1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/export.h> 15 #include <linux/init.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/tty.h> 19 #include <linux/binfmts.h> 20 #include <linux/coredump.h> 21 #include <linux/security.h> 22 #include <linux/syscalls.h> 23 #include <linux/ptrace.h> 24 #include <linux/signal.h> 25 #include <linux/signalfd.h> 26 #include <linux/ratelimit.h> 27 #include <linux/tracehook.h> 28 #include <linux/capability.h> 29 #include <linux/freezer.h> 30 #include <linux/pid_namespace.h> 31 #include <linux/nsproxy.h> 32 #include <linux/user_namespace.h> 33 #include <linux/uprobes.h> 34 #define CREATE_TRACE_POINTS 35 #include <trace/events/signal.h> 36 37 #include <asm/param.h> 38 #include <asm/uaccess.h> 39 #include <asm/unistd.h> 40 #include <asm/siginfo.h> 41 #include <asm/cacheflush.h> 42 #include "audit.h" /* audit_signal_info() */ 43 44 /* 45 * SLAB caches for signal bits. 46 */ 47 48 static struct kmem_cache *sigqueue_cachep; 49 50 int print_fatal_signals __read_mostly; 51 52 static void __user *sig_handler(struct task_struct *t, int sig) 53 { 54 return t->sighand->action[sig - 1].sa.sa_handler; 55 } 56 57 static int sig_handler_ignored(void __user *handler, int sig) 58 { 59 /* Is it explicitly or implicitly ignored? */ 60 return handler == SIG_IGN || 61 (handler == SIG_DFL && sig_kernel_ignore(sig)); 62 } 63 64 static int sig_task_ignored(struct task_struct *t, int sig, bool force) 65 { 66 void __user *handler; 67 68 handler = sig_handler(t, sig); 69 70 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 71 handler == SIG_DFL && !force) 72 return 1; 73 74 return sig_handler_ignored(handler, sig); 75 } 76 77 static int sig_ignored(struct task_struct *t, int sig, bool force) 78 { 79 /* 80 * Blocked signals are never ignored, since the 81 * signal handler may change by the time it is 82 * unblocked. 83 */ 84 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 85 return 0; 86 87 if (!sig_task_ignored(t, sig, force)) 88 return 0; 89 90 /* 91 * Tracers may want to know about even ignored signals. 92 */ 93 return !t->ptrace; 94 } 95 96 /* 97 * Re-calculate pending state from the set of locally pending 98 * signals, globally pending signals, and blocked signals. 99 */ 100 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 101 { 102 unsigned long ready; 103 long i; 104 105 switch (_NSIG_WORDS) { 106 default: 107 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 108 ready |= signal->sig[i] &~ blocked->sig[i]; 109 break; 110 111 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 112 ready |= signal->sig[2] &~ blocked->sig[2]; 113 ready |= signal->sig[1] &~ blocked->sig[1]; 114 ready |= signal->sig[0] &~ blocked->sig[0]; 115 break; 116 117 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 118 ready |= signal->sig[0] &~ blocked->sig[0]; 119 break; 120 121 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 122 } 123 return ready != 0; 124 } 125 126 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 127 128 static int recalc_sigpending_tsk(struct task_struct *t) 129 { 130 if ((t->jobctl & JOBCTL_PENDING_MASK) || 131 PENDING(&t->pending, &t->blocked) || 132 PENDING(&t->signal->shared_pending, &t->blocked)) { 133 set_tsk_thread_flag(t, TIF_SIGPENDING); 134 return 1; 135 } 136 /* 137 * We must never clear the flag in another thread, or in current 138 * when it's possible the current syscall is returning -ERESTART*. 139 * So we don't clear it here, and only callers who know they should do. 140 */ 141 return 0; 142 } 143 144 /* 145 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 146 * This is superfluous when called on current, the wakeup is a harmless no-op. 147 */ 148 void recalc_sigpending_and_wake(struct task_struct *t) 149 { 150 if (recalc_sigpending_tsk(t)) 151 signal_wake_up(t, 0); 152 } 153 154 void recalc_sigpending(void) 155 { 156 if (!recalc_sigpending_tsk(current) && !freezing(current)) 157 clear_thread_flag(TIF_SIGPENDING); 158 159 } 160 161 /* Given the mask, find the first available signal that should be serviced. */ 162 163 #define SYNCHRONOUS_MASK \ 164 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 165 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 166 167 int next_signal(struct sigpending *pending, sigset_t *mask) 168 { 169 unsigned long i, *s, *m, x; 170 int sig = 0; 171 172 s = pending->signal.sig; 173 m = mask->sig; 174 175 /* 176 * Handle the first word specially: it contains the 177 * synchronous signals that need to be dequeued first. 178 */ 179 x = *s &~ *m; 180 if (x) { 181 if (x & SYNCHRONOUS_MASK) 182 x &= SYNCHRONOUS_MASK; 183 sig = ffz(~x) + 1; 184 return sig; 185 } 186 187 switch (_NSIG_WORDS) { 188 default: 189 for (i = 1; i < _NSIG_WORDS; ++i) { 190 x = *++s &~ *++m; 191 if (!x) 192 continue; 193 sig = ffz(~x) + i*_NSIG_BPW + 1; 194 break; 195 } 196 break; 197 198 case 2: 199 x = s[1] &~ m[1]; 200 if (!x) 201 break; 202 sig = ffz(~x) + _NSIG_BPW + 1; 203 break; 204 205 case 1: 206 /* Nothing to do */ 207 break; 208 } 209 210 return sig; 211 } 212 213 static inline void print_dropped_signal(int sig) 214 { 215 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 216 217 if (!print_fatal_signals) 218 return; 219 220 if (!__ratelimit(&ratelimit_state)) 221 return; 222 223 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 224 current->comm, current->pid, sig); 225 } 226 227 /** 228 * task_set_jobctl_pending - set jobctl pending bits 229 * @task: target task 230 * @mask: pending bits to set 231 * 232 * Clear @mask from @task->jobctl. @mask must be subset of 233 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 234 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 235 * cleared. If @task is already being killed or exiting, this function 236 * becomes noop. 237 * 238 * CONTEXT: 239 * Must be called with @task->sighand->siglock held. 240 * 241 * RETURNS: 242 * %true if @mask is set, %false if made noop because @task was dying. 243 */ 244 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask) 245 { 246 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 247 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 248 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 249 250 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 251 return false; 252 253 if (mask & JOBCTL_STOP_SIGMASK) 254 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 255 256 task->jobctl |= mask; 257 return true; 258 } 259 260 /** 261 * task_clear_jobctl_trapping - clear jobctl trapping bit 262 * @task: target task 263 * 264 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 265 * Clear it and wake up the ptracer. Note that we don't need any further 266 * locking. @task->siglock guarantees that @task->parent points to the 267 * ptracer. 268 * 269 * CONTEXT: 270 * Must be called with @task->sighand->siglock held. 271 */ 272 void task_clear_jobctl_trapping(struct task_struct *task) 273 { 274 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 275 task->jobctl &= ~JOBCTL_TRAPPING; 276 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 277 } 278 } 279 280 /** 281 * task_clear_jobctl_pending - clear jobctl pending bits 282 * @task: target task 283 * @mask: pending bits to clear 284 * 285 * Clear @mask from @task->jobctl. @mask must be subset of 286 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 287 * STOP bits are cleared together. 288 * 289 * If clearing of @mask leaves no stop or trap pending, this function calls 290 * task_clear_jobctl_trapping(). 291 * 292 * CONTEXT: 293 * Must be called with @task->sighand->siglock held. 294 */ 295 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask) 296 { 297 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 298 299 if (mask & JOBCTL_STOP_PENDING) 300 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 301 302 task->jobctl &= ~mask; 303 304 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 305 task_clear_jobctl_trapping(task); 306 } 307 308 /** 309 * task_participate_group_stop - participate in a group stop 310 * @task: task participating in a group stop 311 * 312 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 313 * Group stop states are cleared and the group stop count is consumed if 314 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 315 * stop, the appropriate %SIGNAL_* flags are set. 316 * 317 * CONTEXT: 318 * Must be called with @task->sighand->siglock held. 319 * 320 * RETURNS: 321 * %true if group stop completion should be notified to the parent, %false 322 * otherwise. 323 */ 324 static bool task_participate_group_stop(struct task_struct *task) 325 { 326 struct signal_struct *sig = task->signal; 327 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 328 329 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 330 331 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 332 333 if (!consume) 334 return false; 335 336 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 337 sig->group_stop_count--; 338 339 /* 340 * Tell the caller to notify completion iff we are entering into a 341 * fresh group stop. Read comment in do_signal_stop() for details. 342 */ 343 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 344 sig->flags = SIGNAL_STOP_STOPPED; 345 return true; 346 } 347 return false; 348 } 349 350 /* 351 * allocate a new signal queue record 352 * - this may be called without locks if and only if t == current, otherwise an 353 * appropriate lock must be held to stop the target task from exiting 354 */ 355 static struct sigqueue * 356 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) 357 { 358 struct sigqueue *q = NULL; 359 struct user_struct *user; 360 361 /* 362 * Protect access to @t credentials. This can go away when all 363 * callers hold rcu read lock. 364 */ 365 rcu_read_lock(); 366 user = get_uid(__task_cred(t)->user); 367 atomic_inc(&user->sigpending); 368 rcu_read_unlock(); 369 370 if (override_rlimit || 371 atomic_read(&user->sigpending) <= 372 task_rlimit(t, RLIMIT_SIGPENDING)) { 373 q = kmem_cache_alloc(sigqueue_cachep, flags); 374 } else { 375 print_dropped_signal(sig); 376 } 377 378 if (unlikely(q == NULL)) { 379 atomic_dec(&user->sigpending); 380 free_uid(user); 381 } else { 382 INIT_LIST_HEAD(&q->list); 383 q->flags = 0; 384 q->user = user; 385 } 386 387 return q; 388 } 389 390 static void __sigqueue_free(struct sigqueue *q) 391 { 392 if (q->flags & SIGQUEUE_PREALLOC) 393 return; 394 atomic_dec(&q->user->sigpending); 395 free_uid(q->user); 396 kmem_cache_free(sigqueue_cachep, q); 397 } 398 399 void flush_sigqueue(struct sigpending *queue) 400 { 401 struct sigqueue *q; 402 403 sigemptyset(&queue->signal); 404 while (!list_empty(&queue->list)) { 405 q = list_entry(queue->list.next, struct sigqueue , list); 406 list_del_init(&q->list); 407 __sigqueue_free(q); 408 } 409 } 410 411 /* 412 * Flush all pending signals for a task. 413 */ 414 void __flush_signals(struct task_struct *t) 415 { 416 clear_tsk_thread_flag(t, TIF_SIGPENDING); 417 flush_sigqueue(&t->pending); 418 flush_sigqueue(&t->signal->shared_pending); 419 } 420 421 void flush_signals(struct task_struct *t) 422 { 423 unsigned long flags; 424 425 spin_lock_irqsave(&t->sighand->siglock, flags); 426 __flush_signals(t); 427 spin_unlock_irqrestore(&t->sighand->siglock, flags); 428 } 429 430 static void __flush_itimer_signals(struct sigpending *pending) 431 { 432 sigset_t signal, retain; 433 struct sigqueue *q, *n; 434 435 signal = pending->signal; 436 sigemptyset(&retain); 437 438 list_for_each_entry_safe(q, n, &pending->list, list) { 439 int sig = q->info.si_signo; 440 441 if (likely(q->info.si_code != SI_TIMER)) { 442 sigaddset(&retain, sig); 443 } else { 444 sigdelset(&signal, sig); 445 list_del_init(&q->list); 446 __sigqueue_free(q); 447 } 448 } 449 450 sigorsets(&pending->signal, &signal, &retain); 451 } 452 453 void flush_itimer_signals(void) 454 { 455 struct task_struct *tsk = current; 456 unsigned long flags; 457 458 spin_lock_irqsave(&tsk->sighand->siglock, flags); 459 __flush_itimer_signals(&tsk->pending); 460 __flush_itimer_signals(&tsk->signal->shared_pending); 461 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 462 } 463 464 void ignore_signals(struct task_struct *t) 465 { 466 int i; 467 468 for (i = 0; i < _NSIG; ++i) 469 t->sighand->action[i].sa.sa_handler = SIG_IGN; 470 471 flush_signals(t); 472 } 473 474 /* 475 * Flush all handlers for a task. 476 */ 477 478 void 479 flush_signal_handlers(struct task_struct *t, int force_default) 480 { 481 int i; 482 struct k_sigaction *ka = &t->sighand->action[0]; 483 for (i = _NSIG ; i != 0 ; i--) { 484 if (force_default || ka->sa.sa_handler != SIG_IGN) 485 ka->sa.sa_handler = SIG_DFL; 486 ka->sa.sa_flags = 0; 487 sigemptyset(&ka->sa.sa_mask); 488 ka++; 489 } 490 } 491 492 int unhandled_signal(struct task_struct *tsk, int sig) 493 { 494 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 495 if (is_global_init(tsk)) 496 return 1; 497 if (handler != SIG_IGN && handler != SIG_DFL) 498 return 0; 499 /* if ptraced, let the tracer determine */ 500 return !tsk->ptrace; 501 } 502 503 /* 504 * Notify the system that a driver wants to block all signals for this 505 * process, and wants to be notified if any signals at all were to be 506 * sent/acted upon. If the notifier routine returns non-zero, then the 507 * signal will be acted upon after all. If the notifier routine returns 0, 508 * then then signal will be blocked. Only one block per process is 509 * allowed. priv is a pointer to private data that the notifier routine 510 * can use to determine if the signal should be blocked or not. 511 */ 512 void 513 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) 514 { 515 unsigned long flags; 516 517 spin_lock_irqsave(¤t->sighand->siglock, flags); 518 current->notifier_mask = mask; 519 current->notifier_data = priv; 520 current->notifier = notifier; 521 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 522 } 523 524 /* Notify the system that blocking has ended. */ 525 526 void 527 unblock_all_signals(void) 528 { 529 unsigned long flags; 530 531 spin_lock_irqsave(¤t->sighand->siglock, flags); 532 current->notifier = NULL; 533 current->notifier_data = NULL; 534 recalc_sigpending(); 535 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 536 } 537 538 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info) 539 { 540 struct sigqueue *q, *first = NULL; 541 542 /* 543 * Collect the siginfo appropriate to this signal. Check if 544 * there is another siginfo for the same signal. 545 */ 546 list_for_each_entry(q, &list->list, list) { 547 if (q->info.si_signo == sig) { 548 if (first) 549 goto still_pending; 550 first = q; 551 } 552 } 553 554 sigdelset(&list->signal, sig); 555 556 if (first) { 557 still_pending: 558 list_del_init(&first->list); 559 copy_siginfo(info, &first->info); 560 __sigqueue_free(first); 561 } else { 562 /* 563 * Ok, it wasn't in the queue. This must be 564 * a fast-pathed signal or we must have been 565 * out of queue space. So zero out the info. 566 */ 567 info->si_signo = sig; 568 info->si_errno = 0; 569 info->si_code = SI_USER; 570 info->si_pid = 0; 571 info->si_uid = 0; 572 } 573 } 574 575 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 576 siginfo_t *info) 577 { 578 int sig = next_signal(pending, mask); 579 580 if (sig) { 581 if (current->notifier) { 582 if (sigismember(current->notifier_mask, sig)) { 583 if (!(current->notifier)(current->notifier_data)) { 584 clear_thread_flag(TIF_SIGPENDING); 585 return 0; 586 } 587 } 588 } 589 590 collect_signal(sig, pending, info); 591 } 592 593 return sig; 594 } 595 596 /* 597 * Dequeue a signal and return the element to the caller, which is 598 * expected to free it. 599 * 600 * All callers have to hold the siglock. 601 */ 602 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 603 { 604 int signr; 605 606 /* We only dequeue private signals from ourselves, we don't let 607 * signalfd steal them 608 */ 609 signr = __dequeue_signal(&tsk->pending, mask, info); 610 if (!signr) { 611 signr = __dequeue_signal(&tsk->signal->shared_pending, 612 mask, info); 613 /* 614 * itimer signal ? 615 * 616 * itimers are process shared and we restart periodic 617 * itimers in the signal delivery path to prevent DoS 618 * attacks in the high resolution timer case. This is 619 * compliant with the old way of self-restarting 620 * itimers, as the SIGALRM is a legacy signal and only 621 * queued once. Changing the restart behaviour to 622 * restart the timer in the signal dequeue path is 623 * reducing the timer noise on heavy loaded !highres 624 * systems too. 625 */ 626 if (unlikely(signr == SIGALRM)) { 627 struct hrtimer *tmr = &tsk->signal->real_timer; 628 629 if (!hrtimer_is_queued(tmr) && 630 tsk->signal->it_real_incr.tv64 != 0) { 631 hrtimer_forward(tmr, tmr->base->get_time(), 632 tsk->signal->it_real_incr); 633 hrtimer_restart(tmr); 634 } 635 } 636 } 637 638 recalc_sigpending(); 639 if (!signr) 640 return 0; 641 642 if (unlikely(sig_kernel_stop(signr))) { 643 /* 644 * Set a marker that we have dequeued a stop signal. Our 645 * caller might release the siglock and then the pending 646 * stop signal it is about to process is no longer in the 647 * pending bitmasks, but must still be cleared by a SIGCONT 648 * (and overruled by a SIGKILL). So those cases clear this 649 * shared flag after we've set it. Note that this flag may 650 * remain set after the signal we return is ignored or 651 * handled. That doesn't matter because its only purpose 652 * is to alert stop-signal processing code when another 653 * processor has come along and cleared the flag. 654 */ 655 current->jobctl |= JOBCTL_STOP_DEQUEUED; 656 } 657 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) { 658 /* 659 * Release the siglock to ensure proper locking order 660 * of timer locks outside of siglocks. Note, we leave 661 * irqs disabled here, since the posix-timers code is 662 * about to disable them again anyway. 663 */ 664 spin_unlock(&tsk->sighand->siglock); 665 do_schedule_next_timer(info); 666 spin_lock(&tsk->sighand->siglock); 667 } 668 return signr; 669 } 670 671 /* 672 * Tell a process that it has a new active signal.. 673 * 674 * NOTE! we rely on the previous spin_lock to 675 * lock interrupts for us! We can only be called with 676 * "siglock" held, and the local interrupt must 677 * have been disabled when that got acquired! 678 * 679 * No need to set need_resched since signal event passing 680 * goes through ->blocked 681 */ 682 void signal_wake_up(struct task_struct *t, int resume) 683 { 684 unsigned int mask; 685 686 set_tsk_thread_flag(t, TIF_SIGPENDING); 687 688 /* 689 * For SIGKILL, we want to wake it up in the stopped/traced/killable 690 * case. We don't check t->state here because there is a race with it 691 * executing another processor and just now entering stopped state. 692 * By using wake_up_state, we ensure the process will wake up and 693 * handle its death signal. 694 */ 695 mask = TASK_INTERRUPTIBLE; 696 if (resume) 697 mask |= TASK_WAKEKILL; 698 if (!wake_up_state(t, mask)) 699 kick_process(t); 700 } 701 702 /* 703 * Remove signals in mask from the pending set and queue. 704 * Returns 1 if any signals were found. 705 * 706 * All callers must be holding the siglock. 707 * 708 * This version takes a sigset mask and looks at all signals, 709 * not just those in the first mask word. 710 */ 711 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s) 712 { 713 struct sigqueue *q, *n; 714 sigset_t m; 715 716 sigandsets(&m, mask, &s->signal); 717 if (sigisemptyset(&m)) 718 return 0; 719 720 sigandnsets(&s->signal, &s->signal, mask); 721 list_for_each_entry_safe(q, n, &s->list, list) { 722 if (sigismember(mask, q->info.si_signo)) { 723 list_del_init(&q->list); 724 __sigqueue_free(q); 725 } 726 } 727 return 1; 728 } 729 /* 730 * Remove signals in mask from the pending set and queue. 731 * Returns 1 if any signals were found. 732 * 733 * All callers must be holding the siglock. 734 */ 735 static int rm_from_queue(unsigned long mask, struct sigpending *s) 736 { 737 struct sigqueue *q, *n; 738 739 if (!sigtestsetmask(&s->signal, mask)) 740 return 0; 741 742 sigdelsetmask(&s->signal, mask); 743 list_for_each_entry_safe(q, n, &s->list, list) { 744 if (q->info.si_signo < SIGRTMIN && 745 (mask & sigmask(q->info.si_signo))) { 746 list_del_init(&q->list); 747 __sigqueue_free(q); 748 } 749 } 750 return 1; 751 } 752 753 static inline int is_si_special(const struct siginfo *info) 754 { 755 return info <= SEND_SIG_FORCED; 756 } 757 758 static inline bool si_fromuser(const struct siginfo *info) 759 { 760 return info == SEND_SIG_NOINFO || 761 (!is_si_special(info) && SI_FROMUSER(info)); 762 } 763 764 /* 765 * called with RCU read lock from check_kill_permission() 766 */ 767 static int kill_ok_by_cred(struct task_struct *t) 768 { 769 const struct cred *cred = current_cred(); 770 const struct cred *tcred = __task_cred(t); 771 772 if (uid_eq(cred->euid, tcred->suid) || 773 uid_eq(cred->euid, tcred->uid) || 774 uid_eq(cred->uid, tcred->suid) || 775 uid_eq(cred->uid, tcred->uid)) 776 return 1; 777 778 if (ns_capable(tcred->user_ns, CAP_KILL)) 779 return 1; 780 781 return 0; 782 } 783 784 /* 785 * Bad permissions for sending the signal 786 * - the caller must hold the RCU read lock 787 */ 788 static int check_kill_permission(int sig, struct siginfo *info, 789 struct task_struct *t) 790 { 791 struct pid *sid; 792 int error; 793 794 if (!valid_signal(sig)) 795 return -EINVAL; 796 797 if (!si_fromuser(info)) 798 return 0; 799 800 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 801 if (error) 802 return error; 803 804 if (!same_thread_group(current, t) && 805 !kill_ok_by_cred(t)) { 806 switch (sig) { 807 case SIGCONT: 808 sid = task_session(t); 809 /* 810 * We don't return the error if sid == NULL. The 811 * task was unhashed, the caller must notice this. 812 */ 813 if (!sid || sid == task_session(current)) 814 break; 815 default: 816 return -EPERM; 817 } 818 } 819 820 return security_task_kill(t, info, sig, 0); 821 } 822 823 /** 824 * ptrace_trap_notify - schedule trap to notify ptracer 825 * @t: tracee wanting to notify tracer 826 * 827 * This function schedules sticky ptrace trap which is cleared on the next 828 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 829 * ptracer. 830 * 831 * If @t is running, STOP trap will be taken. If trapped for STOP and 832 * ptracer is listening for events, tracee is woken up so that it can 833 * re-trap for the new event. If trapped otherwise, STOP trap will be 834 * eventually taken without returning to userland after the existing traps 835 * are finished by PTRACE_CONT. 836 * 837 * CONTEXT: 838 * Must be called with @task->sighand->siglock held. 839 */ 840 static void ptrace_trap_notify(struct task_struct *t) 841 { 842 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 843 assert_spin_locked(&t->sighand->siglock); 844 845 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 846 signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 847 } 848 849 /* 850 * Handle magic process-wide effects of stop/continue signals. Unlike 851 * the signal actions, these happen immediately at signal-generation 852 * time regardless of blocking, ignoring, or handling. This does the 853 * actual continuing for SIGCONT, but not the actual stopping for stop 854 * signals. The process stop is done as a signal action for SIG_DFL. 855 * 856 * Returns true if the signal should be actually delivered, otherwise 857 * it should be dropped. 858 */ 859 static int prepare_signal(int sig, struct task_struct *p, bool force) 860 { 861 struct signal_struct *signal = p->signal; 862 struct task_struct *t; 863 864 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) { 865 /* 866 * The process is in the middle of dying, nothing to do. 867 */ 868 } else if (sig_kernel_stop(sig)) { 869 /* 870 * This is a stop signal. Remove SIGCONT from all queues. 871 */ 872 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending); 873 t = p; 874 do { 875 rm_from_queue(sigmask(SIGCONT), &t->pending); 876 } while_each_thread(p, t); 877 } else if (sig == SIGCONT) { 878 unsigned int why; 879 /* 880 * Remove all stop signals from all queues, wake all threads. 881 */ 882 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending); 883 t = p; 884 do { 885 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 886 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 887 if (likely(!(t->ptrace & PT_SEIZED))) 888 wake_up_state(t, __TASK_STOPPED); 889 else 890 ptrace_trap_notify(t); 891 } while_each_thread(p, t); 892 893 /* 894 * Notify the parent with CLD_CONTINUED if we were stopped. 895 * 896 * If we were in the middle of a group stop, we pretend it 897 * was already finished, and then continued. Since SIGCHLD 898 * doesn't queue we report only CLD_STOPPED, as if the next 899 * CLD_CONTINUED was dropped. 900 */ 901 why = 0; 902 if (signal->flags & SIGNAL_STOP_STOPPED) 903 why |= SIGNAL_CLD_CONTINUED; 904 else if (signal->group_stop_count) 905 why |= SIGNAL_CLD_STOPPED; 906 907 if (why) { 908 /* 909 * The first thread which returns from do_signal_stop() 910 * will take ->siglock, notice SIGNAL_CLD_MASK, and 911 * notify its parent. See get_signal_to_deliver(). 912 */ 913 signal->flags = why | SIGNAL_STOP_CONTINUED; 914 signal->group_stop_count = 0; 915 signal->group_exit_code = 0; 916 } 917 } 918 919 return !sig_ignored(p, sig, force); 920 } 921 922 /* 923 * Test if P wants to take SIG. After we've checked all threads with this, 924 * it's equivalent to finding no threads not blocking SIG. Any threads not 925 * blocking SIG were ruled out because they are not running and already 926 * have pending signals. Such threads will dequeue from the shared queue 927 * as soon as they're available, so putting the signal on the shared queue 928 * will be equivalent to sending it to one such thread. 929 */ 930 static inline int wants_signal(int sig, struct task_struct *p) 931 { 932 if (sigismember(&p->blocked, sig)) 933 return 0; 934 if (p->flags & PF_EXITING) 935 return 0; 936 if (sig == SIGKILL) 937 return 1; 938 if (task_is_stopped_or_traced(p)) 939 return 0; 940 return task_curr(p) || !signal_pending(p); 941 } 942 943 static void complete_signal(int sig, struct task_struct *p, int group) 944 { 945 struct signal_struct *signal = p->signal; 946 struct task_struct *t; 947 948 /* 949 * Now find a thread we can wake up to take the signal off the queue. 950 * 951 * If the main thread wants the signal, it gets first crack. 952 * Probably the least surprising to the average bear. 953 */ 954 if (wants_signal(sig, p)) 955 t = p; 956 else if (!group || thread_group_empty(p)) 957 /* 958 * There is just one thread and it does not need to be woken. 959 * It will dequeue unblocked signals before it runs again. 960 */ 961 return; 962 else { 963 /* 964 * Otherwise try to find a suitable thread. 965 */ 966 t = signal->curr_target; 967 while (!wants_signal(sig, t)) { 968 t = next_thread(t); 969 if (t == signal->curr_target) 970 /* 971 * No thread needs to be woken. 972 * Any eligible threads will see 973 * the signal in the queue soon. 974 */ 975 return; 976 } 977 signal->curr_target = t; 978 } 979 980 /* 981 * Found a killable thread. If the signal will be fatal, 982 * then start taking the whole group down immediately. 983 */ 984 if (sig_fatal(p, sig) && 985 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) && 986 !sigismember(&t->real_blocked, sig) && 987 (sig == SIGKILL || !t->ptrace)) { 988 /* 989 * This signal will be fatal to the whole group. 990 */ 991 if (!sig_kernel_coredump(sig)) { 992 /* 993 * Start a group exit and wake everybody up. 994 * This way we don't have other threads 995 * running and doing things after a slower 996 * thread has the fatal signal pending. 997 */ 998 signal->flags = SIGNAL_GROUP_EXIT; 999 signal->group_exit_code = sig; 1000 signal->group_stop_count = 0; 1001 t = p; 1002 do { 1003 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1004 sigaddset(&t->pending.signal, SIGKILL); 1005 signal_wake_up(t, 1); 1006 } while_each_thread(p, t); 1007 return; 1008 } 1009 } 1010 1011 /* 1012 * The signal is already in the shared-pending queue. 1013 * Tell the chosen thread to wake up and dequeue it. 1014 */ 1015 signal_wake_up(t, sig == SIGKILL); 1016 return; 1017 } 1018 1019 static inline int legacy_queue(struct sigpending *signals, int sig) 1020 { 1021 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1022 } 1023 1024 #ifdef CONFIG_USER_NS 1025 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 1026 { 1027 if (current_user_ns() == task_cred_xxx(t, user_ns)) 1028 return; 1029 1030 if (SI_FROMKERNEL(info)) 1031 return; 1032 1033 rcu_read_lock(); 1034 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns), 1035 make_kuid(current_user_ns(), info->si_uid)); 1036 rcu_read_unlock(); 1037 } 1038 #else 1039 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 1040 { 1041 return; 1042 } 1043 #endif 1044 1045 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t, 1046 int group, int from_ancestor_ns) 1047 { 1048 struct sigpending *pending; 1049 struct sigqueue *q; 1050 int override_rlimit; 1051 int ret = 0, result; 1052 1053 assert_spin_locked(&t->sighand->siglock); 1054 1055 result = TRACE_SIGNAL_IGNORED; 1056 if (!prepare_signal(sig, t, 1057 from_ancestor_ns || (info == SEND_SIG_FORCED))) 1058 goto ret; 1059 1060 pending = group ? &t->signal->shared_pending : &t->pending; 1061 /* 1062 * Short-circuit ignored signals and support queuing 1063 * exactly one non-rt signal, so that we can get more 1064 * detailed information about the cause of the signal. 1065 */ 1066 result = TRACE_SIGNAL_ALREADY_PENDING; 1067 if (legacy_queue(pending, sig)) 1068 goto ret; 1069 1070 result = TRACE_SIGNAL_DELIVERED; 1071 /* 1072 * fast-pathed signals for kernel-internal things like SIGSTOP 1073 * or SIGKILL. 1074 */ 1075 if (info == SEND_SIG_FORCED) 1076 goto out_set; 1077 1078 /* 1079 * Real-time signals must be queued if sent by sigqueue, or 1080 * some other real-time mechanism. It is implementation 1081 * defined whether kill() does so. We attempt to do so, on 1082 * the principle of least surprise, but since kill is not 1083 * allowed to fail with EAGAIN when low on memory we just 1084 * make sure at least one signal gets delivered and don't 1085 * pass on the info struct. 1086 */ 1087 if (sig < SIGRTMIN) 1088 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1089 else 1090 override_rlimit = 0; 1091 1092 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE, 1093 override_rlimit); 1094 if (q) { 1095 list_add_tail(&q->list, &pending->list); 1096 switch ((unsigned long) info) { 1097 case (unsigned long) SEND_SIG_NOINFO: 1098 q->info.si_signo = sig; 1099 q->info.si_errno = 0; 1100 q->info.si_code = SI_USER; 1101 q->info.si_pid = task_tgid_nr_ns(current, 1102 task_active_pid_ns(t)); 1103 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1104 break; 1105 case (unsigned long) SEND_SIG_PRIV: 1106 q->info.si_signo = sig; 1107 q->info.si_errno = 0; 1108 q->info.si_code = SI_KERNEL; 1109 q->info.si_pid = 0; 1110 q->info.si_uid = 0; 1111 break; 1112 default: 1113 copy_siginfo(&q->info, info); 1114 if (from_ancestor_ns) 1115 q->info.si_pid = 0; 1116 break; 1117 } 1118 1119 userns_fixup_signal_uid(&q->info, t); 1120 1121 } else if (!is_si_special(info)) { 1122 if (sig >= SIGRTMIN && info->si_code != SI_USER) { 1123 /* 1124 * Queue overflow, abort. We may abort if the 1125 * signal was rt and sent by user using something 1126 * other than kill(). 1127 */ 1128 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1129 ret = -EAGAIN; 1130 goto ret; 1131 } else { 1132 /* 1133 * This is a silent loss of information. We still 1134 * send the signal, but the *info bits are lost. 1135 */ 1136 result = TRACE_SIGNAL_LOSE_INFO; 1137 } 1138 } 1139 1140 out_set: 1141 signalfd_notify(t, sig); 1142 sigaddset(&pending->signal, sig); 1143 complete_signal(sig, t, group); 1144 ret: 1145 trace_signal_generate(sig, info, t, group, result); 1146 return ret; 1147 } 1148 1149 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 1150 int group) 1151 { 1152 int from_ancestor_ns = 0; 1153 1154 #ifdef CONFIG_PID_NS 1155 from_ancestor_ns = si_fromuser(info) && 1156 !task_pid_nr_ns(current, task_active_pid_ns(t)); 1157 #endif 1158 1159 return __send_signal(sig, info, t, group, from_ancestor_ns); 1160 } 1161 1162 static void print_fatal_signal(int signr) 1163 { 1164 struct pt_regs *regs = signal_pt_regs(); 1165 printk("%s/%d: potentially unexpected fatal signal %d.\n", 1166 current->comm, task_pid_nr(current), signr); 1167 1168 #if defined(__i386__) && !defined(__arch_um__) 1169 printk("code at %08lx: ", regs->ip); 1170 { 1171 int i; 1172 for (i = 0; i < 16; i++) { 1173 unsigned char insn; 1174 1175 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1176 break; 1177 printk("%02x ", insn); 1178 } 1179 } 1180 #endif 1181 printk("\n"); 1182 preempt_disable(); 1183 show_regs(regs); 1184 preempt_enable(); 1185 } 1186 1187 static int __init setup_print_fatal_signals(char *str) 1188 { 1189 get_option (&str, &print_fatal_signals); 1190 1191 return 1; 1192 } 1193 1194 __setup("print-fatal-signals=", setup_print_fatal_signals); 1195 1196 int 1197 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1198 { 1199 return send_signal(sig, info, p, 1); 1200 } 1201 1202 static int 1203 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1204 { 1205 return send_signal(sig, info, t, 0); 1206 } 1207 1208 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p, 1209 bool group) 1210 { 1211 unsigned long flags; 1212 int ret = -ESRCH; 1213 1214 if (lock_task_sighand(p, &flags)) { 1215 ret = send_signal(sig, info, p, group); 1216 unlock_task_sighand(p, &flags); 1217 } 1218 1219 return ret; 1220 } 1221 1222 /* 1223 * Force a signal that the process can't ignore: if necessary 1224 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1225 * 1226 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1227 * since we do not want to have a signal handler that was blocked 1228 * be invoked when user space had explicitly blocked it. 1229 * 1230 * We don't want to have recursive SIGSEGV's etc, for example, 1231 * that is why we also clear SIGNAL_UNKILLABLE. 1232 */ 1233 int 1234 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1235 { 1236 unsigned long int flags; 1237 int ret, blocked, ignored; 1238 struct k_sigaction *action; 1239 1240 spin_lock_irqsave(&t->sighand->siglock, flags); 1241 action = &t->sighand->action[sig-1]; 1242 ignored = action->sa.sa_handler == SIG_IGN; 1243 blocked = sigismember(&t->blocked, sig); 1244 if (blocked || ignored) { 1245 action->sa.sa_handler = SIG_DFL; 1246 if (blocked) { 1247 sigdelset(&t->blocked, sig); 1248 recalc_sigpending_and_wake(t); 1249 } 1250 } 1251 if (action->sa.sa_handler == SIG_DFL) 1252 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1253 ret = specific_send_sig_info(sig, info, t); 1254 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1255 1256 return ret; 1257 } 1258 1259 /* 1260 * Nuke all other threads in the group. 1261 */ 1262 int zap_other_threads(struct task_struct *p) 1263 { 1264 struct task_struct *t = p; 1265 int count = 0; 1266 1267 p->signal->group_stop_count = 0; 1268 1269 while_each_thread(p, t) { 1270 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1271 count++; 1272 1273 /* Don't bother with already dead threads */ 1274 if (t->exit_state) 1275 continue; 1276 sigaddset(&t->pending.signal, SIGKILL); 1277 signal_wake_up(t, 1); 1278 } 1279 1280 return count; 1281 } 1282 1283 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1284 unsigned long *flags) 1285 { 1286 struct sighand_struct *sighand; 1287 1288 for (;;) { 1289 local_irq_save(*flags); 1290 rcu_read_lock(); 1291 sighand = rcu_dereference(tsk->sighand); 1292 if (unlikely(sighand == NULL)) { 1293 rcu_read_unlock(); 1294 local_irq_restore(*flags); 1295 break; 1296 } 1297 1298 spin_lock(&sighand->siglock); 1299 if (likely(sighand == tsk->sighand)) { 1300 rcu_read_unlock(); 1301 break; 1302 } 1303 spin_unlock(&sighand->siglock); 1304 rcu_read_unlock(); 1305 local_irq_restore(*flags); 1306 } 1307 1308 return sighand; 1309 } 1310 1311 /* 1312 * send signal info to all the members of a group 1313 */ 1314 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1315 { 1316 int ret; 1317 1318 rcu_read_lock(); 1319 ret = check_kill_permission(sig, info, p); 1320 rcu_read_unlock(); 1321 1322 if (!ret && sig) 1323 ret = do_send_sig_info(sig, info, p, true); 1324 1325 return ret; 1326 } 1327 1328 /* 1329 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1330 * control characters do (^C, ^Z etc) 1331 * - the caller must hold at least a readlock on tasklist_lock 1332 */ 1333 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1334 { 1335 struct task_struct *p = NULL; 1336 int retval, success; 1337 1338 success = 0; 1339 retval = -ESRCH; 1340 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1341 int err = group_send_sig_info(sig, info, p); 1342 success |= !err; 1343 retval = err; 1344 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1345 return success ? 0 : retval; 1346 } 1347 1348 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) 1349 { 1350 int error = -ESRCH; 1351 struct task_struct *p; 1352 1353 rcu_read_lock(); 1354 retry: 1355 p = pid_task(pid, PIDTYPE_PID); 1356 if (p) { 1357 error = group_send_sig_info(sig, info, p); 1358 if (unlikely(error == -ESRCH)) 1359 /* 1360 * The task was unhashed in between, try again. 1361 * If it is dead, pid_task() will return NULL, 1362 * if we race with de_thread() it will find the 1363 * new leader. 1364 */ 1365 goto retry; 1366 } 1367 rcu_read_unlock(); 1368 1369 return error; 1370 } 1371 1372 int kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1373 { 1374 int error; 1375 rcu_read_lock(); 1376 error = kill_pid_info(sig, info, find_vpid(pid)); 1377 rcu_read_unlock(); 1378 return error; 1379 } 1380 1381 static int kill_as_cred_perm(const struct cred *cred, 1382 struct task_struct *target) 1383 { 1384 const struct cred *pcred = __task_cred(target); 1385 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) && 1386 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid)) 1387 return 0; 1388 return 1; 1389 } 1390 1391 /* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1392 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid, 1393 const struct cred *cred, u32 secid) 1394 { 1395 int ret = -EINVAL; 1396 struct task_struct *p; 1397 unsigned long flags; 1398 1399 if (!valid_signal(sig)) 1400 return ret; 1401 1402 rcu_read_lock(); 1403 p = pid_task(pid, PIDTYPE_PID); 1404 if (!p) { 1405 ret = -ESRCH; 1406 goto out_unlock; 1407 } 1408 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) { 1409 ret = -EPERM; 1410 goto out_unlock; 1411 } 1412 ret = security_task_kill(p, info, sig, secid); 1413 if (ret) 1414 goto out_unlock; 1415 1416 if (sig) { 1417 if (lock_task_sighand(p, &flags)) { 1418 ret = __send_signal(sig, info, p, 1, 0); 1419 unlock_task_sighand(p, &flags); 1420 } else 1421 ret = -ESRCH; 1422 } 1423 out_unlock: 1424 rcu_read_unlock(); 1425 return ret; 1426 } 1427 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred); 1428 1429 /* 1430 * kill_something_info() interprets pid in interesting ways just like kill(2). 1431 * 1432 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1433 * is probably wrong. Should make it like BSD or SYSV. 1434 */ 1435 1436 static int kill_something_info(int sig, struct siginfo *info, pid_t pid) 1437 { 1438 int ret; 1439 1440 if (pid > 0) { 1441 rcu_read_lock(); 1442 ret = kill_pid_info(sig, info, find_vpid(pid)); 1443 rcu_read_unlock(); 1444 return ret; 1445 } 1446 1447 read_lock(&tasklist_lock); 1448 if (pid != -1) { 1449 ret = __kill_pgrp_info(sig, info, 1450 pid ? find_vpid(-pid) : task_pgrp(current)); 1451 } else { 1452 int retval = 0, count = 0; 1453 struct task_struct * p; 1454 1455 for_each_process(p) { 1456 if (task_pid_vnr(p) > 1 && 1457 !same_thread_group(p, current)) { 1458 int err = group_send_sig_info(sig, info, p); 1459 ++count; 1460 if (err != -EPERM) 1461 retval = err; 1462 } 1463 } 1464 ret = count ? retval : -ESRCH; 1465 } 1466 read_unlock(&tasklist_lock); 1467 1468 return ret; 1469 } 1470 1471 /* 1472 * These are for backward compatibility with the rest of the kernel source. 1473 */ 1474 1475 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1476 { 1477 /* 1478 * Make sure legacy kernel users don't send in bad values 1479 * (normal paths check this in check_kill_permission). 1480 */ 1481 if (!valid_signal(sig)) 1482 return -EINVAL; 1483 1484 return do_send_sig_info(sig, info, p, false); 1485 } 1486 1487 #define __si_special(priv) \ 1488 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1489 1490 int 1491 send_sig(int sig, struct task_struct *p, int priv) 1492 { 1493 return send_sig_info(sig, __si_special(priv), p); 1494 } 1495 1496 void 1497 force_sig(int sig, struct task_struct *p) 1498 { 1499 force_sig_info(sig, SEND_SIG_PRIV, p); 1500 } 1501 1502 /* 1503 * When things go south during signal handling, we 1504 * will force a SIGSEGV. And if the signal that caused 1505 * the problem was already a SIGSEGV, we'll want to 1506 * make sure we don't even try to deliver the signal.. 1507 */ 1508 int 1509 force_sigsegv(int sig, struct task_struct *p) 1510 { 1511 if (sig == SIGSEGV) { 1512 unsigned long flags; 1513 spin_lock_irqsave(&p->sighand->siglock, flags); 1514 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1515 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1516 } 1517 force_sig(SIGSEGV, p); 1518 return 0; 1519 } 1520 1521 int kill_pgrp(struct pid *pid, int sig, int priv) 1522 { 1523 int ret; 1524 1525 read_lock(&tasklist_lock); 1526 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1527 read_unlock(&tasklist_lock); 1528 1529 return ret; 1530 } 1531 EXPORT_SYMBOL(kill_pgrp); 1532 1533 int kill_pid(struct pid *pid, int sig, int priv) 1534 { 1535 return kill_pid_info(sig, __si_special(priv), pid); 1536 } 1537 EXPORT_SYMBOL(kill_pid); 1538 1539 /* 1540 * These functions support sending signals using preallocated sigqueue 1541 * structures. This is needed "because realtime applications cannot 1542 * afford to lose notifications of asynchronous events, like timer 1543 * expirations or I/O completions". In the case of POSIX Timers 1544 * we allocate the sigqueue structure from the timer_create. If this 1545 * allocation fails we are able to report the failure to the application 1546 * with an EAGAIN error. 1547 */ 1548 struct sigqueue *sigqueue_alloc(void) 1549 { 1550 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); 1551 1552 if (q) 1553 q->flags |= SIGQUEUE_PREALLOC; 1554 1555 return q; 1556 } 1557 1558 void sigqueue_free(struct sigqueue *q) 1559 { 1560 unsigned long flags; 1561 spinlock_t *lock = ¤t->sighand->siglock; 1562 1563 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1564 /* 1565 * We must hold ->siglock while testing q->list 1566 * to serialize with collect_signal() or with 1567 * __exit_signal()->flush_sigqueue(). 1568 */ 1569 spin_lock_irqsave(lock, flags); 1570 q->flags &= ~SIGQUEUE_PREALLOC; 1571 /* 1572 * If it is queued it will be freed when dequeued, 1573 * like the "regular" sigqueue. 1574 */ 1575 if (!list_empty(&q->list)) 1576 q = NULL; 1577 spin_unlock_irqrestore(lock, flags); 1578 1579 if (q) 1580 __sigqueue_free(q); 1581 } 1582 1583 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) 1584 { 1585 int sig = q->info.si_signo; 1586 struct sigpending *pending; 1587 unsigned long flags; 1588 int ret, result; 1589 1590 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1591 1592 ret = -1; 1593 if (!likely(lock_task_sighand(t, &flags))) 1594 goto ret; 1595 1596 ret = 1; /* the signal is ignored */ 1597 result = TRACE_SIGNAL_IGNORED; 1598 if (!prepare_signal(sig, t, false)) 1599 goto out; 1600 1601 ret = 0; 1602 if (unlikely(!list_empty(&q->list))) { 1603 /* 1604 * If an SI_TIMER entry is already queue just increment 1605 * the overrun count. 1606 */ 1607 BUG_ON(q->info.si_code != SI_TIMER); 1608 q->info.si_overrun++; 1609 result = TRACE_SIGNAL_ALREADY_PENDING; 1610 goto out; 1611 } 1612 q->info.si_overrun = 0; 1613 1614 signalfd_notify(t, sig); 1615 pending = group ? &t->signal->shared_pending : &t->pending; 1616 list_add_tail(&q->list, &pending->list); 1617 sigaddset(&pending->signal, sig); 1618 complete_signal(sig, t, group); 1619 result = TRACE_SIGNAL_DELIVERED; 1620 out: 1621 trace_signal_generate(sig, &q->info, t, group, result); 1622 unlock_task_sighand(t, &flags); 1623 ret: 1624 return ret; 1625 } 1626 1627 /* 1628 * Let a parent know about the death of a child. 1629 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1630 * 1631 * Returns true if our parent ignored us and so we've switched to 1632 * self-reaping. 1633 */ 1634 bool do_notify_parent(struct task_struct *tsk, int sig) 1635 { 1636 struct siginfo info; 1637 unsigned long flags; 1638 struct sighand_struct *psig; 1639 bool autoreap = false; 1640 1641 BUG_ON(sig == -1); 1642 1643 /* do_notify_parent_cldstop should have been called instead. */ 1644 BUG_ON(task_is_stopped_or_traced(tsk)); 1645 1646 BUG_ON(!tsk->ptrace && 1647 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1648 1649 if (sig != SIGCHLD) { 1650 /* 1651 * This is only possible if parent == real_parent. 1652 * Check if it has changed security domain. 1653 */ 1654 if (tsk->parent_exec_id != tsk->parent->self_exec_id) 1655 sig = SIGCHLD; 1656 } 1657 1658 info.si_signo = sig; 1659 info.si_errno = 0; 1660 /* 1661 * We are under tasklist_lock here so our parent is tied to 1662 * us and cannot change. 1663 * 1664 * task_active_pid_ns will always return the same pid namespace 1665 * until a task passes through release_task. 1666 * 1667 * write_lock() currently calls preempt_disable() which is the 1668 * same as rcu_read_lock(), but according to Oleg, this is not 1669 * correct to rely on this 1670 */ 1671 rcu_read_lock(); 1672 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 1673 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 1674 task_uid(tsk)); 1675 rcu_read_unlock(); 1676 1677 info.si_utime = cputime_to_clock_t(tsk->utime + tsk->signal->utime); 1678 info.si_stime = cputime_to_clock_t(tsk->stime + tsk->signal->stime); 1679 1680 info.si_status = tsk->exit_code & 0x7f; 1681 if (tsk->exit_code & 0x80) 1682 info.si_code = CLD_DUMPED; 1683 else if (tsk->exit_code & 0x7f) 1684 info.si_code = CLD_KILLED; 1685 else { 1686 info.si_code = CLD_EXITED; 1687 info.si_status = tsk->exit_code >> 8; 1688 } 1689 1690 psig = tsk->parent->sighand; 1691 spin_lock_irqsave(&psig->siglock, flags); 1692 if (!tsk->ptrace && sig == SIGCHLD && 1693 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1694 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1695 /* 1696 * We are exiting and our parent doesn't care. POSIX.1 1697 * defines special semantics for setting SIGCHLD to SIG_IGN 1698 * or setting the SA_NOCLDWAIT flag: we should be reaped 1699 * automatically and not left for our parent's wait4 call. 1700 * Rather than having the parent do it as a magic kind of 1701 * signal handler, we just set this to tell do_exit that we 1702 * can be cleaned up without becoming a zombie. Note that 1703 * we still call __wake_up_parent in this case, because a 1704 * blocked sys_wait4 might now return -ECHILD. 1705 * 1706 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1707 * is implementation-defined: we do (if you don't want 1708 * it, just use SIG_IGN instead). 1709 */ 1710 autoreap = true; 1711 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1712 sig = 0; 1713 } 1714 if (valid_signal(sig) && sig) 1715 __group_send_sig_info(sig, &info, tsk->parent); 1716 __wake_up_parent(tsk, tsk->parent); 1717 spin_unlock_irqrestore(&psig->siglock, flags); 1718 1719 return autoreap; 1720 } 1721 1722 /** 1723 * do_notify_parent_cldstop - notify parent of stopped/continued state change 1724 * @tsk: task reporting the state change 1725 * @for_ptracer: the notification is for ptracer 1726 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 1727 * 1728 * Notify @tsk's parent that the stopped/continued state has changed. If 1729 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 1730 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 1731 * 1732 * CONTEXT: 1733 * Must be called with tasklist_lock at least read locked. 1734 */ 1735 static void do_notify_parent_cldstop(struct task_struct *tsk, 1736 bool for_ptracer, int why) 1737 { 1738 struct siginfo info; 1739 unsigned long flags; 1740 struct task_struct *parent; 1741 struct sighand_struct *sighand; 1742 1743 if (for_ptracer) { 1744 parent = tsk->parent; 1745 } else { 1746 tsk = tsk->group_leader; 1747 parent = tsk->real_parent; 1748 } 1749 1750 info.si_signo = SIGCHLD; 1751 info.si_errno = 0; 1752 /* 1753 * see comment in do_notify_parent() about the following 4 lines 1754 */ 1755 rcu_read_lock(); 1756 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 1757 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 1758 rcu_read_unlock(); 1759 1760 info.si_utime = cputime_to_clock_t(tsk->utime); 1761 info.si_stime = cputime_to_clock_t(tsk->stime); 1762 1763 info.si_code = why; 1764 switch (why) { 1765 case CLD_CONTINUED: 1766 info.si_status = SIGCONT; 1767 break; 1768 case CLD_STOPPED: 1769 info.si_status = tsk->signal->group_exit_code & 0x7f; 1770 break; 1771 case CLD_TRAPPED: 1772 info.si_status = tsk->exit_code & 0x7f; 1773 break; 1774 default: 1775 BUG(); 1776 } 1777 1778 sighand = parent->sighand; 1779 spin_lock_irqsave(&sighand->siglock, flags); 1780 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1781 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1782 __group_send_sig_info(SIGCHLD, &info, parent); 1783 /* 1784 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1785 */ 1786 __wake_up_parent(tsk, parent); 1787 spin_unlock_irqrestore(&sighand->siglock, flags); 1788 } 1789 1790 static inline int may_ptrace_stop(void) 1791 { 1792 if (!likely(current->ptrace)) 1793 return 0; 1794 /* 1795 * Are we in the middle of do_coredump? 1796 * If so and our tracer is also part of the coredump stopping 1797 * is a deadlock situation, and pointless because our tracer 1798 * is dead so don't allow us to stop. 1799 * If SIGKILL was already sent before the caller unlocked 1800 * ->siglock we must see ->core_state != NULL. Otherwise it 1801 * is safe to enter schedule(). 1802 */ 1803 if (unlikely(current->mm->core_state) && 1804 unlikely(current->mm == current->parent->mm)) 1805 return 0; 1806 1807 return 1; 1808 } 1809 1810 /* 1811 * Return non-zero if there is a SIGKILL that should be waking us up. 1812 * Called with the siglock held. 1813 */ 1814 static int sigkill_pending(struct task_struct *tsk) 1815 { 1816 return sigismember(&tsk->pending.signal, SIGKILL) || 1817 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 1818 } 1819 1820 /* 1821 * This must be called with current->sighand->siglock held. 1822 * 1823 * This should be the path for all ptrace stops. 1824 * We always set current->last_siginfo while stopped here. 1825 * That makes it a way to test a stopped process for 1826 * being ptrace-stopped vs being job-control-stopped. 1827 * 1828 * If we actually decide not to stop at all because the tracer 1829 * is gone, we keep current->exit_code unless clear_code. 1830 */ 1831 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info) 1832 __releases(¤t->sighand->siglock) 1833 __acquires(¤t->sighand->siglock) 1834 { 1835 bool gstop_done = false; 1836 1837 if (arch_ptrace_stop_needed(exit_code, info)) { 1838 /* 1839 * The arch code has something special to do before a 1840 * ptrace stop. This is allowed to block, e.g. for faults 1841 * on user stack pages. We can't keep the siglock while 1842 * calling arch_ptrace_stop, so we must release it now. 1843 * To preserve proper semantics, we must do this before 1844 * any signal bookkeeping like checking group_stop_count. 1845 * Meanwhile, a SIGKILL could come in before we retake the 1846 * siglock. That must prevent us from sleeping in TASK_TRACED. 1847 * So after regaining the lock, we must check for SIGKILL. 1848 */ 1849 spin_unlock_irq(¤t->sighand->siglock); 1850 arch_ptrace_stop(exit_code, info); 1851 spin_lock_irq(¤t->sighand->siglock); 1852 if (sigkill_pending(current)) 1853 return; 1854 } 1855 1856 /* 1857 * We're committing to trapping. TRACED should be visible before 1858 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 1859 * Also, transition to TRACED and updates to ->jobctl should be 1860 * atomic with respect to siglock and should be done after the arch 1861 * hook as siglock is released and regrabbed across it. 1862 */ 1863 set_current_state(TASK_TRACED); 1864 1865 current->last_siginfo = info; 1866 current->exit_code = exit_code; 1867 1868 /* 1869 * If @why is CLD_STOPPED, we're trapping to participate in a group 1870 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 1871 * across siglock relocks since INTERRUPT was scheduled, PENDING 1872 * could be clear now. We act as if SIGCONT is received after 1873 * TASK_TRACED is entered - ignore it. 1874 */ 1875 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 1876 gstop_done = task_participate_group_stop(current); 1877 1878 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 1879 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 1880 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 1881 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 1882 1883 /* entering a trap, clear TRAPPING */ 1884 task_clear_jobctl_trapping(current); 1885 1886 spin_unlock_irq(¤t->sighand->siglock); 1887 read_lock(&tasklist_lock); 1888 if (may_ptrace_stop()) { 1889 /* 1890 * Notify parents of the stop. 1891 * 1892 * While ptraced, there are two parents - the ptracer and 1893 * the real_parent of the group_leader. The ptracer should 1894 * know about every stop while the real parent is only 1895 * interested in the completion of group stop. The states 1896 * for the two don't interact with each other. Notify 1897 * separately unless they're gonna be duplicates. 1898 */ 1899 do_notify_parent_cldstop(current, true, why); 1900 if (gstop_done && ptrace_reparented(current)) 1901 do_notify_parent_cldstop(current, false, why); 1902 1903 /* 1904 * Don't want to allow preemption here, because 1905 * sys_ptrace() needs this task to be inactive. 1906 * 1907 * XXX: implement read_unlock_no_resched(). 1908 */ 1909 preempt_disable(); 1910 read_unlock(&tasklist_lock); 1911 preempt_enable_no_resched(); 1912 freezable_schedule(); 1913 } else { 1914 /* 1915 * By the time we got the lock, our tracer went away. 1916 * Don't drop the lock yet, another tracer may come. 1917 * 1918 * If @gstop_done, the ptracer went away between group stop 1919 * completion and here. During detach, it would have set 1920 * JOBCTL_STOP_PENDING on us and we'll re-enter 1921 * TASK_STOPPED in do_signal_stop() on return, so notifying 1922 * the real parent of the group stop completion is enough. 1923 */ 1924 if (gstop_done) 1925 do_notify_parent_cldstop(current, false, why); 1926 1927 __set_current_state(TASK_RUNNING); 1928 if (clear_code) 1929 current->exit_code = 0; 1930 read_unlock(&tasklist_lock); 1931 } 1932 1933 /* 1934 * We are back. Now reacquire the siglock before touching 1935 * last_siginfo, so that we are sure to have synchronized with 1936 * any signal-sending on another CPU that wants to examine it. 1937 */ 1938 spin_lock_irq(¤t->sighand->siglock); 1939 current->last_siginfo = NULL; 1940 1941 /* LISTENING can be set only during STOP traps, clear it */ 1942 current->jobctl &= ~JOBCTL_LISTENING; 1943 1944 /* 1945 * Queued signals ignored us while we were stopped for tracing. 1946 * So check for any that we should take before resuming user mode. 1947 * This sets TIF_SIGPENDING, but never clears it. 1948 */ 1949 recalc_sigpending_tsk(current); 1950 } 1951 1952 static void ptrace_do_notify(int signr, int exit_code, int why) 1953 { 1954 siginfo_t info; 1955 1956 memset(&info, 0, sizeof info); 1957 info.si_signo = signr; 1958 info.si_code = exit_code; 1959 info.si_pid = task_pid_vnr(current); 1960 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1961 1962 /* Let the debugger run. */ 1963 ptrace_stop(exit_code, why, 1, &info); 1964 } 1965 1966 void ptrace_notify(int exit_code) 1967 { 1968 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1969 if (unlikely(current->task_works)) 1970 task_work_run(); 1971 1972 spin_lock_irq(¤t->sighand->siglock); 1973 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 1974 spin_unlock_irq(¤t->sighand->siglock); 1975 } 1976 1977 /** 1978 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 1979 * @signr: signr causing group stop if initiating 1980 * 1981 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 1982 * and participate in it. If already set, participate in the existing 1983 * group stop. If participated in a group stop (and thus slept), %true is 1984 * returned with siglock released. 1985 * 1986 * If ptraced, this function doesn't handle stop itself. Instead, 1987 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 1988 * untouched. The caller must ensure that INTERRUPT trap handling takes 1989 * places afterwards. 1990 * 1991 * CONTEXT: 1992 * Must be called with @current->sighand->siglock held, which is released 1993 * on %true return. 1994 * 1995 * RETURNS: 1996 * %false if group stop is already cancelled or ptrace trap is scheduled. 1997 * %true if participated in group stop. 1998 */ 1999 static bool do_signal_stop(int signr) 2000 __releases(¤t->sighand->siglock) 2001 { 2002 struct signal_struct *sig = current->signal; 2003 2004 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2005 unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2006 struct task_struct *t; 2007 2008 /* signr will be recorded in task->jobctl for retries */ 2009 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2010 2011 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2012 unlikely(signal_group_exit(sig))) 2013 return false; 2014 /* 2015 * There is no group stop already in progress. We must 2016 * initiate one now. 2017 * 2018 * While ptraced, a task may be resumed while group stop is 2019 * still in effect and then receive a stop signal and 2020 * initiate another group stop. This deviates from the 2021 * usual behavior as two consecutive stop signals can't 2022 * cause two group stops when !ptraced. That is why we 2023 * also check !task_is_stopped(t) below. 2024 * 2025 * The condition can be distinguished by testing whether 2026 * SIGNAL_STOP_STOPPED is already set. Don't generate 2027 * group_exit_code in such case. 2028 * 2029 * This is not necessary for SIGNAL_STOP_CONTINUED because 2030 * an intervening stop signal is required to cause two 2031 * continued events regardless of ptrace. 2032 */ 2033 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2034 sig->group_exit_code = signr; 2035 2036 sig->group_stop_count = 0; 2037 2038 if (task_set_jobctl_pending(current, signr | gstop)) 2039 sig->group_stop_count++; 2040 2041 for (t = next_thread(current); t != current; 2042 t = next_thread(t)) { 2043 /* 2044 * Setting state to TASK_STOPPED for a group 2045 * stop is always done with the siglock held, 2046 * so this check has no races. 2047 */ 2048 if (!task_is_stopped(t) && 2049 task_set_jobctl_pending(t, signr | gstop)) { 2050 sig->group_stop_count++; 2051 if (likely(!(t->ptrace & PT_SEIZED))) 2052 signal_wake_up(t, 0); 2053 else 2054 ptrace_trap_notify(t); 2055 } 2056 } 2057 } 2058 2059 if (likely(!current->ptrace)) { 2060 int notify = 0; 2061 2062 /* 2063 * If there are no other threads in the group, or if there 2064 * is a group stop in progress and we are the last to stop, 2065 * report to the parent. 2066 */ 2067 if (task_participate_group_stop(current)) 2068 notify = CLD_STOPPED; 2069 2070 __set_current_state(TASK_STOPPED); 2071 spin_unlock_irq(¤t->sighand->siglock); 2072 2073 /* 2074 * Notify the parent of the group stop completion. Because 2075 * we're not holding either the siglock or tasklist_lock 2076 * here, ptracer may attach inbetween; however, this is for 2077 * group stop and should always be delivered to the real 2078 * parent of the group leader. The new ptracer will get 2079 * its notification when this task transitions into 2080 * TASK_TRACED. 2081 */ 2082 if (notify) { 2083 read_lock(&tasklist_lock); 2084 do_notify_parent_cldstop(current, false, notify); 2085 read_unlock(&tasklist_lock); 2086 } 2087 2088 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2089 freezable_schedule(); 2090 return true; 2091 } else { 2092 /* 2093 * While ptraced, group stop is handled by STOP trap. 2094 * Schedule it and let the caller deal with it. 2095 */ 2096 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2097 return false; 2098 } 2099 } 2100 2101 /** 2102 * do_jobctl_trap - take care of ptrace jobctl traps 2103 * 2104 * When PT_SEIZED, it's used for both group stop and explicit 2105 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2106 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2107 * the stop signal; otherwise, %SIGTRAP. 2108 * 2109 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2110 * number as exit_code and no siginfo. 2111 * 2112 * CONTEXT: 2113 * Must be called with @current->sighand->siglock held, which may be 2114 * released and re-acquired before returning with intervening sleep. 2115 */ 2116 static void do_jobctl_trap(void) 2117 { 2118 struct signal_struct *signal = current->signal; 2119 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2120 2121 if (current->ptrace & PT_SEIZED) { 2122 if (!signal->group_stop_count && 2123 !(signal->flags & SIGNAL_STOP_STOPPED)) 2124 signr = SIGTRAP; 2125 WARN_ON_ONCE(!signr); 2126 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2127 CLD_STOPPED); 2128 } else { 2129 WARN_ON_ONCE(!signr); 2130 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2131 current->exit_code = 0; 2132 } 2133 } 2134 2135 static int ptrace_signal(int signr, siginfo_t *info) 2136 { 2137 ptrace_signal_deliver(); 2138 /* 2139 * We do not check sig_kernel_stop(signr) but set this marker 2140 * unconditionally because we do not know whether debugger will 2141 * change signr. This flag has no meaning unless we are going 2142 * to stop after return from ptrace_stop(). In this case it will 2143 * be checked in do_signal_stop(), we should only stop if it was 2144 * not cleared by SIGCONT while we were sleeping. See also the 2145 * comment in dequeue_signal(). 2146 */ 2147 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2148 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2149 2150 /* We're back. Did the debugger cancel the sig? */ 2151 signr = current->exit_code; 2152 if (signr == 0) 2153 return signr; 2154 2155 current->exit_code = 0; 2156 2157 /* 2158 * Update the siginfo structure if the signal has 2159 * changed. If the debugger wanted something 2160 * specific in the siginfo structure then it should 2161 * have updated *info via PTRACE_SETSIGINFO. 2162 */ 2163 if (signr != info->si_signo) { 2164 info->si_signo = signr; 2165 info->si_errno = 0; 2166 info->si_code = SI_USER; 2167 rcu_read_lock(); 2168 info->si_pid = task_pid_vnr(current->parent); 2169 info->si_uid = from_kuid_munged(current_user_ns(), 2170 task_uid(current->parent)); 2171 rcu_read_unlock(); 2172 } 2173 2174 /* If the (new) signal is now blocked, requeue it. */ 2175 if (sigismember(¤t->blocked, signr)) { 2176 specific_send_sig_info(signr, info, current); 2177 signr = 0; 2178 } 2179 2180 return signr; 2181 } 2182 2183 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, 2184 struct pt_regs *regs, void *cookie) 2185 { 2186 struct sighand_struct *sighand = current->sighand; 2187 struct signal_struct *signal = current->signal; 2188 int signr; 2189 2190 if (unlikely(current->task_works)) 2191 task_work_run(); 2192 2193 if (unlikely(uprobe_deny_signal())) 2194 return 0; 2195 2196 /* 2197 * Do this once, we can't return to user-mode if freezing() == T. 2198 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2199 * thus do not need another check after return. 2200 */ 2201 try_to_freeze(); 2202 2203 relock: 2204 spin_lock_irq(&sighand->siglock); 2205 /* 2206 * Every stopped thread goes here after wakeup. Check to see if 2207 * we should notify the parent, prepare_signal(SIGCONT) encodes 2208 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2209 */ 2210 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2211 int why; 2212 2213 if (signal->flags & SIGNAL_CLD_CONTINUED) 2214 why = CLD_CONTINUED; 2215 else 2216 why = CLD_STOPPED; 2217 2218 signal->flags &= ~SIGNAL_CLD_MASK; 2219 2220 spin_unlock_irq(&sighand->siglock); 2221 2222 /* 2223 * Notify the parent that we're continuing. This event is 2224 * always per-process and doesn't make whole lot of sense 2225 * for ptracers, who shouldn't consume the state via 2226 * wait(2) either, but, for backward compatibility, notify 2227 * the ptracer of the group leader too unless it's gonna be 2228 * a duplicate. 2229 */ 2230 read_lock(&tasklist_lock); 2231 do_notify_parent_cldstop(current, false, why); 2232 2233 if (ptrace_reparented(current->group_leader)) 2234 do_notify_parent_cldstop(current->group_leader, 2235 true, why); 2236 read_unlock(&tasklist_lock); 2237 2238 goto relock; 2239 } 2240 2241 for (;;) { 2242 struct k_sigaction *ka; 2243 2244 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2245 do_signal_stop(0)) 2246 goto relock; 2247 2248 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) { 2249 do_jobctl_trap(); 2250 spin_unlock_irq(&sighand->siglock); 2251 goto relock; 2252 } 2253 2254 signr = dequeue_signal(current, ¤t->blocked, info); 2255 2256 if (!signr) 2257 break; /* will return 0 */ 2258 2259 if (unlikely(current->ptrace) && signr != SIGKILL) { 2260 signr = ptrace_signal(signr, info); 2261 if (!signr) 2262 continue; 2263 } 2264 2265 ka = &sighand->action[signr-1]; 2266 2267 /* Trace actually delivered signals. */ 2268 trace_signal_deliver(signr, info, ka); 2269 2270 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2271 continue; 2272 if (ka->sa.sa_handler != SIG_DFL) { 2273 /* Run the handler. */ 2274 *return_ka = *ka; 2275 2276 if (ka->sa.sa_flags & SA_ONESHOT) 2277 ka->sa.sa_handler = SIG_DFL; 2278 2279 break; /* will return non-zero "signr" value */ 2280 } 2281 2282 /* 2283 * Now we are doing the default action for this signal. 2284 */ 2285 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2286 continue; 2287 2288 /* 2289 * Global init gets no signals it doesn't want. 2290 * Container-init gets no signals it doesn't want from same 2291 * container. 2292 * 2293 * Note that if global/container-init sees a sig_kernel_only() 2294 * signal here, the signal must have been generated internally 2295 * or must have come from an ancestor namespace. In either 2296 * case, the signal cannot be dropped. 2297 */ 2298 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2299 !sig_kernel_only(signr)) 2300 continue; 2301 2302 if (sig_kernel_stop(signr)) { 2303 /* 2304 * The default action is to stop all threads in 2305 * the thread group. The job control signals 2306 * do nothing in an orphaned pgrp, but SIGSTOP 2307 * always works. Note that siglock needs to be 2308 * dropped during the call to is_orphaned_pgrp() 2309 * because of lock ordering with tasklist_lock. 2310 * This allows an intervening SIGCONT to be posted. 2311 * We need to check for that and bail out if necessary. 2312 */ 2313 if (signr != SIGSTOP) { 2314 spin_unlock_irq(&sighand->siglock); 2315 2316 /* signals can be posted during this window */ 2317 2318 if (is_current_pgrp_orphaned()) 2319 goto relock; 2320 2321 spin_lock_irq(&sighand->siglock); 2322 } 2323 2324 if (likely(do_signal_stop(info->si_signo))) { 2325 /* It released the siglock. */ 2326 goto relock; 2327 } 2328 2329 /* 2330 * We didn't actually stop, due to a race 2331 * with SIGCONT or something like that. 2332 */ 2333 continue; 2334 } 2335 2336 spin_unlock_irq(&sighand->siglock); 2337 2338 /* 2339 * Anything else is fatal, maybe with a core dump. 2340 */ 2341 current->flags |= PF_SIGNALED; 2342 2343 if (sig_kernel_coredump(signr)) { 2344 if (print_fatal_signals) 2345 print_fatal_signal(info->si_signo); 2346 /* 2347 * If it was able to dump core, this kills all 2348 * other threads in the group and synchronizes with 2349 * their demise. If we lost the race with another 2350 * thread getting here, it set group_exit_code 2351 * first and our do_group_exit call below will use 2352 * that value and ignore the one we pass it. 2353 */ 2354 do_coredump(info); 2355 } 2356 2357 /* 2358 * Death signals, no core dump. 2359 */ 2360 do_group_exit(info->si_signo); 2361 /* NOTREACHED */ 2362 } 2363 spin_unlock_irq(&sighand->siglock); 2364 return signr; 2365 } 2366 2367 /** 2368 * signal_delivered - 2369 * @sig: number of signal being delivered 2370 * @info: siginfo_t of signal being delivered 2371 * @ka: sigaction setting that chose the handler 2372 * @regs: user register state 2373 * @stepping: nonzero if debugger single-step or block-step in use 2374 * 2375 * This function should be called when a signal has succesfully been 2376 * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask 2377 * is always blocked, and the signal itself is blocked unless %SA_NODEFER 2378 * is set in @ka->sa.sa_flags. Tracing is notified. 2379 */ 2380 void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka, 2381 struct pt_regs *regs, int stepping) 2382 { 2383 sigset_t blocked; 2384 2385 /* A signal was successfully delivered, and the 2386 saved sigmask was stored on the signal frame, 2387 and will be restored by sigreturn. So we can 2388 simply clear the restore sigmask flag. */ 2389 clear_restore_sigmask(); 2390 2391 sigorsets(&blocked, ¤t->blocked, &ka->sa.sa_mask); 2392 if (!(ka->sa.sa_flags & SA_NODEFER)) 2393 sigaddset(&blocked, sig); 2394 set_current_blocked(&blocked); 2395 tracehook_signal_handler(sig, info, ka, regs, stepping); 2396 } 2397 2398 /* 2399 * It could be that complete_signal() picked us to notify about the 2400 * group-wide signal. Other threads should be notified now to take 2401 * the shared signals in @which since we will not. 2402 */ 2403 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2404 { 2405 sigset_t retarget; 2406 struct task_struct *t; 2407 2408 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2409 if (sigisemptyset(&retarget)) 2410 return; 2411 2412 t = tsk; 2413 while_each_thread(tsk, t) { 2414 if (t->flags & PF_EXITING) 2415 continue; 2416 2417 if (!has_pending_signals(&retarget, &t->blocked)) 2418 continue; 2419 /* Remove the signals this thread can handle. */ 2420 sigandsets(&retarget, &retarget, &t->blocked); 2421 2422 if (!signal_pending(t)) 2423 signal_wake_up(t, 0); 2424 2425 if (sigisemptyset(&retarget)) 2426 break; 2427 } 2428 } 2429 2430 void exit_signals(struct task_struct *tsk) 2431 { 2432 int group_stop = 0; 2433 sigset_t unblocked; 2434 2435 /* 2436 * @tsk is about to have PF_EXITING set - lock out users which 2437 * expect stable threadgroup. 2438 */ 2439 threadgroup_change_begin(tsk); 2440 2441 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 2442 tsk->flags |= PF_EXITING; 2443 threadgroup_change_end(tsk); 2444 return; 2445 } 2446 2447 spin_lock_irq(&tsk->sighand->siglock); 2448 /* 2449 * From now this task is not visible for group-wide signals, 2450 * see wants_signal(), do_signal_stop(). 2451 */ 2452 tsk->flags |= PF_EXITING; 2453 2454 threadgroup_change_end(tsk); 2455 2456 if (!signal_pending(tsk)) 2457 goto out; 2458 2459 unblocked = tsk->blocked; 2460 signotset(&unblocked); 2461 retarget_shared_pending(tsk, &unblocked); 2462 2463 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2464 task_participate_group_stop(tsk)) 2465 group_stop = CLD_STOPPED; 2466 out: 2467 spin_unlock_irq(&tsk->sighand->siglock); 2468 2469 /* 2470 * If group stop has completed, deliver the notification. This 2471 * should always go to the real parent of the group leader. 2472 */ 2473 if (unlikely(group_stop)) { 2474 read_lock(&tasklist_lock); 2475 do_notify_parent_cldstop(tsk, false, group_stop); 2476 read_unlock(&tasklist_lock); 2477 } 2478 } 2479 2480 EXPORT_SYMBOL(recalc_sigpending); 2481 EXPORT_SYMBOL_GPL(dequeue_signal); 2482 EXPORT_SYMBOL(flush_signals); 2483 EXPORT_SYMBOL(force_sig); 2484 EXPORT_SYMBOL(send_sig); 2485 EXPORT_SYMBOL(send_sig_info); 2486 EXPORT_SYMBOL(sigprocmask); 2487 EXPORT_SYMBOL(block_all_signals); 2488 EXPORT_SYMBOL(unblock_all_signals); 2489 2490 2491 /* 2492 * System call entry points. 2493 */ 2494 2495 /** 2496 * sys_restart_syscall - restart a system call 2497 */ 2498 SYSCALL_DEFINE0(restart_syscall) 2499 { 2500 struct restart_block *restart = ¤t_thread_info()->restart_block; 2501 return restart->fn(restart); 2502 } 2503 2504 long do_no_restart_syscall(struct restart_block *param) 2505 { 2506 return -EINTR; 2507 } 2508 2509 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 2510 { 2511 if (signal_pending(tsk) && !thread_group_empty(tsk)) { 2512 sigset_t newblocked; 2513 /* A set of now blocked but previously unblocked signals. */ 2514 sigandnsets(&newblocked, newset, ¤t->blocked); 2515 retarget_shared_pending(tsk, &newblocked); 2516 } 2517 tsk->blocked = *newset; 2518 recalc_sigpending(); 2519 } 2520 2521 /** 2522 * set_current_blocked - change current->blocked mask 2523 * @newset: new mask 2524 * 2525 * It is wrong to change ->blocked directly, this helper should be used 2526 * to ensure the process can't miss a shared signal we are going to block. 2527 */ 2528 void set_current_blocked(sigset_t *newset) 2529 { 2530 struct task_struct *tsk = current; 2531 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2532 spin_lock_irq(&tsk->sighand->siglock); 2533 __set_task_blocked(tsk, newset); 2534 spin_unlock_irq(&tsk->sighand->siglock); 2535 } 2536 2537 void __set_current_blocked(const sigset_t *newset) 2538 { 2539 struct task_struct *tsk = current; 2540 2541 spin_lock_irq(&tsk->sighand->siglock); 2542 __set_task_blocked(tsk, newset); 2543 spin_unlock_irq(&tsk->sighand->siglock); 2544 } 2545 2546 /* 2547 * This is also useful for kernel threads that want to temporarily 2548 * (or permanently) block certain signals. 2549 * 2550 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2551 * interface happily blocks "unblockable" signals like SIGKILL 2552 * and friends. 2553 */ 2554 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2555 { 2556 struct task_struct *tsk = current; 2557 sigset_t newset; 2558 2559 /* Lockless, only current can change ->blocked, never from irq */ 2560 if (oldset) 2561 *oldset = tsk->blocked; 2562 2563 switch (how) { 2564 case SIG_BLOCK: 2565 sigorsets(&newset, &tsk->blocked, set); 2566 break; 2567 case SIG_UNBLOCK: 2568 sigandnsets(&newset, &tsk->blocked, set); 2569 break; 2570 case SIG_SETMASK: 2571 newset = *set; 2572 break; 2573 default: 2574 return -EINVAL; 2575 } 2576 2577 __set_current_blocked(&newset); 2578 return 0; 2579 } 2580 2581 /** 2582 * sys_rt_sigprocmask - change the list of currently blocked signals 2583 * @how: whether to add, remove, or set signals 2584 * @nset: stores pending signals 2585 * @oset: previous value of signal mask if non-null 2586 * @sigsetsize: size of sigset_t type 2587 */ 2588 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 2589 sigset_t __user *, oset, size_t, sigsetsize) 2590 { 2591 sigset_t old_set, new_set; 2592 int error; 2593 2594 /* XXX: Don't preclude handling different sized sigset_t's. */ 2595 if (sigsetsize != sizeof(sigset_t)) 2596 return -EINVAL; 2597 2598 old_set = current->blocked; 2599 2600 if (nset) { 2601 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 2602 return -EFAULT; 2603 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2604 2605 error = sigprocmask(how, &new_set, NULL); 2606 if (error) 2607 return error; 2608 } 2609 2610 if (oset) { 2611 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 2612 return -EFAULT; 2613 } 2614 2615 return 0; 2616 } 2617 2618 long do_sigpending(void __user *set, unsigned long sigsetsize) 2619 { 2620 long error = -EINVAL; 2621 sigset_t pending; 2622 2623 if (sigsetsize > sizeof(sigset_t)) 2624 goto out; 2625 2626 spin_lock_irq(¤t->sighand->siglock); 2627 sigorsets(&pending, ¤t->pending.signal, 2628 ¤t->signal->shared_pending.signal); 2629 spin_unlock_irq(¤t->sighand->siglock); 2630 2631 /* Outside the lock because only this thread touches it. */ 2632 sigandsets(&pending, ¤t->blocked, &pending); 2633 2634 error = -EFAULT; 2635 if (!copy_to_user(set, &pending, sigsetsize)) 2636 error = 0; 2637 2638 out: 2639 return error; 2640 } 2641 2642 /** 2643 * sys_rt_sigpending - examine a pending signal that has been raised 2644 * while blocked 2645 * @set: stores pending signals 2646 * @sigsetsize: size of sigset_t type or larger 2647 */ 2648 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize) 2649 { 2650 return do_sigpending(set, sigsetsize); 2651 } 2652 2653 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2654 2655 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) 2656 { 2657 int err; 2658 2659 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2660 return -EFAULT; 2661 if (from->si_code < 0) 2662 return __copy_to_user(to, from, sizeof(siginfo_t)) 2663 ? -EFAULT : 0; 2664 /* 2665 * If you change siginfo_t structure, please be sure 2666 * this code is fixed accordingly. 2667 * Please remember to update the signalfd_copyinfo() function 2668 * inside fs/signalfd.c too, in case siginfo_t changes. 2669 * It should never copy any pad contained in the structure 2670 * to avoid security leaks, but must copy the generic 2671 * 3 ints plus the relevant union member. 2672 */ 2673 err = __put_user(from->si_signo, &to->si_signo); 2674 err |= __put_user(from->si_errno, &to->si_errno); 2675 err |= __put_user((short)from->si_code, &to->si_code); 2676 switch (from->si_code & __SI_MASK) { 2677 case __SI_KILL: 2678 err |= __put_user(from->si_pid, &to->si_pid); 2679 err |= __put_user(from->si_uid, &to->si_uid); 2680 break; 2681 case __SI_TIMER: 2682 err |= __put_user(from->si_tid, &to->si_tid); 2683 err |= __put_user(from->si_overrun, &to->si_overrun); 2684 err |= __put_user(from->si_ptr, &to->si_ptr); 2685 break; 2686 case __SI_POLL: 2687 err |= __put_user(from->si_band, &to->si_band); 2688 err |= __put_user(from->si_fd, &to->si_fd); 2689 break; 2690 case __SI_FAULT: 2691 err |= __put_user(from->si_addr, &to->si_addr); 2692 #ifdef __ARCH_SI_TRAPNO 2693 err |= __put_user(from->si_trapno, &to->si_trapno); 2694 #endif 2695 #ifdef BUS_MCEERR_AO 2696 /* 2697 * Other callers might not initialize the si_lsb field, 2698 * so check explicitly for the right codes here. 2699 */ 2700 if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO) 2701 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb); 2702 #endif 2703 break; 2704 case __SI_CHLD: 2705 err |= __put_user(from->si_pid, &to->si_pid); 2706 err |= __put_user(from->si_uid, &to->si_uid); 2707 err |= __put_user(from->si_status, &to->si_status); 2708 err |= __put_user(from->si_utime, &to->si_utime); 2709 err |= __put_user(from->si_stime, &to->si_stime); 2710 break; 2711 case __SI_RT: /* This is not generated by the kernel as of now. */ 2712 case __SI_MESGQ: /* But this is */ 2713 err |= __put_user(from->si_pid, &to->si_pid); 2714 err |= __put_user(from->si_uid, &to->si_uid); 2715 err |= __put_user(from->si_ptr, &to->si_ptr); 2716 break; 2717 #ifdef __ARCH_SIGSYS 2718 case __SI_SYS: 2719 err |= __put_user(from->si_call_addr, &to->si_call_addr); 2720 err |= __put_user(from->si_syscall, &to->si_syscall); 2721 err |= __put_user(from->si_arch, &to->si_arch); 2722 break; 2723 #endif 2724 default: /* this is just in case for now ... */ 2725 err |= __put_user(from->si_pid, &to->si_pid); 2726 err |= __put_user(from->si_uid, &to->si_uid); 2727 break; 2728 } 2729 return err; 2730 } 2731 2732 #endif 2733 2734 /** 2735 * do_sigtimedwait - wait for queued signals specified in @which 2736 * @which: queued signals to wait for 2737 * @info: if non-null, the signal's siginfo is returned here 2738 * @ts: upper bound on process time suspension 2739 */ 2740 int do_sigtimedwait(const sigset_t *which, siginfo_t *info, 2741 const struct timespec *ts) 2742 { 2743 struct task_struct *tsk = current; 2744 long timeout = MAX_SCHEDULE_TIMEOUT; 2745 sigset_t mask = *which; 2746 int sig; 2747 2748 if (ts) { 2749 if (!timespec_valid(ts)) 2750 return -EINVAL; 2751 timeout = timespec_to_jiffies(ts); 2752 /* 2753 * We can be close to the next tick, add another one 2754 * to ensure we will wait at least the time asked for. 2755 */ 2756 if (ts->tv_sec || ts->tv_nsec) 2757 timeout++; 2758 } 2759 2760 /* 2761 * Invert the set of allowed signals to get those we want to block. 2762 */ 2763 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2764 signotset(&mask); 2765 2766 spin_lock_irq(&tsk->sighand->siglock); 2767 sig = dequeue_signal(tsk, &mask, info); 2768 if (!sig && timeout) { 2769 /* 2770 * None ready, temporarily unblock those we're interested 2771 * while we are sleeping in so that we'll be awakened when 2772 * they arrive. Unblocking is always fine, we can avoid 2773 * set_current_blocked(). 2774 */ 2775 tsk->real_blocked = tsk->blocked; 2776 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 2777 recalc_sigpending(); 2778 spin_unlock_irq(&tsk->sighand->siglock); 2779 2780 timeout = schedule_timeout_interruptible(timeout); 2781 2782 spin_lock_irq(&tsk->sighand->siglock); 2783 __set_task_blocked(tsk, &tsk->real_blocked); 2784 siginitset(&tsk->real_blocked, 0); 2785 sig = dequeue_signal(tsk, &mask, info); 2786 } 2787 spin_unlock_irq(&tsk->sighand->siglock); 2788 2789 if (sig) 2790 return sig; 2791 return timeout ? -EINTR : -EAGAIN; 2792 } 2793 2794 /** 2795 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 2796 * in @uthese 2797 * @uthese: queued signals to wait for 2798 * @uinfo: if non-null, the signal's siginfo is returned here 2799 * @uts: upper bound on process time suspension 2800 * @sigsetsize: size of sigset_t type 2801 */ 2802 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 2803 siginfo_t __user *, uinfo, const struct timespec __user *, uts, 2804 size_t, sigsetsize) 2805 { 2806 sigset_t these; 2807 struct timespec ts; 2808 siginfo_t info; 2809 int ret; 2810 2811 /* XXX: Don't preclude handling different sized sigset_t's. */ 2812 if (sigsetsize != sizeof(sigset_t)) 2813 return -EINVAL; 2814 2815 if (copy_from_user(&these, uthese, sizeof(these))) 2816 return -EFAULT; 2817 2818 if (uts) { 2819 if (copy_from_user(&ts, uts, sizeof(ts))) 2820 return -EFAULT; 2821 } 2822 2823 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 2824 2825 if (ret > 0 && uinfo) { 2826 if (copy_siginfo_to_user(uinfo, &info)) 2827 ret = -EFAULT; 2828 } 2829 2830 return ret; 2831 } 2832 2833 /** 2834 * sys_kill - send a signal to a process 2835 * @pid: the PID of the process 2836 * @sig: signal to be sent 2837 */ 2838 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 2839 { 2840 struct siginfo info; 2841 2842 info.si_signo = sig; 2843 info.si_errno = 0; 2844 info.si_code = SI_USER; 2845 info.si_pid = task_tgid_vnr(current); 2846 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2847 2848 return kill_something_info(sig, &info, pid); 2849 } 2850 2851 static int 2852 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) 2853 { 2854 struct task_struct *p; 2855 int error = -ESRCH; 2856 2857 rcu_read_lock(); 2858 p = find_task_by_vpid(pid); 2859 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 2860 error = check_kill_permission(sig, info, p); 2861 /* 2862 * The null signal is a permissions and process existence 2863 * probe. No signal is actually delivered. 2864 */ 2865 if (!error && sig) { 2866 error = do_send_sig_info(sig, info, p, false); 2867 /* 2868 * If lock_task_sighand() failed we pretend the task 2869 * dies after receiving the signal. The window is tiny, 2870 * and the signal is private anyway. 2871 */ 2872 if (unlikely(error == -ESRCH)) 2873 error = 0; 2874 } 2875 } 2876 rcu_read_unlock(); 2877 2878 return error; 2879 } 2880 2881 static int do_tkill(pid_t tgid, pid_t pid, int sig) 2882 { 2883 struct siginfo info; 2884 2885 info.si_signo = sig; 2886 info.si_errno = 0; 2887 info.si_code = SI_TKILL; 2888 info.si_pid = task_tgid_vnr(current); 2889 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2890 2891 return do_send_specific(tgid, pid, sig, &info); 2892 } 2893 2894 /** 2895 * sys_tgkill - send signal to one specific thread 2896 * @tgid: the thread group ID of the thread 2897 * @pid: the PID of the thread 2898 * @sig: signal to be sent 2899 * 2900 * This syscall also checks the @tgid and returns -ESRCH even if the PID 2901 * exists but it's not belonging to the target process anymore. This 2902 * method solves the problem of threads exiting and PIDs getting reused. 2903 */ 2904 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 2905 { 2906 /* This is only valid for single tasks */ 2907 if (pid <= 0 || tgid <= 0) 2908 return -EINVAL; 2909 2910 return do_tkill(tgid, pid, sig); 2911 } 2912 2913 /** 2914 * sys_tkill - send signal to one specific task 2915 * @pid: the PID of the task 2916 * @sig: signal to be sent 2917 * 2918 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2919 */ 2920 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 2921 { 2922 /* This is only valid for single tasks */ 2923 if (pid <= 0) 2924 return -EINVAL; 2925 2926 return do_tkill(0, pid, sig); 2927 } 2928 2929 /** 2930 * sys_rt_sigqueueinfo - send signal information to a signal 2931 * @pid: the PID of the thread 2932 * @sig: signal to be sent 2933 * @uinfo: signal info to be sent 2934 */ 2935 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 2936 siginfo_t __user *, uinfo) 2937 { 2938 siginfo_t info; 2939 2940 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2941 return -EFAULT; 2942 2943 /* Not even root can pretend to send signals from the kernel. 2944 * Nor can they impersonate a kill()/tgkill(), which adds source info. 2945 */ 2946 if (info.si_code >= 0 || info.si_code == SI_TKILL) { 2947 /* We used to allow any < 0 si_code */ 2948 WARN_ON_ONCE(info.si_code < 0); 2949 return -EPERM; 2950 } 2951 info.si_signo = sig; 2952 2953 /* POSIX.1b doesn't mention process groups. */ 2954 return kill_proc_info(sig, &info, pid); 2955 } 2956 2957 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info) 2958 { 2959 /* This is only valid for single tasks */ 2960 if (pid <= 0 || tgid <= 0) 2961 return -EINVAL; 2962 2963 /* Not even root can pretend to send signals from the kernel. 2964 * Nor can they impersonate a kill()/tgkill(), which adds source info. 2965 */ 2966 if (info->si_code >= 0 || info->si_code == SI_TKILL) { 2967 /* We used to allow any < 0 si_code */ 2968 WARN_ON_ONCE(info->si_code < 0); 2969 return -EPERM; 2970 } 2971 info->si_signo = sig; 2972 2973 return do_send_specific(tgid, pid, sig, info); 2974 } 2975 2976 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 2977 siginfo_t __user *, uinfo) 2978 { 2979 siginfo_t info; 2980 2981 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2982 return -EFAULT; 2983 2984 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 2985 } 2986 2987 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 2988 { 2989 struct task_struct *t = current; 2990 struct k_sigaction *k; 2991 sigset_t mask; 2992 2993 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 2994 return -EINVAL; 2995 2996 k = &t->sighand->action[sig-1]; 2997 2998 spin_lock_irq(¤t->sighand->siglock); 2999 if (oact) 3000 *oact = *k; 3001 3002 if (act) { 3003 sigdelsetmask(&act->sa.sa_mask, 3004 sigmask(SIGKILL) | sigmask(SIGSTOP)); 3005 *k = *act; 3006 /* 3007 * POSIX 3.3.1.3: 3008 * "Setting a signal action to SIG_IGN for a signal that is 3009 * pending shall cause the pending signal to be discarded, 3010 * whether or not it is blocked." 3011 * 3012 * "Setting a signal action to SIG_DFL for a signal that is 3013 * pending and whose default action is to ignore the signal 3014 * (for example, SIGCHLD), shall cause the pending signal to 3015 * be discarded, whether or not it is blocked" 3016 */ 3017 if (sig_handler_ignored(sig_handler(t, sig), sig)) { 3018 sigemptyset(&mask); 3019 sigaddset(&mask, sig); 3020 rm_from_queue_full(&mask, &t->signal->shared_pending); 3021 do { 3022 rm_from_queue_full(&mask, &t->pending); 3023 t = next_thread(t); 3024 } while (t != current); 3025 } 3026 } 3027 3028 spin_unlock_irq(¤t->sighand->siglock); 3029 return 0; 3030 } 3031 3032 int 3033 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 3034 { 3035 stack_t oss; 3036 int error; 3037 3038 oss.ss_sp = (void __user *) current->sas_ss_sp; 3039 oss.ss_size = current->sas_ss_size; 3040 oss.ss_flags = sas_ss_flags(sp); 3041 3042 if (uss) { 3043 void __user *ss_sp; 3044 size_t ss_size; 3045 int ss_flags; 3046 3047 error = -EFAULT; 3048 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))) 3049 goto out; 3050 error = __get_user(ss_sp, &uss->ss_sp) | 3051 __get_user(ss_flags, &uss->ss_flags) | 3052 __get_user(ss_size, &uss->ss_size); 3053 if (error) 3054 goto out; 3055 3056 error = -EPERM; 3057 if (on_sig_stack(sp)) 3058 goto out; 3059 3060 error = -EINVAL; 3061 /* 3062 * Note - this code used to test ss_flags incorrectly: 3063 * old code may have been written using ss_flags==0 3064 * to mean ss_flags==SS_ONSTACK (as this was the only 3065 * way that worked) - this fix preserves that older 3066 * mechanism. 3067 */ 3068 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) 3069 goto out; 3070 3071 if (ss_flags == SS_DISABLE) { 3072 ss_size = 0; 3073 ss_sp = NULL; 3074 } else { 3075 error = -ENOMEM; 3076 if (ss_size < MINSIGSTKSZ) 3077 goto out; 3078 } 3079 3080 current->sas_ss_sp = (unsigned long) ss_sp; 3081 current->sas_ss_size = ss_size; 3082 } 3083 3084 error = 0; 3085 if (uoss) { 3086 error = -EFAULT; 3087 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss))) 3088 goto out; 3089 error = __put_user(oss.ss_sp, &uoss->ss_sp) | 3090 __put_user(oss.ss_size, &uoss->ss_size) | 3091 __put_user(oss.ss_flags, &uoss->ss_flags); 3092 } 3093 3094 out: 3095 return error; 3096 } 3097 3098 #ifdef __ARCH_WANT_SYS_SIGPENDING 3099 3100 /** 3101 * sys_sigpending - examine pending signals 3102 * @set: where mask of pending signal is returned 3103 */ 3104 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set) 3105 { 3106 return do_sigpending(set, sizeof(*set)); 3107 } 3108 3109 #endif 3110 3111 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 3112 /** 3113 * sys_sigprocmask - examine and change blocked signals 3114 * @how: whether to add, remove, or set signals 3115 * @nset: signals to add or remove (if non-null) 3116 * @oset: previous value of signal mask if non-null 3117 * 3118 * Some platforms have their own version with special arguments; 3119 * others support only sys_rt_sigprocmask. 3120 */ 3121 3122 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 3123 old_sigset_t __user *, oset) 3124 { 3125 old_sigset_t old_set, new_set; 3126 sigset_t new_blocked; 3127 3128 old_set = current->blocked.sig[0]; 3129 3130 if (nset) { 3131 if (copy_from_user(&new_set, nset, sizeof(*nset))) 3132 return -EFAULT; 3133 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP)); 3134 3135 new_blocked = current->blocked; 3136 3137 switch (how) { 3138 case SIG_BLOCK: 3139 sigaddsetmask(&new_blocked, new_set); 3140 break; 3141 case SIG_UNBLOCK: 3142 sigdelsetmask(&new_blocked, new_set); 3143 break; 3144 case SIG_SETMASK: 3145 new_blocked.sig[0] = new_set; 3146 break; 3147 default: 3148 return -EINVAL; 3149 } 3150 3151 __set_current_blocked(&new_blocked); 3152 } 3153 3154 if (oset) { 3155 if (copy_to_user(oset, &old_set, sizeof(*oset))) 3156 return -EFAULT; 3157 } 3158 3159 return 0; 3160 } 3161 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 3162 3163 #ifdef __ARCH_WANT_SYS_RT_SIGACTION 3164 /** 3165 * sys_rt_sigaction - alter an action taken by a process 3166 * @sig: signal to be sent 3167 * @act: new sigaction 3168 * @oact: used to save the previous sigaction 3169 * @sigsetsize: size of sigset_t type 3170 */ 3171 SYSCALL_DEFINE4(rt_sigaction, int, sig, 3172 const struct sigaction __user *, act, 3173 struct sigaction __user *, oact, 3174 size_t, sigsetsize) 3175 { 3176 struct k_sigaction new_sa, old_sa; 3177 int ret = -EINVAL; 3178 3179 /* XXX: Don't preclude handling different sized sigset_t's. */ 3180 if (sigsetsize != sizeof(sigset_t)) 3181 goto out; 3182 3183 if (act) { 3184 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 3185 return -EFAULT; 3186 } 3187 3188 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 3189 3190 if (!ret && oact) { 3191 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 3192 return -EFAULT; 3193 } 3194 out: 3195 return ret; 3196 } 3197 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */ 3198 3199 #ifdef __ARCH_WANT_SYS_SGETMASK 3200 3201 /* 3202 * For backwards compatibility. Functionality superseded by sigprocmask. 3203 */ 3204 SYSCALL_DEFINE0(sgetmask) 3205 { 3206 /* SMP safe */ 3207 return current->blocked.sig[0]; 3208 } 3209 3210 SYSCALL_DEFINE1(ssetmask, int, newmask) 3211 { 3212 int old = current->blocked.sig[0]; 3213 sigset_t newset; 3214 3215 set_current_blocked(&newset); 3216 3217 return old; 3218 } 3219 #endif /* __ARCH_WANT_SGETMASK */ 3220 3221 #ifdef __ARCH_WANT_SYS_SIGNAL 3222 /* 3223 * For backwards compatibility. Functionality superseded by sigaction. 3224 */ 3225 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 3226 { 3227 struct k_sigaction new_sa, old_sa; 3228 int ret; 3229 3230 new_sa.sa.sa_handler = handler; 3231 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 3232 sigemptyset(&new_sa.sa.sa_mask); 3233 3234 ret = do_sigaction(sig, &new_sa, &old_sa); 3235 3236 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 3237 } 3238 #endif /* __ARCH_WANT_SYS_SIGNAL */ 3239 3240 #ifdef __ARCH_WANT_SYS_PAUSE 3241 3242 SYSCALL_DEFINE0(pause) 3243 { 3244 while (!signal_pending(current)) { 3245 current->state = TASK_INTERRUPTIBLE; 3246 schedule(); 3247 } 3248 return -ERESTARTNOHAND; 3249 } 3250 3251 #endif 3252 3253 int sigsuspend(sigset_t *set) 3254 { 3255 current->saved_sigmask = current->blocked; 3256 set_current_blocked(set); 3257 3258 current->state = TASK_INTERRUPTIBLE; 3259 schedule(); 3260 set_restore_sigmask(); 3261 return -ERESTARTNOHAND; 3262 } 3263 3264 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND 3265 /** 3266 * sys_rt_sigsuspend - replace the signal mask for a value with the 3267 * @unewset value until a signal is received 3268 * @unewset: new signal mask value 3269 * @sigsetsize: size of sigset_t type 3270 */ 3271 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 3272 { 3273 sigset_t newset; 3274 3275 /* XXX: Don't preclude handling different sized sigset_t's. */ 3276 if (sigsetsize != sizeof(sigset_t)) 3277 return -EINVAL; 3278 3279 if (copy_from_user(&newset, unewset, sizeof(newset))) 3280 return -EFAULT; 3281 return sigsuspend(&newset); 3282 } 3283 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */ 3284 3285 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma) 3286 { 3287 return NULL; 3288 } 3289 3290 void __init signals_init(void) 3291 { 3292 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 3293 } 3294 3295 #ifdef CONFIG_KGDB_KDB 3296 #include <linux/kdb.h> 3297 /* 3298 * kdb_send_sig_info - Allows kdb to send signals without exposing 3299 * signal internals. This function checks if the required locks are 3300 * available before calling the main signal code, to avoid kdb 3301 * deadlocks. 3302 */ 3303 void 3304 kdb_send_sig_info(struct task_struct *t, struct siginfo *info) 3305 { 3306 static struct task_struct *kdb_prev_t; 3307 int sig, new_t; 3308 if (!spin_trylock(&t->sighand->siglock)) { 3309 kdb_printf("Can't do kill command now.\n" 3310 "The sigmask lock is held somewhere else in " 3311 "kernel, try again later\n"); 3312 return; 3313 } 3314 spin_unlock(&t->sighand->siglock); 3315 new_t = kdb_prev_t != t; 3316 kdb_prev_t = t; 3317 if (t->state != TASK_RUNNING && new_t) { 3318 kdb_printf("Process is not RUNNING, sending a signal from " 3319 "kdb risks deadlock\n" 3320 "on the run queue locks. " 3321 "The signal has _not_ been sent.\n" 3322 "Reissue the kill command if you want to risk " 3323 "the deadlock.\n"); 3324 return; 3325 } 3326 sig = info->si_signo; 3327 if (send_sig_info(sig, info, t)) 3328 kdb_printf("Fail to deliver Signal %d to process %d.\n", 3329 sig, t->pid); 3330 else 3331 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 3332 } 3333 #endif /* CONFIG_KGDB_KDB */ 3334