xref: /linux/kernel/signal.c (revision c759e609030ca37e59866cbc849fdc611cc56292)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/mm.h>
26 #include <linux/proc_fs.h>
27 #include <linux/tty.h>
28 #include <linux/binfmts.h>
29 #include <linux/coredump.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/ptrace.h>
33 #include <linux/signal.h>
34 #include <linux/signalfd.h>
35 #include <linux/ratelimit.h>
36 #include <linux/task_work.h>
37 #include <linux/capability.h>
38 #include <linux/freezer.h>
39 #include <linux/pid_namespace.h>
40 #include <linux/nsproxy.h>
41 #include <linux/user_namespace.h>
42 #include <linux/uprobes.h>
43 #include <linux/compat.h>
44 #include <linux/cn_proc.h>
45 #include <linux/compiler.h>
46 #include <linux/posix-timers.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49 #include <linux/sysctl.h>
50 #include <uapi/linux/pidfd.h>
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/signal.h>
54 
55 #include <asm/param.h>
56 #include <linux/uaccess.h>
57 #include <asm/unistd.h>
58 #include <asm/siginfo.h>
59 #include <asm/cacheflush.h>
60 #include <asm/syscall.h>	/* for syscall_get_* */
61 
62 /*
63  * SLAB caches for signal bits.
64  */
65 
66 static struct kmem_cache *sigqueue_cachep;
67 
68 int print_fatal_signals __read_mostly;
69 
70 static void __user *sig_handler(struct task_struct *t, int sig)
71 {
72 	return t->sighand->action[sig - 1].sa.sa_handler;
73 }
74 
75 static inline bool sig_handler_ignored(void __user *handler, int sig)
76 {
77 	/* Is it explicitly or implicitly ignored? */
78 	return handler == SIG_IGN ||
79 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
80 }
81 
82 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
83 {
84 	void __user *handler;
85 
86 	handler = sig_handler(t, sig);
87 
88 	/* SIGKILL and SIGSTOP may not be sent to the global init */
89 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
90 		return true;
91 
92 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
93 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
94 		return true;
95 
96 	/* Only allow kernel generated signals to this kthread */
97 	if (unlikely((t->flags & PF_KTHREAD) &&
98 		     (handler == SIG_KTHREAD_KERNEL) && !force))
99 		return true;
100 
101 	return sig_handler_ignored(handler, sig);
102 }
103 
104 static bool sig_ignored(struct task_struct *t, int sig, bool force)
105 {
106 	/*
107 	 * Blocked signals are never ignored, since the
108 	 * signal handler may change by the time it is
109 	 * unblocked.
110 	 */
111 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
112 		return false;
113 
114 	/*
115 	 * Tracers may want to know about even ignored signal unless it
116 	 * is SIGKILL which can't be reported anyway but can be ignored
117 	 * by SIGNAL_UNKILLABLE task.
118 	 */
119 	if (t->ptrace && sig != SIGKILL)
120 		return false;
121 
122 	return sig_task_ignored(t, sig, force);
123 }
124 
125 /*
126  * Re-calculate pending state from the set of locally pending
127  * signals, globally pending signals, and blocked signals.
128  */
129 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
130 {
131 	unsigned long ready;
132 	long i;
133 
134 	switch (_NSIG_WORDS) {
135 	default:
136 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
137 			ready |= signal->sig[i] &~ blocked->sig[i];
138 		break;
139 
140 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
141 		ready |= signal->sig[2] &~ blocked->sig[2];
142 		ready |= signal->sig[1] &~ blocked->sig[1];
143 		ready |= signal->sig[0] &~ blocked->sig[0];
144 		break;
145 
146 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
147 		ready |= signal->sig[0] &~ blocked->sig[0];
148 		break;
149 
150 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
151 	}
152 	return ready !=	0;
153 }
154 
155 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
156 
157 static bool recalc_sigpending_tsk(struct task_struct *t)
158 {
159 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
160 	    PENDING(&t->pending, &t->blocked) ||
161 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
162 	    cgroup_task_frozen(t)) {
163 		set_tsk_thread_flag(t, TIF_SIGPENDING);
164 		return true;
165 	}
166 
167 	/*
168 	 * We must never clear the flag in another thread, or in current
169 	 * when it's possible the current syscall is returning -ERESTART*.
170 	 * So we don't clear it here, and only callers who know they should do.
171 	 */
172 	return false;
173 }
174 
175 void recalc_sigpending(void)
176 {
177 	if (!recalc_sigpending_tsk(current) && !freezing(current))
178 		clear_thread_flag(TIF_SIGPENDING);
179 
180 }
181 EXPORT_SYMBOL(recalc_sigpending);
182 
183 void calculate_sigpending(void)
184 {
185 	/* Have any signals or users of TIF_SIGPENDING been delayed
186 	 * until after fork?
187 	 */
188 	spin_lock_irq(&current->sighand->siglock);
189 	set_tsk_thread_flag(current, TIF_SIGPENDING);
190 	recalc_sigpending();
191 	spin_unlock_irq(&current->sighand->siglock);
192 }
193 
194 /* Given the mask, find the first available signal that should be serviced. */
195 
196 #define SYNCHRONOUS_MASK \
197 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
198 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
199 
200 int next_signal(struct sigpending *pending, sigset_t *mask)
201 {
202 	unsigned long i, *s, *m, x;
203 	int sig = 0;
204 
205 	s = pending->signal.sig;
206 	m = mask->sig;
207 
208 	/*
209 	 * Handle the first word specially: it contains the
210 	 * synchronous signals that need to be dequeued first.
211 	 */
212 	x = *s &~ *m;
213 	if (x) {
214 		if (x & SYNCHRONOUS_MASK)
215 			x &= SYNCHRONOUS_MASK;
216 		sig = ffz(~x) + 1;
217 		return sig;
218 	}
219 
220 	switch (_NSIG_WORDS) {
221 	default:
222 		for (i = 1; i < _NSIG_WORDS; ++i) {
223 			x = *++s &~ *++m;
224 			if (!x)
225 				continue;
226 			sig = ffz(~x) + i*_NSIG_BPW + 1;
227 			break;
228 		}
229 		break;
230 
231 	case 2:
232 		x = s[1] &~ m[1];
233 		if (!x)
234 			break;
235 		sig = ffz(~x) + _NSIG_BPW + 1;
236 		break;
237 
238 	case 1:
239 		/* Nothing to do */
240 		break;
241 	}
242 
243 	return sig;
244 }
245 
246 static inline void print_dropped_signal(int sig)
247 {
248 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
249 
250 	if (!print_fatal_signals)
251 		return;
252 
253 	if (!__ratelimit(&ratelimit_state))
254 		return;
255 
256 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
257 				current->comm, current->pid, sig);
258 }
259 
260 /**
261  * task_set_jobctl_pending - set jobctl pending bits
262  * @task: target task
263  * @mask: pending bits to set
264  *
265  * Clear @mask from @task->jobctl.  @mask must be subset of
266  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
267  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
268  * cleared.  If @task is already being killed or exiting, this function
269  * becomes noop.
270  *
271  * CONTEXT:
272  * Must be called with @task->sighand->siglock held.
273  *
274  * RETURNS:
275  * %true if @mask is set, %false if made noop because @task was dying.
276  */
277 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
278 {
279 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
280 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
281 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
282 
283 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
284 		return false;
285 
286 	if (mask & JOBCTL_STOP_SIGMASK)
287 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
288 
289 	task->jobctl |= mask;
290 	return true;
291 }
292 
293 /**
294  * task_clear_jobctl_trapping - clear jobctl trapping bit
295  * @task: target task
296  *
297  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
298  * Clear it and wake up the ptracer.  Note that we don't need any further
299  * locking.  @task->siglock guarantees that @task->parent points to the
300  * ptracer.
301  *
302  * CONTEXT:
303  * Must be called with @task->sighand->siglock held.
304  */
305 void task_clear_jobctl_trapping(struct task_struct *task)
306 {
307 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
308 		task->jobctl &= ~JOBCTL_TRAPPING;
309 		smp_mb();	/* advised by wake_up_bit() */
310 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
311 	}
312 }
313 
314 /**
315  * task_clear_jobctl_pending - clear jobctl pending bits
316  * @task: target task
317  * @mask: pending bits to clear
318  *
319  * Clear @mask from @task->jobctl.  @mask must be subset of
320  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
321  * STOP bits are cleared together.
322  *
323  * If clearing of @mask leaves no stop or trap pending, this function calls
324  * task_clear_jobctl_trapping().
325  *
326  * CONTEXT:
327  * Must be called with @task->sighand->siglock held.
328  */
329 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
330 {
331 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
332 
333 	if (mask & JOBCTL_STOP_PENDING)
334 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
335 
336 	task->jobctl &= ~mask;
337 
338 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
339 		task_clear_jobctl_trapping(task);
340 }
341 
342 /**
343  * task_participate_group_stop - participate in a group stop
344  * @task: task participating in a group stop
345  *
346  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
347  * Group stop states are cleared and the group stop count is consumed if
348  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
349  * stop, the appropriate `SIGNAL_*` flags are set.
350  *
351  * CONTEXT:
352  * Must be called with @task->sighand->siglock held.
353  *
354  * RETURNS:
355  * %true if group stop completion should be notified to the parent, %false
356  * otherwise.
357  */
358 static bool task_participate_group_stop(struct task_struct *task)
359 {
360 	struct signal_struct *sig = task->signal;
361 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
362 
363 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
364 
365 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
366 
367 	if (!consume)
368 		return false;
369 
370 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
371 		sig->group_stop_count--;
372 
373 	/*
374 	 * Tell the caller to notify completion iff we are entering into a
375 	 * fresh group stop.  Read comment in do_signal_stop() for details.
376 	 */
377 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
378 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
379 		return true;
380 	}
381 	return false;
382 }
383 
384 void task_join_group_stop(struct task_struct *task)
385 {
386 	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
387 	struct signal_struct *sig = current->signal;
388 
389 	if (sig->group_stop_count) {
390 		sig->group_stop_count++;
391 		mask |= JOBCTL_STOP_CONSUME;
392 	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
393 		return;
394 
395 	/* Have the new thread join an on-going signal group stop */
396 	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
397 }
398 
399 /*
400  * allocate a new signal queue record
401  * - this may be called without locks if and only if t == current, otherwise an
402  *   appropriate lock must be held to stop the target task from exiting
403  */
404 static struct sigqueue *
405 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
406 		 int override_rlimit, const unsigned int sigqueue_flags)
407 {
408 	struct sigqueue *q = NULL;
409 	struct ucounts *ucounts;
410 	long sigpending;
411 
412 	/*
413 	 * Protect access to @t credentials. This can go away when all
414 	 * callers hold rcu read lock.
415 	 *
416 	 * NOTE! A pending signal will hold on to the user refcount,
417 	 * and we get/put the refcount only when the sigpending count
418 	 * changes from/to zero.
419 	 */
420 	rcu_read_lock();
421 	ucounts = task_ucounts(t);
422 	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
423 	rcu_read_unlock();
424 	if (!sigpending)
425 		return NULL;
426 
427 	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
428 		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
429 	} else {
430 		print_dropped_signal(sig);
431 	}
432 
433 	if (unlikely(q == NULL)) {
434 		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
435 	} else {
436 		INIT_LIST_HEAD(&q->list);
437 		q->flags = sigqueue_flags;
438 		q->ucounts = ucounts;
439 	}
440 	return q;
441 }
442 
443 static void __sigqueue_free(struct sigqueue *q)
444 {
445 	if (q->flags & SIGQUEUE_PREALLOC)
446 		return;
447 	if (q->ucounts) {
448 		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
449 		q->ucounts = NULL;
450 	}
451 	kmem_cache_free(sigqueue_cachep, q);
452 }
453 
454 void flush_sigqueue(struct sigpending *queue)
455 {
456 	struct sigqueue *q;
457 
458 	sigemptyset(&queue->signal);
459 	while (!list_empty(&queue->list)) {
460 		q = list_entry(queue->list.next, struct sigqueue , list);
461 		list_del_init(&q->list);
462 		__sigqueue_free(q);
463 	}
464 }
465 
466 /*
467  * Flush all pending signals for this kthread.
468  */
469 void flush_signals(struct task_struct *t)
470 {
471 	unsigned long flags;
472 
473 	spin_lock_irqsave(&t->sighand->siglock, flags);
474 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
475 	flush_sigqueue(&t->pending);
476 	flush_sigqueue(&t->signal->shared_pending);
477 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
478 }
479 EXPORT_SYMBOL(flush_signals);
480 
481 #ifdef CONFIG_POSIX_TIMERS
482 static void __flush_itimer_signals(struct sigpending *pending)
483 {
484 	sigset_t signal, retain;
485 	struct sigqueue *q, *n;
486 
487 	signal = pending->signal;
488 	sigemptyset(&retain);
489 
490 	list_for_each_entry_safe(q, n, &pending->list, list) {
491 		int sig = q->info.si_signo;
492 
493 		if (likely(q->info.si_code != SI_TIMER)) {
494 			sigaddset(&retain, sig);
495 		} else {
496 			sigdelset(&signal, sig);
497 			list_del_init(&q->list);
498 			__sigqueue_free(q);
499 		}
500 	}
501 
502 	sigorsets(&pending->signal, &signal, &retain);
503 }
504 
505 void flush_itimer_signals(void)
506 {
507 	struct task_struct *tsk = current;
508 	unsigned long flags;
509 
510 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
511 	__flush_itimer_signals(&tsk->pending);
512 	__flush_itimer_signals(&tsk->signal->shared_pending);
513 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
514 }
515 #endif
516 
517 void ignore_signals(struct task_struct *t)
518 {
519 	int i;
520 
521 	for (i = 0; i < _NSIG; ++i)
522 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
523 
524 	flush_signals(t);
525 }
526 
527 /*
528  * Flush all handlers for a task.
529  */
530 
531 void
532 flush_signal_handlers(struct task_struct *t, int force_default)
533 {
534 	int i;
535 	struct k_sigaction *ka = &t->sighand->action[0];
536 	for (i = _NSIG ; i != 0 ; i--) {
537 		if (force_default || ka->sa.sa_handler != SIG_IGN)
538 			ka->sa.sa_handler = SIG_DFL;
539 		ka->sa.sa_flags = 0;
540 #ifdef __ARCH_HAS_SA_RESTORER
541 		ka->sa.sa_restorer = NULL;
542 #endif
543 		sigemptyset(&ka->sa.sa_mask);
544 		ka++;
545 	}
546 }
547 
548 bool unhandled_signal(struct task_struct *tsk, int sig)
549 {
550 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
551 	if (is_global_init(tsk))
552 		return true;
553 
554 	if (handler != SIG_IGN && handler != SIG_DFL)
555 		return false;
556 
557 	/* If dying, we handle all new signals by ignoring them */
558 	if (fatal_signal_pending(tsk))
559 		return false;
560 
561 	/* if ptraced, let the tracer determine */
562 	return !tsk->ptrace;
563 }
564 
565 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
566 			   bool *resched_timer)
567 {
568 	struct sigqueue *q, *first = NULL;
569 
570 	/*
571 	 * Collect the siginfo appropriate to this signal.  Check if
572 	 * there is another siginfo for the same signal.
573 	*/
574 	list_for_each_entry(q, &list->list, list) {
575 		if (q->info.si_signo == sig) {
576 			if (first)
577 				goto still_pending;
578 			first = q;
579 		}
580 	}
581 
582 	sigdelset(&list->signal, sig);
583 
584 	if (first) {
585 still_pending:
586 		list_del_init(&first->list);
587 		copy_siginfo(info, &first->info);
588 
589 		*resched_timer =
590 			(first->flags & SIGQUEUE_PREALLOC) &&
591 			(info->si_code == SI_TIMER) &&
592 			(info->si_sys_private);
593 
594 		__sigqueue_free(first);
595 	} else {
596 		/*
597 		 * Ok, it wasn't in the queue.  This must be
598 		 * a fast-pathed signal or we must have been
599 		 * out of queue space.  So zero out the info.
600 		 */
601 		clear_siginfo(info);
602 		info->si_signo = sig;
603 		info->si_errno = 0;
604 		info->si_code = SI_USER;
605 		info->si_pid = 0;
606 		info->si_uid = 0;
607 	}
608 }
609 
610 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
611 			kernel_siginfo_t *info, bool *resched_timer)
612 {
613 	int sig = next_signal(pending, mask);
614 
615 	if (sig)
616 		collect_signal(sig, pending, info, resched_timer);
617 	return sig;
618 }
619 
620 /*
621  * Dequeue a signal and return the element to the caller, which is
622  * expected to free it.
623  *
624  * All callers have to hold the siglock.
625  */
626 int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
627 		   kernel_siginfo_t *info, enum pid_type *type)
628 {
629 	bool resched_timer = false;
630 	int signr;
631 
632 	/* We only dequeue private signals from ourselves, we don't let
633 	 * signalfd steal them
634 	 */
635 	*type = PIDTYPE_PID;
636 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
637 	if (!signr) {
638 		*type = PIDTYPE_TGID;
639 		signr = __dequeue_signal(&tsk->signal->shared_pending,
640 					 mask, info, &resched_timer);
641 #ifdef CONFIG_POSIX_TIMERS
642 		/*
643 		 * itimer signal ?
644 		 *
645 		 * itimers are process shared and we restart periodic
646 		 * itimers in the signal delivery path to prevent DoS
647 		 * attacks in the high resolution timer case. This is
648 		 * compliant with the old way of self-restarting
649 		 * itimers, as the SIGALRM is a legacy signal and only
650 		 * queued once. Changing the restart behaviour to
651 		 * restart the timer in the signal dequeue path is
652 		 * reducing the timer noise on heavy loaded !highres
653 		 * systems too.
654 		 */
655 		if (unlikely(signr == SIGALRM)) {
656 			struct hrtimer *tmr = &tsk->signal->real_timer;
657 
658 			if (!hrtimer_is_queued(tmr) &&
659 			    tsk->signal->it_real_incr != 0) {
660 				hrtimer_forward(tmr, tmr->base->get_time(),
661 						tsk->signal->it_real_incr);
662 				hrtimer_restart(tmr);
663 			}
664 		}
665 #endif
666 	}
667 
668 	recalc_sigpending();
669 	if (!signr)
670 		return 0;
671 
672 	if (unlikely(sig_kernel_stop(signr))) {
673 		/*
674 		 * Set a marker that we have dequeued a stop signal.  Our
675 		 * caller might release the siglock and then the pending
676 		 * stop signal it is about to process is no longer in the
677 		 * pending bitmasks, but must still be cleared by a SIGCONT
678 		 * (and overruled by a SIGKILL).  So those cases clear this
679 		 * shared flag after we've set it.  Note that this flag may
680 		 * remain set after the signal we return is ignored or
681 		 * handled.  That doesn't matter because its only purpose
682 		 * is to alert stop-signal processing code when another
683 		 * processor has come along and cleared the flag.
684 		 */
685 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
686 	}
687 #ifdef CONFIG_POSIX_TIMERS
688 	if (resched_timer) {
689 		/*
690 		 * Release the siglock to ensure proper locking order
691 		 * of timer locks outside of siglocks.  Note, we leave
692 		 * irqs disabled here, since the posix-timers code is
693 		 * about to disable them again anyway.
694 		 */
695 		spin_unlock(&tsk->sighand->siglock);
696 		posixtimer_rearm(info);
697 		spin_lock(&tsk->sighand->siglock);
698 
699 		/* Don't expose the si_sys_private value to userspace */
700 		info->si_sys_private = 0;
701 	}
702 #endif
703 	return signr;
704 }
705 EXPORT_SYMBOL_GPL(dequeue_signal);
706 
707 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
708 {
709 	struct task_struct *tsk = current;
710 	struct sigpending *pending = &tsk->pending;
711 	struct sigqueue *q, *sync = NULL;
712 
713 	/*
714 	 * Might a synchronous signal be in the queue?
715 	 */
716 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
717 		return 0;
718 
719 	/*
720 	 * Return the first synchronous signal in the queue.
721 	 */
722 	list_for_each_entry(q, &pending->list, list) {
723 		/* Synchronous signals have a positive si_code */
724 		if ((q->info.si_code > SI_USER) &&
725 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
726 			sync = q;
727 			goto next;
728 		}
729 	}
730 	return 0;
731 next:
732 	/*
733 	 * Check if there is another siginfo for the same signal.
734 	 */
735 	list_for_each_entry_continue(q, &pending->list, list) {
736 		if (q->info.si_signo == sync->info.si_signo)
737 			goto still_pending;
738 	}
739 
740 	sigdelset(&pending->signal, sync->info.si_signo);
741 	recalc_sigpending();
742 still_pending:
743 	list_del_init(&sync->list);
744 	copy_siginfo(info, &sync->info);
745 	__sigqueue_free(sync);
746 	return info->si_signo;
747 }
748 
749 /*
750  * Tell a process that it has a new active signal..
751  *
752  * NOTE! we rely on the previous spin_lock to
753  * lock interrupts for us! We can only be called with
754  * "siglock" held, and the local interrupt must
755  * have been disabled when that got acquired!
756  *
757  * No need to set need_resched since signal event passing
758  * goes through ->blocked
759  */
760 void signal_wake_up_state(struct task_struct *t, unsigned int state)
761 {
762 	lockdep_assert_held(&t->sighand->siglock);
763 
764 	set_tsk_thread_flag(t, TIF_SIGPENDING);
765 
766 	/*
767 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
768 	 * case. We don't check t->state here because there is a race with it
769 	 * executing another processor and just now entering stopped state.
770 	 * By using wake_up_state, we ensure the process will wake up and
771 	 * handle its death signal.
772 	 */
773 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
774 		kick_process(t);
775 }
776 
777 /*
778  * Remove signals in mask from the pending set and queue.
779  * Returns 1 if any signals were found.
780  *
781  * All callers must be holding the siglock.
782  */
783 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
784 {
785 	struct sigqueue *q, *n;
786 	sigset_t m;
787 
788 	sigandsets(&m, mask, &s->signal);
789 	if (sigisemptyset(&m))
790 		return;
791 
792 	sigandnsets(&s->signal, &s->signal, mask);
793 	list_for_each_entry_safe(q, n, &s->list, list) {
794 		if (sigismember(mask, q->info.si_signo)) {
795 			list_del_init(&q->list);
796 			__sigqueue_free(q);
797 		}
798 	}
799 }
800 
801 static inline int is_si_special(const struct kernel_siginfo *info)
802 {
803 	return info <= SEND_SIG_PRIV;
804 }
805 
806 static inline bool si_fromuser(const struct kernel_siginfo *info)
807 {
808 	return info == SEND_SIG_NOINFO ||
809 		(!is_si_special(info) && SI_FROMUSER(info));
810 }
811 
812 /*
813  * called with RCU read lock from check_kill_permission()
814  */
815 static bool kill_ok_by_cred(struct task_struct *t)
816 {
817 	const struct cred *cred = current_cred();
818 	const struct cred *tcred = __task_cred(t);
819 
820 	return uid_eq(cred->euid, tcred->suid) ||
821 	       uid_eq(cred->euid, tcred->uid) ||
822 	       uid_eq(cred->uid, tcred->suid) ||
823 	       uid_eq(cred->uid, tcred->uid) ||
824 	       ns_capable(tcred->user_ns, CAP_KILL);
825 }
826 
827 /*
828  * Bad permissions for sending the signal
829  * - the caller must hold the RCU read lock
830  */
831 static int check_kill_permission(int sig, struct kernel_siginfo *info,
832 				 struct task_struct *t)
833 {
834 	struct pid *sid;
835 	int error;
836 
837 	if (!valid_signal(sig))
838 		return -EINVAL;
839 
840 	if (!si_fromuser(info))
841 		return 0;
842 
843 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
844 	if (error)
845 		return error;
846 
847 	if (!same_thread_group(current, t) &&
848 	    !kill_ok_by_cred(t)) {
849 		switch (sig) {
850 		case SIGCONT:
851 			sid = task_session(t);
852 			/*
853 			 * We don't return the error if sid == NULL. The
854 			 * task was unhashed, the caller must notice this.
855 			 */
856 			if (!sid || sid == task_session(current))
857 				break;
858 			fallthrough;
859 		default:
860 			return -EPERM;
861 		}
862 	}
863 
864 	return security_task_kill(t, info, sig, NULL);
865 }
866 
867 /**
868  * ptrace_trap_notify - schedule trap to notify ptracer
869  * @t: tracee wanting to notify tracer
870  *
871  * This function schedules sticky ptrace trap which is cleared on the next
872  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
873  * ptracer.
874  *
875  * If @t is running, STOP trap will be taken.  If trapped for STOP and
876  * ptracer is listening for events, tracee is woken up so that it can
877  * re-trap for the new event.  If trapped otherwise, STOP trap will be
878  * eventually taken without returning to userland after the existing traps
879  * are finished by PTRACE_CONT.
880  *
881  * CONTEXT:
882  * Must be called with @task->sighand->siglock held.
883  */
884 static void ptrace_trap_notify(struct task_struct *t)
885 {
886 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
887 	lockdep_assert_held(&t->sighand->siglock);
888 
889 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
890 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
891 }
892 
893 /*
894  * Handle magic process-wide effects of stop/continue signals. Unlike
895  * the signal actions, these happen immediately at signal-generation
896  * time regardless of blocking, ignoring, or handling.  This does the
897  * actual continuing for SIGCONT, but not the actual stopping for stop
898  * signals. The process stop is done as a signal action for SIG_DFL.
899  *
900  * Returns true if the signal should be actually delivered, otherwise
901  * it should be dropped.
902  */
903 static bool prepare_signal(int sig, struct task_struct *p, bool force)
904 {
905 	struct signal_struct *signal = p->signal;
906 	struct task_struct *t;
907 	sigset_t flush;
908 
909 	if (signal->flags & SIGNAL_GROUP_EXIT) {
910 		if (signal->core_state)
911 			return sig == SIGKILL;
912 		/*
913 		 * The process is in the middle of dying, drop the signal.
914 		 */
915 		return false;
916 	} else if (sig_kernel_stop(sig)) {
917 		/*
918 		 * This is a stop signal.  Remove SIGCONT from all queues.
919 		 */
920 		siginitset(&flush, sigmask(SIGCONT));
921 		flush_sigqueue_mask(&flush, &signal->shared_pending);
922 		for_each_thread(p, t)
923 			flush_sigqueue_mask(&flush, &t->pending);
924 	} else if (sig == SIGCONT) {
925 		unsigned int why;
926 		/*
927 		 * Remove all stop signals from all queues, wake all threads.
928 		 */
929 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
930 		flush_sigqueue_mask(&flush, &signal->shared_pending);
931 		for_each_thread(p, t) {
932 			flush_sigqueue_mask(&flush, &t->pending);
933 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
934 			if (likely(!(t->ptrace & PT_SEIZED))) {
935 				t->jobctl &= ~JOBCTL_STOPPED;
936 				wake_up_state(t, __TASK_STOPPED);
937 			} else
938 				ptrace_trap_notify(t);
939 		}
940 
941 		/*
942 		 * Notify the parent with CLD_CONTINUED if we were stopped.
943 		 *
944 		 * If we were in the middle of a group stop, we pretend it
945 		 * was already finished, and then continued. Since SIGCHLD
946 		 * doesn't queue we report only CLD_STOPPED, as if the next
947 		 * CLD_CONTINUED was dropped.
948 		 */
949 		why = 0;
950 		if (signal->flags & SIGNAL_STOP_STOPPED)
951 			why |= SIGNAL_CLD_CONTINUED;
952 		else if (signal->group_stop_count)
953 			why |= SIGNAL_CLD_STOPPED;
954 
955 		if (why) {
956 			/*
957 			 * The first thread which returns from do_signal_stop()
958 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
959 			 * notify its parent. See get_signal().
960 			 */
961 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
962 			signal->group_stop_count = 0;
963 			signal->group_exit_code = 0;
964 		}
965 	}
966 
967 	return !sig_ignored(p, sig, force);
968 }
969 
970 /*
971  * Test if P wants to take SIG.  After we've checked all threads with this,
972  * it's equivalent to finding no threads not blocking SIG.  Any threads not
973  * blocking SIG were ruled out because they are not running and already
974  * have pending signals.  Such threads will dequeue from the shared queue
975  * as soon as they're available, so putting the signal on the shared queue
976  * will be equivalent to sending it to one such thread.
977  */
978 static inline bool wants_signal(int sig, struct task_struct *p)
979 {
980 	if (sigismember(&p->blocked, sig))
981 		return false;
982 
983 	if (p->flags & PF_EXITING)
984 		return false;
985 
986 	if (sig == SIGKILL)
987 		return true;
988 
989 	if (task_is_stopped_or_traced(p))
990 		return false;
991 
992 	return task_curr(p) || !task_sigpending(p);
993 }
994 
995 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
996 {
997 	struct signal_struct *signal = p->signal;
998 	struct task_struct *t;
999 
1000 	/*
1001 	 * Now find a thread we can wake up to take the signal off the queue.
1002 	 *
1003 	 * Try the suggested task first (may or may not be the main thread).
1004 	 */
1005 	if (wants_signal(sig, p))
1006 		t = p;
1007 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1008 		/*
1009 		 * There is just one thread and it does not need to be woken.
1010 		 * It will dequeue unblocked signals before it runs again.
1011 		 */
1012 		return;
1013 	else {
1014 		/*
1015 		 * Otherwise try to find a suitable thread.
1016 		 */
1017 		t = signal->curr_target;
1018 		while (!wants_signal(sig, t)) {
1019 			t = next_thread(t);
1020 			if (t == signal->curr_target)
1021 				/*
1022 				 * No thread needs to be woken.
1023 				 * Any eligible threads will see
1024 				 * the signal in the queue soon.
1025 				 */
1026 				return;
1027 		}
1028 		signal->curr_target = t;
1029 	}
1030 
1031 	/*
1032 	 * Found a killable thread.  If the signal will be fatal,
1033 	 * then start taking the whole group down immediately.
1034 	 */
1035 	if (sig_fatal(p, sig) &&
1036 	    (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1037 	    !sigismember(&t->real_blocked, sig) &&
1038 	    (sig == SIGKILL || !p->ptrace)) {
1039 		/*
1040 		 * This signal will be fatal to the whole group.
1041 		 */
1042 		if (!sig_kernel_coredump(sig)) {
1043 			/*
1044 			 * Start a group exit and wake everybody up.
1045 			 * This way we don't have other threads
1046 			 * running and doing things after a slower
1047 			 * thread has the fatal signal pending.
1048 			 */
1049 			signal->flags = SIGNAL_GROUP_EXIT;
1050 			signal->group_exit_code = sig;
1051 			signal->group_stop_count = 0;
1052 			__for_each_thread(signal, t) {
1053 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1054 				sigaddset(&t->pending.signal, SIGKILL);
1055 				signal_wake_up(t, 1);
1056 			}
1057 			return;
1058 		}
1059 	}
1060 
1061 	/*
1062 	 * The signal is already in the shared-pending queue.
1063 	 * Tell the chosen thread to wake up and dequeue it.
1064 	 */
1065 	signal_wake_up(t, sig == SIGKILL);
1066 	return;
1067 }
1068 
1069 static inline bool legacy_queue(struct sigpending *signals, int sig)
1070 {
1071 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1072 }
1073 
1074 static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1075 				struct task_struct *t, enum pid_type type, bool force)
1076 {
1077 	struct sigpending *pending;
1078 	struct sigqueue *q;
1079 	int override_rlimit;
1080 	int ret = 0, result;
1081 
1082 	lockdep_assert_held(&t->sighand->siglock);
1083 
1084 	result = TRACE_SIGNAL_IGNORED;
1085 	if (!prepare_signal(sig, t, force))
1086 		goto ret;
1087 
1088 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1089 	/*
1090 	 * Short-circuit ignored signals and support queuing
1091 	 * exactly one non-rt signal, so that we can get more
1092 	 * detailed information about the cause of the signal.
1093 	 */
1094 	result = TRACE_SIGNAL_ALREADY_PENDING;
1095 	if (legacy_queue(pending, sig))
1096 		goto ret;
1097 
1098 	result = TRACE_SIGNAL_DELIVERED;
1099 	/*
1100 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1101 	 */
1102 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1103 		goto out_set;
1104 
1105 	/*
1106 	 * Real-time signals must be queued if sent by sigqueue, or
1107 	 * some other real-time mechanism.  It is implementation
1108 	 * defined whether kill() does so.  We attempt to do so, on
1109 	 * the principle of least surprise, but since kill is not
1110 	 * allowed to fail with EAGAIN when low on memory we just
1111 	 * make sure at least one signal gets delivered and don't
1112 	 * pass on the info struct.
1113 	 */
1114 	if (sig < SIGRTMIN)
1115 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1116 	else
1117 		override_rlimit = 0;
1118 
1119 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1120 
1121 	if (q) {
1122 		list_add_tail(&q->list, &pending->list);
1123 		switch ((unsigned long) info) {
1124 		case (unsigned long) SEND_SIG_NOINFO:
1125 			clear_siginfo(&q->info);
1126 			q->info.si_signo = sig;
1127 			q->info.si_errno = 0;
1128 			q->info.si_code = SI_USER;
1129 			q->info.si_pid = task_tgid_nr_ns(current,
1130 							task_active_pid_ns(t));
1131 			rcu_read_lock();
1132 			q->info.si_uid =
1133 				from_kuid_munged(task_cred_xxx(t, user_ns),
1134 						 current_uid());
1135 			rcu_read_unlock();
1136 			break;
1137 		case (unsigned long) SEND_SIG_PRIV:
1138 			clear_siginfo(&q->info);
1139 			q->info.si_signo = sig;
1140 			q->info.si_errno = 0;
1141 			q->info.si_code = SI_KERNEL;
1142 			q->info.si_pid = 0;
1143 			q->info.si_uid = 0;
1144 			break;
1145 		default:
1146 			copy_siginfo(&q->info, info);
1147 			break;
1148 		}
1149 	} else if (!is_si_special(info) &&
1150 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1151 		/*
1152 		 * Queue overflow, abort.  We may abort if the
1153 		 * signal was rt and sent by user using something
1154 		 * other than kill().
1155 		 */
1156 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1157 		ret = -EAGAIN;
1158 		goto ret;
1159 	} else {
1160 		/*
1161 		 * This is a silent loss of information.  We still
1162 		 * send the signal, but the *info bits are lost.
1163 		 */
1164 		result = TRACE_SIGNAL_LOSE_INFO;
1165 	}
1166 
1167 out_set:
1168 	signalfd_notify(t, sig);
1169 	sigaddset(&pending->signal, sig);
1170 
1171 	/* Let multiprocess signals appear after on-going forks */
1172 	if (type > PIDTYPE_TGID) {
1173 		struct multiprocess_signals *delayed;
1174 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1175 			sigset_t *signal = &delayed->signal;
1176 			/* Can't queue both a stop and a continue signal */
1177 			if (sig == SIGCONT)
1178 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1179 			else if (sig_kernel_stop(sig))
1180 				sigdelset(signal, SIGCONT);
1181 			sigaddset(signal, sig);
1182 		}
1183 	}
1184 
1185 	complete_signal(sig, t, type);
1186 ret:
1187 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1188 	return ret;
1189 }
1190 
1191 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1192 {
1193 	bool ret = false;
1194 	switch (siginfo_layout(info->si_signo, info->si_code)) {
1195 	case SIL_KILL:
1196 	case SIL_CHLD:
1197 	case SIL_RT:
1198 		ret = true;
1199 		break;
1200 	case SIL_TIMER:
1201 	case SIL_POLL:
1202 	case SIL_FAULT:
1203 	case SIL_FAULT_TRAPNO:
1204 	case SIL_FAULT_MCEERR:
1205 	case SIL_FAULT_BNDERR:
1206 	case SIL_FAULT_PKUERR:
1207 	case SIL_FAULT_PERF_EVENT:
1208 	case SIL_SYS:
1209 		ret = false;
1210 		break;
1211 	}
1212 	return ret;
1213 }
1214 
1215 int send_signal_locked(int sig, struct kernel_siginfo *info,
1216 		       struct task_struct *t, enum pid_type type)
1217 {
1218 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1219 	bool force = false;
1220 
1221 	if (info == SEND_SIG_NOINFO) {
1222 		/* Force if sent from an ancestor pid namespace */
1223 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1224 	} else if (info == SEND_SIG_PRIV) {
1225 		/* Don't ignore kernel generated signals */
1226 		force = true;
1227 	} else if (has_si_pid_and_uid(info)) {
1228 		/* SIGKILL and SIGSTOP is special or has ids */
1229 		struct user_namespace *t_user_ns;
1230 
1231 		rcu_read_lock();
1232 		t_user_ns = task_cred_xxx(t, user_ns);
1233 		if (current_user_ns() != t_user_ns) {
1234 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1235 			info->si_uid = from_kuid_munged(t_user_ns, uid);
1236 		}
1237 		rcu_read_unlock();
1238 
1239 		/* A kernel generated signal? */
1240 		force = (info->si_code == SI_KERNEL);
1241 
1242 		/* From an ancestor pid namespace? */
1243 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1244 			info->si_pid = 0;
1245 			force = true;
1246 		}
1247 	}
1248 	return __send_signal_locked(sig, info, t, type, force);
1249 }
1250 
1251 static void print_fatal_signal(int signr)
1252 {
1253 	struct pt_regs *regs = task_pt_regs(current);
1254 	struct file *exe_file;
1255 
1256 	exe_file = get_task_exe_file(current);
1257 	if (exe_file) {
1258 		pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
1259 			exe_file, current->comm, signr);
1260 		fput(exe_file);
1261 	} else {
1262 		pr_info("%s: potentially unexpected fatal signal %d.\n",
1263 			current->comm, signr);
1264 	}
1265 
1266 #if defined(__i386__) && !defined(__arch_um__)
1267 	pr_info("code at %08lx: ", regs->ip);
1268 	{
1269 		int i;
1270 		for (i = 0; i < 16; i++) {
1271 			unsigned char insn;
1272 
1273 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1274 				break;
1275 			pr_cont("%02x ", insn);
1276 		}
1277 	}
1278 	pr_cont("\n");
1279 #endif
1280 	preempt_disable();
1281 	show_regs(regs);
1282 	preempt_enable();
1283 }
1284 
1285 static int __init setup_print_fatal_signals(char *str)
1286 {
1287 	get_option (&str, &print_fatal_signals);
1288 
1289 	return 1;
1290 }
1291 
1292 __setup("print-fatal-signals=", setup_print_fatal_signals);
1293 
1294 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1295 			enum pid_type type)
1296 {
1297 	unsigned long flags;
1298 	int ret = -ESRCH;
1299 
1300 	if (lock_task_sighand(p, &flags)) {
1301 		ret = send_signal_locked(sig, info, p, type);
1302 		unlock_task_sighand(p, &flags);
1303 	}
1304 
1305 	return ret;
1306 }
1307 
1308 enum sig_handler {
1309 	HANDLER_CURRENT, /* If reachable use the current handler */
1310 	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1311 	HANDLER_EXIT,	 /* Only visible as the process exit code */
1312 };
1313 
1314 /*
1315  * Force a signal that the process can't ignore: if necessary
1316  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1317  *
1318  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1319  * since we do not want to have a signal handler that was blocked
1320  * be invoked when user space had explicitly blocked it.
1321  *
1322  * We don't want to have recursive SIGSEGV's etc, for example,
1323  * that is why we also clear SIGNAL_UNKILLABLE.
1324  */
1325 static int
1326 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1327 	enum sig_handler handler)
1328 {
1329 	unsigned long int flags;
1330 	int ret, blocked, ignored;
1331 	struct k_sigaction *action;
1332 	int sig = info->si_signo;
1333 
1334 	spin_lock_irqsave(&t->sighand->siglock, flags);
1335 	action = &t->sighand->action[sig-1];
1336 	ignored = action->sa.sa_handler == SIG_IGN;
1337 	blocked = sigismember(&t->blocked, sig);
1338 	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1339 		action->sa.sa_handler = SIG_DFL;
1340 		if (handler == HANDLER_EXIT)
1341 			action->sa.sa_flags |= SA_IMMUTABLE;
1342 		if (blocked)
1343 			sigdelset(&t->blocked, sig);
1344 	}
1345 	/*
1346 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1347 	 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1348 	 */
1349 	if (action->sa.sa_handler == SIG_DFL &&
1350 	    (!t->ptrace || (handler == HANDLER_EXIT)))
1351 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1352 	ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1353 	/* This can happen if the signal was already pending and blocked */
1354 	if (!task_sigpending(t))
1355 		signal_wake_up(t, 0);
1356 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1357 
1358 	return ret;
1359 }
1360 
1361 int force_sig_info(struct kernel_siginfo *info)
1362 {
1363 	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1364 }
1365 
1366 /*
1367  * Nuke all other threads in the group.
1368  */
1369 int zap_other_threads(struct task_struct *p)
1370 {
1371 	struct task_struct *t;
1372 	int count = 0;
1373 
1374 	p->signal->group_stop_count = 0;
1375 
1376 	for_other_threads(p, t) {
1377 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1378 		/* Don't require de_thread to wait for the vhost_worker */
1379 		if ((t->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)
1380 			count++;
1381 
1382 		/* Don't bother with already dead threads */
1383 		if (t->exit_state)
1384 			continue;
1385 		sigaddset(&t->pending.signal, SIGKILL);
1386 		signal_wake_up(t, 1);
1387 	}
1388 
1389 	return count;
1390 }
1391 
1392 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1393 					   unsigned long *flags)
1394 {
1395 	struct sighand_struct *sighand;
1396 
1397 	rcu_read_lock();
1398 	for (;;) {
1399 		sighand = rcu_dereference(tsk->sighand);
1400 		if (unlikely(sighand == NULL))
1401 			break;
1402 
1403 		/*
1404 		 * This sighand can be already freed and even reused, but
1405 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1406 		 * initializes ->siglock: this slab can't go away, it has
1407 		 * the same object type, ->siglock can't be reinitialized.
1408 		 *
1409 		 * We need to ensure that tsk->sighand is still the same
1410 		 * after we take the lock, we can race with de_thread() or
1411 		 * __exit_signal(). In the latter case the next iteration
1412 		 * must see ->sighand == NULL.
1413 		 */
1414 		spin_lock_irqsave(&sighand->siglock, *flags);
1415 		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1416 			break;
1417 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1418 	}
1419 	rcu_read_unlock();
1420 
1421 	return sighand;
1422 }
1423 
1424 #ifdef CONFIG_LOCKDEP
1425 void lockdep_assert_task_sighand_held(struct task_struct *task)
1426 {
1427 	struct sighand_struct *sighand;
1428 
1429 	rcu_read_lock();
1430 	sighand = rcu_dereference(task->sighand);
1431 	if (sighand)
1432 		lockdep_assert_held(&sighand->siglock);
1433 	else
1434 		WARN_ON_ONCE(1);
1435 	rcu_read_unlock();
1436 }
1437 #endif
1438 
1439 /*
1440  * send signal info to all the members of a thread group or to the
1441  * individual thread if type == PIDTYPE_PID.
1442  */
1443 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1444 			struct task_struct *p, enum pid_type type)
1445 {
1446 	int ret;
1447 
1448 	rcu_read_lock();
1449 	ret = check_kill_permission(sig, info, p);
1450 	rcu_read_unlock();
1451 
1452 	if (!ret && sig)
1453 		ret = do_send_sig_info(sig, info, p, type);
1454 
1455 	return ret;
1456 }
1457 
1458 /*
1459  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1460  * control characters do (^C, ^Z etc)
1461  * - the caller must hold at least a readlock on tasklist_lock
1462  */
1463 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1464 {
1465 	struct task_struct *p = NULL;
1466 	int ret = -ESRCH;
1467 
1468 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1469 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1470 		/*
1471 		 * If group_send_sig_info() succeeds at least once ret
1472 		 * becomes 0 and after that the code below has no effect.
1473 		 * Otherwise we return the last err or -ESRCH if this
1474 		 * process group is empty.
1475 		 */
1476 		if (ret)
1477 			ret = err;
1478 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1479 
1480 	return ret;
1481 }
1482 
1483 static int kill_pid_info_type(int sig, struct kernel_siginfo *info,
1484 				struct pid *pid, enum pid_type type)
1485 {
1486 	int error = -ESRCH;
1487 	struct task_struct *p;
1488 
1489 	for (;;) {
1490 		rcu_read_lock();
1491 		p = pid_task(pid, PIDTYPE_PID);
1492 		if (p)
1493 			error = group_send_sig_info(sig, info, p, type);
1494 		rcu_read_unlock();
1495 		if (likely(!p || error != -ESRCH))
1496 			return error;
1497 		/*
1498 		 * The task was unhashed in between, try again.  If it
1499 		 * is dead, pid_task() will return NULL, if we race with
1500 		 * de_thread() it will find the new leader.
1501 		 */
1502 	}
1503 }
1504 
1505 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1506 {
1507 	return kill_pid_info_type(sig, info, pid, PIDTYPE_TGID);
1508 }
1509 
1510 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1511 {
1512 	int error;
1513 	rcu_read_lock();
1514 	error = kill_pid_info(sig, info, find_vpid(pid));
1515 	rcu_read_unlock();
1516 	return error;
1517 }
1518 
1519 static inline bool kill_as_cred_perm(const struct cred *cred,
1520 				     struct task_struct *target)
1521 {
1522 	const struct cred *pcred = __task_cred(target);
1523 
1524 	return uid_eq(cred->euid, pcred->suid) ||
1525 	       uid_eq(cred->euid, pcred->uid) ||
1526 	       uid_eq(cred->uid, pcred->suid) ||
1527 	       uid_eq(cred->uid, pcred->uid);
1528 }
1529 
1530 /*
1531  * The usb asyncio usage of siginfo is wrong.  The glibc support
1532  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1533  * AKA after the generic fields:
1534  *	kernel_pid_t	si_pid;
1535  *	kernel_uid32_t	si_uid;
1536  *	sigval_t	si_value;
1537  *
1538  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1539  * after the generic fields is:
1540  *	void __user 	*si_addr;
1541  *
1542  * This is a practical problem when there is a 64bit big endian kernel
1543  * and a 32bit userspace.  As the 32bit address will encoded in the low
1544  * 32bits of the pointer.  Those low 32bits will be stored at higher
1545  * address than appear in a 32 bit pointer.  So userspace will not
1546  * see the address it was expecting for it's completions.
1547  *
1548  * There is nothing in the encoding that can allow
1549  * copy_siginfo_to_user32 to detect this confusion of formats, so
1550  * handle this by requiring the caller of kill_pid_usb_asyncio to
1551  * notice when this situration takes place and to store the 32bit
1552  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1553  * parameter.
1554  */
1555 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1556 			 struct pid *pid, const struct cred *cred)
1557 {
1558 	struct kernel_siginfo info;
1559 	struct task_struct *p;
1560 	unsigned long flags;
1561 	int ret = -EINVAL;
1562 
1563 	if (!valid_signal(sig))
1564 		return ret;
1565 
1566 	clear_siginfo(&info);
1567 	info.si_signo = sig;
1568 	info.si_errno = errno;
1569 	info.si_code = SI_ASYNCIO;
1570 	*((sigval_t *)&info.si_pid) = addr;
1571 
1572 	rcu_read_lock();
1573 	p = pid_task(pid, PIDTYPE_PID);
1574 	if (!p) {
1575 		ret = -ESRCH;
1576 		goto out_unlock;
1577 	}
1578 	if (!kill_as_cred_perm(cred, p)) {
1579 		ret = -EPERM;
1580 		goto out_unlock;
1581 	}
1582 	ret = security_task_kill(p, &info, sig, cred);
1583 	if (ret)
1584 		goto out_unlock;
1585 
1586 	if (sig) {
1587 		if (lock_task_sighand(p, &flags)) {
1588 			ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1589 			unlock_task_sighand(p, &flags);
1590 		} else
1591 			ret = -ESRCH;
1592 	}
1593 out_unlock:
1594 	rcu_read_unlock();
1595 	return ret;
1596 }
1597 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1598 
1599 /*
1600  * kill_something_info() interprets pid in interesting ways just like kill(2).
1601  *
1602  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1603  * is probably wrong.  Should make it like BSD or SYSV.
1604  */
1605 
1606 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1607 {
1608 	int ret;
1609 
1610 	if (pid > 0)
1611 		return kill_proc_info(sig, info, pid);
1612 
1613 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1614 	if (pid == INT_MIN)
1615 		return -ESRCH;
1616 
1617 	read_lock(&tasklist_lock);
1618 	if (pid != -1) {
1619 		ret = __kill_pgrp_info(sig, info,
1620 				pid ? find_vpid(-pid) : task_pgrp(current));
1621 	} else {
1622 		int retval = 0, count = 0;
1623 		struct task_struct * p;
1624 
1625 		for_each_process(p) {
1626 			if (task_pid_vnr(p) > 1 &&
1627 					!same_thread_group(p, current)) {
1628 				int err = group_send_sig_info(sig, info, p,
1629 							      PIDTYPE_MAX);
1630 				++count;
1631 				if (err != -EPERM)
1632 					retval = err;
1633 			}
1634 		}
1635 		ret = count ? retval : -ESRCH;
1636 	}
1637 	read_unlock(&tasklist_lock);
1638 
1639 	return ret;
1640 }
1641 
1642 /*
1643  * These are for backward compatibility with the rest of the kernel source.
1644  */
1645 
1646 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1647 {
1648 	/*
1649 	 * Make sure legacy kernel users don't send in bad values
1650 	 * (normal paths check this in check_kill_permission).
1651 	 */
1652 	if (!valid_signal(sig))
1653 		return -EINVAL;
1654 
1655 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1656 }
1657 EXPORT_SYMBOL(send_sig_info);
1658 
1659 #define __si_special(priv) \
1660 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1661 
1662 int
1663 send_sig(int sig, struct task_struct *p, int priv)
1664 {
1665 	return send_sig_info(sig, __si_special(priv), p);
1666 }
1667 EXPORT_SYMBOL(send_sig);
1668 
1669 void force_sig(int sig)
1670 {
1671 	struct kernel_siginfo info;
1672 
1673 	clear_siginfo(&info);
1674 	info.si_signo = sig;
1675 	info.si_errno = 0;
1676 	info.si_code = SI_KERNEL;
1677 	info.si_pid = 0;
1678 	info.si_uid = 0;
1679 	force_sig_info(&info);
1680 }
1681 EXPORT_SYMBOL(force_sig);
1682 
1683 void force_fatal_sig(int sig)
1684 {
1685 	struct kernel_siginfo info;
1686 
1687 	clear_siginfo(&info);
1688 	info.si_signo = sig;
1689 	info.si_errno = 0;
1690 	info.si_code = SI_KERNEL;
1691 	info.si_pid = 0;
1692 	info.si_uid = 0;
1693 	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1694 }
1695 
1696 void force_exit_sig(int sig)
1697 {
1698 	struct kernel_siginfo info;
1699 
1700 	clear_siginfo(&info);
1701 	info.si_signo = sig;
1702 	info.si_errno = 0;
1703 	info.si_code = SI_KERNEL;
1704 	info.si_pid = 0;
1705 	info.si_uid = 0;
1706 	force_sig_info_to_task(&info, current, HANDLER_EXIT);
1707 }
1708 
1709 /*
1710  * When things go south during signal handling, we
1711  * will force a SIGSEGV. And if the signal that caused
1712  * the problem was already a SIGSEGV, we'll want to
1713  * make sure we don't even try to deliver the signal..
1714  */
1715 void force_sigsegv(int sig)
1716 {
1717 	if (sig == SIGSEGV)
1718 		force_fatal_sig(SIGSEGV);
1719 	else
1720 		force_sig(SIGSEGV);
1721 }
1722 
1723 int force_sig_fault_to_task(int sig, int code, void __user *addr,
1724 			    struct task_struct *t)
1725 {
1726 	struct kernel_siginfo info;
1727 
1728 	clear_siginfo(&info);
1729 	info.si_signo = sig;
1730 	info.si_errno = 0;
1731 	info.si_code  = code;
1732 	info.si_addr  = addr;
1733 	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1734 }
1735 
1736 int force_sig_fault(int sig, int code, void __user *addr)
1737 {
1738 	return force_sig_fault_to_task(sig, code, addr, current);
1739 }
1740 
1741 int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t)
1742 {
1743 	struct kernel_siginfo info;
1744 
1745 	clear_siginfo(&info);
1746 	info.si_signo = sig;
1747 	info.si_errno = 0;
1748 	info.si_code  = code;
1749 	info.si_addr  = addr;
1750 	return send_sig_info(info.si_signo, &info, t);
1751 }
1752 
1753 int force_sig_mceerr(int code, void __user *addr, short lsb)
1754 {
1755 	struct kernel_siginfo info;
1756 
1757 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1758 	clear_siginfo(&info);
1759 	info.si_signo = SIGBUS;
1760 	info.si_errno = 0;
1761 	info.si_code = code;
1762 	info.si_addr = addr;
1763 	info.si_addr_lsb = lsb;
1764 	return force_sig_info(&info);
1765 }
1766 
1767 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1768 {
1769 	struct kernel_siginfo info;
1770 
1771 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1772 	clear_siginfo(&info);
1773 	info.si_signo = SIGBUS;
1774 	info.si_errno = 0;
1775 	info.si_code = code;
1776 	info.si_addr = addr;
1777 	info.si_addr_lsb = lsb;
1778 	return send_sig_info(info.si_signo, &info, t);
1779 }
1780 EXPORT_SYMBOL(send_sig_mceerr);
1781 
1782 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1783 {
1784 	struct kernel_siginfo info;
1785 
1786 	clear_siginfo(&info);
1787 	info.si_signo = SIGSEGV;
1788 	info.si_errno = 0;
1789 	info.si_code  = SEGV_BNDERR;
1790 	info.si_addr  = addr;
1791 	info.si_lower = lower;
1792 	info.si_upper = upper;
1793 	return force_sig_info(&info);
1794 }
1795 
1796 #ifdef SEGV_PKUERR
1797 int force_sig_pkuerr(void __user *addr, u32 pkey)
1798 {
1799 	struct kernel_siginfo info;
1800 
1801 	clear_siginfo(&info);
1802 	info.si_signo = SIGSEGV;
1803 	info.si_errno = 0;
1804 	info.si_code  = SEGV_PKUERR;
1805 	info.si_addr  = addr;
1806 	info.si_pkey  = pkey;
1807 	return force_sig_info(&info);
1808 }
1809 #endif
1810 
1811 int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1812 {
1813 	struct kernel_siginfo info;
1814 
1815 	clear_siginfo(&info);
1816 	info.si_signo     = SIGTRAP;
1817 	info.si_errno     = 0;
1818 	info.si_code      = TRAP_PERF;
1819 	info.si_addr      = addr;
1820 	info.si_perf_data = sig_data;
1821 	info.si_perf_type = type;
1822 
1823 	/*
1824 	 * Signals generated by perf events should not terminate the whole
1825 	 * process if SIGTRAP is blocked, however, delivering the signal
1826 	 * asynchronously is better than not delivering at all. But tell user
1827 	 * space if the signal was asynchronous, so it can clearly be
1828 	 * distinguished from normal synchronous ones.
1829 	 */
1830 	info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
1831 				     TRAP_PERF_FLAG_ASYNC :
1832 				     0;
1833 
1834 	return send_sig_info(info.si_signo, &info, current);
1835 }
1836 
1837 /**
1838  * force_sig_seccomp - signals the task to allow in-process syscall emulation
1839  * @syscall: syscall number to send to userland
1840  * @reason: filter-supplied reason code to send to userland (via si_errno)
1841  * @force_coredump: true to trigger a coredump
1842  *
1843  * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1844  */
1845 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1846 {
1847 	struct kernel_siginfo info;
1848 
1849 	clear_siginfo(&info);
1850 	info.si_signo = SIGSYS;
1851 	info.si_code = SYS_SECCOMP;
1852 	info.si_call_addr = (void __user *)KSTK_EIP(current);
1853 	info.si_errno = reason;
1854 	info.si_arch = syscall_get_arch(current);
1855 	info.si_syscall = syscall;
1856 	return force_sig_info_to_task(&info, current,
1857 		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1858 }
1859 
1860 /* For the crazy architectures that include trap information in
1861  * the errno field, instead of an actual errno value.
1862  */
1863 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1864 {
1865 	struct kernel_siginfo info;
1866 
1867 	clear_siginfo(&info);
1868 	info.si_signo = SIGTRAP;
1869 	info.si_errno = errno;
1870 	info.si_code  = TRAP_HWBKPT;
1871 	info.si_addr  = addr;
1872 	return force_sig_info(&info);
1873 }
1874 
1875 /* For the rare architectures that include trap information using
1876  * si_trapno.
1877  */
1878 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1879 {
1880 	struct kernel_siginfo info;
1881 
1882 	clear_siginfo(&info);
1883 	info.si_signo = sig;
1884 	info.si_errno = 0;
1885 	info.si_code  = code;
1886 	info.si_addr  = addr;
1887 	info.si_trapno = trapno;
1888 	return force_sig_info(&info);
1889 }
1890 
1891 /* For the rare architectures that include trap information using
1892  * si_trapno.
1893  */
1894 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1895 			  struct task_struct *t)
1896 {
1897 	struct kernel_siginfo info;
1898 
1899 	clear_siginfo(&info);
1900 	info.si_signo = sig;
1901 	info.si_errno = 0;
1902 	info.si_code  = code;
1903 	info.si_addr  = addr;
1904 	info.si_trapno = trapno;
1905 	return send_sig_info(info.si_signo, &info, t);
1906 }
1907 
1908 static int kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1909 {
1910 	int ret;
1911 	read_lock(&tasklist_lock);
1912 	ret = __kill_pgrp_info(sig, info, pgrp);
1913 	read_unlock(&tasklist_lock);
1914 	return ret;
1915 }
1916 
1917 int kill_pgrp(struct pid *pid, int sig, int priv)
1918 {
1919 	return kill_pgrp_info(sig, __si_special(priv), pid);
1920 }
1921 EXPORT_SYMBOL(kill_pgrp);
1922 
1923 int kill_pid(struct pid *pid, int sig, int priv)
1924 {
1925 	return kill_pid_info(sig, __si_special(priv), pid);
1926 }
1927 EXPORT_SYMBOL(kill_pid);
1928 
1929 /*
1930  * These functions support sending signals using preallocated sigqueue
1931  * structures.  This is needed "because realtime applications cannot
1932  * afford to lose notifications of asynchronous events, like timer
1933  * expirations or I/O completions".  In the case of POSIX Timers
1934  * we allocate the sigqueue structure from the timer_create.  If this
1935  * allocation fails we are able to report the failure to the application
1936  * with an EAGAIN error.
1937  */
1938 struct sigqueue *sigqueue_alloc(void)
1939 {
1940 	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1941 }
1942 
1943 void sigqueue_free(struct sigqueue *q)
1944 {
1945 	unsigned long flags;
1946 	spinlock_t *lock = &current->sighand->siglock;
1947 
1948 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1949 	/*
1950 	 * We must hold ->siglock while testing q->list
1951 	 * to serialize with collect_signal() or with
1952 	 * __exit_signal()->flush_sigqueue().
1953 	 */
1954 	spin_lock_irqsave(lock, flags);
1955 	q->flags &= ~SIGQUEUE_PREALLOC;
1956 	/*
1957 	 * If it is queued it will be freed when dequeued,
1958 	 * like the "regular" sigqueue.
1959 	 */
1960 	if (!list_empty(&q->list))
1961 		q = NULL;
1962 	spin_unlock_irqrestore(lock, flags);
1963 
1964 	if (q)
1965 		__sigqueue_free(q);
1966 }
1967 
1968 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1969 {
1970 	int sig = q->info.si_signo;
1971 	struct sigpending *pending;
1972 	struct task_struct *t;
1973 	unsigned long flags;
1974 	int ret, result;
1975 
1976 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1977 
1978 	ret = -1;
1979 	rcu_read_lock();
1980 
1981 	/*
1982 	 * This function is used by POSIX timers to deliver a timer signal.
1983 	 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1984 	 * set), the signal must be delivered to the specific thread (queues
1985 	 * into t->pending).
1986 	 *
1987 	 * Where type is not PIDTYPE_PID, signals must be delivered to the
1988 	 * process. In this case, prefer to deliver to current if it is in
1989 	 * the same thread group as the target process, which avoids
1990 	 * unnecessarily waking up a potentially idle task.
1991 	 */
1992 	t = pid_task(pid, type);
1993 	if (!t)
1994 		goto ret;
1995 	if (type != PIDTYPE_PID && same_thread_group(t, current))
1996 		t = current;
1997 	if (!likely(lock_task_sighand(t, &flags)))
1998 		goto ret;
1999 
2000 	ret = 1; /* the signal is ignored */
2001 	result = TRACE_SIGNAL_IGNORED;
2002 	if (!prepare_signal(sig, t, false))
2003 		goto out;
2004 
2005 	ret = 0;
2006 	if (unlikely(!list_empty(&q->list))) {
2007 		/*
2008 		 * If an SI_TIMER entry is already queue just increment
2009 		 * the overrun count.
2010 		 */
2011 		BUG_ON(q->info.si_code != SI_TIMER);
2012 		q->info.si_overrun++;
2013 		result = TRACE_SIGNAL_ALREADY_PENDING;
2014 		goto out;
2015 	}
2016 	q->info.si_overrun = 0;
2017 
2018 	signalfd_notify(t, sig);
2019 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
2020 	list_add_tail(&q->list, &pending->list);
2021 	sigaddset(&pending->signal, sig);
2022 	complete_signal(sig, t, type);
2023 	result = TRACE_SIGNAL_DELIVERED;
2024 out:
2025 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2026 	unlock_task_sighand(t, &flags);
2027 ret:
2028 	rcu_read_unlock();
2029 	return ret;
2030 }
2031 
2032 void do_notify_pidfd(struct task_struct *task)
2033 {
2034 	struct pid *pid = task_pid(task);
2035 
2036 	WARN_ON(task->exit_state == 0);
2037 
2038 	__wake_up(&pid->wait_pidfd, TASK_NORMAL, 0,
2039 			poll_to_key(EPOLLIN | EPOLLRDNORM));
2040 }
2041 
2042 /*
2043  * Let a parent know about the death of a child.
2044  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2045  *
2046  * Returns true if our parent ignored us and so we've switched to
2047  * self-reaping.
2048  */
2049 bool do_notify_parent(struct task_struct *tsk, int sig)
2050 {
2051 	struct kernel_siginfo info;
2052 	unsigned long flags;
2053 	struct sighand_struct *psig;
2054 	bool autoreap = false;
2055 	u64 utime, stime;
2056 
2057 	WARN_ON_ONCE(sig == -1);
2058 
2059 	/* do_notify_parent_cldstop should have been called instead.  */
2060 	WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2061 
2062 	WARN_ON_ONCE(!tsk->ptrace &&
2063 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2064 	/*
2065 	 * tsk is a group leader and has no threads, wake up the
2066 	 * non-PIDFD_THREAD waiters.
2067 	 */
2068 	if (thread_group_empty(tsk))
2069 		do_notify_pidfd(tsk);
2070 
2071 	if (sig != SIGCHLD) {
2072 		/*
2073 		 * This is only possible if parent == real_parent.
2074 		 * Check if it has changed security domain.
2075 		 */
2076 		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2077 			sig = SIGCHLD;
2078 	}
2079 
2080 	clear_siginfo(&info);
2081 	info.si_signo = sig;
2082 	info.si_errno = 0;
2083 	/*
2084 	 * We are under tasklist_lock here so our parent is tied to
2085 	 * us and cannot change.
2086 	 *
2087 	 * task_active_pid_ns will always return the same pid namespace
2088 	 * until a task passes through release_task.
2089 	 *
2090 	 * write_lock() currently calls preempt_disable() which is the
2091 	 * same as rcu_read_lock(), but according to Oleg, this is not
2092 	 * correct to rely on this
2093 	 */
2094 	rcu_read_lock();
2095 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2096 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2097 				       task_uid(tsk));
2098 	rcu_read_unlock();
2099 
2100 	task_cputime(tsk, &utime, &stime);
2101 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2102 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2103 
2104 	info.si_status = tsk->exit_code & 0x7f;
2105 	if (tsk->exit_code & 0x80)
2106 		info.si_code = CLD_DUMPED;
2107 	else if (tsk->exit_code & 0x7f)
2108 		info.si_code = CLD_KILLED;
2109 	else {
2110 		info.si_code = CLD_EXITED;
2111 		info.si_status = tsk->exit_code >> 8;
2112 	}
2113 
2114 	psig = tsk->parent->sighand;
2115 	spin_lock_irqsave(&psig->siglock, flags);
2116 	if (!tsk->ptrace && sig == SIGCHLD &&
2117 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2118 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2119 		/*
2120 		 * We are exiting and our parent doesn't care.  POSIX.1
2121 		 * defines special semantics for setting SIGCHLD to SIG_IGN
2122 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2123 		 * automatically and not left for our parent's wait4 call.
2124 		 * Rather than having the parent do it as a magic kind of
2125 		 * signal handler, we just set this to tell do_exit that we
2126 		 * can be cleaned up without becoming a zombie.  Note that
2127 		 * we still call __wake_up_parent in this case, because a
2128 		 * blocked sys_wait4 might now return -ECHILD.
2129 		 *
2130 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2131 		 * is implementation-defined: we do (if you don't want
2132 		 * it, just use SIG_IGN instead).
2133 		 */
2134 		autoreap = true;
2135 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2136 			sig = 0;
2137 	}
2138 	/*
2139 	 * Send with __send_signal as si_pid and si_uid are in the
2140 	 * parent's namespaces.
2141 	 */
2142 	if (valid_signal(sig) && sig)
2143 		__send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2144 	__wake_up_parent(tsk, tsk->parent);
2145 	spin_unlock_irqrestore(&psig->siglock, flags);
2146 
2147 	return autoreap;
2148 }
2149 
2150 /**
2151  * do_notify_parent_cldstop - notify parent of stopped/continued state change
2152  * @tsk: task reporting the state change
2153  * @for_ptracer: the notification is for ptracer
2154  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2155  *
2156  * Notify @tsk's parent that the stopped/continued state has changed.  If
2157  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2158  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2159  *
2160  * CONTEXT:
2161  * Must be called with tasklist_lock at least read locked.
2162  */
2163 static void do_notify_parent_cldstop(struct task_struct *tsk,
2164 				     bool for_ptracer, int why)
2165 {
2166 	struct kernel_siginfo info;
2167 	unsigned long flags;
2168 	struct task_struct *parent;
2169 	struct sighand_struct *sighand;
2170 	u64 utime, stime;
2171 
2172 	if (for_ptracer) {
2173 		parent = tsk->parent;
2174 	} else {
2175 		tsk = tsk->group_leader;
2176 		parent = tsk->real_parent;
2177 	}
2178 
2179 	clear_siginfo(&info);
2180 	info.si_signo = SIGCHLD;
2181 	info.si_errno = 0;
2182 	/*
2183 	 * see comment in do_notify_parent() about the following 4 lines
2184 	 */
2185 	rcu_read_lock();
2186 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2187 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2188 	rcu_read_unlock();
2189 
2190 	task_cputime(tsk, &utime, &stime);
2191 	info.si_utime = nsec_to_clock_t(utime);
2192 	info.si_stime = nsec_to_clock_t(stime);
2193 
2194  	info.si_code = why;
2195  	switch (why) {
2196  	case CLD_CONTINUED:
2197  		info.si_status = SIGCONT;
2198  		break;
2199  	case CLD_STOPPED:
2200  		info.si_status = tsk->signal->group_exit_code & 0x7f;
2201  		break;
2202  	case CLD_TRAPPED:
2203  		info.si_status = tsk->exit_code & 0x7f;
2204  		break;
2205  	default:
2206  		BUG();
2207  	}
2208 
2209 	sighand = parent->sighand;
2210 	spin_lock_irqsave(&sighand->siglock, flags);
2211 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2212 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2213 		send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2214 	/*
2215 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2216 	 */
2217 	__wake_up_parent(tsk, parent);
2218 	spin_unlock_irqrestore(&sighand->siglock, flags);
2219 }
2220 
2221 /*
2222  * This must be called with current->sighand->siglock held.
2223  *
2224  * This should be the path for all ptrace stops.
2225  * We always set current->last_siginfo while stopped here.
2226  * That makes it a way to test a stopped process for
2227  * being ptrace-stopped vs being job-control-stopped.
2228  *
2229  * Returns the signal the ptracer requested the code resume
2230  * with.  If the code did not stop because the tracer is gone,
2231  * the stop signal remains unchanged unless clear_code.
2232  */
2233 static int ptrace_stop(int exit_code, int why, unsigned long message,
2234 		       kernel_siginfo_t *info)
2235 	__releases(&current->sighand->siglock)
2236 	__acquires(&current->sighand->siglock)
2237 {
2238 	bool gstop_done = false;
2239 
2240 	if (arch_ptrace_stop_needed()) {
2241 		/*
2242 		 * The arch code has something special to do before a
2243 		 * ptrace stop.  This is allowed to block, e.g. for faults
2244 		 * on user stack pages.  We can't keep the siglock while
2245 		 * calling arch_ptrace_stop, so we must release it now.
2246 		 * To preserve proper semantics, we must do this before
2247 		 * any signal bookkeeping like checking group_stop_count.
2248 		 */
2249 		spin_unlock_irq(&current->sighand->siglock);
2250 		arch_ptrace_stop();
2251 		spin_lock_irq(&current->sighand->siglock);
2252 	}
2253 
2254 	/*
2255 	 * After this point ptrace_signal_wake_up or signal_wake_up
2256 	 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2257 	 * signal comes in.  Handle previous ptrace_unlinks and fatal
2258 	 * signals here to prevent ptrace_stop sleeping in schedule.
2259 	 */
2260 	if (!current->ptrace || __fatal_signal_pending(current))
2261 		return exit_code;
2262 
2263 	set_special_state(TASK_TRACED);
2264 	current->jobctl |= JOBCTL_TRACED;
2265 
2266 	/*
2267 	 * We're committing to trapping.  TRACED should be visible before
2268 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2269 	 * Also, transition to TRACED and updates to ->jobctl should be
2270 	 * atomic with respect to siglock and should be done after the arch
2271 	 * hook as siglock is released and regrabbed across it.
2272 	 *
2273 	 *     TRACER				    TRACEE
2274 	 *
2275 	 *     ptrace_attach()
2276 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2277 	 *     do_wait()
2278 	 *       set_current_state()                smp_wmb();
2279 	 *       ptrace_do_wait()
2280 	 *         wait_task_stopped()
2281 	 *           task_stopped_code()
2282 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2283 	 */
2284 	smp_wmb();
2285 
2286 	current->ptrace_message = message;
2287 	current->last_siginfo = info;
2288 	current->exit_code = exit_code;
2289 
2290 	/*
2291 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2292 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2293 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2294 	 * could be clear now.  We act as if SIGCONT is received after
2295 	 * TASK_TRACED is entered - ignore it.
2296 	 */
2297 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2298 		gstop_done = task_participate_group_stop(current);
2299 
2300 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2301 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2302 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2303 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2304 
2305 	/* entering a trap, clear TRAPPING */
2306 	task_clear_jobctl_trapping(current);
2307 
2308 	spin_unlock_irq(&current->sighand->siglock);
2309 	read_lock(&tasklist_lock);
2310 	/*
2311 	 * Notify parents of the stop.
2312 	 *
2313 	 * While ptraced, there are two parents - the ptracer and
2314 	 * the real_parent of the group_leader.  The ptracer should
2315 	 * know about every stop while the real parent is only
2316 	 * interested in the completion of group stop.  The states
2317 	 * for the two don't interact with each other.  Notify
2318 	 * separately unless they're gonna be duplicates.
2319 	 */
2320 	if (current->ptrace)
2321 		do_notify_parent_cldstop(current, true, why);
2322 	if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2323 		do_notify_parent_cldstop(current, false, why);
2324 
2325 	/*
2326 	 * The previous do_notify_parent_cldstop() invocation woke ptracer.
2327 	 * One a PREEMPTION kernel this can result in preemption requirement
2328 	 * which will be fulfilled after read_unlock() and the ptracer will be
2329 	 * put on the CPU.
2330 	 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for
2331 	 * this task wait in schedule(). If this task gets preempted then it
2332 	 * remains enqueued on the runqueue. The ptracer will observe this and
2333 	 * then sleep for a delay of one HZ tick. In the meantime this task
2334 	 * gets scheduled, enters schedule() and will wait for the ptracer.
2335 	 *
2336 	 * This preemption point is not bad from a correctness point of
2337 	 * view but extends the runtime by one HZ tick time due to the
2338 	 * ptracer's sleep.  The preempt-disable section ensures that there
2339 	 * will be no preemption between unlock and schedule() and so
2340 	 * improving the performance since the ptracer will observe that
2341 	 * the tracee is scheduled out once it gets on the CPU.
2342 	 *
2343 	 * On PREEMPT_RT locking tasklist_lock does not disable preemption.
2344 	 * Therefore the task can be preempted after do_notify_parent_cldstop()
2345 	 * before unlocking tasklist_lock so there is no benefit in doing this.
2346 	 *
2347 	 * In fact disabling preemption is harmful on PREEMPT_RT because
2348 	 * the spinlock_t in cgroup_enter_frozen() must not be acquired
2349 	 * with preemption disabled due to the 'sleeping' spinlock
2350 	 * substitution of RT.
2351 	 */
2352 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2353 		preempt_disable();
2354 	read_unlock(&tasklist_lock);
2355 	cgroup_enter_frozen();
2356 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2357 		preempt_enable_no_resched();
2358 	schedule();
2359 	cgroup_leave_frozen(true);
2360 
2361 	/*
2362 	 * We are back.  Now reacquire the siglock before touching
2363 	 * last_siginfo, so that we are sure to have synchronized with
2364 	 * any signal-sending on another CPU that wants to examine it.
2365 	 */
2366 	spin_lock_irq(&current->sighand->siglock);
2367 	exit_code = current->exit_code;
2368 	current->last_siginfo = NULL;
2369 	current->ptrace_message = 0;
2370 	current->exit_code = 0;
2371 
2372 	/* LISTENING can be set only during STOP traps, clear it */
2373 	current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2374 
2375 	/*
2376 	 * Queued signals ignored us while we were stopped for tracing.
2377 	 * So check for any that we should take before resuming user mode.
2378 	 * This sets TIF_SIGPENDING, but never clears it.
2379 	 */
2380 	recalc_sigpending_tsk(current);
2381 	return exit_code;
2382 }
2383 
2384 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2385 {
2386 	kernel_siginfo_t info;
2387 
2388 	clear_siginfo(&info);
2389 	info.si_signo = signr;
2390 	info.si_code = exit_code;
2391 	info.si_pid = task_pid_vnr(current);
2392 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2393 
2394 	/* Let the debugger run.  */
2395 	return ptrace_stop(exit_code, why, message, &info);
2396 }
2397 
2398 int ptrace_notify(int exit_code, unsigned long message)
2399 {
2400 	int signr;
2401 
2402 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2403 	if (unlikely(task_work_pending(current)))
2404 		task_work_run();
2405 
2406 	spin_lock_irq(&current->sighand->siglock);
2407 	signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2408 	spin_unlock_irq(&current->sighand->siglock);
2409 	return signr;
2410 }
2411 
2412 /**
2413  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2414  * @signr: signr causing group stop if initiating
2415  *
2416  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2417  * and participate in it.  If already set, participate in the existing
2418  * group stop.  If participated in a group stop (and thus slept), %true is
2419  * returned with siglock released.
2420  *
2421  * If ptraced, this function doesn't handle stop itself.  Instead,
2422  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2423  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2424  * places afterwards.
2425  *
2426  * CONTEXT:
2427  * Must be called with @current->sighand->siglock held, which is released
2428  * on %true return.
2429  *
2430  * RETURNS:
2431  * %false if group stop is already cancelled or ptrace trap is scheduled.
2432  * %true if participated in group stop.
2433  */
2434 static bool do_signal_stop(int signr)
2435 	__releases(&current->sighand->siglock)
2436 {
2437 	struct signal_struct *sig = current->signal;
2438 
2439 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2440 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2441 		struct task_struct *t;
2442 
2443 		/* signr will be recorded in task->jobctl for retries */
2444 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2445 
2446 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2447 		    unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2448 		    unlikely(sig->group_exec_task))
2449 			return false;
2450 		/*
2451 		 * There is no group stop already in progress.  We must
2452 		 * initiate one now.
2453 		 *
2454 		 * While ptraced, a task may be resumed while group stop is
2455 		 * still in effect and then receive a stop signal and
2456 		 * initiate another group stop.  This deviates from the
2457 		 * usual behavior as two consecutive stop signals can't
2458 		 * cause two group stops when !ptraced.  That is why we
2459 		 * also check !task_is_stopped(t) below.
2460 		 *
2461 		 * The condition can be distinguished by testing whether
2462 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2463 		 * group_exit_code in such case.
2464 		 *
2465 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2466 		 * an intervening stop signal is required to cause two
2467 		 * continued events regardless of ptrace.
2468 		 */
2469 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2470 			sig->group_exit_code = signr;
2471 
2472 		sig->group_stop_count = 0;
2473 		if (task_set_jobctl_pending(current, signr | gstop))
2474 			sig->group_stop_count++;
2475 
2476 		for_other_threads(current, t) {
2477 			/*
2478 			 * Setting state to TASK_STOPPED for a group
2479 			 * stop is always done with the siglock held,
2480 			 * so this check has no races.
2481 			 */
2482 			if (!task_is_stopped(t) &&
2483 			    task_set_jobctl_pending(t, signr | gstop)) {
2484 				sig->group_stop_count++;
2485 				if (likely(!(t->ptrace & PT_SEIZED)))
2486 					signal_wake_up(t, 0);
2487 				else
2488 					ptrace_trap_notify(t);
2489 			}
2490 		}
2491 	}
2492 
2493 	if (likely(!current->ptrace)) {
2494 		int notify = 0;
2495 
2496 		/*
2497 		 * If there are no other threads in the group, or if there
2498 		 * is a group stop in progress and we are the last to stop,
2499 		 * report to the parent.
2500 		 */
2501 		if (task_participate_group_stop(current))
2502 			notify = CLD_STOPPED;
2503 
2504 		current->jobctl |= JOBCTL_STOPPED;
2505 		set_special_state(TASK_STOPPED);
2506 		spin_unlock_irq(&current->sighand->siglock);
2507 
2508 		/*
2509 		 * Notify the parent of the group stop completion.  Because
2510 		 * we're not holding either the siglock or tasklist_lock
2511 		 * here, ptracer may attach inbetween; however, this is for
2512 		 * group stop and should always be delivered to the real
2513 		 * parent of the group leader.  The new ptracer will get
2514 		 * its notification when this task transitions into
2515 		 * TASK_TRACED.
2516 		 */
2517 		if (notify) {
2518 			read_lock(&tasklist_lock);
2519 			do_notify_parent_cldstop(current, false, notify);
2520 			read_unlock(&tasklist_lock);
2521 		}
2522 
2523 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2524 		cgroup_enter_frozen();
2525 		schedule();
2526 		return true;
2527 	} else {
2528 		/*
2529 		 * While ptraced, group stop is handled by STOP trap.
2530 		 * Schedule it and let the caller deal with it.
2531 		 */
2532 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2533 		return false;
2534 	}
2535 }
2536 
2537 /**
2538  * do_jobctl_trap - take care of ptrace jobctl traps
2539  *
2540  * When PT_SEIZED, it's used for both group stop and explicit
2541  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2542  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2543  * the stop signal; otherwise, %SIGTRAP.
2544  *
2545  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2546  * number as exit_code and no siginfo.
2547  *
2548  * CONTEXT:
2549  * Must be called with @current->sighand->siglock held, which may be
2550  * released and re-acquired before returning with intervening sleep.
2551  */
2552 static void do_jobctl_trap(void)
2553 {
2554 	struct signal_struct *signal = current->signal;
2555 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2556 
2557 	if (current->ptrace & PT_SEIZED) {
2558 		if (!signal->group_stop_count &&
2559 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2560 			signr = SIGTRAP;
2561 		WARN_ON_ONCE(!signr);
2562 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2563 				 CLD_STOPPED, 0);
2564 	} else {
2565 		WARN_ON_ONCE(!signr);
2566 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2567 	}
2568 }
2569 
2570 /**
2571  * do_freezer_trap - handle the freezer jobctl trap
2572  *
2573  * Puts the task into frozen state, if only the task is not about to quit.
2574  * In this case it drops JOBCTL_TRAP_FREEZE.
2575  *
2576  * CONTEXT:
2577  * Must be called with @current->sighand->siglock held,
2578  * which is always released before returning.
2579  */
2580 static void do_freezer_trap(void)
2581 	__releases(&current->sighand->siglock)
2582 {
2583 	/*
2584 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2585 	 * let's make another loop to give it a chance to be handled.
2586 	 * In any case, we'll return back.
2587 	 */
2588 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2589 	     JOBCTL_TRAP_FREEZE) {
2590 		spin_unlock_irq(&current->sighand->siglock);
2591 		return;
2592 	}
2593 
2594 	/*
2595 	 * Now we're sure that there is no pending fatal signal and no
2596 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2597 	 * immediately (if there is a non-fatal signal pending), and
2598 	 * put the task into sleep.
2599 	 */
2600 	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2601 	clear_thread_flag(TIF_SIGPENDING);
2602 	spin_unlock_irq(&current->sighand->siglock);
2603 	cgroup_enter_frozen();
2604 	schedule();
2605 }
2606 
2607 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2608 {
2609 	/*
2610 	 * We do not check sig_kernel_stop(signr) but set this marker
2611 	 * unconditionally because we do not know whether debugger will
2612 	 * change signr. This flag has no meaning unless we are going
2613 	 * to stop after return from ptrace_stop(). In this case it will
2614 	 * be checked in do_signal_stop(), we should only stop if it was
2615 	 * not cleared by SIGCONT while we were sleeping. See also the
2616 	 * comment in dequeue_signal().
2617 	 */
2618 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2619 	signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2620 
2621 	/* We're back.  Did the debugger cancel the sig?  */
2622 	if (signr == 0)
2623 		return signr;
2624 
2625 	/*
2626 	 * Update the siginfo structure if the signal has
2627 	 * changed.  If the debugger wanted something
2628 	 * specific in the siginfo structure then it should
2629 	 * have updated *info via PTRACE_SETSIGINFO.
2630 	 */
2631 	if (signr != info->si_signo) {
2632 		clear_siginfo(info);
2633 		info->si_signo = signr;
2634 		info->si_errno = 0;
2635 		info->si_code = SI_USER;
2636 		rcu_read_lock();
2637 		info->si_pid = task_pid_vnr(current->parent);
2638 		info->si_uid = from_kuid_munged(current_user_ns(),
2639 						task_uid(current->parent));
2640 		rcu_read_unlock();
2641 	}
2642 
2643 	/* If the (new) signal is now blocked, requeue it.  */
2644 	if (sigismember(&current->blocked, signr) ||
2645 	    fatal_signal_pending(current)) {
2646 		send_signal_locked(signr, info, current, type);
2647 		signr = 0;
2648 	}
2649 
2650 	return signr;
2651 }
2652 
2653 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2654 {
2655 	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2656 	case SIL_FAULT:
2657 	case SIL_FAULT_TRAPNO:
2658 	case SIL_FAULT_MCEERR:
2659 	case SIL_FAULT_BNDERR:
2660 	case SIL_FAULT_PKUERR:
2661 	case SIL_FAULT_PERF_EVENT:
2662 		ksig->info.si_addr = arch_untagged_si_addr(
2663 			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2664 		break;
2665 	case SIL_KILL:
2666 	case SIL_TIMER:
2667 	case SIL_POLL:
2668 	case SIL_CHLD:
2669 	case SIL_RT:
2670 	case SIL_SYS:
2671 		break;
2672 	}
2673 }
2674 
2675 bool get_signal(struct ksignal *ksig)
2676 {
2677 	struct sighand_struct *sighand = current->sighand;
2678 	struct signal_struct *signal = current->signal;
2679 	int signr;
2680 
2681 	clear_notify_signal();
2682 	if (unlikely(task_work_pending(current)))
2683 		task_work_run();
2684 
2685 	if (!task_sigpending(current))
2686 		return false;
2687 
2688 	if (unlikely(uprobe_deny_signal()))
2689 		return false;
2690 
2691 	/*
2692 	 * Do this once, we can't return to user-mode if freezing() == T.
2693 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2694 	 * thus do not need another check after return.
2695 	 */
2696 	try_to_freeze();
2697 
2698 relock:
2699 	spin_lock_irq(&sighand->siglock);
2700 
2701 	/*
2702 	 * Every stopped thread goes here after wakeup. Check to see if
2703 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2704 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2705 	 */
2706 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2707 		int why;
2708 
2709 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2710 			why = CLD_CONTINUED;
2711 		else
2712 			why = CLD_STOPPED;
2713 
2714 		signal->flags &= ~SIGNAL_CLD_MASK;
2715 
2716 		spin_unlock_irq(&sighand->siglock);
2717 
2718 		/*
2719 		 * Notify the parent that we're continuing.  This event is
2720 		 * always per-process and doesn't make whole lot of sense
2721 		 * for ptracers, who shouldn't consume the state via
2722 		 * wait(2) either, but, for backward compatibility, notify
2723 		 * the ptracer of the group leader too unless it's gonna be
2724 		 * a duplicate.
2725 		 */
2726 		read_lock(&tasklist_lock);
2727 		do_notify_parent_cldstop(current, false, why);
2728 
2729 		if (ptrace_reparented(current->group_leader))
2730 			do_notify_parent_cldstop(current->group_leader,
2731 						true, why);
2732 		read_unlock(&tasklist_lock);
2733 
2734 		goto relock;
2735 	}
2736 
2737 	for (;;) {
2738 		struct k_sigaction *ka;
2739 		enum pid_type type;
2740 
2741 		/* Has this task already been marked for death? */
2742 		if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2743 		     signal->group_exec_task) {
2744 			clear_siginfo(&ksig->info);
2745 			ksig->info.si_signo = signr = SIGKILL;
2746 			sigdelset(&current->pending.signal, SIGKILL);
2747 			trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2748 				&sighand->action[SIGKILL - 1]);
2749 			recalc_sigpending();
2750 			goto fatal;
2751 		}
2752 
2753 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2754 		    do_signal_stop(0))
2755 			goto relock;
2756 
2757 		if (unlikely(current->jobctl &
2758 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2759 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2760 				do_jobctl_trap();
2761 				spin_unlock_irq(&sighand->siglock);
2762 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2763 				do_freezer_trap();
2764 
2765 			goto relock;
2766 		}
2767 
2768 		/*
2769 		 * If the task is leaving the frozen state, let's update
2770 		 * cgroup counters and reset the frozen bit.
2771 		 */
2772 		if (unlikely(cgroup_task_frozen(current))) {
2773 			spin_unlock_irq(&sighand->siglock);
2774 			cgroup_leave_frozen(false);
2775 			goto relock;
2776 		}
2777 
2778 		/*
2779 		 * Signals generated by the execution of an instruction
2780 		 * need to be delivered before any other pending signals
2781 		 * so that the instruction pointer in the signal stack
2782 		 * frame points to the faulting instruction.
2783 		 */
2784 		type = PIDTYPE_PID;
2785 		signr = dequeue_synchronous_signal(&ksig->info);
2786 		if (!signr)
2787 			signr = dequeue_signal(current, &current->blocked,
2788 					       &ksig->info, &type);
2789 
2790 		if (!signr)
2791 			break; /* will return 0 */
2792 
2793 		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2794 		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2795 			signr = ptrace_signal(signr, &ksig->info, type);
2796 			if (!signr)
2797 				continue;
2798 		}
2799 
2800 		ka = &sighand->action[signr-1];
2801 
2802 		/* Trace actually delivered signals. */
2803 		trace_signal_deliver(signr, &ksig->info, ka);
2804 
2805 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2806 			continue;
2807 		if (ka->sa.sa_handler != SIG_DFL) {
2808 			/* Run the handler.  */
2809 			ksig->ka = *ka;
2810 
2811 			if (ka->sa.sa_flags & SA_ONESHOT)
2812 				ka->sa.sa_handler = SIG_DFL;
2813 
2814 			break; /* will return non-zero "signr" value */
2815 		}
2816 
2817 		/*
2818 		 * Now we are doing the default action for this signal.
2819 		 */
2820 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2821 			continue;
2822 
2823 		/*
2824 		 * Global init gets no signals it doesn't want.
2825 		 * Container-init gets no signals it doesn't want from same
2826 		 * container.
2827 		 *
2828 		 * Note that if global/container-init sees a sig_kernel_only()
2829 		 * signal here, the signal must have been generated internally
2830 		 * or must have come from an ancestor namespace. In either
2831 		 * case, the signal cannot be dropped.
2832 		 */
2833 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2834 				!sig_kernel_only(signr))
2835 			continue;
2836 
2837 		if (sig_kernel_stop(signr)) {
2838 			/*
2839 			 * The default action is to stop all threads in
2840 			 * the thread group.  The job control signals
2841 			 * do nothing in an orphaned pgrp, but SIGSTOP
2842 			 * always works.  Note that siglock needs to be
2843 			 * dropped during the call to is_orphaned_pgrp()
2844 			 * because of lock ordering with tasklist_lock.
2845 			 * This allows an intervening SIGCONT to be posted.
2846 			 * We need to check for that and bail out if necessary.
2847 			 */
2848 			if (signr != SIGSTOP) {
2849 				spin_unlock_irq(&sighand->siglock);
2850 
2851 				/* signals can be posted during this window */
2852 
2853 				if (is_current_pgrp_orphaned())
2854 					goto relock;
2855 
2856 				spin_lock_irq(&sighand->siglock);
2857 			}
2858 
2859 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2860 				/* It released the siglock.  */
2861 				goto relock;
2862 			}
2863 
2864 			/*
2865 			 * We didn't actually stop, due to a race
2866 			 * with SIGCONT or something like that.
2867 			 */
2868 			continue;
2869 		}
2870 
2871 	fatal:
2872 		spin_unlock_irq(&sighand->siglock);
2873 		if (unlikely(cgroup_task_frozen(current)))
2874 			cgroup_leave_frozen(true);
2875 
2876 		/*
2877 		 * Anything else is fatal, maybe with a core dump.
2878 		 */
2879 		current->flags |= PF_SIGNALED;
2880 
2881 		if (sig_kernel_coredump(signr)) {
2882 			if (print_fatal_signals)
2883 				print_fatal_signal(ksig->info.si_signo);
2884 			proc_coredump_connector(current);
2885 			/*
2886 			 * If it was able to dump core, this kills all
2887 			 * other threads in the group and synchronizes with
2888 			 * their demise.  If we lost the race with another
2889 			 * thread getting here, it set group_exit_code
2890 			 * first and our do_group_exit call below will use
2891 			 * that value and ignore the one we pass it.
2892 			 */
2893 			do_coredump(&ksig->info);
2894 		}
2895 
2896 		/*
2897 		 * PF_USER_WORKER threads will catch and exit on fatal signals
2898 		 * themselves. They have cleanup that must be performed, so
2899 		 * we cannot call do_exit() on their behalf.
2900 		 */
2901 		if (current->flags & PF_USER_WORKER)
2902 			goto out;
2903 
2904 		/*
2905 		 * Death signals, no core dump.
2906 		 */
2907 		do_group_exit(ksig->info.si_signo);
2908 		/* NOTREACHED */
2909 	}
2910 	spin_unlock_irq(&sighand->siglock);
2911 out:
2912 	ksig->sig = signr;
2913 
2914 	if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2915 		hide_si_addr_tag_bits(ksig);
2916 
2917 	return ksig->sig > 0;
2918 }
2919 
2920 /**
2921  * signal_delivered - called after signal delivery to update blocked signals
2922  * @ksig:		kernel signal struct
2923  * @stepping:		nonzero if debugger single-step or block-step in use
2924  *
2925  * This function should be called when a signal has successfully been
2926  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2927  * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2928  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2929  */
2930 static void signal_delivered(struct ksignal *ksig, int stepping)
2931 {
2932 	sigset_t blocked;
2933 
2934 	/* A signal was successfully delivered, and the
2935 	   saved sigmask was stored on the signal frame,
2936 	   and will be restored by sigreturn.  So we can
2937 	   simply clear the restore sigmask flag.  */
2938 	clear_restore_sigmask();
2939 
2940 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2941 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2942 		sigaddset(&blocked, ksig->sig);
2943 	set_current_blocked(&blocked);
2944 	if (current->sas_ss_flags & SS_AUTODISARM)
2945 		sas_ss_reset(current);
2946 	if (stepping)
2947 		ptrace_notify(SIGTRAP, 0);
2948 }
2949 
2950 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2951 {
2952 	if (failed)
2953 		force_sigsegv(ksig->sig);
2954 	else
2955 		signal_delivered(ksig, stepping);
2956 }
2957 
2958 /*
2959  * It could be that complete_signal() picked us to notify about the
2960  * group-wide signal. Other threads should be notified now to take
2961  * the shared signals in @which since we will not.
2962  */
2963 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2964 {
2965 	sigset_t retarget;
2966 	struct task_struct *t;
2967 
2968 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2969 	if (sigisemptyset(&retarget))
2970 		return;
2971 
2972 	for_other_threads(tsk, t) {
2973 		if (t->flags & PF_EXITING)
2974 			continue;
2975 
2976 		if (!has_pending_signals(&retarget, &t->blocked))
2977 			continue;
2978 		/* Remove the signals this thread can handle. */
2979 		sigandsets(&retarget, &retarget, &t->blocked);
2980 
2981 		if (!task_sigpending(t))
2982 			signal_wake_up(t, 0);
2983 
2984 		if (sigisemptyset(&retarget))
2985 			break;
2986 	}
2987 }
2988 
2989 void exit_signals(struct task_struct *tsk)
2990 {
2991 	int group_stop = 0;
2992 	sigset_t unblocked;
2993 
2994 	/*
2995 	 * @tsk is about to have PF_EXITING set - lock out users which
2996 	 * expect stable threadgroup.
2997 	 */
2998 	cgroup_threadgroup_change_begin(tsk);
2999 
3000 	if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
3001 		sched_mm_cid_exit_signals(tsk);
3002 		tsk->flags |= PF_EXITING;
3003 		cgroup_threadgroup_change_end(tsk);
3004 		return;
3005 	}
3006 
3007 	spin_lock_irq(&tsk->sighand->siglock);
3008 	/*
3009 	 * From now this task is not visible for group-wide signals,
3010 	 * see wants_signal(), do_signal_stop().
3011 	 */
3012 	sched_mm_cid_exit_signals(tsk);
3013 	tsk->flags |= PF_EXITING;
3014 
3015 	cgroup_threadgroup_change_end(tsk);
3016 
3017 	if (!task_sigpending(tsk))
3018 		goto out;
3019 
3020 	unblocked = tsk->blocked;
3021 	signotset(&unblocked);
3022 	retarget_shared_pending(tsk, &unblocked);
3023 
3024 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3025 	    task_participate_group_stop(tsk))
3026 		group_stop = CLD_STOPPED;
3027 out:
3028 	spin_unlock_irq(&tsk->sighand->siglock);
3029 
3030 	/*
3031 	 * If group stop has completed, deliver the notification.  This
3032 	 * should always go to the real parent of the group leader.
3033 	 */
3034 	if (unlikely(group_stop)) {
3035 		read_lock(&tasklist_lock);
3036 		do_notify_parent_cldstop(tsk, false, group_stop);
3037 		read_unlock(&tasklist_lock);
3038 	}
3039 }
3040 
3041 /*
3042  * System call entry points.
3043  */
3044 
3045 /**
3046  *  sys_restart_syscall - restart a system call
3047  */
3048 SYSCALL_DEFINE0(restart_syscall)
3049 {
3050 	struct restart_block *restart = &current->restart_block;
3051 	return restart->fn(restart);
3052 }
3053 
3054 long do_no_restart_syscall(struct restart_block *param)
3055 {
3056 	return -EINTR;
3057 }
3058 
3059 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3060 {
3061 	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3062 		sigset_t newblocked;
3063 		/* A set of now blocked but previously unblocked signals. */
3064 		sigandnsets(&newblocked, newset, &current->blocked);
3065 		retarget_shared_pending(tsk, &newblocked);
3066 	}
3067 	tsk->blocked = *newset;
3068 	recalc_sigpending();
3069 }
3070 
3071 /**
3072  * set_current_blocked - change current->blocked mask
3073  * @newset: new mask
3074  *
3075  * It is wrong to change ->blocked directly, this helper should be used
3076  * to ensure the process can't miss a shared signal we are going to block.
3077  */
3078 void set_current_blocked(sigset_t *newset)
3079 {
3080 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3081 	__set_current_blocked(newset);
3082 }
3083 
3084 void __set_current_blocked(const sigset_t *newset)
3085 {
3086 	struct task_struct *tsk = current;
3087 
3088 	/*
3089 	 * In case the signal mask hasn't changed, there is nothing we need
3090 	 * to do. The current->blocked shouldn't be modified by other task.
3091 	 */
3092 	if (sigequalsets(&tsk->blocked, newset))
3093 		return;
3094 
3095 	spin_lock_irq(&tsk->sighand->siglock);
3096 	__set_task_blocked(tsk, newset);
3097 	spin_unlock_irq(&tsk->sighand->siglock);
3098 }
3099 
3100 /*
3101  * This is also useful for kernel threads that want to temporarily
3102  * (or permanently) block certain signals.
3103  *
3104  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3105  * interface happily blocks "unblockable" signals like SIGKILL
3106  * and friends.
3107  */
3108 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3109 {
3110 	struct task_struct *tsk = current;
3111 	sigset_t newset;
3112 
3113 	/* Lockless, only current can change ->blocked, never from irq */
3114 	if (oldset)
3115 		*oldset = tsk->blocked;
3116 
3117 	switch (how) {
3118 	case SIG_BLOCK:
3119 		sigorsets(&newset, &tsk->blocked, set);
3120 		break;
3121 	case SIG_UNBLOCK:
3122 		sigandnsets(&newset, &tsk->blocked, set);
3123 		break;
3124 	case SIG_SETMASK:
3125 		newset = *set;
3126 		break;
3127 	default:
3128 		return -EINVAL;
3129 	}
3130 
3131 	__set_current_blocked(&newset);
3132 	return 0;
3133 }
3134 EXPORT_SYMBOL(sigprocmask);
3135 
3136 /*
3137  * The api helps set app-provided sigmasks.
3138  *
3139  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3140  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3141  *
3142  * Note that it does set_restore_sigmask() in advance, so it must be always
3143  * paired with restore_saved_sigmask_unless() before return from syscall.
3144  */
3145 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3146 {
3147 	sigset_t kmask;
3148 
3149 	if (!umask)
3150 		return 0;
3151 	if (sigsetsize != sizeof(sigset_t))
3152 		return -EINVAL;
3153 	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3154 		return -EFAULT;
3155 
3156 	set_restore_sigmask();
3157 	current->saved_sigmask = current->blocked;
3158 	set_current_blocked(&kmask);
3159 
3160 	return 0;
3161 }
3162 
3163 #ifdef CONFIG_COMPAT
3164 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3165 			    size_t sigsetsize)
3166 {
3167 	sigset_t kmask;
3168 
3169 	if (!umask)
3170 		return 0;
3171 	if (sigsetsize != sizeof(compat_sigset_t))
3172 		return -EINVAL;
3173 	if (get_compat_sigset(&kmask, umask))
3174 		return -EFAULT;
3175 
3176 	set_restore_sigmask();
3177 	current->saved_sigmask = current->blocked;
3178 	set_current_blocked(&kmask);
3179 
3180 	return 0;
3181 }
3182 #endif
3183 
3184 /**
3185  *  sys_rt_sigprocmask - change the list of currently blocked signals
3186  *  @how: whether to add, remove, or set signals
3187  *  @nset: stores pending signals
3188  *  @oset: previous value of signal mask if non-null
3189  *  @sigsetsize: size of sigset_t type
3190  */
3191 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3192 		sigset_t __user *, oset, size_t, sigsetsize)
3193 {
3194 	sigset_t old_set, new_set;
3195 	int error;
3196 
3197 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3198 	if (sigsetsize != sizeof(sigset_t))
3199 		return -EINVAL;
3200 
3201 	old_set = current->blocked;
3202 
3203 	if (nset) {
3204 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3205 			return -EFAULT;
3206 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3207 
3208 		error = sigprocmask(how, &new_set, NULL);
3209 		if (error)
3210 			return error;
3211 	}
3212 
3213 	if (oset) {
3214 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3215 			return -EFAULT;
3216 	}
3217 
3218 	return 0;
3219 }
3220 
3221 #ifdef CONFIG_COMPAT
3222 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3223 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3224 {
3225 	sigset_t old_set = current->blocked;
3226 
3227 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3228 	if (sigsetsize != sizeof(sigset_t))
3229 		return -EINVAL;
3230 
3231 	if (nset) {
3232 		sigset_t new_set;
3233 		int error;
3234 		if (get_compat_sigset(&new_set, nset))
3235 			return -EFAULT;
3236 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3237 
3238 		error = sigprocmask(how, &new_set, NULL);
3239 		if (error)
3240 			return error;
3241 	}
3242 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3243 }
3244 #endif
3245 
3246 static void do_sigpending(sigset_t *set)
3247 {
3248 	spin_lock_irq(&current->sighand->siglock);
3249 	sigorsets(set, &current->pending.signal,
3250 		  &current->signal->shared_pending.signal);
3251 	spin_unlock_irq(&current->sighand->siglock);
3252 
3253 	/* Outside the lock because only this thread touches it.  */
3254 	sigandsets(set, &current->blocked, set);
3255 }
3256 
3257 /**
3258  *  sys_rt_sigpending - examine a pending signal that has been raised
3259  *			while blocked
3260  *  @uset: stores pending signals
3261  *  @sigsetsize: size of sigset_t type or larger
3262  */
3263 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3264 {
3265 	sigset_t set;
3266 
3267 	if (sigsetsize > sizeof(*uset))
3268 		return -EINVAL;
3269 
3270 	do_sigpending(&set);
3271 
3272 	if (copy_to_user(uset, &set, sigsetsize))
3273 		return -EFAULT;
3274 
3275 	return 0;
3276 }
3277 
3278 #ifdef CONFIG_COMPAT
3279 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3280 		compat_size_t, sigsetsize)
3281 {
3282 	sigset_t set;
3283 
3284 	if (sigsetsize > sizeof(*uset))
3285 		return -EINVAL;
3286 
3287 	do_sigpending(&set);
3288 
3289 	return put_compat_sigset(uset, &set, sigsetsize);
3290 }
3291 #endif
3292 
3293 static const struct {
3294 	unsigned char limit, layout;
3295 } sig_sicodes[] = {
3296 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3297 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3298 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3299 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3300 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3301 #if defined(SIGEMT)
3302 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3303 #endif
3304 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3305 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3306 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3307 };
3308 
3309 static bool known_siginfo_layout(unsigned sig, int si_code)
3310 {
3311 	if (si_code == SI_KERNEL)
3312 		return true;
3313 	else if ((si_code > SI_USER)) {
3314 		if (sig_specific_sicodes(sig)) {
3315 			if (si_code <= sig_sicodes[sig].limit)
3316 				return true;
3317 		}
3318 		else if (si_code <= NSIGPOLL)
3319 			return true;
3320 	}
3321 	else if (si_code >= SI_DETHREAD)
3322 		return true;
3323 	else if (si_code == SI_ASYNCNL)
3324 		return true;
3325 	return false;
3326 }
3327 
3328 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3329 {
3330 	enum siginfo_layout layout = SIL_KILL;
3331 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3332 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3333 		    (si_code <= sig_sicodes[sig].limit)) {
3334 			layout = sig_sicodes[sig].layout;
3335 			/* Handle the exceptions */
3336 			if ((sig == SIGBUS) &&
3337 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3338 				layout = SIL_FAULT_MCEERR;
3339 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3340 				layout = SIL_FAULT_BNDERR;
3341 #ifdef SEGV_PKUERR
3342 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3343 				layout = SIL_FAULT_PKUERR;
3344 #endif
3345 			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3346 				layout = SIL_FAULT_PERF_EVENT;
3347 			else if (IS_ENABLED(CONFIG_SPARC) &&
3348 				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3349 				layout = SIL_FAULT_TRAPNO;
3350 			else if (IS_ENABLED(CONFIG_ALPHA) &&
3351 				 ((sig == SIGFPE) ||
3352 				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3353 				layout = SIL_FAULT_TRAPNO;
3354 		}
3355 		else if (si_code <= NSIGPOLL)
3356 			layout = SIL_POLL;
3357 	} else {
3358 		if (si_code == SI_TIMER)
3359 			layout = SIL_TIMER;
3360 		else if (si_code == SI_SIGIO)
3361 			layout = SIL_POLL;
3362 		else if (si_code < 0)
3363 			layout = SIL_RT;
3364 	}
3365 	return layout;
3366 }
3367 
3368 static inline char __user *si_expansion(const siginfo_t __user *info)
3369 {
3370 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3371 }
3372 
3373 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3374 {
3375 	char __user *expansion = si_expansion(to);
3376 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3377 		return -EFAULT;
3378 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3379 		return -EFAULT;
3380 	return 0;
3381 }
3382 
3383 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3384 				       const siginfo_t __user *from)
3385 {
3386 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3387 		char __user *expansion = si_expansion(from);
3388 		char buf[SI_EXPANSION_SIZE];
3389 		int i;
3390 		/*
3391 		 * An unknown si_code might need more than
3392 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3393 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3394 		 * will return this data to userspace exactly.
3395 		 */
3396 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3397 			return -EFAULT;
3398 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3399 			if (buf[i] != 0)
3400 				return -E2BIG;
3401 		}
3402 	}
3403 	return 0;
3404 }
3405 
3406 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3407 				    const siginfo_t __user *from)
3408 {
3409 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3410 		return -EFAULT;
3411 	to->si_signo = signo;
3412 	return post_copy_siginfo_from_user(to, from);
3413 }
3414 
3415 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3416 {
3417 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3418 		return -EFAULT;
3419 	return post_copy_siginfo_from_user(to, from);
3420 }
3421 
3422 #ifdef CONFIG_COMPAT
3423 /**
3424  * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3425  * @to: compat siginfo destination
3426  * @from: kernel siginfo source
3427  *
3428  * Note: This function does not work properly for the SIGCHLD on x32, but
3429  * fortunately it doesn't have to.  The only valid callers for this function are
3430  * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3431  * The latter does not care because SIGCHLD will never cause a coredump.
3432  */
3433 void copy_siginfo_to_external32(struct compat_siginfo *to,
3434 		const struct kernel_siginfo *from)
3435 {
3436 	memset(to, 0, sizeof(*to));
3437 
3438 	to->si_signo = from->si_signo;
3439 	to->si_errno = from->si_errno;
3440 	to->si_code  = from->si_code;
3441 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3442 	case SIL_KILL:
3443 		to->si_pid = from->si_pid;
3444 		to->si_uid = from->si_uid;
3445 		break;
3446 	case SIL_TIMER:
3447 		to->si_tid     = from->si_tid;
3448 		to->si_overrun = from->si_overrun;
3449 		to->si_int     = from->si_int;
3450 		break;
3451 	case SIL_POLL:
3452 		to->si_band = from->si_band;
3453 		to->si_fd   = from->si_fd;
3454 		break;
3455 	case SIL_FAULT:
3456 		to->si_addr = ptr_to_compat(from->si_addr);
3457 		break;
3458 	case SIL_FAULT_TRAPNO:
3459 		to->si_addr = ptr_to_compat(from->si_addr);
3460 		to->si_trapno = from->si_trapno;
3461 		break;
3462 	case SIL_FAULT_MCEERR:
3463 		to->si_addr = ptr_to_compat(from->si_addr);
3464 		to->si_addr_lsb = from->si_addr_lsb;
3465 		break;
3466 	case SIL_FAULT_BNDERR:
3467 		to->si_addr = ptr_to_compat(from->si_addr);
3468 		to->si_lower = ptr_to_compat(from->si_lower);
3469 		to->si_upper = ptr_to_compat(from->si_upper);
3470 		break;
3471 	case SIL_FAULT_PKUERR:
3472 		to->si_addr = ptr_to_compat(from->si_addr);
3473 		to->si_pkey = from->si_pkey;
3474 		break;
3475 	case SIL_FAULT_PERF_EVENT:
3476 		to->si_addr = ptr_to_compat(from->si_addr);
3477 		to->si_perf_data = from->si_perf_data;
3478 		to->si_perf_type = from->si_perf_type;
3479 		to->si_perf_flags = from->si_perf_flags;
3480 		break;
3481 	case SIL_CHLD:
3482 		to->si_pid = from->si_pid;
3483 		to->si_uid = from->si_uid;
3484 		to->si_status = from->si_status;
3485 		to->si_utime = from->si_utime;
3486 		to->si_stime = from->si_stime;
3487 		break;
3488 	case SIL_RT:
3489 		to->si_pid = from->si_pid;
3490 		to->si_uid = from->si_uid;
3491 		to->si_int = from->si_int;
3492 		break;
3493 	case SIL_SYS:
3494 		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3495 		to->si_syscall   = from->si_syscall;
3496 		to->si_arch      = from->si_arch;
3497 		break;
3498 	}
3499 }
3500 
3501 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3502 			   const struct kernel_siginfo *from)
3503 {
3504 	struct compat_siginfo new;
3505 
3506 	copy_siginfo_to_external32(&new, from);
3507 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3508 		return -EFAULT;
3509 	return 0;
3510 }
3511 
3512 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3513 					 const struct compat_siginfo *from)
3514 {
3515 	clear_siginfo(to);
3516 	to->si_signo = from->si_signo;
3517 	to->si_errno = from->si_errno;
3518 	to->si_code  = from->si_code;
3519 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3520 	case SIL_KILL:
3521 		to->si_pid = from->si_pid;
3522 		to->si_uid = from->si_uid;
3523 		break;
3524 	case SIL_TIMER:
3525 		to->si_tid     = from->si_tid;
3526 		to->si_overrun = from->si_overrun;
3527 		to->si_int     = from->si_int;
3528 		break;
3529 	case SIL_POLL:
3530 		to->si_band = from->si_band;
3531 		to->si_fd   = from->si_fd;
3532 		break;
3533 	case SIL_FAULT:
3534 		to->si_addr = compat_ptr(from->si_addr);
3535 		break;
3536 	case SIL_FAULT_TRAPNO:
3537 		to->si_addr = compat_ptr(from->si_addr);
3538 		to->si_trapno = from->si_trapno;
3539 		break;
3540 	case SIL_FAULT_MCEERR:
3541 		to->si_addr = compat_ptr(from->si_addr);
3542 		to->si_addr_lsb = from->si_addr_lsb;
3543 		break;
3544 	case SIL_FAULT_BNDERR:
3545 		to->si_addr = compat_ptr(from->si_addr);
3546 		to->si_lower = compat_ptr(from->si_lower);
3547 		to->si_upper = compat_ptr(from->si_upper);
3548 		break;
3549 	case SIL_FAULT_PKUERR:
3550 		to->si_addr = compat_ptr(from->si_addr);
3551 		to->si_pkey = from->si_pkey;
3552 		break;
3553 	case SIL_FAULT_PERF_EVENT:
3554 		to->si_addr = compat_ptr(from->si_addr);
3555 		to->si_perf_data = from->si_perf_data;
3556 		to->si_perf_type = from->si_perf_type;
3557 		to->si_perf_flags = from->si_perf_flags;
3558 		break;
3559 	case SIL_CHLD:
3560 		to->si_pid    = from->si_pid;
3561 		to->si_uid    = from->si_uid;
3562 		to->si_status = from->si_status;
3563 #ifdef CONFIG_X86_X32_ABI
3564 		if (in_x32_syscall()) {
3565 			to->si_utime = from->_sifields._sigchld_x32._utime;
3566 			to->si_stime = from->_sifields._sigchld_x32._stime;
3567 		} else
3568 #endif
3569 		{
3570 			to->si_utime = from->si_utime;
3571 			to->si_stime = from->si_stime;
3572 		}
3573 		break;
3574 	case SIL_RT:
3575 		to->si_pid = from->si_pid;
3576 		to->si_uid = from->si_uid;
3577 		to->si_int = from->si_int;
3578 		break;
3579 	case SIL_SYS:
3580 		to->si_call_addr = compat_ptr(from->si_call_addr);
3581 		to->si_syscall   = from->si_syscall;
3582 		to->si_arch      = from->si_arch;
3583 		break;
3584 	}
3585 	return 0;
3586 }
3587 
3588 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3589 				      const struct compat_siginfo __user *ufrom)
3590 {
3591 	struct compat_siginfo from;
3592 
3593 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3594 		return -EFAULT;
3595 
3596 	from.si_signo = signo;
3597 	return post_copy_siginfo_from_user32(to, &from);
3598 }
3599 
3600 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3601 			     const struct compat_siginfo __user *ufrom)
3602 {
3603 	struct compat_siginfo from;
3604 
3605 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3606 		return -EFAULT;
3607 
3608 	return post_copy_siginfo_from_user32(to, &from);
3609 }
3610 #endif /* CONFIG_COMPAT */
3611 
3612 /**
3613  *  do_sigtimedwait - wait for queued signals specified in @which
3614  *  @which: queued signals to wait for
3615  *  @info: if non-null, the signal's siginfo is returned here
3616  *  @ts: upper bound on process time suspension
3617  */
3618 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3619 		    const struct timespec64 *ts)
3620 {
3621 	ktime_t *to = NULL, timeout = KTIME_MAX;
3622 	struct task_struct *tsk = current;
3623 	sigset_t mask = *which;
3624 	enum pid_type type;
3625 	int sig, ret = 0;
3626 
3627 	if (ts) {
3628 		if (!timespec64_valid(ts))
3629 			return -EINVAL;
3630 		timeout = timespec64_to_ktime(*ts);
3631 		to = &timeout;
3632 	}
3633 
3634 	/*
3635 	 * Invert the set of allowed signals to get those we want to block.
3636 	 */
3637 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3638 	signotset(&mask);
3639 
3640 	spin_lock_irq(&tsk->sighand->siglock);
3641 	sig = dequeue_signal(tsk, &mask, info, &type);
3642 	if (!sig && timeout) {
3643 		/*
3644 		 * None ready, temporarily unblock those we're interested
3645 		 * while we are sleeping in so that we'll be awakened when
3646 		 * they arrive. Unblocking is always fine, we can avoid
3647 		 * set_current_blocked().
3648 		 */
3649 		tsk->real_blocked = tsk->blocked;
3650 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3651 		recalc_sigpending();
3652 		spin_unlock_irq(&tsk->sighand->siglock);
3653 
3654 		__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3655 		ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3656 					       HRTIMER_MODE_REL);
3657 		spin_lock_irq(&tsk->sighand->siglock);
3658 		__set_task_blocked(tsk, &tsk->real_blocked);
3659 		sigemptyset(&tsk->real_blocked);
3660 		sig = dequeue_signal(tsk, &mask, info, &type);
3661 	}
3662 	spin_unlock_irq(&tsk->sighand->siglock);
3663 
3664 	if (sig)
3665 		return sig;
3666 	return ret ? -EINTR : -EAGAIN;
3667 }
3668 
3669 /**
3670  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3671  *			in @uthese
3672  *  @uthese: queued signals to wait for
3673  *  @uinfo: if non-null, the signal's siginfo is returned here
3674  *  @uts: upper bound on process time suspension
3675  *  @sigsetsize: size of sigset_t type
3676  */
3677 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3678 		siginfo_t __user *, uinfo,
3679 		const struct __kernel_timespec __user *, uts,
3680 		size_t, sigsetsize)
3681 {
3682 	sigset_t these;
3683 	struct timespec64 ts;
3684 	kernel_siginfo_t info;
3685 	int ret;
3686 
3687 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3688 	if (sigsetsize != sizeof(sigset_t))
3689 		return -EINVAL;
3690 
3691 	if (copy_from_user(&these, uthese, sizeof(these)))
3692 		return -EFAULT;
3693 
3694 	if (uts) {
3695 		if (get_timespec64(&ts, uts))
3696 			return -EFAULT;
3697 	}
3698 
3699 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3700 
3701 	if (ret > 0 && uinfo) {
3702 		if (copy_siginfo_to_user(uinfo, &info))
3703 			ret = -EFAULT;
3704 	}
3705 
3706 	return ret;
3707 }
3708 
3709 #ifdef CONFIG_COMPAT_32BIT_TIME
3710 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3711 		siginfo_t __user *, uinfo,
3712 		const struct old_timespec32 __user *, uts,
3713 		size_t, sigsetsize)
3714 {
3715 	sigset_t these;
3716 	struct timespec64 ts;
3717 	kernel_siginfo_t info;
3718 	int ret;
3719 
3720 	if (sigsetsize != sizeof(sigset_t))
3721 		return -EINVAL;
3722 
3723 	if (copy_from_user(&these, uthese, sizeof(these)))
3724 		return -EFAULT;
3725 
3726 	if (uts) {
3727 		if (get_old_timespec32(&ts, uts))
3728 			return -EFAULT;
3729 	}
3730 
3731 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3732 
3733 	if (ret > 0 && uinfo) {
3734 		if (copy_siginfo_to_user(uinfo, &info))
3735 			ret = -EFAULT;
3736 	}
3737 
3738 	return ret;
3739 }
3740 #endif
3741 
3742 #ifdef CONFIG_COMPAT
3743 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3744 		struct compat_siginfo __user *, uinfo,
3745 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3746 {
3747 	sigset_t s;
3748 	struct timespec64 t;
3749 	kernel_siginfo_t info;
3750 	long ret;
3751 
3752 	if (sigsetsize != sizeof(sigset_t))
3753 		return -EINVAL;
3754 
3755 	if (get_compat_sigset(&s, uthese))
3756 		return -EFAULT;
3757 
3758 	if (uts) {
3759 		if (get_timespec64(&t, uts))
3760 			return -EFAULT;
3761 	}
3762 
3763 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3764 
3765 	if (ret > 0 && uinfo) {
3766 		if (copy_siginfo_to_user32(uinfo, &info))
3767 			ret = -EFAULT;
3768 	}
3769 
3770 	return ret;
3771 }
3772 
3773 #ifdef CONFIG_COMPAT_32BIT_TIME
3774 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3775 		struct compat_siginfo __user *, uinfo,
3776 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3777 {
3778 	sigset_t s;
3779 	struct timespec64 t;
3780 	kernel_siginfo_t info;
3781 	long ret;
3782 
3783 	if (sigsetsize != sizeof(sigset_t))
3784 		return -EINVAL;
3785 
3786 	if (get_compat_sigset(&s, uthese))
3787 		return -EFAULT;
3788 
3789 	if (uts) {
3790 		if (get_old_timespec32(&t, uts))
3791 			return -EFAULT;
3792 	}
3793 
3794 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3795 
3796 	if (ret > 0 && uinfo) {
3797 		if (copy_siginfo_to_user32(uinfo, &info))
3798 			ret = -EFAULT;
3799 	}
3800 
3801 	return ret;
3802 }
3803 #endif
3804 #endif
3805 
3806 static void prepare_kill_siginfo(int sig, struct kernel_siginfo *info,
3807 				 enum pid_type type)
3808 {
3809 	clear_siginfo(info);
3810 	info->si_signo = sig;
3811 	info->si_errno = 0;
3812 	info->si_code = (type == PIDTYPE_PID) ? SI_TKILL : SI_USER;
3813 	info->si_pid = task_tgid_vnr(current);
3814 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3815 }
3816 
3817 /**
3818  *  sys_kill - send a signal to a process
3819  *  @pid: the PID of the process
3820  *  @sig: signal to be sent
3821  */
3822 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3823 {
3824 	struct kernel_siginfo info;
3825 
3826 	prepare_kill_siginfo(sig, &info, PIDTYPE_TGID);
3827 
3828 	return kill_something_info(sig, &info, pid);
3829 }
3830 
3831 /*
3832  * Verify that the signaler and signalee either are in the same pid namespace
3833  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3834  * namespace.
3835  */
3836 static bool access_pidfd_pidns(struct pid *pid)
3837 {
3838 	struct pid_namespace *active = task_active_pid_ns(current);
3839 	struct pid_namespace *p = ns_of_pid(pid);
3840 
3841 	for (;;) {
3842 		if (!p)
3843 			return false;
3844 		if (p == active)
3845 			break;
3846 		p = p->parent;
3847 	}
3848 
3849 	return true;
3850 }
3851 
3852 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3853 		siginfo_t __user *info)
3854 {
3855 #ifdef CONFIG_COMPAT
3856 	/*
3857 	 * Avoid hooking up compat syscalls and instead handle necessary
3858 	 * conversions here. Note, this is a stop-gap measure and should not be
3859 	 * considered a generic solution.
3860 	 */
3861 	if (in_compat_syscall())
3862 		return copy_siginfo_from_user32(
3863 			kinfo, (struct compat_siginfo __user *)info);
3864 #endif
3865 	return copy_siginfo_from_user(kinfo, info);
3866 }
3867 
3868 static struct pid *pidfd_to_pid(const struct file *file)
3869 {
3870 	struct pid *pid;
3871 
3872 	pid = pidfd_pid(file);
3873 	if (!IS_ERR(pid))
3874 		return pid;
3875 
3876 	return tgid_pidfd_to_pid(file);
3877 }
3878 
3879 #define PIDFD_SEND_SIGNAL_FLAGS                            \
3880 	(PIDFD_SIGNAL_THREAD | PIDFD_SIGNAL_THREAD_GROUP | \
3881 	 PIDFD_SIGNAL_PROCESS_GROUP)
3882 
3883 /**
3884  * sys_pidfd_send_signal - Signal a process through a pidfd
3885  * @pidfd:  file descriptor of the process
3886  * @sig:    signal to send
3887  * @info:   signal info
3888  * @flags:  future flags
3889  *
3890  * Send the signal to the thread group or to the individual thread depending
3891  * on PIDFD_THREAD.
3892  * In the future extension to @flags may be used to override the default scope
3893  * of @pidfd.
3894  *
3895  * Return: 0 on success, negative errno on failure
3896  */
3897 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3898 		siginfo_t __user *, info, unsigned int, flags)
3899 {
3900 	int ret;
3901 	struct fd f;
3902 	struct pid *pid;
3903 	kernel_siginfo_t kinfo;
3904 	enum pid_type type;
3905 
3906 	/* Enforce flags be set to 0 until we add an extension. */
3907 	if (flags & ~PIDFD_SEND_SIGNAL_FLAGS)
3908 		return -EINVAL;
3909 
3910 	/* Ensure that only a single signal scope determining flag is set. */
3911 	if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1)
3912 		return -EINVAL;
3913 
3914 	f = fdget(pidfd);
3915 	if (!f.file)
3916 		return -EBADF;
3917 
3918 	/* Is this a pidfd? */
3919 	pid = pidfd_to_pid(f.file);
3920 	if (IS_ERR(pid)) {
3921 		ret = PTR_ERR(pid);
3922 		goto err;
3923 	}
3924 
3925 	ret = -EINVAL;
3926 	if (!access_pidfd_pidns(pid))
3927 		goto err;
3928 
3929 	switch (flags) {
3930 	case 0:
3931 		/* Infer scope from the type of pidfd. */
3932 		if (f.file->f_flags & PIDFD_THREAD)
3933 			type = PIDTYPE_PID;
3934 		else
3935 			type = PIDTYPE_TGID;
3936 		break;
3937 	case PIDFD_SIGNAL_THREAD:
3938 		type = PIDTYPE_PID;
3939 		break;
3940 	case PIDFD_SIGNAL_THREAD_GROUP:
3941 		type = PIDTYPE_TGID;
3942 		break;
3943 	case PIDFD_SIGNAL_PROCESS_GROUP:
3944 		type = PIDTYPE_PGID;
3945 		break;
3946 	}
3947 
3948 	if (info) {
3949 		ret = copy_siginfo_from_user_any(&kinfo, info);
3950 		if (unlikely(ret))
3951 			goto err;
3952 
3953 		ret = -EINVAL;
3954 		if (unlikely(sig != kinfo.si_signo))
3955 			goto err;
3956 
3957 		/* Only allow sending arbitrary signals to yourself. */
3958 		ret = -EPERM;
3959 		if ((task_pid(current) != pid || type > PIDTYPE_TGID) &&
3960 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3961 			goto err;
3962 	} else {
3963 		prepare_kill_siginfo(sig, &kinfo, type);
3964 	}
3965 
3966 	if (type == PIDTYPE_PGID)
3967 		ret = kill_pgrp_info(sig, &kinfo, pid);
3968 	else
3969 		ret = kill_pid_info_type(sig, &kinfo, pid, type);
3970 err:
3971 	fdput(f);
3972 	return ret;
3973 }
3974 
3975 static int
3976 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3977 {
3978 	struct task_struct *p;
3979 	int error = -ESRCH;
3980 
3981 	rcu_read_lock();
3982 	p = find_task_by_vpid(pid);
3983 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3984 		error = check_kill_permission(sig, info, p);
3985 		/*
3986 		 * The null signal is a permissions and process existence
3987 		 * probe.  No signal is actually delivered.
3988 		 */
3989 		if (!error && sig) {
3990 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3991 			/*
3992 			 * If lock_task_sighand() failed we pretend the task
3993 			 * dies after receiving the signal. The window is tiny,
3994 			 * and the signal is private anyway.
3995 			 */
3996 			if (unlikely(error == -ESRCH))
3997 				error = 0;
3998 		}
3999 	}
4000 	rcu_read_unlock();
4001 
4002 	return error;
4003 }
4004 
4005 static int do_tkill(pid_t tgid, pid_t pid, int sig)
4006 {
4007 	struct kernel_siginfo info;
4008 
4009 	prepare_kill_siginfo(sig, &info, PIDTYPE_PID);
4010 
4011 	return do_send_specific(tgid, pid, sig, &info);
4012 }
4013 
4014 /**
4015  *  sys_tgkill - send signal to one specific thread
4016  *  @tgid: the thread group ID of the thread
4017  *  @pid: the PID of the thread
4018  *  @sig: signal to be sent
4019  *
4020  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
4021  *  exists but it's not belonging to the target process anymore. This
4022  *  method solves the problem of threads exiting and PIDs getting reused.
4023  */
4024 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
4025 {
4026 	/* This is only valid for single tasks */
4027 	if (pid <= 0 || tgid <= 0)
4028 		return -EINVAL;
4029 
4030 	return do_tkill(tgid, pid, sig);
4031 }
4032 
4033 /**
4034  *  sys_tkill - send signal to one specific task
4035  *  @pid: the PID of the task
4036  *  @sig: signal to be sent
4037  *
4038  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
4039  */
4040 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4041 {
4042 	/* This is only valid for single tasks */
4043 	if (pid <= 0)
4044 		return -EINVAL;
4045 
4046 	return do_tkill(0, pid, sig);
4047 }
4048 
4049 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4050 {
4051 	/* Not even root can pretend to send signals from the kernel.
4052 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4053 	 */
4054 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4055 	    (task_pid_vnr(current) != pid))
4056 		return -EPERM;
4057 
4058 	/* POSIX.1b doesn't mention process groups.  */
4059 	return kill_proc_info(sig, info, pid);
4060 }
4061 
4062 /**
4063  *  sys_rt_sigqueueinfo - send signal information to a signal
4064  *  @pid: the PID of the thread
4065  *  @sig: signal to be sent
4066  *  @uinfo: signal info to be sent
4067  */
4068 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4069 		siginfo_t __user *, uinfo)
4070 {
4071 	kernel_siginfo_t info;
4072 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4073 	if (unlikely(ret))
4074 		return ret;
4075 	return do_rt_sigqueueinfo(pid, sig, &info);
4076 }
4077 
4078 #ifdef CONFIG_COMPAT
4079 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4080 			compat_pid_t, pid,
4081 			int, sig,
4082 			struct compat_siginfo __user *, uinfo)
4083 {
4084 	kernel_siginfo_t info;
4085 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4086 	if (unlikely(ret))
4087 		return ret;
4088 	return do_rt_sigqueueinfo(pid, sig, &info);
4089 }
4090 #endif
4091 
4092 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4093 {
4094 	/* This is only valid for single tasks */
4095 	if (pid <= 0 || tgid <= 0)
4096 		return -EINVAL;
4097 
4098 	/* Not even root can pretend to send signals from the kernel.
4099 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4100 	 */
4101 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4102 	    (task_pid_vnr(current) != pid))
4103 		return -EPERM;
4104 
4105 	return do_send_specific(tgid, pid, sig, info);
4106 }
4107 
4108 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4109 		siginfo_t __user *, uinfo)
4110 {
4111 	kernel_siginfo_t info;
4112 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4113 	if (unlikely(ret))
4114 		return ret;
4115 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4116 }
4117 
4118 #ifdef CONFIG_COMPAT
4119 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4120 			compat_pid_t, tgid,
4121 			compat_pid_t, pid,
4122 			int, sig,
4123 			struct compat_siginfo __user *, uinfo)
4124 {
4125 	kernel_siginfo_t info;
4126 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4127 	if (unlikely(ret))
4128 		return ret;
4129 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4130 }
4131 #endif
4132 
4133 /*
4134  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4135  */
4136 void kernel_sigaction(int sig, __sighandler_t action)
4137 {
4138 	spin_lock_irq(&current->sighand->siglock);
4139 	current->sighand->action[sig - 1].sa.sa_handler = action;
4140 	if (action == SIG_IGN) {
4141 		sigset_t mask;
4142 
4143 		sigemptyset(&mask);
4144 		sigaddset(&mask, sig);
4145 
4146 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4147 		flush_sigqueue_mask(&mask, &current->pending);
4148 		recalc_sigpending();
4149 	}
4150 	spin_unlock_irq(&current->sighand->siglock);
4151 }
4152 EXPORT_SYMBOL(kernel_sigaction);
4153 
4154 void __weak sigaction_compat_abi(struct k_sigaction *act,
4155 		struct k_sigaction *oact)
4156 {
4157 }
4158 
4159 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4160 {
4161 	struct task_struct *p = current, *t;
4162 	struct k_sigaction *k;
4163 	sigset_t mask;
4164 
4165 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4166 		return -EINVAL;
4167 
4168 	k = &p->sighand->action[sig-1];
4169 
4170 	spin_lock_irq(&p->sighand->siglock);
4171 	if (k->sa.sa_flags & SA_IMMUTABLE) {
4172 		spin_unlock_irq(&p->sighand->siglock);
4173 		return -EINVAL;
4174 	}
4175 	if (oact)
4176 		*oact = *k;
4177 
4178 	/*
4179 	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4180 	 * e.g. by having an architecture use the bit in their uapi.
4181 	 */
4182 	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4183 
4184 	/*
4185 	 * Clear unknown flag bits in order to allow userspace to detect missing
4186 	 * support for flag bits and to allow the kernel to use non-uapi bits
4187 	 * internally.
4188 	 */
4189 	if (act)
4190 		act->sa.sa_flags &= UAPI_SA_FLAGS;
4191 	if (oact)
4192 		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4193 
4194 	sigaction_compat_abi(act, oact);
4195 
4196 	if (act) {
4197 		sigdelsetmask(&act->sa.sa_mask,
4198 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4199 		*k = *act;
4200 		/*
4201 		 * POSIX 3.3.1.3:
4202 		 *  "Setting a signal action to SIG_IGN for a signal that is
4203 		 *   pending shall cause the pending signal to be discarded,
4204 		 *   whether or not it is blocked."
4205 		 *
4206 		 *  "Setting a signal action to SIG_DFL for a signal that is
4207 		 *   pending and whose default action is to ignore the signal
4208 		 *   (for example, SIGCHLD), shall cause the pending signal to
4209 		 *   be discarded, whether or not it is blocked"
4210 		 */
4211 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4212 			sigemptyset(&mask);
4213 			sigaddset(&mask, sig);
4214 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4215 			for_each_thread(p, t)
4216 				flush_sigqueue_mask(&mask, &t->pending);
4217 		}
4218 	}
4219 
4220 	spin_unlock_irq(&p->sighand->siglock);
4221 	return 0;
4222 }
4223 
4224 #ifdef CONFIG_DYNAMIC_SIGFRAME
4225 static inline void sigaltstack_lock(void)
4226 	__acquires(&current->sighand->siglock)
4227 {
4228 	spin_lock_irq(&current->sighand->siglock);
4229 }
4230 
4231 static inline void sigaltstack_unlock(void)
4232 	__releases(&current->sighand->siglock)
4233 {
4234 	spin_unlock_irq(&current->sighand->siglock);
4235 }
4236 #else
4237 static inline void sigaltstack_lock(void) { }
4238 static inline void sigaltstack_unlock(void) { }
4239 #endif
4240 
4241 static int
4242 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4243 		size_t min_ss_size)
4244 {
4245 	struct task_struct *t = current;
4246 	int ret = 0;
4247 
4248 	if (oss) {
4249 		memset(oss, 0, sizeof(stack_t));
4250 		oss->ss_sp = (void __user *) t->sas_ss_sp;
4251 		oss->ss_size = t->sas_ss_size;
4252 		oss->ss_flags = sas_ss_flags(sp) |
4253 			(current->sas_ss_flags & SS_FLAG_BITS);
4254 	}
4255 
4256 	if (ss) {
4257 		void __user *ss_sp = ss->ss_sp;
4258 		size_t ss_size = ss->ss_size;
4259 		unsigned ss_flags = ss->ss_flags;
4260 		int ss_mode;
4261 
4262 		if (unlikely(on_sig_stack(sp)))
4263 			return -EPERM;
4264 
4265 		ss_mode = ss_flags & ~SS_FLAG_BITS;
4266 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4267 				ss_mode != 0))
4268 			return -EINVAL;
4269 
4270 		/*
4271 		 * Return before taking any locks if no actual
4272 		 * sigaltstack changes were requested.
4273 		 */
4274 		if (t->sas_ss_sp == (unsigned long)ss_sp &&
4275 		    t->sas_ss_size == ss_size &&
4276 		    t->sas_ss_flags == ss_flags)
4277 			return 0;
4278 
4279 		sigaltstack_lock();
4280 		if (ss_mode == SS_DISABLE) {
4281 			ss_size = 0;
4282 			ss_sp = NULL;
4283 		} else {
4284 			if (unlikely(ss_size < min_ss_size))
4285 				ret = -ENOMEM;
4286 			if (!sigaltstack_size_valid(ss_size))
4287 				ret = -ENOMEM;
4288 		}
4289 		if (!ret) {
4290 			t->sas_ss_sp = (unsigned long) ss_sp;
4291 			t->sas_ss_size = ss_size;
4292 			t->sas_ss_flags = ss_flags;
4293 		}
4294 		sigaltstack_unlock();
4295 	}
4296 	return ret;
4297 }
4298 
4299 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4300 {
4301 	stack_t new, old;
4302 	int err;
4303 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4304 		return -EFAULT;
4305 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4306 			      current_user_stack_pointer(),
4307 			      MINSIGSTKSZ);
4308 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4309 		err = -EFAULT;
4310 	return err;
4311 }
4312 
4313 int restore_altstack(const stack_t __user *uss)
4314 {
4315 	stack_t new;
4316 	if (copy_from_user(&new, uss, sizeof(stack_t)))
4317 		return -EFAULT;
4318 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4319 			     MINSIGSTKSZ);
4320 	/* squash all but EFAULT for now */
4321 	return 0;
4322 }
4323 
4324 int __save_altstack(stack_t __user *uss, unsigned long sp)
4325 {
4326 	struct task_struct *t = current;
4327 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4328 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4329 		__put_user(t->sas_ss_size, &uss->ss_size);
4330 	return err;
4331 }
4332 
4333 #ifdef CONFIG_COMPAT
4334 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4335 				 compat_stack_t __user *uoss_ptr)
4336 {
4337 	stack_t uss, uoss;
4338 	int ret;
4339 
4340 	if (uss_ptr) {
4341 		compat_stack_t uss32;
4342 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4343 			return -EFAULT;
4344 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4345 		uss.ss_flags = uss32.ss_flags;
4346 		uss.ss_size = uss32.ss_size;
4347 	}
4348 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4349 			     compat_user_stack_pointer(),
4350 			     COMPAT_MINSIGSTKSZ);
4351 	if (ret >= 0 && uoss_ptr)  {
4352 		compat_stack_t old;
4353 		memset(&old, 0, sizeof(old));
4354 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4355 		old.ss_flags = uoss.ss_flags;
4356 		old.ss_size = uoss.ss_size;
4357 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4358 			ret = -EFAULT;
4359 	}
4360 	return ret;
4361 }
4362 
4363 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4364 			const compat_stack_t __user *, uss_ptr,
4365 			compat_stack_t __user *, uoss_ptr)
4366 {
4367 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4368 }
4369 
4370 int compat_restore_altstack(const compat_stack_t __user *uss)
4371 {
4372 	int err = do_compat_sigaltstack(uss, NULL);
4373 	/* squash all but -EFAULT for now */
4374 	return err == -EFAULT ? err : 0;
4375 }
4376 
4377 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4378 {
4379 	int err;
4380 	struct task_struct *t = current;
4381 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4382 			 &uss->ss_sp) |
4383 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4384 		__put_user(t->sas_ss_size, &uss->ss_size);
4385 	return err;
4386 }
4387 #endif
4388 
4389 #ifdef __ARCH_WANT_SYS_SIGPENDING
4390 
4391 /**
4392  *  sys_sigpending - examine pending signals
4393  *  @uset: where mask of pending signal is returned
4394  */
4395 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4396 {
4397 	sigset_t set;
4398 
4399 	if (sizeof(old_sigset_t) > sizeof(*uset))
4400 		return -EINVAL;
4401 
4402 	do_sigpending(&set);
4403 
4404 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4405 		return -EFAULT;
4406 
4407 	return 0;
4408 }
4409 
4410 #ifdef CONFIG_COMPAT
4411 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4412 {
4413 	sigset_t set;
4414 
4415 	do_sigpending(&set);
4416 
4417 	return put_user(set.sig[0], set32);
4418 }
4419 #endif
4420 
4421 #endif
4422 
4423 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4424 /**
4425  *  sys_sigprocmask - examine and change blocked signals
4426  *  @how: whether to add, remove, or set signals
4427  *  @nset: signals to add or remove (if non-null)
4428  *  @oset: previous value of signal mask if non-null
4429  *
4430  * Some platforms have their own version with special arguments;
4431  * others support only sys_rt_sigprocmask.
4432  */
4433 
4434 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4435 		old_sigset_t __user *, oset)
4436 {
4437 	old_sigset_t old_set, new_set;
4438 	sigset_t new_blocked;
4439 
4440 	old_set = current->blocked.sig[0];
4441 
4442 	if (nset) {
4443 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4444 			return -EFAULT;
4445 
4446 		new_blocked = current->blocked;
4447 
4448 		switch (how) {
4449 		case SIG_BLOCK:
4450 			sigaddsetmask(&new_blocked, new_set);
4451 			break;
4452 		case SIG_UNBLOCK:
4453 			sigdelsetmask(&new_blocked, new_set);
4454 			break;
4455 		case SIG_SETMASK:
4456 			new_blocked.sig[0] = new_set;
4457 			break;
4458 		default:
4459 			return -EINVAL;
4460 		}
4461 
4462 		set_current_blocked(&new_blocked);
4463 	}
4464 
4465 	if (oset) {
4466 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4467 			return -EFAULT;
4468 	}
4469 
4470 	return 0;
4471 }
4472 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4473 
4474 #ifndef CONFIG_ODD_RT_SIGACTION
4475 /**
4476  *  sys_rt_sigaction - alter an action taken by a process
4477  *  @sig: signal to be sent
4478  *  @act: new sigaction
4479  *  @oact: used to save the previous sigaction
4480  *  @sigsetsize: size of sigset_t type
4481  */
4482 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4483 		const struct sigaction __user *, act,
4484 		struct sigaction __user *, oact,
4485 		size_t, sigsetsize)
4486 {
4487 	struct k_sigaction new_sa, old_sa;
4488 	int ret;
4489 
4490 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4491 	if (sigsetsize != sizeof(sigset_t))
4492 		return -EINVAL;
4493 
4494 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4495 		return -EFAULT;
4496 
4497 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4498 	if (ret)
4499 		return ret;
4500 
4501 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4502 		return -EFAULT;
4503 
4504 	return 0;
4505 }
4506 #ifdef CONFIG_COMPAT
4507 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4508 		const struct compat_sigaction __user *, act,
4509 		struct compat_sigaction __user *, oact,
4510 		compat_size_t, sigsetsize)
4511 {
4512 	struct k_sigaction new_ka, old_ka;
4513 #ifdef __ARCH_HAS_SA_RESTORER
4514 	compat_uptr_t restorer;
4515 #endif
4516 	int ret;
4517 
4518 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4519 	if (sigsetsize != sizeof(compat_sigset_t))
4520 		return -EINVAL;
4521 
4522 	if (act) {
4523 		compat_uptr_t handler;
4524 		ret = get_user(handler, &act->sa_handler);
4525 		new_ka.sa.sa_handler = compat_ptr(handler);
4526 #ifdef __ARCH_HAS_SA_RESTORER
4527 		ret |= get_user(restorer, &act->sa_restorer);
4528 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4529 #endif
4530 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4531 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4532 		if (ret)
4533 			return -EFAULT;
4534 	}
4535 
4536 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4537 	if (!ret && oact) {
4538 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4539 			       &oact->sa_handler);
4540 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4541 					 sizeof(oact->sa_mask));
4542 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4543 #ifdef __ARCH_HAS_SA_RESTORER
4544 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4545 				&oact->sa_restorer);
4546 #endif
4547 	}
4548 	return ret;
4549 }
4550 #endif
4551 #endif /* !CONFIG_ODD_RT_SIGACTION */
4552 
4553 #ifdef CONFIG_OLD_SIGACTION
4554 SYSCALL_DEFINE3(sigaction, int, sig,
4555 		const struct old_sigaction __user *, act,
4556 	        struct old_sigaction __user *, oact)
4557 {
4558 	struct k_sigaction new_ka, old_ka;
4559 	int ret;
4560 
4561 	if (act) {
4562 		old_sigset_t mask;
4563 		if (!access_ok(act, sizeof(*act)) ||
4564 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4565 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4566 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4567 		    __get_user(mask, &act->sa_mask))
4568 			return -EFAULT;
4569 #ifdef __ARCH_HAS_KA_RESTORER
4570 		new_ka.ka_restorer = NULL;
4571 #endif
4572 		siginitset(&new_ka.sa.sa_mask, mask);
4573 	}
4574 
4575 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4576 
4577 	if (!ret && oact) {
4578 		if (!access_ok(oact, sizeof(*oact)) ||
4579 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4580 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4581 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4582 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4583 			return -EFAULT;
4584 	}
4585 
4586 	return ret;
4587 }
4588 #endif
4589 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4590 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4591 		const struct compat_old_sigaction __user *, act,
4592 	        struct compat_old_sigaction __user *, oact)
4593 {
4594 	struct k_sigaction new_ka, old_ka;
4595 	int ret;
4596 	compat_old_sigset_t mask;
4597 	compat_uptr_t handler, restorer;
4598 
4599 	if (act) {
4600 		if (!access_ok(act, sizeof(*act)) ||
4601 		    __get_user(handler, &act->sa_handler) ||
4602 		    __get_user(restorer, &act->sa_restorer) ||
4603 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4604 		    __get_user(mask, &act->sa_mask))
4605 			return -EFAULT;
4606 
4607 #ifdef __ARCH_HAS_KA_RESTORER
4608 		new_ka.ka_restorer = NULL;
4609 #endif
4610 		new_ka.sa.sa_handler = compat_ptr(handler);
4611 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4612 		siginitset(&new_ka.sa.sa_mask, mask);
4613 	}
4614 
4615 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4616 
4617 	if (!ret && oact) {
4618 		if (!access_ok(oact, sizeof(*oact)) ||
4619 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4620 			       &oact->sa_handler) ||
4621 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4622 			       &oact->sa_restorer) ||
4623 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4624 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4625 			return -EFAULT;
4626 	}
4627 	return ret;
4628 }
4629 #endif
4630 
4631 #ifdef CONFIG_SGETMASK_SYSCALL
4632 
4633 /*
4634  * For backwards compatibility.  Functionality superseded by sigprocmask.
4635  */
4636 SYSCALL_DEFINE0(sgetmask)
4637 {
4638 	/* SMP safe */
4639 	return current->blocked.sig[0];
4640 }
4641 
4642 SYSCALL_DEFINE1(ssetmask, int, newmask)
4643 {
4644 	int old = current->blocked.sig[0];
4645 	sigset_t newset;
4646 
4647 	siginitset(&newset, newmask);
4648 	set_current_blocked(&newset);
4649 
4650 	return old;
4651 }
4652 #endif /* CONFIG_SGETMASK_SYSCALL */
4653 
4654 #ifdef __ARCH_WANT_SYS_SIGNAL
4655 /*
4656  * For backwards compatibility.  Functionality superseded by sigaction.
4657  */
4658 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4659 {
4660 	struct k_sigaction new_sa, old_sa;
4661 	int ret;
4662 
4663 	new_sa.sa.sa_handler = handler;
4664 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4665 	sigemptyset(&new_sa.sa.sa_mask);
4666 
4667 	ret = do_sigaction(sig, &new_sa, &old_sa);
4668 
4669 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4670 }
4671 #endif /* __ARCH_WANT_SYS_SIGNAL */
4672 
4673 #ifdef __ARCH_WANT_SYS_PAUSE
4674 
4675 SYSCALL_DEFINE0(pause)
4676 {
4677 	while (!signal_pending(current)) {
4678 		__set_current_state(TASK_INTERRUPTIBLE);
4679 		schedule();
4680 	}
4681 	return -ERESTARTNOHAND;
4682 }
4683 
4684 #endif
4685 
4686 static int sigsuspend(sigset_t *set)
4687 {
4688 	current->saved_sigmask = current->blocked;
4689 	set_current_blocked(set);
4690 
4691 	while (!signal_pending(current)) {
4692 		__set_current_state(TASK_INTERRUPTIBLE);
4693 		schedule();
4694 	}
4695 	set_restore_sigmask();
4696 	return -ERESTARTNOHAND;
4697 }
4698 
4699 /**
4700  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4701  *	@unewset value until a signal is received
4702  *  @unewset: new signal mask value
4703  *  @sigsetsize: size of sigset_t type
4704  */
4705 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4706 {
4707 	sigset_t newset;
4708 
4709 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4710 	if (sigsetsize != sizeof(sigset_t))
4711 		return -EINVAL;
4712 
4713 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4714 		return -EFAULT;
4715 	return sigsuspend(&newset);
4716 }
4717 
4718 #ifdef CONFIG_COMPAT
4719 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4720 {
4721 	sigset_t newset;
4722 
4723 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4724 	if (sigsetsize != sizeof(sigset_t))
4725 		return -EINVAL;
4726 
4727 	if (get_compat_sigset(&newset, unewset))
4728 		return -EFAULT;
4729 	return sigsuspend(&newset);
4730 }
4731 #endif
4732 
4733 #ifdef CONFIG_OLD_SIGSUSPEND
4734 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4735 {
4736 	sigset_t blocked;
4737 	siginitset(&blocked, mask);
4738 	return sigsuspend(&blocked);
4739 }
4740 #endif
4741 #ifdef CONFIG_OLD_SIGSUSPEND3
4742 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4743 {
4744 	sigset_t blocked;
4745 	siginitset(&blocked, mask);
4746 	return sigsuspend(&blocked);
4747 }
4748 #endif
4749 
4750 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4751 {
4752 	return NULL;
4753 }
4754 
4755 static inline void siginfo_buildtime_checks(void)
4756 {
4757 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4758 
4759 	/* Verify the offsets in the two siginfos match */
4760 #define CHECK_OFFSET(field) \
4761 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4762 
4763 	/* kill */
4764 	CHECK_OFFSET(si_pid);
4765 	CHECK_OFFSET(si_uid);
4766 
4767 	/* timer */
4768 	CHECK_OFFSET(si_tid);
4769 	CHECK_OFFSET(si_overrun);
4770 	CHECK_OFFSET(si_value);
4771 
4772 	/* rt */
4773 	CHECK_OFFSET(si_pid);
4774 	CHECK_OFFSET(si_uid);
4775 	CHECK_OFFSET(si_value);
4776 
4777 	/* sigchld */
4778 	CHECK_OFFSET(si_pid);
4779 	CHECK_OFFSET(si_uid);
4780 	CHECK_OFFSET(si_status);
4781 	CHECK_OFFSET(si_utime);
4782 	CHECK_OFFSET(si_stime);
4783 
4784 	/* sigfault */
4785 	CHECK_OFFSET(si_addr);
4786 	CHECK_OFFSET(si_trapno);
4787 	CHECK_OFFSET(si_addr_lsb);
4788 	CHECK_OFFSET(si_lower);
4789 	CHECK_OFFSET(si_upper);
4790 	CHECK_OFFSET(si_pkey);
4791 	CHECK_OFFSET(si_perf_data);
4792 	CHECK_OFFSET(si_perf_type);
4793 	CHECK_OFFSET(si_perf_flags);
4794 
4795 	/* sigpoll */
4796 	CHECK_OFFSET(si_band);
4797 	CHECK_OFFSET(si_fd);
4798 
4799 	/* sigsys */
4800 	CHECK_OFFSET(si_call_addr);
4801 	CHECK_OFFSET(si_syscall);
4802 	CHECK_OFFSET(si_arch);
4803 #undef CHECK_OFFSET
4804 
4805 	/* usb asyncio */
4806 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4807 		     offsetof(struct siginfo, si_addr));
4808 	if (sizeof(int) == sizeof(void __user *)) {
4809 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4810 			     sizeof(void __user *));
4811 	} else {
4812 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4813 			      sizeof_field(struct siginfo, si_uid)) !=
4814 			     sizeof(void __user *));
4815 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4816 			     offsetof(struct siginfo, si_uid));
4817 	}
4818 #ifdef CONFIG_COMPAT
4819 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4820 		     offsetof(struct compat_siginfo, si_addr));
4821 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4822 		     sizeof(compat_uptr_t));
4823 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4824 		     sizeof_field(struct siginfo, si_pid));
4825 #endif
4826 }
4827 
4828 #if defined(CONFIG_SYSCTL)
4829 static struct ctl_table signal_debug_table[] = {
4830 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4831 	{
4832 		.procname	= "exception-trace",
4833 		.data		= &show_unhandled_signals,
4834 		.maxlen		= sizeof(int),
4835 		.mode		= 0644,
4836 		.proc_handler	= proc_dointvec
4837 	},
4838 #endif
4839 	{ }
4840 };
4841 
4842 static int __init init_signal_sysctls(void)
4843 {
4844 	register_sysctl_init("debug", signal_debug_table);
4845 	return 0;
4846 }
4847 early_initcall(init_signal_sysctls);
4848 #endif /* CONFIG_SYSCTL */
4849 
4850 void __init signals_init(void)
4851 {
4852 	siginfo_buildtime_checks();
4853 
4854 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4855 }
4856 
4857 #ifdef CONFIG_KGDB_KDB
4858 #include <linux/kdb.h>
4859 /*
4860  * kdb_send_sig - Allows kdb to send signals without exposing
4861  * signal internals.  This function checks if the required locks are
4862  * available before calling the main signal code, to avoid kdb
4863  * deadlocks.
4864  */
4865 void kdb_send_sig(struct task_struct *t, int sig)
4866 {
4867 	static struct task_struct *kdb_prev_t;
4868 	int new_t, ret;
4869 	if (!spin_trylock(&t->sighand->siglock)) {
4870 		kdb_printf("Can't do kill command now.\n"
4871 			   "The sigmask lock is held somewhere else in "
4872 			   "kernel, try again later\n");
4873 		return;
4874 	}
4875 	new_t = kdb_prev_t != t;
4876 	kdb_prev_t = t;
4877 	if (!task_is_running(t) && new_t) {
4878 		spin_unlock(&t->sighand->siglock);
4879 		kdb_printf("Process is not RUNNING, sending a signal from "
4880 			   "kdb risks deadlock\n"
4881 			   "on the run queue locks. "
4882 			   "The signal has _not_ been sent.\n"
4883 			   "Reissue the kill command if you want to risk "
4884 			   "the deadlock.\n");
4885 		return;
4886 	}
4887 	ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4888 	spin_unlock(&t->sighand->siglock);
4889 	if (ret)
4890 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4891 			   sig, t->pid);
4892 	else
4893 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4894 }
4895 #endif	/* CONFIG_KGDB_KDB */
4896