1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/signal.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 8 * 9 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 10 * Changes to use preallocated sigqueue structures 11 * to allow signals to be sent reliably. 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/user.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/sched/cputime.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/proc_fs.h> 26 #include <linux/tty.h> 27 #include <linux/binfmts.h> 28 #include <linux/coredump.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include <linux/ptrace.h> 32 #include <linux/signal.h> 33 #include <linux/signalfd.h> 34 #include <linux/ratelimit.h> 35 #include <linux/tracehook.h> 36 #include <linux/capability.h> 37 #include <linux/freezer.h> 38 #include <linux/pid_namespace.h> 39 #include <linux/nsproxy.h> 40 #include <linux/user_namespace.h> 41 #include <linux/uprobes.h> 42 #include <linux/compat.h> 43 #include <linux/cn_proc.h> 44 #include <linux/compiler.h> 45 #include <linux/posix-timers.h> 46 #include <linux/cgroup.h> 47 #include <linux/audit.h> 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/signal.h> 51 52 #include <asm/param.h> 53 #include <linux/uaccess.h> 54 #include <asm/unistd.h> 55 #include <asm/siginfo.h> 56 #include <asm/cacheflush.h> 57 58 /* 59 * SLAB caches for signal bits. 60 */ 61 62 static struct kmem_cache *sigqueue_cachep; 63 64 int print_fatal_signals __read_mostly; 65 66 static void __user *sig_handler(struct task_struct *t, int sig) 67 { 68 return t->sighand->action[sig - 1].sa.sa_handler; 69 } 70 71 static inline bool sig_handler_ignored(void __user *handler, int sig) 72 { 73 /* Is it explicitly or implicitly ignored? */ 74 return handler == SIG_IGN || 75 (handler == SIG_DFL && sig_kernel_ignore(sig)); 76 } 77 78 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 79 { 80 void __user *handler; 81 82 handler = sig_handler(t, sig); 83 84 /* SIGKILL and SIGSTOP may not be sent to the global init */ 85 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 86 return true; 87 88 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 89 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 90 return true; 91 92 /* Only allow kernel generated signals to this kthread */ 93 if (unlikely((t->flags & PF_KTHREAD) && 94 (handler == SIG_KTHREAD_KERNEL) && !force)) 95 return true; 96 97 return sig_handler_ignored(handler, sig); 98 } 99 100 static bool sig_ignored(struct task_struct *t, int sig, bool force) 101 { 102 /* 103 * Blocked signals are never ignored, since the 104 * signal handler may change by the time it is 105 * unblocked. 106 */ 107 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 108 return false; 109 110 /* 111 * Tracers may want to know about even ignored signal unless it 112 * is SIGKILL which can't be reported anyway but can be ignored 113 * by SIGNAL_UNKILLABLE task. 114 */ 115 if (t->ptrace && sig != SIGKILL) 116 return false; 117 118 return sig_task_ignored(t, sig, force); 119 } 120 121 /* 122 * Re-calculate pending state from the set of locally pending 123 * signals, globally pending signals, and blocked signals. 124 */ 125 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 126 { 127 unsigned long ready; 128 long i; 129 130 switch (_NSIG_WORDS) { 131 default: 132 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 133 ready |= signal->sig[i] &~ blocked->sig[i]; 134 break; 135 136 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 137 ready |= signal->sig[2] &~ blocked->sig[2]; 138 ready |= signal->sig[1] &~ blocked->sig[1]; 139 ready |= signal->sig[0] &~ blocked->sig[0]; 140 break; 141 142 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 143 ready |= signal->sig[0] &~ blocked->sig[0]; 144 break; 145 146 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 147 } 148 return ready != 0; 149 } 150 151 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 152 153 static bool recalc_sigpending_tsk(struct task_struct *t) 154 { 155 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || 156 PENDING(&t->pending, &t->blocked) || 157 PENDING(&t->signal->shared_pending, &t->blocked) || 158 cgroup_task_frozen(t)) { 159 set_tsk_thread_flag(t, TIF_SIGPENDING); 160 return true; 161 } 162 163 /* 164 * We must never clear the flag in another thread, or in current 165 * when it's possible the current syscall is returning -ERESTART*. 166 * So we don't clear it here, and only callers who know they should do. 167 */ 168 return false; 169 } 170 171 /* 172 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 173 * This is superfluous when called on current, the wakeup is a harmless no-op. 174 */ 175 void recalc_sigpending_and_wake(struct task_struct *t) 176 { 177 if (recalc_sigpending_tsk(t)) 178 signal_wake_up(t, 0); 179 } 180 181 void recalc_sigpending(void) 182 { 183 if (!recalc_sigpending_tsk(current) && !freezing(current)) 184 clear_thread_flag(TIF_SIGPENDING); 185 186 } 187 EXPORT_SYMBOL(recalc_sigpending); 188 189 void calculate_sigpending(void) 190 { 191 /* Have any signals or users of TIF_SIGPENDING been delayed 192 * until after fork? 193 */ 194 spin_lock_irq(¤t->sighand->siglock); 195 set_tsk_thread_flag(current, TIF_SIGPENDING); 196 recalc_sigpending(); 197 spin_unlock_irq(¤t->sighand->siglock); 198 } 199 200 /* Given the mask, find the first available signal that should be serviced. */ 201 202 #define SYNCHRONOUS_MASK \ 203 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 204 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 205 206 int next_signal(struct sigpending *pending, sigset_t *mask) 207 { 208 unsigned long i, *s, *m, x; 209 int sig = 0; 210 211 s = pending->signal.sig; 212 m = mask->sig; 213 214 /* 215 * Handle the first word specially: it contains the 216 * synchronous signals that need to be dequeued first. 217 */ 218 x = *s &~ *m; 219 if (x) { 220 if (x & SYNCHRONOUS_MASK) 221 x &= SYNCHRONOUS_MASK; 222 sig = ffz(~x) + 1; 223 return sig; 224 } 225 226 switch (_NSIG_WORDS) { 227 default: 228 for (i = 1; i < _NSIG_WORDS; ++i) { 229 x = *++s &~ *++m; 230 if (!x) 231 continue; 232 sig = ffz(~x) + i*_NSIG_BPW + 1; 233 break; 234 } 235 break; 236 237 case 2: 238 x = s[1] &~ m[1]; 239 if (!x) 240 break; 241 sig = ffz(~x) + _NSIG_BPW + 1; 242 break; 243 244 case 1: 245 /* Nothing to do */ 246 break; 247 } 248 249 return sig; 250 } 251 252 static inline void print_dropped_signal(int sig) 253 { 254 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 255 256 if (!print_fatal_signals) 257 return; 258 259 if (!__ratelimit(&ratelimit_state)) 260 return; 261 262 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 263 current->comm, current->pid, sig); 264 } 265 266 /** 267 * task_set_jobctl_pending - set jobctl pending bits 268 * @task: target task 269 * @mask: pending bits to set 270 * 271 * Clear @mask from @task->jobctl. @mask must be subset of 272 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 273 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 274 * cleared. If @task is already being killed or exiting, this function 275 * becomes noop. 276 * 277 * CONTEXT: 278 * Must be called with @task->sighand->siglock held. 279 * 280 * RETURNS: 281 * %true if @mask is set, %false if made noop because @task was dying. 282 */ 283 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 284 { 285 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 286 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 287 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 288 289 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 290 return false; 291 292 if (mask & JOBCTL_STOP_SIGMASK) 293 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 294 295 task->jobctl |= mask; 296 return true; 297 } 298 299 /** 300 * task_clear_jobctl_trapping - clear jobctl trapping bit 301 * @task: target task 302 * 303 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 304 * Clear it and wake up the ptracer. Note that we don't need any further 305 * locking. @task->siglock guarantees that @task->parent points to the 306 * ptracer. 307 * 308 * CONTEXT: 309 * Must be called with @task->sighand->siglock held. 310 */ 311 void task_clear_jobctl_trapping(struct task_struct *task) 312 { 313 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 314 task->jobctl &= ~JOBCTL_TRAPPING; 315 smp_mb(); /* advised by wake_up_bit() */ 316 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 317 } 318 } 319 320 /** 321 * task_clear_jobctl_pending - clear jobctl pending bits 322 * @task: target task 323 * @mask: pending bits to clear 324 * 325 * Clear @mask from @task->jobctl. @mask must be subset of 326 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 327 * STOP bits are cleared together. 328 * 329 * If clearing of @mask leaves no stop or trap pending, this function calls 330 * task_clear_jobctl_trapping(). 331 * 332 * CONTEXT: 333 * Must be called with @task->sighand->siglock held. 334 */ 335 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 336 { 337 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 338 339 if (mask & JOBCTL_STOP_PENDING) 340 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 341 342 task->jobctl &= ~mask; 343 344 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 345 task_clear_jobctl_trapping(task); 346 } 347 348 /** 349 * task_participate_group_stop - participate in a group stop 350 * @task: task participating in a group stop 351 * 352 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 353 * Group stop states are cleared and the group stop count is consumed if 354 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 355 * stop, the appropriate `SIGNAL_*` flags are set. 356 * 357 * CONTEXT: 358 * Must be called with @task->sighand->siglock held. 359 * 360 * RETURNS: 361 * %true if group stop completion should be notified to the parent, %false 362 * otherwise. 363 */ 364 static bool task_participate_group_stop(struct task_struct *task) 365 { 366 struct signal_struct *sig = task->signal; 367 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 368 369 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 370 371 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 372 373 if (!consume) 374 return false; 375 376 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 377 sig->group_stop_count--; 378 379 /* 380 * Tell the caller to notify completion iff we are entering into a 381 * fresh group stop. Read comment in do_signal_stop() for details. 382 */ 383 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 384 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 385 return true; 386 } 387 return false; 388 } 389 390 void task_join_group_stop(struct task_struct *task) 391 { 392 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK; 393 struct signal_struct *sig = current->signal; 394 395 if (sig->group_stop_count) { 396 sig->group_stop_count++; 397 mask |= JOBCTL_STOP_CONSUME; 398 } else if (!(sig->flags & SIGNAL_STOP_STOPPED)) 399 return; 400 401 /* Have the new thread join an on-going signal group stop */ 402 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING); 403 } 404 405 /* 406 * allocate a new signal queue record 407 * - this may be called without locks if and only if t == current, otherwise an 408 * appropriate lock must be held to stop the target task from exiting 409 */ 410 static struct sigqueue * 411 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags, 412 int override_rlimit, const unsigned int sigqueue_flags) 413 { 414 struct sigqueue *q = NULL; 415 struct user_struct *user; 416 int sigpending; 417 418 /* 419 * Protect access to @t credentials. This can go away when all 420 * callers hold rcu read lock. 421 * 422 * NOTE! A pending signal will hold on to the user refcount, 423 * and we get/put the refcount only when the sigpending count 424 * changes from/to zero. 425 */ 426 rcu_read_lock(); 427 user = __task_cred(t)->user; 428 sigpending = atomic_inc_return(&user->sigpending); 429 if (sigpending == 1) 430 get_uid(user); 431 rcu_read_unlock(); 432 433 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) { 434 /* 435 * Preallocation does not hold sighand::siglock so it can't 436 * use the cache. The lockless caching requires that only 437 * one consumer and only one producer run at a time. 438 */ 439 q = READ_ONCE(t->sigqueue_cache); 440 if (!q || sigqueue_flags) 441 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags); 442 else 443 WRITE_ONCE(t->sigqueue_cache, NULL); 444 } else { 445 print_dropped_signal(sig); 446 } 447 448 if (unlikely(q == NULL)) { 449 if (atomic_dec_and_test(&user->sigpending)) 450 free_uid(user); 451 } else { 452 INIT_LIST_HEAD(&q->list); 453 q->flags = sigqueue_flags; 454 q->user = user; 455 } 456 457 return q; 458 } 459 460 void exit_task_sigqueue_cache(struct task_struct *tsk) 461 { 462 /* Race free because @tsk is mopped up */ 463 struct sigqueue *q = tsk->sigqueue_cache; 464 465 if (q) { 466 tsk->sigqueue_cache = NULL; 467 /* 468 * Hand it back to the cache as the task might 469 * be self reaping which would leak the object. 470 */ 471 kmem_cache_free(sigqueue_cachep, q); 472 } 473 } 474 475 static void sigqueue_cache_or_free(struct sigqueue *q) 476 { 477 /* 478 * Cache one sigqueue per task. This pairs with the consumer side 479 * in __sigqueue_alloc() and needs READ/WRITE_ONCE() to prevent the 480 * compiler from store tearing and to tell KCSAN that the data race 481 * is intentional when run without holding current->sighand->siglock, 482 * which is fine as current obviously cannot run __sigqueue_free() 483 * concurrently. 484 */ 485 if (!READ_ONCE(current->sigqueue_cache)) 486 WRITE_ONCE(current->sigqueue_cache, q); 487 else 488 kmem_cache_free(sigqueue_cachep, q); 489 } 490 491 static void __sigqueue_free(struct sigqueue *q) 492 { 493 if (q->flags & SIGQUEUE_PREALLOC) 494 return; 495 if (atomic_dec_and_test(&q->user->sigpending)) 496 free_uid(q->user); 497 sigqueue_cache_or_free(q); 498 } 499 500 void flush_sigqueue(struct sigpending *queue) 501 { 502 struct sigqueue *q; 503 504 sigemptyset(&queue->signal); 505 while (!list_empty(&queue->list)) { 506 q = list_entry(queue->list.next, struct sigqueue , list); 507 list_del_init(&q->list); 508 __sigqueue_free(q); 509 } 510 } 511 512 /* 513 * Flush all pending signals for this kthread. 514 */ 515 void flush_signals(struct task_struct *t) 516 { 517 unsigned long flags; 518 519 spin_lock_irqsave(&t->sighand->siglock, flags); 520 clear_tsk_thread_flag(t, TIF_SIGPENDING); 521 flush_sigqueue(&t->pending); 522 flush_sigqueue(&t->signal->shared_pending); 523 spin_unlock_irqrestore(&t->sighand->siglock, flags); 524 } 525 EXPORT_SYMBOL(flush_signals); 526 527 #ifdef CONFIG_POSIX_TIMERS 528 static void __flush_itimer_signals(struct sigpending *pending) 529 { 530 sigset_t signal, retain; 531 struct sigqueue *q, *n; 532 533 signal = pending->signal; 534 sigemptyset(&retain); 535 536 list_for_each_entry_safe(q, n, &pending->list, list) { 537 int sig = q->info.si_signo; 538 539 if (likely(q->info.si_code != SI_TIMER)) { 540 sigaddset(&retain, sig); 541 } else { 542 sigdelset(&signal, sig); 543 list_del_init(&q->list); 544 __sigqueue_free(q); 545 } 546 } 547 548 sigorsets(&pending->signal, &signal, &retain); 549 } 550 551 void flush_itimer_signals(void) 552 { 553 struct task_struct *tsk = current; 554 unsigned long flags; 555 556 spin_lock_irqsave(&tsk->sighand->siglock, flags); 557 __flush_itimer_signals(&tsk->pending); 558 __flush_itimer_signals(&tsk->signal->shared_pending); 559 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 560 } 561 #endif 562 563 void ignore_signals(struct task_struct *t) 564 { 565 int i; 566 567 for (i = 0; i < _NSIG; ++i) 568 t->sighand->action[i].sa.sa_handler = SIG_IGN; 569 570 flush_signals(t); 571 } 572 573 /* 574 * Flush all handlers for a task. 575 */ 576 577 void 578 flush_signal_handlers(struct task_struct *t, int force_default) 579 { 580 int i; 581 struct k_sigaction *ka = &t->sighand->action[0]; 582 for (i = _NSIG ; i != 0 ; i--) { 583 if (force_default || ka->sa.sa_handler != SIG_IGN) 584 ka->sa.sa_handler = SIG_DFL; 585 ka->sa.sa_flags = 0; 586 #ifdef __ARCH_HAS_SA_RESTORER 587 ka->sa.sa_restorer = NULL; 588 #endif 589 sigemptyset(&ka->sa.sa_mask); 590 ka++; 591 } 592 } 593 594 bool unhandled_signal(struct task_struct *tsk, int sig) 595 { 596 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 597 if (is_global_init(tsk)) 598 return true; 599 600 if (handler != SIG_IGN && handler != SIG_DFL) 601 return false; 602 603 /* if ptraced, let the tracer determine */ 604 return !tsk->ptrace; 605 } 606 607 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 608 bool *resched_timer) 609 { 610 struct sigqueue *q, *first = NULL; 611 612 /* 613 * Collect the siginfo appropriate to this signal. Check if 614 * there is another siginfo for the same signal. 615 */ 616 list_for_each_entry(q, &list->list, list) { 617 if (q->info.si_signo == sig) { 618 if (first) 619 goto still_pending; 620 first = q; 621 } 622 } 623 624 sigdelset(&list->signal, sig); 625 626 if (first) { 627 still_pending: 628 list_del_init(&first->list); 629 copy_siginfo(info, &first->info); 630 631 *resched_timer = 632 (first->flags & SIGQUEUE_PREALLOC) && 633 (info->si_code == SI_TIMER) && 634 (info->si_sys_private); 635 636 __sigqueue_free(first); 637 } else { 638 /* 639 * Ok, it wasn't in the queue. This must be 640 * a fast-pathed signal or we must have been 641 * out of queue space. So zero out the info. 642 */ 643 clear_siginfo(info); 644 info->si_signo = sig; 645 info->si_errno = 0; 646 info->si_code = SI_USER; 647 info->si_pid = 0; 648 info->si_uid = 0; 649 } 650 } 651 652 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 653 kernel_siginfo_t *info, bool *resched_timer) 654 { 655 int sig = next_signal(pending, mask); 656 657 if (sig) 658 collect_signal(sig, pending, info, resched_timer); 659 return sig; 660 } 661 662 /* 663 * Dequeue a signal and return the element to the caller, which is 664 * expected to free it. 665 * 666 * All callers have to hold the siglock. 667 */ 668 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info) 669 { 670 bool resched_timer = false; 671 int signr; 672 673 /* We only dequeue private signals from ourselves, we don't let 674 * signalfd steal them 675 */ 676 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 677 if (!signr) { 678 signr = __dequeue_signal(&tsk->signal->shared_pending, 679 mask, info, &resched_timer); 680 #ifdef CONFIG_POSIX_TIMERS 681 /* 682 * itimer signal ? 683 * 684 * itimers are process shared and we restart periodic 685 * itimers in the signal delivery path to prevent DoS 686 * attacks in the high resolution timer case. This is 687 * compliant with the old way of self-restarting 688 * itimers, as the SIGALRM is a legacy signal and only 689 * queued once. Changing the restart behaviour to 690 * restart the timer in the signal dequeue path is 691 * reducing the timer noise on heavy loaded !highres 692 * systems too. 693 */ 694 if (unlikely(signr == SIGALRM)) { 695 struct hrtimer *tmr = &tsk->signal->real_timer; 696 697 if (!hrtimer_is_queued(tmr) && 698 tsk->signal->it_real_incr != 0) { 699 hrtimer_forward(tmr, tmr->base->get_time(), 700 tsk->signal->it_real_incr); 701 hrtimer_restart(tmr); 702 } 703 } 704 #endif 705 } 706 707 recalc_sigpending(); 708 if (!signr) 709 return 0; 710 711 if (unlikely(sig_kernel_stop(signr))) { 712 /* 713 * Set a marker that we have dequeued a stop signal. Our 714 * caller might release the siglock and then the pending 715 * stop signal it is about to process is no longer in the 716 * pending bitmasks, but must still be cleared by a SIGCONT 717 * (and overruled by a SIGKILL). So those cases clear this 718 * shared flag after we've set it. Note that this flag may 719 * remain set after the signal we return is ignored or 720 * handled. That doesn't matter because its only purpose 721 * is to alert stop-signal processing code when another 722 * processor has come along and cleared the flag. 723 */ 724 current->jobctl |= JOBCTL_STOP_DEQUEUED; 725 } 726 #ifdef CONFIG_POSIX_TIMERS 727 if (resched_timer) { 728 /* 729 * Release the siglock to ensure proper locking order 730 * of timer locks outside of siglocks. Note, we leave 731 * irqs disabled here, since the posix-timers code is 732 * about to disable them again anyway. 733 */ 734 spin_unlock(&tsk->sighand->siglock); 735 posixtimer_rearm(info); 736 spin_lock(&tsk->sighand->siglock); 737 738 /* Don't expose the si_sys_private value to userspace */ 739 info->si_sys_private = 0; 740 } 741 #endif 742 return signr; 743 } 744 EXPORT_SYMBOL_GPL(dequeue_signal); 745 746 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 747 { 748 struct task_struct *tsk = current; 749 struct sigpending *pending = &tsk->pending; 750 struct sigqueue *q, *sync = NULL; 751 752 /* 753 * Might a synchronous signal be in the queue? 754 */ 755 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 756 return 0; 757 758 /* 759 * Return the first synchronous signal in the queue. 760 */ 761 list_for_each_entry(q, &pending->list, list) { 762 /* Synchronous signals have a positive si_code */ 763 if ((q->info.si_code > SI_USER) && 764 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 765 sync = q; 766 goto next; 767 } 768 } 769 return 0; 770 next: 771 /* 772 * Check if there is another siginfo for the same signal. 773 */ 774 list_for_each_entry_continue(q, &pending->list, list) { 775 if (q->info.si_signo == sync->info.si_signo) 776 goto still_pending; 777 } 778 779 sigdelset(&pending->signal, sync->info.si_signo); 780 recalc_sigpending(); 781 still_pending: 782 list_del_init(&sync->list); 783 copy_siginfo(info, &sync->info); 784 __sigqueue_free(sync); 785 return info->si_signo; 786 } 787 788 /* 789 * Tell a process that it has a new active signal.. 790 * 791 * NOTE! we rely on the previous spin_lock to 792 * lock interrupts for us! We can only be called with 793 * "siglock" held, and the local interrupt must 794 * have been disabled when that got acquired! 795 * 796 * No need to set need_resched since signal event passing 797 * goes through ->blocked 798 */ 799 void signal_wake_up_state(struct task_struct *t, unsigned int state) 800 { 801 set_tsk_thread_flag(t, TIF_SIGPENDING); 802 /* 803 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 804 * case. We don't check t->state here because there is a race with it 805 * executing another processor and just now entering stopped state. 806 * By using wake_up_state, we ensure the process will wake up and 807 * handle its death signal. 808 */ 809 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 810 kick_process(t); 811 } 812 813 /* 814 * Remove signals in mask from the pending set and queue. 815 * Returns 1 if any signals were found. 816 * 817 * All callers must be holding the siglock. 818 */ 819 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 820 { 821 struct sigqueue *q, *n; 822 sigset_t m; 823 824 sigandsets(&m, mask, &s->signal); 825 if (sigisemptyset(&m)) 826 return; 827 828 sigandnsets(&s->signal, &s->signal, mask); 829 list_for_each_entry_safe(q, n, &s->list, list) { 830 if (sigismember(mask, q->info.si_signo)) { 831 list_del_init(&q->list); 832 __sigqueue_free(q); 833 } 834 } 835 } 836 837 static inline int is_si_special(const struct kernel_siginfo *info) 838 { 839 return info <= SEND_SIG_PRIV; 840 } 841 842 static inline bool si_fromuser(const struct kernel_siginfo *info) 843 { 844 return info == SEND_SIG_NOINFO || 845 (!is_si_special(info) && SI_FROMUSER(info)); 846 } 847 848 /* 849 * called with RCU read lock from check_kill_permission() 850 */ 851 static bool kill_ok_by_cred(struct task_struct *t) 852 { 853 const struct cred *cred = current_cred(); 854 const struct cred *tcred = __task_cred(t); 855 856 return uid_eq(cred->euid, tcred->suid) || 857 uid_eq(cred->euid, tcred->uid) || 858 uid_eq(cred->uid, tcred->suid) || 859 uid_eq(cred->uid, tcred->uid) || 860 ns_capable(tcred->user_ns, CAP_KILL); 861 } 862 863 /* 864 * Bad permissions for sending the signal 865 * - the caller must hold the RCU read lock 866 */ 867 static int check_kill_permission(int sig, struct kernel_siginfo *info, 868 struct task_struct *t) 869 { 870 struct pid *sid; 871 int error; 872 873 if (!valid_signal(sig)) 874 return -EINVAL; 875 876 if (!si_fromuser(info)) 877 return 0; 878 879 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 880 if (error) 881 return error; 882 883 if (!same_thread_group(current, t) && 884 !kill_ok_by_cred(t)) { 885 switch (sig) { 886 case SIGCONT: 887 sid = task_session(t); 888 /* 889 * We don't return the error if sid == NULL. The 890 * task was unhashed, the caller must notice this. 891 */ 892 if (!sid || sid == task_session(current)) 893 break; 894 fallthrough; 895 default: 896 return -EPERM; 897 } 898 } 899 900 return security_task_kill(t, info, sig, NULL); 901 } 902 903 /** 904 * ptrace_trap_notify - schedule trap to notify ptracer 905 * @t: tracee wanting to notify tracer 906 * 907 * This function schedules sticky ptrace trap which is cleared on the next 908 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 909 * ptracer. 910 * 911 * If @t is running, STOP trap will be taken. If trapped for STOP and 912 * ptracer is listening for events, tracee is woken up so that it can 913 * re-trap for the new event. If trapped otherwise, STOP trap will be 914 * eventually taken without returning to userland after the existing traps 915 * are finished by PTRACE_CONT. 916 * 917 * CONTEXT: 918 * Must be called with @task->sighand->siglock held. 919 */ 920 static void ptrace_trap_notify(struct task_struct *t) 921 { 922 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 923 assert_spin_locked(&t->sighand->siglock); 924 925 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 926 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 927 } 928 929 /* 930 * Handle magic process-wide effects of stop/continue signals. Unlike 931 * the signal actions, these happen immediately at signal-generation 932 * time regardless of blocking, ignoring, or handling. This does the 933 * actual continuing for SIGCONT, but not the actual stopping for stop 934 * signals. The process stop is done as a signal action for SIG_DFL. 935 * 936 * Returns true if the signal should be actually delivered, otherwise 937 * it should be dropped. 938 */ 939 static bool prepare_signal(int sig, struct task_struct *p, bool force) 940 { 941 struct signal_struct *signal = p->signal; 942 struct task_struct *t; 943 sigset_t flush; 944 945 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) { 946 if (!(signal->flags & SIGNAL_GROUP_EXIT)) 947 return sig == SIGKILL; 948 /* 949 * The process is in the middle of dying, nothing to do. 950 */ 951 } else if (sig_kernel_stop(sig)) { 952 /* 953 * This is a stop signal. Remove SIGCONT from all queues. 954 */ 955 siginitset(&flush, sigmask(SIGCONT)); 956 flush_sigqueue_mask(&flush, &signal->shared_pending); 957 for_each_thread(p, t) 958 flush_sigqueue_mask(&flush, &t->pending); 959 } else if (sig == SIGCONT) { 960 unsigned int why; 961 /* 962 * Remove all stop signals from all queues, wake all threads. 963 */ 964 siginitset(&flush, SIG_KERNEL_STOP_MASK); 965 flush_sigqueue_mask(&flush, &signal->shared_pending); 966 for_each_thread(p, t) { 967 flush_sigqueue_mask(&flush, &t->pending); 968 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 969 if (likely(!(t->ptrace & PT_SEIZED))) 970 wake_up_state(t, __TASK_STOPPED); 971 else 972 ptrace_trap_notify(t); 973 } 974 975 /* 976 * Notify the parent with CLD_CONTINUED if we were stopped. 977 * 978 * If we were in the middle of a group stop, we pretend it 979 * was already finished, and then continued. Since SIGCHLD 980 * doesn't queue we report only CLD_STOPPED, as if the next 981 * CLD_CONTINUED was dropped. 982 */ 983 why = 0; 984 if (signal->flags & SIGNAL_STOP_STOPPED) 985 why |= SIGNAL_CLD_CONTINUED; 986 else if (signal->group_stop_count) 987 why |= SIGNAL_CLD_STOPPED; 988 989 if (why) { 990 /* 991 * The first thread which returns from do_signal_stop() 992 * will take ->siglock, notice SIGNAL_CLD_MASK, and 993 * notify its parent. See get_signal(). 994 */ 995 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 996 signal->group_stop_count = 0; 997 signal->group_exit_code = 0; 998 } 999 } 1000 1001 return !sig_ignored(p, sig, force); 1002 } 1003 1004 /* 1005 * Test if P wants to take SIG. After we've checked all threads with this, 1006 * it's equivalent to finding no threads not blocking SIG. Any threads not 1007 * blocking SIG were ruled out because they are not running and already 1008 * have pending signals. Such threads will dequeue from the shared queue 1009 * as soon as they're available, so putting the signal on the shared queue 1010 * will be equivalent to sending it to one such thread. 1011 */ 1012 static inline bool wants_signal(int sig, struct task_struct *p) 1013 { 1014 if (sigismember(&p->blocked, sig)) 1015 return false; 1016 1017 if (p->flags & PF_EXITING) 1018 return false; 1019 1020 if (sig == SIGKILL) 1021 return true; 1022 1023 if (task_is_stopped_or_traced(p)) 1024 return false; 1025 1026 return task_curr(p) || !task_sigpending(p); 1027 } 1028 1029 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 1030 { 1031 struct signal_struct *signal = p->signal; 1032 struct task_struct *t; 1033 1034 /* 1035 * Now find a thread we can wake up to take the signal off the queue. 1036 * 1037 * If the main thread wants the signal, it gets first crack. 1038 * Probably the least surprising to the average bear. 1039 */ 1040 if (wants_signal(sig, p)) 1041 t = p; 1042 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 1043 /* 1044 * There is just one thread and it does not need to be woken. 1045 * It will dequeue unblocked signals before it runs again. 1046 */ 1047 return; 1048 else { 1049 /* 1050 * Otherwise try to find a suitable thread. 1051 */ 1052 t = signal->curr_target; 1053 while (!wants_signal(sig, t)) { 1054 t = next_thread(t); 1055 if (t == signal->curr_target) 1056 /* 1057 * No thread needs to be woken. 1058 * Any eligible threads will see 1059 * the signal in the queue soon. 1060 */ 1061 return; 1062 } 1063 signal->curr_target = t; 1064 } 1065 1066 /* 1067 * Found a killable thread. If the signal will be fatal, 1068 * then start taking the whole group down immediately. 1069 */ 1070 if (sig_fatal(p, sig) && 1071 !(signal->flags & SIGNAL_GROUP_EXIT) && 1072 !sigismember(&t->real_blocked, sig) && 1073 (sig == SIGKILL || !p->ptrace)) { 1074 /* 1075 * This signal will be fatal to the whole group. 1076 */ 1077 if (!sig_kernel_coredump(sig)) { 1078 /* 1079 * Start a group exit and wake everybody up. 1080 * This way we don't have other threads 1081 * running and doing things after a slower 1082 * thread has the fatal signal pending. 1083 */ 1084 signal->flags = SIGNAL_GROUP_EXIT; 1085 signal->group_exit_code = sig; 1086 signal->group_stop_count = 0; 1087 t = p; 1088 do { 1089 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1090 sigaddset(&t->pending.signal, SIGKILL); 1091 signal_wake_up(t, 1); 1092 } while_each_thread(p, t); 1093 return; 1094 } 1095 } 1096 1097 /* 1098 * The signal is already in the shared-pending queue. 1099 * Tell the chosen thread to wake up and dequeue it. 1100 */ 1101 signal_wake_up(t, sig == SIGKILL); 1102 return; 1103 } 1104 1105 static inline bool legacy_queue(struct sigpending *signals, int sig) 1106 { 1107 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1108 } 1109 1110 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1111 enum pid_type type, bool force) 1112 { 1113 struct sigpending *pending; 1114 struct sigqueue *q; 1115 int override_rlimit; 1116 int ret = 0, result; 1117 1118 assert_spin_locked(&t->sighand->siglock); 1119 1120 result = TRACE_SIGNAL_IGNORED; 1121 if (!prepare_signal(sig, t, force)) 1122 goto ret; 1123 1124 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1125 /* 1126 * Short-circuit ignored signals and support queuing 1127 * exactly one non-rt signal, so that we can get more 1128 * detailed information about the cause of the signal. 1129 */ 1130 result = TRACE_SIGNAL_ALREADY_PENDING; 1131 if (legacy_queue(pending, sig)) 1132 goto ret; 1133 1134 result = TRACE_SIGNAL_DELIVERED; 1135 /* 1136 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1137 */ 1138 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1139 goto out_set; 1140 1141 /* 1142 * Real-time signals must be queued if sent by sigqueue, or 1143 * some other real-time mechanism. It is implementation 1144 * defined whether kill() does so. We attempt to do so, on 1145 * the principle of least surprise, but since kill is not 1146 * allowed to fail with EAGAIN when low on memory we just 1147 * make sure at least one signal gets delivered and don't 1148 * pass on the info struct. 1149 */ 1150 if (sig < SIGRTMIN) 1151 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1152 else 1153 override_rlimit = 0; 1154 1155 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0); 1156 1157 if (q) { 1158 list_add_tail(&q->list, &pending->list); 1159 switch ((unsigned long) info) { 1160 case (unsigned long) SEND_SIG_NOINFO: 1161 clear_siginfo(&q->info); 1162 q->info.si_signo = sig; 1163 q->info.si_errno = 0; 1164 q->info.si_code = SI_USER; 1165 q->info.si_pid = task_tgid_nr_ns(current, 1166 task_active_pid_ns(t)); 1167 rcu_read_lock(); 1168 q->info.si_uid = 1169 from_kuid_munged(task_cred_xxx(t, user_ns), 1170 current_uid()); 1171 rcu_read_unlock(); 1172 break; 1173 case (unsigned long) SEND_SIG_PRIV: 1174 clear_siginfo(&q->info); 1175 q->info.si_signo = sig; 1176 q->info.si_errno = 0; 1177 q->info.si_code = SI_KERNEL; 1178 q->info.si_pid = 0; 1179 q->info.si_uid = 0; 1180 break; 1181 default: 1182 copy_siginfo(&q->info, info); 1183 break; 1184 } 1185 } else if (!is_si_special(info) && 1186 sig >= SIGRTMIN && info->si_code != SI_USER) { 1187 /* 1188 * Queue overflow, abort. We may abort if the 1189 * signal was rt and sent by user using something 1190 * other than kill(). 1191 */ 1192 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1193 ret = -EAGAIN; 1194 goto ret; 1195 } else { 1196 /* 1197 * This is a silent loss of information. We still 1198 * send the signal, but the *info bits are lost. 1199 */ 1200 result = TRACE_SIGNAL_LOSE_INFO; 1201 } 1202 1203 out_set: 1204 signalfd_notify(t, sig); 1205 sigaddset(&pending->signal, sig); 1206 1207 /* Let multiprocess signals appear after on-going forks */ 1208 if (type > PIDTYPE_TGID) { 1209 struct multiprocess_signals *delayed; 1210 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1211 sigset_t *signal = &delayed->signal; 1212 /* Can't queue both a stop and a continue signal */ 1213 if (sig == SIGCONT) 1214 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1215 else if (sig_kernel_stop(sig)) 1216 sigdelset(signal, SIGCONT); 1217 sigaddset(signal, sig); 1218 } 1219 } 1220 1221 complete_signal(sig, t, type); 1222 ret: 1223 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1224 return ret; 1225 } 1226 1227 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) 1228 { 1229 bool ret = false; 1230 switch (siginfo_layout(info->si_signo, info->si_code)) { 1231 case SIL_KILL: 1232 case SIL_CHLD: 1233 case SIL_RT: 1234 ret = true; 1235 break; 1236 case SIL_TIMER: 1237 case SIL_POLL: 1238 case SIL_FAULT: 1239 case SIL_FAULT_MCEERR: 1240 case SIL_FAULT_BNDERR: 1241 case SIL_FAULT_PKUERR: 1242 case SIL_PERF_EVENT: 1243 case SIL_SYS: 1244 ret = false; 1245 break; 1246 } 1247 return ret; 1248 } 1249 1250 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1251 enum pid_type type) 1252 { 1253 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ 1254 bool force = false; 1255 1256 if (info == SEND_SIG_NOINFO) { 1257 /* Force if sent from an ancestor pid namespace */ 1258 force = !task_pid_nr_ns(current, task_active_pid_ns(t)); 1259 } else if (info == SEND_SIG_PRIV) { 1260 /* Don't ignore kernel generated signals */ 1261 force = true; 1262 } else if (has_si_pid_and_uid(info)) { 1263 /* SIGKILL and SIGSTOP is special or has ids */ 1264 struct user_namespace *t_user_ns; 1265 1266 rcu_read_lock(); 1267 t_user_ns = task_cred_xxx(t, user_ns); 1268 if (current_user_ns() != t_user_ns) { 1269 kuid_t uid = make_kuid(current_user_ns(), info->si_uid); 1270 info->si_uid = from_kuid_munged(t_user_ns, uid); 1271 } 1272 rcu_read_unlock(); 1273 1274 /* A kernel generated signal? */ 1275 force = (info->si_code == SI_KERNEL); 1276 1277 /* From an ancestor pid namespace? */ 1278 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { 1279 info->si_pid = 0; 1280 force = true; 1281 } 1282 } 1283 return __send_signal(sig, info, t, type, force); 1284 } 1285 1286 static void print_fatal_signal(int signr) 1287 { 1288 struct pt_regs *regs = signal_pt_regs(); 1289 pr_info("potentially unexpected fatal signal %d.\n", signr); 1290 1291 #if defined(__i386__) && !defined(__arch_um__) 1292 pr_info("code at %08lx: ", regs->ip); 1293 { 1294 int i; 1295 for (i = 0; i < 16; i++) { 1296 unsigned char insn; 1297 1298 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1299 break; 1300 pr_cont("%02x ", insn); 1301 } 1302 } 1303 pr_cont("\n"); 1304 #endif 1305 preempt_disable(); 1306 show_regs(regs); 1307 preempt_enable(); 1308 } 1309 1310 static int __init setup_print_fatal_signals(char *str) 1311 { 1312 get_option (&str, &print_fatal_signals); 1313 1314 return 1; 1315 } 1316 1317 __setup("print-fatal-signals=", setup_print_fatal_signals); 1318 1319 int 1320 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1321 { 1322 return send_signal(sig, info, p, PIDTYPE_TGID); 1323 } 1324 1325 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1326 enum pid_type type) 1327 { 1328 unsigned long flags; 1329 int ret = -ESRCH; 1330 1331 if (lock_task_sighand(p, &flags)) { 1332 ret = send_signal(sig, info, p, type); 1333 unlock_task_sighand(p, &flags); 1334 } 1335 1336 return ret; 1337 } 1338 1339 /* 1340 * Force a signal that the process can't ignore: if necessary 1341 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1342 * 1343 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1344 * since we do not want to have a signal handler that was blocked 1345 * be invoked when user space had explicitly blocked it. 1346 * 1347 * We don't want to have recursive SIGSEGV's etc, for example, 1348 * that is why we also clear SIGNAL_UNKILLABLE. 1349 */ 1350 static int 1351 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t) 1352 { 1353 unsigned long int flags; 1354 int ret, blocked, ignored; 1355 struct k_sigaction *action; 1356 int sig = info->si_signo; 1357 1358 spin_lock_irqsave(&t->sighand->siglock, flags); 1359 action = &t->sighand->action[sig-1]; 1360 ignored = action->sa.sa_handler == SIG_IGN; 1361 blocked = sigismember(&t->blocked, sig); 1362 if (blocked || ignored) { 1363 action->sa.sa_handler = SIG_DFL; 1364 if (blocked) { 1365 sigdelset(&t->blocked, sig); 1366 recalc_sigpending_and_wake(t); 1367 } 1368 } 1369 /* 1370 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1371 * debugging to leave init killable. 1372 */ 1373 if (action->sa.sa_handler == SIG_DFL && !t->ptrace) 1374 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1375 ret = send_signal(sig, info, t, PIDTYPE_PID); 1376 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1377 1378 return ret; 1379 } 1380 1381 int force_sig_info(struct kernel_siginfo *info) 1382 { 1383 return force_sig_info_to_task(info, current); 1384 } 1385 1386 /* 1387 * Nuke all other threads in the group. 1388 */ 1389 int zap_other_threads(struct task_struct *p) 1390 { 1391 struct task_struct *t = p; 1392 int count = 0; 1393 1394 p->signal->group_stop_count = 0; 1395 1396 while_each_thread(p, t) { 1397 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1398 count++; 1399 1400 /* Don't bother with already dead threads */ 1401 if (t->exit_state) 1402 continue; 1403 sigaddset(&t->pending.signal, SIGKILL); 1404 signal_wake_up(t, 1); 1405 } 1406 1407 return count; 1408 } 1409 1410 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1411 unsigned long *flags) 1412 { 1413 struct sighand_struct *sighand; 1414 1415 rcu_read_lock(); 1416 for (;;) { 1417 sighand = rcu_dereference(tsk->sighand); 1418 if (unlikely(sighand == NULL)) 1419 break; 1420 1421 /* 1422 * This sighand can be already freed and even reused, but 1423 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1424 * initializes ->siglock: this slab can't go away, it has 1425 * the same object type, ->siglock can't be reinitialized. 1426 * 1427 * We need to ensure that tsk->sighand is still the same 1428 * after we take the lock, we can race with de_thread() or 1429 * __exit_signal(). In the latter case the next iteration 1430 * must see ->sighand == NULL. 1431 */ 1432 spin_lock_irqsave(&sighand->siglock, *flags); 1433 if (likely(sighand == rcu_access_pointer(tsk->sighand))) 1434 break; 1435 spin_unlock_irqrestore(&sighand->siglock, *flags); 1436 } 1437 rcu_read_unlock(); 1438 1439 return sighand; 1440 } 1441 1442 /* 1443 * send signal info to all the members of a group 1444 */ 1445 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1446 struct task_struct *p, enum pid_type type) 1447 { 1448 int ret; 1449 1450 rcu_read_lock(); 1451 ret = check_kill_permission(sig, info, p); 1452 rcu_read_unlock(); 1453 1454 if (!ret && sig) 1455 ret = do_send_sig_info(sig, info, p, type); 1456 1457 return ret; 1458 } 1459 1460 /* 1461 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1462 * control characters do (^C, ^Z etc) 1463 * - the caller must hold at least a readlock on tasklist_lock 1464 */ 1465 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1466 { 1467 struct task_struct *p = NULL; 1468 int retval, success; 1469 1470 success = 0; 1471 retval = -ESRCH; 1472 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1473 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1474 success |= !err; 1475 retval = err; 1476 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1477 return success ? 0 : retval; 1478 } 1479 1480 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1481 { 1482 int error = -ESRCH; 1483 struct task_struct *p; 1484 1485 for (;;) { 1486 rcu_read_lock(); 1487 p = pid_task(pid, PIDTYPE_PID); 1488 if (p) 1489 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID); 1490 rcu_read_unlock(); 1491 if (likely(!p || error != -ESRCH)) 1492 return error; 1493 1494 /* 1495 * The task was unhashed in between, try again. If it 1496 * is dead, pid_task() will return NULL, if we race with 1497 * de_thread() it will find the new leader. 1498 */ 1499 } 1500 } 1501 1502 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1503 { 1504 int error; 1505 rcu_read_lock(); 1506 error = kill_pid_info(sig, info, find_vpid(pid)); 1507 rcu_read_unlock(); 1508 return error; 1509 } 1510 1511 static inline bool kill_as_cred_perm(const struct cred *cred, 1512 struct task_struct *target) 1513 { 1514 const struct cred *pcred = __task_cred(target); 1515 1516 return uid_eq(cred->euid, pcred->suid) || 1517 uid_eq(cred->euid, pcred->uid) || 1518 uid_eq(cred->uid, pcred->suid) || 1519 uid_eq(cred->uid, pcred->uid); 1520 } 1521 1522 /* 1523 * The usb asyncio usage of siginfo is wrong. The glibc support 1524 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. 1525 * AKA after the generic fields: 1526 * kernel_pid_t si_pid; 1527 * kernel_uid32_t si_uid; 1528 * sigval_t si_value; 1529 * 1530 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout 1531 * after the generic fields is: 1532 * void __user *si_addr; 1533 * 1534 * This is a practical problem when there is a 64bit big endian kernel 1535 * and a 32bit userspace. As the 32bit address will encoded in the low 1536 * 32bits of the pointer. Those low 32bits will be stored at higher 1537 * address than appear in a 32 bit pointer. So userspace will not 1538 * see the address it was expecting for it's completions. 1539 * 1540 * There is nothing in the encoding that can allow 1541 * copy_siginfo_to_user32 to detect this confusion of formats, so 1542 * handle this by requiring the caller of kill_pid_usb_asyncio to 1543 * notice when this situration takes place and to store the 32bit 1544 * pointer in sival_int, instead of sival_addr of the sigval_t addr 1545 * parameter. 1546 */ 1547 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, 1548 struct pid *pid, const struct cred *cred) 1549 { 1550 struct kernel_siginfo info; 1551 struct task_struct *p; 1552 unsigned long flags; 1553 int ret = -EINVAL; 1554 1555 if (!valid_signal(sig)) 1556 return ret; 1557 1558 clear_siginfo(&info); 1559 info.si_signo = sig; 1560 info.si_errno = errno; 1561 info.si_code = SI_ASYNCIO; 1562 *((sigval_t *)&info.si_pid) = addr; 1563 1564 rcu_read_lock(); 1565 p = pid_task(pid, PIDTYPE_PID); 1566 if (!p) { 1567 ret = -ESRCH; 1568 goto out_unlock; 1569 } 1570 if (!kill_as_cred_perm(cred, p)) { 1571 ret = -EPERM; 1572 goto out_unlock; 1573 } 1574 ret = security_task_kill(p, &info, sig, cred); 1575 if (ret) 1576 goto out_unlock; 1577 1578 if (sig) { 1579 if (lock_task_sighand(p, &flags)) { 1580 ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false); 1581 unlock_task_sighand(p, &flags); 1582 } else 1583 ret = -ESRCH; 1584 } 1585 out_unlock: 1586 rcu_read_unlock(); 1587 return ret; 1588 } 1589 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); 1590 1591 /* 1592 * kill_something_info() interprets pid in interesting ways just like kill(2). 1593 * 1594 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1595 * is probably wrong. Should make it like BSD or SYSV. 1596 */ 1597 1598 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1599 { 1600 int ret; 1601 1602 if (pid > 0) 1603 return kill_proc_info(sig, info, pid); 1604 1605 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1606 if (pid == INT_MIN) 1607 return -ESRCH; 1608 1609 read_lock(&tasklist_lock); 1610 if (pid != -1) { 1611 ret = __kill_pgrp_info(sig, info, 1612 pid ? find_vpid(-pid) : task_pgrp(current)); 1613 } else { 1614 int retval = 0, count = 0; 1615 struct task_struct * p; 1616 1617 for_each_process(p) { 1618 if (task_pid_vnr(p) > 1 && 1619 !same_thread_group(p, current)) { 1620 int err = group_send_sig_info(sig, info, p, 1621 PIDTYPE_MAX); 1622 ++count; 1623 if (err != -EPERM) 1624 retval = err; 1625 } 1626 } 1627 ret = count ? retval : -ESRCH; 1628 } 1629 read_unlock(&tasklist_lock); 1630 1631 return ret; 1632 } 1633 1634 /* 1635 * These are for backward compatibility with the rest of the kernel source. 1636 */ 1637 1638 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1639 { 1640 /* 1641 * Make sure legacy kernel users don't send in bad values 1642 * (normal paths check this in check_kill_permission). 1643 */ 1644 if (!valid_signal(sig)) 1645 return -EINVAL; 1646 1647 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1648 } 1649 EXPORT_SYMBOL(send_sig_info); 1650 1651 #define __si_special(priv) \ 1652 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1653 1654 int 1655 send_sig(int sig, struct task_struct *p, int priv) 1656 { 1657 return send_sig_info(sig, __si_special(priv), p); 1658 } 1659 EXPORT_SYMBOL(send_sig); 1660 1661 void force_sig(int sig) 1662 { 1663 struct kernel_siginfo info; 1664 1665 clear_siginfo(&info); 1666 info.si_signo = sig; 1667 info.si_errno = 0; 1668 info.si_code = SI_KERNEL; 1669 info.si_pid = 0; 1670 info.si_uid = 0; 1671 force_sig_info(&info); 1672 } 1673 EXPORT_SYMBOL(force_sig); 1674 1675 /* 1676 * When things go south during signal handling, we 1677 * will force a SIGSEGV. And if the signal that caused 1678 * the problem was already a SIGSEGV, we'll want to 1679 * make sure we don't even try to deliver the signal.. 1680 */ 1681 void force_sigsegv(int sig) 1682 { 1683 struct task_struct *p = current; 1684 1685 if (sig == SIGSEGV) { 1686 unsigned long flags; 1687 spin_lock_irqsave(&p->sighand->siglock, flags); 1688 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1689 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1690 } 1691 force_sig(SIGSEGV); 1692 } 1693 1694 int force_sig_fault_to_task(int sig, int code, void __user *addr 1695 ___ARCH_SI_TRAPNO(int trapno) 1696 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1697 , struct task_struct *t) 1698 { 1699 struct kernel_siginfo info; 1700 1701 clear_siginfo(&info); 1702 info.si_signo = sig; 1703 info.si_errno = 0; 1704 info.si_code = code; 1705 info.si_addr = addr; 1706 #ifdef __ARCH_SI_TRAPNO 1707 info.si_trapno = trapno; 1708 #endif 1709 #ifdef __ia64__ 1710 info.si_imm = imm; 1711 info.si_flags = flags; 1712 info.si_isr = isr; 1713 #endif 1714 return force_sig_info_to_task(&info, t); 1715 } 1716 1717 int force_sig_fault(int sig, int code, void __user *addr 1718 ___ARCH_SI_TRAPNO(int trapno) 1719 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)) 1720 { 1721 return force_sig_fault_to_task(sig, code, addr 1722 ___ARCH_SI_TRAPNO(trapno) 1723 ___ARCH_SI_IA64(imm, flags, isr), current); 1724 } 1725 1726 int send_sig_fault(int sig, int code, void __user *addr 1727 ___ARCH_SI_TRAPNO(int trapno) 1728 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1729 , struct task_struct *t) 1730 { 1731 struct kernel_siginfo info; 1732 1733 clear_siginfo(&info); 1734 info.si_signo = sig; 1735 info.si_errno = 0; 1736 info.si_code = code; 1737 info.si_addr = addr; 1738 #ifdef __ARCH_SI_TRAPNO 1739 info.si_trapno = trapno; 1740 #endif 1741 #ifdef __ia64__ 1742 info.si_imm = imm; 1743 info.si_flags = flags; 1744 info.si_isr = isr; 1745 #endif 1746 return send_sig_info(info.si_signo, &info, t); 1747 } 1748 1749 int force_sig_mceerr(int code, void __user *addr, short lsb) 1750 { 1751 struct kernel_siginfo info; 1752 1753 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1754 clear_siginfo(&info); 1755 info.si_signo = SIGBUS; 1756 info.si_errno = 0; 1757 info.si_code = code; 1758 info.si_addr = addr; 1759 info.si_addr_lsb = lsb; 1760 return force_sig_info(&info); 1761 } 1762 1763 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1764 { 1765 struct kernel_siginfo info; 1766 1767 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1768 clear_siginfo(&info); 1769 info.si_signo = SIGBUS; 1770 info.si_errno = 0; 1771 info.si_code = code; 1772 info.si_addr = addr; 1773 info.si_addr_lsb = lsb; 1774 return send_sig_info(info.si_signo, &info, t); 1775 } 1776 EXPORT_SYMBOL(send_sig_mceerr); 1777 1778 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1779 { 1780 struct kernel_siginfo info; 1781 1782 clear_siginfo(&info); 1783 info.si_signo = SIGSEGV; 1784 info.si_errno = 0; 1785 info.si_code = SEGV_BNDERR; 1786 info.si_addr = addr; 1787 info.si_lower = lower; 1788 info.si_upper = upper; 1789 return force_sig_info(&info); 1790 } 1791 1792 #ifdef SEGV_PKUERR 1793 int force_sig_pkuerr(void __user *addr, u32 pkey) 1794 { 1795 struct kernel_siginfo info; 1796 1797 clear_siginfo(&info); 1798 info.si_signo = SIGSEGV; 1799 info.si_errno = 0; 1800 info.si_code = SEGV_PKUERR; 1801 info.si_addr = addr; 1802 info.si_pkey = pkey; 1803 return force_sig_info(&info); 1804 } 1805 #endif 1806 1807 /* For the crazy architectures that include trap information in 1808 * the errno field, instead of an actual errno value. 1809 */ 1810 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1811 { 1812 struct kernel_siginfo info; 1813 1814 clear_siginfo(&info); 1815 info.si_signo = SIGTRAP; 1816 info.si_errno = errno; 1817 info.si_code = TRAP_HWBKPT; 1818 info.si_addr = addr; 1819 return force_sig_info(&info); 1820 } 1821 1822 int kill_pgrp(struct pid *pid, int sig, int priv) 1823 { 1824 int ret; 1825 1826 read_lock(&tasklist_lock); 1827 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1828 read_unlock(&tasklist_lock); 1829 1830 return ret; 1831 } 1832 EXPORT_SYMBOL(kill_pgrp); 1833 1834 int kill_pid(struct pid *pid, int sig, int priv) 1835 { 1836 return kill_pid_info(sig, __si_special(priv), pid); 1837 } 1838 EXPORT_SYMBOL(kill_pid); 1839 1840 /* 1841 * These functions support sending signals using preallocated sigqueue 1842 * structures. This is needed "because realtime applications cannot 1843 * afford to lose notifications of asynchronous events, like timer 1844 * expirations or I/O completions". In the case of POSIX Timers 1845 * we allocate the sigqueue structure from the timer_create. If this 1846 * allocation fails we are able to report the failure to the application 1847 * with an EAGAIN error. 1848 */ 1849 struct sigqueue *sigqueue_alloc(void) 1850 { 1851 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC); 1852 } 1853 1854 void sigqueue_free(struct sigqueue *q) 1855 { 1856 unsigned long flags; 1857 spinlock_t *lock = ¤t->sighand->siglock; 1858 1859 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1860 /* 1861 * We must hold ->siglock while testing q->list 1862 * to serialize with collect_signal() or with 1863 * __exit_signal()->flush_sigqueue(). 1864 */ 1865 spin_lock_irqsave(lock, flags); 1866 q->flags &= ~SIGQUEUE_PREALLOC; 1867 /* 1868 * If it is queued it will be freed when dequeued, 1869 * like the "regular" sigqueue. 1870 */ 1871 if (!list_empty(&q->list)) 1872 q = NULL; 1873 spin_unlock_irqrestore(lock, flags); 1874 1875 if (q) 1876 __sigqueue_free(q); 1877 } 1878 1879 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) 1880 { 1881 int sig = q->info.si_signo; 1882 struct sigpending *pending; 1883 struct task_struct *t; 1884 unsigned long flags; 1885 int ret, result; 1886 1887 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1888 1889 ret = -1; 1890 rcu_read_lock(); 1891 t = pid_task(pid, type); 1892 if (!t || !likely(lock_task_sighand(t, &flags))) 1893 goto ret; 1894 1895 ret = 1; /* the signal is ignored */ 1896 result = TRACE_SIGNAL_IGNORED; 1897 if (!prepare_signal(sig, t, false)) 1898 goto out; 1899 1900 ret = 0; 1901 if (unlikely(!list_empty(&q->list))) { 1902 /* 1903 * If an SI_TIMER entry is already queue just increment 1904 * the overrun count. 1905 */ 1906 BUG_ON(q->info.si_code != SI_TIMER); 1907 q->info.si_overrun++; 1908 result = TRACE_SIGNAL_ALREADY_PENDING; 1909 goto out; 1910 } 1911 q->info.si_overrun = 0; 1912 1913 signalfd_notify(t, sig); 1914 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1915 list_add_tail(&q->list, &pending->list); 1916 sigaddset(&pending->signal, sig); 1917 complete_signal(sig, t, type); 1918 result = TRACE_SIGNAL_DELIVERED; 1919 out: 1920 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result); 1921 unlock_task_sighand(t, &flags); 1922 ret: 1923 rcu_read_unlock(); 1924 return ret; 1925 } 1926 1927 static void do_notify_pidfd(struct task_struct *task) 1928 { 1929 struct pid *pid; 1930 1931 WARN_ON(task->exit_state == 0); 1932 pid = task_pid(task); 1933 wake_up_all(&pid->wait_pidfd); 1934 } 1935 1936 /* 1937 * Let a parent know about the death of a child. 1938 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1939 * 1940 * Returns true if our parent ignored us and so we've switched to 1941 * self-reaping. 1942 */ 1943 bool do_notify_parent(struct task_struct *tsk, int sig) 1944 { 1945 struct kernel_siginfo info; 1946 unsigned long flags; 1947 struct sighand_struct *psig; 1948 bool autoreap = false; 1949 u64 utime, stime; 1950 1951 BUG_ON(sig == -1); 1952 1953 /* do_notify_parent_cldstop should have been called instead. */ 1954 BUG_ON(task_is_stopped_or_traced(tsk)); 1955 1956 BUG_ON(!tsk->ptrace && 1957 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1958 1959 /* Wake up all pidfd waiters */ 1960 do_notify_pidfd(tsk); 1961 1962 if (sig != SIGCHLD) { 1963 /* 1964 * This is only possible if parent == real_parent. 1965 * Check if it has changed security domain. 1966 */ 1967 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) 1968 sig = SIGCHLD; 1969 } 1970 1971 clear_siginfo(&info); 1972 info.si_signo = sig; 1973 info.si_errno = 0; 1974 /* 1975 * We are under tasklist_lock here so our parent is tied to 1976 * us and cannot change. 1977 * 1978 * task_active_pid_ns will always return the same pid namespace 1979 * until a task passes through release_task. 1980 * 1981 * write_lock() currently calls preempt_disable() which is the 1982 * same as rcu_read_lock(), but according to Oleg, this is not 1983 * correct to rely on this 1984 */ 1985 rcu_read_lock(); 1986 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 1987 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 1988 task_uid(tsk)); 1989 rcu_read_unlock(); 1990 1991 task_cputime(tsk, &utime, &stime); 1992 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 1993 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 1994 1995 info.si_status = tsk->exit_code & 0x7f; 1996 if (tsk->exit_code & 0x80) 1997 info.si_code = CLD_DUMPED; 1998 else if (tsk->exit_code & 0x7f) 1999 info.si_code = CLD_KILLED; 2000 else { 2001 info.si_code = CLD_EXITED; 2002 info.si_status = tsk->exit_code >> 8; 2003 } 2004 2005 psig = tsk->parent->sighand; 2006 spin_lock_irqsave(&psig->siglock, flags); 2007 if (!tsk->ptrace && sig == SIGCHLD && 2008 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 2009 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 2010 /* 2011 * We are exiting and our parent doesn't care. POSIX.1 2012 * defines special semantics for setting SIGCHLD to SIG_IGN 2013 * or setting the SA_NOCLDWAIT flag: we should be reaped 2014 * automatically and not left for our parent's wait4 call. 2015 * Rather than having the parent do it as a magic kind of 2016 * signal handler, we just set this to tell do_exit that we 2017 * can be cleaned up without becoming a zombie. Note that 2018 * we still call __wake_up_parent in this case, because a 2019 * blocked sys_wait4 might now return -ECHILD. 2020 * 2021 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 2022 * is implementation-defined: we do (if you don't want 2023 * it, just use SIG_IGN instead). 2024 */ 2025 autoreap = true; 2026 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 2027 sig = 0; 2028 } 2029 /* 2030 * Send with __send_signal as si_pid and si_uid are in the 2031 * parent's namespaces. 2032 */ 2033 if (valid_signal(sig) && sig) 2034 __send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false); 2035 __wake_up_parent(tsk, tsk->parent); 2036 spin_unlock_irqrestore(&psig->siglock, flags); 2037 2038 return autoreap; 2039 } 2040 2041 /** 2042 * do_notify_parent_cldstop - notify parent of stopped/continued state change 2043 * @tsk: task reporting the state change 2044 * @for_ptracer: the notification is for ptracer 2045 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 2046 * 2047 * Notify @tsk's parent that the stopped/continued state has changed. If 2048 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 2049 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 2050 * 2051 * CONTEXT: 2052 * Must be called with tasklist_lock at least read locked. 2053 */ 2054 static void do_notify_parent_cldstop(struct task_struct *tsk, 2055 bool for_ptracer, int why) 2056 { 2057 struct kernel_siginfo info; 2058 unsigned long flags; 2059 struct task_struct *parent; 2060 struct sighand_struct *sighand; 2061 u64 utime, stime; 2062 2063 if (for_ptracer) { 2064 parent = tsk->parent; 2065 } else { 2066 tsk = tsk->group_leader; 2067 parent = tsk->real_parent; 2068 } 2069 2070 clear_siginfo(&info); 2071 info.si_signo = SIGCHLD; 2072 info.si_errno = 0; 2073 /* 2074 * see comment in do_notify_parent() about the following 4 lines 2075 */ 2076 rcu_read_lock(); 2077 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 2078 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 2079 rcu_read_unlock(); 2080 2081 task_cputime(tsk, &utime, &stime); 2082 info.si_utime = nsec_to_clock_t(utime); 2083 info.si_stime = nsec_to_clock_t(stime); 2084 2085 info.si_code = why; 2086 switch (why) { 2087 case CLD_CONTINUED: 2088 info.si_status = SIGCONT; 2089 break; 2090 case CLD_STOPPED: 2091 info.si_status = tsk->signal->group_exit_code & 0x7f; 2092 break; 2093 case CLD_TRAPPED: 2094 info.si_status = tsk->exit_code & 0x7f; 2095 break; 2096 default: 2097 BUG(); 2098 } 2099 2100 sighand = parent->sighand; 2101 spin_lock_irqsave(&sighand->siglock, flags); 2102 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 2103 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 2104 __group_send_sig_info(SIGCHLD, &info, parent); 2105 /* 2106 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 2107 */ 2108 __wake_up_parent(tsk, parent); 2109 spin_unlock_irqrestore(&sighand->siglock, flags); 2110 } 2111 2112 static inline bool may_ptrace_stop(void) 2113 { 2114 if (!likely(current->ptrace)) 2115 return false; 2116 /* 2117 * Are we in the middle of do_coredump? 2118 * If so and our tracer is also part of the coredump stopping 2119 * is a deadlock situation, and pointless because our tracer 2120 * is dead so don't allow us to stop. 2121 * If SIGKILL was already sent before the caller unlocked 2122 * ->siglock we must see ->core_state != NULL. Otherwise it 2123 * is safe to enter schedule(). 2124 * 2125 * This is almost outdated, a task with the pending SIGKILL can't 2126 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported 2127 * after SIGKILL was already dequeued. 2128 */ 2129 if (unlikely(current->mm->core_state) && 2130 unlikely(current->mm == current->parent->mm)) 2131 return false; 2132 2133 return true; 2134 } 2135 2136 /* 2137 * Return non-zero if there is a SIGKILL that should be waking us up. 2138 * Called with the siglock held. 2139 */ 2140 static bool sigkill_pending(struct task_struct *tsk) 2141 { 2142 return sigismember(&tsk->pending.signal, SIGKILL) || 2143 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 2144 } 2145 2146 /* 2147 * This must be called with current->sighand->siglock held. 2148 * 2149 * This should be the path for all ptrace stops. 2150 * We always set current->last_siginfo while stopped here. 2151 * That makes it a way to test a stopped process for 2152 * being ptrace-stopped vs being job-control-stopped. 2153 * 2154 * If we actually decide not to stop at all because the tracer 2155 * is gone, we keep current->exit_code unless clear_code. 2156 */ 2157 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info) 2158 __releases(¤t->sighand->siglock) 2159 __acquires(¤t->sighand->siglock) 2160 { 2161 bool gstop_done = false; 2162 2163 if (arch_ptrace_stop_needed(exit_code, info)) { 2164 /* 2165 * The arch code has something special to do before a 2166 * ptrace stop. This is allowed to block, e.g. for faults 2167 * on user stack pages. We can't keep the siglock while 2168 * calling arch_ptrace_stop, so we must release it now. 2169 * To preserve proper semantics, we must do this before 2170 * any signal bookkeeping like checking group_stop_count. 2171 * Meanwhile, a SIGKILL could come in before we retake the 2172 * siglock. That must prevent us from sleeping in TASK_TRACED. 2173 * So after regaining the lock, we must check for SIGKILL. 2174 */ 2175 spin_unlock_irq(¤t->sighand->siglock); 2176 arch_ptrace_stop(exit_code, info); 2177 spin_lock_irq(¤t->sighand->siglock); 2178 if (sigkill_pending(current)) 2179 return; 2180 } 2181 2182 set_special_state(TASK_TRACED); 2183 2184 /* 2185 * We're committing to trapping. TRACED should be visible before 2186 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2187 * Also, transition to TRACED and updates to ->jobctl should be 2188 * atomic with respect to siglock and should be done after the arch 2189 * hook as siglock is released and regrabbed across it. 2190 * 2191 * TRACER TRACEE 2192 * 2193 * ptrace_attach() 2194 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2195 * do_wait() 2196 * set_current_state() smp_wmb(); 2197 * ptrace_do_wait() 2198 * wait_task_stopped() 2199 * task_stopped_code() 2200 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2201 */ 2202 smp_wmb(); 2203 2204 current->last_siginfo = info; 2205 current->exit_code = exit_code; 2206 2207 /* 2208 * If @why is CLD_STOPPED, we're trapping to participate in a group 2209 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2210 * across siglock relocks since INTERRUPT was scheduled, PENDING 2211 * could be clear now. We act as if SIGCONT is received after 2212 * TASK_TRACED is entered - ignore it. 2213 */ 2214 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2215 gstop_done = task_participate_group_stop(current); 2216 2217 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2218 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2219 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2220 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2221 2222 /* entering a trap, clear TRAPPING */ 2223 task_clear_jobctl_trapping(current); 2224 2225 spin_unlock_irq(¤t->sighand->siglock); 2226 read_lock(&tasklist_lock); 2227 if (may_ptrace_stop()) { 2228 /* 2229 * Notify parents of the stop. 2230 * 2231 * While ptraced, there are two parents - the ptracer and 2232 * the real_parent of the group_leader. The ptracer should 2233 * know about every stop while the real parent is only 2234 * interested in the completion of group stop. The states 2235 * for the two don't interact with each other. Notify 2236 * separately unless they're gonna be duplicates. 2237 */ 2238 do_notify_parent_cldstop(current, true, why); 2239 if (gstop_done && ptrace_reparented(current)) 2240 do_notify_parent_cldstop(current, false, why); 2241 2242 /* 2243 * Don't want to allow preemption here, because 2244 * sys_ptrace() needs this task to be inactive. 2245 * 2246 * XXX: implement read_unlock_no_resched(). 2247 */ 2248 preempt_disable(); 2249 read_unlock(&tasklist_lock); 2250 cgroup_enter_frozen(); 2251 preempt_enable_no_resched(); 2252 freezable_schedule(); 2253 cgroup_leave_frozen(true); 2254 } else { 2255 /* 2256 * By the time we got the lock, our tracer went away. 2257 * Don't drop the lock yet, another tracer may come. 2258 * 2259 * If @gstop_done, the ptracer went away between group stop 2260 * completion and here. During detach, it would have set 2261 * JOBCTL_STOP_PENDING on us and we'll re-enter 2262 * TASK_STOPPED in do_signal_stop() on return, so notifying 2263 * the real parent of the group stop completion is enough. 2264 */ 2265 if (gstop_done) 2266 do_notify_parent_cldstop(current, false, why); 2267 2268 /* tasklist protects us from ptrace_freeze_traced() */ 2269 __set_current_state(TASK_RUNNING); 2270 if (clear_code) 2271 current->exit_code = 0; 2272 read_unlock(&tasklist_lock); 2273 } 2274 2275 /* 2276 * We are back. Now reacquire the siglock before touching 2277 * last_siginfo, so that we are sure to have synchronized with 2278 * any signal-sending on another CPU that wants to examine it. 2279 */ 2280 spin_lock_irq(¤t->sighand->siglock); 2281 current->last_siginfo = NULL; 2282 2283 /* LISTENING can be set only during STOP traps, clear it */ 2284 current->jobctl &= ~JOBCTL_LISTENING; 2285 2286 /* 2287 * Queued signals ignored us while we were stopped for tracing. 2288 * So check for any that we should take before resuming user mode. 2289 * This sets TIF_SIGPENDING, but never clears it. 2290 */ 2291 recalc_sigpending_tsk(current); 2292 } 2293 2294 static void ptrace_do_notify(int signr, int exit_code, int why) 2295 { 2296 kernel_siginfo_t info; 2297 2298 clear_siginfo(&info); 2299 info.si_signo = signr; 2300 info.si_code = exit_code; 2301 info.si_pid = task_pid_vnr(current); 2302 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2303 2304 /* Let the debugger run. */ 2305 ptrace_stop(exit_code, why, 1, &info); 2306 } 2307 2308 void ptrace_notify(int exit_code) 2309 { 2310 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2311 if (unlikely(current->task_works)) 2312 task_work_run(); 2313 2314 spin_lock_irq(¤t->sighand->siglock); 2315 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 2316 spin_unlock_irq(¤t->sighand->siglock); 2317 } 2318 2319 /** 2320 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2321 * @signr: signr causing group stop if initiating 2322 * 2323 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2324 * and participate in it. If already set, participate in the existing 2325 * group stop. If participated in a group stop (and thus slept), %true is 2326 * returned with siglock released. 2327 * 2328 * If ptraced, this function doesn't handle stop itself. Instead, 2329 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2330 * untouched. The caller must ensure that INTERRUPT trap handling takes 2331 * places afterwards. 2332 * 2333 * CONTEXT: 2334 * Must be called with @current->sighand->siglock held, which is released 2335 * on %true return. 2336 * 2337 * RETURNS: 2338 * %false if group stop is already cancelled or ptrace trap is scheduled. 2339 * %true if participated in group stop. 2340 */ 2341 static bool do_signal_stop(int signr) 2342 __releases(¤t->sighand->siglock) 2343 { 2344 struct signal_struct *sig = current->signal; 2345 2346 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2347 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2348 struct task_struct *t; 2349 2350 /* signr will be recorded in task->jobctl for retries */ 2351 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2352 2353 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2354 unlikely(signal_group_exit(sig))) 2355 return false; 2356 /* 2357 * There is no group stop already in progress. We must 2358 * initiate one now. 2359 * 2360 * While ptraced, a task may be resumed while group stop is 2361 * still in effect and then receive a stop signal and 2362 * initiate another group stop. This deviates from the 2363 * usual behavior as two consecutive stop signals can't 2364 * cause two group stops when !ptraced. That is why we 2365 * also check !task_is_stopped(t) below. 2366 * 2367 * The condition can be distinguished by testing whether 2368 * SIGNAL_STOP_STOPPED is already set. Don't generate 2369 * group_exit_code in such case. 2370 * 2371 * This is not necessary for SIGNAL_STOP_CONTINUED because 2372 * an intervening stop signal is required to cause two 2373 * continued events regardless of ptrace. 2374 */ 2375 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2376 sig->group_exit_code = signr; 2377 2378 sig->group_stop_count = 0; 2379 2380 if (task_set_jobctl_pending(current, signr | gstop)) 2381 sig->group_stop_count++; 2382 2383 t = current; 2384 while_each_thread(current, t) { 2385 /* 2386 * Setting state to TASK_STOPPED for a group 2387 * stop is always done with the siglock held, 2388 * so this check has no races. 2389 */ 2390 if (!task_is_stopped(t) && 2391 task_set_jobctl_pending(t, signr | gstop)) { 2392 sig->group_stop_count++; 2393 if (likely(!(t->ptrace & PT_SEIZED))) 2394 signal_wake_up(t, 0); 2395 else 2396 ptrace_trap_notify(t); 2397 } 2398 } 2399 } 2400 2401 if (likely(!current->ptrace)) { 2402 int notify = 0; 2403 2404 /* 2405 * If there are no other threads in the group, or if there 2406 * is a group stop in progress and we are the last to stop, 2407 * report to the parent. 2408 */ 2409 if (task_participate_group_stop(current)) 2410 notify = CLD_STOPPED; 2411 2412 set_special_state(TASK_STOPPED); 2413 spin_unlock_irq(¤t->sighand->siglock); 2414 2415 /* 2416 * Notify the parent of the group stop completion. Because 2417 * we're not holding either the siglock or tasklist_lock 2418 * here, ptracer may attach inbetween; however, this is for 2419 * group stop and should always be delivered to the real 2420 * parent of the group leader. The new ptracer will get 2421 * its notification when this task transitions into 2422 * TASK_TRACED. 2423 */ 2424 if (notify) { 2425 read_lock(&tasklist_lock); 2426 do_notify_parent_cldstop(current, false, notify); 2427 read_unlock(&tasklist_lock); 2428 } 2429 2430 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2431 cgroup_enter_frozen(); 2432 freezable_schedule(); 2433 return true; 2434 } else { 2435 /* 2436 * While ptraced, group stop is handled by STOP trap. 2437 * Schedule it and let the caller deal with it. 2438 */ 2439 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2440 return false; 2441 } 2442 } 2443 2444 /** 2445 * do_jobctl_trap - take care of ptrace jobctl traps 2446 * 2447 * When PT_SEIZED, it's used for both group stop and explicit 2448 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2449 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2450 * the stop signal; otherwise, %SIGTRAP. 2451 * 2452 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2453 * number as exit_code and no siginfo. 2454 * 2455 * CONTEXT: 2456 * Must be called with @current->sighand->siglock held, which may be 2457 * released and re-acquired before returning with intervening sleep. 2458 */ 2459 static void do_jobctl_trap(void) 2460 { 2461 struct signal_struct *signal = current->signal; 2462 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2463 2464 if (current->ptrace & PT_SEIZED) { 2465 if (!signal->group_stop_count && 2466 !(signal->flags & SIGNAL_STOP_STOPPED)) 2467 signr = SIGTRAP; 2468 WARN_ON_ONCE(!signr); 2469 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2470 CLD_STOPPED); 2471 } else { 2472 WARN_ON_ONCE(!signr); 2473 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2474 current->exit_code = 0; 2475 } 2476 } 2477 2478 /** 2479 * do_freezer_trap - handle the freezer jobctl trap 2480 * 2481 * Puts the task into frozen state, if only the task is not about to quit. 2482 * In this case it drops JOBCTL_TRAP_FREEZE. 2483 * 2484 * CONTEXT: 2485 * Must be called with @current->sighand->siglock held, 2486 * which is always released before returning. 2487 */ 2488 static void do_freezer_trap(void) 2489 __releases(¤t->sighand->siglock) 2490 { 2491 /* 2492 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, 2493 * let's make another loop to give it a chance to be handled. 2494 * In any case, we'll return back. 2495 */ 2496 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != 2497 JOBCTL_TRAP_FREEZE) { 2498 spin_unlock_irq(¤t->sighand->siglock); 2499 return; 2500 } 2501 2502 /* 2503 * Now we're sure that there is no pending fatal signal and no 2504 * pending traps. Clear TIF_SIGPENDING to not get out of schedule() 2505 * immediately (if there is a non-fatal signal pending), and 2506 * put the task into sleep. 2507 */ 2508 __set_current_state(TASK_INTERRUPTIBLE); 2509 clear_thread_flag(TIF_SIGPENDING); 2510 spin_unlock_irq(¤t->sighand->siglock); 2511 cgroup_enter_frozen(); 2512 freezable_schedule(); 2513 } 2514 2515 static int ptrace_signal(int signr, kernel_siginfo_t *info) 2516 { 2517 /* 2518 * We do not check sig_kernel_stop(signr) but set this marker 2519 * unconditionally because we do not know whether debugger will 2520 * change signr. This flag has no meaning unless we are going 2521 * to stop after return from ptrace_stop(). In this case it will 2522 * be checked in do_signal_stop(), we should only stop if it was 2523 * not cleared by SIGCONT while we were sleeping. See also the 2524 * comment in dequeue_signal(). 2525 */ 2526 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2527 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2528 2529 /* We're back. Did the debugger cancel the sig? */ 2530 signr = current->exit_code; 2531 if (signr == 0) 2532 return signr; 2533 2534 current->exit_code = 0; 2535 2536 /* 2537 * Update the siginfo structure if the signal has 2538 * changed. If the debugger wanted something 2539 * specific in the siginfo structure then it should 2540 * have updated *info via PTRACE_SETSIGINFO. 2541 */ 2542 if (signr != info->si_signo) { 2543 clear_siginfo(info); 2544 info->si_signo = signr; 2545 info->si_errno = 0; 2546 info->si_code = SI_USER; 2547 rcu_read_lock(); 2548 info->si_pid = task_pid_vnr(current->parent); 2549 info->si_uid = from_kuid_munged(current_user_ns(), 2550 task_uid(current->parent)); 2551 rcu_read_unlock(); 2552 } 2553 2554 /* If the (new) signal is now blocked, requeue it. */ 2555 if (sigismember(¤t->blocked, signr)) { 2556 send_signal(signr, info, current, PIDTYPE_PID); 2557 signr = 0; 2558 } 2559 2560 return signr; 2561 } 2562 2563 static void hide_si_addr_tag_bits(struct ksignal *ksig) 2564 { 2565 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) { 2566 case SIL_FAULT: 2567 case SIL_FAULT_MCEERR: 2568 case SIL_FAULT_BNDERR: 2569 case SIL_FAULT_PKUERR: 2570 case SIL_PERF_EVENT: 2571 ksig->info.si_addr = arch_untagged_si_addr( 2572 ksig->info.si_addr, ksig->sig, ksig->info.si_code); 2573 break; 2574 case SIL_KILL: 2575 case SIL_TIMER: 2576 case SIL_POLL: 2577 case SIL_CHLD: 2578 case SIL_RT: 2579 case SIL_SYS: 2580 break; 2581 } 2582 } 2583 2584 bool get_signal(struct ksignal *ksig) 2585 { 2586 struct sighand_struct *sighand = current->sighand; 2587 struct signal_struct *signal = current->signal; 2588 int signr; 2589 2590 if (unlikely(current->task_works)) 2591 task_work_run(); 2592 2593 /* 2594 * For non-generic architectures, check for TIF_NOTIFY_SIGNAL so 2595 * that the arch handlers don't all have to do it. If we get here 2596 * without TIF_SIGPENDING, just exit after running signal work. 2597 */ 2598 if (!IS_ENABLED(CONFIG_GENERIC_ENTRY)) { 2599 if (test_thread_flag(TIF_NOTIFY_SIGNAL)) 2600 tracehook_notify_signal(); 2601 if (!task_sigpending(current)) 2602 return false; 2603 } 2604 2605 if (unlikely(uprobe_deny_signal())) 2606 return false; 2607 2608 /* 2609 * Do this once, we can't return to user-mode if freezing() == T. 2610 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2611 * thus do not need another check after return. 2612 */ 2613 try_to_freeze(); 2614 2615 relock: 2616 spin_lock_irq(&sighand->siglock); 2617 2618 /* 2619 * Every stopped thread goes here after wakeup. Check to see if 2620 * we should notify the parent, prepare_signal(SIGCONT) encodes 2621 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2622 */ 2623 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2624 int why; 2625 2626 if (signal->flags & SIGNAL_CLD_CONTINUED) 2627 why = CLD_CONTINUED; 2628 else 2629 why = CLD_STOPPED; 2630 2631 signal->flags &= ~SIGNAL_CLD_MASK; 2632 2633 spin_unlock_irq(&sighand->siglock); 2634 2635 /* 2636 * Notify the parent that we're continuing. This event is 2637 * always per-process and doesn't make whole lot of sense 2638 * for ptracers, who shouldn't consume the state via 2639 * wait(2) either, but, for backward compatibility, notify 2640 * the ptracer of the group leader too unless it's gonna be 2641 * a duplicate. 2642 */ 2643 read_lock(&tasklist_lock); 2644 do_notify_parent_cldstop(current, false, why); 2645 2646 if (ptrace_reparented(current->group_leader)) 2647 do_notify_parent_cldstop(current->group_leader, 2648 true, why); 2649 read_unlock(&tasklist_lock); 2650 2651 goto relock; 2652 } 2653 2654 /* Has this task already been marked for death? */ 2655 if (signal_group_exit(signal)) { 2656 ksig->info.si_signo = signr = SIGKILL; 2657 sigdelset(¤t->pending.signal, SIGKILL); 2658 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, 2659 &sighand->action[SIGKILL - 1]); 2660 recalc_sigpending(); 2661 goto fatal; 2662 } 2663 2664 for (;;) { 2665 struct k_sigaction *ka; 2666 2667 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2668 do_signal_stop(0)) 2669 goto relock; 2670 2671 if (unlikely(current->jobctl & 2672 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { 2673 if (current->jobctl & JOBCTL_TRAP_MASK) { 2674 do_jobctl_trap(); 2675 spin_unlock_irq(&sighand->siglock); 2676 } else if (current->jobctl & JOBCTL_TRAP_FREEZE) 2677 do_freezer_trap(); 2678 2679 goto relock; 2680 } 2681 2682 /* 2683 * If the task is leaving the frozen state, let's update 2684 * cgroup counters and reset the frozen bit. 2685 */ 2686 if (unlikely(cgroup_task_frozen(current))) { 2687 spin_unlock_irq(&sighand->siglock); 2688 cgroup_leave_frozen(false); 2689 goto relock; 2690 } 2691 2692 /* 2693 * Signals generated by the execution of an instruction 2694 * need to be delivered before any other pending signals 2695 * so that the instruction pointer in the signal stack 2696 * frame points to the faulting instruction. 2697 */ 2698 signr = dequeue_synchronous_signal(&ksig->info); 2699 if (!signr) 2700 signr = dequeue_signal(current, ¤t->blocked, &ksig->info); 2701 2702 if (!signr) 2703 break; /* will return 0 */ 2704 2705 if (unlikely(current->ptrace) && signr != SIGKILL) { 2706 signr = ptrace_signal(signr, &ksig->info); 2707 if (!signr) 2708 continue; 2709 } 2710 2711 ka = &sighand->action[signr-1]; 2712 2713 /* Trace actually delivered signals. */ 2714 trace_signal_deliver(signr, &ksig->info, ka); 2715 2716 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2717 continue; 2718 if (ka->sa.sa_handler != SIG_DFL) { 2719 /* Run the handler. */ 2720 ksig->ka = *ka; 2721 2722 if (ka->sa.sa_flags & SA_ONESHOT) 2723 ka->sa.sa_handler = SIG_DFL; 2724 2725 break; /* will return non-zero "signr" value */ 2726 } 2727 2728 /* 2729 * Now we are doing the default action for this signal. 2730 */ 2731 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2732 continue; 2733 2734 /* 2735 * Global init gets no signals it doesn't want. 2736 * Container-init gets no signals it doesn't want from same 2737 * container. 2738 * 2739 * Note that if global/container-init sees a sig_kernel_only() 2740 * signal here, the signal must have been generated internally 2741 * or must have come from an ancestor namespace. In either 2742 * case, the signal cannot be dropped. 2743 */ 2744 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2745 !sig_kernel_only(signr)) 2746 continue; 2747 2748 if (sig_kernel_stop(signr)) { 2749 /* 2750 * The default action is to stop all threads in 2751 * the thread group. The job control signals 2752 * do nothing in an orphaned pgrp, but SIGSTOP 2753 * always works. Note that siglock needs to be 2754 * dropped during the call to is_orphaned_pgrp() 2755 * because of lock ordering with tasklist_lock. 2756 * This allows an intervening SIGCONT to be posted. 2757 * We need to check for that and bail out if necessary. 2758 */ 2759 if (signr != SIGSTOP) { 2760 spin_unlock_irq(&sighand->siglock); 2761 2762 /* signals can be posted during this window */ 2763 2764 if (is_current_pgrp_orphaned()) 2765 goto relock; 2766 2767 spin_lock_irq(&sighand->siglock); 2768 } 2769 2770 if (likely(do_signal_stop(ksig->info.si_signo))) { 2771 /* It released the siglock. */ 2772 goto relock; 2773 } 2774 2775 /* 2776 * We didn't actually stop, due to a race 2777 * with SIGCONT or something like that. 2778 */ 2779 continue; 2780 } 2781 2782 fatal: 2783 spin_unlock_irq(&sighand->siglock); 2784 if (unlikely(cgroup_task_frozen(current))) 2785 cgroup_leave_frozen(true); 2786 2787 /* 2788 * Anything else is fatal, maybe with a core dump. 2789 */ 2790 current->flags |= PF_SIGNALED; 2791 2792 if (sig_kernel_coredump(signr)) { 2793 if (print_fatal_signals) 2794 print_fatal_signal(ksig->info.si_signo); 2795 proc_coredump_connector(current); 2796 /* 2797 * If it was able to dump core, this kills all 2798 * other threads in the group and synchronizes with 2799 * their demise. If we lost the race with another 2800 * thread getting here, it set group_exit_code 2801 * first and our do_group_exit call below will use 2802 * that value and ignore the one we pass it. 2803 */ 2804 do_coredump(&ksig->info); 2805 } 2806 2807 /* 2808 * PF_IO_WORKER threads will catch and exit on fatal signals 2809 * themselves. They have cleanup that must be performed, so 2810 * we cannot call do_exit() on their behalf. 2811 */ 2812 if (current->flags & PF_IO_WORKER) 2813 goto out; 2814 2815 /* 2816 * Death signals, no core dump. 2817 */ 2818 do_group_exit(ksig->info.si_signo); 2819 /* NOTREACHED */ 2820 } 2821 spin_unlock_irq(&sighand->siglock); 2822 out: 2823 ksig->sig = signr; 2824 2825 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS)) 2826 hide_si_addr_tag_bits(ksig); 2827 2828 return ksig->sig > 0; 2829 } 2830 2831 /** 2832 * signal_delivered - 2833 * @ksig: kernel signal struct 2834 * @stepping: nonzero if debugger single-step or block-step in use 2835 * 2836 * This function should be called when a signal has successfully been 2837 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2838 * is always blocked, and the signal itself is blocked unless %SA_NODEFER 2839 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2840 */ 2841 static void signal_delivered(struct ksignal *ksig, int stepping) 2842 { 2843 sigset_t blocked; 2844 2845 /* A signal was successfully delivered, and the 2846 saved sigmask was stored on the signal frame, 2847 and will be restored by sigreturn. So we can 2848 simply clear the restore sigmask flag. */ 2849 clear_restore_sigmask(); 2850 2851 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2852 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2853 sigaddset(&blocked, ksig->sig); 2854 set_current_blocked(&blocked); 2855 tracehook_signal_handler(stepping); 2856 } 2857 2858 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2859 { 2860 if (failed) 2861 force_sigsegv(ksig->sig); 2862 else 2863 signal_delivered(ksig, stepping); 2864 } 2865 2866 /* 2867 * It could be that complete_signal() picked us to notify about the 2868 * group-wide signal. Other threads should be notified now to take 2869 * the shared signals in @which since we will not. 2870 */ 2871 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2872 { 2873 sigset_t retarget; 2874 struct task_struct *t; 2875 2876 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2877 if (sigisemptyset(&retarget)) 2878 return; 2879 2880 t = tsk; 2881 while_each_thread(tsk, t) { 2882 if (t->flags & PF_EXITING) 2883 continue; 2884 2885 if (!has_pending_signals(&retarget, &t->blocked)) 2886 continue; 2887 /* Remove the signals this thread can handle. */ 2888 sigandsets(&retarget, &retarget, &t->blocked); 2889 2890 if (!task_sigpending(t)) 2891 signal_wake_up(t, 0); 2892 2893 if (sigisemptyset(&retarget)) 2894 break; 2895 } 2896 } 2897 2898 void exit_signals(struct task_struct *tsk) 2899 { 2900 int group_stop = 0; 2901 sigset_t unblocked; 2902 2903 /* 2904 * @tsk is about to have PF_EXITING set - lock out users which 2905 * expect stable threadgroup. 2906 */ 2907 cgroup_threadgroup_change_begin(tsk); 2908 2909 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 2910 tsk->flags |= PF_EXITING; 2911 cgroup_threadgroup_change_end(tsk); 2912 return; 2913 } 2914 2915 spin_lock_irq(&tsk->sighand->siglock); 2916 /* 2917 * From now this task is not visible for group-wide signals, 2918 * see wants_signal(), do_signal_stop(). 2919 */ 2920 tsk->flags |= PF_EXITING; 2921 2922 cgroup_threadgroup_change_end(tsk); 2923 2924 if (!task_sigpending(tsk)) 2925 goto out; 2926 2927 unblocked = tsk->blocked; 2928 signotset(&unblocked); 2929 retarget_shared_pending(tsk, &unblocked); 2930 2931 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2932 task_participate_group_stop(tsk)) 2933 group_stop = CLD_STOPPED; 2934 out: 2935 spin_unlock_irq(&tsk->sighand->siglock); 2936 2937 /* 2938 * If group stop has completed, deliver the notification. This 2939 * should always go to the real parent of the group leader. 2940 */ 2941 if (unlikely(group_stop)) { 2942 read_lock(&tasklist_lock); 2943 do_notify_parent_cldstop(tsk, false, group_stop); 2944 read_unlock(&tasklist_lock); 2945 } 2946 } 2947 2948 /* 2949 * System call entry points. 2950 */ 2951 2952 /** 2953 * sys_restart_syscall - restart a system call 2954 */ 2955 SYSCALL_DEFINE0(restart_syscall) 2956 { 2957 struct restart_block *restart = ¤t->restart_block; 2958 return restart->fn(restart); 2959 } 2960 2961 long do_no_restart_syscall(struct restart_block *param) 2962 { 2963 return -EINTR; 2964 } 2965 2966 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 2967 { 2968 if (task_sigpending(tsk) && !thread_group_empty(tsk)) { 2969 sigset_t newblocked; 2970 /* A set of now blocked but previously unblocked signals. */ 2971 sigandnsets(&newblocked, newset, ¤t->blocked); 2972 retarget_shared_pending(tsk, &newblocked); 2973 } 2974 tsk->blocked = *newset; 2975 recalc_sigpending(); 2976 } 2977 2978 /** 2979 * set_current_blocked - change current->blocked mask 2980 * @newset: new mask 2981 * 2982 * It is wrong to change ->blocked directly, this helper should be used 2983 * to ensure the process can't miss a shared signal we are going to block. 2984 */ 2985 void set_current_blocked(sigset_t *newset) 2986 { 2987 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2988 __set_current_blocked(newset); 2989 } 2990 2991 void __set_current_blocked(const sigset_t *newset) 2992 { 2993 struct task_struct *tsk = current; 2994 2995 /* 2996 * In case the signal mask hasn't changed, there is nothing we need 2997 * to do. The current->blocked shouldn't be modified by other task. 2998 */ 2999 if (sigequalsets(&tsk->blocked, newset)) 3000 return; 3001 3002 spin_lock_irq(&tsk->sighand->siglock); 3003 __set_task_blocked(tsk, newset); 3004 spin_unlock_irq(&tsk->sighand->siglock); 3005 } 3006 3007 /* 3008 * This is also useful for kernel threads that want to temporarily 3009 * (or permanently) block certain signals. 3010 * 3011 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 3012 * interface happily blocks "unblockable" signals like SIGKILL 3013 * and friends. 3014 */ 3015 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 3016 { 3017 struct task_struct *tsk = current; 3018 sigset_t newset; 3019 3020 /* Lockless, only current can change ->blocked, never from irq */ 3021 if (oldset) 3022 *oldset = tsk->blocked; 3023 3024 switch (how) { 3025 case SIG_BLOCK: 3026 sigorsets(&newset, &tsk->blocked, set); 3027 break; 3028 case SIG_UNBLOCK: 3029 sigandnsets(&newset, &tsk->blocked, set); 3030 break; 3031 case SIG_SETMASK: 3032 newset = *set; 3033 break; 3034 default: 3035 return -EINVAL; 3036 } 3037 3038 __set_current_blocked(&newset); 3039 return 0; 3040 } 3041 EXPORT_SYMBOL(sigprocmask); 3042 3043 /* 3044 * The api helps set app-provided sigmasks. 3045 * 3046 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 3047 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 3048 * 3049 * Note that it does set_restore_sigmask() in advance, so it must be always 3050 * paired with restore_saved_sigmask_unless() before return from syscall. 3051 */ 3052 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) 3053 { 3054 sigset_t kmask; 3055 3056 if (!umask) 3057 return 0; 3058 if (sigsetsize != sizeof(sigset_t)) 3059 return -EINVAL; 3060 if (copy_from_user(&kmask, umask, sizeof(sigset_t))) 3061 return -EFAULT; 3062 3063 set_restore_sigmask(); 3064 current->saved_sigmask = current->blocked; 3065 set_current_blocked(&kmask); 3066 3067 return 0; 3068 } 3069 3070 #ifdef CONFIG_COMPAT 3071 int set_compat_user_sigmask(const compat_sigset_t __user *umask, 3072 size_t sigsetsize) 3073 { 3074 sigset_t kmask; 3075 3076 if (!umask) 3077 return 0; 3078 if (sigsetsize != sizeof(compat_sigset_t)) 3079 return -EINVAL; 3080 if (get_compat_sigset(&kmask, umask)) 3081 return -EFAULT; 3082 3083 set_restore_sigmask(); 3084 current->saved_sigmask = current->blocked; 3085 set_current_blocked(&kmask); 3086 3087 return 0; 3088 } 3089 #endif 3090 3091 /** 3092 * sys_rt_sigprocmask - change the list of currently blocked signals 3093 * @how: whether to add, remove, or set signals 3094 * @nset: stores pending signals 3095 * @oset: previous value of signal mask if non-null 3096 * @sigsetsize: size of sigset_t type 3097 */ 3098 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 3099 sigset_t __user *, oset, size_t, sigsetsize) 3100 { 3101 sigset_t old_set, new_set; 3102 int error; 3103 3104 /* XXX: Don't preclude handling different sized sigset_t's. */ 3105 if (sigsetsize != sizeof(sigset_t)) 3106 return -EINVAL; 3107 3108 old_set = current->blocked; 3109 3110 if (nset) { 3111 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 3112 return -EFAULT; 3113 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3114 3115 error = sigprocmask(how, &new_set, NULL); 3116 if (error) 3117 return error; 3118 } 3119 3120 if (oset) { 3121 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 3122 return -EFAULT; 3123 } 3124 3125 return 0; 3126 } 3127 3128 #ifdef CONFIG_COMPAT 3129 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 3130 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 3131 { 3132 sigset_t old_set = current->blocked; 3133 3134 /* XXX: Don't preclude handling different sized sigset_t's. */ 3135 if (sigsetsize != sizeof(sigset_t)) 3136 return -EINVAL; 3137 3138 if (nset) { 3139 sigset_t new_set; 3140 int error; 3141 if (get_compat_sigset(&new_set, nset)) 3142 return -EFAULT; 3143 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3144 3145 error = sigprocmask(how, &new_set, NULL); 3146 if (error) 3147 return error; 3148 } 3149 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 3150 } 3151 #endif 3152 3153 static void do_sigpending(sigset_t *set) 3154 { 3155 spin_lock_irq(¤t->sighand->siglock); 3156 sigorsets(set, ¤t->pending.signal, 3157 ¤t->signal->shared_pending.signal); 3158 spin_unlock_irq(¤t->sighand->siglock); 3159 3160 /* Outside the lock because only this thread touches it. */ 3161 sigandsets(set, ¤t->blocked, set); 3162 } 3163 3164 /** 3165 * sys_rt_sigpending - examine a pending signal that has been raised 3166 * while blocked 3167 * @uset: stores pending signals 3168 * @sigsetsize: size of sigset_t type or larger 3169 */ 3170 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 3171 { 3172 sigset_t set; 3173 3174 if (sigsetsize > sizeof(*uset)) 3175 return -EINVAL; 3176 3177 do_sigpending(&set); 3178 3179 if (copy_to_user(uset, &set, sigsetsize)) 3180 return -EFAULT; 3181 3182 return 0; 3183 } 3184 3185 #ifdef CONFIG_COMPAT 3186 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 3187 compat_size_t, sigsetsize) 3188 { 3189 sigset_t set; 3190 3191 if (sigsetsize > sizeof(*uset)) 3192 return -EINVAL; 3193 3194 do_sigpending(&set); 3195 3196 return put_compat_sigset(uset, &set, sigsetsize); 3197 } 3198 #endif 3199 3200 static const struct { 3201 unsigned char limit, layout; 3202 } sig_sicodes[] = { 3203 [SIGILL] = { NSIGILL, SIL_FAULT }, 3204 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 3205 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 3206 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 3207 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 3208 #if defined(SIGEMT) 3209 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 3210 #endif 3211 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 3212 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 3213 [SIGSYS] = { NSIGSYS, SIL_SYS }, 3214 }; 3215 3216 static bool known_siginfo_layout(unsigned sig, int si_code) 3217 { 3218 if (si_code == SI_KERNEL) 3219 return true; 3220 else if ((si_code > SI_USER)) { 3221 if (sig_specific_sicodes(sig)) { 3222 if (si_code <= sig_sicodes[sig].limit) 3223 return true; 3224 } 3225 else if (si_code <= NSIGPOLL) 3226 return true; 3227 } 3228 else if (si_code >= SI_DETHREAD) 3229 return true; 3230 else if (si_code == SI_ASYNCNL) 3231 return true; 3232 return false; 3233 } 3234 3235 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3236 { 3237 enum siginfo_layout layout = SIL_KILL; 3238 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3239 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3240 (si_code <= sig_sicodes[sig].limit)) { 3241 layout = sig_sicodes[sig].layout; 3242 /* Handle the exceptions */ 3243 if ((sig == SIGBUS) && 3244 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3245 layout = SIL_FAULT_MCEERR; 3246 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3247 layout = SIL_FAULT_BNDERR; 3248 #ifdef SEGV_PKUERR 3249 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3250 layout = SIL_FAULT_PKUERR; 3251 #endif 3252 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF)) 3253 layout = SIL_PERF_EVENT; 3254 } 3255 else if (si_code <= NSIGPOLL) 3256 layout = SIL_POLL; 3257 } else { 3258 if (si_code == SI_TIMER) 3259 layout = SIL_TIMER; 3260 else if (si_code == SI_SIGIO) 3261 layout = SIL_POLL; 3262 else if (si_code < 0) 3263 layout = SIL_RT; 3264 } 3265 return layout; 3266 } 3267 3268 static inline char __user *si_expansion(const siginfo_t __user *info) 3269 { 3270 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3271 } 3272 3273 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3274 { 3275 char __user *expansion = si_expansion(to); 3276 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3277 return -EFAULT; 3278 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3279 return -EFAULT; 3280 return 0; 3281 } 3282 3283 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3284 const siginfo_t __user *from) 3285 { 3286 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3287 char __user *expansion = si_expansion(from); 3288 char buf[SI_EXPANSION_SIZE]; 3289 int i; 3290 /* 3291 * An unknown si_code might need more than 3292 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3293 * extra bytes are 0. This guarantees copy_siginfo_to_user 3294 * will return this data to userspace exactly. 3295 */ 3296 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3297 return -EFAULT; 3298 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3299 if (buf[i] != 0) 3300 return -E2BIG; 3301 } 3302 } 3303 return 0; 3304 } 3305 3306 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3307 const siginfo_t __user *from) 3308 { 3309 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3310 return -EFAULT; 3311 to->si_signo = signo; 3312 return post_copy_siginfo_from_user(to, from); 3313 } 3314 3315 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3316 { 3317 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3318 return -EFAULT; 3319 return post_copy_siginfo_from_user(to, from); 3320 } 3321 3322 #ifdef CONFIG_COMPAT 3323 /** 3324 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo 3325 * @to: compat siginfo destination 3326 * @from: kernel siginfo source 3327 * 3328 * Note: This function does not work properly for the SIGCHLD on x32, but 3329 * fortunately it doesn't have to. The only valid callers for this function are 3330 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. 3331 * The latter does not care because SIGCHLD will never cause a coredump. 3332 */ 3333 void copy_siginfo_to_external32(struct compat_siginfo *to, 3334 const struct kernel_siginfo *from) 3335 { 3336 memset(to, 0, sizeof(*to)); 3337 3338 to->si_signo = from->si_signo; 3339 to->si_errno = from->si_errno; 3340 to->si_code = from->si_code; 3341 switch(siginfo_layout(from->si_signo, from->si_code)) { 3342 case SIL_KILL: 3343 to->si_pid = from->si_pid; 3344 to->si_uid = from->si_uid; 3345 break; 3346 case SIL_TIMER: 3347 to->si_tid = from->si_tid; 3348 to->si_overrun = from->si_overrun; 3349 to->si_int = from->si_int; 3350 break; 3351 case SIL_POLL: 3352 to->si_band = from->si_band; 3353 to->si_fd = from->si_fd; 3354 break; 3355 case SIL_FAULT: 3356 to->si_addr = ptr_to_compat(from->si_addr); 3357 #ifdef __ARCH_SI_TRAPNO 3358 to->si_trapno = from->si_trapno; 3359 #endif 3360 break; 3361 case SIL_FAULT_MCEERR: 3362 to->si_addr = ptr_to_compat(from->si_addr); 3363 #ifdef __ARCH_SI_TRAPNO 3364 to->si_trapno = from->si_trapno; 3365 #endif 3366 to->si_addr_lsb = from->si_addr_lsb; 3367 break; 3368 case SIL_FAULT_BNDERR: 3369 to->si_addr = ptr_to_compat(from->si_addr); 3370 #ifdef __ARCH_SI_TRAPNO 3371 to->si_trapno = from->si_trapno; 3372 #endif 3373 to->si_lower = ptr_to_compat(from->si_lower); 3374 to->si_upper = ptr_to_compat(from->si_upper); 3375 break; 3376 case SIL_FAULT_PKUERR: 3377 to->si_addr = ptr_to_compat(from->si_addr); 3378 #ifdef __ARCH_SI_TRAPNO 3379 to->si_trapno = from->si_trapno; 3380 #endif 3381 to->si_pkey = from->si_pkey; 3382 break; 3383 case SIL_PERF_EVENT: 3384 to->si_addr = ptr_to_compat(from->si_addr); 3385 to->si_perf = from->si_perf; 3386 break; 3387 case SIL_CHLD: 3388 to->si_pid = from->si_pid; 3389 to->si_uid = from->si_uid; 3390 to->si_status = from->si_status; 3391 to->si_utime = from->si_utime; 3392 to->si_stime = from->si_stime; 3393 break; 3394 case SIL_RT: 3395 to->si_pid = from->si_pid; 3396 to->si_uid = from->si_uid; 3397 to->si_int = from->si_int; 3398 break; 3399 case SIL_SYS: 3400 to->si_call_addr = ptr_to_compat(from->si_call_addr); 3401 to->si_syscall = from->si_syscall; 3402 to->si_arch = from->si_arch; 3403 break; 3404 } 3405 } 3406 3407 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3408 const struct kernel_siginfo *from) 3409 { 3410 struct compat_siginfo new; 3411 3412 copy_siginfo_to_external32(&new, from); 3413 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3414 return -EFAULT; 3415 return 0; 3416 } 3417 3418 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3419 const struct compat_siginfo *from) 3420 { 3421 clear_siginfo(to); 3422 to->si_signo = from->si_signo; 3423 to->si_errno = from->si_errno; 3424 to->si_code = from->si_code; 3425 switch(siginfo_layout(from->si_signo, from->si_code)) { 3426 case SIL_KILL: 3427 to->si_pid = from->si_pid; 3428 to->si_uid = from->si_uid; 3429 break; 3430 case SIL_TIMER: 3431 to->si_tid = from->si_tid; 3432 to->si_overrun = from->si_overrun; 3433 to->si_int = from->si_int; 3434 break; 3435 case SIL_POLL: 3436 to->si_band = from->si_band; 3437 to->si_fd = from->si_fd; 3438 break; 3439 case SIL_FAULT: 3440 to->si_addr = compat_ptr(from->si_addr); 3441 #ifdef __ARCH_SI_TRAPNO 3442 to->si_trapno = from->si_trapno; 3443 #endif 3444 break; 3445 case SIL_FAULT_MCEERR: 3446 to->si_addr = compat_ptr(from->si_addr); 3447 #ifdef __ARCH_SI_TRAPNO 3448 to->si_trapno = from->si_trapno; 3449 #endif 3450 to->si_addr_lsb = from->si_addr_lsb; 3451 break; 3452 case SIL_FAULT_BNDERR: 3453 to->si_addr = compat_ptr(from->si_addr); 3454 #ifdef __ARCH_SI_TRAPNO 3455 to->si_trapno = from->si_trapno; 3456 #endif 3457 to->si_lower = compat_ptr(from->si_lower); 3458 to->si_upper = compat_ptr(from->si_upper); 3459 break; 3460 case SIL_FAULT_PKUERR: 3461 to->si_addr = compat_ptr(from->si_addr); 3462 #ifdef __ARCH_SI_TRAPNO 3463 to->si_trapno = from->si_trapno; 3464 #endif 3465 to->si_pkey = from->si_pkey; 3466 break; 3467 case SIL_PERF_EVENT: 3468 to->si_addr = compat_ptr(from->si_addr); 3469 to->si_perf = from->si_perf; 3470 break; 3471 case SIL_CHLD: 3472 to->si_pid = from->si_pid; 3473 to->si_uid = from->si_uid; 3474 to->si_status = from->si_status; 3475 #ifdef CONFIG_X86_X32_ABI 3476 if (in_x32_syscall()) { 3477 to->si_utime = from->_sifields._sigchld_x32._utime; 3478 to->si_stime = from->_sifields._sigchld_x32._stime; 3479 } else 3480 #endif 3481 { 3482 to->si_utime = from->si_utime; 3483 to->si_stime = from->si_stime; 3484 } 3485 break; 3486 case SIL_RT: 3487 to->si_pid = from->si_pid; 3488 to->si_uid = from->si_uid; 3489 to->si_int = from->si_int; 3490 break; 3491 case SIL_SYS: 3492 to->si_call_addr = compat_ptr(from->si_call_addr); 3493 to->si_syscall = from->si_syscall; 3494 to->si_arch = from->si_arch; 3495 break; 3496 } 3497 return 0; 3498 } 3499 3500 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3501 const struct compat_siginfo __user *ufrom) 3502 { 3503 struct compat_siginfo from; 3504 3505 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3506 return -EFAULT; 3507 3508 from.si_signo = signo; 3509 return post_copy_siginfo_from_user32(to, &from); 3510 } 3511 3512 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3513 const struct compat_siginfo __user *ufrom) 3514 { 3515 struct compat_siginfo from; 3516 3517 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3518 return -EFAULT; 3519 3520 return post_copy_siginfo_from_user32(to, &from); 3521 } 3522 #endif /* CONFIG_COMPAT */ 3523 3524 /** 3525 * do_sigtimedwait - wait for queued signals specified in @which 3526 * @which: queued signals to wait for 3527 * @info: if non-null, the signal's siginfo is returned here 3528 * @ts: upper bound on process time suspension 3529 */ 3530 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3531 const struct timespec64 *ts) 3532 { 3533 ktime_t *to = NULL, timeout = KTIME_MAX; 3534 struct task_struct *tsk = current; 3535 sigset_t mask = *which; 3536 int sig, ret = 0; 3537 3538 if (ts) { 3539 if (!timespec64_valid(ts)) 3540 return -EINVAL; 3541 timeout = timespec64_to_ktime(*ts); 3542 to = &timeout; 3543 } 3544 3545 /* 3546 * Invert the set of allowed signals to get those we want to block. 3547 */ 3548 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3549 signotset(&mask); 3550 3551 spin_lock_irq(&tsk->sighand->siglock); 3552 sig = dequeue_signal(tsk, &mask, info); 3553 if (!sig && timeout) { 3554 /* 3555 * None ready, temporarily unblock those we're interested 3556 * while we are sleeping in so that we'll be awakened when 3557 * they arrive. Unblocking is always fine, we can avoid 3558 * set_current_blocked(). 3559 */ 3560 tsk->real_blocked = tsk->blocked; 3561 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3562 recalc_sigpending(); 3563 spin_unlock_irq(&tsk->sighand->siglock); 3564 3565 __set_current_state(TASK_INTERRUPTIBLE); 3566 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3567 HRTIMER_MODE_REL); 3568 spin_lock_irq(&tsk->sighand->siglock); 3569 __set_task_blocked(tsk, &tsk->real_blocked); 3570 sigemptyset(&tsk->real_blocked); 3571 sig = dequeue_signal(tsk, &mask, info); 3572 } 3573 spin_unlock_irq(&tsk->sighand->siglock); 3574 3575 if (sig) 3576 return sig; 3577 return ret ? -EINTR : -EAGAIN; 3578 } 3579 3580 /** 3581 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3582 * in @uthese 3583 * @uthese: queued signals to wait for 3584 * @uinfo: if non-null, the signal's siginfo is returned here 3585 * @uts: upper bound on process time suspension 3586 * @sigsetsize: size of sigset_t type 3587 */ 3588 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3589 siginfo_t __user *, uinfo, 3590 const struct __kernel_timespec __user *, uts, 3591 size_t, sigsetsize) 3592 { 3593 sigset_t these; 3594 struct timespec64 ts; 3595 kernel_siginfo_t info; 3596 int ret; 3597 3598 /* XXX: Don't preclude handling different sized sigset_t's. */ 3599 if (sigsetsize != sizeof(sigset_t)) 3600 return -EINVAL; 3601 3602 if (copy_from_user(&these, uthese, sizeof(these))) 3603 return -EFAULT; 3604 3605 if (uts) { 3606 if (get_timespec64(&ts, uts)) 3607 return -EFAULT; 3608 } 3609 3610 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3611 3612 if (ret > 0 && uinfo) { 3613 if (copy_siginfo_to_user(uinfo, &info)) 3614 ret = -EFAULT; 3615 } 3616 3617 return ret; 3618 } 3619 3620 #ifdef CONFIG_COMPAT_32BIT_TIME 3621 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3622 siginfo_t __user *, uinfo, 3623 const struct old_timespec32 __user *, uts, 3624 size_t, sigsetsize) 3625 { 3626 sigset_t these; 3627 struct timespec64 ts; 3628 kernel_siginfo_t info; 3629 int ret; 3630 3631 if (sigsetsize != sizeof(sigset_t)) 3632 return -EINVAL; 3633 3634 if (copy_from_user(&these, uthese, sizeof(these))) 3635 return -EFAULT; 3636 3637 if (uts) { 3638 if (get_old_timespec32(&ts, uts)) 3639 return -EFAULT; 3640 } 3641 3642 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3643 3644 if (ret > 0 && uinfo) { 3645 if (copy_siginfo_to_user(uinfo, &info)) 3646 ret = -EFAULT; 3647 } 3648 3649 return ret; 3650 } 3651 #endif 3652 3653 #ifdef CONFIG_COMPAT 3654 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3655 struct compat_siginfo __user *, uinfo, 3656 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3657 { 3658 sigset_t s; 3659 struct timespec64 t; 3660 kernel_siginfo_t info; 3661 long ret; 3662 3663 if (sigsetsize != sizeof(sigset_t)) 3664 return -EINVAL; 3665 3666 if (get_compat_sigset(&s, uthese)) 3667 return -EFAULT; 3668 3669 if (uts) { 3670 if (get_timespec64(&t, uts)) 3671 return -EFAULT; 3672 } 3673 3674 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3675 3676 if (ret > 0 && uinfo) { 3677 if (copy_siginfo_to_user32(uinfo, &info)) 3678 ret = -EFAULT; 3679 } 3680 3681 return ret; 3682 } 3683 3684 #ifdef CONFIG_COMPAT_32BIT_TIME 3685 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3686 struct compat_siginfo __user *, uinfo, 3687 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3688 { 3689 sigset_t s; 3690 struct timespec64 t; 3691 kernel_siginfo_t info; 3692 long ret; 3693 3694 if (sigsetsize != sizeof(sigset_t)) 3695 return -EINVAL; 3696 3697 if (get_compat_sigset(&s, uthese)) 3698 return -EFAULT; 3699 3700 if (uts) { 3701 if (get_old_timespec32(&t, uts)) 3702 return -EFAULT; 3703 } 3704 3705 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3706 3707 if (ret > 0 && uinfo) { 3708 if (copy_siginfo_to_user32(uinfo, &info)) 3709 ret = -EFAULT; 3710 } 3711 3712 return ret; 3713 } 3714 #endif 3715 #endif 3716 3717 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info) 3718 { 3719 clear_siginfo(info); 3720 info->si_signo = sig; 3721 info->si_errno = 0; 3722 info->si_code = SI_USER; 3723 info->si_pid = task_tgid_vnr(current); 3724 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3725 } 3726 3727 /** 3728 * sys_kill - send a signal to a process 3729 * @pid: the PID of the process 3730 * @sig: signal to be sent 3731 */ 3732 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3733 { 3734 struct kernel_siginfo info; 3735 3736 prepare_kill_siginfo(sig, &info); 3737 3738 return kill_something_info(sig, &info, pid); 3739 } 3740 3741 /* 3742 * Verify that the signaler and signalee either are in the same pid namespace 3743 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3744 * namespace. 3745 */ 3746 static bool access_pidfd_pidns(struct pid *pid) 3747 { 3748 struct pid_namespace *active = task_active_pid_ns(current); 3749 struct pid_namespace *p = ns_of_pid(pid); 3750 3751 for (;;) { 3752 if (!p) 3753 return false; 3754 if (p == active) 3755 break; 3756 p = p->parent; 3757 } 3758 3759 return true; 3760 } 3761 3762 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, 3763 siginfo_t __user *info) 3764 { 3765 #ifdef CONFIG_COMPAT 3766 /* 3767 * Avoid hooking up compat syscalls and instead handle necessary 3768 * conversions here. Note, this is a stop-gap measure and should not be 3769 * considered a generic solution. 3770 */ 3771 if (in_compat_syscall()) 3772 return copy_siginfo_from_user32( 3773 kinfo, (struct compat_siginfo __user *)info); 3774 #endif 3775 return copy_siginfo_from_user(kinfo, info); 3776 } 3777 3778 static struct pid *pidfd_to_pid(const struct file *file) 3779 { 3780 struct pid *pid; 3781 3782 pid = pidfd_pid(file); 3783 if (!IS_ERR(pid)) 3784 return pid; 3785 3786 return tgid_pidfd_to_pid(file); 3787 } 3788 3789 /** 3790 * sys_pidfd_send_signal - Signal a process through a pidfd 3791 * @pidfd: file descriptor of the process 3792 * @sig: signal to send 3793 * @info: signal info 3794 * @flags: future flags 3795 * 3796 * The syscall currently only signals via PIDTYPE_PID which covers 3797 * kill(<positive-pid>, <signal>. It does not signal threads or process 3798 * groups. 3799 * In order to extend the syscall to threads and process groups the @flags 3800 * argument should be used. In essence, the @flags argument will determine 3801 * what is signaled and not the file descriptor itself. Put in other words, 3802 * grouping is a property of the flags argument not a property of the file 3803 * descriptor. 3804 * 3805 * Return: 0 on success, negative errno on failure 3806 */ 3807 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 3808 siginfo_t __user *, info, unsigned int, flags) 3809 { 3810 int ret; 3811 struct fd f; 3812 struct pid *pid; 3813 kernel_siginfo_t kinfo; 3814 3815 /* Enforce flags be set to 0 until we add an extension. */ 3816 if (flags) 3817 return -EINVAL; 3818 3819 f = fdget(pidfd); 3820 if (!f.file) 3821 return -EBADF; 3822 3823 /* Is this a pidfd? */ 3824 pid = pidfd_to_pid(f.file); 3825 if (IS_ERR(pid)) { 3826 ret = PTR_ERR(pid); 3827 goto err; 3828 } 3829 3830 ret = -EINVAL; 3831 if (!access_pidfd_pidns(pid)) 3832 goto err; 3833 3834 if (info) { 3835 ret = copy_siginfo_from_user_any(&kinfo, info); 3836 if (unlikely(ret)) 3837 goto err; 3838 3839 ret = -EINVAL; 3840 if (unlikely(sig != kinfo.si_signo)) 3841 goto err; 3842 3843 /* Only allow sending arbitrary signals to yourself. */ 3844 ret = -EPERM; 3845 if ((task_pid(current) != pid) && 3846 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) 3847 goto err; 3848 } else { 3849 prepare_kill_siginfo(sig, &kinfo); 3850 } 3851 3852 ret = kill_pid_info(sig, &kinfo, pid); 3853 3854 err: 3855 fdput(f); 3856 return ret; 3857 } 3858 3859 static int 3860 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 3861 { 3862 struct task_struct *p; 3863 int error = -ESRCH; 3864 3865 rcu_read_lock(); 3866 p = find_task_by_vpid(pid); 3867 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 3868 error = check_kill_permission(sig, info, p); 3869 /* 3870 * The null signal is a permissions and process existence 3871 * probe. No signal is actually delivered. 3872 */ 3873 if (!error && sig) { 3874 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 3875 /* 3876 * If lock_task_sighand() failed we pretend the task 3877 * dies after receiving the signal. The window is tiny, 3878 * and the signal is private anyway. 3879 */ 3880 if (unlikely(error == -ESRCH)) 3881 error = 0; 3882 } 3883 } 3884 rcu_read_unlock(); 3885 3886 return error; 3887 } 3888 3889 static int do_tkill(pid_t tgid, pid_t pid, int sig) 3890 { 3891 struct kernel_siginfo info; 3892 3893 clear_siginfo(&info); 3894 info.si_signo = sig; 3895 info.si_errno = 0; 3896 info.si_code = SI_TKILL; 3897 info.si_pid = task_tgid_vnr(current); 3898 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3899 3900 return do_send_specific(tgid, pid, sig, &info); 3901 } 3902 3903 /** 3904 * sys_tgkill - send signal to one specific thread 3905 * @tgid: the thread group ID of the thread 3906 * @pid: the PID of the thread 3907 * @sig: signal to be sent 3908 * 3909 * This syscall also checks the @tgid and returns -ESRCH even if the PID 3910 * exists but it's not belonging to the target process anymore. This 3911 * method solves the problem of threads exiting and PIDs getting reused. 3912 */ 3913 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 3914 { 3915 /* This is only valid for single tasks */ 3916 if (pid <= 0 || tgid <= 0) 3917 return -EINVAL; 3918 3919 return do_tkill(tgid, pid, sig); 3920 } 3921 3922 /** 3923 * sys_tkill - send signal to one specific task 3924 * @pid: the PID of the task 3925 * @sig: signal to be sent 3926 * 3927 * Send a signal to only one task, even if it's a CLONE_THREAD task. 3928 */ 3929 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 3930 { 3931 /* This is only valid for single tasks */ 3932 if (pid <= 0) 3933 return -EINVAL; 3934 3935 return do_tkill(0, pid, sig); 3936 } 3937 3938 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 3939 { 3940 /* Not even root can pretend to send signals from the kernel. 3941 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3942 */ 3943 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3944 (task_pid_vnr(current) != pid)) 3945 return -EPERM; 3946 3947 /* POSIX.1b doesn't mention process groups. */ 3948 return kill_proc_info(sig, info, pid); 3949 } 3950 3951 /** 3952 * sys_rt_sigqueueinfo - send signal information to a signal 3953 * @pid: the PID of the thread 3954 * @sig: signal to be sent 3955 * @uinfo: signal info to be sent 3956 */ 3957 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 3958 siginfo_t __user *, uinfo) 3959 { 3960 kernel_siginfo_t info; 3961 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 3962 if (unlikely(ret)) 3963 return ret; 3964 return do_rt_sigqueueinfo(pid, sig, &info); 3965 } 3966 3967 #ifdef CONFIG_COMPAT 3968 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 3969 compat_pid_t, pid, 3970 int, sig, 3971 struct compat_siginfo __user *, uinfo) 3972 { 3973 kernel_siginfo_t info; 3974 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 3975 if (unlikely(ret)) 3976 return ret; 3977 return do_rt_sigqueueinfo(pid, sig, &info); 3978 } 3979 #endif 3980 3981 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 3982 { 3983 /* This is only valid for single tasks */ 3984 if (pid <= 0 || tgid <= 0) 3985 return -EINVAL; 3986 3987 /* Not even root can pretend to send signals from the kernel. 3988 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3989 */ 3990 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3991 (task_pid_vnr(current) != pid)) 3992 return -EPERM; 3993 3994 return do_send_specific(tgid, pid, sig, info); 3995 } 3996 3997 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 3998 siginfo_t __user *, uinfo) 3999 { 4000 kernel_siginfo_t info; 4001 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4002 if (unlikely(ret)) 4003 return ret; 4004 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4005 } 4006 4007 #ifdef CONFIG_COMPAT 4008 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 4009 compat_pid_t, tgid, 4010 compat_pid_t, pid, 4011 int, sig, 4012 struct compat_siginfo __user *, uinfo) 4013 { 4014 kernel_siginfo_t info; 4015 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4016 if (unlikely(ret)) 4017 return ret; 4018 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4019 } 4020 #endif 4021 4022 /* 4023 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 4024 */ 4025 void kernel_sigaction(int sig, __sighandler_t action) 4026 { 4027 spin_lock_irq(¤t->sighand->siglock); 4028 current->sighand->action[sig - 1].sa.sa_handler = action; 4029 if (action == SIG_IGN) { 4030 sigset_t mask; 4031 4032 sigemptyset(&mask); 4033 sigaddset(&mask, sig); 4034 4035 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 4036 flush_sigqueue_mask(&mask, ¤t->pending); 4037 recalc_sigpending(); 4038 } 4039 spin_unlock_irq(¤t->sighand->siglock); 4040 } 4041 EXPORT_SYMBOL(kernel_sigaction); 4042 4043 void __weak sigaction_compat_abi(struct k_sigaction *act, 4044 struct k_sigaction *oact) 4045 { 4046 } 4047 4048 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 4049 { 4050 struct task_struct *p = current, *t; 4051 struct k_sigaction *k; 4052 sigset_t mask; 4053 4054 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 4055 return -EINVAL; 4056 4057 k = &p->sighand->action[sig-1]; 4058 4059 spin_lock_irq(&p->sighand->siglock); 4060 if (oact) 4061 *oact = *k; 4062 4063 /* 4064 * Make sure that we never accidentally claim to support SA_UNSUPPORTED, 4065 * e.g. by having an architecture use the bit in their uapi. 4066 */ 4067 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED); 4068 4069 /* 4070 * Clear unknown flag bits in order to allow userspace to detect missing 4071 * support for flag bits and to allow the kernel to use non-uapi bits 4072 * internally. 4073 */ 4074 if (act) 4075 act->sa.sa_flags &= UAPI_SA_FLAGS; 4076 if (oact) 4077 oact->sa.sa_flags &= UAPI_SA_FLAGS; 4078 4079 sigaction_compat_abi(act, oact); 4080 4081 if (act) { 4082 sigdelsetmask(&act->sa.sa_mask, 4083 sigmask(SIGKILL) | sigmask(SIGSTOP)); 4084 *k = *act; 4085 /* 4086 * POSIX 3.3.1.3: 4087 * "Setting a signal action to SIG_IGN for a signal that is 4088 * pending shall cause the pending signal to be discarded, 4089 * whether or not it is blocked." 4090 * 4091 * "Setting a signal action to SIG_DFL for a signal that is 4092 * pending and whose default action is to ignore the signal 4093 * (for example, SIGCHLD), shall cause the pending signal to 4094 * be discarded, whether or not it is blocked" 4095 */ 4096 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 4097 sigemptyset(&mask); 4098 sigaddset(&mask, sig); 4099 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 4100 for_each_thread(p, t) 4101 flush_sigqueue_mask(&mask, &t->pending); 4102 } 4103 } 4104 4105 spin_unlock_irq(&p->sighand->siglock); 4106 return 0; 4107 } 4108 4109 static int 4110 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 4111 size_t min_ss_size) 4112 { 4113 struct task_struct *t = current; 4114 4115 if (oss) { 4116 memset(oss, 0, sizeof(stack_t)); 4117 oss->ss_sp = (void __user *) t->sas_ss_sp; 4118 oss->ss_size = t->sas_ss_size; 4119 oss->ss_flags = sas_ss_flags(sp) | 4120 (current->sas_ss_flags & SS_FLAG_BITS); 4121 } 4122 4123 if (ss) { 4124 void __user *ss_sp = ss->ss_sp; 4125 size_t ss_size = ss->ss_size; 4126 unsigned ss_flags = ss->ss_flags; 4127 int ss_mode; 4128 4129 if (unlikely(on_sig_stack(sp))) 4130 return -EPERM; 4131 4132 ss_mode = ss_flags & ~SS_FLAG_BITS; 4133 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 4134 ss_mode != 0)) 4135 return -EINVAL; 4136 4137 if (ss_mode == SS_DISABLE) { 4138 ss_size = 0; 4139 ss_sp = NULL; 4140 } else { 4141 if (unlikely(ss_size < min_ss_size)) 4142 return -ENOMEM; 4143 } 4144 4145 t->sas_ss_sp = (unsigned long) ss_sp; 4146 t->sas_ss_size = ss_size; 4147 t->sas_ss_flags = ss_flags; 4148 } 4149 return 0; 4150 } 4151 4152 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 4153 { 4154 stack_t new, old; 4155 int err; 4156 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 4157 return -EFAULT; 4158 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 4159 current_user_stack_pointer(), 4160 MINSIGSTKSZ); 4161 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 4162 err = -EFAULT; 4163 return err; 4164 } 4165 4166 int restore_altstack(const stack_t __user *uss) 4167 { 4168 stack_t new; 4169 if (copy_from_user(&new, uss, sizeof(stack_t))) 4170 return -EFAULT; 4171 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 4172 MINSIGSTKSZ); 4173 /* squash all but EFAULT for now */ 4174 return 0; 4175 } 4176 4177 int __save_altstack(stack_t __user *uss, unsigned long sp) 4178 { 4179 struct task_struct *t = current; 4180 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 4181 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4182 __put_user(t->sas_ss_size, &uss->ss_size); 4183 if (err) 4184 return err; 4185 if (t->sas_ss_flags & SS_AUTODISARM) 4186 sas_ss_reset(t); 4187 return 0; 4188 } 4189 4190 #ifdef CONFIG_COMPAT 4191 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 4192 compat_stack_t __user *uoss_ptr) 4193 { 4194 stack_t uss, uoss; 4195 int ret; 4196 4197 if (uss_ptr) { 4198 compat_stack_t uss32; 4199 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 4200 return -EFAULT; 4201 uss.ss_sp = compat_ptr(uss32.ss_sp); 4202 uss.ss_flags = uss32.ss_flags; 4203 uss.ss_size = uss32.ss_size; 4204 } 4205 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 4206 compat_user_stack_pointer(), 4207 COMPAT_MINSIGSTKSZ); 4208 if (ret >= 0 && uoss_ptr) { 4209 compat_stack_t old; 4210 memset(&old, 0, sizeof(old)); 4211 old.ss_sp = ptr_to_compat(uoss.ss_sp); 4212 old.ss_flags = uoss.ss_flags; 4213 old.ss_size = uoss.ss_size; 4214 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 4215 ret = -EFAULT; 4216 } 4217 return ret; 4218 } 4219 4220 COMPAT_SYSCALL_DEFINE2(sigaltstack, 4221 const compat_stack_t __user *, uss_ptr, 4222 compat_stack_t __user *, uoss_ptr) 4223 { 4224 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 4225 } 4226 4227 int compat_restore_altstack(const compat_stack_t __user *uss) 4228 { 4229 int err = do_compat_sigaltstack(uss, NULL); 4230 /* squash all but -EFAULT for now */ 4231 return err == -EFAULT ? err : 0; 4232 } 4233 4234 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 4235 { 4236 int err; 4237 struct task_struct *t = current; 4238 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 4239 &uss->ss_sp) | 4240 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4241 __put_user(t->sas_ss_size, &uss->ss_size); 4242 if (err) 4243 return err; 4244 if (t->sas_ss_flags & SS_AUTODISARM) 4245 sas_ss_reset(t); 4246 return 0; 4247 } 4248 #endif 4249 4250 #ifdef __ARCH_WANT_SYS_SIGPENDING 4251 4252 /** 4253 * sys_sigpending - examine pending signals 4254 * @uset: where mask of pending signal is returned 4255 */ 4256 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4257 { 4258 sigset_t set; 4259 4260 if (sizeof(old_sigset_t) > sizeof(*uset)) 4261 return -EINVAL; 4262 4263 do_sigpending(&set); 4264 4265 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4266 return -EFAULT; 4267 4268 return 0; 4269 } 4270 4271 #ifdef CONFIG_COMPAT 4272 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4273 { 4274 sigset_t set; 4275 4276 do_sigpending(&set); 4277 4278 return put_user(set.sig[0], set32); 4279 } 4280 #endif 4281 4282 #endif 4283 4284 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 4285 /** 4286 * sys_sigprocmask - examine and change blocked signals 4287 * @how: whether to add, remove, or set signals 4288 * @nset: signals to add or remove (if non-null) 4289 * @oset: previous value of signal mask if non-null 4290 * 4291 * Some platforms have their own version with special arguments; 4292 * others support only sys_rt_sigprocmask. 4293 */ 4294 4295 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4296 old_sigset_t __user *, oset) 4297 { 4298 old_sigset_t old_set, new_set; 4299 sigset_t new_blocked; 4300 4301 old_set = current->blocked.sig[0]; 4302 4303 if (nset) { 4304 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4305 return -EFAULT; 4306 4307 new_blocked = current->blocked; 4308 4309 switch (how) { 4310 case SIG_BLOCK: 4311 sigaddsetmask(&new_blocked, new_set); 4312 break; 4313 case SIG_UNBLOCK: 4314 sigdelsetmask(&new_blocked, new_set); 4315 break; 4316 case SIG_SETMASK: 4317 new_blocked.sig[0] = new_set; 4318 break; 4319 default: 4320 return -EINVAL; 4321 } 4322 4323 set_current_blocked(&new_blocked); 4324 } 4325 4326 if (oset) { 4327 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4328 return -EFAULT; 4329 } 4330 4331 return 0; 4332 } 4333 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4334 4335 #ifndef CONFIG_ODD_RT_SIGACTION 4336 /** 4337 * sys_rt_sigaction - alter an action taken by a process 4338 * @sig: signal to be sent 4339 * @act: new sigaction 4340 * @oact: used to save the previous sigaction 4341 * @sigsetsize: size of sigset_t type 4342 */ 4343 SYSCALL_DEFINE4(rt_sigaction, int, sig, 4344 const struct sigaction __user *, act, 4345 struct sigaction __user *, oact, 4346 size_t, sigsetsize) 4347 { 4348 struct k_sigaction new_sa, old_sa; 4349 int ret; 4350 4351 /* XXX: Don't preclude handling different sized sigset_t's. */ 4352 if (sigsetsize != sizeof(sigset_t)) 4353 return -EINVAL; 4354 4355 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4356 return -EFAULT; 4357 4358 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4359 if (ret) 4360 return ret; 4361 4362 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4363 return -EFAULT; 4364 4365 return 0; 4366 } 4367 #ifdef CONFIG_COMPAT 4368 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4369 const struct compat_sigaction __user *, act, 4370 struct compat_sigaction __user *, oact, 4371 compat_size_t, sigsetsize) 4372 { 4373 struct k_sigaction new_ka, old_ka; 4374 #ifdef __ARCH_HAS_SA_RESTORER 4375 compat_uptr_t restorer; 4376 #endif 4377 int ret; 4378 4379 /* XXX: Don't preclude handling different sized sigset_t's. */ 4380 if (sigsetsize != sizeof(compat_sigset_t)) 4381 return -EINVAL; 4382 4383 if (act) { 4384 compat_uptr_t handler; 4385 ret = get_user(handler, &act->sa_handler); 4386 new_ka.sa.sa_handler = compat_ptr(handler); 4387 #ifdef __ARCH_HAS_SA_RESTORER 4388 ret |= get_user(restorer, &act->sa_restorer); 4389 new_ka.sa.sa_restorer = compat_ptr(restorer); 4390 #endif 4391 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4392 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4393 if (ret) 4394 return -EFAULT; 4395 } 4396 4397 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4398 if (!ret && oact) { 4399 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4400 &oact->sa_handler); 4401 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4402 sizeof(oact->sa_mask)); 4403 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4404 #ifdef __ARCH_HAS_SA_RESTORER 4405 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4406 &oact->sa_restorer); 4407 #endif 4408 } 4409 return ret; 4410 } 4411 #endif 4412 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4413 4414 #ifdef CONFIG_OLD_SIGACTION 4415 SYSCALL_DEFINE3(sigaction, int, sig, 4416 const struct old_sigaction __user *, act, 4417 struct old_sigaction __user *, oact) 4418 { 4419 struct k_sigaction new_ka, old_ka; 4420 int ret; 4421 4422 if (act) { 4423 old_sigset_t mask; 4424 if (!access_ok(act, sizeof(*act)) || 4425 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4426 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4427 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4428 __get_user(mask, &act->sa_mask)) 4429 return -EFAULT; 4430 #ifdef __ARCH_HAS_KA_RESTORER 4431 new_ka.ka_restorer = NULL; 4432 #endif 4433 siginitset(&new_ka.sa.sa_mask, mask); 4434 } 4435 4436 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4437 4438 if (!ret && oact) { 4439 if (!access_ok(oact, sizeof(*oact)) || 4440 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4441 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4442 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4443 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4444 return -EFAULT; 4445 } 4446 4447 return ret; 4448 } 4449 #endif 4450 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4451 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4452 const struct compat_old_sigaction __user *, act, 4453 struct compat_old_sigaction __user *, oact) 4454 { 4455 struct k_sigaction new_ka, old_ka; 4456 int ret; 4457 compat_old_sigset_t mask; 4458 compat_uptr_t handler, restorer; 4459 4460 if (act) { 4461 if (!access_ok(act, sizeof(*act)) || 4462 __get_user(handler, &act->sa_handler) || 4463 __get_user(restorer, &act->sa_restorer) || 4464 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4465 __get_user(mask, &act->sa_mask)) 4466 return -EFAULT; 4467 4468 #ifdef __ARCH_HAS_KA_RESTORER 4469 new_ka.ka_restorer = NULL; 4470 #endif 4471 new_ka.sa.sa_handler = compat_ptr(handler); 4472 new_ka.sa.sa_restorer = compat_ptr(restorer); 4473 siginitset(&new_ka.sa.sa_mask, mask); 4474 } 4475 4476 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4477 4478 if (!ret && oact) { 4479 if (!access_ok(oact, sizeof(*oact)) || 4480 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4481 &oact->sa_handler) || 4482 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4483 &oact->sa_restorer) || 4484 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4485 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4486 return -EFAULT; 4487 } 4488 return ret; 4489 } 4490 #endif 4491 4492 #ifdef CONFIG_SGETMASK_SYSCALL 4493 4494 /* 4495 * For backwards compatibility. Functionality superseded by sigprocmask. 4496 */ 4497 SYSCALL_DEFINE0(sgetmask) 4498 { 4499 /* SMP safe */ 4500 return current->blocked.sig[0]; 4501 } 4502 4503 SYSCALL_DEFINE1(ssetmask, int, newmask) 4504 { 4505 int old = current->blocked.sig[0]; 4506 sigset_t newset; 4507 4508 siginitset(&newset, newmask); 4509 set_current_blocked(&newset); 4510 4511 return old; 4512 } 4513 #endif /* CONFIG_SGETMASK_SYSCALL */ 4514 4515 #ifdef __ARCH_WANT_SYS_SIGNAL 4516 /* 4517 * For backwards compatibility. Functionality superseded by sigaction. 4518 */ 4519 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4520 { 4521 struct k_sigaction new_sa, old_sa; 4522 int ret; 4523 4524 new_sa.sa.sa_handler = handler; 4525 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4526 sigemptyset(&new_sa.sa.sa_mask); 4527 4528 ret = do_sigaction(sig, &new_sa, &old_sa); 4529 4530 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4531 } 4532 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4533 4534 #ifdef __ARCH_WANT_SYS_PAUSE 4535 4536 SYSCALL_DEFINE0(pause) 4537 { 4538 while (!signal_pending(current)) { 4539 __set_current_state(TASK_INTERRUPTIBLE); 4540 schedule(); 4541 } 4542 return -ERESTARTNOHAND; 4543 } 4544 4545 #endif 4546 4547 static int sigsuspend(sigset_t *set) 4548 { 4549 current->saved_sigmask = current->blocked; 4550 set_current_blocked(set); 4551 4552 while (!signal_pending(current)) { 4553 __set_current_state(TASK_INTERRUPTIBLE); 4554 schedule(); 4555 } 4556 set_restore_sigmask(); 4557 return -ERESTARTNOHAND; 4558 } 4559 4560 /** 4561 * sys_rt_sigsuspend - replace the signal mask for a value with the 4562 * @unewset value until a signal is received 4563 * @unewset: new signal mask value 4564 * @sigsetsize: size of sigset_t type 4565 */ 4566 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4567 { 4568 sigset_t newset; 4569 4570 /* XXX: Don't preclude handling different sized sigset_t's. */ 4571 if (sigsetsize != sizeof(sigset_t)) 4572 return -EINVAL; 4573 4574 if (copy_from_user(&newset, unewset, sizeof(newset))) 4575 return -EFAULT; 4576 return sigsuspend(&newset); 4577 } 4578 4579 #ifdef CONFIG_COMPAT 4580 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4581 { 4582 sigset_t newset; 4583 4584 /* XXX: Don't preclude handling different sized sigset_t's. */ 4585 if (sigsetsize != sizeof(sigset_t)) 4586 return -EINVAL; 4587 4588 if (get_compat_sigset(&newset, unewset)) 4589 return -EFAULT; 4590 return sigsuspend(&newset); 4591 } 4592 #endif 4593 4594 #ifdef CONFIG_OLD_SIGSUSPEND 4595 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4596 { 4597 sigset_t blocked; 4598 siginitset(&blocked, mask); 4599 return sigsuspend(&blocked); 4600 } 4601 #endif 4602 #ifdef CONFIG_OLD_SIGSUSPEND3 4603 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4604 { 4605 sigset_t blocked; 4606 siginitset(&blocked, mask); 4607 return sigsuspend(&blocked); 4608 } 4609 #endif 4610 4611 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4612 { 4613 return NULL; 4614 } 4615 4616 static inline void siginfo_buildtime_checks(void) 4617 { 4618 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4619 4620 /* Verify the offsets in the two siginfos match */ 4621 #define CHECK_OFFSET(field) \ 4622 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4623 4624 /* kill */ 4625 CHECK_OFFSET(si_pid); 4626 CHECK_OFFSET(si_uid); 4627 4628 /* timer */ 4629 CHECK_OFFSET(si_tid); 4630 CHECK_OFFSET(si_overrun); 4631 CHECK_OFFSET(si_value); 4632 4633 /* rt */ 4634 CHECK_OFFSET(si_pid); 4635 CHECK_OFFSET(si_uid); 4636 CHECK_OFFSET(si_value); 4637 4638 /* sigchld */ 4639 CHECK_OFFSET(si_pid); 4640 CHECK_OFFSET(si_uid); 4641 CHECK_OFFSET(si_status); 4642 CHECK_OFFSET(si_utime); 4643 CHECK_OFFSET(si_stime); 4644 4645 /* sigfault */ 4646 CHECK_OFFSET(si_addr); 4647 CHECK_OFFSET(si_addr_lsb); 4648 CHECK_OFFSET(si_lower); 4649 CHECK_OFFSET(si_upper); 4650 CHECK_OFFSET(si_pkey); 4651 CHECK_OFFSET(si_perf); 4652 4653 /* sigpoll */ 4654 CHECK_OFFSET(si_band); 4655 CHECK_OFFSET(si_fd); 4656 4657 /* sigsys */ 4658 CHECK_OFFSET(si_call_addr); 4659 CHECK_OFFSET(si_syscall); 4660 CHECK_OFFSET(si_arch); 4661 #undef CHECK_OFFSET 4662 4663 /* usb asyncio */ 4664 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != 4665 offsetof(struct siginfo, si_addr)); 4666 if (sizeof(int) == sizeof(void __user *)) { 4667 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != 4668 sizeof(void __user *)); 4669 } else { 4670 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + 4671 sizeof_field(struct siginfo, si_uid)) != 4672 sizeof(void __user *)); 4673 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != 4674 offsetof(struct siginfo, si_uid)); 4675 } 4676 #ifdef CONFIG_COMPAT 4677 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != 4678 offsetof(struct compat_siginfo, si_addr)); 4679 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4680 sizeof(compat_uptr_t)); 4681 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4682 sizeof_field(struct siginfo, si_pid)); 4683 #endif 4684 } 4685 4686 void __init signals_init(void) 4687 { 4688 siginfo_buildtime_checks(); 4689 4690 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 4691 } 4692 4693 #ifdef CONFIG_KGDB_KDB 4694 #include <linux/kdb.h> 4695 /* 4696 * kdb_send_sig - Allows kdb to send signals without exposing 4697 * signal internals. This function checks if the required locks are 4698 * available before calling the main signal code, to avoid kdb 4699 * deadlocks. 4700 */ 4701 void kdb_send_sig(struct task_struct *t, int sig) 4702 { 4703 static struct task_struct *kdb_prev_t; 4704 int new_t, ret; 4705 if (!spin_trylock(&t->sighand->siglock)) { 4706 kdb_printf("Can't do kill command now.\n" 4707 "The sigmask lock is held somewhere else in " 4708 "kernel, try again later\n"); 4709 return; 4710 } 4711 new_t = kdb_prev_t != t; 4712 kdb_prev_t = t; 4713 if (t->state != TASK_RUNNING && new_t) { 4714 spin_unlock(&t->sighand->siglock); 4715 kdb_printf("Process is not RUNNING, sending a signal from " 4716 "kdb risks deadlock\n" 4717 "on the run queue locks. " 4718 "The signal has _not_ been sent.\n" 4719 "Reissue the kill command if you want to risk " 4720 "the deadlock.\n"); 4721 return; 4722 } 4723 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 4724 spin_unlock(&t->sighand->siglock); 4725 if (ret) 4726 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4727 sig, t->pid); 4728 else 4729 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4730 } 4731 #endif /* CONFIG_KGDB_KDB */ 4732