xref: /linux/kernel/signal.c (revision c80544dc0b87bb65038355e7aafdc30be16b26ab)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/capability.h>
26 #include <linux/freezer.h>
27 #include <linux/pid_namespace.h>
28 #include <linux/nsproxy.h>
29 
30 #include <asm/param.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include <asm/siginfo.h>
34 #include "audit.h"	/* audit_signal_info() */
35 
36 /*
37  * SLAB caches for signal bits.
38  */
39 
40 static struct kmem_cache *sigqueue_cachep;
41 
42 
43 static int sig_ignored(struct task_struct *t, int sig)
44 {
45 	void __user * handler;
46 
47 	/*
48 	 * Tracers always want to know about signals..
49 	 */
50 	if (t->ptrace & PT_PTRACED)
51 		return 0;
52 
53 	/*
54 	 * Blocked signals are never ignored, since the
55 	 * signal handler may change by the time it is
56 	 * unblocked.
57 	 */
58 	if (sigismember(&t->blocked, sig))
59 		return 0;
60 
61 	/* Is it explicitly or implicitly ignored? */
62 	handler = t->sighand->action[sig-1].sa.sa_handler;
63 	return   handler == SIG_IGN ||
64 		(handler == SIG_DFL && sig_kernel_ignore(sig));
65 }
66 
67 /*
68  * Re-calculate pending state from the set of locally pending
69  * signals, globally pending signals, and blocked signals.
70  */
71 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
72 {
73 	unsigned long ready;
74 	long i;
75 
76 	switch (_NSIG_WORDS) {
77 	default:
78 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
79 			ready |= signal->sig[i] &~ blocked->sig[i];
80 		break;
81 
82 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
83 		ready |= signal->sig[2] &~ blocked->sig[2];
84 		ready |= signal->sig[1] &~ blocked->sig[1];
85 		ready |= signal->sig[0] &~ blocked->sig[0];
86 		break;
87 
88 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
89 		ready |= signal->sig[0] &~ blocked->sig[0];
90 		break;
91 
92 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
93 	}
94 	return ready !=	0;
95 }
96 
97 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
98 
99 static int recalc_sigpending_tsk(struct task_struct *t)
100 {
101 	if (t->signal->group_stop_count > 0 ||
102 	    PENDING(&t->pending, &t->blocked) ||
103 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
104 		set_tsk_thread_flag(t, TIF_SIGPENDING);
105 		return 1;
106 	}
107 	/*
108 	 * We must never clear the flag in another thread, or in current
109 	 * when it's possible the current syscall is returning -ERESTART*.
110 	 * So we don't clear it here, and only callers who know they should do.
111 	 */
112 	return 0;
113 }
114 
115 /*
116  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
117  * This is superfluous when called on current, the wakeup is a harmless no-op.
118  */
119 void recalc_sigpending_and_wake(struct task_struct *t)
120 {
121 	if (recalc_sigpending_tsk(t))
122 		signal_wake_up(t, 0);
123 }
124 
125 void recalc_sigpending(void)
126 {
127 	if (!recalc_sigpending_tsk(current))
128 		clear_thread_flag(TIF_SIGPENDING);
129 
130 }
131 
132 /* Given the mask, find the first available signal that should be serviced. */
133 
134 int next_signal(struct sigpending *pending, sigset_t *mask)
135 {
136 	unsigned long i, *s, *m, x;
137 	int sig = 0;
138 
139 	s = pending->signal.sig;
140 	m = mask->sig;
141 	switch (_NSIG_WORDS) {
142 	default:
143 		for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
144 			if ((x = *s &~ *m) != 0) {
145 				sig = ffz(~x) + i*_NSIG_BPW + 1;
146 				break;
147 			}
148 		break;
149 
150 	case 2: if ((x = s[0] &~ m[0]) != 0)
151 			sig = 1;
152 		else if ((x = s[1] &~ m[1]) != 0)
153 			sig = _NSIG_BPW + 1;
154 		else
155 			break;
156 		sig += ffz(~x);
157 		break;
158 
159 	case 1: if ((x = *s &~ *m) != 0)
160 			sig = ffz(~x) + 1;
161 		break;
162 	}
163 
164 	return sig;
165 }
166 
167 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
168 					 int override_rlimit)
169 {
170 	struct sigqueue *q = NULL;
171 	struct user_struct *user;
172 
173 	/*
174 	 * In order to avoid problems with "switch_user()", we want to make
175 	 * sure that the compiler doesn't re-load "t->user"
176 	 */
177 	user = t->user;
178 	barrier();
179 	atomic_inc(&user->sigpending);
180 	if (override_rlimit ||
181 	    atomic_read(&user->sigpending) <=
182 			t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
183 		q = kmem_cache_alloc(sigqueue_cachep, flags);
184 	if (unlikely(q == NULL)) {
185 		atomic_dec(&user->sigpending);
186 	} else {
187 		INIT_LIST_HEAD(&q->list);
188 		q->flags = 0;
189 		q->user = get_uid(user);
190 	}
191 	return(q);
192 }
193 
194 static void __sigqueue_free(struct sigqueue *q)
195 {
196 	if (q->flags & SIGQUEUE_PREALLOC)
197 		return;
198 	atomic_dec(&q->user->sigpending);
199 	free_uid(q->user);
200 	kmem_cache_free(sigqueue_cachep, q);
201 }
202 
203 void flush_sigqueue(struct sigpending *queue)
204 {
205 	struct sigqueue *q;
206 
207 	sigemptyset(&queue->signal);
208 	while (!list_empty(&queue->list)) {
209 		q = list_entry(queue->list.next, struct sigqueue , list);
210 		list_del_init(&q->list);
211 		__sigqueue_free(q);
212 	}
213 }
214 
215 /*
216  * Flush all pending signals for a task.
217  */
218 void flush_signals(struct task_struct *t)
219 {
220 	unsigned long flags;
221 
222 	spin_lock_irqsave(&t->sighand->siglock, flags);
223 	clear_tsk_thread_flag(t,TIF_SIGPENDING);
224 	flush_sigqueue(&t->pending);
225 	flush_sigqueue(&t->signal->shared_pending);
226 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
227 }
228 
229 void ignore_signals(struct task_struct *t)
230 {
231 	int i;
232 
233 	for (i = 0; i < _NSIG; ++i)
234 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
235 
236 	flush_signals(t);
237 }
238 
239 /*
240  * Flush all handlers for a task.
241  */
242 
243 void
244 flush_signal_handlers(struct task_struct *t, int force_default)
245 {
246 	int i;
247 	struct k_sigaction *ka = &t->sighand->action[0];
248 	for (i = _NSIG ; i != 0 ; i--) {
249 		if (force_default || ka->sa.sa_handler != SIG_IGN)
250 			ka->sa.sa_handler = SIG_DFL;
251 		ka->sa.sa_flags = 0;
252 		sigemptyset(&ka->sa.sa_mask);
253 		ka++;
254 	}
255 }
256 
257 int unhandled_signal(struct task_struct *tsk, int sig)
258 {
259 	if (is_init(tsk))
260 		return 1;
261 	if (tsk->ptrace & PT_PTRACED)
262 		return 0;
263 	return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
264 		(tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
265 }
266 
267 
268 /* Notify the system that a driver wants to block all signals for this
269  * process, and wants to be notified if any signals at all were to be
270  * sent/acted upon.  If the notifier routine returns non-zero, then the
271  * signal will be acted upon after all.  If the notifier routine returns 0,
272  * then then signal will be blocked.  Only one block per process is
273  * allowed.  priv is a pointer to private data that the notifier routine
274  * can use to determine if the signal should be blocked or not.  */
275 
276 void
277 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
278 {
279 	unsigned long flags;
280 
281 	spin_lock_irqsave(&current->sighand->siglock, flags);
282 	current->notifier_mask = mask;
283 	current->notifier_data = priv;
284 	current->notifier = notifier;
285 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
286 }
287 
288 /* Notify the system that blocking has ended. */
289 
290 void
291 unblock_all_signals(void)
292 {
293 	unsigned long flags;
294 
295 	spin_lock_irqsave(&current->sighand->siglock, flags);
296 	current->notifier = NULL;
297 	current->notifier_data = NULL;
298 	recalc_sigpending();
299 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
300 }
301 
302 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
303 {
304 	struct sigqueue *q, *first = NULL;
305 	int still_pending = 0;
306 
307 	if (unlikely(!sigismember(&list->signal, sig)))
308 		return 0;
309 
310 	/*
311 	 * Collect the siginfo appropriate to this signal.  Check if
312 	 * there is another siginfo for the same signal.
313 	*/
314 	list_for_each_entry(q, &list->list, list) {
315 		if (q->info.si_signo == sig) {
316 			if (first) {
317 				still_pending = 1;
318 				break;
319 			}
320 			first = q;
321 		}
322 	}
323 	if (first) {
324 		list_del_init(&first->list);
325 		copy_siginfo(info, &first->info);
326 		__sigqueue_free(first);
327 		if (!still_pending)
328 			sigdelset(&list->signal, sig);
329 	} else {
330 
331 		/* Ok, it wasn't in the queue.  This must be
332 		   a fast-pathed signal or we must have been
333 		   out of queue space.  So zero out the info.
334 		 */
335 		sigdelset(&list->signal, sig);
336 		info->si_signo = sig;
337 		info->si_errno = 0;
338 		info->si_code = 0;
339 		info->si_pid = 0;
340 		info->si_uid = 0;
341 	}
342 	return 1;
343 }
344 
345 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
346 			siginfo_t *info)
347 {
348 	int sig = next_signal(pending, mask);
349 
350 	if (sig) {
351 		if (current->notifier) {
352 			if (sigismember(current->notifier_mask, sig)) {
353 				if (!(current->notifier)(current->notifier_data)) {
354 					clear_thread_flag(TIF_SIGPENDING);
355 					return 0;
356 				}
357 			}
358 		}
359 
360 		if (!collect_signal(sig, pending, info))
361 			sig = 0;
362 	}
363 
364 	return sig;
365 }
366 
367 /*
368  * Dequeue a signal and return the element to the caller, which is
369  * expected to free it.
370  *
371  * All callers have to hold the siglock.
372  */
373 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
374 {
375 	int signr = 0;
376 
377 	/* We only dequeue private signals from ourselves, we don't let
378 	 * signalfd steal them
379 	 */
380 	signr = __dequeue_signal(&tsk->pending, mask, info);
381 	if (!signr) {
382 		signr = __dequeue_signal(&tsk->signal->shared_pending,
383 					 mask, info);
384 		/*
385 		 * itimer signal ?
386 		 *
387 		 * itimers are process shared and we restart periodic
388 		 * itimers in the signal delivery path to prevent DoS
389 		 * attacks in the high resolution timer case. This is
390 		 * compliant with the old way of self restarting
391 		 * itimers, as the SIGALRM is a legacy signal and only
392 		 * queued once. Changing the restart behaviour to
393 		 * restart the timer in the signal dequeue path is
394 		 * reducing the timer noise on heavy loaded !highres
395 		 * systems too.
396 		 */
397 		if (unlikely(signr == SIGALRM)) {
398 			struct hrtimer *tmr = &tsk->signal->real_timer;
399 
400 			if (!hrtimer_is_queued(tmr) &&
401 			    tsk->signal->it_real_incr.tv64 != 0) {
402 				hrtimer_forward(tmr, tmr->base->get_time(),
403 						tsk->signal->it_real_incr);
404 				hrtimer_restart(tmr);
405 			}
406 		}
407 	}
408 	recalc_sigpending();
409 	if (signr && unlikely(sig_kernel_stop(signr))) {
410 		/*
411 		 * Set a marker that we have dequeued a stop signal.  Our
412 		 * caller might release the siglock and then the pending
413 		 * stop signal it is about to process is no longer in the
414 		 * pending bitmasks, but must still be cleared by a SIGCONT
415 		 * (and overruled by a SIGKILL).  So those cases clear this
416 		 * shared flag after we've set it.  Note that this flag may
417 		 * remain set after the signal we return is ignored or
418 		 * handled.  That doesn't matter because its only purpose
419 		 * is to alert stop-signal processing code when another
420 		 * processor has come along and cleared the flag.
421 		 */
422 		if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
423 			tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
424 	}
425 	if (signr &&
426 	     ((info->si_code & __SI_MASK) == __SI_TIMER) &&
427 	     info->si_sys_private){
428 		/*
429 		 * Release the siglock to ensure proper locking order
430 		 * of timer locks outside of siglocks.  Note, we leave
431 		 * irqs disabled here, since the posix-timers code is
432 		 * about to disable them again anyway.
433 		 */
434 		spin_unlock(&tsk->sighand->siglock);
435 		do_schedule_next_timer(info);
436 		spin_lock(&tsk->sighand->siglock);
437 	}
438 	return signr;
439 }
440 
441 /*
442  * Tell a process that it has a new active signal..
443  *
444  * NOTE! we rely on the previous spin_lock to
445  * lock interrupts for us! We can only be called with
446  * "siglock" held, and the local interrupt must
447  * have been disabled when that got acquired!
448  *
449  * No need to set need_resched since signal event passing
450  * goes through ->blocked
451  */
452 void signal_wake_up(struct task_struct *t, int resume)
453 {
454 	unsigned int mask;
455 
456 	set_tsk_thread_flag(t, TIF_SIGPENDING);
457 
458 	/*
459 	 * For SIGKILL, we want to wake it up in the stopped/traced case.
460 	 * We don't check t->state here because there is a race with it
461 	 * executing another processor and just now entering stopped state.
462 	 * By using wake_up_state, we ensure the process will wake up and
463 	 * handle its death signal.
464 	 */
465 	mask = TASK_INTERRUPTIBLE;
466 	if (resume)
467 		mask |= TASK_STOPPED | TASK_TRACED;
468 	if (!wake_up_state(t, mask))
469 		kick_process(t);
470 }
471 
472 /*
473  * Remove signals in mask from the pending set and queue.
474  * Returns 1 if any signals were found.
475  *
476  * All callers must be holding the siglock.
477  *
478  * This version takes a sigset mask and looks at all signals,
479  * not just those in the first mask word.
480  */
481 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
482 {
483 	struct sigqueue *q, *n;
484 	sigset_t m;
485 
486 	sigandsets(&m, mask, &s->signal);
487 	if (sigisemptyset(&m))
488 		return 0;
489 
490 	signandsets(&s->signal, &s->signal, mask);
491 	list_for_each_entry_safe(q, n, &s->list, list) {
492 		if (sigismember(mask, q->info.si_signo)) {
493 			list_del_init(&q->list);
494 			__sigqueue_free(q);
495 		}
496 	}
497 	return 1;
498 }
499 /*
500  * Remove signals in mask from the pending set and queue.
501  * Returns 1 if any signals were found.
502  *
503  * All callers must be holding the siglock.
504  */
505 static int rm_from_queue(unsigned long mask, struct sigpending *s)
506 {
507 	struct sigqueue *q, *n;
508 
509 	if (!sigtestsetmask(&s->signal, mask))
510 		return 0;
511 
512 	sigdelsetmask(&s->signal, mask);
513 	list_for_each_entry_safe(q, n, &s->list, list) {
514 		if (q->info.si_signo < SIGRTMIN &&
515 		    (mask & sigmask(q->info.si_signo))) {
516 			list_del_init(&q->list);
517 			__sigqueue_free(q);
518 		}
519 	}
520 	return 1;
521 }
522 
523 /*
524  * Bad permissions for sending the signal
525  */
526 static int check_kill_permission(int sig, struct siginfo *info,
527 				 struct task_struct *t)
528 {
529 	int error = -EINVAL;
530 	if (!valid_signal(sig))
531 		return error;
532 
533 	if (info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) {
534 		error = audit_signal_info(sig, t); /* Let audit system see the signal */
535 		if (error)
536 			return error;
537 		error = -EPERM;
538 		if (((sig != SIGCONT) ||
539 			(process_session(current) != process_session(t)))
540 		    && (current->euid ^ t->suid) && (current->euid ^ t->uid)
541 		    && (current->uid ^ t->suid) && (current->uid ^ t->uid)
542 		    && !capable(CAP_KILL))
543 		return error;
544 	}
545 
546 	return security_task_kill(t, info, sig, 0);
547 }
548 
549 /* forward decl */
550 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
551 
552 /*
553  * Handle magic process-wide effects of stop/continue signals.
554  * Unlike the signal actions, these happen immediately at signal-generation
555  * time regardless of blocking, ignoring, or handling.  This does the
556  * actual continuing for SIGCONT, but not the actual stopping for stop
557  * signals.  The process stop is done as a signal action for SIG_DFL.
558  */
559 static void handle_stop_signal(int sig, struct task_struct *p)
560 {
561 	struct task_struct *t;
562 
563 	if (p->signal->flags & SIGNAL_GROUP_EXIT)
564 		/*
565 		 * The process is in the middle of dying already.
566 		 */
567 		return;
568 
569 	if (sig_kernel_stop(sig)) {
570 		/*
571 		 * This is a stop signal.  Remove SIGCONT from all queues.
572 		 */
573 		rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
574 		t = p;
575 		do {
576 			rm_from_queue(sigmask(SIGCONT), &t->pending);
577 			t = next_thread(t);
578 		} while (t != p);
579 	} else if (sig == SIGCONT) {
580 		/*
581 		 * Remove all stop signals from all queues,
582 		 * and wake all threads.
583 		 */
584 		if (unlikely(p->signal->group_stop_count > 0)) {
585 			/*
586 			 * There was a group stop in progress.  We'll
587 			 * pretend it finished before we got here.  We are
588 			 * obliged to report it to the parent: if the
589 			 * SIGSTOP happened "after" this SIGCONT, then it
590 			 * would have cleared this pending SIGCONT.  If it
591 			 * happened "before" this SIGCONT, then the parent
592 			 * got the SIGCHLD about the stop finishing before
593 			 * the continue happened.  We do the notification
594 			 * now, and it's as if the stop had finished and
595 			 * the SIGCHLD was pending on entry to this kill.
596 			 */
597 			p->signal->group_stop_count = 0;
598 			p->signal->flags = SIGNAL_STOP_CONTINUED;
599 			spin_unlock(&p->sighand->siglock);
600 			do_notify_parent_cldstop(p, CLD_STOPPED);
601 			spin_lock(&p->sighand->siglock);
602 		}
603 		rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
604 		t = p;
605 		do {
606 			unsigned int state;
607 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
608 
609 			/*
610 			 * If there is a handler for SIGCONT, we must make
611 			 * sure that no thread returns to user mode before
612 			 * we post the signal, in case it was the only
613 			 * thread eligible to run the signal handler--then
614 			 * it must not do anything between resuming and
615 			 * running the handler.  With the TIF_SIGPENDING
616 			 * flag set, the thread will pause and acquire the
617 			 * siglock that we hold now and until we've queued
618 			 * the pending signal.
619 			 *
620 			 * Wake up the stopped thread _after_ setting
621 			 * TIF_SIGPENDING
622 			 */
623 			state = TASK_STOPPED;
624 			if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
625 				set_tsk_thread_flag(t, TIF_SIGPENDING);
626 				state |= TASK_INTERRUPTIBLE;
627 			}
628 			wake_up_state(t, state);
629 
630 			t = next_thread(t);
631 		} while (t != p);
632 
633 		if (p->signal->flags & SIGNAL_STOP_STOPPED) {
634 			/*
635 			 * We were in fact stopped, and are now continued.
636 			 * Notify the parent with CLD_CONTINUED.
637 			 */
638 			p->signal->flags = SIGNAL_STOP_CONTINUED;
639 			p->signal->group_exit_code = 0;
640 			spin_unlock(&p->sighand->siglock);
641 			do_notify_parent_cldstop(p, CLD_CONTINUED);
642 			spin_lock(&p->sighand->siglock);
643 		} else {
644 			/*
645 			 * We are not stopped, but there could be a stop
646 			 * signal in the middle of being processed after
647 			 * being removed from the queue.  Clear that too.
648 			 */
649 			p->signal->flags = 0;
650 		}
651 	} else if (sig == SIGKILL) {
652 		/*
653 		 * Make sure that any pending stop signal already dequeued
654 		 * is undone by the wakeup for SIGKILL.
655 		 */
656 		p->signal->flags = 0;
657 	}
658 }
659 
660 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
661 			struct sigpending *signals)
662 {
663 	struct sigqueue * q = NULL;
664 	int ret = 0;
665 
666 	/*
667 	 * Deliver the signal to listening signalfds. This must be called
668 	 * with the sighand lock held.
669 	 */
670 	signalfd_notify(t, sig);
671 
672 	/*
673 	 * fast-pathed signals for kernel-internal things like SIGSTOP
674 	 * or SIGKILL.
675 	 */
676 	if (info == SEND_SIG_FORCED)
677 		goto out_set;
678 
679 	/* Real-time signals must be queued if sent by sigqueue, or
680 	   some other real-time mechanism.  It is implementation
681 	   defined whether kill() does so.  We attempt to do so, on
682 	   the principle of least surprise, but since kill is not
683 	   allowed to fail with EAGAIN when low on memory we just
684 	   make sure at least one signal gets delivered and don't
685 	   pass on the info struct.  */
686 
687 	q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
688 					     (is_si_special(info) ||
689 					      info->si_code >= 0)));
690 	if (q) {
691 		list_add_tail(&q->list, &signals->list);
692 		switch ((unsigned long) info) {
693 		case (unsigned long) SEND_SIG_NOINFO:
694 			q->info.si_signo = sig;
695 			q->info.si_errno = 0;
696 			q->info.si_code = SI_USER;
697 			q->info.si_pid = current->pid;
698 			q->info.si_uid = current->uid;
699 			break;
700 		case (unsigned long) SEND_SIG_PRIV:
701 			q->info.si_signo = sig;
702 			q->info.si_errno = 0;
703 			q->info.si_code = SI_KERNEL;
704 			q->info.si_pid = 0;
705 			q->info.si_uid = 0;
706 			break;
707 		default:
708 			copy_siginfo(&q->info, info);
709 			break;
710 		}
711 	} else if (!is_si_special(info)) {
712 		if (sig >= SIGRTMIN && info->si_code != SI_USER)
713 		/*
714 		 * Queue overflow, abort.  We may abort if the signal was rt
715 		 * and sent by user using something other than kill().
716 		 */
717 			return -EAGAIN;
718 	}
719 
720 out_set:
721 	sigaddset(&signals->signal, sig);
722 	return ret;
723 }
724 
725 #define LEGACY_QUEUE(sigptr, sig) \
726 	(((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
727 
728 int print_fatal_signals;
729 
730 static void print_fatal_signal(struct pt_regs *regs, int signr)
731 {
732 	printk("%s/%d: potentially unexpected fatal signal %d.\n",
733 		current->comm, current->pid, signr);
734 
735 #ifdef __i386__
736 	printk("code at %08lx: ", regs->eip);
737 	{
738 		int i;
739 		for (i = 0; i < 16; i++) {
740 			unsigned char insn;
741 
742 			__get_user(insn, (unsigned char *)(regs->eip + i));
743 			printk("%02x ", insn);
744 		}
745 	}
746 #endif
747 	printk("\n");
748 	show_regs(regs);
749 }
750 
751 static int __init setup_print_fatal_signals(char *str)
752 {
753 	get_option (&str, &print_fatal_signals);
754 
755 	return 1;
756 }
757 
758 __setup("print-fatal-signals=", setup_print_fatal_signals);
759 
760 static int
761 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
762 {
763 	int ret = 0;
764 
765 	BUG_ON(!irqs_disabled());
766 	assert_spin_locked(&t->sighand->siglock);
767 
768 	/* Short-circuit ignored signals.  */
769 	if (sig_ignored(t, sig))
770 		goto out;
771 
772 	/* Support queueing exactly one non-rt signal, so that we
773 	   can get more detailed information about the cause of
774 	   the signal. */
775 	if (LEGACY_QUEUE(&t->pending, sig))
776 		goto out;
777 
778 	ret = send_signal(sig, info, t, &t->pending);
779 	if (!ret && !sigismember(&t->blocked, sig))
780 		signal_wake_up(t, sig == SIGKILL);
781 out:
782 	return ret;
783 }
784 
785 /*
786  * Force a signal that the process can't ignore: if necessary
787  * we unblock the signal and change any SIG_IGN to SIG_DFL.
788  *
789  * Note: If we unblock the signal, we always reset it to SIG_DFL,
790  * since we do not want to have a signal handler that was blocked
791  * be invoked when user space had explicitly blocked it.
792  *
793  * We don't want to have recursive SIGSEGV's etc, for example.
794  */
795 int
796 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
797 {
798 	unsigned long int flags;
799 	int ret, blocked, ignored;
800 	struct k_sigaction *action;
801 
802 	spin_lock_irqsave(&t->sighand->siglock, flags);
803 	action = &t->sighand->action[sig-1];
804 	ignored = action->sa.sa_handler == SIG_IGN;
805 	blocked = sigismember(&t->blocked, sig);
806 	if (blocked || ignored) {
807 		action->sa.sa_handler = SIG_DFL;
808 		if (blocked) {
809 			sigdelset(&t->blocked, sig);
810 			recalc_sigpending_and_wake(t);
811 		}
812 	}
813 	ret = specific_send_sig_info(sig, info, t);
814 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
815 
816 	return ret;
817 }
818 
819 void
820 force_sig_specific(int sig, struct task_struct *t)
821 {
822 	force_sig_info(sig, SEND_SIG_FORCED, t);
823 }
824 
825 /*
826  * Test if P wants to take SIG.  After we've checked all threads with this,
827  * it's equivalent to finding no threads not blocking SIG.  Any threads not
828  * blocking SIG were ruled out because they are not running and already
829  * have pending signals.  Such threads will dequeue from the shared queue
830  * as soon as they're available, so putting the signal on the shared queue
831  * will be equivalent to sending it to one such thread.
832  */
833 static inline int wants_signal(int sig, struct task_struct *p)
834 {
835 	if (sigismember(&p->blocked, sig))
836 		return 0;
837 	if (p->flags & PF_EXITING)
838 		return 0;
839 	if (sig == SIGKILL)
840 		return 1;
841 	if (p->state & (TASK_STOPPED | TASK_TRACED))
842 		return 0;
843 	return task_curr(p) || !signal_pending(p);
844 }
845 
846 static void
847 __group_complete_signal(int sig, struct task_struct *p)
848 {
849 	struct task_struct *t;
850 
851 	/*
852 	 * Now find a thread we can wake up to take the signal off the queue.
853 	 *
854 	 * If the main thread wants the signal, it gets first crack.
855 	 * Probably the least surprising to the average bear.
856 	 */
857 	if (wants_signal(sig, p))
858 		t = p;
859 	else if (thread_group_empty(p))
860 		/*
861 		 * There is just one thread and it does not need to be woken.
862 		 * It will dequeue unblocked signals before it runs again.
863 		 */
864 		return;
865 	else {
866 		/*
867 		 * Otherwise try to find a suitable thread.
868 		 */
869 		t = p->signal->curr_target;
870 		if (t == NULL)
871 			/* restart balancing at this thread */
872 			t = p->signal->curr_target = p;
873 
874 		while (!wants_signal(sig, t)) {
875 			t = next_thread(t);
876 			if (t == p->signal->curr_target)
877 				/*
878 				 * No thread needs to be woken.
879 				 * Any eligible threads will see
880 				 * the signal in the queue soon.
881 				 */
882 				return;
883 		}
884 		p->signal->curr_target = t;
885 	}
886 
887 	/*
888 	 * Found a killable thread.  If the signal will be fatal,
889 	 * then start taking the whole group down immediately.
890 	 */
891 	if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
892 	    !sigismember(&t->real_blocked, sig) &&
893 	    (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
894 		/*
895 		 * This signal will be fatal to the whole group.
896 		 */
897 		if (!sig_kernel_coredump(sig)) {
898 			/*
899 			 * Start a group exit and wake everybody up.
900 			 * This way we don't have other threads
901 			 * running and doing things after a slower
902 			 * thread has the fatal signal pending.
903 			 */
904 			p->signal->flags = SIGNAL_GROUP_EXIT;
905 			p->signal->group_exit_code = sig;
906 			p->signal->group_stop_count = 0;
907 			t = p;
908 			do {
909 				sigaddset(&t->pending.signal, SIGKILL);
910 				signal_wake_up(t, 1);
911 			} while_each_thread(p, t);
912 			return;
913 		}
914 
915 		/*
916 		 * There will be a core dump.  We make all threads other
917 		 * than the chosen one go into a group stop so that nothing
918 		 * happens until it gets scheduled, takes the signal off
919 		 * the shared queue, and does the core dump.  This is a
920 		 * little more complicated than strictly necessary, but it
921 		 * keeps the signal state that winds up in the core dump
922 		 * unchanged from the death state, e.g. which thread had
923 		 * the core-dump signal unblocked.
924 		 */
925 		rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
926 		rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
927 		p->signal->group_stop_count = 0;
928 		p->signal->group_exit_task = t;
929 		p = t;
930 		do {
931 			p->signal->group_stop_count++;
932 			signal_wake_up(t, t == p);
933 		} while_each_thread(p, t);
934 		return;
935 	}
936 
937 	/*
938 	 * The signal is already in the shared-pending queue.
939 	 * Tell the chosen thread to wake up and dequeue it.
940 	 */
941 	signal_wake_up(t, sig == SIGKILL);
942 	return;
943 }
944 
945 int
946 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
947 {
948 	int ret = 0;
949 
950 	assert_spin_locked(&p->sighand->siglock);
951 	handle_stop_signal(sig, p);
952 
953 	/* Short-circuit ignored signals.  */
954 	if (sig_ignored(p, sig))
955 		return ret;
956 
957 	if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
958 		/* This is a non-RT signal and we already have one queued.  */
959 		return ret;
960 
961 	/*
962 	 * Put this signal on the shared-pending queue, or fail with EAGAIN.
963 	 * We always use the shared queue for process-wide signals,
964 	 * to avoid several races.
965 	 */
966 	ret = send_signal(sig, info, p, &p->signal->shared_pending);
967 	if (unlikely(ret))
968 		return ret;
969 
970 	__group_complete_signal(sig, p);
971 	return 0;
972 }
973 
974 /*
975  * Nuke all other threads in the group.
976  */
977 void zap_other_threads(struct task_struct *p)
978 {
979 	struct task_struct *t;
980 
981 	p->signal->flags = SIGNAL_GROUP_EXIT;
982 	p->signal->group_stop_count = 0;
983 
984 	for (t = next_thread(p); t != p; t = next_thread(t)) {
985 		/*
986 		 * Don't bother with already dead threads
987 		 */
988 		if (t->exit_state)
989 			continue;
990 
991 		/* SIGKILL will be handled before any pending SIGSTOP */
992 		sigaddset(&t->pending.signal, SIGKILL);
993 		signal_wake_up(t, 1);
994 	}
995 }
996 
997 /*
998  * Must be called under rcu_read_lock() or with tasklist_lock read-held.
999  */
1000 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1001 {
1002 	struct sighand_struct *sighand;
1003 
1004 	for (;;) {
1005 		sighand = rcu_dereference(tsk->sighand);
1006 		if (unlikely(sighand == NULL))
1007 			break;
1008 
1009 		spin_lock_irqsave(&sighand->siglock, *flags);
1010 		if (likely(sighand == tsk->sighand))
1011 			break;
1012 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1013 	}
1014 
1015 	return sighand;
1016 }
1017 
1018 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1019 {
1020 	unsigned long flags;
1021 	int ret;
1022 
1023 	ret = check_kill_permission(sig, info, p);
1024 
1025 	if (!ret && sig) {
1026 		ret = -ESRCH;
1027 		if (lock_task_sighand(p, &flags)) {
1028 			ret = __group_send_sig_info(sig, info, p);
1029 			unlock_task_sighand(p, &flags);
1030 		}
1031 	}
1032 
1033 	return ret;
1034 }
1035 
1036 /*
1037  * kill_pgrp_info() sends a signal to a process group: this is what the tty
1038  * control characters do (^C, ^Z etc)
1039  */
1040 
1041 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1042 {
1043 	struct task_struct *p = NULL;
1044 	int retval, success;
1045 
1046 	success = 0;
1047 	retval = -ESRCH;
1048 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1049 		int err = group_send_sig_info(sig, info, p);
1050 		success |= !err;
1051 		retval = err;
1052 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1053 	return success ? 0 : retval;
1054 }
1055 
1056 int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1057 {
1058 	int retval;
1059 
1060 	read_lock(&tasklist_lock);
1061 	retval = __kill_pgrp_info(sig, info, pgrp);
1062 	read_unlock(&tasklist_lock);
1063 
1064 	return retval;
1065 }
1066 
1067 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1068 {
1069 	int error;
1070 	struct task_struct *p;
1071 
1072 	rcu_read_lock();
1073 	if (unlikely(sig_needs_tasklist(sig)))
1074 		read_lock(&tasklist_lock);
1075 
1076 	p = pid_task(pid, PIDTYPE_PID);
1077 	error = -ESRCH;
1078 	if (p)
1079 		error = group_send_sig_info(sig, info, p);
1080 
1081 	if (unlikely(sig_needs_tasklist(sig)))
1082 		read_unlock(&tasklist_lock);
1083 	rcu_read_unlock();
1084 	return error;
1085 }
1086 
1087 int
1088 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1089 {
1090 	int error;
1091 	rcu_read_lock();
1092 	error = kill_pid_info(sig, info, find_pid(pid));
1093 	rcu_read_unlock();
1094 	return error;
1095 }
1096 
1097 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1098 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1099 		      uid_t uid, uid_t euid, u32 secid)
1100 {
1101 	int ret = -EINVAL;
1102 	struct task_struct *p;
1103 
1104 	if (!valid_signal(sig))
1105 		return ret;
1106 
1107 	read_lock(&tasklist_lock);
1108 	p = pid_task(pid, PIDTYPE_PID);
1109 	if (!p) {
1110 		ret = -ESRCH;
1111 		goto out_unlock;
1112 	}
1113 	if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1114 	    && (euid != p->suid) && (euid != p->uid)
1115 	    && (uid != p->suid) && (uid != p->uid)) {
1116 		ret = -EPERM;
1117 		goto out_unlock;
1118 	}
1119 	ret = security_task_kill(p, info, sig, secid);
1120 	if (ret)
1121 		goto out_unlock;
1122 	if (sig && p->sighand) {
1123 		unsigned long flags;
1124 		spin_lock_irqsave(&p->sighand->siglock, flags);
1125 		ret = __group_send_sig_info(sig, info, p);
1126 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1127 	}
1128 out_unlock:
1129 	read_unlock(&tasklist_lock);
1130 	return ret;
1131 }
1132 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1133 
1134 /*
1135  * kill_something_info() interprets pid in interesting ways just like kill(2).
1136  *
1137  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1138  * is probably wrong.  Should make it like BSD or SYSV.
1139  */
1140 
1141 static int kill_something_info(int sig, struct siginfo *info, int pid)
1142 {
1143 	int ret;
1144 	rcu_read_lock();
1145 	if (!pid) {
1146 		ret = kill_pgrp_info(sig, info, task_pgrp(current));
1147 	} else if (pid == -1) {
1148 		int retval = 0, count = 0;
1149 		struct task_struct * p;
1150 
1151 		read_lock(&tasklist_lock);
1152 		for_each_process(p) {
1153 			if (p->pid > 1 && p->tgid != current->tgid) {
1154 				int err = group_send_sig_info(sig, info, p);
1155 				++count;
1156 				if (err != -EPERM)
1157 					retval = err;
1158 			}
1159 		}
1160 		read_unlock(&tasklist_lock);
1161 		ret = count ? retval : -ESRCH;
1162 	} else if (pid < 0) {
1163 		ret = kill_pgrp_info(sig, info, find_pid(-pid));
1164 	} else {
1165 		ret = kill_pid_info(sig, info, find_pid(pid));
1166 	}
1167 	rcu_read_unlock();
1168 	return ret;
1169 }
1170 
1171 /*
1172  * These are for backward compatibility with the rest of the kernel source.
1173  */
1174 
1175 /*
1176  * These two are the most common entry points.  They send a signal
1177  * just to the specific thread.
1178  */
1179 int
1180 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1181 {
1182 	int ret;
1183 	unsigned long flags;
1184 
1185 	/*
1186 	 * Make sure legacy kernel users don't send in bad values
1187 	 * (normal paths check this in check_kill_permission).
1188 	 */
1189 	if (!valid_signal(sig))
1190 		return -EINVAL;
1191 
1192 	/*
1193 	 * We need the tasklist lock even for the specific
1194 	 * thread case (when we don't need to follow the group
1195 	 * lists) in order to avoid races with "p->sighand"
1196 	 * going away or changing from under us.
1197 	 */
1198 	read_lock(&tasklist_lock);
1199 	spin_lock_irqsave(&p->sighand->siglock, flags);
1200 	ret = specific_send_sig_info(sig, info, p);
1201 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
1202 	read_unlock(&tasklist_lock);
1203 	return ret;
1204 }
1205 
1206 #define __si_special(priv) \
1207 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1208 
1209 int
1210 send_sig(int sig, struct task_struct *p, int priv)
1211 {
1212 	return send_sig_info(sig, __si_special(priv), p);
1213 }
1214 
1215 /*
1216  * This is the entry point for "process-wide" signals.
1217  * They will go to an appropriate thread in the thread group.
1218  */
1219 int
1220 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1221 {
1222 	int ret;
1223 	read_lock(&tasklist_lock);
1224 	ret = group_send_sig_info(sig, info, p);
1225 	read_unlock(&tasklist_lock);
1226 	return ret;
1227 }
1228 
1229 void
1230 force_sig(int sig, struct task_struct *p)
1231 {
1232 	force_sig_info(sig, SEND_SIG_PRIV, p);
1233 }
1234 
1235 /*
1236  * When things go south during signal handling, we
1237  * will force a SIGSEGV. And if the signal that caused
1238  * the problem was already a SIGSEGV, we'll want to
1239  * make sure we don't even try to deliver the signal..
1240  */
1241 int
1242 force_sigsegv(int sig, struct task_struct *p)
1243 {
1244 	if (sig == SIGSEGV) {
1245 		unsigned long flags;
1246 		spin_lock_irqsave(&p->sighand->siglock, flags);
1247 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1248 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1249 	}
1250 	force_sig(SIGSEGV, p);
1251 	return 0;
1252 }
1253 
1254 int kill_pgrp(struct pid *pid, int sig, int priv)
1255 {
1256 	return kill_pgrp_info(sig, __si_special(priv), pid);
1257 }
1258 EXPORT_SYMBOL(kill_pgrp);
1259 
1260 int kill_pid(struct pid *pid, int sig, int priv)
1261 {
1262 	return kill_pid_info(sig, __si_special(priv), pid);
1263 }
1264 EXPORT_SYMBOL(kill_pid);
1265 
1266 int
1267 kill_proc(pid_t pid, int sig, int priv)
1268 {
1269 	return kill_proc_info(sig, __si_special(priv), pid);
1270 }
1271 
1272 /*
1273  * These functions support sending signals using preallocated sigqueue
1274  * structures.  This is needed "because realtime applications cannot
1275  * afford to lose notifications of asynchronous events, like timer
1276  * expirations or I/O completions".  In the case of Posix Timers
1277  * we allocate the sigqueue structure from the timer_create.  If this
1278  * allocation fails we are able to report the failure to the application
1279  * with an EAGAIN error.
1280  */
1281 
1282 struct sigqueue *sigqueue_alloc(void)
1283 {
1284 	struct sigqueue *q;
1285 
1286 	if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1287 		q->flags |= SIGQUEUE_PREALLOC;
1288 	return(q);
1289 }
1290 
1291 void sigqueue_free(struct sigqueue *q)
1292 {
1293 	unsigned long flags;
1294 	spinlock_t *lock = &current->sighand->siglock;
1295 
1296 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1297 	/*
1298 	 * If the signal is still pending remove it from the
1299 	 * pending queue. We must hold ->siglock while testing
1300 	 * q->list to serialize with collect_signal().
1301 	 */
1302 	spin_lock_irqsave(lock, flags);
1303 	if (!list_empty(&q->list))
1304 		list_del_init(&q->list);
1305 	spin_unlock_irqrestore(lock, flags);
1306 
1307 	q->flags &= ~SIGQUEUE_PREALLOC;
1308 	__sigqueue_free(q);
1309 }
1310 
1311 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1312 {
1313 	unsigned long flags;
1314 	int ret = 0;
1315 
1316 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1317 
1318 	/*
1319 	 * The rcu based delayed sighand destroy makes it possible to
1320 	 * run this without tasklist lock held. The task struct itself
1321 	 * cannot go away as create_timer did get_task_struct().
1322 	 *
1323 	 * We return -1, when the task is marked exiting, so
1324 	 * posix_timer_event can redirect it to the group leader
1325 	 */
1326 	rcu_read_lock();
1327 
1328 	if (!likely(lock_task_sighand(p, &flags))) {
1329 		ret = -1;
1330 		goto out_err;
1331 	}
1332 
1333 	if (unlikely(!list_empty(&q->list))) {
1334 		/*
1335 		 * If an SI_TIMER entry is already queue just increment
1336 		 * the overrun count.
1337 		 */
1338 		BUG_ON(q->info.si_code != SI_TIMER);
1339 		q->info.si_overrun++;
1340 		goto out;
1341 	}
1342 	/* Short-circuit ignored signals.  */
1343 	if (sig_ignored(p, sig)) {
1344 		ret = 1;
1345 		goto out;
1346 	}
1347 	/*
1348 	 * Deliver the signal to listening signalfds. This must be called
1349 	 * with the sighand lock held.
1350 	 */
1351 	signalfd_notify(p, sig);
1352 
1353 	list_add_tail(&q->list, &p->pending.list);
1354 	sigaddset(&p->pending.signal, sig);
1355 	if (!sigismember(&p->blocked, sig))
1356 		signal_wake_up(p, sig == SIGKILL);
1357 
1358 out:
1359 	unlock_task_sighand(p, &flags);
1360 out_err:
1361 	rcu_read_unlock();
1362 
1363 	return ret;
1364 }
1365 
1366 int
1367 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1368 {
1369 	unsigned long flags;
1370 	int ret = 0;
1371 
1372 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1373 
1374 	read_lock(&tasklist_lock);
1375 	/* Since it_lock is held, p->sighand cannot be NULL. */
1376 	spin_lock_irqsave(&p->sighand->siglock, flags);
1377 	handle_stop_signal(sig, p);
1378 
1379 	/* Short-circuit ignored signals.  */
1380 	if (sig_ignored(p, sig)) {
1381 		ret = 1;
1382 		goto out;
1383 	}
1384 
1385 	if (unlikely(!list_empty(&q->list))) {
1386 		/*
1387 		 * If an SI_TIMER entry is already queue just increment
1388 		 * the overrun count.  Other uses should not try to
1389 		 * send the signal multiple times.
1390 		 */
1391 		BUG_ON(q->info.si_code != SI_TIMER);
1392 		q->info.si_overrun++;
1393 		goto out;
1394 	}
1395 	/*
1396 	 * Deliver the signal to listening signalfds. This must be called
1397 	 * with the sighand lock held.
1398 	 */
1399 	signalfd_notify(p, sig);
1400 
1401 	/*
1402 	 * Put this signal on the shared-pending queue.
1403 	 * We always use the shared queue for process-wide signals,
1404 	 * to avoid several races.
1405 	 */
1406 	list_add_tail(&q->list, &p->signal->shared_pending.list);
1407 	sigaddset(&p->signal->shared_pending.signal, sig);
1408 
1409 	__group_complete_signal(sig, p);
1410 out:
1411 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
1412 	read_unlock(&tasklist_lock);
1413 	return ret;
1414 }
1415 
1416 /*
1417  * Wake up any threads in the parent blocked in wait* syscalls.
1418  */
1419 static inline void __wake_up_parent(struct task_struct *p,
1420 				    struct task_struct *parent)
1421 {
1422 	wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1423 }
1424 
1425 /*
1426  * Let a parent know about the death of a child.
1427  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1428  */
1429 
1430 void do_notify_parent(struct task_struct *tsk, int sig)
1431 {
1432 	struct siginfo info;
1433 	unsigned long flags;
1434 	struct sighand_struct *psig;
1435 
1436 	BUG_ON(sig == -1);
1437 
1438  	/* do_notify_parent_cldstop should have been called instead.  */
1439  	BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1440 
1441 	BUG_ON(!tsk->ptrace &&
1442 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1443 
1444 	info.si_signo = sig;
1445 	info.si_errno = 0;
1446 	info.si_pid = tsk->pid;
1447 	info.si_uid = tsk->uid;
1448 
1449 	/* FIXME: find out whether or not this is supposed to be c*time. */
1450 	info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1451 						       tsk->signal->utime));
1452 	info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1453 						       tsk->signal->stime));
1454 
1455 	info.si_status = tsk->exit_code & 0x7f;
1456 	if (tsk->exit_code & 0x80)
1457 		info.si_code = CLD_DUMPED;
1458 	else if (tsk->exit_code & 0x7f)
1459 		info.si_code = CLD_KILLED;
1460 	else {
1461 		info.si_code = CLD_EXITED;
1462 		info.si_status = tsk->exit_code >> 8;
1463 	}
1464 
1465 	psig = tsk->parent->sighand;
1466 	spin_lock_irqsave(&psig->siglock, flags);
1467 	if (!tsk->ptrace && sig == SIGCHLD &&
1468 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1469 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1470 		/*
1471 		 * We are exiting and our parent doesn't care.  POSIX.1
1472 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1473 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1474 		 * automatically and not left for our parent's wait4 call.
1475 		 * Rather than having the parent do it as a magic kind of
1476 		 * signal handler, we just set this to tell do_exit that we
1477 		 * can be cleaned up without becoming a zombie.  Note that
1478 		 * we still call __wake_up_parent in this case, because a
1479 		 * blocked sys_wait4 might now return -ECHILD.
1480 		 *
1481 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1482 		 * is implementation-defined: we do (if you don't want
1483 		 * it, just use SIG_IGN instead).
1484 		 */
1485 		tsk->exit_signal = -1;
1486 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1487 			sig = 0;
1488 	}
1489 	if (valid_signal(sig) && sig > 0)
1490 		__group_send_sig_info(sig, &info, tsk->parent);
1491 	__wake_up_parent(tsk, tsk->parent);
1492 	spin_unlock_irqrestore(&psig->siglock, flags);
1493 }
1494 
1495 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1496 {
1497 	struct siginfo info;
1498 	unsigned long flags;
1499 	struct task_struct *parent;
1500 	struct sighand_struct *sighand;
1501 
1502 	if (tsk->ptrace & PT_PTRACED)
1503 		parent = tsk->parent;
1504 	else {
1505 		tsk = tsk->group_leader;
1506 		parent = tsk->real_parent;
1507 	}
1508 
1509 	info.si_signo = SIGCHLD;
1510 	info.si_errno = 0;
1511 	info.si_pid = tsk->pid;
1512 	info.si_uid = tsk->uid;
1513 
1514 	/* FIXME: find out whether or not this is supposed to be c*time. */
1515 	info.si_utime = cputime_to_jiffies(tsk->utime);
1516 	info.si_stime = cputime_to_jiffies(tsk->stime);
1517 
1518  	info.si_code = why;
1519  	switch (why) {
1520  	case CLD_CONTINUED:
1521  		info.si_status = SIGCONT;
1522  		break;
1523  	case CLD_STOPPED:
1524  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1525  		break;
1526  	case CLD_TRAPPED:
1527  		info.si_status = tsk->exit_code & 0x7f;
1528  		break;
1529  	default:
1530  		BUG();
1531  	}
1532 
1533 	sighand = parent->sighand;
1534 	spin_lock_irqsave(&sighand->siglock, flags);
1535 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1536 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1537 		__group_send_sig_info(SIGCHLD, &info, parent);
1538 	/*
1539 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1540 	 */
1541 	__wake_up_parent(tsk, parent);
1542 	spin_unlock_irqrestore(&sighand->siglock, flags);
1543 }
1544 
1545 static inline int may_ptrace_stop(void)
1546 {
1547 	if (!likely(current->ptrace & PT_PTRACED))
1548 		return 0;
1549 
1550 	if (unlikely(current->parent == current->real_parent &&
1551 		    (current->ptrace & PT_ATTACHED)))
1552 		return 0;
1553 
1554 	/*
1555 	 * Are we in the middle of do_coredump?
1556 	 * If so and our tracer is also part of the coredump stopping
1557 	 * is a deadlock situation, and pointless because our tracer
1558 	 * is dead so don't allow us to stop.
1559 	 * If SIGKILL was already sent before the caller unlocked
1560 	 * ->siglock we must see ->core_waiters != 0. Otherwise it
1561 	 * is safe to enter schedule().
1562 	 */
1563 	if (unlikely(current->mm->core_waiters) &&
1564 	    unlikely(current->mm == current->parent->mm))
1565 		return 0;
1566 
1567 	return 1;
1568 }
1569 
1570 /*
1571  * This must be called with current->sighand->siglock held.
1572  *
1573  * This should be the path for all ptrace stops.
1574  * We always set current->last_siginfo while stopped here.
1575  * That makes it a way to test a stopped process for
1576  * being ptrace-stopped vs being job-control-stopped.
1577  *
1578  * If we actually decide not to stop at all because the tracer is gone,
1579  * we leave nostop_code in current->exit_code.
1580  */
1581 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1582 {
1583 	/*
1584 	 * If there is a group stop in progress,
1585 	 * we must participate in the bookkeeping.
1586 	 */
1587 	if (current->signal->group_stop_count > 0)
1588 		--current->signal->group_stop_count;
1589 
1590 	current->last_siginfo = info;
1591 	current->exit_code = exit_code;
1592 
1593 	/* Let the debugger run.  */
1594 	set_current_state(TASK_TRACED);
1595 	spin_unlock_irq(&current->sighand->siglock);
1596 	try_to_freeze();
1597 	read_lock(&tasklist_lock);
1598 	if (may_ptrace_stop()) {
1599 		do_notify_parent_cldstop(current, CLD_TRAPPED);
1600 		read_unlock(&tasklist_lock);
1601 		schedule();
1602 	} else {
1603 		/*
1604 		 * By the time we got the lock, our tracer went away.
1605 		 * Don't stop here.
1606 		 */
1607 		read_unlock(&tasklist_lock);
1608 		set_current_state(TASK_RUNNING);
1609 		current->exit_code = nostop_code;
1610 	}
1611 
1612 	/*
1613 	 * We are back.  Now reacquire the siglock before touching
1614 	 * last_siginfo, so that we are sure to have synchronized with
1615 	 * any signal-sending on another CPU that wants to examine it.
1616 	 */
1617 	spin_lock_irq(&current->sighand->siglock);
1618 	current->last_siginfo = NULL;
1619 
1620 	/*
1621 	 * Queued signals ignored us while we were stopped for tracing.
1622 	 * So check for any that we should take before resuming user mode.
1623 	 * This sets TIF_SIGPENDING, but never clears it.
1624 	 */
1625 	recalc_sigpending_tsk(current);
1626 }
1627 
1628 void ptrace_notify(int exit_code)
1629 {
1630 	siginfo_t info;
1631 
1632 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1633 
1634 	memset(&info, 0, sizeof info);
1635 	info.si_signo = SIGTRAP;
1636 	info.si_code = exit_code;
1637 	info.si_pid = current->pid;
1638 	info.si_uid = current->uid;
1639 
1640 	/* Let the debugger run.  */
1641 	spin_lock_irq(&current->sighand->siglock);
1642 	ptrace_stop(exit_code, 0, &info);
1643 	spin_unlock_irq(&current->sighand->siglock);
1644 }
1645 
1646 static void
1647 finish_stop(int stop_count)
1648 {
1649 	/*
1650 	 * If there are no other threads in the group, or if there is
1651 	 * a group stop in progress and we are the last to stop,
1652 	 * report to the parent.  When ptraced, every thread reports itself.
1653 	 */
1654 	if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1655 		read_lock(&tasklist_lock);
1656 		do_notify_parent_cldstop(current, CLD_STOPPED);
1657 		read_unlock(&tasklist_lock);
1658 	}
1659 
1660 	do {
1661 		schedule();
1662 	} while (try_to_freeze());
1663 	/*
1664 	 * Now we don't run again until continued.
1665 	 */
1666 	current->exit_code = 0;
1667 }
1668 
1669 /*
1670  * This performs the stopping for SIGSTOP and other stop signals.
1671  * We have to stop all threads in the thread group.
1672  * Returns nonzero if we've actually stopped and released the siglock.
1673  * Returns zero if we didn't stop and still hold the siglock.
1674  */
1675 static int do_signal_stop(int signr)
1676 {
1677 	struct signal_struct *sig = current->signal;
1678 	int stop_count;
1679 
1680 	if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1681 		return 0;
1682 
1683 	if (sig->group_stop_count > 0) {
1684 		/*
1685 		 * There is a group stop in progress.  We don't need to
1686 		 * start another one.
1687 		 */
1688 		stop_count = --sig->group_stop_count;
1689 	} else {
1690 		/*
1691 		 * There is no group stop already in progress.
1692 		 * We must initiate one now.
1693 		 */
1694 		struct task_struct *t;
1695 
1696 		sig->group_exit_code = signr;
1697 
1698 		stop_count = 0;
1699 		for (t = next_thread(current); t != current; t = next_thread(t))
1700 			/*
1701 			 * Setting state to TASK_STOPPED for a group
1702 			 * stop is always done with the siglock held,
1703 			 * so this check has no races.
1704 			 */
1705 			if (!t->exit_state &&
1706 			    !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1707 				stop_count++;
1708 				signal_wake_up(t, 0);
1709 			}
1710 		sig->group_stop_count = stop_count;
1711 	}
1712 
1713 	if (stop_count == 0)
1714 		sig->flags = SIGNAL_STOP_STOPPED;
1715 	current->exit_code = sig->group_exit_code;
1716 	__set_current_state(TASK_STOPPED);
1717 
1718 	spin_unlock_irq(&current->sighand->siglock);
1719 	finish_stop(stop_count);
1720 	return 1;
1721 }
1722 
1723 /*
1724  * Do appropriate magic when group_stop_count > 0.
1725  * We return nonzero if we stopped, after releasing the siglock.
1726  * We return zero if we still hold the siglock and should look
1727  * for another signal without checking group_stop_count again.
1728  */
1729 static int handle_group_stop(void)
1730 {
1731 	int stop_count;
1732 
1733 	if (current->signal->group_exit_task == current) {
1734 		/*
1735 		 * Group stop is so we can do a core dump,
1736 		 * We are the initiating thread, so get on with it.
1737 		 */
1738 		current->signal->group_exit_task = NULL;
1739 		return 0;
1740 	}
1741 
1742 	if (current->signal->flags & SIGNAL_GROUP_EXIT)
1743 		/*
1744 		 * Group stop is so another thread can do a core dump,
1745 		 * or else we are racing against a death signal.
1746 		 * Just punt the stop so we can get the next signal.
1747 		 */
1748 		return 0;
1749 
1750 	/*
1751 	 * There is a group stop in progress.  We stop
1752 	 * without any associated signal being in our queue.
1753 	 */
1754 	stop_count = --current->signal->group_stop_count;
1755 	if (stop_count == 0)
1756 		current->signal->flags = SIGNAL_STOP_STOPPED;
1757 	current->exit_code = current->signal->group_exit_code;
1758 	set_current_state(TASK_STOPPED);
1759 	spin_unlock_irq(&current->sighand->siglock);
1760 	finish_stop(stop_count);
1761 	return 1;
1762 }
1763 
1764 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1765 			  struct pt_regs *regs, void *cookie)
1766 {
1767 	sigset_t *mask = &current->blocked;
1768 	int signr = 0;
1769 
1770 	try_to_freeze();
1771 
1772 relock:
1773 	spin_lock_irq(&current->sighand->siglock);
1774 	for (;;) {
1775 		struct k_sigaction *ka;
1776 
1777 		if (unlikely(current->signal->group_stop_count > 0) &&
1778 		    handle_group_stop())
1779 			goto relock;
1780 
1781 		signr = dequeue_signal(current, mask, info);
1782 
1783 		if (!signr)
1784 			break; /* will return 0 */
1785 
1786 		if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1787 			ptrace_signal_deliver(regs, cookie);
1788 
1789 			/* Let the debugger run.  */
1790 			ptrace_stop(signr, signr, info);
1791 
1792 			/* We're back.  Did the debugger cancel the sig?  */
1793 			signr = current->exit_code;
1794 			if (signr == 0)
1795 				continue;
1796 
1797 			current->exit_code = 0;
1798 
1799 			/* Update the siginfo structure if the signal has
1800 			   changed.  If the debugger wanted something
1801 			   specific in the siginfo structure then it should
1802 			   have updated *info via PTRACE_SETSIGINFO.  */
1803 			if (signr != info->si_signo) {
1804 				info->si_signo = signr;
1805 				info->si_errno = 0;
1806 				info->si_code = SI_USER;
1807 				info->si_pid = current->parent->pid;
1808 				info->si_uid = current->parent->uid;
1809 			}
1810 
1811 			/* If the (new) signal is now blocked, requeue it.  */
1812 			if (sigismember(&current->blocked, signr)) {
1813 				specific_send_sig_info(signr, info, current);
1814 				continue;
1815 			}
1816 		}
1817 
1818 		ka = &current->sighand->action[signr-1];
1819 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
1820 			continue;
1821 		if (ka->sa.sa_handler != SIG_DFL) {
1822 			/* Run the handler.  */
1823 			*return_ka = *ka;
1824 
1825 			if (ka->sa.sa_flags & SA_ONESHOT)
1826 				ka->sa.sa_handler = SIG_DFL;
1827 
1828 			break; /* will return non-zero "signr" value */
1829 		}
1830 
1831 		/*
1832 		 * Now we are doing the default action for this signal.
1833 		 */
1834 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
1835 			continue;
1836 
1837 		/*
1838 		 * Init of a pid space gets no signals it doesn't want from
1839 		 * within that pid space. It can of course get signals from
1840 		 * its parent pid space.
1841 		 */
1842 		if (current == child_reaper(current))
1843 			continue;
1844 
1845 		if (sig_kernel_stop(signr)) {
1846 			/*
1847 			 * The default action is to stop all threads in
1848 			 * the thread group.  The job control signals
1849 			 * do nothing in an orphaned pgrp, but SIGSTOP
1850 			 * always works.  Note that siglock needs to be
1851 			 * dropped during the call to is_orphaned_pgrp()
1852 			 * because of lock ordering with tasklist_lock.
1853 			 * This allows an intervening SIGCONT to be posted.
1854 			 * We need to check for that and bail out if necessary.
1855 			 */
1856 			if (signr != SIGSTOP) {
1857 				spin_unlock_irq(&current->sighand->siglock);
1858 
1859 				/* signals can be posted during this window */
1860 
1861 				if (is_current_pgrp_orphaned())
1862 					goto relock;
1863 
1864 				spin_lock_irq(&current->sighand->siglock);
1865 			}
1866 
1867 			if (likely(do_signal_stop(signr))) {
1868 				/* It released the siglock.  */
1869 				goto relock;
1870 			}
1871 
1872 			/*
1873 			 * We didn't actually stop, due to a race
1874 			 * with SIGCONT or something like that.
1875 			 */
1876 			continue;
1877 		}
1878 
1879 		spin_unlock_irq(&current->sighand->siglock);
1880 
1881 		/*
1882 		 * Anything else is fatal, maybe with a core dump.
1883 		 */
1884 		current->flags |= PF_SIGNALED;
1885 		if ((signr != SIGKILL) && print_fatal_signals)
1886 			print_fatal_signal(regs, signr);
1887 		if (sig_kernel_coredump(signr)) {
1888 			/*
1889 			 * If it was able to dump core, this kills all
1890 			 * other threads in the group and synchronizes with
1891 			 * their demise.  If we lost the race with another
1892 			 * thread getting here, it set group_exit_code
1893 			 * first and our do_group_exit call below will use
1894 			 * that value and ignore the one we pass it.
1895 			 */
1896 			do_coredump((long)signr, signr, regs);
1897 		}
1898 
1899 		/*
1900 		 * Death signals, no core dump.
1901 		 */
1902 		do_group_exit(signr);
1903 		/* NOTREACHED */
1904 	}
1905 	spin_unlock_irq(&current->sighand->siglock);
1906 	return signr;
1907 }
1908 
1909 EXPORT_SYMBOL(recalc_sigpending);
1910 EXPORT_SYMBOL_GPL(dequeue_signal);
1911 EXPORT_SYMBOL(flush_signals);
1912 EXPORT_SYMBOL(force_sig);
1913 EXPORT_SYMBOL(kill_proc);
1914 EXPORT_SYMBOL(ptrace_notify);
1915 EXPORT_SYMBOL(send_sig);
1916 EXPORT_SYMBOL(send_sig_info);
1917 EXPORT_SYMBOL(sigprocmask);
1918 EXPORT_SYMBOL(block_all_signals);
1919 EXPORT_SYMBOL(unblock_all_signals);
1920 
1921 
1922 /*
1923  * System call entry points.
1924  */
1925 
1926 asmlinkage long sys_restart_syscall(void)
1927 {
1928 	struct restart_block *restart = &current_thread_info()->restart_block;
1929 	return restart->fn(restart);
1930 }
1931 
1932 long do_no_restart_syscall(struct restart_block *param)
1933 {
1934 	return -EINTR;
1935 }
1936 
1937 /*
1938  * We don't need to get the kernel lock - this is all local to this
1939  * particular thread.. (and that's good, because this is _heavily_
1940  * used by various programs)
1941  */
1942 
1943 /*
1944  * This is also useful for kernel threads that want to temporarily
1945  * (or permanently) block certain signals.
1946  *
1947  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1948  * interface happily blocks "unblockable" signals like SIGKILL
1949  * and friends.
1950  */
1951 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1952 {
1953 	int error;
1954 
1955 	spin_lock_irq(&current->sighand->siglock);
1956 	if (oldset)
1957 		*oldset = current->blocked;
1958 
1959 	error = 0;
1960 	switch (how) {
1961 	case SIG_BLOCK:
1962 		sigorsets(&current->blocked, &current->blocked, set);
1963 		break;
1964 	case SIG_UNBLOCK:
1965 		signandsets(&current->blocked, &current->blocked, set);
1966 		break;
1967 	case SIG_SETMASK:
1968 		current->blocked = *set;
1969 		break;
1970 	default:
1971 		error = -EINVAL;
1972 	}
1973 	recalc_sigpending();
1974 	spin_unlock_irq(&current->sighand->siglock);
1975 
1976 	return error;
1977 }
1978 
1979 asmlinkage long
1980 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
1981 {
1982 	int error = -EINVAL;
1983 	sigset_t old_set, new_set;
1984 
1985 	/* XXX: Don't preclude handling different sized sigset_t's.  */
1986 	if (sigsetsize != sizeof(sigset_t))
1987 		goto out;
1988 
1989 	if (set) {
1990 		error = -EFAULT;
1991 		if (copy_from_user(&new_set, set, sizeof(*set)))
1992 			goto out;
1993 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
1994 
1995 		error = sigprocmask(how, &new_set, &old_set);
1996 		if (error)
1997 			goto out;
1998 		if (oset)
1999 			goto set_old;
2000 	} else if (oset) {
2001 		spin_lock_irq(&current->sighand->siglock);
2002 		old_set = current->blocked;
2003 		spin_unlock_irq(&current->sighand->siglock);
2004 
2005 	set_old:
2006 		error = -EFAULT;
2007 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
2008 			goto out;
2009 	}
2010 	error = 0;
2011 out:
2012 	return error;
2013 }
2014 
2015 long do_sigpending(void __user *set, unsigned long sigsetsize)
2016 {
2017 	long error = -EINVAL;
2018 	sigset_t pending;
2019 
2020 	if (sigsetsize > sizeof(sigset_t))
2021 		goto out;
2022 
2023 	spin_lock_irq(&current->sighand->siglock);
2024 	sigorsets(&pending, &current->pending.signal,
2025 		  &current->signal->shared_pending.signal);
2026 	spin_unlock_irq(&current->sighand->siglock);
2027 
2028 	/* Outside the lock because only this thread touches it.  */
2029 	sigandsets(&pending, &current->blocked, &pending);
2030 
2031 	error = -EFAULT;
2032 	if (!copy_to_user(set, &pending, sigsetsize))
2033 		error = 0;
2034 
2035 out:
2036 	return error;
2037 }
2038 
2039 asmlinkage long
2040 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2041 {
2042 	return do_sigpending(set, sigsetsize);
2043 }
2044 
2045 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2046 
2047 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2048 {
2049 	int err;
2050 
2051 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2052 		return -EFAULT;
2053 	if (from->si_code < 0)
2054 		return __copy_to_user(to, from, sizeof(siginfo_t))
2055 			? -EFAULT : 0;
2056 	/*
2057 	 * If you change siginfo_t structure, please be sure
2058 	 * this code is fixed accordingly.
2059 	 * Please remember to update the signalfd_copyinfo() function
2060 	 * inside fs/signalfd.c too, in case siginfo_t changes.
2061 	 * It should never copy any pad contained in the structure
2062 	 * to avoid security leaks, but must copy the generic
2063 	 * 3 ints plus the relevant union member.
2064 	 */
2065 	err = __put_user(from->si_signo, &to->si_signo);
2066 	err |= __put_user(from->si_errno, &to->si_errno);
2067 	err |= __put_user((short)from->si_code, &to->si_code);
2068 	switch (from->si_code & __SI_MASK) {
2069 	case __SI_KILL:
2070 		err |= __put_user(from->si_pid, &to->si_pid);
2071 		err |= __put_user(from->si_uid, &to->si_uid);
2072 		break;
2073 	case __SI_TIMER:
2074 		 err |= __put_user(from->si_tid, &to->si_tid);
2075 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2076 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2077 		break;
2078 	case __SI_POLL:
2079 		err |= __put_user(from->si_band, &to->si_band);
2080 		err |= __put_user(from->si_fd, &to->si_fd);
2081 		break;
2082 	case __SI_FAULT:
2083 		err |= __put_user(from->si_addr, &to->si_addr);
2084 #ifdef __ARCH_SI_TRAPNO
2085 		err |= __put_user(from->si_trapno, &to->si_trapno);
2086 #endif
2087 		break;
2088 	case __SI_CHLD:
2089 		err |= __put_user(from->si_pid, &to->si_pid);
2090 		err |= __put_user(from->si_uid, &to->si_uid);
2091 		err |= __put_user(from->si_status, &to->si_status);
2092 		err |= __put_user(from->si_utime, &to->si_utime);
2093 		err |= __put_user(from->si_stime, &to->si_stime);
2094 		break;
2095 	case __SI_RT: /* This is not generated by the kernel as of now. */
2096 	case __SI_MESGQ: /* But this is */
2097 		err |= __put_user(from->si_pid, &to->si_pid);
2098 		err |= __put_user(from->si_uid, &to->si_uid);
2099 		err |= __put_user(from->si_ptr, &to->si_ptr);
2100 		break;
2101 	default: /* this is just in case for now ... */
2102 		err |= __put_user(from->si_pid, &to->si_pid);
2103 		err |= __put_user(from->si_uid, &to->si_uid);
2104 		break;
2105 	}
2106 	return err;
2107 }
2108 
2109 #endif
2110 
2111 asmlinkage long
2112 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2113 		    siginfo_t __user *uinfo,
2114 		    const struct timespec __user *uts,
2115 		    size_t sigsetsize)
2116 {
2117 	int ret, sig;
2118 	sigset_t these;
2119 	struct timespec ts;
2120 	siginfo_t info;
2121 	long timeout = 0;
2122 
2123 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2124 	if (sigsetsize != sizeof(sigset_t))
2125 		return -EINVAL;
2126 
2127 	if (copy_from_user(&these, uthese, sizeof(these)))
2128 		return -EFAULT;
2129 
2130 	/*
2131 	 * Invert the set of allowed signals to get those we
2132 	 * want to block.
2133 	 */
2134 	sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2135 	signotset(&these);
2136 
2137 	if (uts) {
2138 		if (copy_from_user(&ts, uts, sizeof(ts)))
2139 			return -EFAULT;
2140 		if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2141 		    || ts.tv_sec < 0)
2142 			return -EINVAL;
2143 	}
2144 
2145 	spin_lock_irq(&current->sighand->siglock);
2146 	sig = dequeue_signal(current, &these, &info);
2147 	if (!sig) {
2148 		timeout = MAX_SCHEDULE_TIMEOUT;
2149 		if (uts)
2150 			timeout = (timespec_to_jiffies(&ts)
2151 				   + (ts.tv_sec || ts.tv_nsec));
2152 
2153 		if (timeout) {
2154 			/* None ready -- temporarily unblock those we're
2155 			 * interested while we are sleeping in so that we'll
2156 			 * be awakened when they arrive.  */
2157 			current->real_blocked = current->blocked;
2158 			sigandsets(&current->blocked, &current->blocked, &these);
2159 			recalc_sigpending();
2160 			spin_unlock_irq(&current->sighand->siglock);
2161 
2162 			timeout = schedule_timeout_interruptible(timeout);
2163 
2164 			spin_lock_irq(&current->sighand->siglock);
2165 			sig = dequeue_signal(current, &these, &info);
2166 			current->blocked = current->real_blocked;
2167 			siginitset(&current->real_blocked, 0);
2168 			recalc_sigpending();
2169 		}
2170 	}
2171 	spin_unlock_irq(&current->sighand->siglock);
2172 
2173 	if (sig) {
2174 		ret = sig;
2175 		if (uinfo) {
2176 			if (copy_siginfo_to_user(uinfo, &info))
2177 				ret = -EFAULT;
2178 		}
2179 	} else {
2180 		ret = -EAGAIN;
2181 		if (timeout)
2182 			ret = -EINTR;
2183 	}
2184 
2185 	return ret;
2186 }
2187 
2188 asmlinkage long
2189 sys_kill(int pid, int sig)
2190 {
2191 	struct siginfo info;
2192 
2193 	info.si_signo = sig;
2194 	info.si_errno = 0;
2195 	info.si_code = SI_USER;
2196 	info.si_pid = current->tgid;
2197 	info.si_uid = current->uid;
2198 
2199 	return kill_something_info(sig, &info, pid);
2200 }
2201 
2202 static int do_tkill(int tgid, int pid, int sig)
2203 {
2204 	int error;
2205 	struct siginfo info;
2206 	struct task_struct *p;
2207 
2208 	error = -ESRCH;
2209 	info.si_signo = sig;
2210 	info.si_errno = 0;
2211 	info.si_code = SI_TKILL;
2212 	info.si_pid = current->tgid;
2213 	info.si_uid = current->uid;
2214 
2215 	read_lock(&tasklist_lock);
2216 	p = find_task_by_pid(pid);
2217 	if (p && (tgid <= 0 || p->tgid == tgid)) {
2218 		error = check_kill_permission(sig, &info, p);
2219 		/*
2220 		 * The null signal is a permissions and process existence
2221 		 * probe.  No signal is actually delivered.
2222 		 */
2223 		if (!error && sig && p->sighand) {
2224 			spin_lock_irq(&p->sighand->siglock);
2225 			handle_stop_signal(sig, p);
2226 			error = specific_send_sig_info(sig, &info, p);
2227 			spin_unlock_irq(&p->sighand->siglock);
2228 		}
2229 	}
2230 	read_unlock(&tasklist_lock);
2231 
2232 	return error;
2233 }
2234 
2235 /**
2236  *  sys_tgkill - send signal to one specific thread
2237  *  @tgid: the thread group ID of the thread
2238  *  @pid: the PID of the thread
2239  *  @sig: signal to be sent
2240  *
2241  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2242  *  exists but it's not belonging to the target process anymore. This
2243  *  method solves the problem of threads exiting and PIDs getting reused.
2244  */
2245 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2246 {
2247 	/* This is only valid for single tasks */
2248 	if (pid <= 0 || tgid <= 0)
2249 		return -EINVAL;
2250 
2251 	return do_tkill(tgid, pid, sig);
2252 }
2253 
2254 /*
2255  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2256  */
2257 asmlinkage long
2258 sys_tkill(int pid, int sig)
2259 {
2260 	/* This is only valid for single tasks */
2261 	if (pid <= 0)
2262 		return -EINVAL;
2263 
2264 	return do_tkill(0, pid, sig);
2265 }
2266 
2267 asmlinkage long
2268 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2269 {
2270 	siginfo_t info;
2271 
2272 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2273 		return -EFAULT;
2274 
2275 	/* Not even root can pretend to send signals from the kernel.
2276 	   Nor can they impersonate a kill(), which adds source info.  */
2277 	if (info.si_code >= 0)
2278 		return -EPERM;
2279 	info.si_signo = sig;
2280 
2281 	/* POSIX.1b doesn't mention process groups.  */
2282 	return kill_proc_info(sig, &info, pid);
2283 }
2284 
2285 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2286 {
2287 	struct k_sigaction *k;
2288 	sigset_t mask;
2289 
2290 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2291 		return -EINVAL;
2292 
2293 	k = &current->sighand->action[sig-1];
2294 
2295 	spin_lock_irq(&current->sighand->siglock);
2296 	if (oact)
2297 		*oact = *k;
2298 
2299 	if (act) {
2300 		sigdelsetmask(&act->sa.sa_mask,
2301 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
2302 		*k = *act;
2303 		/*
2304 		 * POSIX 3.3.1.3:
2305 		 *  "Setting a signal action to SIG_IGN for a signal that is
2306 		 *   pending shall cause the pending signal to be discarded,
2307 		 *   whether or not it is blocked."
2308 		 *
2309 		 *  "Setting a signal action to SIG_DFL for a signal that is
2310 		 *   pending and whose default action is to ignore the signal
2311 		 *   (for example, SIGCHLD), shall cause the pending signal to
2312 		 *   be discarded, whether or not it is blocked"
2313 		 */
2314 		if (act->sa.sa_handler == SIG_IGN ||
2315 		   (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2316 			struct task_struct *t = current;
2317 			sigemptyset(&mask);
2318 			sigaddset(&mask, sig);
2319 			rm_from_queue_full(&mask, &t->signal->shared_pending);
2320 			do {
2321 				rm_from_queue_full(&mask, &t->pending);
2322 				t = next_thread(t);
2323 			} while (t != current);
2324 		}
2325 	}
2326 
2327 	spin_unlock_irq(&current->sighand->siglock);
2328 	return 0;
2329 }
2330 
2331 int
2332 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2333 {
2334 	stack_t oss;
2335 	int error;
2336 
2337 	if (uoss) {
2338 		oss.ss_sp = (void __user *) current->sas_ss_sp;
2339 		oss.ss_size = current->sas_ss_size;
2340 		oss.ss_flags = sas_ss_flags(sp);
2341 	}
2342 
2343 	if (uss) {
2344 		void __user *ss_sp;
2345 		size_t ss_size;
2346 		int ss_flags;
2347 
2348 		error = -EFAULT;
2349 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2350 		    || __get_user(ss_sp, &uss->ss_sp)
2351 		    || __get_user(ss_flags, &uss->ss_flags)
2352 		    || __get_user(ss_size, &uss->ss_size))
2353 			goto out;
2354 
2355 		error = -EPERM;
2356 		if (on_sig_stack(sp))
2357 			goto out;
2358 
2359 		error = -EINVAL;
2360 		/*
2361 		 *
2362 		 * Note - this code used to test ss_flags incorrectly
2363 		 *  	  old code may have been written using ss_flags==0
2364 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
2365 		 *	  way that worked) - this fix preserves that older
2366 		 *	  mechanism
2367 		 */
2368 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2369 			goto out;
2370 
2371 		if (ss_flags == SS_DISABLE) {
2372 			ss_size = 0;
2373 			ss_sp = NULL;
2374 		} else {
2375 			error = -ENOMEM;
2376 			if (ss_size < MINSIGSTKSZ)
2377 				goto out;
2378 		}
2379 
2380 		current->sas_ss_sp = (unsigned long) ss_sp;
2381 		current->sas_ss_size = ss_size;
2382 	}
2383 
2384 	if (uoss) {
2385 		error = -EFAULT;
2386 		if (copy_to_user(uoss, &oss, sizeof(oss)))
2387 			goto out;
2388 	}
2389 
2390 	error = 0;
2391 out:
2392 	return error;
2393 }
2394 
2395 #ifdef __ARCH_WANT_SYS_SIGPENDING
2396 
2397 asmlinkage long
2398 sys_sigpending(old_sigset_t __user *set)
2399 {
2400 	return do_sigpending(set, sizeof(*set));
2401 }
2402 
2403 #endif
2404 
2405 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2406 /* Some platforms have their own version with special arguments others
2407    support only sys_rt_sigprocmask.  */
2408 
2409 asmlinkage long
2410 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2411 {
2412 	int error;
2413 	old_sigset_t old_set, new_set;
2414 
2415 	if (set) {
2416 		error = -EFAULT;
2417 		if (copy_from_user(&new_set, set, sizeof(*set)))
2418 			goto out;
2419 		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2420 
2421 		spin_lock_irq(&current->sighand->siglock);
2422 		old_set = current->blocked.sig[0];
2423 
2424 		error = 0;
2425 		switch (how) {
2426 		default:
2427 			error = -EINVAL;
2428 			break;
2429 		case SIG_BLOCK:
2430 			sigaddsetmask(&current->blocked, new_set);
2431 			break;
2432 		case SIG_UNBLOCK:
2433 			sigdelsetmask(&current->blocked, new_set);
2434 			break;
2435 		case SIG_SETMASK:
2436 			current->blocked.sig[0] = new_set;
2437 			break;
2438 		}
2439 
2440 		recalc_sigpending();
2441 		spin_unlock_irq(&current->sighand->siglock);
2442 		if (error)
2443 			goto out;
2444 		if (oset)
2445 			goto set_old;
2446 	} else if (oset) {
2447 		old_set = current->blocked.sig[0];
2448 	set_old:
2449 		error = -EFAULT;
2450 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
2451 			goto out;
2452 	}
2453 	error = 0;
2454 out:
2455 	return error;
2456 }
2457 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2458 
2459 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2460 asmlinkage long
2461 sys_rt_sigaction(int sig,
2462 		 const struct sigaction __user *act,
2463 		 struct sigaction __user *oact,
2464 		 size_t sigsetsize)
2465 {
2466 	struct k_sigaction new_sa, old_sa;
2467 	int ret = -EINVAL;
2468 
2469 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2470 	if (sigsetsize != sizeof(sigset_t))
2471 		goto out;
2472 
2473 	if (act) {
2474 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2475 			return -EFAULT;
2476 	}
2477 
2478 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2479 
2480 	if (!ret && oact) {
2481 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2482 			return -EFAULT;
2483 	}
2484 out:
2485 	return ret;
2486 }
2487 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2488 
2489 #ifdef __ARCH_WANT_SYS_SGETMASK
2490 
2491 /*
2492  * For backwards compatibility.  Functionality superseded by sigprocmask.
2493  */
2494 asmlinkage long
2495 sys_sgetmask(void)
2496 {
2497 	/* SMP safe */
2498 	return current->blocked.sig[0];
2499 }
2500 
2501 asmlinkage long
2502 sys_ssetmask(int newmask)
2503 {
2504 	int old;
2505 
2506 	spin_lock_irq(&current->sighand->siglock);
2507 	old = current->blocked.sig[0];
2508 
2509 	siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2510 						  sigmask(SIGSTOP)));
2511 	recalc_sigpending();
2512 	spin_unlock_irq(&current->sighand->siglock);
2513 
2514 	return old;
2515 }
2516 #endif /* __ARCH_WANT_SGETMASK */
2517 
2518 #ifdef __ARCH_WANT_SYS_SIGNAL
2519 /*
2520  * For backwards compatibility.  Functionality superseded by sigaction.
2521  */
2522 asmlinkage unsigned long
2523 sys_signal(int sig, __sighandler_t handler)
2524 {
2525 	struct k_sigaction new_sa, old_sa;
2526 	int ret;
2527 
2528 	new_sa.sa.sa_handler = handler;
2529 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2530 	sigemptyset(&new_sa.sa.sa_mask);
2531 
2532 	ret = do_sigaction(sig, &new_sa, &old_sa);
2533 
2534 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2535 }
2536 #endif /* __ARCH_WANT_SYS_SIGNAL */
2537 
2538 #ifdef __ARCH_WANT_SYS_PAUSE
2539 
2540 asmlinkage long
2541 sys_pause(void)
2542 {
2543 	current->state = TASK_INTERRUPTIBLE;
2544 	schedule();
2545 	return -ERESTARTNOHAND;
2546 }
2547 
2548 #endif
2549 
2550 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2551 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2552 {
2553 	sigset_t newset;
2554 
2555 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2556 	if (sigsetsize != sizeof(sigset_t))
2557 		return -EINVAL;
2558 
2559 	if (copy_from_user(&newset, unewset, sizeof(newset)))
2560 		return -EFAULT;
2561 	sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2562 
2563 	spin_lock_irq(&current->sighand->siglock);
2564 	current->saved_sigmask = current->blocked;
2565 	current->blocked = newset;
2566 	recalc_sigpending();
2567 	spin_unlock_irq(&current->sighand->siglock);
2568 
2569 	current->state = TASK_INTERRUPTIBLE;
2570 	schedule();
2571 	set_thread_flag(TIF_RESTORE_SIGMASK);
2572 	return -ERESTARTNOHAND;
2573 }
2574 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2575 
2576 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2577 {
2578 	return NULL;
2579 }
2580 
2581 void __init signals_init(void)
2582 {
2583 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2584 }
2585