1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/signal.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 8 * 9 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 10 * Changes to use preallocated sigqueue structures 11 * to allow signals to be sent reliably. 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/user.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/sched/cputime.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/mm.h> 26 #include <linux/proc_fs.h> 27 #include <linux/tty.h> 28 #include <linux/binfmts.h> 29 #include <linux/coredump.h> 30 #include <linux/security.h> 31 #include <linux/syscalls.h> 32 #include <linux/ptrace.h> 33 #include <linux/signal.h> 34 #include <linux/signalfd.h> 35 #include <linux/ratelimit.h> 36 #include <linux/task_work.h> 37 #include <linux/capability.h> 38 #include <linux/freezer.h> 39 #include <linux/pid_namespace.h> 40 #include <linux/nsproxy.h> 41 #include <linux/user_namespace.h> 42 #include <linux/uprobes.h> 43 #include <linux/compat.h> 44 #include <linux/cn_proc.h> 45 #include <linux/compiler.h> 46 #include <linux/posix-timers.h> 47 #include <linux/cgroup.h> 48 #include <linux/audit.h> 49 #include <linux/sysctl.h> 50 #include <uapi/linux/pidfd.h> 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/signal.h> 54 55 #include <asm/param.h> 56 #include <linux/uaccess.h> 57 #include <asm/unistd.h> 58 #include <asm/siginfo.h> 59 #include <asm/cacheflush.h> 60 #include <asm/syscall.h> /* for syscall_get_* */ 61 62 /* 63 * SLAB caches for signal bits. 64 */ 65 66 static struct kmem_cache *sigqueue_cachep; 67 68 int print_fatal_signals __read_mostly; 69 70 static void __user *sig_handler(struct task_struct *t, int sig) 71 { 72 return t->sighand->action[sig - 1].sa.sa_handler; 73 } 74 75 static inline bool sig_handler_ignored(void __user *handler, int sig) 76 { 77 /* Is it explicitly or implicitly ignored? */ 78 return handler == SIG_IGN || 79 (handler == SIG_DFL && sig_kernel_ignore(sig)); 80 } 81 82 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 83 { 84 void __user *handler; 85 86 handler = sig_handler(t, sig); 87 88 /* SIGKILL and SIGSTOP may not be sent to the global init */ 89 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 90 return true; 91 92 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 93 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 94 return true; 95 96 /* Only allow kernel generated signals to this kthread */ 97 if (unlikely((t->flags & PF_KTHREAD) && 98 (handler == SIG_KTHREAD_KERNEL) && !force)) 99 return true; 100 101 return sig_handler_ignored(handler, sig); 102 } 103 104 static bool sig_ignored(struct task_struct *t, int sig, bool force) 105 { 106 /* 107 * Blocked signals are never ignored, since the 108 * signal handler may change by the time it is 109 * unblocked. 110 */ 111 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 112 return false; 113 114 /* 115 * Tracers may want to know about even ignored signal unless it 116 * is SIGKILL which can't be reported anyway but can be ignored 117 * by SIGNAL_UNKILLABLE task. 118 */ 119 if (t->ptrace && sig != SIGKILL) 120 return false; 121 122 return sig_task_ignored(t, sig, force); 123 } 124 125 /* 126 * Re-calculate pending state from the set of locally pending 127 * signals, globally pending signals, and blocked signals. 128 */ 129 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 130 { 131 unsigned long ready; 132 long i; 133 134 switch (_NSIG_WORDS) { 135 default: 136 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 137 ready |= signal->sig[i] &~ blocked->sig[i]; 138 break; 139 140 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 141 ready |= signal->sig[2] &~ blocked->sig[2]; 142 ready |= signal->sig[1] &~ blocked->sig[1]; 143 ready |= signal->sig[0] &~ blocked->sig[0]; 144 break; 145 146 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 147 ready |= signal->sig[0] &~ blocked->sig[0]; 148 break; 149 150 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 151 } 152 return ready != 0; 153 } 154 155 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 156 157 static bool recalc_sigpending_tsk(struct task_struct *t) 158 { 159 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || 160 PENDING(&t->pending, &t->blocked) || 161 PENDING(&t->signal->shared_pending, &t->blocked) || 162 cgroup_task_frozen(t)) { 163 set_tsk_thread_flag(t, TIF_SIGPENDING); 164 return true; 165 } 166 167 /* 168 * We must never clear the flag in another thread, or in current 169 * when it's possible the current syscall is returning -ERESTART*. 170 * So we don't clear it here, and only callers who know they should do. 171 */ 172 return false; 173 } 174 175 void recalc_sigpending(void) 176 { 177 if (!recalc_sigpending_tsk(current) && !freezing(current)) 178 clear_thread_flag(TIF_SIGPENDING); 179 180 } 181 EXPORT_SYMBOL(recalc_sigpending); 182 183 void calculate_sigpending(void) 184 { 185 /* Have any signals or users of TIF_SIGPENDING been delayed 186 * until after fork? 187 */ 188 spin_lock_irq(¤t->sighand->siglock); 189 set_tsk_thread_flag(current, TIF_SIGPENDING); 190 recalc_sigpending(); 191 spin_unlock_irq(¤t->sighand->siglock); 192 } 193 194 /* Given the mask, find the first available signal that should be serviced. */ 195 196 #define SYNCHRONOUS_MASK \ 197 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 198 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 199 200 int next_signal(struct sigpending *pending, sigset_t *mask) 201 { 202 unsigned long i, *s, *m, x; 203 int sig = 0; 204 205 s = pending->signal.sig; 206 m = mask->sig; 207 208 /* 209 * Handle the first word specially: it contains the 210 * synchronous signals that need to be dequeued first. 211 */ 212 x = *s &~ *m; 213 if (x) { 214 if (x & SYNCHRONOUS_MASK) 215 x &= SYNCHRONOUS_MASK; 216 sig = ffz(~x) + 1; 217 return sig; 218 } 219 220 switch (_NSIG_WORDS) { 221 default: 222 for (i = 1; i < _NSIG_WORDS; ++i) { 223 x = *++s &~ *++m; 224 if (!x) 225 continue; 226 sig = ffz(~x) + i*_NSIG_BPW + 1; 227 break; 228 } 229 break; 230 231 case 2: 232 x = s[1] &~ m[1]; 233 if (!x) 234 break; 235 sig = ffz(~x) + _NSIG_BPW + 1; 236 break; 237 238 case 1: 239 /* Nothing to do */ 240 break; 241 } 242 243 return sig; 244 } 245 246 static inline void print_dropped_signal(int sig) 247 { 248 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 249 250 if (!print_fatal_signals) 251 return; 252 253 if (!__ratelimit(&ratelimit_state)) 254 return; 255 256 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 257 current->comm, current->pid, sig); 258 } 259 260 /** 261 * task_set_jobctl_pending - set jobctl pending bits 262 * @task: target task 263 * @mask: pending bits to set 264 * 265 * Clear @mask from @task->jobctl. @mask must be subset of 266 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 267 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 268 * cleared. If @task is already being killed or exiting, this function 269 * becomes noop. 270 * 271 * CONTEXT: 272 * Must be called with @task->sighand->siglock held. 273 * 274 * RETURNS: 275 * %true if @mask is set, %false if made noop because @task was dying. 276 */ 277 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 278 { 279 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 280 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 281 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 282 283 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 284 return false; 285 286 if (mask & JOBCTL_STOP_SIGMASK) 287 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 288 289 task->jobctl |= mask; 290 return true; 291 } 292 293 /** 294 * task_clear_jobctl_trapping - clear jobctl trapping bit 295 * @task: target task 296 * 297 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 298 * Clear it and wake up the ptracer. Note that we don't need any further 299 * locking. @task->siglock guarantees that @task->parent points to the 300 * ptracer. 301 * 302 * CONTEXT: 303 * Must be called with @task->sighand->siglock held. 304 */ 305 void task_clear_jobctl_trapping(struct task_struct *task) 306 { 307 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 308 task->jobctl &= ~JOBCTL_TRAPPING; 309 smp_mb(); /* advised by wake_up_bit() */ 310 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 311 } 312 } 313 314 /** 315 * task_clear_jobctl_pending - clear jobctl pending bits 316 * @task: target task 317 * @mask: pending bits to clear 318 * 319 * Clear @mask from @task->jobctl. @mask must be subset of 320 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 321 * STOP bits are cleared together. 322 * 323 * If clearing of @mask leaves no stop or trap pending, this function calls 324 * task_clear_jobctl_trapping(). 325 * 326 * CONTEXT: 327 * Must be called with @task->sighand->siglock held. 328 */ 329 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 330 { 331 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 332 333 if (mask & JOBCTL_STOP_PENDING) 334 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 335 336 task->jobctl &= ~mask; 337 338 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 339 task_clear_jobctl_trapping(task); 340 } 341 342 /** 343 * task_participate_group_stop - participate in a group stop 344 * @task: task participating in a group stop 345 * 346 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 347 * Group stop states are cleared and the group stop count is consumed if 348 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 349 * stop, the appropriate `SIGNAL_*` flags are set. 350 * 351 * CONTEXT: 352 * Must be called with @task->sighand->siglock held. 353 * 354 * RETURNS: 355 * %true if group stop completion should be notified to the parent, %false 356 * otherwise. 357 */ 358 static bool task_participate_group_stop(struct task_struct *task) 359 { 360 struct signal_struct *sig = task->signal; 361 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 362 363 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 364 365 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 366 367 if (!consume) 368 return false; 369 370 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 371 sig->group_stop_count--; 372 373 /* 374 * Tell the caller to notify completion iff we are entering into a 375 * fresh group stop. Read comment in do_signal_stop() for details. 376 */ 377 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 378 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 379 return true; 380 } 381 return false; 382 } 383 384 void task_join_group_stop(struct task_struct *task) 385 { 386 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK; 387 struct signal_struct *sig = current->signal; 388 389 if (sig->group_stop_count) { 390 sig->group_stop_count++; 391 mask |= JOBCTL_STOP_CONSUME; 392 } else if (!(sig->flags & SIGNAL_STOP_STOPPED)) 393 return; 394 395 /* Have the new thread join an on-going signal group stop */ 396 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING); 397 } 398 399 /* 400 * allocate a new signal queue record 401 * - this may be called without locks if and only if t == current, otherwise an 402 * appropriate lock must be held to stop the target task from exiting 403 */ 404 static struct sigqueue * 405 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags, 406 int override_rlimit, const unsigned int sigqueue_flags) 407 { 408 struct sigqueue *q = NULL; 409 struct ucounts *ucounts; 410 long sigpending; 411 412 /* 413 * Protect access to @t credentials. This can go away when all 414 * callers hold rcu read lock. 415 * 416 * NOTE! A pending signal will hold on to the user refcount, 417 * and we get/put the refcount only when the sigpending count 418 * changes from/to zero. 419 */ 420 rcu_read_lock(); 421 ucounts = task_ucounts(t); 422 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING, 423 override_rlimit); 424 rcu_read_unlock(); 425 if (!sigpending) 426 return NULL; 427 428 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) { 429 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags); 430 } else { 431 print_dropped_signal(sig); 432 } 433 434 if (unlikely(q == NULL)) { 435 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 436 } else { 437 INIT_LIST_HEAD(&q->list); 438 q->flags = sigqueue_flags; 439 q->ucounts = ucounts; 440 } 441 return q; 442 } 443 444 static void __sigqueue_free(struct sigqueue *q) 445 { 446 if (q->flags & SIGQUEUE_PREALLOC) 447 return; 448 if (q->ucounts) { 449 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING); 450 q->ucounts = NULL; 451 } 452 kmem_cache_free(sigqueue_cachep, q); 453 } 454 455 void flush_sigqueue(struct sigpending *queue) 456 { 457 struct sigqueue *q; 458 459 sigemptyset(&queue->signal); 460 while (!list_empty(&queue->list)) { 461 q = list_entry(queue->list.next, struct sigqueue , list); 462 list_del_init(&q->list); 463 __sigqueue_free(q); 464 } 465 } 466 467 /* 468 * Flush all pending signals for this kthread. 469 */ 470 void flush_signals(struct task_struct *t) 471 { 472 unsigned long flags; 473 474 spin_lock_irqsave(&t->sighand->siglock, flags); 475 clear_tsk_thread_flag(t, TIF_SIGPENDING); 476 flush_sigqueue(&t->pending); 477 flush_sigqueue(&t->signal->shared_pending); 478 spin_unlock_irqrestore(&t->sighand->siglock, flags); 479 } 480 EXPORT_SYMBOL(flush_signals); 481 482 #ifdef CONFIG_POSIX_TIMERS 483 static void __flush_itimer_signals(struct sigpending *pending) 484 { 485 sigset_t signal, retain; 486 struct sigqueue *q, *n; 487 488 signal = pending->signal; 489 sigemptyset(&retain); 490 491 list_for_each_entry_safe(q, n, &pending->list, list) { 492 int sig = q->info.si_signo; 493 494 if (likely(q->info.si_code != SI_TIMER)) { 495 sigaddset(&retain, sig); 496 } else { 497 sigdelset(&signal, sig); 498 list_del_init(&q->list); 499 __sigqueue_free(q); 500 } 501 } 502 503 sigorsets(&pending->signal, &signal, &retain); 504 } 505 506 void flush_itimer_signals(void) 507 { 508 struct task_struct *tsk = current; 509 unsigned long flags; 510 511 spin_lock_irqsave(&tsk->sighand->siglock, flags); 512 __flush_itimer_signals(&tsk->pending); 513 __flush_itimer_signals(&tsk->signal->shared_pending); 514 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 515 } 516 #endif 517 518 void ignore_signals(struct task_struct *t) 519 { 520 int i; 521 522 for (i = 0; i < _NSIG; ++i) 523 t->sighand->action[i].sa.sa_handler = SIG_IGN; 524 525 flush_signals(t); 526 } 527 528 /* 529 * Flush all handlers for a task. 530 */ 531 532 void 533 flush_signal_handlers(struct task_struct *t, int force_default) 534 { 535 int i; 536 struct k_sigaction *ka = &t->sighand->action[0]; 537 for (i = _NSIG ; i != 0 ; i--) { 538 if (force_default || ka->sa.sa_handler != SIG_IGN) 539 ka->sa.sa_handler = SIG_DFL; 540 ka->sa.sa_flags = 0; 541 #ifdef __ARCH_HAS_SA_RESTORER 542 ka->sa.sa_restorer = NULL; 543 #endif 544 sigemptyset(&ka->sa.sa_mask); 545 ka++; 546 } 547 } 548 549 bool unhandled_signal(struct task_struct *tsk, int sig) 550 { 551 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 552 if (is_global_init(tsk)) 553 return true; 554 555 if (handler != SIG_IGN && handler != SIG_DFL) 556 return false; 557 558 /* If dying, we handle all new signals by ignoring them */ 559 if (fatal_signal_pending(tsk)) 560 return false; 561 562 /* if ptraced, let the tracer determine */ 563 return !tsk->ptrace; 564 } 565 566 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 567 bool *resched_timer) 568 { 569 struct sigqueue *q, *first = NULL; 570 571 /* 572 * Collect the siginfo appropriate to this signal. Check if 573 * there is another siginfo for the same signal. 574 */ 575 list_for_each_entry(q, &list->list, list) { 576 if (q->info.si_signo == sig) { 577 if (first) 578 goto still_pending; 579 first = q; 580 } 581 } 582 583 sigdelset(&list->signal, sig); 584 585 if (first) { 586 still_pending: 587 list_del_init(&first->list); 588 copy_siginfo(info, &first->info); 589 590 *resched_timer = 591 (first->flags & SIGQUEUE_PREALLOC) && 592 (info->si_code == SI_TIMER) && 593 (info->si_sys_private); 594 595 __sigqueue_free(first); 596 } else { 597 /* 598 * Ok, it wasn't in the queue. This must be 599 * a fast-pathed signal or we must have been 600 * out of queue space. So zero out the info. 601 */ 602 clear_siginfo(info); 603 info->si_signo = sig; 604 info->si_errno = 0; 605 info->si_code = SI_USER; 606 info->si_pid = 0; 607 info->si_uid = 0; 608 } 609 } 610 611 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 612 kernel_siginfo_t *info, bool *resched_timer) 613 { 614 int sig = next_signal(pending, mask); 615 616 if (sig) 617 collect_signal(sig, pending, info, resched_timer); 618 return sig; 619 } 620 621 /* 622 * Try to dequeue a signal. If a deliverable signal is found fill in the 623 * caller provided siginfo and return the signal number. Otherwise return 624 * 0. 625 */ 626 int dequeue_signal(sigset_t *mask, kernel_siginfo_t *info, enum pid_type *type) 627 { 628 struct task_struct *tsk = current; 629 bool resched_timer = false; 630 int signr; 631 632 lockdep_assert_held(&tsk->sighand->siglock); 633 634 *type = PIDTYPE_PID; 635 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 636 if (!signr) { 637 *type = PIDTYPE_TGID; 638 signr = __dequeue_signal(&tsk->signal->shared_pending, 639 mask, info, &resched_timer); 640 #ifdef CONFIG_POSIX_TIMERS 641 /* 642 * itimer signal ? 643 * 644 * itimers are process shared and we restart periodic 645 * itimers in the signal delivery path to prevent DoS 646 * attacks in the high resolution timer case. This is 647 * compliant with the old way of self-restarting 648 * itimers, as the SIGALRM is a legacy signal and only 649 * queued once. Changing the restart behaviour to 650 * restart the timer in the signal dequeue path is 651 * reducing the timer noise on heavy loaded !highres 652 * systems too. 653 */ 654 if (unlikely(signr == SIGALRM)) { 655 struct hrtimer *tmr = &tsk->signal->real_timer; 656 657 if (!hrtimer_is_queued(tmr) && 658 tsk->signal->it_real_incr != 0) { 659 hrtimer_forward(tmr, tmr->base->get_time(), 660 tsk->signal->it_real_incr); 661 hrtimer_restart(tmr); 662 } 663 } 664 #endif 665 } 666 667 recalc_sigpending(); 668 if (!signr) 669 return 0; 670 671 if (unlikely(sig_kernel_stop(signr))) { 672 /* 673 * Set a marker that we have dequeued a stop signal. Our 674 * caller might release the siglock and then the pending 675 * stop signal it is about to process is no longer in the 676 * pending bitmasks, but must still be cleared by a SIGCONT 677 * (and overruled by a SIGKILL). So those cases clear this 678 * shared flag after we've set it. Note that this flag may 679 * remain set after the signal we return is ignored or 680 * handled. That doesn't matter because its only purpose 681 * is to alert stop-signal processing code when another 682 * processor has come along and cleared the flag. 683 */ 684 current->jobctl |= JOBCTL_STOP_DEQUEUED; 685 } 686 #ifdef CONFIG_POSIX_TIMERS 687 if (resched_timer) { 688 /* 689 * Release the siglock to ensure proper locking order 690 * of timer locks outside of siglocks. Note, we leave 691 * irqs disabled here, since the posix-timers code is 692 * about to disable them again anyway. 693 */ 694 spin_unlock(&tsk->sighand->siglock); 695 posixtimer_rearm(info); 696 spin_lock(&tsk->sighand->siglock); 697 698 /* Don't expose the si_sys_private value to userspace */ 699 info->si_sys_private = 0; 700 } 701 #endif 702 return signr; 703 } 704 EXPORT_SYMBOL_GPL(dequeue_signal); 705 706 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 707 { 708 struct task_struct *tsk = current; 709 struct sigpending *pending = &tsk->pending; 710 struct sigqueue *q, *sync = NULL; 711 712 /* 713 * Might a synchronous signal be in the queue? 714 */ 715 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 716 return 0; 717 718 /* 719 * Return the first synchronous signal in the queue. 720 */ 721 list_for_each_entry(q, &pending->list, list) { 722 /* Synchronous signals have a positive si_code */ 723 if ((q->info.si_code > SI_USER) && 724 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 725 sync = q; 726 goto next; 727 } 728 } 729 return 0; 730 next: 731 /* 732 * Check if there is another siginfo for the same signal. 733 */ 734 list_for_each_entry_continue(q, &pending->list, list) { 735 if (q->info.si_signo == sync->info.si_signo) 736 goto still_pending; 737 } 738 739 sigdelset(&pending->signal, sync->info.si_signo); 740 recalc_sigpending(); 741 still_pending: 742 list_del_init(&sync->list); 743 copy_siginfo(info, &sync->info); 744 __sigqueue_free(sync); 745 return info->si_signo; 746 } 747 748 /* 749 * Tell a process that it has a new active signal.. 750 * 751 * NOTE! we rely on the previous spin_lock to 752 * lock interrupts for us! We can only be called with 753 * "siglock" held, and the local interrupt must 754 * have been disabled when that got acquired! 755 * 756 * No need to set need_resched since signal event passing 757 * goes through ->blocked 758 */ 759 void signal_wake_up_state(struct task_struct *t, unsigned int state) 760 { 761 lockdep_assert_held(&t->sighand->siglock); 762 763 set_tsk_thread_flag(t, TIF_SIGPENDING); 764 765 /* 766 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 767 * case. We don't check t->state here because there is a race with it 768 * executing another processor and just now entering stopped state. 769 * By using wake_up_state, we ensure the process will wake up and 770 * handle its death signal. 771 */ 772 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 773 kick_process(t); 774 } 775 776 /* 777 * Remove signals in mask from the pending set and queue. 778 * Returns 1 if any signals were found. 779 * 780 * All callers must be holding the siglock. 781 */ 782 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 783 { 784 struct sigqueue *q, *n; 785 sigset_t m; 786 787 sigandsets(&m, mask, &s->signal); 788 if (sigisemptyset(&m)) 789 return; 790 791 sigandnsets(&s->signal, &s->signal, mask); 792 list_for_each_entry_safe(q, n, &s->list, list) { 793 if (sigismember(mask, q->info.si_signo)) { 794 list_del_init(&q->list); 795 __sigqueue_free(q); 796 } 797 } 798 } 799 800 static inline int is_si_special(const struct kernel_siginfo *info) 801 { 802 return info <= SEND_SIG_PRIV; 803 } 804 805 static inline bool si_fromuser(const struct kernel_siginfo *info) 806 { 807 return info == SEND_SIG_NOINFO || 808 (!is_si_special(info) && SI_FROMUSER(info)); 809 } 810 811 /* 812 * called with RCU read lock from check_kill_permission() 813 */ 814 static bool kill_ok_by_cred(struct task_struct *t) 815 { 816 const struct cred *cred = current_cred(); 817 const struct cred *tcred = __task_cred(t); 818 819 return uid_eq(cred->euid, tcred->suid) || 820 uid_eq(cred->euid, tcred->uid) || 821 uid_eq(cred->uid, tcred->suid) || 822 uid_eq(cred->uid, tcred->uid) || 823 ns_capable(tcred->user_ns, CAP_KILL); 824 } 825 826 /* 827 * Bad permissions for sending the signal 828 * - the caller must hold the RCU read lock 829 */ 830 static int check_kill_permission(int sig, struct kernel_siginfo *info, 831 struct task_struct *t) 832 { 833 struct pid *sid; 834 int error; 835 836 if (!valid_signal(sig)) 837 return -EINVAL; 838 839 if (!si_fromuser(info)) 840 return 0; 841 842 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 843 if (error) 844 return error; 845 846 if (!same_thread_group(current, t) && 847 !kill_ok_by_cred(t)) { 848 switch (sig) { 849 case SIGCONT: 850 sid = task_session(t); 851 /* 852 * We don't return the error if sid == NULL. The 853 * task was unhashed, the caller must notice this. 854 */ 855 if (!sid || sid == task_session(current)) 856 break; 857 fallthrough; 858 default: 859 return -EPERM; 860 } 861 } 862 863 return security_task_kill(t, info, sig, NULL); 864 } 865 866 /** 867 * ptrace_trap_notify - schedule trap to notify ptracer 868 * @t: tracee wanting to notify tracer 869 * 870 * This function schedules sticky ptrace trap which is cleared on the next 871 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 872 * ptracer. 873 * 874 * If @t is running, STOP trap will be taken. If trapped for STOP and 875 * ptracer is listening for events, tracee is woken up so that it can 876 * re-trap for the new event. If trapped otherwise, STOP trap will be 877 * eventually taken without returning to userland after the existing traps 878 * are finished by PTRACE_CONT. 879 * 880 * CONTEXT: 881 * Must be called with @task->sighand->siglock held. 882 */ 883 static void ptrace_trap_notify(struct task_struct *t) 884 { 885 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 886 lockdep_assert_held(&t->sighand->siglock); 887 888 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 889 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 890 } 891 892 /* 893 * Handle magic process-wide effects of stop/continue signals. Unlike 894 * the signal actions, these happen immediately at signal-generation 895 * time regardless of blocking, ignoring, or handling. This does the 896 * actual continuing for SIGCONT, but not the actual stopping for stop 897 * signals. The process stop is done as a signal action for SIG_DFL. 898 * 899 * Returns true if the signal should be actually delivered, otherwise 900 * it should be dropped. 901 */ 902 static bool prepare_signal(int sig, struct task_struct *p, bool force) 903 { 904 struct signal_struct *signal = p->signal; 905 struct task_struct *t; 906 sigset_t flush; 907 908 if (signal->flags & SIGNAL_GROUP_EXIT) { 909 if (signal->core_state) 910 return sig == SIGKILL; 911 /* 912 * The process is in the middle of dying, drop the signal. 913 */ 914 return false; 915 } else if (sig_kernel_stop(sig)) { 916 /* 917 * This is a stop signal. Remove SIGCONT from all queues. 918 */ 919 siginitset(&flush, sigmask(SIGCONT)); 920 flush_sigqueue_mask(&flush, &signal->shared_pending); 921 for_each_thread(p, t) 922 flush_sigqueue_mask(&flush, &t->pending); 923 } else if (sig == SIGCONT) { 924 unsigned int why; 925 /* 926 * Remove all stop signals from all queues, wake all threads. 927 */ 928 siginitset(&flush, SIG_KERNEL_STOP_MASK); 929 flush_sigqueue_mask(&flush, &signal->shared_pending); 930 for_each_thread(p, t) { 931 flush_sigqueue_mask(&flush, &t->pending); 932 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 933 if (likely(!(t->ptrace & PT_SEIZED))) { 934 t->jobctl &= ~JOBCTL_STOPPED; 935 wake_up_state(t, __TASK_STOPPED); 936 } else 937 ptrace_trap_notify(t); 938 } 939 940 /* 941 * Notify the parent with CLD_CONTINUED if we were stopped. 942 * 943 * If we were in the middle of a group stop, we pretend it 944 * was already finished, and then continued. Since SIGCHLD 945 * doesn't queue we report only CLD_STOPPED, as if the next 946 * CLD_CONTINUED was dropped. 947 */ 948 why = 0; 949 if (signal->flags & SIGNAL_STOP_STOPPED) 950 why |= SIGNAL_CLD_CONTINUED; 951 else if (signal->group_stop_count) 952 why |= SIGNAL_CLD_STOPPED; 953 954 if (why) { 955 /* 956 * The first thread which returns from do_signal_stop() 957 * will take ->siglock, notice SIGNAL_CLD_MASK, and 958 * notify its parent. See get_signal(). 959 */ 960 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 961 signal->group_stop_count = 0; 962 signal->group_exit_code = 0; 963 } 964 } 965 966 return !sig_ignored(p, sig, force); 967 } 968 969 /* 970 * Test if P wants to take SIG. After we've checked all threads with this, 971 * it's equivalent to finding no threads not blocking SIG. Any threads not 972 * blocking SIG were ruled out because they are not running and already 973 * have pending signals. Such threads will dequeue from the shared queue 974 * as soon as they're available, so putting the signal on the shared queue 975 * will be equivalent to sending it to one such thread. 976 */ 977 static inline bool wants_signal(int sig, struct task_struct *p) 978 { 979 if (sigismember(&p->blocked, sig)) 980 return false; 981 982 if (p->flags & PF_EXITING) 983 return false; 984 985 if (sig == SIGKILL) 986 return true; 987 988 if (task_is_stopped_or_traced(p)) 989 return false; 990 991 return task_curr(p) || !task_sigpending(p); 992 } 993 994 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 995 { 996 struct signal_struct *signal = p->signal; 997 struct task_struct *t; 998 999 /* 1000 * Now find a thread we can wake up to take the signal off the queue. 1001 * 1002 * Try the suggested task first (may or may not be the main thread). 1003 */ 1004 if (wants_signal(sig, p)) 1005 t = p; 1006 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 1007 /* 1008 * There is just one thread and it does not need to be woken. 1009 * It will dequeue unblocked signals before it runs again. 1010 */ 1011 return; 1012 else { 1013 /* 1014 * Otherwise try to find a suitable thread. 1015 */ 1016 t = signal->curr_target; 1017 while (!wants_signal(sig, t)) { 1018 t = next_thread(t); 1019 if (t == signal->curr_target) 1020 /* 1021 * No thread needs to be woken. 1022 * Any eligible threads will see 1023 * the signal in the queue soon. 1024 */ 1025 return; 1026 } 1027 signal->curr_target = t; 1028 } 1029 1030 /* 1031 * Found a killable thread. If the signal will be fatal, 1032 * then start taking the whole group down immediately. 1033 */ 1034 if (sig_fatal(p, sig) && 1035 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) && 1036 !sigismember(&t->real_blocked, sig) && 1037 (sig == SIGKILL || !p->ptrace)) { 1038 /* 1039 * This signal will be fatal to the whole group. 1040 */ 1041 if (!sig_kernel_coredump(sig)) { 1042 /* 1043 * Start a group exit and wake everybody up. 1044 * This way we don't have other threads 1045 * running and doing things after a slower 1046 * thread has the fatal signal pending. 1047 */ 1048 signal->flags = SIGNAL_GROUP_EXIT; 1049 signal->group_exit_code = sig; 1050 signal->group_stop_count = 0; 1051 __for_each_thread(signal, t) { 1052 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1053 sigaddset(&t->pending.signal, SIGKILL); 1054 signal_wake_up(t, 1); 1055 } 1056 return; 1057 } 1058 } 1059 1060 /* 1061 * The signal is already in the shared-pending queue. 1062 * Tell the chosen thread to wake up and dequeue it. 1063 */ 1064 signal_wake_up(t, sig == SIGKILL); 1065 return; 1066 } 1067 1068 static inline bool legacy_queue(struct sigpending *signals, int sig) 1069 { 1070 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1071 } 1072 1073 static int __send_signal_locked(int sig, struct kernel_siginfo *info, 1074 struct task_struct *t, enum pid_type type, bool force) 1075 { 1076 struct sigpending *pending; 1077 struct sigqueue *q; 1078 int override_rlimit; 1079 int ret = 0, result; 1080 1081 lockdep_assert_held(&t->sighand->siglock); 1082 1083 result = TRACE_SIGNAL_IGNORED; 1084 if (!prepare_signal(sig, t, force)) 1085 goto ret; 1086 1087 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1088 /* 1089 * Short-circuit ignored signals and support queuing 1090 * exactly one non-rt signal, so that we can get more 1091 * detailed information about the cause of the signal. 1092 */ 1093 result = TRACE_SIGNAL_ALREADY_PENDING; 1094 if (legacy_queue(pending, sig)) 1095 goto ret; 1096 1097 result = TRACE_SIGNAL_DELIVERED; 1098 /* 1099 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1100 */ 1101 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1102 goto out_set; 1103 1104 /* 1105 * Real-time signals must be queued if sent by sigqueue, or 1106 * some other real-time mechanism. It is implementation 1107 * defined whether kill() does so. We attempt to do so, on 1108 * the principle of least surprise, but since kill is not 1109 * allowed to fail with EAGAIN when low on memory we just 1110 * make sure at least one signal gets delivered and don't 1111 * pass on the info struct. 1112 */ 1113 if (sig < SIGRTMIN) 1114 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1115 else 1116 override_rlimit = 0; 1117 1118 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0); 1119 1120 if (q) { 1121 list_add_tail(&q->list, &pending->list); 1122 switch ((unsigned long) info) { 1123 case (unsigned long) SEND_SIG_NOINFO: 1124 clear_siginfo(&q->info); 1125 q->info.si_signo = sig; 1126 q->info.si_errno = 0; 1127 q->info.si_code = SI_USER; 1128 q->info.si_pid = task_tgid_nr_ns(current, 1129 task_active_pid_ns(t)); 1130 rcu_read_lock(); 1131 q->info.si_uid = 1132 from_kuid_munged(task_cred_xxx(t, user_ns), 1133 current_uid()); 1134 rcu_read_unlock(); 1135 break; 1136 case (unsigned long) SEND_SIG_PRIV: 1137 clear_siginfo(&q->info); 1138 q->info.si_signo = sig; 1139 q->info.si_errno = 0; 1140 q->info.si_code = SI_KERNEL; 1141 q->info.si_pid = 0; 1142 q->info.si_uid = 0; 1143 break; 1144 default: 1145 copy_siginfo(&q->info, info); 1146 break; 1147 } 1148 } else if (!is_si_special(info) && 1149 sig >= SIGRTMIN && info->si_code != SI_USER) { 1150 /* 1151 * Queue overflow, abort. We may abort if the 1152 * signal was rt and sent by user using something 1153 * other than kill(). 1154 */ 1155 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1156 ret = -EAGAIN; 1157 goto ret; 1158 } else { 1159 /* 1160 * This is a silent loss of information. We still 1161 * send the signal, but the *info bits are lost. 1162 */ 1163 result = TRACE_SIGNAL_LOSE_INFO; 1164 } 1165 1166 out_set: 1167 signalfd_notify(t, sig); 1168 sigaddset(&pending->signal, sig); 1169 1170 /* Let multiprocess signals appear after on-going forks */ 1171 if (type > PIDTYPE_TGID) { 1172 struct multiprocess_signals *delayed; 1173 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1174 sigset_t *signal = &delayed->signal; 1175 /* Can't queue both a stop and a continue signal */ 1176 if (sig == SIGCONT) 1177 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1178 else if (sig_kernel_stop(sig)) 1179 sigdelset(signal, SIGCONT); 1180 sigaddset(signal, sig); 1181 } 1182 } 1183 1184 complete_signal(sig, t, type); 1185 ret: 1186 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1187 return ret; 1188 } 1189 1190 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) 1191 { 1192 bool ret = false; 1193 switch (siginfo_layout(info->si_signo, info->si_code)) { 1194 case SIL_KILL: 1195 case SIL_CHLD: 1196 case SIL_RT: 1197 ret = true; 1198 break; 1199 case SIL_TIMER: 1200 case SIL_POLL: 1201 case SIL_FAULT: 1202 case SIL_FAULT_TRAPNO: 1203 case SIL_FAULT_MCEERR: 1204 case SIL_FAULT_BNDERR: 1205 case SIL_FAULT_PKUERR: 1206 case SIL_FAULT_PERF_EVENT: 1207 case SIL_SYS: 1208 ret = false; 1209 break; 1210 } 1211 return ret; 1212 } 1213 1214 int send_signal_locked(int sig, struct kernel_siginfo *info, 1215 struct task_struct *t, enum pid_type type) 1216 { 1217 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ 1218 bool force = false; 1219 1220 if (info == SEND_SIG_NOINFO) { 1221 /* Force if sent from an ancestor pid namespace */ 1222 force = !task_pid_nr_ns(current, task_active_pid_ns(t)); 1223 } else if (info == SEND_SIG_PRIV) { 1224 /* Don't ignore kernel generated signals */ 1225 force = true; 1226 } else if (has_si_pid_and_uid(info)) { 1227 /* SIGKILL and SIGSTOP is special or has ids */ 1228 struct user_namespace *t_user_ns; 1229 1230 rcu_read_lock(); 1231 t_user_ns = task_cred_xxx(t, user_ns); 1232 if (current_user_ns() != t_user_ns) { 1233 kuid_t uid = make_kuid(current_user_ns(), info->si_uid); 1234 info->si_uid = from_kuid_munged(t_user_ns, uid); 1235 } 1236 rcu_read_unlock(); 1237 1238 /* A kernel generated signal? */ 1239 force = (info->si_code == SI_KERNEL); 1240 1241 /* From an ancestor pid namespace? */ 1242 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { 1243 info->si_pid = 0; 1244 force = true; 1245 } 1246 } 1247 return __send_signal_locked(sig, info, t, type, force); 1248 } 1249 1250 static void print_fatal_signal(int signr) 1251 { 1252 struct pt_regs *regs = task_pt_regs(current); 1253 struct file *exe_file; 1254 1255 exe_file = get_task_exe_file(current); 1256 if (exe_file) { 1257 pr_info("%pD: %s: potentially unexpected fatal signal %d.\n", 1258 exe_file, current->comm, signr); 1259 fput(exe_file); 1260 } else { 1261 pr_info("%s: potentially unexpected fatal signal %d.\n", 1262 current->comm, signr); 1263 } 1264 1265 #if defined(__i386__) && !defined(__arch_um__) 1266 pr_info("code at %08lx: ", regs->ip); 1267 { 1268 int i; 1269 for (i = 0; i < 16; i++) { 1270 unsigned char insn; 1271 1272 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1273 break; 1274 pr_cont("%02x ", insn); 1275 } 1276 } 1277 pr_cont("\n"); 1278 #endif 1279 preempt_disable(); 1280 show_regs(regs); 1281 preempt_enable(); 1282 } 1283 1284 static int __init setup_print_fatal_signals(char *str) 1285 { 1286 get_option (&str, &print_fatal_signals); 1287 1288 return 1; 1289 } 1290 1291 __setup("print-fatal-signals=", setup_print_fatal_signals); 1292 1293 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1294 enum pid_type type) 1295 { 1296 unsigned long flags; 1297 int ret = -ESRCH; 1298 1299 if (lock_task_sighand(p, &flags)) { 1300 ret = send_signal_locked(sig, info, p, type); 1301 unlock_task_sighand(p, &flags); 1302 } 1303 1304 return ret; 1305 } 1306 1307 enum sig_handler { 1308 HANDLER_CURRENT, /* If reachable use the current handler */ 1309 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */ 1310 HANDLER_EXIT, /* Only visible as the process exit code */ 1311 }; 1312 1313 /* 1314 * Force a signal that the process can't ignore: if necessary 1315 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1316 * 1317 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1318 * since we do not want to have a signal handler that was blocked 1319 * be invoked when user space had explicitly blocked it. 1320 * 1321 * We don't want to have recursive SIGSEGV's etc, for example, 1322 * that is why we also clear SIGNAL_UNKILLABLE. 1323 */ 1324 static int 1325 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t, 1326 enum sig_handler handler) 1327 { 1328 unsigned long int flags; 1329 int ret, blocked, ignored; 1330 struct k_sigaction *action; 1331 int sig = info->si_signo; 1332 1333 spin_lock_irqsave(&t->sighand->siglock, flags); 1334 action = &t->sighand->action[sig-1]; 1335 ignored = action->sa.sa_handler == SIG_IGN; 1336 blocked = sigismember(&t->blocked, sig); 1337 if (blocked || ignored || (handler != HANDLER_CURRENT)) { 1338 action->sa.sa_handler = SIG_DFL; 1339 if (handler == HANDLER_EXIT) 1340 action->sa.sa_flags |= SA_IMMUTABLE; 1341 if (blocked) 1342 sigdelset(&t->blocked, sig); 1343 } 1344 /* 1345 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1346 * debugging to leave init killable. But HANDLER_EXIT is always fatal. 1347 */ 1348 if (action->sa.sa_handler == SIG_DFL && 1349 (!t->ptrace || (handler == HANDLER_EXIT))) 1350 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1351 ret = send_signal_locked(sig, info, t, PIDTYPE_PID); 1352 /* This can happen if the signal was already pending and blocked */ 1353 if (!task_sigpending(t)) 1354 signal_wake_up(t, 0); 1355 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1356 1357 return ret; 1358 } 1359 1360 int force_sig_info(struct kernel_siginfo *info) 1361 { 1362 return force_sig_info_to_task(info, current, HANDLER_CURRENT); 1363 } 1364 1365 /* 1366 * Nuke all other threads in the group. 1367 */ 1368 int zap_other_threads(struct task_struct *p) 1369 { 1370 struct task_struct *t; 1371 int count = 0; 1372 1373 p->signal->group_stop_count = 0; 1374 1375 for_other_threads(p, t) { 1376 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1377 count++; 1378 1379 /* Don't bother with already dead threads */ 1380 if (t->exit_state) 1381 continue; 1382 sigaddset(&t->pending.signal, SIGKILL); 1383 signal_wake_up(t, 1); 1384 } 1385 1386 return count; 1387 } 1388 1389 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1390 unsigned long *flags) 1391 { 1392 struct sighand_struct *sighand; 1393 1394 rcu_read_lock(); 1395 for (;;) { 1396 sighand = rcu_dereference(tsk->sighand); 1397 if (unlikely(sighand == NULL)) 1398 break; 1399 1400 /* 1401 * This sighand can be already freed and even reused, but 1402 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1403 * initializes ->siglock: this slab can't go away, it has 1404 * the same object type, ->siglock can't be reinitialized. 1405 * 1406 * We need to ensure that tsk->sighand is still the same 1407 * after we take the lock, we can race with de_thread() or 1408 * __exit_signal(). In the latter case the next iteration 1409 * must see ->sighand == NULL. 1410 */ 1411 spin_lock_irqsave(&sighand->siglock, *flags); 1412 if (likely(sighand == rcu_access_pointer(tsk->sighand))) 1413 break; 1414 spin_unlock_irqrestore(&sighand->siglock, *flags); 1415 } 1416 rcu_read_unlock(); 1417 1418 return sighand; 1419 } 1420 1421 #ifdef CONFIG_LOCKDEP 1422 void lockdep_assert_task_sighand_held(struct task_struct *task) 1423 { 1424 struct sighand_struct *sighand; 1425 1426 rcu_read_lock(); 1427 sighand = rcu_dereference(task->sighand); 1428 if (sighand) 1429 lockdep_assert_held(&sighand->siglock); 1430 else 1431 WARN_ON_ONCE(1); 1432 rcu_read_unlock(); 1433 } 1434 #endif 1435 1436 /* 1437 * send signal info to all the members of a thread group or to the 1438 * individual thread if type == PIDTYPE_PID. 1439 */ 1440 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1441 struct task_struct *p, enum pid_type type) 1442 { 1443 int ret; 1444 1445 rcu_read_lock(); 1446 ret = check_kill_permission(sig, info, p); 1447 rcu_read_unlock(); 1448 1449 if (!ret && sig) 1450 ret = do_send_sig_info(sig, info, p, type); 1451 1452 return ret; 1453 } 1454 1455 /* 1456 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1457 * control characters do (^C, ^Z etc) 1458 * - the caller must hold at least a readlock on tasklist_lock 1459 */ 1460 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1461 { 1462 struct task_struct *p = NULL; 1463 int ret = -ESRCH; 1464 1465 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1466 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1467 /* 1468 * If group_send_sig_info() succeeds at least once ret 1469 * becomes 0 and after that the code below has no effect. 1470 * Otherwise we return the last err or -ESRCH if this 1471 * process group is empty. 1472 */ 1473 if (ret) 1474 ret = err; 1475 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1476 1477 return ret; 1478 } 1479 1480 static int kill_pid_info_type(int sig, struct kernel_siginfo *info, 1481 struct pid *pid, enum pid_type type) 1482 { 1483 int error = -ESRCH; 1484 struct task_struct *p; 1485 1486 for (;;) { 1487 rcu_read_lock(); 1488 p = pid_task(pid, PIDTYPE_PID); 1489 if (p) 1490 error = group_send_sig_info(sig, info, p, type); 1491 rcu_read_unlock(); 1492 if (likely(!p || error != -ESRCH)) 1493 return error; 1494 /* 1495 * The task was unhashed in between, try again. If it 1496 * is dead, pid_task() will return NULL, if we race with 1497 * de_thread() it will find the new leader. 1498 */ 1499 } 1500 } 1501 1502 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1503 { 1504 return kill_pid_info_type(sig, info, pid, PIDTYPE_TGID); 1505 } 1506 1507 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1508 { 1509 int error; 1510 rcu_read_lock(); 1511 error = kill_pid_info(sig, info, find_vpid(pid)); 1512 rcu_read_unlock(); 1513 return error; 1514 } 1515 1516 static inline bool kill_as_cred_perm(const struct cred *cred, 1517 struct task_struct *target) 1518 { 1519 const struct cred *pcred = __task_cred(target); 1520 1521 return uid_eq(cred->euid, pcred->suid) || 1522 uid_eq(cred->euid, pcred->uid) || 1523 uid_eq(cred->uid, pcred->suid) || 1524 uid_eq(cred->uid, pcred->uid); 1525 } 1526 1527 /* 1528 * The usb asyncio usage of siginfo is wrong. The glibc support 1529 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. 1530 * AKA after the generic fields: 1531 * kernel_pid_t si_pid; 1532 * kernel_uid32_t si_uid; 1533 * sigval_t si_value; 1534 * 1535 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout 1536 * after the generic fields is: 1537 * void __user *si_addr; 1538 * 1539 * This is a practical problem when there is a 64bit big endian kernel 1540 * and a 32bit userspace. As the 32bit address will encoded in the low 1541 * 32bits of the pointer. Those low 32bits will be stored at higher 1542 * address than appear in a 32 bit pointer. So userspace will not 1543 * see the address it was expecting for it's completions. 1544 * 1545 * There is nothing in the encoding that can allow 1546 * copy_siginfo_to_user32 to detect this confusion of formats, so 1547 * handle this by requiring the caller of kill_pid_usb_asyncio to 1548 * notice when this situration takes place and to store the 32bit 1549 * pointer in sival_int, instead of sival_addr of the sigval_t addr 1550 * parameter. 1551 */ 1552 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, 1553 struct pid *pid, const struct cred *cred) 1554 { 1555 struct kernel_siginfo info; 1556 struct task_struct *p; 1557 unsigned long flags; 1558 int ret = -EINVAL; 1559 1560 if (!valid_signal(sig)) 1561 return ret; 1562 1563 clear_siginfo(&info); 1564 info.si_signo = sig; 1565 info.si_errno = errno; 1566 info.si_code = SI_ASYNCIO; 1567 *((sigval_t *)&info.si_pid) = addr; 1568 1569 rcu_read_lock(); 1570 p = pid_task(pid, PIDTYPE_PID); 1571 if (!p) { 1572 ret = -ESRCH; 1573 goto out_unlock; 1574 } 1575 if (!kill_as_cred_perm(cred, p)) { 1576 ret = -EPERM; 1577 goto out_unlock; 1578 } 1579 ret = security_task_kill(p, &info, sig, cred); 1580 if (ret) 1581 goto out_unlock; 1582 1583 if (sig) { 1584 if (lock_task_sighand(p, &flags)) { 1585 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false); 1586 unlock_task_sighand(p, &flags); 1587 } else 1588 ret = -ESRCH; 1589 } 1590 out_unlock: 1591 rcu_read_unlock(); 1592 return ret; 1593 } 1594 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); 1595 1596 /* 1597 * kill_something_info() interprets pid in interesting ways just like kill(2). 1598 * 1599 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1600 * is probably wrong. Should make it like BSD or SYSV. 1601 */ 1602 1603 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1604 { 1605 int ret; 1606 1607 if (pid > 0) 1608 return kill_proc_info(sig, info, pid); 1609 1610 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1611 if (pid == INT_MIN) 1612 return -ESRCH; 1613 1614 read_lock(&tasklist_lock); 1615 if (pid != -1) { 1616 ret = __kill_pgrp_info(sig, info, 1617 pid ? find_vpid(-pid) : task_pgrp(current)); 1618 } else { 1619 int retval = 0, count = 0; 1620 struct task_struct * p; 1621 1622 for_each_process(p) { 1623 if (task_pid_vnr(p) > 1 && 1624 !same_thread_group(p, current)) { 1625 int err = group_send_sig_info(sig, info, p, 1626 PIDTYPE_MAX); 1627 ++count; 1628 if (err != -EPERM) 1629 retval = err; 1630 } 1631 } 1632 ret = count ? retval : -ESRCH; 1633 } 1634 read_unlock(&tasklist_lock); 1635 1636 return ret; 1637 } 1638 1639 /* 1640 * These are for backward compatibility with the rest of the kernel source. 1641 */ 1642 1643 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1644 { 1645 /* 1646 * Make sure legacy kernel users don't send in bad values 1647 * (normal paths check this in check_kill_permission). 1648 */ 1649 if (!valid_signal(sig)) 1650 return -EINVAL; 1651 1652 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1653 } 1654 EXPORT_SYMBOL(send_sig_info); 1655 1656 #define __si_special(priv) \ 1657 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1658 1659 int 1660 send_sig(int sig, struct task_struct *p, int priv) 1661 { 1662 return send_sig_info(sig, __si_special(priv), p); 1663 } 1664 EXPORT_SYMBOL(send_sig); 1665 1666 void force_sig(int sig) 1667 { 1668 struct kernel_siginfo info; 1669 1670 clear_siginfo(&info); 1671 info.si_signo = sig; 1672 info.si_errno = 0; 1673 info.si_code = SI_KERNEL; 1674 info.si_pid = 0; 1675 info.si_uid = 0; 1676 force_sig_info(&info); 1677 } 1678 EXPORT_SYMBOL(force_sig); 1679 1680 void force_fatal_sig(int sig) 1681 { 1682 struct kernel_siginfo info; 1683 1684 clear_siginfo(&info); 1685 info.si_signo = sig; 1686 info.si_errno = 0; 1687 info.si_code = SI_KERNEL; 1688 info.si_pid = 0; 1689 info.si_uid = 0; 1690 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL); 1691 } 1692 1693 void force_exit_sig(int sig) 1694 { 1695 struct kernel_siginfo info; 1696 1697 clear_siginfo(&info); 1698 info.si_signo = sig; 1699 info.si_errno = 0; 1700 info.si_code = SI_KERNEL; 1701 info.si_pid = 0; 1702 info.si_uid = 0; 1703 force_sig_info_to_task(&info, current, HANDLER_EXIT); 1704 } 1705 1706 /* 1707 * When things go south during signal handling, we 1708 * will force a SIGSEGV. And if the signal that caused 1709 * the problem was already a SIGSEGV, we'll want to 1710 * make sure we don't even try to deliver the signal.. 1711 */ 1712 void force_sigsegv(int sig) 1713 { 1714 if (sig == SIGSEGV) 1715 force_fatal_sig(SIGSEGV); 1716 else 1717 force_sig(SIGSEGV); 1718 } 1719 1720 int force_sig_fault_to_task(int sig, int code, void __user *addr, 1721 struct task_struct *t) 1722 { 1723 struct kernel_siginfo info; 1724 1725 clear_siginfo(&info); 1726 info.si_signo = sig; 1727 info.si_errno = 0; 1728 info.si_code = code; 1729 info.si_addr = addr; 1730 return force_sig_info_to_task(&info, t, HANDLER_CURRENT); 1731 } 1732 1733 int force_sig_fault(int sig, int code, void __user *addr) 1734 { 1735 return force_sig_fault_to_task(sig, code, addr, current); 1736 } 1737 1738 int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t) 1739 { 1740 struct kernel_siginfo info; 1741 1742 clear_siginfo(&info); 1743 info.si_signo = sig; 1744 info.si_errno = 0; 1745 info.si_code = code; 1746 info.si_addr = addr; 1747 return send_sig_info(info.si_signo, &info, t); 1748 } 1749 1750 int force_sig_mceerr(int code, void __user *addr, short lsb) 1751 { 1752 struct kernel_siginfo info; 1753 1754 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1755 clear_siginfo(&info); 1756 info.si_signo = SIGBUS; 1757 info.si_errno = 0; 1758 info.si_code = code; 1759 info.si_addr = addr; 1760 info.si_addr_lsb = lsb; 1761 return force_sig_info(&info); 1762 } 1763 1764 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1765 { 1766 struct kernel_siginfo info; 1767 1768 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1769 clear_siginfo(&info); 1770 info.si_signo = SIGBUS; 1771 info.si_errno = 0; 1772 info.si_code = code; 1773 info.si_addr = addr; 1774 info.si_addr_lsb = lsb; 1775 return send_sig_info(info.si_signo, &info, t); 1776 } 1777 EXPORT_SYMBOL(send_sig_mceerr); 1778 1779 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1780 { 1781 struct kernel_siginfo info; 1782 1783 clear_siginfo(&info); 1784 info.si_signo = SIGSEGV; 1785 info.si_errno = 0; 1786 info.si_code = SEGV_BNDERR; 1787 info.si_addr = addr; 1788 info.si_lower = lower; 1789 info.si_upper = upper; 1790 return force_sig_info(&info); 1791 } 1792 1793 #ifdef SEGV_PKUERR 1794 int force_sig_pkuerr(void __user *addr, u32 pkey) 1795 { 1796 struct kernel_siginfo info; 1797 1798 clear_siginfo(&info); 1799 info.si_signo = SIGSEGV; 1800 info.si_errno = 0; 1801 info.si_code = SEGV_PKUERR; 1802 info.si_addr = addr; 1803 info.si_pkey = pkey; 1804 return force_sig_info(&info); 1805 } 1806 #endif 1807 1808 int send_sig_perf(void __user *addr, u32 type, u64 sig_data) 1809 { 1810 struct kernel_siginfo info; 1811 1812 clear_siginfo(&info); 1813 info.si_signo = SIGTRAP; 1814 info.si_errno = 0; 1815 info.si_code = TRAP_PERF; 1816 info.si_addr = addr; 1817 info.si_perf_data = sig_data; 1818 info.si_perf_type = type; 1819 1820 /* 1821 * Signals generated by perf events should not terminate the whole 1822 * process if SIGTRAP is blocked, however, delivering the signal 1823 * asynchronously is better than not delivering at all. But tell user 1824 * space if the signal was asynchronous, so it can clearly be 1825 * distinguished from normal synchronous ones. 1826 */ 1827 info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ? 1828 TRAP_PERF_FLAG_ASYNC : 1829 0; 1830 1831 return send_sig_info(info.si_signo, &info, current); 1832 } 1833 1834 /** 1835 * force_sig_seccomp - signals the task to allow in-process syscall emulation 1836 * @syscall: syscall number to send to userland 1837 * @reason: filter-supplied reason code to send to userland (via si_errno) 1838 * @force_coredump: true to trigger a coredump 1839 * 1840 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. 1841 */ 1842 int force_sig_seccomp(int syscall, int reason, bool force_coredump) 1843 { 1844 struct kernel_siginfo info; 1845 1846 clear_siginfo(&info); 1847 info.si_signo = SIGSYS; 1848 info.si_code = SYS_SECCOMP; 1849 info.si_call_addr = (void __user *)KSTK_EIP(current); 1850 info.si_errno = reason; 1851 info.si_arch = syscall_get_arch(current); 1852 info.si_syscall = syscall; 1853 return force_sig_info_to_task(&info, current, 1854 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT); 1855 } 1856 1857 /* For the crazy architectures that include trap information in 1858 * the errno field, instead of an actual errno value. 1859 */ 1860 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1861 { 1862 struct kernel_siginfo info; 1863 1864 clear_siginfo(&info); 1865 info.si_signo = SIGTRAP; 1866 info.si_errno = errno; 1867 info.si_code = TRAP_HWBKPT; 1868 info.si_addr = addr; 1869 return force_sig_info(&info); 1870 } 1871 1872 /* For the rare architectures that include trap information using 1873 * si_trapno. 1874 */ 1875 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno) 1876 { 1877 struct kernel_siginfo info; 1878 1879 clear_siginfo(&info); 1880 info.si_signo = sig; 1881 info.si_errno = 0; 1882 info.si_code = code; 1883 info.si_addr = addr; 1884 info.si_trapno = trapno; 1885 return force_sig_info(&info); 1886 } 1887 1888 /* For the rare architectures that include trap information using 1889 * si_trapno. 1890 */ 1891 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, 1892 struct task_struct *t) 1893 { 1894 struct kernel_siginfo info; 1895 1896 clear_siginfo(&info); 1897 info.si_signo = sig; 1898 info.si_errno = 0; 1899 info.si_code = code; 1900 info.si_addr = addr; 1901 info.si_trapno = trapno; 1902 return send_sig_info(info.si_signo, &info, t); 1903 } 1904 1905 static int kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1906 { 1907 int ret; 1908 read_lock(&tasklist_lock); 1909 ret = __kill_pgrp_info(sig, info, pgrp); 1910 read_unlock(&tasklist_lock); 1911 return ret; 1912 } 1913 1914 int kill_pgrp(struct pid *pid, int sig, int priv) 1915 { 1916 return kill_pgrp_info(sig, __si_special(priv), pid); 1917 } 1918 EXPORT_SYMBOL(kill_pgrp); 1919 1920 int kill_pid(struct pid *pid, int sig, int priv) 1921 { 1922 return kill_pid_info(sig, __si_special(priv), pid); 1923 } 1924 EXPORT_SYMBOL(kill_pid); 1925 1926 /* 1927 * These functions support sending signals using preallocated sigqueue 1928 * structures. This is needed "because realtime applications cannot 1929 * afford to lose notifications of asynchronous events, like timer 1930 * expirations or I/O completions". In the case of POSIX Timers 1931 * we allocate the sigqueue structure from the timer_create. If this 1932 * allocation fails we are able to report the failure to the application 1933 * with an EAGAIN error. 1934 */ 1935 struct sigqueue *sigqueue_alloc(void) 1936 { 1937 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC); 1938 } 1939 1940 void sigqueue_free(struct sigqueue *q) 1941 { 1942 spinlock_t *lock = ¤t->sighand->siglock; 1943 unsigned long flags; 1944 1945 if (WARN_ON_ONCE(!(q->flags & SIGQUEUE_PREALLOC))) 1946 return; 1947 /* 1948 * We must hold ->siglock while testing q->list 1949 * to serialize with collect_signal() or with 1950 * __exit_signal()->flush_sigqueue(). 1951 */ 1952 spin_lock_irqsave(lock, flags); 1953 q->flags &= ~SIGQUEUE_PREALLOC; 1954 /* 1955 * If it is queued it will be freed when dequeued, 1956 * like the "regular" sigqueue. 1957 */ 1958 if (!list_empty(&q->list)) 1959 q = NULL; 1960 spin_unlock_irqrestore(lock, flags); 1961 1962 if (q) 1963 __sigqueue_free(q); 1964 } 1965 1966 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) 1967 { 1968 int sig = q->info.si_signo; 1969 struct sigpending *pending; 1970 struct task_struct *t; 1971 unsigned long flags; 1972 int ret, result; 1973 1974 if (WARN_ON_ONCE(!(q->flags & SIGQUEUE_PREALLOC))) 1975 return 0; 1976 if (WARN_ON_ONCE(q->info.si_code != SI_TIMER)) 1977 return 0; 1978 1979 ret = -1; 1980 rcu_read_lock(); 1981 1982 /* 1983 * This function is used by POSIX timers to deliver a timer signal. 1984 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID 1985 * set), the signal must be delivered to the specific thread (queues 1986 * into t->pending). 1987 * 1988 * Where type is not PIDTYPE_PID, signals must be delivered to the 1989 * process. In this case, prefer to deliver to current if it is in 1990 * the same thread group as the target process, which avoids 1991 * unnecessarily waking up a potentially idle task. 1992 */ 1993 t = pid_task(pid, type); 1994 if (!t) 1995 goto ret; 1996 if (type != PIDTYPE_PID && same_thread_group(t, current)) 1997 t = current; 1998 if (!likely(lock_task_sighand(t, &flags))) 1999 goto ret; 2000 2001 ret = 1; /* the signal is ignored */ 2002 result = TRACE_SIGNAL_IGNORED; 2003 if (!prepare_signal(sig, t, false)) 2004 goto out; 2005 2006 ret = 0; 2007 if (unlikely(!list_empty(&q->list))) { 2008 /* 2009 * If an SI_TIMER entry is already queue just increment 2010 * the overrun count. 2011 */ 2012 q->info.si_overrun++; 2013 result = TRACE_SIGNAL_ALREADY_PENDING; 2014 goto out; 2015 } 2016 q->info.si_overrun = 0; 2017 2018 signalfd_notify(t, sig); 2019 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 2020 list_add_tail(&q->list, &pending->list); 2021 sigaddset(&pending->signal, sig); 2022 complete_signal(sig, t, type); 2023 result = TRACE_SIGNAL_DELIVERED; 2024 out: 2025 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result); 2026 unlock_task_sighand(t, &flags); 2027 ret: 2028 rcu_read_unlock(); 2029 return ret; 2030 } 2031 2032 void do_notify_pidfd(struct task_struct *task) 2033 { 2034 struct pid *pid = task_pid(task); 2035 2036 WARN_ON(task->exit_state == 0); 2037 2038 __wake_up(&pid->wait_pidfd, TASK_NORMAL, 0, 2039 poll_to_key(EPOLLIN | EPOLLRDNORM)); 2040 } 2041 2042 /* 2043 * Let a parent know about the death of a child. 2044 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 2045 * 2046 * Returns true if our parent ignored us and so we've switched to 2047 * self-reaping. 2048 */ 2049 bool do_notify_parent(struct task_struct *tsk, int sig) 2050 { 2051 struct kernel_siginfo info; 2052 unsigned long flags; 2053 struct sighand_struct *psig; 2054 bool autoreap = false; 2055 u64 utime, stime; 2056 2057 WARN_ON_ONCE(sig == -1); 2058 2059 /* do_notify_parent_cldstop should have been called instead. */ 2060 WARN_ON_ONCE(task_is_stopped_or_traced(tsk)); 2061 2062 WARN_ON_ONCE(!tsk->ptrace && 2063 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 2064 /* 2065 * tsk is a group leader and has no threads, wake up the 2066 * non-PIDFD_THREAD waiters. 2067 */ 2068 if (thread_group_empty(tsk)) 2069 do_notify_pidfd(tsk); 2070 2071 if (sig != SIGCHLD) { 2072 /* 2073 * This is only possible if parent == real_parent. 2074 * Check if it has changed security domain. 2075 */ 2076 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) 2077 sig = SIGCHLD; 2078 } 2079 2080 clear_siginfo(&info); 2081 info.si_signo = sig; 2082 info.si_errno = 0; 2083 /* 2084 * We are under tasklist_lock here so our parent is tied to 2085 * us and cannot change. 2086 * 2087 * task_active_pid_ns will always return the same pid namespace 2088 * until a task passes through release_task. 2089 * 2090 * write_lock() currently calls preempt_disable() which is the 2091 * same as rcu_read_lock(), but according to Oleg, this is not 2092 * correct to rely on this 2093 */ 2094 rcu_read_lock(); 2095 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 2096 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 2097 task_uid(tsk)); 2098 rcu_read_unlock(); 2099 2100 task_cputime(tsk, &utime, &stime); 2101 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 2102 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 2103 2104 info.si_status = tsk->exit_code & 0x7f; 2105 if (tsk->exit_code & 0x80) 2106 info.si_code = CLD_DUMPED; 2107 else if (tsk->exit_code & 0x7f) 2108 info.si_code = CLD_KILLED; 2109 else { 2110 info.si_code = CLD_EXITED; 2111 info.si_status = tsk->exit_code >> 8; 2112 } 2113 2114 psig = tsk->parent->sighand; 2115 spin_lock_irqsave(&psig->siglock, flags); 2116 if (!tsk->ptrace && sig == SIGCHLD && 2117 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 2118 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 2119 /* 2120 * We are exiting and our parent doesn't care. POSIX.1 2121 * defines special semantics for setting SIGCHLD to SIG_IGN 2122 * or setting the SA_NOCLDWAIT flag: we should be reaped 2123 * automatically and not left for our parent's wait4 call. 2124 * Rather than having the parent do it as a magic kind of 2125 * signal handler, we just set this to tell do_exit that we 2126 * can be cleaned up without becoming a zombie. Note that 2127 * we still call __wake_up_parent in this case, because a 2128 * blocked sys_wait4 might now return -ECHILD. 2129 * 2130 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 2131 * is implementation-defined: we do (if you don't want 2132 * it, just use SIG_IGN instead). 2133 */ 2134 autoreap = true; 2135 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 2136 sig = 0; 2137 } 2138 /* 2139 * Send with __send_signal as si_pid and si_uid are in the 2140 * parent's namespaces. 2141 */ 2142 if (valid_signal(sig) && sig) 2143 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false); 2144 __wake_up_parent(tsk, tsk->parent); 2145 spin_unlock_irqrestore(&psig->siglock, flags); 2146 2147 return autoreap; 2148 } 2149 2150 /** 2151 * do_notify_parent_cldstop - notify parent of stopped/continued state change 2152 * @tsk: task reporting the state change 2153 * @for_ptracer: the notification is for ptracer 2154 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 2155 * 2156 * Notify @tsk's parent that the stopped/continued state has changed. If 2157 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 2158 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 2159 * 2160 * CONTEXT: 2161 * Must be called with tasklist_lock at least read locked. 2162 */ 2163 static void do_notify_parent_cldstop(struct task_struct *tsk, 2164 bool for_ptracer, int why) 2165 { 2166 struct kernel_siginfo info; 2167 unsigned long flags; 2168 struct task_struct *parent; 2169 struct sighand_struct *sighand; 2170 u64 utime, stime; 2171 2172 if (for_ptracer) { 2173 parent = tsk->parent; 2174 } else { 2175 tsk = tsk->group_leader; 2176 parent = tsk->real_parent; 2177 } 2178 2179 clear_siginfo(&info); 2180 info.si_signo = SIGCHLD; 2181 info.si_errno = 0; 2182 /* 2183 * see comment in do_notify_parent() about the following 4 lines 2184 */ 2185 rcu_read_lock(); 2186 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 2187 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 2188 rcu_read_unlock(); 2189 2190 task_cputime(tsk, &utime, &stime); 2191 info.si_utime = nsec_to_clock_t(utime); 2192 info.si_stime = nsec_to_clock_t(stime); 2193 2194 info.si_code = why; 2195 switch (why) { 2196 case CLD_CONTINUED: 2197 info.si_status = SIGCONT; 2198 break; 2199 case CLD_STOPPED: 2200 info.si_status = tsk->signal->group_exit_code & 0x7f; 2201 break; 2202 case CLD_TRAPPED: 2203 info.si_status = tsk->exit_code & 0x7f; 2204 break; 2205 default: 2206 BUG(); 2207 } 2208 2209 sighand = parent->sighand; 2210 spin_lock_irqsave(&sighand->siglock, flags); 2211 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 2212 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 2213 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID); 2214 /* 2215 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 2216 */ 2217 __wake_up_parent(tsk, parent); 2218 spin_unlock_irqrestore(&sighand->siglock, flags); 2219 } 2220 2221 /* 2222 * This must be called with current->sighand->siglock held. 2223 * 2224 * This should be the path for all ptrace stops. 2225 * We always set current->last_siginfo while stopped here. 2226 * That makes it a way to test a stopped process for 2227 * being ptrace-stopped vs being job-control-stopped. 2228 * 2229 * Returns the signal the ptracer requested the code resume 2230 * with. If the code did not stop because the tracer is gone, 2231 * the stop signal remains unchanged unless clear_code. 2232 */ 2233 static int ptrace_stop(int exit_code, int why, unsigned long message, 2234 kernel_siginfo_t *info) 2235 __releases(¤t->sighand->siglock) 2236 __acquires(¤t->sighand->siglock) 2237 { 2238 bool gstop_done = false; 2239 2240 if (arch_ptrace_stop_needed()) { 2241 /* 2242 * The arch code has something special to do before a 2243 * ptrace stop. This is allowed to block, e.g. for faults 2244 * on user stack pages. We can't keep the siglock while 2245 * calling arch_ptrace_stop, so we must release it now. 2246 * To preserve proper semantics, we must do this before 2247 * any signal bookkeeping like checking group_stop_count. 2248 */ 2249 spin_unlock_irq(¤t->sighand->siglock); 2250 arch_ptrace_stop(); 2251 spin_lock_irq(¤t->sighand->siglock); 2252 } 2253 2254 /* 2255 * After this point ptrace_signal_wake_up or signal_wake_up 2256 * will clear TASK_TRACED if ptrace_unlink happens or a fatal 2257 * signal comes in. Handle previous ptrace_unlinks and fatal 2258 * signals here to prevent ptrace_stop sleeping in schedule. 2259 */ 2260 if (!current->ptrace || __fatal_signal_pending(current)) 2261 return exit_code; 2262 2263 set_special_state(TASK_TRACED); 2264 current->jobctl |= JOBCTL_TRACED; 2265 2266 /* 2267 * We're committing to trapping. TRACED should be visible before 2268 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2269 * Also, transition to TRACED and updates to ->jobctl should be 2270 * atomic with respect to siglock and should be done after the arch 2271 * hook as siglock is released and regrabbed across it. 2272 * 2273 * TRACER TRACEE 2274 * 2275 * ptrace_attach() 2276 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2277 * do_wait() 2278 * set_current_state() smp_wmb(); 2279 * ptrace_do_wait() 2280 * wait_task_stopped() 2281 * task_stopped_code() 2282 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2283 */ 2284 smp_wmb(); 2285 2286 current->ptrace_message = message; 2287 current->last_siginfo = info; 2288 current->exit_code = exit_code; 2289 2290 /* 2291 * If @why is CLD_STOPPED, we're trapping to participate in a group 2292 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2293 * across siglock relocks since INTERRUPT was scheduled, PENDING 2294 * could be clear now. We act as if SIGCONT is received after 2295 * TASK_TRACED is entered - ignore it. 2296 */ 2297 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2298 gstop_done = task_participate_group_stop(current); 2299 2300 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2301 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2302 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2303 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2304 2305 /* entering a trap, clear TRAPPING */ 2306 task_clear_jobctl_trapping(current); 2307 2308 spin_unlock_irq(¤t->sighand->siglock); 2309 read_lock(&tasklist_lock); 2310 /* 2311 * Notify parents of the stop. 2312 * 2313 * While ptraced, there are two parents - the ptracer and 2314 * the real_parent of the group_leader. The ptracer should 2315 * know about every stop while the real parent is only 2316 * interested in the completion of group stop. The states 2317 * for the two don't interact with each other. Notify 2318 * separately unless they're gonna be duplicates. 2319 */ 2320 if (current->ptrace) 2321 do_notify_parent_cldstop(current, true, why); 2322 if (gstop_done && (!current->ptrace || ptrace_reparented(current))) 2323 do_notify_parent_cldstop(current, false, why); 2324 2325 /* 2326 * The previous do_notify_parent_cldstop() invocation woke ptracer. 2327 * One a PREEMPTION kernel this can result in preemption requirement 2328 * which will be fulfilled after read_unlock() and the ptracer will be 2329 * put on the CPU. 2330 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for 2331 * this task wait in schedule(). If this task gets preempted then it 2332 * remains enqueued on the runqueue. The ptracer will observe this and 2333 * then sleep for a delay of one HZ tick. In the meantime this task 2334 * gets scheduled, enters schedule() and will wait for the ptracer. 2335 * 2336 * This preemption point is not bad from a correctness point of 2337 * view but extends the runtime by one HZ tick time due to the 2338 * ptracer's sleep. The preempt-disable section ensures that there 2339 * will be no preemption between unlock and schedule() and so 2340 * improving the performance since the ptracer will observe that 2341 * the tracee is scheduled out once it gets on the CPU. 2342 * 2343 * On PREEMPT_RT locking tasklist_lock does not disable preemption. 2344 * Therefore the task can be preempted after do_notify_parent_cldstop() 2345 * before unlocking tasklist_lock so there is no benefit in doing this. 2346 * 2347 * In fact disabling preemption is harmful on PREEMPT_RT because 2348 * the spinlock_t in cgroup_enter_frozen() must not be acquired 2349 * with preemption disabled due to the 'sleeping' spinlock 2350 * substitution of RT. 2351 */ 2352 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 2353 preempt_disable(); 2354 read_unlock(&tasklist_lock); 2355 cgroup_enter_frozen(); 2356 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 2357 preempt_enable_no_resched(); 2358 schedule(); 2359 cgroup_leave_frozen(true); 2360 2361 /* 2362 * We are back. Now reacquire the siglock before touching 2363 * last_siginfo, so that we are sure to have synchronized with 2364 * any signal-sending on another CPU that wants to examine it. 2365 */ 2366 spin_lock_irq(¤t->sighand->siglock); 2367 exit_code = current->exit_code; 2368 current->last_siginfo = NULL; 2369 current->ptrace_message = 0; 2370 current->exit_code = 0; 2371 2372 /* LISTENING can be set only during STOP traps, clear it */ 2373 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN); 2374 2375 /* 2376 * Queued signals ignored us while we were stopped for tracing. 2377 * So check for any that we should take before resuming user mode. 2378 * This sets TIF_SIGPENDING, but never clears it. 2379 */ 2380 recalc_sigpending_tsk(current); 2381 return exit_code; 2382 } 2383 2384 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message) 2385 { 2386 kernel_siginfo_t info; 2387 2388 clear_siginfo(&info); 2389 info.si_signo = signr; 2390 info.si_code = exit_code; 2391 info.si_pid = task_pid_vnr(current); 2392 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2393 2394 /* Let the debugger run. */ 2395 return ptrace_stop(exit_code, why, message, &info); 2396 } 2397 2398 int ptrace_notify(int exit_code, unsigned long message) 2399 { 2400 int signr; 2401 2402 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2403 if (unlikely(task_work_pending(current))) 2404 task_work_run(); 2405 2406 spin_lock_irq(¤t->sighand->siglock); 2407 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message); 2408 spin_unlock_irq(¤t->sighand->siglock); 2409 return signr; 2410 } 2411 2412 /** 2413 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2414 * @signr: signr causing group stop if initiating 2415 * 2416 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2417 * and participate in it. If already set, participate in the existing 2418 * group stop. If participated in a group stop (and thus slept), %true is 2419 * returned with siglock released. 2420 * 2421 * If ptraced, this function doesn't handle stop itself. Instead, 2422 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2423 * untouched. The caller must ensure that INTERRUPT trap handling takes 2424 * places afterwards. 2425 * 2426 * CONTEXT: 2427 * Must be called with @current->sighand->siglock held, which is released 2428 * on %true return. 2429 * 2430 * RETURNS: 2431 * %false if group stop is already cancelled or ptrace trap is scheduled. 2432 * %true if participated in group stop. 2433 */ 2434 static bool do_signal_stop(int signr) 2435 __releases(¤t->sighand->siglock) 2436 { 2437 struct signal_struct *sig = current->signal; 2438 2439 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2440 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2441 struct task_struct *t; 2442 2443 /* signr will be recorded in task->jobctl for retries */ 2444 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2445 2446 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2447 unlikely(sig->flags & SIGNAL_GROUP_EXIT) || 2448 unlikely(sig->group_exec_task)) 2449 return false; 2450 /* 2451 * There is no group stop already in progress. We must 2452 * initiate one now. 2453 * 2454 * While ptraced, a task may be resumed while group stop is 2455 * still in effect and then receive a stop signal and 2456 * initiate another group stop. This deviates from the 2457 * usual behavior as two consecutive stop signals can't 2458 * cause two group stops when !ptraced. That is why we 2459 * also check !task_is_stopped(t) below. 2460 * 2461 * The condition can be distinguished by testing whether 2462 * SIGNAL_STOP_STOPPED is already set. Don't generate 2463 * group_exit_code in such case. 2464 * 2465 * This is not necessary for SIGNAL_STOP_CONTINUED because 2466 * an intervening stop signal is required to cause two 2467 * continued events regardless of ptrace. 2468 */ 2469 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2470 sig->group_exit_code = signr; 2471 2472 sig->group_stop_count = 0; 2473 if (task_set_jobctl_pending(current, signr | gstop)) 2474 sig->group_stop_count++; 2475 2476 for_other_threads(current, t) { 2477 /* 2478 * Setting state to TASK_STOPPED for a group 2479 * stop is always done with the siglock held, 2480 * so this check has no races. 2481 */ 2482 if (!task_is_stopped(t) && 2483 task_set_jobctl_pending(t, signr | gstop)) { 2484 sig->group_stop_count++; 2485 if (likely(!(t->ptrace & PT_SEIZED))) 2486 signal_wake_up(t, 0); 2487 else 2488 ptrace_trap_notify(t); 2489 } 2490 } 2491 } 2492 2493 if (likely(!current->ptrace)) { 2494 int notify = 0; 2495 2496 /* 2497 * If there are no other threads in the group, or if there 2498 * is a group stop in progress and we are the last to stop, 2499 * report to the parent. 2500 */ 2501 if (task_participate_group_stop(current)) 2502 notify = CLD_STOPPED; 2503 2504 current->jobctl |= JOBCTL_STOPPED; 2505 set_special_state(TASK_STOPPED); 2506 spin_unlock_irq(¤t->sighand->siglock); 2507 2508 /* 2509 * Notify the parent of the group stop completion. Because 2510 * we're not holding either the siglock or tasklist_lock 2511 * here, ptracer may attach inbetween; however, this is for 2512 * group stop and should always be delivered to the real 2513 * parent of the group leader. The new ptracer will get 2514 * its notification when this task transitions into 2515 * TASK_TRACED. 2516 */ 2517 if (notify) { 2518 read_lock(&tasklist_lock); 2519 do_notify_parent_cldstop(current, false, notify); 2520 read_unlock(&tasklist_lock); 2521 } 2522 2523 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2524 cgroup_enter_frozen(); 2525 schedule(); 2526 return true; 2527 } else { 2528 /* 2529 * While ptraced, group stop is handled by STOP trap. 2530 * Schedule it and let the caller deal with it. 2531 */ 2532 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2533 return false; 2534 } 2535 } 2536 2537 /** 2538 * do_jobctl_trap - take care of ptrace jobctl traps 2539 * 2540 * When PT_SEIZED, it's used for both group stop and explicit 2541 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2542 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2543 * the stop signal; otherwise, %SIGTRAP. 2544 * 2545 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2546 * number as exit_code and no siginfo. 2547 * 2548 * CONTEXT: 2549 * Must be called with @current->sighand->siglock held, which may be 2550 * released and re-acquired before returning with intervening sleep. 2551 */ 2552 static void do_jobctl_trap(void) 2553 { 2554 struct signal_struct *signal = current->signal; 2555 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2556 2557 if (current->ptrace & PT_SEIZED) { 2558 if (!signal->group_stop_count && 2559 !(signal->flags & SIGNAL_STOP_STOPPED)) 2560 signr = SIGTRAP; 2561 WARN_ON_ONCE(!signr); 2562 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2563 CLD_STOPPED, 0); 2564 } else { 2565 WARN_ON_ONCE(!signr); 2566 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2567 } 2568 } 2569 2570 /** 2571 * do_freezer_trap - handle the freezer jobctl trap 2572 * 2573 * Puts the task into frozen state, if only the task is not about to quit. 2574 * In this case it drops JOBCTL_TRAP_FREEZE. 2575 * 2576 * CONTEXT: 2577 * Must be called with @current->sighand->siglock held, 2578 * which is always released before returning. 2579 */ 2580 static void do_freezer_trap(void) 2581 __releases(¤t->sighand->siglock) 2582 { 2583 /* 2584 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, 2585 * let's make another loop to give it a chance to be handled. 2586 * In any case, we'll return back. 2587 */ 2588 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != 2589 JOBCTL_TRAP_FREEZE) { 2590 spin_unlock_irq(¤t->sighand->siglock); 2591 return; 2592 } 2593 2594 /* 2595 * Now we're sure that there is no pending fatal signal and no 2596 * pending traps. Clear TIF_SIGPENDING to not get out of schedule() 2597 * immediately (if there is a non-fatal signal pending), and 2598 * put the task into sleep. 2599 */ 2600 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 2601 clear_thread_flag(TIF_SIGPENDING); 2602 spin_unlock_irq(¤t->sighand->siglock); 2603 cgroup_enter_frozen(); 2604 schedule(); 2605 2606 /* 2607 * We could've been woken by task_work, run it to clear 2608 * TIF_NOTIFY_SIGNAL. The caller will retry if necessary. 2609 */ 2610 clear_notify_signal(); 2611 if (unlikely(task_work_pending(current))) 2612 task_work_run(); 2613 } 2614 2615 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type) 2616 { 2617 /* 2618 * We do not check sig_kernel_stop(signr) but set this marker 2619 * unconditionally because we do not know whether debugger will 2620 * change signr. This flag has no meaning unless we are going 2621 * to stop after return from ptrace_stop(). In this case it will 2622 * be checked in do_signal_stop(), we should only stop if it was 2623 * not cleared by SIGCONT while we were sleeping. See also the 2624 * comment in dequeue_signal(). 2625 */ 2626 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2627 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info); 2628 2629 /* We're back. Did the debugger cancel the sig? */ 2630 if (signr == 0) 2631 return signr; 2632 2633 /* 2634 * Update the siginfo structure if the signal has 2635 * changed. If the debugger wanted something 2636 * specific in the siginfo structure then it should 2637 * have updated *info via PTRACE_SETSIGINFO. 2638 */ 2639 if (signr != info->si_signo) { 2640 clear_siginfo(info); 2641 info->si_signo = signr; 2642 info->si_errno = 0; 2643 info->si_code = SI_USER; 2644 rcu_read_lock(); 2645 info->si_pid = task_pid_vnr(current->parent); 2646 info->si_uid = from_kuid_munged(current_user_ns(), 2647 task_uid(current->parent)); 2648 rcu_read_unlock(); 2649 } 2650 2651 /* If the (new) signal is now blocked, requeue it. */ 2652 if (sigismember(¤t->blocked, signr) || 2653 fatal_signal_pending(current)) { 2654 send_signal_locked(signr, info, current, type); 2655 signr = 0; 2656 } 2657 2658 return signr; 2659 } 2660 2661 static void hide_si_addr_tag_bits(struct ksignal *ksig) 2662 { 2663 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) { 2664 case SIL_FAULT: 2665 case SIL_FAULT_TRAPNO: 2666 case SIL_FAULT_MCEERR: 2667 case SIL_FAULT_BNDERR: 2668 case SIL_FAULT_PKUERR: 2669 case SIL_FAULT_PERF_EVENT: 2670 ksig->info.si_addr = arch_untagged_si_addr( 2671 ksig->info.si_addr, ksig->sig, ksig->info.si_code); 2672 break; 2673 case SIL_KILL: 2674 case SIL_TIMER: 2675 case SIL_POLL: 2676 case SIL_CHLD: 2677 case SIL_RT: 2678 case SIL_SYS: 2679 break; 2680 } 2681 } 2682 2683 bool get_signal(struct ksignal *ksig) 2684 { 2685 struct sighand_struct *sighand = current->sighand; 2686 struct signal_struct *signal = current->signal; 2687 int signr; 2688 2689 clear_notify_signal(); 2690 if (unlikely(task_work_pending(current))) 2691 task_work_run(); 2692 2693 if (!task_sigpending(current)) 2694 return false; 2695 2696 if (unlikely(uprobe_deny_signal())) 2697 return false; 2698 2699 /* 2700 * Do this once, we can't return to user-mode if freezing() == T. 2701 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2702 * thus do not need another check after return. 2703 */ 2704 try_to_freeze(); 2705 2706 relock: 2707 spin_lock_irq(&sighand->siglock); 2708 2709 /* 2710 * Every stopped thread goes here after wakeup. Check to see if 2711 * we should notify the parent, prepare_signal(SIGCONT) encodes 2712 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2713 */ 2714 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2715 int why; 2716 2717 if (signal->flags & SIGNAL_CLD_CONTINUED) 2718 why = CLD_CONTINUED; 2719 else 2720 why = CLD_STOPPED; 2721 2722 signal->flags &= ~SIGNAL_CLD_MASK; 2723 2724 spin_unlock_irq(&sighand->siglock); 2725 2726 /* 2727 * Notify the parent that we're continuing. This event is 2728 * always per-process and doesn't make whole lot of sense 2729 * for ptracers, who shouldn't consume the state via 2730 * wait(2) either, but, for backward compatibility, notify 2731 * the ptracer of the group leader too unless it's gonna be 2732 * a duplicate. 2733 */ 2734 read_lock(&tasklist_lock); 2735 do_notify_parent_cldstop(current, false, why); 2736 2737 if (ptrace_reparented(current->group_leader)) 2738 do_notify_parent_cldstop(current->group_leader, 2739 true, why); 2740 read_unlock(&tasklist_lock); 2741 2742 goto relock; 2743 } 2744 2745 for (;;) { 2746 struct k_sigaction *ka; 2747 enum pid_type type; 2748 2749 /* Has this task already been marked for death? */ 2750 if ((signal->flags & SIGNAL_GROUP_EXIT) || 2751 signal->group_exec_task) { 2752 signr = SIGKILL; 2753 sigdelset(¤t->pending.signal, SIGKILL); 2754 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, 2755 &sighand->action[SIGKILL-1]); 2756 recalc_sigpending(); 2757 /* 2758 * implies do_group_exit() or return to PF_USER_WORKER, 2759 * no need to initialize ksig->info/etc. 2760 */ 2761 goto fatal; 2762 } 2763 2764 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2765 do_signal_stop(0)) 2766 goto relock; 2767 2768 if (unlikely(current->jobctl & 2769 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { 2770 if (current->jobctl & JOBCTL_TRAP_MASK) { 2771 do_jobctl_trap(); 2772 spin_unlock_irq(&sighand->siglock); 2773 } else if (current->jobctl & JOBCTL_TRAP_FREEZE) 2774 do_freezer_trap(); 2775 2776 goto relock; 2777 } 2778 2779 /* 2780 * If the task is leaving the frozen state, let's update 2781 * cgroup counters and reset the frozen bit. 2782 */ 2783 if (unlikely(cgroup_task_frozen(current))) { 2784 spin_unlock_irq(&sighand->siglock); 2785 cgroup_leave_frozen(false); 2786 goto relock; 2787 } 2788 2789 /* 2790 * Signals generated by the execution of an instruction 2791 * need to be delivered before any other pending signals 2792 * so that the instruction pointer in the signal stack 2793 * frame points to the faulting instruction. 2794 */ 2795 type = PIDTYPE_PID; 2796 signr = dequeue_synchronous_signal(&ksig->info); 2797 if (!signr) 2798 signr = dequeue_signal(¤t->blocked, &ksig->info, &type); 2799 2800 if (!signr) 2801 break; /* will return 0 */ 2802 2803 if (unlikely(current->ptrace) && (signr != SIGKILL) && 2804 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) { 2805 signr = ptrace_signal(signr, &ksig->info, type); 2806 if (!signr) 2807 continue; 2808 } 2809 2810 ka = &sighand->action[signr-1]; 2811 2812 /* Trace actually delivered signals. */ 2813 trace_signal_deliver(signr, &ksig->info, ka); 2814 2815 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2816 continue; 2817 if (ka->sa.sa_handler != SIG_DFL) { 2818 /* Run the handler. */ 2819 ksig->ka = *ka; 2820 2821 if (ka->sa.sa_flags & SA_ONESHOT) 2822 ka->sa.sa_handler = SIG_DFL; 2823 2824 break; /* will return non-zero "signr" value */ 2825 } 2826 2827 /* 2828 * Now we are doing the default action for this signal. 2829 */ 2830 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2831 continue; 2832 2833 /* 2834 * Global init gets no signals it doesn't want. 2835 * Container-init gets no signals it doesn't want from same 2836 * container. 2837 * 2838 * Note that if global/container-init sees a sig_kernel_only() 2839 * signal here, the signal must have been generated internally 2840 * or must have come from an ancestor namespace. In either 2841 * case, the signal cannot be dropped. 2842 */ 2843 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2844 !sig_kernel_only(signr)) 2845 continue; 2846 2847 if (sig_kernel_stop(signr)) { 2848 /* 2849 * The default action is to stop all threads in 2850 * the thread group. The job control signals 2851 * do nothing in an orphaned pgrp, but SIGSTOP 2852 * always works. Note that siglock needs to be 2853 * dropped during the call to is_orphaned_pgrp() 2854 * because of lock ordering with tasklist_lock. 2855 * This allows an intervening SIGCONT to be posted. 2856 * We need to check for that and bail out if necessary. 2857 */ 2858 if (signr != SIGSTOP) { 2859 spin_unlock_irq(&sighand->siglock); 2860 2861 /* signals can be posted during this window */ 2862 2863 if (is_current_pgrp_orphaned()) 2864 goto relock; 2865 2866 spin_lock_irq(&sighand->siglock); 2867 } 2868 2869 if (likely(do_signal_stop(signr))) { 2870 /* It released the siglock. */ 2871 goto relock; 2872 } 2873 2874 /* 2875 * We didn't actually stop, due to a race 2876 * with SIGCONT or something like that. 2877 */ 2878 continue; 2879 } 2880 2881 fatal: 2882 spin_unlock_irq(&sighand->siglock); 2883 if (unlikely(cgroup_task_frozen(current))) 2884 cgroup_leave_frozen(true); 2885 2886 /* 2887 * Anything else is fatal, maybe with a core dump. 2888 */ 2889 current->flags |= PF_SIGNALED; 2890 2891 if (sig_kernel_coredump(signr)) { 2892 if (print_fatal_signals) 2893 print_fatal_signal(signr); 2894 proc_coredump_connector(current); 2895 /* 2896 * If it was able to dump core, this kills all 2897 * other threads in the group and synchronizes with 2898 * their demise. If we lost the race with another 2899 * thread getting here, it set group_exit_code 2900 * first and our do_group_exit call below will use 2901 * that value and ignore the one we pass it. 2902 */ 2903 do_coredump(&ksig->info); 2904 } 2905 2906 /* 2907 * PF_USER_WORKER threads will catch and exit on fatal signals 2908 * themselves. They have cleanup that must be performed, so we 2909 * cannot call do_exit() on their behalf. Note that ksig won't 2910 * be properly initialized, PF_USER_WORKER's shouldn't use it. 2911 */ 2912 if (current->flags & PF_USER_WORKER) 2913 goto out; 2914 2915 /* 2916 * Death signals, no core dump. 2917 */ 2918 do_group_exit(signr); 2919 /* NOTREACHED */ 2920 } 2921 spin_unlock_irq(&sighand->siglock); 2922 2923 ksig->sig = signr; 2924 2925 if (signr && !(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS)) 2926 hide_si_addr_tag_bits(ksig); 2927 out: 2928 return signr > 0; 2929 } 2930 2931 /** 2932 * signal_delivered - called after signal delivery to update blocked signals 2933 * @ksig: kernel signal struct 2934 * @stepping: nonzero if debugger single-step or block-step in use 2935 * 2936 * This function should be called when a signal has successfully been 2937 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2938 * is always blocked), and the signal itself is blocked unless %SA_NODEFER 2939 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2940 */ 2941 static void signal_delivered(struct ksignal *ksig, int stepping) 2942 { 2943 sigset_t blocked; 2944 2945 /* A signal was successfully delivered, and the 2946 saved sigmask was stored on the signal frame, 2947 and will be restored by sigreturn. So we can 2948 simply clear the restore sigmask flag. */ 2949 clear_restore_sigmask(); 2950 2951 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2952 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2953 sigaddset(&blocked, ksig->sig); 2954 set_current_blocked(&blocked); 2955 if (current->sas_ss_flags & SS_AUTODISARM) 2956 sas_ss_reset(current); 2957 if (stepping) 2958 ptrace_notify(SIGTRAP, 0); 2959 } 2960 2961 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2962 { 2963 if (failed) 2964 force_sigsegv(ksig->sig); 2965 else 2966 signal_delivered(ksig, stepping); 2967 } 2968 2969 /* 2970 * It could be that complete_signal() picked us to notify about the 2971 * group-wide signal. Other threads should be notified now to take 2972 * the shared signals in @which since we will not. 2973 */ 2974 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2975 { 2976 sigset_t retarget; 2977 struct task_struct *t; 2978 2979 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2980 if (sigisemptyset(&retarget)) 2981 return; 2982 2983 for_other_threads(tsk, t) { 2984 if (t->flags & PF_EXITING) 2985 continue; 2986 2987 if (!has_pending_signals(&retarget, &t->blocked)) 2988 continue; 2989 /* Remove the signals this thread can handle. */ 2990 sigandsets(&retarget, &retarget, &t->blocked); 2991 2992 if (!task_sigpending(t)) 2993 signal_wake_up(t, 0); 2994 2995 if (sigisemptyset(&retarget)) 2996 break; 2997 } 2998 } 2999 3000 void exit_signals(struct task_struct *tsk) 3001 { 3002 int group_stop = 0; 3003 sigset_t unblocked; 3004 3005 /* 3006 * @tsk is about to have PF_EXITING set - lock out users which 3007 * expect stable threadgroup. 3008 */ 3009 cgroup_threadgroup_change_begin(tsk); 3010 3011 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) { 3012 sched_mm_cid_exit_signals(tsk); 3013 tsk->flags |= PF_EXITING; 3014 cgroup_threadgroup_change_end(tsk); 3015 return; 3016 } 3017 3018 spin_lock_irq(&tsk->sighand->siglock); 3019 /* 3020 * From now this task is not visible for group-wide signals, 3021 * see wants_signal(), do_signal_stop(). 3022 */ 3023 sched_mm_cid_exit_signals(tsk); 3024 tsk->flags |= PF_EXITING; 3025 3026 cgroup_threadgroup_change_end(tsk); 3027 3028 if (!task_sigpending(tsk)) 3029 goto out; 3030 3031 unblocked = tsk->blocked; 3032 signotset(&unblocked); 3033 retarget_shared_pending(tsk, &unblocked); 3034 3035 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 3036 task_participate_group_stop(tsk)) 3037 group_stop = CLD_STOPPED; 3038 out: 3039 spin_unlock_irq(&tsk->sighand->siglock); 3040 3041 /* 3042 * If group stop has completed, deliver the notification. This 3043 * should always go to the real parent of the group leader. 3044 */ 3045 if (unlikely(group_stop)) { 3046 read_lock(&tasklist_lock); 3047 do_notify_parent_cldstop(tsk, false, group_stop); 3048 read_unlock(&tasklist_lock); 3049 } 3050 } 3051 3052 /* 3053 * System call entry points. 3054 */ 3055 3056 /** 3057 * sys_restart_syscall - restart a system call 3058 */ 3059 SYSCALL_DEFINE0(restart_syscall) 3060 { 3061 struct restart_block *restart = ¤t->restart_block; 3062 return restart->fn(restart); 3063 } 3064 3065 long do_no_restart_syscall(struct restart_block *param) 3066 { 3067 return -EINTR; 3068 } 3069 3070 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 3071 { 3072 if (task_sigpending(tsk) && !thread_group_empty(tsk)) { 3073 sigset_t newblocked; 3074 /* A set of now blocked but previously unblocked signals. */ 3075 sigandnsets(&newblocked, newset, ¤t->blocked); 3076 retarget_shared_pending(tsk, &newblocked); 3077 } 3078 tsk->blocked = *newset; 3079 recalc_sigpending(); 3080 } 3081 3082 /** 3083 * set_current_blocked - change current->blocked mask 3084 * @newset: new mask 3085 * 3086 * It is wrong to change ->blocked directly, this helper should be used 3087 * to ensure the process can't miss a shared signal we are going to block. 3088 */ 3089 void set_current_blocked(sigset_t *newset) 3090 { 3091 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3092 __set_current_blocked(newset); 3093 } 3094 3095 void __set_current_blocked(const sigset_t *newset) 3096 { 3097 struct task_struct *tsk = current; 3098 3099 /* 3100 * In case the signal mask hasn't changed, there is nothing we need 3101 * to do. The current->blocked shouldn't be modified by other task. 3102 */ 3103 if (sigequalsets(&tsk->blocked, newset)) 3104 return; 3105 3106 spin_lock_irq(&tsk->sighand->siglock); 3107 __set_task_blocked(tsk, newset); 3108 spin_unlock_irq(&tsk->sighand->siglock); 3109 } 3110 3111 /* 3112 * This is also useful for kernel threads that want to temporarily 3113 * (or permanently) block certain signals. 3114 * 3115 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 3116 * interface happily blocks "unblockable" signals like SIGKILL 3117 * and friends. 3118 */ 3119 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 3120 { 3121 struct task_struct *tsk = current; 3122 sigset_t newset; 3123 3124 /* Lockless, only current can change ->blocked, never from irq */ 3125 if (oldset) 3126 *oldset = tsk->blocked; 3127 3128 switch (how) { 3129 case SIG_BLOCK: 3130 sigorsets(&newset, &tsk->blocked, set); 3131 break; 3132 case SIG_UNBLOCK: 3133 sigandnsets(&newset, &tsk->blocked, set); 3134 break; 3135 case SIG_SETMASK: 3136 newset = *set; 3137 break; 3138 default: 3139 return -EINVAL; 3140 } 3141 3142 __set_current_blocked(&newset); 3143 return 0; 3144 } 3145 EXPORT_SYMBOL(sigprocmask); 3146 3147 /* 3148 * The api helps set app-provided sigmasks. 3149 * 3150 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 3151 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 3152 * 3153 * Note that it does set_restore_sigmask() in advance, so it must be always 3154 * paired with restore_saved_sigmask_unless() before return from syscall. 3155 */ 3156 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) 3157 { 3158 sigset_t kmask; 3159 3160 if (!umask) 3161 return 0; 3162 if (sigsetsize != sizeof(sigset_t)) 3163 return -EINVAL; 3164 if (copy_from_user(&kmask, umask, sizeof(sigset_t))) 3165 return -EFAULT; 3166 3167 set_restore_sigmask(); 3168 current->saved_sigmask = current->blocked; 3169 set_current_blocked(&kmask); 3170 3171 return 0; 3172 } 3173 3174 #ifdef CONFIG_COMPAT 3175 int set_compat_user_sigmask(const compat_sigset_t __user *umask, 3176 size_t sigsetsize) 3177 { 3178 sigset_t kmask; 3179 3180 if (!umask) 3181 return 0; 3182 if (sigsetsize != sizeof(compat_sigset_t)) 3183 return -EINVAL; 3184 if (get_compat_sigset(&kmask, umask)) 3185 return -EFAULT; 3186 3187 set_restore_sigmask(); 3188 current->saved_sigmask = current->blocked; 3189 set_current_blocked(&kmask); 3190 3191 return 0; 3192 } 3193 #endif 3194 3195 /** 3196 * sys_rt_sigprocmask - change the list of currently blocked signals 3197 * @how: whether to add, remove, or set signals 3198 * @nset: stores pending signals 3199 * @oset: previous value of signal mask if non-null 3200 * @sigsetsize: size of sigset_t type 3201 */ 3202 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 3203 sigset_t __user *, oset, size_t, sigsetsize) 3204 { 3205 sigset_t old_set, new_set; 3206 int error; 3207 3208 /* XXX: Don't preclude handling different sized sigset_t's. */ 3209 if (sigsetsize != sizeof(sigset_t)) 3210 return -EINVAL; 3211 3212 old_set = current->blocked; 3213 3214 if (nset) { 3215 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 3216 return -EFAULT; 3217 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3218 3219 error = sigprocmask(how, &new_set, NULL); 3220 if (error) 3221 return error; 3222 } 3223 3224 if (oset) { 3225 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 3226 return -EFAULT; 3227 } 3228 3229 return 0; 3230 } 3231 3232 #ifdef CONFIG_COMPAT 3233 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 3234 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 3235 { 3236 sigset_t old_set = current->blocked; 3237 3238 /* XXX: Don't preclude handling different sized sigset_t's. */ 3239 if (sigsetsize != sizeof(sigset_t)) 3240 return -EINVAL; 3241 3242 if (nset) { 3243 sigset_t new_set; 3244 int error; 3245 if (get_compat_sigset(&new_set, nset)) 3246 return -EFAULT; 3247 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3248 3249 error = sigprocmask(how, &new_set, NULL); 3250 if (error) 3251 return error; 3252 } 3253 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 3254 } 3255 #endif 3256 3257 static void do_sigpending(sigset_t *set) 3258 { 3259 spin_lock_irq(¤t->sighand->siglock); 3260 sigorsets(set, ¤t->pending.signal, 3261 ¤t->signal->shared_pending.signal); 3262 spin_unlock_irq(¤t->sighand->siglock); 3263 3264 /* Outside the lock because only this thread touches it. */ 3265 sigandsets(set, ¤t->blocked, set); 3266 } 3267 3268 /** 3269 * sys_rt_sigpending - examine a pending signal that has been raised 3270 * while blocked 3271 * @uset: stores pending signals 3272 * @sigsetsize: size of sigset_t type or larger 3273 */ 3274 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 3275 { 3276 sigset_t set; 3277 3278 if (sigsetsize > sizeof(*uset)) 3279 return -EINVAL; 3280 3281 do_sigpending(&set); 3282 3283 if (copy_to_user(uset, &set, sigsetsize)) 3284 return -EFAULT; 3285 3286 return 0; 3287 } 3288 3289 #ifdef CONFIG_COMPAT 3290 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 3291 compat_size_t, sigsetsize) 3292 { 3293 sigset_t set; 3294 3295 if (sigsetsize > sizeof(*uset)) 3296 return -EINVAL; 3297 3298 do_sigpending(&set); 3299 3300 return put_compat_sigset(uset, &set, sigsetsize); 3301 } 3302 #endif 3303 3304 static const struct { 3305 unsigned char limit, layout; 3306 } sig_sicodes[] = { 3307 [SIGILL] = { NSIGILL, SIL_FAULT }, 3308 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 3309 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 3310 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 3311 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 3312 #if defined(SIGEMT) 3313 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 3314 #endif 3315 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 3316 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 3317 [SIGSYS] = { NSIGSYS, SIL_SYS }, 3318 }; 3319 3320 static bool known_siginfo_layout(unsigned sig, int si_code) 3321 { 3322 if (si_code == SI_KERNEL) 3323 return true; 3324 else if ((si_code > SI_USER)) { 3325 if (sig_specific_sicodes(sig)) { 3326 if (si_code <= sig_sicodes[sig].limit) 3327 return true; 3328 } 3329 else if (si_code <= NSIGPOLL) 3330 return true; 3331 } 3332 else if (si_code >= SI_DETHREAD) 3333 return true; 3334 else if (si_code == SI_ASYNCNL) 3335 return true; 3336 return false; 3337 } 3338 3339 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3340 { 3341 enum siginfo_layout layout = SIL_KILL; 3342 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3343 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3344 (si_code <= sig_sicodes[sig].limit)) { 3345 layout = sig_sicodes[sig].layout; 3346 /* Handle the exceptions */ 3347 if ((sig == SIGBUS) && 3348 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3349 layout = SIL_FAULT_MCEERR; 3350 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3351 layout = SIL_FAULT_BNDERR; 3352 #ifdef SEGV_PKUERR 3353 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3354 layout = SIL_FAULT_PKUERR; 3355 #endif 3356 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF)) 3357 layout = SIL_FAULT_PERF_EVENT; 3358 else if (IS_ENABLED(CONFIG_SPARC) && 3359 (sig == SIGILL) && (si_code == ILL_ILLTRP)) 3360 layout = SIL_FAULT_TRAPNO; 3361 else if (IS_ENABLED(CONFIG_ALPHA) && 3362 ((sig == SIGFPE) || 3363 ((sig == SIGTRAP) && (si_code == TRAP_UNK)))) 3364 layout = SIL_FAULT_TRAPNO; 3365 } 3366 else if (si_code <= NSIGPOLL) 3367 layout = SIL_POLL; 3368 } else { 3369 if (si_code == SI_TIMER) 3370 layout = SIL_TIMER; 3371 else if (si_code == SI_SIGIO) 3372 layout = SIL_POLL; 3373 else if (si_code < 0) 3374 layout = SIL_RT; 3375 } 3376 return layout; 3377 } 3378 3379 static inline char __user *si_expansion(const siginfo_t __user *info) 3380 { 3381 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3382 } 3383 3384 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3385 { 3386 char __user *expansion = si_expansion(to); 3387 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3388 return -EFAULT; 3389 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3390 return -EFAULT; 3391 return 0; 3392 } 3393 3394 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3395 const siginfo_t __user *from) 3396 { 3397 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3398 char __user *expansion = si_expansion(from); 3399 char buf[SI_EXPANSION_SIZE]; 3400 int i; 3401 /* 3402 * An unknown si_code might need more than 3403 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3404 * extra bytes are 0. This guarantees copy_siginfo_to_user 3405 * will return this data to userspace exactly. 3406 */ 3407 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3408 return -EFAULT; 3409 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3410 if (buf[i] != 0) 3411 return -E2BIG; 3412 } 3413 } 3414 return 0; 3415 } 3416 3417 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3418 const siginfo_t __user *from) 3419 { 3420 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3421 return -EFAULT; 3422 to->si_signo = signo; 3423 return post_copy_siginfo_from_user(to, from); 3424 } 3425 3426 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3427 { 3428 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3429 return -EFAULT; 3430 return post_copy_siginfo_from_user(to, from); 3431 } 3432 3433 #ifdef CONFIG_COMPAT 3434 /** 3435 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo 3436 * @to: compat siginfo destination 3437 * @from: kernel siginfo source 3438 * 3439 * Note: This function does not work properly for the SIGCHLD on x32, but 3440 * fortunately it doesn't have to. The only valid callers for this function are 3441 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. 3442 * The latter does not care because SIGCHLD will never cause a coredump. 3443 */ 3444 void copy_siginfo_to_external32(struct compat_siginfo *to, 3445 const struct kernel_siginfo *from) 3446 { 3447 memset(to, 0, sizeof(*to)); 3448 3449 to->si_signo = from->si_signo; 3450 to->si_errno = from->si_errno; 3451 to->si_code = from->si_code; 3452 switch(siginfo_layout(from->si_signo, from->si_code)) { 3453 case SIL_KILL: 3454 to->si_pid = from->si_pid; 3455 to->si_uid = from->si_uid; 3456 break; 3457 case SIL_TIMER: 3458 to->si_tid = from->si_tid; 3459 to->si_overrun = from->si_overrun; 3460 to->si_int = from->si_int; 3461 break; 3462 case SIL_POLL: 3463 to->si_band = from->si_band; 3464 to->si_fd = from->si_fd; 3465 break; 3466 case SIL_FAULT: 3467 to->si_addr = ptr_to_compat(from->si_addr); 3468 break; 3469 case SIL_FAULT_TRAPNO: 3470 to->si_addr = ptr_to_compat(from->si_addr); 3471 to->si_trapno = from->si_trapno; 3472 break; 3473 case SIL_FAULT_MCEERR: 3474 to->si_addr = ptr_to_compat(from->si_addr); 3475 to->si_addr_lsb = from->si_addr_lsb; 3476 break; 3477 case SIL_FAULT_BNDERR: 3478 to->si_addr = ptr_to_compat(from->si_addr); 3479 to->si_lower = ptr_to_compat(from->si_lower); 3480 to->si_upper = ptr_to_compat(from->si_upper); 3481 break; 3482 case SIL_FAULT_PKUERR: 3483 to->si_addr = ptr_to_compat(from->si_addr); 3484 to->si_pkey = from->si_pkey; 3485 break; 3486 case SIL_FAULT_PERF_EVENT: 3487 to->si_addr = ptr_to_compat(from->si_addr); 3488 to->si_perf_data = from->si_perf_data; 3489 to->si_perf_type = from->si_perf_type; 3490 to->si_perf_flags = from->si_perf_flags; 3491 break; 3492 case SIL_CHLD: 3493 to->si_pid = from->si_pid; 3494 to->si_uid = from->si_uid; 3495 to->si_status = from->si_status; 3496 to->si_utime = from->si_utime; 3497 to->si_stime = from->si_stime; 3498 break; 3499 case SIL_RT: 3500 to->si_pid = from->si_pid; 3501 to->si_uid = from->si_uid; 3502 to->si_int = from->si_int; 3503 break; 3504 case SIL_SYS: 3505 to->si_call_addr = ptr_to_compat(from->si_call_addr); 3506 to->si_syscall = from->si_syscall; 3507 to->si_arch = from->si_arch; 3508 break; 3509 } 3510 } 3511 3512 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3513 const struct kernel_siginfo *from) 3514 { 3515 struct compat_siginfo new; 3516 3517 copy_siginfo_to_external32(&new, from); 3518 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3519 return -EFAULT; 3520 return 0; 3521 } 3522 3523 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3524 const struct compat_siginfo *from) 3525 { 3526 clear_siginfo(to); 3527 to->si_signo = from->si_signo; 3528 to->si_errno = from->si_errno; 3529 to->si_code = from->si_code; 3530 switch(siginfo_layout(from->si_signo, from->si_code)) { 3531 case SIL_KILL: 3532 to->si_pid = from->si_pid; 3533 to->si_uid = from->si_uid; 3534 break; 3535 case SIL_TIMER: 3536 to->si_tid = from->si_tid; 3537 to->si_overrun = from->si_overrun; 3538 to->si_int = from->si_int; 3539 break; 3540 case SIL_POLL: 3541 to->si_band = from->si_band; 3542 to->si_fd = from->si_fd; 3543 break; 3544 case SIL_FAULT: 3545 to->si_addr = compat_ptr(from->si_addr); 3546 break; 3547 case SIL_FAULT_TRAPNO: 3548 to->si_addr = compat_ptr(from->si_addr); 3549 to->si_trapno = from->si_trapno; 3550 break; 3551 case SIL_FAULT_MCEERR: 3552 to->si_addr = compat_ptr(from->si_addr); 3553 to->si_addr_lsb = from->si_addr_lsb; 3554 break; 3555 case SIL_FAULT_BNDERR: 3556 to->si_addr = compat_ptr(from->si_addr); 3557 to->si_lower = compat_ptr(from->si_lower); 3558 to->si_upper = compat_ptr(from->si_upper); 3559 break; 3560 case SIL_FAULT_PKUERR: 3561 to->si_addr = compat_ptr(from->si_addr); 3562 to->si_pkey = from->si_pkey; 3563 break; 3564 case SIL_FAULT_PERF_EVENT: 3565 to->si_addr = compat_ptr(from->si_addr); 3566 to->si_perf_data = from->si_perf_data; 3567 to->si_perf_type = from->si_perf_type; 3568 to->si_perf_flags = from->si_perf_flags; 3569 break; 3570 case SIL_CHLD: 3571 to->si_pid = from->si_pid; 3572 to->si_uid = from->si_uid; 3573 to->si_status = from->si_status; 3574 #ifdef CONFIG_X86_X32_ABI 3575 if (in_x32_syscall()) { 3576 to->si_utime = from->_sifields._sigchld_x32._utime; 3577 to->si_stime = from->_sifields._sigchld_x32._stime; 3578 } else 3579 #endif 3580 { 3581 to->si_utime = from->si_utime; 3582 to->si_stime = from->si_stime; 3583 } 3584 break; 3585 case SIL_RT: 3586 to->si_pid = from->si_pid; 3587 to->si_uid = from->si_uid; 3588 to->si_int = from->si_int; 3589 break; 3590 case SIL_SYS: 3591 to->si_call_addr = compat_ptr(from->si_call_addr); 3592 to->si_syscall = from->si_syscall; 3593 to->si_arch = from->si_arch; 3594 break; 3595 } 3596 return 0; 3597 } 3598 3599 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3600 const struct compat_siginfo __user *ufrom) 3601 { 3602 struct compat_siginfo from; 3603 3604 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3605 return -EFAULT; 3606 3607 from.si_signo = signo; 3608 return post_copy_siginfo_from_user32(to, &from); 3609 } 3610 3611 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3612 const struct compat_siginfo __user *ufrom) 3613 { 3614 struct compat_siginfo from; 3615 3616 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3617 return -EFAULT; 3618 3619 return post_copy_siginfo_from_user32(to, &from); 3620 } 3621 #endif /* CONFIG_COMPAT */ 3622 3623 /** 3624 * do_sigtimedwait - wait for queued signals specified in @which 3625 * @which: queued signals to wait for 3626 * @info: if non-null, the signal's siginfo is returned here 3627 * @ts: upper bound on process time suspension 3628 */ 3629 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3630 const struct timespec64 *ts) 3631 { 3632 ktime_t *to = NULL, timeout = KTIME_MAX; 3633 struct task_struct *tsk = current; 3634 sigset_t mask = *which; 3635 enum pid_type type; 3636 int sig, ret = 0; 3637 3638 if (ts) { 3639 if (!timespec64_valid(ts)) 3640 return -EINVAL; 3641 timeout = timespec64_to_ktime(*ts); 3642 to = &timeout; 3643 } 3644 3645 /* 3646 * Invert the set of allowed signals to get those we want to block. 3647 */ 3648 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3649 signotset(&mask); 3650 3651 spin_lock_irq(&tsk->sighand->siglock); 3652 sig = dequeue_signal(&mask, info, &type); 3653 if (!sig && timeout) { 3654 /* 3655 * None ready, temporarily unblock those we're interested 3656 * while we are sleeping in so that we'll be awakened when 3657 * they arrive. Unblocking is always fine, we can avoid 3658 * set_current_blocked(). 3659 */ 3660 tsk->real_blocked = tsk->blocked; 3661 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3662 recalc_sigpending(); 3663 spin_unlock_irq(&tsk->sighand->siglock); 3664 3665 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 3666 ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3667 HRTIMER_MODE_REL); 3668 spin_lock_irq(&tsk->sighand->siglock); 3669 __set_task_blocked(tsk, &tsk->real_blocked); 3670 sigemptyset(&tsk->real_blocked); 3671 sig = dequeue_signal(&mask, info, &type); 3672 } 3673 spin_unlock_irq(&tsk->sighand->siglock); 3674 3675 if (sig) 3676 return sig; 3677 return ret ? -EINTR : -EAGAIN; 3678 } 3679 3680 /** 3681 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3682 * in @uthese 3683 * @uthese: queued signals to wait for 3684 * @uinfo: if non-null, the signal's siginfo is returned here 3685 * @uts: upper bound on process time suspension 3686 * @sigsetsize: size of sigset_t type 3687 */ 3688 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3689 siginfo_t __user *, uinfo, 3690 const struct __kernel_timespec __user *, uts, 3691 size_t, sigsetsize) 3692 { 3693 sigset_t these; 3694 struct timespec64 ts; 3695 kernel_siginfo_t info; 3696 int ret; 3697 3698 /* XXX: Don't preclude handling different sized sigset_t's. */ 3699 if (sigsetsize != sizeof(sigset_t)) 3700 return -EINVAL; 3701 3702 if (copy_from_user(&these, uthese, sizeof(these))) 3703 return -EFAULT; 3704 3705 if (uts) { 3706 if (get_timespec64(&ts, uts)) 3707 return -EFAULT; 3708 } 3709 3710 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3711 3712 if (ret > 0 && uinfo) { 3713 if (copy_siginfo_to_user(uinfo, &info)) 3714 ret = -EFAULT; 3715 } 3716 3717 return ret; 3718 } 3719 3720 #ifdef CONFIG_COMPAT_32BIT_TIME 3721 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3722 siginfo_t __user *, uinfo, 3723 const struct old_timespec32 __user *, uts, 3724 size_t, sigsetsize) 3725 { 3726 sigset_t these; 3727 struct timespec64 ts; 3728 kernel_siginfo_t info; 3729 int ret; 3730 3731 if (sigsetsize != sizeof(sigset_t)) 3732 return -EINVAL; 3733 3734 if (copy_from_user(&these, uthese, sizeof(these))) 3735 return -EFAULT; 3736 3737 if (uts) { 3738 if (get_old_timespec32(&ts, uts)) 3739 return -EFAULT; 3740 } 3741 3742 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3743 3744 if (ret > 0 && uinfo) { 3745 if (copy_siginfo_to_user(uinfo, &info)) 3746 ret = -EFAULT; 3747 } 3748 3749 return ret; 3750 } 3751 #endif 3752 3753 #ifdef CONFIG_COMPAT 3754 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3755 struct compat_siginfo __user *, uinfo, 3756 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3757 { 3758 sigset_t s; 3759 struct timespec64 t; 3760 kernel_siginfo_t info; 3761 long ret; 3762 3763 if (sigsetsize != sizeof(sigset_t)) 3764 return -EINVAL; 3765 3766 if (get_compat_sigset(&s, uthese)) 3767 return -EFAULT; 3768 3769 if (uts) { 3770 if (get_timespec64(&t, uts)) 3771 return -EFAULT; 3772 } 3773 3774 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3775 3776 if (ret > 0 && uinfo) { 3777 if (copy_siginfo_to_user32(uinfo, &info)) 3778 ret = -EFAULT; 3779 } 3780 3781 return ret; 3782 } 3783 3784 #ifdef CONFIG_COMPAT_32BIT_TIME 3785 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3786 struct compat_siginfo __user *, uinfo, 3787 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3788 { 3789 sigset_t s; 3790 struct timespec64 t; 3791 kernel_siginfo_t info; 3792 long ret; 3793 3794 if (sigsetsize != sizeof(sigset_t)) 3795 return -EINVAL; 3796 3797 if (get_compat_sigset(&s, uthese)) 3798 return -EFAULT; 3799 3800 if (uts) { 3801 if (get_old_timespec32(&t, uts)) 3802 return -EFAULT; 3803 } 3804 3805 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3806 3807 if (ret > 0 && uinfo) { 3808 if (copy_siginfo_to_user32(uinfo, &info)) 3809 ret = -EFAULT; 3810 } 3811 3812 return ret; 3813 } 3814 #endif 3815 #endif 3816 3817 static void prepare_kill_siginfo(int sig, struct kernel_siginfo *info, 3818 enum pid_type type) 3819 { 3820 clear_siginfo(info); 3821 info->si_signo = sig; 3822 info->si_errno = 0; 3823 info->si_code = (type == PIDTYPE_PID) ? SI_TKILL : SI_USER; 3824 info->si_pid = task_tgid_vnr(current); 3825 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3826 } 3827 3828 /** 3829 * sys_kill - send a signal to a process 3830 * @pid: the PID of the process 3831 * @sig: signal to be sent 3832 */ 3833 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3834 { 3835 struct kernel_siginfo info; 3836 3837 prepare_kill_siginfo(sig, &info, PIDTYPE_TGID); 3838 3839 return kill_something_info(sig, &info, pid); 3840 } 3841 3842 /* 3843 * Verify that the signaler and signalee either are in the same pid namespace 3844 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3845 * namespace. 3846 */ 3847 static bool access_pidfd_pidns(struct pid *pid) 3848 { 3849 struct pid_namespace *active = task_active_pid_ns(current); 3850 struct pid_namespace *p = ns_of_pid(pid); 3851 3852 for (;;) { 3853 if (!p) 3854 return false; 3855 if (p == active) 3856 break; 3857 p = p->parent; 3858 } 3859 3860 return true; 3861 } 3862 3863 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, 3864 siginfo_t __user *info) 3865 { 3866 #ifdef CONFIG_COMPAT 3867 /* 3868 * Avoid hooking up compat syscalls and instead handle necessary 3869 * conversions here. Note, this is a stop-gap measure and should not be 3870 * considered a generic solution. 3871 */ 3872 if (in_compat_syscall()) 3873 return copy_siginfo_from_user32( 3874 kinfo, (struct compat_siginfo __user *)info); 3875 #endif 3876 return copy_siginfo_from_user(kinfo, info); 3877 } 3878 3879 static struct pid *pidfd_to_pid(const struct file *file) 3880 { 3881 struct pid *pid; 3882 3883 pid = pidfd_pid(file); 3884 if (!IS_ERR(pid)) 3885 return pid; 3886 3887 return tgid_pidfd_to_pid(file); 3888 } 3889 3890 #define PIDFD_SEND_SIGNAL_FLAGS \ 3891 (PIDFD_SIGNAL_THREAD | PIDFD_SIGNAL_THREAD_GROUP | \ 3892 PIDFD_SIGNAL_PROCESS_GROUP) 3893 3894 /** 3895 * sys_pidfd_send_signal - Signal a process through a pidfd 3896 * @pidfd: file descriptor of the process 3897 * @sig: signal to send 3898 * @info: signal info 3899 * @flags: future flags 3900 * 3901 * Send the signal to the thread group or to the individual thread depending 3902 * on PIDFD_THREAD. 3903 * In the future extension to @flags may be used to override the default scope 3904 * of @pidfd. 3905 * 3906 * Return: 0 on success, negative errno on failure 3907 */ 3908 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 3909 siginfo_t __user *, info, unsigned int, flags) 3910 { 3911 int ret; 3912 struct fd f; 3913 struct pid *pid; 3914 kernel_siginfo_t kinfo; 3915 enum pid_type type; 3916 3917 /* Enforce flags be set to 0 until we add an extension. */ 3918 if (flags & ~PIDFD_SEND_SIGNAL_FLAGS) 3919 return -EINVAL; 3920 3921 /* Ensure that only a single signal scope determining flag is set. */ 3922 if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1) 3923 return -EINVAL; 3924 3925 f = fdget(pidfd); 3926 if (!fd_file(f)) 3927 return -EBADF; 3928 3929 /* Is this a pidfd? */ 3930 pid = pidfd_to_pid(fd_file(f)); 3931 if (IS_ERR(pid)) { 3932 ret = PTR_ERR(pid); 3933 goto err; 3934 } 3935 3936 ret = -EINVAL; 3937 if (!access_pidfd_pidns(pid)) 3938 goto err; 3939 3940 switch (flags) { 3941 case 0: 3942 /* Infer scope from the type of pidfd. */ 3943 if (fd_file(f)->f_flags & PIDFD_THREAD) 3944 type = PIDTYPE_PID; 3945 else 3946 type = PIDTYPE_TGID; 3947 break; 3948 case PIDFD_SIGNAL_THREAD: 3949 type = PIDTYPE_PID; 3950 break; 3951 case PIDFD_SIGNAL_THREAD_GROUP: 3952 type = PIDTYPE_TGID; 3953 break; 3954 case PIDFD_SIGNAL_PROCESS_GROUP: 3955 type = PIDTYPE_PGID; 3956 break; 3957 } 3958 3959 if (info) { 3960 ret = copy_siginfo_from_user_any(&kinfo, info); 3961 if (unlikely(ret)) 3962 goto err; 3963 3964 ret = -EINVAL; 3965 if (unlikely(sig != kinfo.si_signo)) 3966 goto err; 3967 3968 /* Only allow sending arbitrary signals to yourself. */ 3969 ret = -EPERM; 3970 if ((task_pid(current) != pid || type > PIDTYPE_TGID) && 3971 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) 3972 goto err; 3973 } else { 3974 prepare_kill_siginfo(sig, &kinfo, type); 3975 } 3976 3977 if (type == PIDTYPE_PGID) 3978 ret = kill_pgrp_info(sig, &kinfo, pid); 3979 else 3980 ret = kill_pid_info_type(sig, &kinfo, pid, type); 3981 err: 3982 fdput(f); 3983 return ret; 3984 } 3985 3986 static int 3987 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 3988 { 3989 struct task_struct *p; 3990 int error = -ESRCH; 3991 3992 rcu_read_lock(); 3993 p = find_task_by_vpid(pid); 3994 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 3995 error = check_kill_permission(sig, info, p); 3996 /* 3997 * The null signal is a permissions and process existence 3998 * probe. No signal is actually delivered. 3999 */ 4000 if (!error && sig) { 4001 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 4002 /* 4003 * If lock_task_sighand() failed we pretend the task 4004 * dies after receiving the signal. The window is tiny, 4005 * and the signal is private anyway. 4006 */ 4007 if (unlikely(error == -ESRCH)) 4008 error = 0; 4009 } 4010 } 4011 rcu_read_unlock(); 4012 4013 return error; 4014 } 4015 4016 static int do_tkill(pid_t tgid, pid_t pid, int sig) 4017 { 4018 struct kernel_siginfo info; 4019 4020 prepare_kill_siginfo(sig, &info, PIDTYPE_PID); 4021 4022 return do_send_specific(tgid, pid, sig, &info); 4023 } 4024 4025 /** 4026 * sys_tgkill - send signal to one specific thread 4027 * @tgid: the thread group ID of the thread 4028 * @pid: the PID of the thread 4029 * @sig: signal to be sent 4030 * 4031 * This syscall also checks the @tgid and returns -ESRCH even if the PID 4032 * exists but it's not belonging to the target process anymore. This 4033 * method solves the problem of threads exiting and PIDs getting reused. 4034 */ 4035 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 4036 { 4037 /* This is only valid for single tasks */ 4038 if (pid <= 0 || tgid <= 0) 4039 return -EINVAL; 4040 4041 return do_tkill(tgid, pid, sig); 4042 } 4043 4044 /** 4045 * sys_tkill - send signal to one specific task 4046 * @pid: the PID of the task 4047 * @sig: signal to be sent 4048 * 4049 * Send a signal to only one task, even if it's a CLONE_THREAD task. 4050 */ 4051 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 4052 { 4053 /* This is only valid for single tasks */ 4054 if (pid <= 0) 4055 return -EINVAL; 4056 4057 return do_tkill(0, pid, sig); 4058 } 4059 4060 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 4061 { 4062 /* Not even root can pretend to send signals from the kernel. 4063 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4064 */ 4065 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4066 (task_pid_vnr(current) != pid)) 4067 return -EPERM; 4068 4069 /* POSIX.1b doesn't mention process groups. */ 4070 return kill_proc_info(sig, info, pid); 4071 } 4072 4073 /** 4074 * sys_rt_sigqueueinfo - send signal information to a signal 4075 * @pid: the PID of the thread 4076 * @sig: signal to be sent 4077 * @uinfo: signal info to be sent 4078 */ 4079 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 4080 siginfo_t __user *, uinfo) 4081 { 4082 kernel_siginfo_t info; 4083 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4084 if (unlikely(ret)) 4085 return ret; 4086 return do_rt_sigqueueinfo(pid, sig, &info); 4087 } 4088 4089 #ifdef CONFIG_COMPAT 4090 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 4091 compat_pid_t, pid, 4092 int, sig, 4093 struct compat_siginfo __user *, uinfo) 4094 { 4095 kernel_siginfo_t info; 4096 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4097 if (unlikely(ret)) 4098 return ret; 4099 return do_rt_sigqueueinfo(pid, sig, &info); 4100 } 4101 #endif 4102 4103 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 4104 { 4105 /* This is only valid for single tasks */ 4106 if (pid <= 0 || tgid <= 0) 4107 return -EINVAL; 4108 4109 /* Not even root can pretend to send signals from the kernel. 4110 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4111 */ 4112 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4113 (task_pid_vnr(current) != pid)) 4114 return -EPERM; 4115 4116 return do_send_specific(tgid, pid, sig, info); 4117 } 4118 4119 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 4120 siginfo_t __user *, uinfo) 4121 { 4122 kernel_siginfo_t info; 4123 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4124 if (unlikely(ret)) 4125 return ret; 4126 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4127 } 4128 4129 #ifdef CONFIG_COMPAT 4130 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 4131 compat_pid_t, tgid, 4132 compat_pid_t, pid, 4133 int, sig, 4134 struct compat_siginfo __user *, uinfo) 4135 { 4136 kernel_siginfo_t info; 4137 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4138 if (unlikely(ret)) 4139 return ret; 4140 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4141 } 4142 #endif 4143 4144 /* 4145 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 4146 */ 4147 void kernel_sigaction(int sig, __sighandler_t action) 4148 { 4149 spin_lock_irq(¤t->sighand->siglock); 4150 current->sighand->action[sig - 1].sa.sa_handler = action; 4151 if (action == SIG_IGN) { 4152 sigset_t mask; 4153 4154 sigemptyset(&mask); 4155 sigaddset(&mask, sig); 4156 4157 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 4158 flush_sigqueue_mask(&mask, ¤t->pending); 4159 recalc_sigpending(); 4160 } 4161 spin_unlock_irq(¤t->sighand->siglock); 4162 } 4163 EXPORT_SYMBOL(kernel_sigaction); 4164 4165 void __weak sigaction_compat_abi(struct k_sigaction *act, 4166 struct k_sigaction *oact) 4167 { 4168 } 4169 4170 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 4171 { 4172 struct task_struct *p = current, *t; 4173 struct k_sigaction *k; 4174 sigset_t mask; 4175 4176 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 4177 return -EINVAL; 4178 4179 k = &p->sighand->action[sig-1]; 4180 4181 spin_lock_irq(&p->sighand->siglock); 4182 if (k->sa.sa_flags & SA_IMMUTABLE) { 4183 spin_unlock_irq(&p->sighand->siglock); 4184 return -EINVAL; 4185 } 4186 if (oact) 4187 *oact = *k; 4188 4189 /* 4190 * Make sure that we never accidentally claim to support SA_UNSUPPORTED, 4191 * e.g. by having an architecture use the bit in their uapi. 4192 */ 4193 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED); 4194 4195 /* 4196 * Clear unknown flag bits in order to allow userspace to detect missing 4197 * support for flag bits and to allow the kernel to use non-uapi bits 4198 * internally. 4199 */ 4200 if (act) 4201 act->sa.sa_flags &= UAPI_SA_FLAGS; 4202 if (oact) 4203 oact->sa.sa_flags &= UAPI_SA_FLAGS; 4204 4205 sigaction_compat_abi(act, oact); 4206 4207 if (act) { 4208 sigdelsetmask(&act->sa.sa_mask, 4209 sigmask(SIGKILL) | sigmask(SIGSTOP)); 4210 *k = *act; 4211 /* 4212 * POSIX 3.3.1.3: 4213 * "Setting a signal action to SIG_IGN for a signal that is 4214 * pending shall cause the pending signal to be discarded, 4215 * whether or not it is blocked." 4216 * 4217 * "Setting a signal action to SIG_DFL for a signal that is 4218 * pending and whose default action is to ignore the signal 4219 * (for example, SIGCHLD), shall cause the pending signal to 4220 * be discarded, whether or not it is blocked" 4221 */ 4222 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 4223 sigemptyset(&mask); 4224 sigaddset(&mask, sig); 4225 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 4226 for_each_thread(p, t) 4227 flush_sigqueue_mask(&mask, &t->pending); 4228 } 4229 } 4230 4231 spin_unlock_irq(&p->sighand->siglock); 4232 return 0; 4233 } 4234 4235 #ifdef CONFIG_DYNAMIC_SIGFRAME 4236 static inline void sigaltstack_lock(void) 4237 __acquires(¤t->sighand->siglock) 4238 { 4239 spin_lock_irq(¤t->sighand->siglock); 4240 } 4241 4242 static inline void sigaltstack_unlock(void) 4243 __releases(¤t->sighand->siglock) 4244 { 4245 spin_unlock_irq(¤t->sighand->siglock); 4246 } 4247 #else 4248 static inline void sigaltstack_lock(void) { } 4249 static inline void sigaltstack_unlock(void) { } 4250 #endif 4251 4252 static int 4253 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 4254 size_t min_ss_size) 4255 { 4256 struct task_struct *t = current; 4257 int ret = 0; 4258 4259 if (oss) { 4260 memset(oss, 0, sizeof(stack_t)); 4261 oss->ss_sp = (void __user *) t->sas_ss_sp; 4262 oss->ss_size = t->sas_ss_size; 4263 oss->ss_flags = sas_ss_flags(sp) | 4264 (current->sas_ss_flags & SS_FLAG_BITS); 4265 } 4266 4267 if (ss) { 4268 void __user *ss_sp = ss->ss_sp; 4269 size_t ss_size = ss->ss_size; 4270 unsigned ss_flags = ss->ss_flags; 4271 int ss_mode; 4272 4273 if (unlikely(on_sig_stack(sp))) 4274 return -EPERM; 4275 4276 ss_mode = ss_flags & ~SS_FLAG_BITS; 4277 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 4278 ss_mode != 0)) 4279 return -EINVAL; 4280 4281 /* 4282 * Return before taking any locks if no actual 4283 * sigaltstack changes were requested. 4284 */ 4285 if (t->sas_ss_sp == (unsigned long)ss_sp && 4286 t->sas_ss_size == ss_size && 4287 t->sas_ss_flags == ss_flags) 4288 return 0; 4289 4290 sigaltstack_lock(); 4291 if (ss_mode == SS_DISABLE) { 4292 ss_size = 0; 4293 ss_sp = NULL; 4294 } else { 4295 if (unlikely(ss_size < min_ss_size)) 4296 ret = -ENOMEM; 4297 if (!sigaltstack_size_valid(ss_size)) 4298 ret = -ENOMEM; 4299 } 4300 if (!ret) { 4301 t->sas_ss_sp = (unsigned long) ss_sp; 4302 t->sas_ss_size = ss_size; 4303 t->sas_ss_flags = ss_flags; 4304 } 4305 sigaltstack_unlock(); 4306 } 4307 return ret; 4308 } 4309 4310 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 4311 { 4312 stack_t new, old; 4313 int err; 4314 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 4315 return -EFAULT; 4316 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 4317 current_user_stack_pointer(), 4318 MINSIGSTKSZ); 4319 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 4320 err = -EFAULT; 4321 return err; 4322 } 4323 4324 int restore_altstack(const stack_t __user *uss) 4325 { 4326 stack_t new; 4327 if (copy_from_user(&new, uss, sizeof(stack_t))) 4328 return -EFAULT; 4329 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 4330 MINSIGSTKSZ); 4331 /* squash all but EFAULT for now */ 4332 return 0; 4333 } 4334 4335 int __save_altstack(stack_t __user *uss, unsigned long sp) 4336 { 4337 struct task_struct *t = current; 4338 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 4339 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4340 __put_user(t->sas_ss_size, &uss->ss_size); 4341 return err; 4342 } 4343 4344 #ifdef CONFIG_COMPAT 4345 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 4346 compat_stack_t __user *uoss_ptr) 4347 { 4348 stack_t uss, uoss; 4349 int ret; 4350 4351 if (uss_ptr) { 4352 compat_stack_t uss32; 4353 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 4354 return -EFAULT; 4355 uss.ss_sp = compat_ptr(uss32.ss_sp); 4356 uss.ss_flags = uss32.ss_flags; 4357 uss.ss_size = uss32.ss_size; 4358 } 4359 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 4360 compat_user_stack_pointer(), 4361 COMPAT_MINSIGSTKSZ); 4362 if (ret >= 0 && uoss_ptr) { 4363 compat_stack_t old; 4364 memset(&old, 0, sizeof(old)); 4365 old.ss_sp = ptr_to_compat(uoss.ss_sp); 4366 old.ss_flags = uoss.ss_flags; 4367 old.ss_size = uoss.ss_size; 4368 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 4369 ret = -EFAULT; 4370 } 4371 return ret; 4372 } 4373 4374 COMPAT_SYSCALL_DEFINE2(sigaltstack, 4375 const compat_stack_t __user *, uss_ptr, 4376 compat_stack_t __user *, uoss_ptr) 4377 { 4378 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 4379 } 4380 4381 int compat_restore_altstack(const compat_stack_t __user *uss) 4382 { 4383 int err = do_compat_sigaltstack(uss, NULL); 4384 /* squash all but -EFAULT for now */ 4385 return err == -EFAULT ? err : 0; 4386 } 4387 4388 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 4389 { 4390 int err; 4391 struct task_struct *t = current; 4392 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 4393 &uss->ss_sp) | 4394 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4395 __put_user(t->sas_ss_size, &uss->ss_size); 4396 return err; 4397 } 4398 #endif 4399 4400 #ifdef __ARCH_WANT_SYS_SIGPENDING 4401 4402 /** 4403 * sys_sigpending - examine pending signals 4404 * @uset: where mask of pending signal is returned 4405 */ 4406 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4407 { 4408 sigset_t set; 4409 4410 if (sizeof(old_sigset_t) > sizeof(*uset)) 4411 return -EINVAL; 4412 4413 do_sigpending(&set); 4414 4415 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4416 return -EFAULT; 4417 4418 return 0; 4419 } 4420 4421 #ifdef CONFIG_COMPAT 4422 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4423 { 4424 sigset_t set; 4425 4426 do_sigpending(&set); 4427 4428 return put_user(set.sig[0], set32); 4429 } 4430 #endif 4431 4432 #endif 4433 4434 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 4435 /** 4436 * sys_sigprocmask - examine and change blocked signals 4437 * @how: whether to add, remove, or set signals 4438 * @nset: signals to add or remove (if non-null) 4439 * @oset: previous value of signal mask if non-null 4440 * 4441 * Some platforms have their own version with special arguments; 4442 * others support only sys_rt_sigprocmask. 4443 */ 4444 4445 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4446 old_sigset_t __user *, oset) 4447 { 4448 old_sigset_t old_set, new_set; 4449 sigset_t new_blocked; 4450 4451 old_set = current->blocked.sig[0]; 4452 4453 if (nset) { 4454 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4455 return -EFAULT; 4456 4457 new_blocked = current->blocked; 4458 4459 switch (how) { 4460 case SIG_BLOCK: 4461 sigaddsetmask(&new_blocked, new_set); 4462 break; 4463 case SIG_UNBLOCK: 4464 sigdelsetmask(&new_blocked, new_set); 4465 break; 4466 case SIG_SETMASK: 4467 new_blocked.sig[0] = new_set; 4468 break; 4469 default: 4470 return -EINVAL; 4471 } 4472 4473 set_current_blocked(&new_blocked); 4474 } 4475 4476 if (oset) { 4477 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4478 return -EFAULT; 4479 } 4480 4481 return 0; 4482 } 4483 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4484 4485 #ifndef CONFIG_ODD_RT_SIGACTION 4486 /** 4487 * sys_rt_sigaction - alter an action taken by a process 4488 * @sig: signal to be sent 4489 * @act: new sigaction 4490 * @oact: used to save the previous sigaction 4491 * @sigsetsize: size of sigset_t type 4492 */ 4493 SYSCALL_DEFINE4(rt_sigaction, int, sig, 4494 const struct sigaction __user *, act, 4495 struct sigaction __user *, oact, 4496 size_t, sigsetsize) 4497 { 4498 struct k_sigaction new_sa, old_sa; 4499 int ret; 4500 4501 /* XXX: Don't preclude handling different sized sigset_t's. */ 4502 if (sigsetsize != sizeof(sigset_t)) 4503 return -EINVAL; 4504 4505 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4506 return -EFAULT; 4507 4508 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4509 if (ret) 4510 return ret; 4511 4512 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4513 return -EFAULT; 4514 4515 return 0; 4516 } 4517 #ifdef CONFIG_COMPAT 4518 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4519 const struct compat_sigaction __user *, act, 4520 struct compat_sigaction __user *, oact, 4521 compat_size_t, sigsetsize) 4522 { 4523 struct k_sigaction new_ka, old_ka; 4524 #ifdef __ARCH_HAS_SA_RESTORER 4525 compat_uptr_t restorer; 4526 #endif 4527 int ret; 4528 4529 /* XXX: Don't preclude handling different sized sigset_t's. */ 4530 if (sigsetsize != sizeof(compat_sigset_t)) 4531 return -EINVAL; 4532 4533 if (act) { 4534 compat_uptr_t handler; 4535 ret = get_user(handler, &act->sa_handler); 4536 new_ka.sa.sa_handler = compat_ptr(handler); 4537 #ifdef __ARCH_HAS_SA_RESTORER 4538 ret |= get_user(restorer, &act->sa_restorer); 4539 new_ka.sa.sa_restorer = compat_ptr(restorer); 4540 #endif 4541 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4542 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4543 if (ret) 4544 return -EFAULT; 4545 } 4546 4547 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4548 if (!ret && oact) { 4549 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4550 &oact->sa_handler); 4551 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4552 sizeof(oact->sa_mask)); 4553 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4554 #ifdef __ARCH_HAS_SA_RESTORER 4555 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4556 &oact->sa_restorer); 4557 #endif 4558 } 4559 return ret; 4560 } 4561 #endif 4562 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4563 4564 #ifdef CONFIG_OLD_SIGACTION 4565 SYSCALL_DEFINE3(sigaction, int, sig, 4566 const struct old_sigaction __user *, act, 4567 struct old_sigaction __user *, oact) 4568 { 4569 struct k_sigaction new_ka, old_ka; 4570 int ret; 4571 4572 if (act) { 4573 old_sigset_t mask; 4574 if (!access_ok(act, sizeof(*act)) || 4575 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4576 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4577 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4578 __get_user(mask, &act->sa_mask)) 4579 return -EFAULT; 4580 #ifdef __ARCH_HAS_KA_RESTORER 4581 new_ka.ka_restorer = NULL; 4582 #endif 4583 siginitset(&new_ka.sa.sa_mask, mask); 4584 } 4585 4586 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4587 4588 if (!ret && oact) { 4589 if (!access_ok(oact, sizeof(*oact)) || 4590 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4591 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4592 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4593 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4594 return -EFAULT; 4595 } 4596 4597 return ret; 4598 } 4599 #endif 4600 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4601 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4602 const struct compat_old_sigaction __user *, act, 4603 struct compat_old_sigaction __user *, oact) 4604 { 4605 struct k_sigaction new_ka, old_ka; 4606 int ret; 4607 compat_old_sigset_t mask; 4608 compat_uptr_t handler, restorer; 4609 4610 if (act) { 4611 if (!access_ok(act, sizeof(*act)) || 4612 __get_user(handler, &act->sa_handler) || 4613 __get_user(restorer, &act->sa_restorer) || 4614 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4615 __get_user(mask, &act->sa_mask)) 4616 return -EFAULT; 4617 4618 #ifdef __ARCH_HAS_KA_RESTORER 4619 new_ka.ka_restorer = NULL; 4620 #endif 4621 new_ka.sa.sa_handler = compat_ptr(handler); 4622 new_ka.sa.sa_restorer = compat_ptr(restorer); 4623 siginitset(&new_ka.sa.sa_mask, mask); 4624 } 4625 4626 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4627 4628 if (!ret && oact) { 4629 if (!access_ok(oact, sizeof(*oact)) || 4630 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4631 &oact->sa_handler) || 4632 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4633 &oact->sa_restorer) || 4634 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4635 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4636 return -EFAULT; 4637 } 4638 return ret; 4639 } 4640 #endif 4641 4642 #ifdef CONFIG_SGETMASK_SYSCALL 4643 4644 /* 4645 * For backwards compatibility. Functionality superseded by sigprocmask. 4646 */ 4647 SYSCALL_DEFINE0(sgetmask) 4648 { 4649 /* SMP safe */ 4650 return current->blocked.sig[0]; 4651 } 4652 4653 SYSCALL_DEFINE1(ssetmask, int, newmask) 4654 { 4655 int old = current->blocked.sig[0]; 4656 sigset_t newset; 4657 4658 siginitset(&newset, newmask); 4659 set_current_blocked(&newset); 4660 4661 return old; 4662 } 4663 #endif /* CONFIG_SGETMASK_SYSCALL */ 4664 4665 #ifdef __ARCH_WANT_SYS_SIGNAL 4666 /* 4667 * For backwards compatibility. Functionality superseded by sigaction. 4668 */ 4669 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4670 { 4671 struct k_sigaction new_sa, old_sa; 4672 int ret; 4673 4674 new_sa.sa.sa_handler = handler; 4675 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4676 sigemptyset(&new_sa.sa.sa_mask); 4677 4678 ret = do_sigaction(sig, &new_sa, &old_sa); 4679 4680 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4681 } 4682 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4683 4684 #ifdef __ARCH_WANT_SYS_PAUSE 4685 4686 SYSCALL_DEFINE0(pause) 4687 { 4688 while (!signal_pending(current)) { 4689 __set_current_state(TASK_INTERRUPTIBLE); 4690 schedule(); 4691 } 4692 return -ERESTARTNOHAND; 4693 } 4694 4695 #endif 4696 4697 static int sigsuspend(sigset_t *set) 4698 { 4699 current->saved_sigmask = current->blocked; 4700 set_current_blocked(set); 4701 4702 while (!signal_pending(current)) { 4703 __set_current_state(TASK_INTERRUPTIBLE); 4704 schedule(); 4705 } 4706 set_restore_sigmask(); 4707 return -ERESTARTNOHAND; 4708 } 4709 4710 /** 4711 * sys_rt_sigsuspend - replace the signal mask for a value with the 4712 * @unewset value until a signal is received 4713 * @unewset: new signal mask value 4714 * @sigsetsize: size of sigset_t type 4715 */ 4716 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4717 { 4718 sigset_t newset; 4719 4720 /* XXX: Don't preclude handling different sized sigset_t's. */ 4721 if (sigsetsize != sizeof(sigset_t)) 4722 return -EINVAL; 4723 4724 if (copy_from_user(&newset, unewset, sizeof(newset))) 4725 return -EFAULT; 4726 return sigsuspend(&newset); 4727 } 4728 4729 #ifdef CONFIG_COMPAT 4730 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4731 { 4732 sigset_t newset; 4733 4734 /* XXX: Don't preclude handling different sized sigset_t's. */ 4735 if (sigsetsize != sizeof(sigset_t)) 4736 return -EINVAL; 4737 4738 if (get_compat_sigset(&newset, unewset)) 4739 return -EFAULT; 4740 return sigsuspend(&newset); 4741 } 4742 #endif 4743 4744 #ifdef CONFIG_OLD_SIGSUSPEND 4745 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4746 { 4747 sigset_t blocked; 4748 siginitset(&blocked, mask); 4749 return sigsuspend(&blocked); 4750 } 4751 #endif 4752 #ifdef CONFIG_OLD_SIGSUSPEND3 4753 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4754 { 4755 sigset_t blocked; 4756 siginitset(&blocked, mask); 4757 return sigsuspend(&blocked); 4758 } 4759 #endif 4760 4761 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4762 { 4763 return NULL; 4764 } 4765 4766 static inline void siginfo_buildtime_checks(void) 4767 { 4768 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4769 4770 /* Verify the offsets in the two siginfos match */ 4771 #define CHECK_OFFSET(field) \ 4772 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4773 4774 /* kill */ 4775 CHECK_OFFSET(si_pid); 4776 CHECK_OFFSET(si_uid); 4777 4778 /* timer */ 4779 CHECK_OFFSET(si_tid); 4780 CHECK_OFFSET(si_overrun); 4781 CHECK_OFFSET(si_value); 4782 4783 /* rt */ 4784 CHECK_OFFSET(si_pid); 4785 CHECK_OFFSET(si_uid); 4786 CHECK_OFFSET(si_value); 4787 4788 /* sigchld */ 4789 CHECK_OFFSET(si_pid); 4790 CHECK_OFFSET(si_uid); 4791 CHECK_OFFSET(si_status); 4792 CHECK_OFFSET(si_utime); 4793 CHECK_OFFSET(si_stime); 4794 4795 /* sigfault */ 4796 CHECK_OFFSET(si_addr); 4797 CHECK_OFFSET(si_trapno); 4798 CHECK_OFFSET(si_addr_lsb); 4799 CHECK_OFFSET(si_lower); 4800 CHECK_OFFSET(si_upper); 4801 CHECK_OFFSET(si_pkey); 4802 CHECK_OFFSET(si_perf_data); 4803 CHECK_OFFSET(si_perf_type); 4804 CHECK_OFFSET(si_perf_flags); 4805 4806 /* sigpoll */ 4807 CHECK_OFFSET(si_band); 4808 CHECK_OFFSET(si_fd); 4809 4810 /* sigsys */ 4811 CHECK_OFFSET(si_call_addr); 4812 CHECK_OFFSET(si_syscall); 4813 CHECK_OFFSET(si_arch); 4814 #undef CHECK_OFFSET 4815 4816 /* usb asyncio */ 4817 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != 4818 offsetof(struct siginfo, si_addr)); 4819 if (sizeof(int) == sizeof(void __user *)) { 4820 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != 4821 sizeof(void __user *)); 4822 } else { 4823 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + 4824 sizeof_field(struct siginfo, si_uid)) != 4825 sizeof(void __user *)); 4826 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != 4827 offsetof(struct siginfo, si_uid)); 4828 } 4829 #ifdef CONFIG_COMPAT 4830 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != 4831 offsetof(struct compat_siginfo, si_addr)); 4832 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4833 sizeof(compat_uptr_t)); 4834 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4835 sizeof_field(struct siginfo, si_pid)); 4836 #endif 4837 } 4838 4839 #if defined(CONFIG_SYSCTL) 4840 static struct ctl_table signal_debug_table[] = { 4841 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE 4842 { 4843 .procname = "exception-trace", 4844 .data = &show_unhandled_signals, 4845 .maxlen = sizeof(int), 4846 .mode = 0644, 4847 .proc_handler = proc_dointvec 4848 }, 4849 #endif 4850 }; 4851 4852 static int __init init_signal_sysctls(void) 4853 { 4854 register_sysctl_init("debug", signal_debug_table); 4855 return 0; 4856 } 4857 early_initcall(init_signal_sysctls); 4858 #endif /* CONFIG_SYSCTL */ 4859 4860 void __init signals_init(void) 4861 { 4862 siginfo_buildtime_checks(); 4863 4864 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT); 4865 } 4866 4867 #ifdef CONFIG_KGDB_KDB 4868 #include <linux/kdb.h> 4869 /* 4870 * kdb_send_sig - Allows kdb to send signals without exposing 4871 * signal internals. This function checks if the required locks are 4872 * available before calling the main signal code, to avoid kdb 4873 * deadlocks. 4874 */ 4875 void kdb_send_sig(struct task_struct *t, int sig) 4876 { 4877 static struct task_struct *kdb_prev_t; 4878 int new_t, ret; 4879 if (!spin_trylock(&t->sighand->siglock)) { 4880 kdb_printf("Can't do kill command now.\n" 4881 "The sigmask lock is held somewhere else in " 4882 "kernel, try again later\n"); 4883 return; 4884 } 4885 new_t = kdb_prev_t != t; 4886 kdb_prev_t = t; 4887 if (!task_is_running(t) && new_t) { 4888 spin_unlock(&t->sighand->siglock); 4889 kdb_printf("Process is not RUNNING, sending a signal from " 4890 "kdb risks deadlock\n" 4891 "on the run queue locks. " 4892 "The signal has _not_ been sent.\n" 4893 "Reissue the kill command if you want to risk " 4894 "the deadlock.\n"); 4895 return; 4896 } 4897 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 4898 spin_unlock(&t->sighand->siglock); 4899 if (ret) 4900 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4901 sig, t->pid); 4902 else 4903 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4904 } 4905 #endif /* CONFIG_KGDB_KDB */ 4906