 spin_lock_irq(¤t->sighand->siglock); 2002 old_set = current->blocked; 2003 spin_unlock_irq(¤t->sighand->siglock); 2004 2005 set_old: 2006 error = -EFAULT; 2007 if (copy_to_user(oset, &old_set, sizeof(*oset))) 2008 goto out; 2009 } 2010 error = 0; 2011 out: 2012 return error; 2013 } 2014 2015 long do_sigpending(void __user *set, unsigned long sigsetsize) 2016 { 2017 long error = -EINVAL; 2018 sigset_t pending; 2019 2020 if (sigsetsize > sizeof(sigset_t)) 2021 goto out; 2022 2023 spin_lock_irq(¤t->sighand->siglock); 2024 sigorsets(&pending, ¤t->pending.signal, 2025 ¤t->signal->shared_pending.signal); 2026 spin_unlock_irq(¤t->sighand->siglock); 2027 2028 /* Outside the lock because only this thread touches it. */ 2029 sigandsets(&pending, ¤t->blocked, &pending); 2030 2031 error = -EFAULT; 2032 if (!copy_to_user(set, &pending, sigsetsize)) 2033 error = 0; 2034 2035 out: 2036 return error; 2037 } 2038 2039 asmlinkage long 2040 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize) 2041 { 2042 return do_sigpending(set, sigsetsize); 2043 } 2044 2045 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2046 2047 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) 2048 { 2049 int err; 2050 2051 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2052 return -EFAULT; 2053 if (from->si_code < 0) 2054 return __copy_to_user(to, from, sizeof(siginfo_t)) 2055 ? -EFAULT : 0; 2056 /* 2057 * If you change siginfo_t structure, please be sure 2058 * this code is fixed accordingly. 2059 * Please remember to update the signalfd_copyinfo() function 2060 * inside fs/signalfd.c too, in case siginfo_t changes. 2061 * It should never copy any pad contained in the structure 2062 * to avoid security leaks, but must copy the generic 2063 * 3 ints plus the relevant union member. 2064 */ 2065 err = __put_user(from->si_signo, &to->si_signo); 2066 err |= __put_user(from->si_errno, &to->si_errno); 2067 err |= __put_user((short)from->si_code, &to->si_code); 2068 switch (from->si_code & __SI_MASK) { 2069 case __SI_KILL: 2070 err |= __put_user(from->si_pid, &to->si_pid); 2071 err |= __put_user(from->si_uid, &to->si_uid); 2072 break; 2073 case __SI_TIMER: 2074 err |= __put_user(from->si_tid, &to->si_tid); 2075 err |= __put_user(from->si_overrun, &to->si_overrun); 2076 err |= __put_user(from->si_ptr, &to->si_ptr); 2077 break; 2078 case __SI_POLL: 2079 err |= __put_user(from->si_band, &to->si_band); 2080 err |= __put_user(from->si_fd, &to->si_fd); 2081 break; 2082 case __SI_FAULT: 2083 err |= __put_user(from->si_addr, &to->si_addr); 2084 #ifdef __ARCH_SI_TRAPNO 2085 err |= __put_user(from->si_trapno, &to->si_trapno); 2086 #endif 2087 break; 2088 case __SI_CHLD: 2089 err |= __put_user(from->si_pid, &to->si_pid); 2090 err |= __put_user(from->si_uid, &to->si_uid); 2091 err |= __put_user(from->si_status, &to->si_status); 2092 err |= __put_user(from->si_utime, &to->si_utime); 2093 err |= __put_user(from->si_stime, &to->si_stime); 2094 break; 2095 case __SI_RT: /* This is not generated by the kernel as of now. */ 2096 case __SI_MESGQ: /* But this is */ 2097 err |= __put_user(from->si_pid, &to->si_pid); 2098 err |= __put_user(from->si_uid, &to->si_uid); 2099 err |= __put_user(from->si_ptr, &to->si_ptr); 2100 break; 2101 default: /* this is just in case for now ... */ 2102 err |= __put_user(from->si_pid, &to->si_pid); 2103 err |= __put_user(from->si_uid, &to->si_uid); 2104 break; 2105 } 2106 return err; 2107 } 2108 2109 #endif 2110 2111 asmlinkage long 2112 sys_rt_sigtimedwait(const sigset_t __user *uthese, 2113 siginfo_t __user *uinfo, 2114 const struct timespec __user *uts, 2115 size_t sigsetsize) 2116 { 2117 int ret, sig; 2118 sigset_t these; 2119 struct timespec ts; 2120 siginfo_t info; 2121 long timeout = 0; 2122 2123 /* XXX: Don't preclude handling different sized sigset_t's. */ 2124 if (sigsetsize != sizeof(sigset_t)) 2125 return -EINVAL; 2126 2127 if (copy_from_user(&these, uthese, sizeof(these))) 2128 return -EFAULT; 2129 2130 /* 2131 * Invert the set of allowed signals to get those we 2132 * want to block. 2133 */ 2134 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2135 signotset(&these); 2136 2137 if (uts) { 2138 if (copy_from_user(&ts, uts, sizeof(ts))) 2139 return -EFAULT; 2140 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0 2141 || ts.tv_sec < 0) 2142 return -EINVAL; 2143 } 2144 2145 spin_lock_irq(¤t->sighand->siglock); 2146 sig = dequeue_signal(current, &these, &info); 2147 if (!sig) { 2148 timeout = MAX_SCHEDULE_TIMEOUT; 2149 if (uts) 2150 timeout = (timespec_to_jiffies(&ts) 2151 + (ts.tv_sec || ts.tv_nsec)); 2152 2153 if (timeout) { 2154 /* None ready -- temporarily unblock those we're 2155 * interested while we are sleeping in so that we'll 2156 * be awakened when they arrive. */ 2157 current->real_blocked = current->blocked; 2158 sigandsets(¤t->blocked, ¤t->blocked, &these); 2159 recalc_sigpending(); 2160 spin_unlock_irq(¤t->sighand->siglock); 2161 2162 timeout = schedule_timeout_interruptible(timeout); 2163 2164 spin_lock_irq(¤t->sighand->siglock); 2165 sig = dequeue_signal(current, &these, &info); 2166 current->blocked = current->real_blocked; 2167 siginitset(¤t->real_blocked, 0); 2168 recalc_sigpending(); 2169 } 2170 } 2171 spin_unlock_irq(¤t->sighand->siglock); 2172 2173 if (sig) { 2174 ret = sig; 2175 if (uinfo) { 2176 if (copy_siginfo_to_user(uinfo, &info)) 2177 ret = -EFAULT; 2178 } 2179 } else { 2180 ret = -EAGAIN; 2181 if (timeout) 2182 ret = -EINTR; 2183 } 2184 2185 return ret; 2186 } 2187 2188 asmlinkage long 2189 sys_kill(int pid, int sig) 2190 { 2191 struct siginfo info; 2192 2193 info.si_signo = sig; 2194 info.si_errno = 0; 2195 info.si_code = SI_USER; 2196 info.si_pid = current->tgid; 2197 info.si_uid = current->uid; 2198 2199 return kill_something_info(sig, &info, pid); 2200 } 2201 2202 static int do_tkill(int tgid, int pid, int sig) 2203 { 2204 int error; 2205 struct siginfo info; 2206 struct task_struct *p; 2207 2208 error = -ESRCH; 2209 info.si_signo = sig; 2210 info.si_errno = 0; 2211 info.si_code = SI_TKILL; 2212 info.si_pid = current->tgid; 2213 info.si_uid = current->uid; 2214 2215 read_lock(&tasklist_lock); 2216 p = find_task_by_pid(pid); 2217 if (p && (tgid <= 0 || p->tgid == tgid)) { 2218 error = check_kill_permission(sig, &info, p); 2219 /* 2220 * The null signal is a permissions and process existence 2221 * probe. No signal is actually delivered. 2222 */ 2223 if (!error && sig && p->sighand) { 2224 spin_lock_irq(&p->sighand->siglock); 2225 handle_stop_signal(sig, p); 2226 error = specific_send_sig_info(sig, &info, p); 2227 spin_unlock_irq(&p->sighand->siglock); 2228 } 2229 } 2230 read_unlock(&tasklist_lock); 2231 2232 return error; 2233 } 2234 2235 /** 2236 * sys_tgkill - send signal to one specific thread 2237 * @tgid: the thread group ID of the thread 2238 * @pid: the PID of the thread 2239 * @sig: signal to be sent 2240 * 2241 * This syscall also checks the @tgid and returns -ESRCH even if the PID 2242 * exists but it's not belonging to the target process anymore. This 2243 * method solves the problem of threads exiting and PIDs getting reused. 2244 */ 2245 asmlinkage long sys_tgkill(int tgid, int pid, int sig) 2246 { 2247 /* This is only valid for single tasks */ 2248 if (pid <= 0 || tgid <= 0) 2249 return -EINVAL; 2250 2251 return do_tkill(tgid, pid, sig); 2252 } 2253 2254 /* 2255 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2256 */ 2257 asmlinkage long 2258 sys_tkill(int pid, int sig) 2259 { 2260 /* This is only valid for single tasks */ 2261 if (pid <= 0) 2262 return -EINVAL; 2263 2264 return do_tkill(0, pid, sig); 2265 } 2266 2267 asmlinkage long 2268 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo) 2269 { 2270 siginfo_t info; 2271 2272 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2273 return -EFAULT; 2274 2275 /* Not even root can pretend to send signals from the kernel. 2276 Nor can they impersonate a kill(), which adds source info. */ 2277 if (info.si_code >= 0) 2278 return -EPERM; 2279 info.si_signo = sig; 2280 2281 /* POSIX.1b doesn't mention process groups. */ 2282 return kill_proc_info(sig, &info, pid); 2283 } 2284 2285 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 2286 { 2287 struct k_sigaction *k; 2288 sigset_t mask; 2289 2290 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 2291 return -EINVAL; 2292 2293 k = ¤t->sighand->action[sig-1]; 2294 2295 spin_lock_irq(¤t->sighand->siglock); 2296 if (oact) 2297 *oact = *k; 2298 2299 if (act) { 2300 sigdelsetmask(&act->sa.sa_mask, 2301 sigmask(SIGKILL) | sigmask(SIGSTOP)); 2302 *k = *act; 2303 /* 2304 * POSIX 3.3.1.3: 2305 * "Setting a signal action to SIG_IGN for a signal that is 2306 * pending shall cause the pending signal to be discarded, 2307 * whether or not it is blocked." 2308 * 2309 * "Setting a signal action to SIG_DFL for a signal that is 2310 * pending and whose default action is to ignore the signal 2311 * (for example, SIGCHLD), shall cause the pending signal to 2312 * be discarded, whether or not it is blocked" 2313 */ 2314 if (act->sa.sa_handler == SIG_IGN || 2315 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) { 2316 struct task_struct *t = current; 2317 sigemptyset(&mask); 2318 sigaddset(&mask, sig); 2319 rm_from_queue_full(&mask, &t->signal->shared_pending); 2320 do { 2321 rm_from_queue_full(&mask, &t->pending); 2322 t = next_thread(t); 2323 } while (t != current); 2324 } 2325 } 2326 2327 spin_unlock_irq(¤t->sighand->siglock); 2328 return 0; 2329 } 2330 2331 int 2332 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 2333 { 2334 stack_t oss; 2335 int error; 2336 2337 if (uoss) { 2338 oss.ss_sp = (void __user *) current->sas_ss_sp; 2339 oss.ss_size = current->sas_ss_size; 2340 oss.ss_flags = sas_ss_flags(sp); 2341 } 2342 2343 if (uss) { 2344 void __user *ss_sp; 2345 size_t ss_size; 2346 int ss_flags; 2347 2348 error = -EFAULT; 2349 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)) 2350 || __get_user(ss_sp, &uss->ss_sp) 2351 || __get_user(ss_flags, &uss->ss_flags) 2352 || __get_user(ss_size, &uss->ss_size)) 2353 goto out; 2354 2355 error = -EPERM; 2356 if (on_sig_stack(sp)) 2357 goto out; 2358 2359 error = -EINVAL; 2360 /* 2361 * 2362 * Note - this code used to test ss_flags incorrectly 2363 * old code may have been written using ss_flags==0 2364 * to mean ss_flags==SS_ONSTACK (as this was the only 2365 * way that worked) - this fix preserves that older 2366 * mechanism 2367 */ 2368 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) 2369 goto out; 2370 2371 if (ss_flags == SS_DISABLE) { 2372 ss_size = 0; 2373 ss_sp = NULL; 2374 } else { 2375 error = -ENOMEM; 2376 if (ss_size < MINSIGSTKSZ) 2377 goto out; 2378 } 2379 2380 current->sas_ss_sp = (unsigned long) ss_sp; 2381 current->sas_ss_size = ss_size; 2382 } 2383 2384 if (uoss) { 2385 error = -EFAULT; 2386 if (copy_to_user(uoss, &oss, sizeof(oss))) 2387 goto out; 2388 } 2389 2390 error = 0; 2391 out: 2392 return error; 2393 } 2394 2395 #ifdef __ARCH_WANT_SYS_SIGPENDING 2396 2397 asmlinkage long 2398 sys_sigpending(old_sigset_t __user *set) 2399 { 2400 return do_sigpending(set, sizeof(*set)); 2401 } 2402 2403 #endif 2404 2405 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 2406 /* Some platforms have their own version with special arguments others 2407 support only sys_rt_sigprocmask. */ 2408 2409 asmlinkage long 2410 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset) 2411 { 2412 int error; 2413 old_sigset_t old_set, new_set; 2414 2415 if (set) { 2416 error = -EFAULT; 2417 if (copy_from_user(&new_set, set, sizeof(*set))) 2418 goto out; 2419 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP)); 2420 2421 spin_lock_irq(¤t->sighand->siglock); 2422 old_set = current->blocked.sig[0]; 2423 2424 error = 0; 2425 switch (how) { 2426 default: 2427 error = -EINVAL; 2428 break; 2429 case SIG_BLOCK: 2430 sigaddsetmask(¤t->blocked, new_set); 2431 break; 2432 case SIG_UNBLOCK: 2433 sigdelsetmask(¤t->blocked, new_set); 2434 break; 2435 case SIG_SETMASK: 2436 current->blocked.sig[0] = new_set; 2437 break; 2438 } 2439 2440 recalc_sigpending(); 2441 spin_unlock_irq(¤t->sighand->siglock); 2442 if (error) 2443 goto out; 2444 if (oset) 2445 goto set_old; 2446 } else if (oset) { 2447 old_set = current->blocked.sig[0]; 2448 set_old: 2449 error = -EFAULT; 2450 if (copy_to_user(oset, &old_set, sizeof(*oset))) 2451 goto out; 2452 } 2453 error = 0; 2454 out: 2455 return error; 2456 } 2457 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 2458 2459 #ifdef __ARCH_WANT_SYS_RT_SIGACTION 2460 asmlinkage long 2461 sys_rt_sigaction(int sig, 2462 const struct sigaction __user *act, 2463 struct sigaction __user *oact, 2464 size_t sigsetsize) 2465 { 2466 struct k_sigaction new_sa, old_sa; 2467 int ret = -EINVAL; 2468 2469 /* XXX: Don't preclude handling different sized sigset_t's. */ 2470 if (sigsetsize != sizeof(sigset_t)) 2471 goto out; 2472 2473 if (act) { 2474 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 2475 return -EFAULT; 2476 } 2477 2478 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 2479 2480 if (!ret && oact) { 2481 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 2482 return -EFAULT; 2483 } 2484 out: 2485 return ret; 2486 } 2487 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */ 2488 2489 #ifdef __ARCH_WANT_SYS_SGETMASK 2490 2491 /* 2492 * For backwards compatibility. Functionality superseded by sigprocmask. 2493 */ 2494 asmlinkage long 2495 sys_sgetmask(void) 2496 { 2497 /* SMP safe */ 2498 return current->blocked.sig[0]; 2499 } 2500 2501 asmlinkage long 2502 sys_ssetmask(int newmask) 2503 { 2504 int old; 2505 2506 spin_lock_irq(¤t->sighand->siglock); 2507 old = current->blocked.sig[0]; 2508 2509 siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)| 2510 sigmask(SIGSTOP))); 2511 recalc_sigpending(); 2512 spin_unlock_irq(¤t->sighand->siglock); 2513 2514 return old; 2515 } 2516 #endif /* __ARCH_WANT_SGETMASK */ 2517 2518 #ifdef __ARCH_WANT_SYS_SIGNAL 2519 /* 2520 * For backwards compatibility. Functionality superseded by sigaction. 2521 */ 2522 asmlinkage unsigned long 2523 sys_signal(int sig, __sighandler_t handler) 2524 { 2525 struct k_sigaction new_sa, old_sa; 2526 int ret; 2527 2528 new_sa.sa.sa_handler = handler; 2529 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 2530 sigemptyset(&new_sa.sa.sa_mask); 2531 2532 ret = do_sigaction(sig, &new_sa, &old_sa); 2533 2534 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 2535 } 2536 #endif /* __ARCH_WANT_SYS_SIGNAL */ 2537 2538 #ifdef __ARCH_WANT_SYS_PAUSE 2539 2540 asmlinkage long 2541 sys_pause(void) 2542 { 2543 current->state = TASK_INTERRUPTIBLE; 2544 schedule(); 2545 return -ERESTARTNOHAND; 2546 } 2547 2548 #endif 2549 2550 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND 2551 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize) 2552 { 2553 sigset_t newset; 2554 2555 /* XXX: Don't preclude handling different sized sigset_t's. */ 2556 if (sigsetsize != sizeof(sigset_t)) 2557 return -EINVAL; 2558 2559 if (copy_from_user(&newset, unewset, sizeof(newset))) 2560 return -EFAULT; 2561 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2562 2563 spin_lock_irq(¤t->sighand->siglock); 2564 current->saved_sigmask = current->blocked; 2565 current->blocked = newset; 2566 recalc_sigpending(); 2567 spin_unlock_irq(¤t->sighand->siglock); 2568 2569 current->state = TASK_INTERRUPTIBLE; 2570 schedule(); 2571 set_thread_flag(TIF_RESTORE_SIGMASK); 2572 return -ERESTARTNOHAND; 2573 } 2574 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */ 2575 2576 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma) 2577 { 2578 return NULL; 2579 } 2580 2581 void __init signals_init(void) 2582 { 2583 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 2584 } 2585