xref: /linux/kernel/signal.c (revision b889fcf63cb62e7fdb7816565e28f44dbe4a76a5)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/signalfd.h>
26 #include <linux/ratelimit.h>
27 #include <linux/tracehook.h>
28 #include <linux/capability.h>
29 #include <linux/freezer.h>
30 #include <linux/pid_namespace.h>
31 #include <linux/nsproxy.h>
32 #include <linux/user_namespace.h>
33 #include <linux/uprobes.h>
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/signal.h>
36 
37 #include <asm/param.h>
38 #include <asm/uaccess.h>
39 #include <asm/unistd.h>
40 #include <asm/siginfo.h>
41 #include <asm/cacheflush.h>
42 #include "audit.h"	/* audit_signal_info() */
43 
44 /*
45  * SLAB caches for signal bits.
46  */
47 
48 static struct kmem_cache *sigqueue_cachep;
49 
50 int print_fatal_signals __read_mostly;
51 
52 static void __user *sig_handler(struct task_struct *t, int sig)
53 {
54 	return t->sighand->action[sig - 1].sa.sa_handler;
55 }
56 
57 static int sig_handler_ignored(void __user *handler, int sig)
58 {
59 	/* Is it explicitly or implicitly ignored? */
60 	return handler == SIG_IGN ||
61 		(handler == SIG_DFL && sig_kernel_ignore(sig));
62 }
63 
64 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
65 {
66 	void __user *handler;
67 
68 	handler = sig_handler(t, sig);
69 
70 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
71 			handler == SIG_DFL && !force)
72 		return 1;
73 
74 	return sig_handler_ignored(handler, sig);
75 }
76 
77 static int sig_ignored(struct task_struct *t, int sig, bool force)
78 {
79 	/*
80 	 * Blocked signals are never ignored, since the
81 	 * signal handler may change by the time it is
82 	 * unblocked.
83 	 */
84 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
85 		return 0;
86 
87 	if (!sig_task_ignored(t, sig, force))
88 		return 0;
89 
90 	/*
91 	 * Tracers may want to know about even ignored signals.
92 	 */
93 	return !t->ptrace;
94 }
95 
96 /*
97  * Re-calculate pending state from the set of locally pending
98  * signals, globally pending signals, and blocked signals.
99  */
100 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
101 {
102 	unsigned long ready;
103 	long i;
104 
105 	switch (_NSIG_WORDS) {
106 	default:
107 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
108 			ready |= signal->sig[i] &~ blocked->sig[i];
109 		break;
110 
111 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
112 		ready |= signal->sig[2] &~ blocked->sig[2];
113 		ready |= signal->sig[1] &~ blocked->sig[1];
114 		ready |= signal->sig[0] &~ blocked->sig[0];
115 		break;
116 
117 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
118 		ready |= signal->sig[0] &~ blocked->sig[0];
119 		break;
120 
121 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
122 	}
123 	return ready !=	0;
124 }
125 
126 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
127 
128 static int recalc_sigpending_tsk(struct task_struct *t)
129 {
130 	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
131 	    PENDING(&t->pending, &t->blocked) ||
132 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
133 		set_tsk_thread_flag(t, TIF_SIGPENDING);
134 		return 1;
135 	}
136 	/*
137 	 * We must never clear the flag in another thread, or in current
138 	 * when it's possible the current syscall is returning -ERESTART*.
139 	 * So we don't clear it here, and only callers who know they should do.
140 	 */
141 	return 0;
142 }
143 
144 /*
145  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
146  * This is superfluous when called on current, the wakeup is a harmless no-op.
147  */
148 void recalc_sigpending_and_wake(struct task_struct *t)
149 {
150 	if (recalc_sigpending_tsk(t))
151 		signal_wake_up(t, 0);
152 }
153 
154 void recalc_sigpending(void)
155 {
156 	if (!recalc_sigpending_tsk(current) && !freezing(current))
157 		clear_thread_flag(TIF_SIGPENDING);
158 
159 }
160 
161 /* Given the mask, find the first available signal that should be serviced. */
162 
163 #define SYNCHRONOUS_MASK \
164 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
165 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
166 
167 int next_signal(struct sigpending *pending, sigset_t *mask)
168 {
169 	unsigned long i, *s, *m, x;
170 	int sig = 0;
171 
172 	s = pending->signal.sig;
173 	m = mask->sig;
174 
175 	/*
176 	 * Handle the first word specially: it contains the
177 	 * synchronous signals that need to be dequeued first.
178 	 */
179 	x = *s &~ *m;
180 	if (x) {
181 		if (x & SYNCHRONOUS_MASK)
182 			x &= SYNCHRONOUS_MASK;
183 		sig = ffz(~x) + 1;
184 		return sig;
185 	}
186 
187 	switch (_NSIG_WORDS) {
188 	default:
189 		for (i = 1; i < _NSIG_WORDS; ++i) {
190 			x = *++s &~ *++m;
191 			if (!x)
192 				continue;
193 			sig = ffz(~x) + i*_NSIG_BPW + 1;
194 			break;
195 		}
196 		break;
197 
198 	case 2:
199 		x = s[1] &~ m[1];
200 		if (!x)
201 			break;
202 		sig = ffz(~x) + _NSIG_BPW + 1;
203 		break;
204 
205 	case 1:
206 		/* Nothing to do */
207 		break;
208 	}
209 
210 	return sig;
211 }
212 
213 static inline void print_dropped_signal(int sig)
214 {
215 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
216 
217 	if (!print_fatal_signals)
218 		return;
219 
220 	if (!__ratelimit(&ratelimit_state))
221 		return;
222 
223 	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
224 				current->comm, current->pid, sig);
225 }
226 
227 /**
228  * task_set_jobctl_pending - set jobctl pending bits
229  * @task: target task
230  * @mask: pending bits to set
231  *
232  * Clear @mask from @task->jobctl.  @mask must be subset of
233  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
234  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
235  * cleared.  If @task is already being killed or exiting, this function
236  * becomes noop.
237  *
238  * CONTEXT:
239  * Must be called with @task->sighand->siglock held.
240  *
241  * RETURNS:
242  * %true if @mask is set, %false if made noop because @task was dying.
243  */
244 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
245 {
246 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
247 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
248 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
249 
250 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
251 		return false;
252 
253 	if (mask & JOBCTL_STOP_SIGMASK)
254 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
255 
256 	task->jobctl |= mask;
257 	return true;
258 }
259 
260 /**
261  * task_clear_jobctl_trapping - clear jobctl trapping bit
262  * @task: target task
263  *
264  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
265  * Clear it and wake up the ptracer.  Note that we don't need any further
266  * locking.  @task->siglock guarantees that @task->parent points to the
267  * ptracer.
268  *
269  * CONTEXT:
270  * Must be called with @task->sighand->siglock held.
271  */
272 void task_clear_jobctl_trapping(struct task_struct *task)
273 {
274 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
275 		task->jobctl &= ~JOBCTL_TRAPPING;
276 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
277 	}
278 }
279 
280 /**
281  * task_clear_jobctl_pending - clear jobctl pending bits
282  * @task: target task
283  * @mask: pending bits to clear
284  *
285  * Clear @mask from @task->jobctl.  @mask must be subset of
286  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
287  * STOP bits are cleared together.
288  *
289  * If clearing of @mask leaves no stop or trap pending, this function calls
290  * task_clear_jobctl_trapping().
291  *
292  * CONTEXT:
293  * Must be called with @task->sighand->siglock held.
294  */
295 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
296 {
297 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
298 
299 	if (mask & JOBCTL_STOP_PENDING)
300 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
301 
302 	task->jobctl &= ~mask;
303 
304 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
305 		task_clear_jobctl_trapping(task);
306 }
307 
308 /**
309  * task_participate_group_stop - participate in a group stop
310  * @task: task participating in a group stop
311  *
312  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
313  * Group stop states are cleared and the group stop count is consumed if
314  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
315  * stop, the appropriate %SIGNAL_* flags are set.
316  *
317  * CONTEXT:
318  * Must be called with @task->sighand->siglock held.
319  *
320  * RETURNS:
321  * %true if group stop completion should be notified to the parent, %false
322  * otherwise.
323  */
324 static bool task_participate_group_stop(struct task_struct *task)
325 {
326 	struct signal_struct *sig = task->signal;
327 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
328 
329 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
330 
331 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
332 
333 	if (!consume)
334 		return false;
335 
336 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
337 		sig->group_stop_count--;
338 
339 	/*
340 	 * Tell the caller to notify completion iff we are entering into a
341 	 * fresh group stop.  Read comment in do_signal_stop() for details.
342 	 */
343 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
344 		sig->flags = SIGNAL_STOP_STOPPED;
345 		return true;
346 	}
347 	return false;
348 }
349 
350 /*
351  * allocate a new signal queue record
352  * - this may be called without locks if and only if t == current, otherwise an
353  *   appropriate lock must be held to stop the target task from exiting
354  */
355 static struct sigqueue *
356 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
357 {
358 	struct sigqueue *q = NULL;
359 	struct user_struct *user;
360 
361 	/*
362 	 * Protect access to @t credentials. This can go away when all
363 	 * callers hold rcu read lock.
364 	 */
365 	rcu_read_lock();
366 	user = get_uid(__task_cred(t)->user);
367 	atomic_inc(&user->sigpending);
368 	rcu_read_unlock();
369 
370 	if (override_rlimit ||
371 	    atomic_read(&user->sigpending) <=
372 			task_rlimit(t, RLIMIT_SIGPENDING)) {
373 		q = kmem_cache_alloc(sigqueue_cachep, flags);
374 	} else {
375 		print_dropped_signal(sig);
376 	}
377 
378 	if (unlikely(q == NULL)) {
379 		atomic_dec(&user->sigpending);
380 		free_uid(user);
381 	} else {
382 		INIT_LIST_HEAD(&q->list);
383 		q->flags = 0;
384 		q->user = user;
385 	}
386 
387 	return q;
388 }
389 
390 static void __sigqueue_free(struct sigqueue *q)
391 {
392 	if (q->flags & SIGQUEUE_PREALLOC)
393 		return;
394 	atomic_dec(&q->user->sigpending);
395 	free_uid(q->user);
396 	kmem_cache_free(sigqueue_cachep, q);
397 }
398 
399 void flush_sigqueue(struct sigpending *queue)
400 {
401 	struct sigqueue *q;
402 
403 	sigemptyset(&queue->signal);
404 	while (!list_empty(&queue->list)) {
405 		q = list_entry(queue->list.next, struct sigqueue , list);
406 		list_del_init(&q->list);
407 		__sigqueue_free(q);
408 	}
409 }
410 
411 /*
412  * Flush all pending signals for a task.
413  */
414 void __flush_signals(struct task_struct *t)
415 {
416 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
417 	flush_sigqueue(&t->pending);
418 	flush_sigqueue(&t->signal->shared_pending);
419 }
420 
421 void flush_signals(struct task_struct *t)
422 {
423 	unsigned long flags;
424 
425 	spin_lock_irqsave(&t->sighand->siglock, flags);
426 	__flush_signals(t);
427 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
428 }
429 
430 static void __flush_itimer_signals(struct sigpending *pending)
431 {
432 	sigset_t signal, retain;
433 	struct sigqueue *q, *n;
434 
435 	signal = pending->signal;
436 	sigemptyset(&retain);
437 
438 	list_for_each_entry_safe(q, n, &pending->list, list) {
439 		int sig = q->info.si_signo;
440 
441 		if (likely(q->info.si_code != SI_TIMER)) {
442 			sigaddset(&retain, sig);
443 		} else {
444 			sigdelset(&signal, sig);
445 			list_del_init(&q->list);
446 			__sigqueue_free(q);
447 		}
448 	}
449 
450 	sigorsets(&pending->signal, &signal, &retain);
451 }
452 
453 void flush_itimer_signals(void)
454 {
455 	struct task_struct *tsk = current;
456 	unsigned long flags;
457 
458 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
459 	__flush_itimer_signals(&tsk->pending);
460 	__flush_itimer_signals(&tsk->signal->shared_pending);
461 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
462 }
463 
464 void ignore_signals(struct task_struct *t)
465 {
466 	int i;
467 
468 	for (i = 0; i < _NSIG; ++i)
469 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
470 
471 	flush_signals(t);
472 }
473 
474 /*
475  * Flush all handlers for a task.
476  */
477 
478 void
479 flush_signal_handlers(struct task_struct *t, int force_default)
480 {
481 	int i;
482 	struct k_sigaction *ka = &t->sighand->action[0];
483 	for (i = _NSIG ; i != 0 ; i--) {
484 		if (force_default || ka->sa.sa_handler != SIG_IGN)
485 			ka->sa.sa_handler = SIG_DFL;
486 		ka->sa.sa_flags = 0;
487 		sigemptyset(&ka->sa.sa_mask);
488 		ka++;
489 	}
490 }
491 
492 int unhandled_signal(struct task_struct *tsk, int sig)
493 {
494 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
495 	if (is_global_init(tsk))
496 		return 1;
497 	if (handler != SIG_IGN && handler != SIG_DFL)
498 		return 0;
499 	/* if ptraced, let the tracer determine */
500 	return !tsk->ptrace;
501 }
502 
503 /*
504  * Notify the system that a driver wants to block all signals for this
505  * process, and wants to be notified if any signals at all were to be
506  * sent/acted upon.  If the notifier routine returns non-zero, then the
507  * signal will be acted upon after all.  If the notifier routine returns 0,
508  * then then signal will be blocked.  Only one block per process is
509  * allowed.  priv is a pointer to private data that the notifier routine
510  * can use to determine if the signal should be blocked or not.
511  */
512 void
513 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
514 {
515 	unsigned long flags;
516 
517 	spin_lock_irqsave(&current->sighand->siglock, flags);
518 	current->notifier_mask = mask;
519 	current->notifier_data = priv;
520 	current->notifier = notifier;
521 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
522 }
523 
524 /* Notify the system that blocking has ended. */
525 
526 void
527 unblock_all_signals(void)
528 {
529 	unsigned long flags;
530 
531 	spin_lock_irqsave(&current->sighand->siglock, flags);
532 	current->notifier = NULL;
533 	current->notifier_data = NULL;
534 	recalc_sigpending();
535 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
536 }
537 
538 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
539 {
540 	struct sigqueue *q, *first = NULL;
541 
542 	/*
543 	 * Collect the siginfo appropriate to this signal.  Check if
544 	 * there is another siginfo for the same signal.
545 	*/
546 	list_for_each_entry(q, &list->list, list) {
547 		if (q->info.si_signo == sig) {
548 			if (first)
549 				goto still_pending;
550 			first = q;
551 		}
552 	}
553 
554 	sigdelset(&list->signal, sig);
555 
556 	if (first) {
557 still_pending:
558 		list_del_init(&first->list);
559 		copy_siginfo(info, &first->info);
560 		__sigqueue_free(first);
561 	} else {
562 		/*
563 		 * Ok, it wasn't in the queue.  This must be
564 		 * a fast-pathed signal or we must have been
565 		 * out of queue space.  So zero out the info.
566 		 */
567 		info->si_signo = sig;
568 		info->si_errno = 0;
569 		info->si_code = SI_USER;
570 		info->si_pid = 0;
571 		info->si_uid = 0;
572 	}
573 }
574 
575 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
576 			siginfo_t *info)
577 {
578 	int sig = next_signal(pending, mask);
579 
580 	if (sig) {
581 		if (current->notifier) {
582 			if (sigismember(current->notifier_mask, sig)) {
583 				if (!(current->notifier)(current->notifier_data)) {
584 					clear_thread_flag(TIF_SIGPENDING);
585 					return 0;
586 				}
587 			}
588 		}
589 
590 		collect_signal(sig, pending, info);
591 	}
592 
593 	return sig;
594 }
595 
596 /*
597  * Dequeue a signal and return the element to the caller, which is
598  * expected to free it.
599  *
600  * All callers have to hold the siglock.
601  */
602 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
603 {
604 	int signr;
605 
606 	/* We only dequeue private signals from ourselves, we don't let
607 	 * signalfd steal them
608 	 */
609 	signr = __dequeue_signal(&tsk->pending, mask, info);
610 	if (!signr) {
611 		signr = __dequeue_signal(&tsk->signal->shared_pending,
612 					 mask, info);
613 		/*
614 		 * itimer signal ?
615 		 *
616 		 * itimers are process shared and we restart periodic
617 		 * itimers in the signal delivery path to prevent DoS
618 		 * attacks in the high resolution timer case. This is
619 		 * compliant with the old way of self-restarting
620 		 * itimers, as the SIGALRM is a legacy signal and only
621 		 * queued once. Changing the restart behaviour to
622 		 * restart the timer in the signal dequeue path is
623 		 * reducing the timer noise on heavy loaded !highres
624 		 * systems too.
625 		 */
626 		if (unlikely(signr == SIGALRM)) {
627 			struct hrtimer *tmr = &tsk->signal->real_timer;
628 
629 			if (!hrtimer_is_queued(tmr) &&
630 			    tsk->signal->it_real_incr.tv64 != 0) {
631 				hrtimer_forward(tmr, tmr->base->get_time(),
632 						tsk->signal->it_real_incr);
633 				hrtimer_restart(tmr);
634 			}
635 		}
636 	}
637 
638 	recalc_sigpending();
639 	if (!signr)
640 		return 0;
641 
642 	if (unlikely(sig_kernel_stop(signr))) {
643 		/*
644 		 * Set a marker that we have dequeued a stop signal.  Our
645 		 * caller might release the siglock and then the pending
646 		 * stop signal it is about to process is no longer in the
647 		 * pending bitmasks, but must still be cleared by a SIGCONT
648 		 * (and overruled by a SIGKILL).  So those cases clear this
649 		 * shared flag after we've set it.  Note that this flag may
650 		 * remain set after the signal we return is ignored or
651 		 * handled.  That doesn't matter because its only purpose
652 		 * is to alert stop-signal processing code when another
653 		 * processor has come along and cleared the flag.
654 		 */
655 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
656 	}
657 	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
658 		/*
659 		 * Release the siglock to ensure proper locking order
660 		 * of timer locks outside of siglocks.  Note, we leave
661 		 * irqs disabled here, since the posix-timers code is
662 		 * about to disable them again anyway.
663 		 */
664 		spin_unlock(&tsk->sighand->siglock);
665 		do_schedule_next_timer(info);
666 		spin_lock(&tsk->sighand->siglock);
667 	}
668 	return signr;
669 }
670 
671 /*
672  * Tell a process that it has a new active signal..
673  *
674  * NOTE! we rely on the previous spin_lock to
675  * lock interrupts for us! We can only be called with
676  * "siglock" held, and the local interrupt must
677  * have been disabled when that got acquired!
678  *
679  * No need to set need_resched since signal event passing
680  * goes through ->blocked
681  */
682 void signal_wake_up(struct task_struct *t, int resume)
683 {
684 	unsigned int mask;
685 
686 	set_tsk_thread_flag(t, TIF_SIGPENDING);
687 
688 	/*
689 	 * For SIGKILL, we want to wake it up in the stopped/traced/killable
690 	 * case. We don't check t->state here because there is a race with it
691 	 * executing another processor and just now entering stopped state.
692 	 * By using wake_up_state, we ensure the process will wake up and
693 	 * handle its death signal.
694 	 */
695 	mask = TASK_INTERRUPTIBLE;
696 	if (resume)
697 		mask |= TASK_WAKEKILL;
698 	if (!wake_up_state(t, mask))
699 		kick_process(t);
700 }
701 
702 /*
703  * Remove signals in mask from the pending set and queue.
704  * Returns 1 if any signals were found.
705  *
706  * All callers must be holding the siglock.
707  *
708  * This version takes a sigset mask and looks at all signals,
709  * not just those in the first mask word.
710  */
711 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
712 {
713 	struct sigqueue *q, *n;
714 	sigset_t m;
715 
716 	sigandsets(&m, mask, &s->signal);
717 	if (sigisemptyset(&m))
718 		return 0;
719 
720 	sigandnsets(&s->signal, &s->signal, mask);
721 	list_for_each_entry_safe(q, n, &s->list, list) {
722 		if (sigismember(mask, q->info.si_signo)) {
723 			list_del_init(&q->list);
724 			__sigqueue_free(q);
725 		}
726 	}
727 	return 1;
728 }
729 /*
730  * Remove signals in mask from the pending set and queue.
731  * Returns 1 if any signals were found.
732  *
733  * All callers must be holding the siglock.
734  */
735 static int rm_from_queue(unsigned long mask, struct sigpending *s)
736 {
737 	struct sigqueue *q, *n;
738 
739 	if (!sigtestsetmask(&s->signal, mask))
740 		return 0;
741 
742 	sigdelsetmask(&s->signal, mask);
743 	list_for_each_entry_safe(q, n, &s->list, list) {
744 		if (q->info.si_signo < SIGRTMIN &&
745 		    (mask & sigmask(q->info.si_signo))) {
746 			list_del_init(&q->list);
747 			__sigqueue_free(q);
748 		}
749 	}
750 	return 1;
751 }
752 
753 static inline int is_si_special(const struct siginfo *info)
754 {
755 	return info <= SEND_SIG_FORCED;
756 }
757 
758 static inline bool si_fromuser(const struct siginfo *info)
759 {
760 	return info == SEND_SIG_NOINFO ||
761 		(!is_si_special(info) && SI_FROMUSER(info));
762 }
763 
764 /*
765  * called with RCU read lock from check_kill_permission()
766  */
767 static int kill_ok_by_cred(struct task_struct *t)
768 {
769 	const struct cred *cred = current_cred();
770 	const struct cred *tcred = __task_cred(t);
771 
772 	if (uid_eq(cred->euid, tcred->suid) ||
773 	    uid_eq(cred->euid, tcred->uid)  ||
774 	    uid_eq(cred->uid,  tcred->suid) ||
775 	    uid_eq(cred->uid,  tcred->uid))
776 		return 1;
777 
778 	if (ns_capable(tcred->user_ns, CAP_KILL))
779 		return 1;
780 
781 	return 0;
782 }
783 
784 /*
785  * Bad permissions for sending the signal
786  * - the caller must hold the RCU read lock
787  */
788 static int check_kill_permission(int sig, struct siginfo *info,
789 				 struct task_struct *t)
790 {
791 	struct pid *sid;
792 	int error;
793 
794 	if (!valid_signal(sig))
795 		return -EINVAL;
796 
797 	if (!si_fromuser(info))
798 		return 0;
799 
800 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
801 	if (error)
802 		return error;
803 
804 	if (!same_thread_group(current, t) &&
805 	    !kill_ok_by_cred(t)) {
806 		switch (sig) {
807 		case SIGCONT:
808 			sid = task_session(t);
809 			/*
810 			 * We don't return the error if sid == NULL. The
811 			 * task was unhashed, the caller must notice this.
812 			 */
813 			if (!sid || sid == task_session(current))
814 				break;
815 		default:
816 			return -EPERM;
817 		}
818 	}
819 
820 	return security_task_kill(t, info, sig, 0);
821 }
822 
823 /**
824  * ptrace_trap_notify - schedule trap to notify ptracer
825  * @t: tracee wanting to notify tracer
826  *
827  * This function schedules sticky ptrace trap which is cleared on the next
828  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
829  * ptracer.
830  *
831  * If @t is running, STOP trap will be taken.  If trapped for STOP and
832  * ptracer is listening for events, tracee is woken up so that it can
833  * re-trap for the new event.  If trapped otherwise, STOP trap will be
834  * eventually taken without returning to userland after the existing traps
835  * are finished by PTRACE_CONT.
836  *
837  * CONTEXT:
838  * Must be called with @task->sighand->siglock held.
839  */
840 static void ptrace_trap_notify(struct task_struct *t)
841 {
842 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
843 	assert_spin_locked(&t->sighand->siglock);
844 
845 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
846 	signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
847 }
848 
849 /*
850  * Handle magic process-wide effects of stop/continue signals. Unlike
851  * the signal actions, these happen immediately at signal-generation
852  * time regardless of blocking, ignoring, or handling.  This does the
853  * actual continuing for SIGCONT, but not the actual stopping for stop
854  * signals. The process stop is done as a signal action for SIG_DFL.
855  *
856  * Returns true if the signal should be actually delivered, otherwise
857  * it should be dropped.
858  */
859 static int prepare_signal(int sig, struct task_struct *p, bool force)
860 {
861 	struct signal_struct *signal = p->signal;
862 	struct task_struct *t;
863 
864 	if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
865 		/*
866 		 * The process is in the middle of dying, nothing to do.
867 		 */
868 	} else if (sig_kernel_stop(sig)) {
869 		/*
870 		 * This is a stop signal.  Remove SIGCONT from all queues.
871 		 */
872 		rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
873 		t = p;
874 		do {
875 			rm_from_queue(sigmask(SIGCONT), &t->pending);
876 		} while_each_thread(p, t);
877 	} else if (sig == SIGCONT) {
878 		unsigned int why;
879 		/*
880 		 * Remove all stop signals from all queues, wake all threads.
881 		 */
882 		rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
883 		t = p;
884 		do {
885 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
886 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
887 			if (likely(!(t->ptrace & PT_SEIZED)))
888 				wake_up_state(t, __TASK_STOPPED);
889 			else
890 				ptrace_trap_notify(t);
891 		} while_each_thread(p, t);
892 
893 		/*
894 		 * Notify the parent with CLD_CONTINUED if we were stopped.
895 		 *
896 		 * If we were in the middle of a group stop, we pretend it
897 		 * was already finished, and then continued. Since SIGCHLD
898 		 * doesn't queue we report only CLD_STOPPED, as if the next
899 		 * CLD_CONTINUED was dropped.
900 		 */
901 		why = 0;
902 		if (signal->flags & SIGNAL_STOP_STOPPED)
903 			why |= SIGNAL_CLD_CONTINUED;
904 		else if (signal->group_stop_count)
905 			why |= SIGNAL_CLD_STOPPED;
906 
907 		if (why) {
908 			/*
909 			 * The first thread which returns from do_signal_stop()
910 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
911 			 * notify its parent. See get_signal_to_deliver().
912 			 */
913 			signal->flags = why | SIGNAL_STOP_CONTINUED;
914 			signal->group_stop_count = 0;
915 			signal->group_exit_code = 0;
916 		}
917 	}
918 
919 	return !sig_ignored(p, sig, force);
920 }
921 
922 /*
923  * Test if P wants to take SIG.  After we've checked all threads with this,
924  * it's equivalent to finding no threads not blocking SIG.  Any threads not
925  * blocking SIG were ruled out because they are not running and already
926  * have pending signals.  Such threads will dequeue from the shared queue
927  * as soon as they're available, so putting the signal on the shared queue
928  * will be equivalent to sending it to one such thread.
929  */
930 static inline int wants_signal(int sig, struct task_struct *p)
931 {
932 	if (sigismember(&p->blocked, sig))
933 		return 0;
934 	if (p->flags & PF_EXITING)
935 		return 0;
936 	if (sig == SIGKILL)
937 		return 1;
938 	if (task_is_stopped_or_traced(p))
939 		return 0;
940 	return task_curr(p) || !signal_pending(p);
941 }
942 
943 static void complete_signal(int sig, struct task_struct *p, int group)
944 {
945 	struct signal_struct *signal = p->signal;
946 	struct task_struct *t;
947 
948 	/*
949 	 * Now find a thread we can wake up to take the signal off the queue.
950 	 *
951 	 * If the main thread wants the signal, it gets first crack.
952 	 * Probably the least surprising to the average bear.
953 	 */
954 	if (wants_signal(sig, p))
955 		t = p;
956 	else if (!group || thread_group_empty(p))
957 		/*
958 		 * There is just one thread and it does not need to be woken.
959 		 * It will dequeue unblocked signals before it runs again.
960 		 */
961 		return;
962 	else {
963 		/*
964 		 * Otherwise try to find a suitable thread.
965 		 */
966 		t = signal->curr_target;
967 		while (!wants_signal(sig, t)) {
968 			t = next_thread(t);
969 			if (t == signal->curr_target)
970 				/*
971 				 * No thread needs to be woken.
972 				 * Any eligible threads will see
973 				 * the signal in the queue soon.
974 				 */
975 				return;
976 		}
977 		signal->curr_target = t;
978 	}
979 
980 	/*
981 	 * Found a killable thread.  If the signal will be fatal,
982 	 * then start taking the whole group down immediately.
983 	 */
984 	if (sig_fatal(p, sig) &&
985 	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
986 	    !sigismember(&t->real_blocked, sig) &&
987 	    (sig == SIGKILL || !t->ptrace)) {
988 		/*
989 		 * This signal will be fatal to the whole group.
990 		 */
991 		if (!sig_kernel_coredump(sig)) {
992 			/*
993 			 * Start a group exit and wake everybody up.
994 			 * This way we don't have other threads
995 			 * running and doing things after a slower
996 			 * thread has the fatal signal pending.
997 			 */
998 			signal->flags = SIGNAL_GROUP_EXIT;
999 			signal->group_exit_code = sig;
1000 			signal->group_stop_count = 0;
1001 			t = p;
1002 			do {
1003 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1004 				sigaddset(&t->pending.signal, SIGKILL);
1005 				signal_wake_up(t, 1);
1006 			} while_each_thread(p, t);
1007 			return;
1008 		}
1009 	}
1010 
1011 	/*
1012 	 * The signal is already in the shared-pending queue.
1013 	 * Tell the chosen thread to wake up and dequeue it.
1014 	 */
1015 	signal_wake_up(t, sig == SIGKILL);
1016 	return;
1017 }
1018 
1019 static inline int legacy_queue(struct sigpending *signals, int sig)
1020 {
1021 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1022 }
1023 
1024 #ifdef CONFIG_USER_NS
1025 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1026 {
1027 	if (current_user_ns() == task_cred_xxx(t, user_ns))
1028 		return;
1029 
1030 	if (SI_FROMKERNEL(info))
1031 		return;
1032 
1033 	rcu_read_lock();
1034 	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1035 					make_kuid(current_user_ns(), info->si_uid));
1036 	rcu_read_unlock();
1037 }
1038 #else
1039 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1040 {
1041 	return;
1042 }
1043 #endif
1044 
1045 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1046 			int group, int from_ancestor_ns)
1047 {
1048 	struct sigpending *pending;
1049 	struct sigqueue *q;
1050 	int override_rlimit;
1051 	int ret = 0, result;
1052 
1053 	assert_spin_locked(&t->sighand->siglock);
1054 
1055 	result = TRACE_SIGNAL_IGNORED;
1056 	if (!prepare_signal(sig, t,
1057 			from_ancestor_ns || (info == SEND_SIG_FORCED)))
1058 		goto ret;
1059 
1060 	pending = group ? &t->signal->shared_pending : &t->pending;
1061 	/*
1062 	 * Short-circuit ignored signals and support queuing
1063 	 * exactly one non-rt signal, so that we can get more
1064 	 * detailed information about the cause of the signal.
1065 	 */
1066 	result = TRACE_SIGNAL_ALREADY_PENDING;
1067 	if (legacy_queue(pending, sig))
1068 		goto ret;
1069 
1070 	result = TRACE_SIGNAL_DELIVERED;
1071 	/*
1072 	 * fast-pathed signals for kernel-internal things like SIGSTOP
1073 	 * or SIGKILL.
1074 	 */
1075 	if (info == SEND_SIG_FORCED)
1076 		goto out_set;
1077 
1078 	/*
1079 	 * Real-time signals must be queued if sent by sigqueue, or
1080 	 * some other real-time mechanism.  It is implementation
1081 	 * defined whether kill() does so.  We attempt to do so, on
1082 	 * the principle of least surprise, but since kill is not
1083 	 * allowed to fail with EAGAIN when low on memory we just
1084 	 * make sure at least one signal gets delivered and don't
1085 	 * pass on the info struct.
1086 	 */
1087 	if (sig < SIGRTMIN)
1088 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1089 	else
1090 		override_rlimit = 0;
1091 
1092 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1093 		override_rlimit);
1094 	if (q) {
1095 		list_add_tail(&q->list, &pending->list);
1096 		switch ((unsigned long) info) {
1097 		case (unsigned long) SEND_SIG_NOINFO:
1098 			q->info.si_signo = sig;
1099 			q->info.si_errno = 0;
1100 			q->info.si_code = SI_USER;
1101 			q->info.si_pid = task_tgid_nr_ns(current,
1102 							task_active_pid_ns(t));
1103 			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1104 			break;
1105 		case (unsigned long) SEND_SIG_PRIV:
1106 			q->info.si_signo = sig;
1107 			q->info.si_errno = 0;
1108 			q->info.si_code = SI_KERNEL;
1109 			q->info.si_pid = 0;
1110 			q->info.si_uid = 0;
1111 			break;
1112 		default:
1113 			copy_siginfo(&q->info, info);
1114 			if (from_ancestor_ns)
1115 				q->info.si_pid = 0;
1116 			break;
1117 		}
1118 
1119 		userns_fixup_signal_uid(&q->info, t);
1120 
1121 	} else if (!is_si_special(info)) {
1122 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1123 			/*
1124 			 * Queue overflow, abort.  We may abort if the
1125 			 * signal was rt and sent by user using something
1126 			 * other than kill().
1127 			 */
1128 			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1129 			ret = -EAGAIN;
1130 			goto ret;
1131 		} else {
1132 			/*
1133 			 * This is a silent loss of information.  We still
1134 			 * send the signal, but the *info bits are lost.
1135 			 */
1136 			result = TRACE_SIGNAL_LOSE_INFO;
1137 		}
1138 	}
1139 
1140 out_set:
1141 	signalfd_notify(t, sig);
1142 	sigaddset(&pending->signal, sig);
1143 	complete_signal(sig, t, group);
1144 ret:
1145 	trace_signal_generate(sig, info, t, group, result);
1146 	return ret;
1147 }
1148 
1149 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1150 			int group)
1151 {
1152 	int from_ancestor_ns = 0;
1153 
1154 #ifdef CONFIG_PID_NS
1155 	from_ancestor_ns = si_fromuser(info) &&
1156 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1157 #endif
1158 
1159 	return __send_signal(sig, info, t, group, from_ancestor_ns);
1160 }
1161 
1162 static void print_fatal_signal(int signr)
1163 {
1164 	struct pt_regs *regs = signal_pt_regs();
1165 	printk("%s/%d: potentially unexpected fatal signal %d.\n",
1166 		current->comm, task_pid_nr(current), signr);
1167 
1168 #if defined(__i386__) && !defined(__arch_um__)
1169 	printk("code at %08lx: ", regs->ip);
1170 	{
1171 		int i;
1172 		for (i = 0; i < 16; i++) {
1173 			unsigned char insn;
1174 
1175 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1176 				break;
1177 			printk("%02x ", insn);
1178 		}
1179 	}
1180 #endif
1181 	printk("\n");
1182 	preempt_disable();
1183 	show_regs(regs);
1184 	preempt_enable();
1185 }
1186 
1187 static int __init setup_print_fatal_signals(char *str)
1188 {
1189 	get_option (&str, &print_fatal_signals);
1190 
1191 	return 1;
1192 }
1193 
1194 __setup("print-fatal-signals=", setup_print_fatal_signals);
1195 
1196 int
1197 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1198 {
1199 	return send_signal(sig, info, p, 1);
1200 }
1201 
1202 static int
1203 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1204 {
1205 	return send_signal(sig, info, t, 0);
1206 }
1207 
1208 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1209 			bool group)
1210 {
1211 	unsigned long flags;
1212 	int ret = -ESRCH;
1213 
1214 	if (lock_task_sighand(p, &flags)) {
1215 		ret = send_signal(sig, info, p, group);
1216 		unlock_task_sighand(p, &flags);
1217 	}
1218 
1219 	return ret;
1220 }
1221 
1222 /*
1223  * Force a signal that the process can't ignore: if necessary
1224  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1225  *
1226  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1227  * since we do not want to have a signal handler that was blocked
1228  * be invoked when user space had explicitly blocked it.
1229  *
1230  * We don't want to have recursive SIGSEGV's etc, for example,
1231  * that is why we also clear SIGNAL_UNKILLABLE.
1232  */
1233 int
1234 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1235 {
1236 	unsigned long int flags;
1237 	int ret, blocked, ignored;
1238 	struct k_sigaction *action;
1239 
1240 	spin_lock_irqsave(&t->sighand->siglock, flags);
1241 	action = &t->sighand->action[sig-1];
1242 	ignored = action->sa.sa_handler == SIG_IGN;
1243 	blocked = sigismember(&t->blocked, sig);
1244 	if (blocked || ignored) {
1245 		action->sa.sa_handler = SIG_DFL;
1246 		if (blocked) {
1247 			sigdelset(&t->blocked, sig);
1248 			recalc_sigpending_and_wake(t);
1249 		}
1250 	}
1251 	if (action->sa.sa_handler == SIG_DFL)
1252 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1253 	ret = specific_send_sig_info(sig, info, t);
1254 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1255 
1256 	return ret;
1257 }
1258 
1259 /*
1260  * Nuke all other threads in the group.
1261  */
1262 int zap_other_threads(struct task_struct *p)
1263 {
1264 	struct task_struct *t = p;
1265 	int count = 0;
1266 
1267 	p->signal->group_stop_count = 0;
1268 
1269 	while_each_thread(p, t) {
1270 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1271 		count++;
1272 
1273 		/* Don't bother with already dead threads */
1274 		if (t->exit_state)
1275 			continue;
1276 		sigaddset(&t->pending.signal, SIGKILL);
1277 		signal_wake_up(t, 1);
1278 	}
1279 
1280 	return count;
1281 }
1282 
1283 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1284 					   unsigned long *flags)
1285 {
1286 	struct sighand_struct *sighand;
1287 
1288 	for (;;) {
1289 		local_irq_save(*flags);
1290 		rcu_read_lock();
1291 		sighand = rcu_dereference(tsk->sighand);
1292 		if (unlikely(sighand == NULL)) {
1293 			rcu_read_unlock();
1294 			local_irq_restore(*flags);
1295 			break;
1296 		}
1297 
1298 		spin_lock(&sighand->siglock);
1299 		if (likely(sighand == tsk->sighand)) {
1300 			rcu_read_unlock();
1301 			break;
1302 		}
1303 		spin_unlock(&sighand->siglock);
1304 		rcu_read_unlock();
1305 		local_irq_restore(*flags);
1306 	}
1307 
1308 	return sighand;
1309 }
1310 
1311 /*
1312  * send signal info to all the members of a group
1313  */
1314 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1315 {
1316 	int ret;
1317 
1318 	rcu_read_lock();
1319 	ret = check_kill_permission(sig, info, p);
1320 	rcu_read_unlock();
1321 
1322 	if (!ret && sig)
1323 		ret = do_send_sig_info(sig, info, p, true);
1324 
1325 	return ret;
1326 }
1327 
1328 /*
1329  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1330  * control characters do (^C, ^Z etc)
1331  * - the caller must hold at least a readlock on tasklist_lock
1332  */
1333 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1334 {
1335 	struct task_struct *p = NULL;
1336 	int retval, success;
1337 
1338 	success = 0;
1339 	retval = -ESRCH;
1340 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1341 		int err = group_send_sig_info(sig, info, p);
1342 		success |= !err;
1343 		retval = err;
1344 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1345 	return success ? 0 : retval;
1346 }
1347 
1348 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1349 {
1350 	int error = -ESRCH;
1351 	struct task_struct *p;
1352 
1353 	rcu_read_lock();
1354 retry:
1355 	p = pid_task(pid, PIDTYPE_PID);
1356 	if (p) {
1357 		error = group_send_sig_info(sig, info, p);
1358 		if (unlikely(error == -ESRCH))
1359 			/*
1360 			 * The task was unhashed in between, try again.
1361 			 * If it is dead, pid_task() will return NULL,
1362 			 * if we race with de_thread() it will find the
1363 			 * new leader.
1364 			 */
1365 			goto retry;
1366 	}
1367 	rcu_read_unlock();
1368 
1369 	return error;
1370 }
1371 
1372 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1373 {
1374 	int error;
1375 	rcu_read_lock();
1376 	error = kill_pid_info(sig, info, find_vpid(pid));
1377 	rcu_read_unlock();
1378 	return error;
1379 }
1380 
1381 static int kill_as_cred_perm(const struct cred *cred,
1382 			     struct task_struct *target)
1383 {
1384 	const struct cred *pcred = __task_cred(target);
1385 	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1386 	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1387 		return 0;
1388 	return 1;
1389 }
1390 
1391 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1392 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1393 			 const struct cred *cred, u32 secid)
1394 {
1395 	int ret = -EINVAL;
1396 	struct task_struct *p;
1397 	unsigned long flags;
1398 
1399 	if (!valid_signal(sig))
1400 		return ret;
1401 
1402 	rcu_read_lock();
1403 	p = pid_task(pid, PIDTYPE_PID);
1404 	if (!p) {
1405 		ret = -ESRCH;
1406 		goto out_unlock;
1407 	}
1408 	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1409 		ret = -EPERM;
1410 		goto out_unlock;
1411 	}
1412 	ret = security_task_kill(p, info, sig, secid);
1413 	if (ret)
1414 		goto out_unlock;
1415 
1416 	if (sig) {
1417 		if (lock_task_sighand(p, &flags)) {
1418 			ret = __send_signal(sig, info, p, 1, 0);
1419 			unlock_task_sighand(p, &flags);
1420 		} else
1421 			ret = -ESRCH;
1422 	}
1423 out_unlock:
1424 	rcu_read_unlock();
1425 	return ret;
1426 }
1427 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1428 
1429 /*
1430  * kill_something_info() interprets pid in interesting ways just like kill(2).
1431  *
1432  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1433  * is probably wrong.  Should make it like BSD or SYSV.
1434  */
1435 
1436 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1437 {
1438 	int ret;
1439 
1440 	if (pid > 0) {
1441 		rcu_read_lock();
1442 		ret = kill_pid_info(sig, info, find_vpid(pid));
1443 		rcu_read_unlock();
1444 		return ret;
1445 	}
1446 
1447 	read_lock(&tasklist_lock);
1448 	if (pid != -1) {
1449 		ret = __kill_pgrp_info(sig, info,
1450 				pid ? find_vpid(-pid) : task_pgrp(current));
1451 	} else {
1452 		int retval = 0, count = 0;
1453 		struct task_struct * p;
1454 
1455 		for_each_process(p) {
1456 			if (task_pid_vnr(p) > 1 &&
1457 					!same_thread_group(p, current)) {
1458 				int err = group_send_sig_info(sig, info, p);
1459 				++count;
1460 				if (err != -EPERM)
1461 					retval = err;
1462 			}
1463 		}
1464 		ret = count ? retval : -ESRCH;
1465 	}
1466 	read_unlock(&tasklist_lock);
1467 
1468 	return ret;
1469 }
1470 
1471 /*
1472  * These are for backward compatibility with the rest of the kernel source.
1473  */
1474 
1475 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1476 {
1477 	/*
1478 	 * Make sure legacy kernel users don't send in bad values
1479 	 * (normal paths check this in check_kill_permission).
1480 	 */
1481 	if (!valid_signal(sig))
1482 		return -EINVAL;
1483 
1484 	return do_send_sig_info(sig, info, p, false);
1485 }
1486 
1487 #define __si_special(priv) \
1488 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1489 
1490 int
1491 send_sig(int sig, struct task_struct *p, int priv)
1492 {
1493 	return send_sig_info(sig, __si_special(priv), p);
1494 }
1495 
1496 void
1497 force_sig(int sig, struct task_struct *p)
1498 {
1499 	force_sig_info(sig, SEND_SIG_PRIV, p);
1500 }
1501 
1502 /*
1503  * When things go south during signal handling, we
1504  * will force a SIGSEGV. And if the signal that caused
1505  * the problem was already a SIGSEGV, we'll want to
1506  * make sure we don't even try to deliver the signal..
1507  */
1508 int
1509 force_sigsegv(int sig, struct task_struct *p)
1510 {
1511 	if (sig == SIGSEGV) {
1512 		unsigned long flags;
1513 		spin_lock_irqsave(&p->sighand->siglock, flags);
1514 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1515 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1516 	}
1517 	force_sig(SIGSEGV, p);
1518 	return 0;
1519 }
1520 
1521 int kill_pgrp(struct pid *pid, int sig, int priv)
1522 {
1523 	int ret;
1524 
1525 	read_lock(&tasklist_lock);
1526 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1527 	read_unlock(&tasklist_lock);
1528 
1529 	return ret;
1530 }
1531 EXPORT_SYMBOL(kill_pgrp);
1532 
1533 int kill_pid(struct pid *pid, int sig, int priv)
1534 {
1535 	return kill_pid_info(sig, __si_special(priv), pid);
1536 }
1537 EXPORT_SYMBOL(kill_pid);
1538 
1539 /*
1540  * These functions support sending signals using preallocated sigqueue
1541  * structures.  This is needed "because realtime applications cannot
1542  * afford to lose notifications of asynchronous events, like timer
1543  * expirations or I/O completions".  In the case of POSIX Timers
1544  * we allocate the sigqueue structure from the timer_create.  If this
1545  * allocation fails we are able to report the failure to the application
1546  * with an EAGAIN error.
1547  */
1548 struct sigqueue *sigqueue_alloc(void)
1549 {
1550 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1551 
1552 	if (q)
1553 		q->flags |= SIGQUEUE_PREALLOC;
1554 
1555 	return q;
1556 }
1557 
1558 void sigqueue_free(struct sigqueue *q)
1559 {
1560 	unsigned long flags;
1561 	spinlock_t *lock = &current->sighand->siglock;
1562 
1563 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1564 	/*
1565 	 * We must hold ->siglock while testing q->list
1566 	 * to serialize with collect_signal() or with
1567 	 * __exit_signal()->flush_sigqueue().
1568 	 */
1569 	spin_lock_irqsave(lock, flags);
1570 	q->flags &= ~SIGQUEUE_PREALLOC;
1571 	/*
1572 	 * If it is queued it will be freed when dequeued,
1573 	 * like the "regular" sigqueue.
1574 	 */
1575 	if (!list_empty(&q->list))
1576 		q = NULL;
1577 	spin_unlock_irqrestore(lock, flags);
1578 
1579 	if (q)
1580 		__sigqueue_free(q);
1581 }
1582 
1583 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1584 {
1585 	int sig = q->info.si_signo;
1586 	struct sigpending *pending;
1587 	unsigned long flags;
1588 	int ret, result;
1589 
1590 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1591 
1592 	ret = -1;
1593 	if (!likely(lock_task_sighand(t, &flags)))
1594 		goto ret;
1595 
1596 	ret = 1; /* the signal is ignored */
1597 	result = TRACE_SIGNAL_IGNORED;
1598 	if (!prepare_signal(sig, t, false))
1599 		goto out;
1600 
1601 	ret = 0;
1602 	if (unlikely(!list_empty(&q->list))) {
1603 		/*
1604 		 * If an SI_TIMER entry is already queue just increment
1605 		 * the overrun count.
1606 		 */
1607 		BUG_ON(q->info.si_code != SI_TIMER);
1608 		q->info.si_overrun++;
1609 		result = TRACE_SIGNAL_ALREADY_PENDING;
1610 		goto out;
1611 	}
1612 	q->info.si_overrun = 0;
1613 
1614 	signalfd_notify(t, sig);
1615 	pending = group ? &t->signal->shared_pending : &t->pending;
1616 	list_add_tail(&q->list, &pending->list);
1617 	sigaddset(&pending->signal, sig);
1618 	complete_signal(sig, t, group);
1619 	result = TRACE_SIGNAL_DELIVERED;
1620 out:
1621 	trace_signal_generate(sig, &q->info, t, group, result);
1622 	unlock_task_sighand(t, &flags);
1623 ret:
1624 	return ret;
1625 }
1626 
1627 /*
1628  * Let a parent know about the death of a child.
1629  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1630  *
1631  * Returns true if our parent ignored us and so we've switched to
1632  * self-reaping.
1633  */
1634 bool do_notify_parent(struct task_struct *tsk, int sig)
1635 {
1636 	struct siginfo info;
1637 	unsigned long flags;
1638 	struct sighand_struct *psig;
1639 	bool autoreap = false;
1640 
1641 	BUG_ON(sig == -1);
1642 
1643  	/* do_notify_parent_cldstop should have been called instead.  */
1644  	BUG_ON(task_is_stopped_or_traced(tsk));
1645 
1646 	BUG_ON(!tsk->ptrace &&
1647 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1648 
1649 	if (sig != SIGCHLD) {
1650 		/*
1651 		 * This is only possible if parent == real_parent.
1652 		 * Check if it has changed security domain.
1653 		 */
1654 		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1655 			sig = SIGCHLD;
1656 	}
1657 
1658 	info.si_signo = sig;
1659 	info.si_errno = 0;
1660 	/*
1661 	 * We are under tasklist_lock here so our parent is tied to
1662 	 * us and cannot change.
1663 	 *
1664 	 * task_active_pid_ns will always return the same pid namespace
1665 	 * until a task passes through release_task.
1666 	 *
1667 	 * write_lock() currently calls preempt_disable() which is the
1668 	 * same as rcu_read_lock(), but according to Oleg, this is not
1669 	 * correct to rely on this
1670 	 */
1671 	rcu_read_lock();
1672 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1673 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1674 				       task_uid(tsk));
1675 	rcu_read_unlock();
1676 
1677 	info.si_utime = cputime_to_clock_t(tsk->utime + tsk->signal->utime);
1678 	info.si_stime = cputime_to_clock_t(tsk->stime + tsk->signal->stime);
1679 
1680 	info.si_status = tsk->exit_code & 0x7f;
1681 	if (tsk->exit_code & 0x80)
1682 		info.si_code = CLD_DUMPED;
1683 	else if (tsk->exit_code & 0x7f)
1684 		info.si_code = CLD_KILLED;
1685 	else {
1686 		info.si_code = CLD_EXITED;
1687 		info.si_status = tsk->exit_code >> 8;
1688 	}
1689 
1690 	psig = tsk->parent->sighand;
1691 	spin_lock_irqsave(&psig->siglock, flags);
1692 	if (!tsk->ptrace && sig == SIGCHLD &&
1693 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1694 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1695 		/*
1696 		 * We are exiting and our parent doesn't care.  POSIX.1
1697 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1698 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1699 		 * automatically and not left for our parent's wait4 call.
1700 		 * Rather than having the parent do it as a magic kind of
1701 		 * signal handler, we just set this to tell do_exit that we
1702 		 * can be cleaned up without becoming a zombie.  Note that
1703 		 * we still call __wake_up_parent in this case, because a
1704 		 * blocked sys_wait4 might now return -ECHILD.
1705 		 *
1706 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1707 		 * is implementation-defined: we do (if you don't want
1708 		 * it, just use SIG_IGN instead).
1709 		 */
1710 		autoreap = true;
1711 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1712 			sig = 0;
1713 	}
1714 	if (valid_signal(sig) && sig)
1715 		__group_send_sig_info(sig, &info, tsk->parent);
1716 	__wake_up_parent(tsk, tsk->parent);
1717 	spin_unlock_irqrestore(&psig->siglock, flags);
1718 
1719 	return autoreap;
1720 }
1721 
1722 /**
1723  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1724  * @tsk: task reporting the state change
1725  * @for_ptracer: the notification is for ptracer
1726  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1727  *
1728  * Notify @tsk's parent that the stopped/continued state has changed.  If
1729  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1730  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1731  *
1732  * CONTEXT:
1733  * Must be called with tasklist_lock at least read locked.
1734  */
1735 static void do_notify_parent_cldstop(struct task_struct *tsk,
1736 				     bool for_ptracer, int why)
1737 {
1738 	struct siginfo info;
1739 	unsigned long flags;
1740 	struct task_struct *parent;
1741 	struct sighand_struct *sighand;
1742 
1743 	if (for_ptracer) {
1744 		parent = tsk->parent;
1745 	} else {
1746 		tsk = tsk->group_leader;
1747 		parent = tsk->real_parent;
1748 	}
1749 
1750 	info.si_signo = SIGCHLD;
1751 	info.si_errno = 0;
1752 	/*
1753 	 * see comment in do_notify_parent() about the following 4 lines
1754 	 */
1755 	rcu_read_lock();
1756 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1757 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1758 	rcu_read_unlock();
1759 
1760 	info.si_utime = cputime_to_clock_t(tsk->utime);
1761 	info.si_stime = cputime_to_clock_t(tsk->stime);
1762 
1763  	info.si_code = why;
1764  	switch (why) {
1765  	case CLD_CONTINUED:
1766  		info.si_status = SIGCONT;
1767  		break;
1768  	case CLD_STOPPED:
1769  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1770  		break;
1771  	case CLD_TRAPPED:
1772  		info.si_status = tsk->exit_code & 0x7f;
1773  		break;
1774  	default:
1775  		BUG();
1776  	}
1777 
1778 	sighand = parent->sighand;
1779 	spin_lock_irqsave(&sighand->siglock, flags);
1780 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1781 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1782 		__group_send_sig_info(SIGCHLD, &info, parent);
1783 	/*
1784 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1785 	 */
1786 	__wake_up_parent(tsk, parent);
1787 	spin_unlock_irqrestore(&sighand->siglock, flags);
1788 }
1789 
1790 static inline int may_ptrace_stop(void)
1791 {
1792 	if (!likely(current->ptrace))
1793 		return 0;
1794 	/*
1795 	 * Are we in the middle of do_coredump?
1796 	 * If so and our tracer is also part of the coredump stopping
1797 	 * is a deadlock situation, and pointless because our tracer
1798 	 * is dead so don't allow us to stop.
1799 	 * If SIGKILL was already sent before the caller unlocked
1800 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1801 	 * is safe to enter schedule().
1802 	 */
1803 	if (unlikely(current->mm->core_state) &&
1804 	    unlikely(current->mm == current->parent->mm))
1805 		return 0;
1806 
1807 	return 1;
1808 }
1809 
1810 /*
1811  * Return non-zero if there is a SIGKILL that should be waking us up.
1812  * Called with the siglock held.
1813  */
1814 static int sigkill_pending(struct task_struct *tsk)
1815 {
1816 	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1817 		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1818 }
1819 
1820 /*
1821  * This must be called with current->sighand->siglock held.
1822  *
1823  * This should be the path for all ptrace stops.
1824  * We always set current->last_siginfo while stopped here.
1825  * That makes it a way to test a stopped process for
1826  * being ptrace-stopped vs being job-control-stopped.
1827  *
1828  * If we actually decide not to stop at all because the tracer
1829  * is gone, we keep current->exit_code unless clear_code.
1830  */
1831 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1832 	__releases(&current->sighand->siglock)
1833 	__acquires(&current->sighand->siglock)
1834 {
1835 	bool gstop_done = false;
1836 
1837 	if (arch_ptrace_stop_needed(exit_code, info)) {
1838 		/*
1839 		 * The arch code has something special to do before a
1840 		 * ptrace stop.  This is allowed to block, e.g. for faults
1841 		 * on user stack pages.  We can't keep the siglock while
1842 		 * calling arch_ptrace_stop, so we must release it now.
1843 		 * To preserve proper semantics, we must do this before
1844 		 * any signal bookkeeping like checking group_stop_count.
1845 		 * Meanwhile, a SIGKILL could come in before we retake the
1846 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1847 		 * So after regaining the lock, we must check for SIGKILL.
1848 		 */
1849 		spin_unlock_irq(&current->sighand->siglock);
1850 		arch_ptrace_stop(exit_code, info);
1851 		spin_lock_irq(&current->sighand->siglock);
1852 		if (sigkill_pending(current))
1853 			return;
1854 	}
1855 
1856 	/*
1857 	 * We're committing to trapping.  TRACED should be visible before
1858 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1859 	 * Also, transition to TRACED and updates to ->jobctl should be
1860 	 * atomic with respect to siglock and should be done after the arch
1861 	 * hook as siglock is released and regrabbed across it.
1862 	 */
1863 	set_current_state(TASK_TRACED);
1864 
1865 	current->last_siginfo = info;
1866 	current->exit_code = exit_code;
1867 
1868 	/*
1869 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1870 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1871 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1872 	 * could be clear now.  We act as if SIGCONT is received after
1873 	 * TASK_TRACED is entered - ignore it.
1874 	 */
1875 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1876 		gstop_done = task_participate_group_stop(current);
1877 
1878 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1879 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1880 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1881 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1882 
1883 	/* entering a trap, clear TRAPPING */
1884 	task_clear_jobctl_trapping(current);
1885 
1886 	spin_unlock_irq(&current->sighand->siglock);
1887 	read_lock(&tasklist_lock);
1888 	if (may_ptrace_stop()) {
1889 		/*
1890 		 * Notify parents of the stop.
1891 		 *
1892 		 * While ptraced, there are two parents - the ptracer and
1893 		 * the real_parent of the group_leader.  The ptracer should
1894 		 * know about every stop while the real parent is only
1895 		 * interested in the completion of group stop.  The states
1896 		 * for the two don't interact with each other.  Notify
1897 		 * separately unless they're gonna be duplicates.
1898 		 */
1899 		do_notify_parent_cldstop(current, true, why);
1900 		if (gstop_done && ptrace_reparented(current))
1901 			do_notify_parent_cldstop(current, false, why);
1902 
1903 		/*
1904 		 * Don't want to allow preemption here, because
1905 		 * sys_ptrace() needs this task to be inactive.
1906 		 *
1907 		 * XXX: implement read_unlock_no_resched().
1908 		 */
1909 		preempt_disable();
1910 		read_unlock(&tasklist_lock);
1911 		preempt_enable_no_resched();
1912 		freezable_schedule();
1913 	} else {
1914 		/*
1915 		 * By the time we got the lock, our tracer went away.
1916 		 * Don't drop the lock yet, another tracer may come.
1917 		 *
1918 		 * If @gstop_done, the ptracer went away between group stop
1919 		 * completion and here.  During detach, it would have set
1920 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1921 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1922 		 * the real parent of the group stop completion is enough.
1923 		 */
1924 		if (gstop_done)
1925 			do_notify_parent_cldstop(current, false, why);
1926 
1927 		__set_current_state(TASK_RUNNING);
1928 		if (clear_code)
1929 			current->exit_code = 0;
1930 		read_unlock(&tasklist_lock);
1931 	}
1932 
1933 	/*
1934 	 * We are back.  Now reacquire the siglock before touching
1935 	 * last_siginfo, so that we are sure to have synchronized with
1936 	 * any signal-sending on another CPU that wants to examine it.
1937 	 */
1938 	spin_lock_irq(&current->sighand->siglock);
1939 	current->last_siginfo = NULL;
1940 
1941 	/* LISTENING can be set only during STOP traps, clear it */
1942 	current->jobctl &= ~JOBCTL_LISTENING;
1943 
1944 	/*
1945 	 * Queued signals ignored us while we were stopped for tracing.
1946 	 * So check for any that we should take before resuming user mode.
1947 	 * This sets TIF_SIGPENDING, but never clears it.
1948 	 */
1949 	recalc_sigpending_tsk(current);
1950 }
1951 
1952 static void ptrace_do_notify(int signr, int exit_code, int why)
1953 {
1954 	siginfo_t info;
1955 
1956 	memset(&info, 0, sizeof info);
1957 	info.si_signo = signr;
1958 	info.si_code = exit_code;
1959 	info.si_pid = task_pid_vnr(current);
1960 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1961 
1962 	/* Let the debugger run.  */
1963 	ptrace_stop(exit_code, why, 1, &info);
1964 }
1965 
1966 void ptrace_notify(int exit_code)
1967 {
1968 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1969 	if (unlikely(current->task_works))
1970 		task_work_run();
1971 
1972 	spin_lock_irq(&current->sighand->siglock);
1973 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1974 	spin_unlock_irq(&current->sighand->siglock);
1975 }
1976 
1977 /**
1978  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1979  * @signr: signr causing group stop if initiating
1980  *
1981  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1982  * and participate in it.  If already set, participate in the existing
1983  * group stop.  If participated in a group stop (and thus slept), %true is
1984  * returned with siglock released.
1985  *
1986  * If ptraced, this function doesn't handle stop itself.  Instead,
1987  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1988  * untouched.  The caller must ensure that INTERRUPT trap handling takes
1989  * places afterwards.
1990  *
1991  * CONTEXT:
1992  * Must be called with @current->sighand->siglock held, which is released
1993  * on %true return.
1994  *
1995  * RETURNS:
1996  * %false if group stop is already cancelled or ptrace trap is scheduled.
1997  * %true if participated in group stop.
1998  */
1999 static bool do_signal_stop(int signr)
2000 	__releases(&current->sighand->siglock)
2001 {
2002 	struct signal_struct *sig = current->signal;
2003 
2004 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2005 		unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2006 		struct task_struct *t;
2007 
2008 		/* signr will be recorded in task->jobctl for retries */
2009 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2010 
2011 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2012 		    unlikely(signal_group_exit(sig)))
2013 			return false;
2014 		/*
2015 		 * There is no group stop already in progress.  We must
2016 		 * initiate one now.
2017 		 *
2018 		 * While ptraced, a task may be resumed while group stop is
2019 		 * still in effect and then receive a stop signal and
2020 		 * initiate another group stop.  This deviates from the
2021 		 * usual behavior as two consecutive stop signals can't
2022 		 * cause two group stops when !ptraced.  That is why we
2023 		 * also check !task_is_stopped(t) below.
2024 		 *
2025 		 * The condition can be distinguished by testing whether
2026 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2027 		 * group_exit_code in such case.
2028 		 *
2029 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2030 		 * an intervening stop signal is required to cause two
2031 		 * continued events regardless of ptrace.
2032 		 */
2033 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2034 			sig->group_exit_code = signr;
2035 
2036 		sig->group_stop_count = 0;
2037 
2038 		if (task_set_jobctl_pending(current, signr | gstop))
2039 			sig->group_stop_count++;
2040 
2041 		for (t = next_thread(current); t != current;
2042 		     t = next_thread(t)) {
2043 			/*
2044 			 * Setting state to TASK_STOPPED for a group
2045 			 * stop is always done with the siglock held,
2046 			 * so this check has no races.
2047 			 */
2048 			if (!task_is_stopped(t) &&
2049 			    task_set_jobctl_pending(t, signr | gstop)) {
2050 				sig->group_stop_count++;
2051 				if (likely(!(t->ptrace & PT_SEIZED)))
2052 					signal_wake_up(t, 0);
2053 				else
2054 					ptrace_trap_notify(t);
2055 			}
2056 		}
2057 	}
2058 
2059 	if (likely(!current->ptrace)) {
2060 		int notify = 0;
2061 
2062 		/*
2063 		 * If there are no other threads in the group, or if there
2064 		 * is a group stop in progress and we are the last to stop,
2065 		 * report to the parent.
2066 		 */
2067 		if (task_participate_group_stop(current))
2068 			notify = CLD_STOPPED;
2069 
2070 		__set_current_state(TASK_STOPPED);
2071 		spin_unlock_irq(&current->sighand->siglock);
2072 
2073 		/*
2074 		 * Notify the parent of the group stop completion.  Because
2075 		 * we're not holding either the siglock or tasklist_lock
2076 		 * here, ptracer may attach inbetween; however, this is for
2077 		 * group stop and should always be delivered to the real
2078 		 * parent of the group leader.  The new ptracer will get
2079 		 * its notification when this task transitions into
2080 		 * TASK_TRACED.
2081 		 */
2082 		if (notify) {
2083 			read_lock(&tasklist_lock);
2084 			do_notify_parent_cldstop(current, false, notify);
2085 			read_unlock(&tasklist_lock);
2086 		}
2087 
2088 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2089 		freezable_schedule();
2090 		return true;
2091 	} else {
2092 		/*
2093 		 * While ptraced, group stop is handled by STOP trap.
2094 		 * Schedule it and let the caller deal with it.
2095 		 */
2096 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2097 		return false;
2098 	}
2099 }
2100 
2101 /**
2102  * do_jobctl_trap - take care of ptrace jobctl traps
2103  *
2104  * When PT_SEIZED, it's used for both group stop and explicit
2105  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2106  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2107  * the stop signal; otherwise, %SIGTRAP.
2108  *
2109  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2110  * number as exit_code and no siginfo.
2111  *
2112  * CONTEXT:
2113  * Must be called with @current->sighand->siglock held, which may be
2114  * released and re-acquired before returning with intervening sleep.
2115  */
2116 static void do_jobctl_trap(void)
2117 {
2118 	struct signal_struct *signal = current->signal;
2119 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2120 
2121 	if (current->ptrace & PT_SEIZED) {
2122 		if (!signal->group_stop_count &&
2123 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2124 			signr = SIGTRAP;
2125 		WARN_ON_ONCE(!signr);
2126 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2127 				 CLD_STOPPED);
2128 	} else {
2129 		WARN_ON_ONCE(!signr);
2130 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2131 		current->exit_code = 0;
2132 	}
2133 }
2134 
2135 static int ptrace_signal(int signr, siginfo_t *info)
2136 {
2137 	ptrace_signal_deliver();
2138 	/*
2139 	 * We do not check sig_kernel_stop(signr) but set this marker
2140 	 * unconditionally because we do not know whether debugger will
2141 	 * change signr. This flag has no meaning unless we are going
2142 	 * to stop after return from ptrace_stop(). In this case it will
2143 	 * be checked in do_signal_stop(), we should only stop if it was
2144 	 * not cleared by SIGCONT while we were sleeping. See also the
2145 	 * comment in dequeue_signal().
2146 	 */
2147 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2148 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2149 
2150 	/* We're back.  Did the debugger cancel the sig?  */
2151 	signr = current->exit_code;
2152 	if (signr == 0)
2153 		return signr;
2154 
2155 	current->exit_code = 0;
2156 
2157 	/*
2158 	 * Update the siginfo structure if the signal has
2159 	 * changed.  If the debugger wanted something
2160 	 * specific in the siginfo structure then it should
2161 	 * have updated *info via PTRACE_SETSIGINFO.
2162 	 */
2163 	if (signr != info->si_signo) {
2164 		info->si_signo = signr;
2165 		info->si_errno = 0;
2166 		info->si_code = SI_USER;
2167 		rcu_read_lock();
2168 		info->si_pid = task_pid_vnr(current->parent);
2169 		info->si_uid = from_kuid_munged(current_user_ns(),
2170 						task_uid(current->parent));
2171 		rcu_read_unlock();
2172 	}
2173 
2174 	/* If the (new) signal is now blocked, requeue it.  */
2175 	if (sigismember(&current->blocked, signr)) {
2176 		specific_send_sig_info(signr, info, current);
2177 		signr = 0;
2178 	}
2179 
2180 	return signr;
2181 }
2182 
2183 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2184 			  struct pt_regs *regs, void *cookie)
2185 {
2186 	struct sighand_struct *sighand = current->sighand;
2187 	struct signal_struct *signal = current->signal;
2188 	int signr;
2189 
2190 	if (unlikely(current->task_works))
2191 		task_work_run();
2192 
2193 	if (unlikely(uprobe_deny_signal()))
2194 		return 0;
2195 
2196 	/*
2197 	 * Do this once, we can't return to user-mode if freezing() == T.
2198 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2199 	 * thus do not need another check after return.
2200 	 */
2201 	try_to_freeze();
2202 
2203 relock:
2204 	spin_lock_irq(&sighand->siglock);
2205 	/*
2206 	 * Every stopped thread goes here after wakeup. Check to see if
2207 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2208 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2209 	 */
2210 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2211 		int why;
2212 
2213 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2214 			why = CLD_CONTINUED;
2215 		else
2216 			why = CLD_STOPPED;
2217 
2218 		signal->flags &= ~SIGNAL_CLD_MASK;
2219 
2220 		spin_unlock_irq(&sighand->siglock);
2221 
2222 		/*
2223 		 * Notify the parent that we're continuing.  This event is
2224 		 * always per-process and doesn't make whole lot of sense
2225 		 * for ptracers, who shouldn't consume the state via
2226 		 * wait(2) either, but, for backward compatibility, notify
2227 		 * the ptracer of the group leader too unless it's gonna be
2228 		 * a duplicate.
2229 		 */
2230 		read_lock(&tasklist_lock);
2231 		do_notify_parent_cldstop(current, false, why);
2232 
2233 		if (ptrace_reparented(current->group_leader))
2234 			do_notify_parent_cldstop(current->group_leader,
2235 						true, why);
2236 		read_unlock(&tasklist_lock);
2237 
2238 		goto relock;
2239 	}
2240 
2241 	for (;;) {
2242 		struct k_sigaction *ka;
2243 
2244 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2245 		    do_signal_stop(0))
2246 			goto relock;
2247 
2248 		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2249 			do_jobctl_trap();
2250 			spin_unlock_irq(&sighand->siglock);
2251 			goto relock;
2252 		}
2253 
2254 		signr = dequeue_signal(current, &current->blocked, info);
2255 
2256 		if (!signr)
2257 			break; /* will return 0 */
2258 
2259 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2260 			signr = ptrace_signal(signr, info);
2261 			if (!signr)
2262 				continue;
2263 		}
2264 
2265 		ka = &sighand->action[signr-1];
2266 
2267 		/* Trace actually delivered signals. */
2268 		trace_signal_deliver(signr, info, ka);
2269 
2270 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2271 			continue;
2272 		if (ka->sa.sa_handler != SIG_DFL) {
2273 			/* Run the handler.  */
2274 			*return_ka = *ka;
2275 
2276 			if (ka->sa.sa_flags & SA_ONESHOT)
2277 				ka->sa.sa_handler = SIG_DFL;
2278 
2279 			break; /* will return non-zero "signr" value */
2280 		}
2281 
2282 		/*
2283 		 * Now we are doing the default action for this signal.
2284 		 */
2285 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2286 			continue;
2287 
2288 		/*
2289 		 * Global init gets no signals it doesn't want.
2290 		 * Container-init gets no signals it doesn't want from same
2291 		 * container.
2292 		 *
2293 		 * Note that if global/container-init sees a sig_kernel_only()
2294 		 * signal here, the signal must have been generated internally
2295 		 * or must have come from an ancestor namespace. In either
2296 		 * case, the signal cannot be dropped.
2297 		 */
2298 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2299 				!sig_kernel_only(signr))
2300 			continue;
2301 
2302 		if (sig_kernel_stop(signr)) {
2303 			/*
2304 			 * The default action is to stop all threads in
2305 			 * the thread group.  The job control signals
2306 			 * do nothing in an orphaned pgrp, but SIGSTOP
2307 			 * always works.  Note that siglock needs to be
2308 			 * dropped during the call to is_orphaned_pgrp()
2309 			 * because of lock ordering with tasklist_lock.
2310 			 * This allows an intervening SIGCONT to be posted.
2311 			 * We need to check for that and bail out if necessary.
2312 			 */
2313 			if (signr != SIGSTOP) {
2314 				spin_unlock_irq(&sighand->siglock);
2315 
2316 				/* signals can be posted during this window */
2317 
2318 				if (is_current_pgrp_orphaned())
2319 					goto relock;
2320 
2321 				spin_lock_irq(&sighand->siglock);
2322 			}
2323 
2324 			if (likely(do_signal_stop(info->si_signo))) {
2325 				/* It released the siglock.  */
2326 				goto relock;
2327 			}
2328 
2329 			/*
2330 			 * We didn't actually stop, due to a race
2331 			 * with SIGCONT or something like that.
2332 			 */
2333 			continue;
2334 		}
2335 
2336 		spin_unlock_irq(&sighand->siglock);
2337 
2338 		/*
2339 		 * Anything else is fatal, maybe with a core dump.
2340 		 */
2341 		current->flags |= PF_SIGNALED;
2342 
2343 		if (sig_kernel_coredump(signr)) {
2344 			if (print_fatal_signals)
2345 				print_fatal_signal(info->si_signo);
2346 			/*
2347 			 * If it was able to dump core, this kills all
2348 			 * other threads in the group and synchronizes with
2349 			 * their demise.  If we lost the race with another
2350 			 * thread getting here, it set group_exit_code
2351 			 * first and our do_group_exit call below will use
2352 			 * that value and ignore the one we pass it.
2353 			 */
2354 			do_coredump(info);
2355 		}
2356 
2357 		/*
2358 		 * Death signals, no core dump.
2359 		 */
2360 		do_group_exit(info->si_signo);
2361 		/* NOTREACHED */
2362 	}
2363 	spin_unlock_irq(&sighand->siglock);
2364 	return signr;
2365 }
2366 
2367 /**
2368  * signal_delivered -
2369  * @sig:		number of signal being delivered
2370  * @info:		siginfo_t of signal being delivered
2371  * @ka:			sigaction setting that chose the handler
2372  * @regs:		user register state
2373  * @stepping:		nonzero if debugger single-step or block-step in use
2374  *
2375  * This function should be called when a signal has succesfully been
2376  * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask
2377  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2378  * is set in @ka->sa.sa_flags.  Tracing is notified.
2379  */
2380 void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka,
2381 			struct pt_regs *regs, int stepping)
2382 {
2383 	sigset_t blocked;
2384 
2385 	/* A signal was successfully delivered, and the
2386 	   saved sigmask was stored on the signal frame,
2387 	   and will be restored by sigreturn.  So we can
2388 	   simply clear the restore sigmask flag.  */
2389 	clear_restore_sigmask();
2390 
2391 	sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2392 	if (!(ka->sa.sa_flags & SA_NODEFER))
2393 		sigaddset(&blocked, sig);
2394 	set_current_blocked(&blocked);
2395 	tracehook_signal_handler(sig, info, ka, regs, stepping);
2396 }
2397 
2398 /*
2399  * It could be that complete_signal() picked us to notify about the
2400  * group-wide signal. Other threads should be notified now to take
2401  * the shared signals in @which since we will not.
2402  */
2403 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2404 {
2405 	sigset_t retarget;
2406 	struct task_struct *t;
2407 
2408 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2409 	if (sigisemptyset(&retarget))
2410 		return;
2411 
2412 	t = tsk;
2413 	while_each_thread(tsk, t) {
2414 		if (t->flags & PF_EXITING)
2415 			continue;
2416 
2417 		if (!has_pending_signals(&retarget, &t->blocked))
2418 			continue;
2419 		/* Remove the signals this thread can handle. */
2420 		sigandsets(&retarget, &retarget, &t->blocked);
2421 
2422 		if (!signal_pending(t))
2423 			signal_wake_up(t, 0);
2424 
2425 		if (sigisemptyset(&retarget))
2426 			break;
2427 	}
2428 }
2429 
2430 void exit_signals(struct task_struct *tsk)
2431 {
2432 	int group_stop = 0;
2433 	sigset_t unblocked;
2434 
2435 	/*
2436 	 * @tsk is about to have PF_EXITING set - lock out users which
2437 	 * expect stable threadgroup.
2438 	 */
2439 	threadgroup_change_begin(tsk);
2440 
2441 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2442 		tsk->flags |= PF_EXITING;
2443 		threadgroup_change_end(tsk);
2444 		return;
2445 	}
2446 
2447 	spin_lock_irq(&tsk->sighand->siglock);
2448 	/*
2449 	 * From now this task is not visible for group-wide signals,
2450 	 * see wants_signal(), do_signal_stop().
2451 	 */
2452 	tsk->flags |= PF_EXITING;
2453 
2454 	threadgroup_change_end(tsk);
2455 
2456 	if (!signal_pending(tsk))
2457 		goto out;
2458 
2459 	unblocked = tsk->blocked;
2460 	signotset(&unblocked);
2461 	retarget_shared_pending(tsk, &unblocked);
2462 
2463 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2464 	    task_participate_group_stop(tsk))
2465 		group_stop = CLD_STOPPED;
2466 out:
2467 	spin_unlock_irq(&tsk->sighand->siglock);
2468 
2469 	/*
2470 	 * If group stop has completed, deliver the notification.  This
2471 	 * should always go to the real parent of the group leader.
2472 	 */
2473 	if (unlikely(group_stop)) {
2474 		read_lock(&tasklist_lock);
2475 		do_notify_parent_cldstop(tsk, false, group_stop);
2476 		read_unlock(&tasklist_lock);
2477 	}
2478 }
2479 
2480 EXPORT_SYMBOL(recalc_sigpending);
2481 EXPORT_SYMBOL_GPL(dequeue_signal);
2482 EXPORT_SYMBOL(flush_signals);
2483 EXPORT_SYMBOL(force_sig);
2484 EXPORT_SYMBOL(send_sig);
2485 EXPORT_SYMBOL(send_sig_info);
2486 EXPORT_SYMBOL(sigprocmask);
2487 EXPORT_SYMBOL(block_all_signals);
2488 EXPORT_SYMBOL(unblock_all_signals);
2489 
2490 
2491 /*
2492  * System call entry points.
2493  */
2494 
2495 /**
2496  *  sys_restart_syscall - restart a system call
2497  */
2498 SYSCALL_DEFINE0(restart_syscall)
2499 {
2500 	struct restart_block *restart = &current_thread_info()->restart_block;
2501 	return restart->fn(restart);
2502 }
2503 
2504 long do_no_restart_syscall(struct restart_block *param)
2505 {
2506 	return -EINTR;
2507 }
2508 
2509 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2510 {
2511 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2512 		sigset_t newblocked;
2513 		/* A set of now blocked but previously unblocked signals. */
2514 		sigandnsets(&newblocked, newset, &current->blocked);
2515 		retarget_shared_pending(tsk, &newblocked);
2516 	}
2517 	tsk->blocked = *newset;
2518 	recalc_sigpending();
2519 }
2520 
2521 /**
2522  * set_current_blocked - change current->blocked mask
2523  * @newset: new mask
2524  *
2525  * It is wrong to change ->blocked directly, this helper should be used
2526  * to ensure the process can't miss a shared signal we are going to block.
2527  */
2528 void set_current_blocked(sigset_t *newset)
2529 {
2530 	struct task_struct *tsk = current;
2531 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2532 	spin_lock_irq(&tsk->sighand->siglock);
2533 	__set_task_blocked(tsk, newset);
2534 	spin_unlock_irq(&tsk->sighand->siglock);
2535 }
2536 
2537 void __set_current_blocked(const sigset_t *newset)
2538 {
2539 	struct task_struct *tsk = current;
2540 
2541 	spin_lock_irq(&tsk->sighand->siglock);
2542 	__set_task_blocked(tsk, newset);
2543 	spin_unlock_irq(&tsk->sighand->siglock);
2544 }
2545 
2546 /*
2547  * This is also useful for kernel threads that want to temporarily
2548  * (or permanently) block certain signals.
2549  *
2550  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2551  * interface happily blocks "unblockable" signals like SIGKILL
2552  * and friends.
2553  */
2554 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2555 {
2556 	struct task_struct *tsk = current;
2557 	sigset_t newset;
2558 
2559 	/* Lockless, only current can change ->blocked, never from irq */
2560 	if (oldset)
2561 		*oldset = tsk->blocked;
2562 
2563 	switch (how) {
2564 	case SIG_BLOCK:
2565 		sigorsets(&newset, &tsk->blocked, set);
2566 		break;
2567 	case SIG_UNBLOCK:
2568 		sigandnsets(&newset, &tsk->blocked, set);
2569 		break;
2570 	case SIG_SETMASK:
2571 		newset = *set;
2572 		break;
2573 	default:
2574 		return -EINVAL;
2575 	}
2576 
2577 	__set_current_blocked(&newset);
2578 	return 0;
2579 }
2580 
2581 /**
2582  *  sys_rt_sigprocmask - change the list of currently blocked signals
2583  *  @how: whether to add, remove, or set signals
2584  *  @nset: stores pending signals
2585  *  @oset: previous value of signal mask if non-null
2586  *  @sigsetsize: size of sigset_t type
2587  */
2588 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2589 		sigset_t __user *, oset, size_t, sigsetsize)
2590 {
2591 	sigset_t old_set, new_set;
2592 	int error;
2593 
2594 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2595 	if (sigsetsize != sizeof(sigset_t))
2596 		return -EINVAL;
2597 
2598 	old_set = current->blocked;
2599 
2600 	if (nset) {
2601 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2602 			return -EFAULT;
2603 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2604 
2605 		error = sigprocmask(how, &new_set, NULL);
2606 		if (error)
2607 			return error;
2608 	}
2609 
2610 	if (oset) {
2611 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2612 			return -EFAULT;
2613 	}
2614 
2615 	return 0;
2616 }
2617 
2618 long do_sigpending(void __user *set, unsigned long sigsetsize)
2619 {
2620 	long error = -EINVAL;
2621 	sigset_t pending;
2622 
2623 	if (sigsetsize > sizeof(sigset_t))
2624 		goto out;
2625 
2626 	spin_lock_irq(&current->sighand->siglock);
2627 	sigorsets(&pending, &current->pending.signal,
2628 		  &current->signal->shared_pending.signal);
2629 	spin_unlock_irq(&current->sighand->siglock);
2630 
2631 	/* Outside the lock because only this thread touches it.  */
2632 	sigandsets(&pending, &current->blocked, &pending);
2633 
2634 	error = -EFAULT;
2635 	if (!copy_to_user(set, &pending, sigsetsize))
2636 		error = 0;
2637 
2638 out:
2639 	return error;
2640 }
2641 
2642 /**
2643  *  sys_rt_sigpending - examine a pending signal that has been raised
2644  *			while blocked
2645  *  @set: stores pending signals
2646  *  @sigsetsize: size of sigset_t type or larger
2647  */
2648 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2649 {
2650 	return do_sigpending(set, sigsetsize);
2651 }
2652 
2653 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2654 
2655 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2656 {
2657 	int err;
2658 
2659 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2660 		return -EFAULT;
2661 	if (from->si_code < 0)
2662 		return __copy_to_user(to, from, sizeof(siginfo_t))
2663 			? -EFAULT : 0;
2664 	/*
2665 	 * If you change siginfo_t structure, please be sure
2666 	 * this code is fixed accordingly.
2667 	 * Please remember to update the signalfd_copyinfo() function
2668 	 * inside fs/signalfd.c too, in case siginfo_t changes.
2669 	 * It should never copy any pad contained in the structure
2670 	 * to avoid security leaks, but must copy the generic
2671 	 * 3 ints plus the relevant union member.
2672 	 */
2673 	err = __put_user(from->si_signo, &to->si_signo);
2674 	err |= __put_user(from->si_errno, &to->si_errno);
2675 	err |= __put_user((short)from->si_code, &to->si_code);
2676 	switch (from->si_code & __SI_MASK) {
2677 	case __SI_KILL:
2678 		err |= __put_user(from->si_pid, &to->si_pid);
2679 		err |= __put_user(from->si_uid, &to->si_uid);
2680 		break;
2681 	case __SI_TIMER:
2682 		 err |= __put_user(from->si_tid, &to->si_tid);
2683 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2684 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2685 		break;
2686 	case __SI_POLL:
2687 		err |= __put_user(from->si_band, &to->si_band);
2688 		err |= __put_user(from->si_fd, &to->si_fd);
2689 		break;
2690 	case __SI_FAULT:
2691 		err |= __put_user(from->si_addr, &to->si_addr);
2692 #ifdef __ARCH_SI_TRAPNO
2693 		err |= __put_user(from->si_trapno, &to->si_trapno);
2694 #endif
2695 #ifdef BUS_MCEERR_AO
2696 		/*
2697 		 * Other callers might not initialize the si_lsb field,
2698 		 * so check explicitly for the right codes here.
2699 		 */
2700 		if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2701 			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2702 #endif
2703 		break;
2704 	case __SI_CHLD:
2705 		err |= __put_user(from->si_pid, &to->si_pid);
2706 		err |= __put_user(from->si_uid, &to->si_uid);
2707 		err |= __put_user(from->si_status, &to->si_status);
2708 		err |= __put_user(from->si_utime, &to->si_utime);
2709 		err |= __put_user(from->si_stime, &to->si_stime);
2710 		break;
2711 	case __SI_RT: /* This is not generated by the kernel as of now. */
2712 	case __SI_MESGQ: /* But this is */
2713 		err |= __put_user(from->si_pid, &to->si_pid);
2714 		err |= __put_user(from->si_uid, &to->si_uid);
2715 		err |= __put_user(from->si_ptr, &to->si_ptr);
2716 		break;
2717 #ifdef __ARCH_SIGSYS
2718 	case __SI_SYS:
2719 		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2720 		err |= __put_user(from->si_syscall, &to->si_syscall);
2721 		err |= __put_user(from->si_arch, &to->si_arch);
2722 		break;
2723 #endif
2724 	default: /* this is just in case for now ... */
2725 		err |= __put_user(from->si_pid, &to->si_pid);
2726 		err |= __put_user(from->si_uid, &to->si_uid);
2727 		break;
2728 	}
2729 	return err;
2730 }
2731 
2732 #endif
2733 
2734 /**
2735  *  do_sigtimedwait - wait for queued signals specified in @which
2736  *  @which: queued signals to wait for
2737  *  @info: if non-null, the signal's siginfo is returned here
2738  *  @ts: upper bound on process time suspension
2739  */
2740 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2741 			const struct timespec *ts)
2742 {
2743 	struct task_struct *tsk = current;
2744 	long timeout = MAX_SCHEDULE_TIMEOUT;
2745 	sigset_t mask = *which;
2746 	int sig;
2747 
2748 	if (ts) {
2749 		if (!timespec_valid(ts))
2750 			return -EINVAL;
2751 		timeout = timespec_to_jiffies(ts);
2752 		/*
2753 		 * We can be close to the next tick, add another one
2754 		 * to ensure we will wait at least the time asked for.
2755 		 */
2756 		if (ts->tv_sec || ts->tv_nsec)
2757 			timeout++;
2758 	}
2759 
2760 	/*
2761 	 * Invert the set of allowed signals to get those we want to block.
2762 	 */
2763 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2764 	signotset(&mask);
2765 
2766 	spin_lock_irq(&tsk->sighand->siglock);
2767 	sig = dequeue_signal(tsk, &mask, info);
2768 	if (!sig && timeout) {
2769 		/*
2770 		 * None ready, temporarily unblock those we're interested
2771 		 * while we are sleeping in so that we'll be awakened when
2772 		 * they arrive. Unblocking is always fine, we can avoid
2773 		 * set_current_blocked().
2774 		 */
2775 		tsk->real_blocked = tsk->blocked;
2776 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2777 		recalc_sigpending();
2778 		spin_unlock_irq(&tsk->sighand->siglock);
2779 
2780 		timeout = schedule_timeout_interruptible(timeout);
2781 
2782 		spin_lock_irq(&tsk->sighand->siglock);
2783 		__set_task_blocked(tsk, &tsk->real_blocked);
2784 		siginitset(&tsk->real_blocked, 0);
2785 		sig = dequeue_signal(tsk, &mask, info);
2786 	}
2787 	spin_unlock_irq(&tsk->sighand->siglock);
2788 
2789 	if (sig)
2790 		return sig;
2791 	return timeout ? -EINTR : -EAGAIN;
2792 }
2793 
2794 /**
2795  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2796  *			in @uthese
2797  *  @uthese: queued signals to wait for
2798  *  @uinfo: if non-null, the signal's siginfo is returned here
2799  *  @uts: upper bound on process time suspension
2800  *  @sigsetsize: size of sigset_t type
2801  */
2802 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2803 		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2804 		size_t, sigsetsize)
2805 {
2806 	sigset_t these;
2807 	struct timespec ts;
2808 	siginfo_t info;
2809 	int ret;
2810 
2811 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2812 	if (sigsetsize != sizeof(sigset_t))
2813 		return -EINVAL;
2814 
2815 	if (copy_from_user(&these, uthese, sizeof(these)))
2816 		return -EFAULT;
2817 
2818 	if (uts) {
2819 		if (copy_from_user(&ts, uts, sizeof(ts)))
2820 			return -EFAULT;
2821 	}
2822 
2823 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2824 
2825 	if (ret > 0 && uinfo) {
2826 		if (copy_siginfo_to_user(uinfo, &info))
2827 			ret = -EFAULT;
2828 	}
2829 
2830 	return ret;
2831 }
2832 
2833 /**
2834  *  sys_kill - send a signal to a process
2835  *  @pid: the PID of the process
2836  *  @sig: signal to be sent
2837  */
2838 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2839 {
2840 	struct siginfo info;
2841 
2842 	info.si_signo = sig;
2843 	info.si_errno = 0;
2844 	info.si_code = SI_USER;
2845 	info.si_pid = task_tgid_vnr(current);
2846 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2847 
2848 	return kill_something_info(sig, &info, pid);
2849 }
2850 
2851 static int
2852 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2853 {
2854 	struct task_struct *p;
2855 	int error = -ESRCH;
2856 
2857 	rcu_read_lock();
2858 	p = find_task_by_vpid(pid);
2859 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2860 		error = check_kill_permission(sig, info, p);
2861 		/*
2862 		 * The null signal is a permissions and process existence
2863 		 * probe.  No signal is actually delivered.
2864 		 */
2865 		if (!error && sig) {
2866 			error = do_send_sig_info(sig, info, p, false);
2867 			/*
2868 			 * If lock_task_sighand() failed we pretend the task
2869 			 * dies after receiving the signal. The window is tiny,
2870 			 * and the signal is private anyway.
2871 			 */
2872 			if (unlikely(error == -ESRCH))
2873 				error = 0;
2874 		}
2875 	}
2876 	rcu_read_unlock();
2877 
2878 	return error;
2879 }
2880 
2881 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2882 {
2883 	struct siginfo info;
2884 
2885 	info.si_signo = sig;
2886 	info.si_errno = 0;
2887 	info.si_code = SI_TKILL;
2888 	info.si_pid = task_tgid_vnr(current);
2889 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2890 
2891 	return do_send_specific(tgid, pid, sig, &info);
2892 }
2893 
2894 /**
2895  *  sys_tgkill - send signal to one specific thread
2896  *  @tgid: the thread group ID of the thread
2897  *  @pid: the PID of the thread
2898  *  @sig: signal to be sent
2899  *
2900  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2901  *  exists but it's not belonging to the target process anymore. This
2902  *  method solves the problem of threads exiting and PIDs getting reused.
2903  */
2904 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2905 {
2906 	/* This is only valid for single tasks */
2907 	if (pid <= 0 || tgid <= 0)
2908 		return -EINVAL;
2909 
2910 	return do_tkill(tgid, pid, sig);
2911 }
2912 
2913 /**
2914  *  sys_tkill - send signal to one specific task
2915  *  @pid: the PID of the task
2916  *  @sig: signal to be sent
2917  *
2918  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2919  */
2920 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2921 {
2922 	/* This is only valid for single tasks */
2923 	if (pid <= 0)
2924 		return -EINVAL;
2925 
2926 	return do_tkill(0, pid, sig);
2927 }
2928 
2929 /**
2930  *  sys_rt_sigqueueinfo - send signal information to a signal
2931  *  @pid: the PID of the thread
2932  *  @sig: signal to be sent
2933  *  @uinfo: signal info to be sent
2934  */
2935 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2936 		siginfo_t __user *, uinfo)
2937 {
2938 	siginfo_t info;
2939 
2940 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2941 		return -EFAULT;
2942 
2943 	/* Not even root can pretend to send signals from the kernel.
2944 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2945 	 */
2946 	if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2947 		/* We used to allow any < 0 si_code */
2948 		WARN_ON_ONCE(info.si_code < 0);
2949 		return -EPERM;
2950 	}
2951 	info.si_signo = sig;
2952 
2953 	/* POSIX.1b doesn't mention process groups.  */
2954 	return kill_proc_info(sig, &info, pid);
2955 }
2956 
2957 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2958 {
2959 	/* This is only valid for single tasks */
2960 	if (pid <= 0 || tgid <= 0)
2961 		return -EINVAL;
2962 
2963 	/* Not even root can pretend to send signals from the kernel.
2964 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2965 	 */
2966 	if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2967 		/* We used to allow any < 0 si_code */
2968 		WARN_ON_ONCE(info->si_code < 0);
2969 		return -EPERM;
2970 	}
2971 	info->si_signo = sig;
2972 
2973 	return do_send_specific(tgid, pid, sig, info);
2974 }
2975 
2976 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2977 		siginfo_t __user *, uinfo)
2978 {
2979 	siginfo_t info;
2980 
2981 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2982 		return -EFAULT;
2983 
2984 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2985 }
2986 
2987 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2988 {
2989 	struct task_struct *t = current;
2990 	struct k_sigaction *k;
2991 	sigset_t mask;
2992 
2993 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2994 		return -EINVAL;
2995 
2996 	k = &t->sighand->action[sig-1];
2997 
2998 	spin_lock_irq(&current->sighand->siglock);
2999 	if (oact)
3000 		*oact = *k;
3001 
3002 	if (act) {
3003 		sigdelsetmask(&act->sa.sa_mask,
3004 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3005 		*k = *act;
3006 		/*
3007 		 * POSIX 3.3.1.3:
3008 		 *  "Setting a signal action to SIG_IGN for a signal that is
3009 		 *   pending shall cause the pending signal to be discarded,
3010 		 *   whether or not it is blocked."
3011 		 *
3012 		 *  "Setting a signal action to SIG_DFL for a signal that is
3013 		 *   pending and whose default action is to ignore the signal
3014 		 *   (for example, SIGCHLD), shall cause the pending signal to
3015 		 *   be discarded, whether or not it is blocked"
3016 		 */
3017 		if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3018 			sigemptyset(&mask);
3019 			sigaddset(&mask, sig);
3020 			rm_from_queue_full(&mask, &t->signal->shared_pending);
3021 			do {
3022 				rm_from_queue_full(&mask, &t->pending);
3023 				t = next_thread(t);
3024 			} while (t != current);
3025 		}
3026 	}
3027 
3028 	spin_unlock_irq(&current->sighand->siglock);
3029 	return 0;
3030 }
3031 
3032 int
3033 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3034 {
3035 	stack_t oss;
3036 	int error;
3037 
3038 	oss.ss_sp = (void __user *) current->sas_ss_sp;
3039 	oss.ss_size = current->sas_ss_size;
3040 	oss.ss_flags = sas_ss_flags(sp);
3041 
3042 	if (uss) {
3043 		void __user *ss_sp;
3044 		size_t ss_size;
3045 		int ss_flags;
3046 
3047 		error = -EFAULT;
3048 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3049 			goto out;
3050 		error = __get_user(ss_sp, &uss->ss_sp) |
3051 			__get_user(ss_flags, &uss->ss_flags) |
3052 			__get_user(ss_size, &uss->ss_size);
3053 		if (error)
3054 			goto out;
3055 
3056 		error = -EPERM;
3057 		if (on_sig_stack(sp))
3058 			goto out;
3059 
3060 		error = -EINVAL;
3061 		/*
3062 		 * Note - this code used to test ss_flags incorrectly:
3063 		 *  	  old code may have been written using ss_flags==0
3064 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
3065 		 *	  way that worked) - this fix preserves that older
3066 		 *	  mechanism.
3067 		 */
3068 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3069 			goto out;
3070 
3071 		if (ss_flags == SS_DISABLE) {
3072 			ss_size = 0;
3073 			ss_sp = NULL;
3074 		} else {
3075 			error = -ENOMEM;
3076 			if (ss_size < MINSIGSTKSZ)
3077 				goto out;
3078 		}
3079 
3080 		current->sas_ss_sp = (unsigned long) ss_sp;
3081 		current->sas_ss_size = ss_size;
3082 	}
3083 
3084 	error = 0;
3085 	if (uoss) {
3086 		error = -EFAULT;
3087 		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3088 			goto out;
3089 		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3090 			__put_user(oss.ss_size, &uoss->ss_size) |
3091 			__put_user(oss.ss_flags, &uoss->ss_flags);
3092 	}
3093 
3094 out:
3095 	return error;
3096 }
3097 
3098 #ifdef __ARCH_WANT_SYS_SIGPENDING
3099 
3100 /**
3101  *  sys_sigpending - examine pending signals
3102  *  @set: where mask of pending signal is returned
3103  */
3104 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3105 {
3106 	return do_sigpending(set, sizeof(*set));
3107 }
3108 
3109 #endif
3110 
3111 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3112 /**
3113  *  sys_sigprocmask - examine and change blocked signals
3114  *  @how: whether to add, remove, or set signals
3115  *  @nset: signals to add or remove (if non-null)
3116  *  @oset: previous value of signal mask if non-null
3117  *
3118  * Some platforms have their own version with special arguments;
3119  * others support only sys_rt_sigprocmask.
3120  */
3121 
3122 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3123 		old_sigset_t __user *, oset)
3124 {
3125 	old_sigset_t old_set, new_set;
3126 	sigset_t new_blocked;
3127 
3128 	old_set = current->blocked.sig[0];
3129 
3130 	if (nset) {
3131 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3132 			return -EFAULT;
3133 		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
3134 
3135 		new_blocked = current->blocked;
3136 
3137 		switch (how) {
3138 		case SIG_BLOCK:
3139 			sigaddsetmask(&new_blocked, new_set);
3140 			break;
3141 		case SIG_UNBLOCK:
3142 			sigdelsetmask(&new_blocked, new_set);
3143 			break;
3144 		case SIG_SETMASK:
3145 			new_blocked.sig[0] = new_set;
3146 			break;
3147 		default:
3148 			return -EINVAL;
3149 		}
3150 
3151 		__set_current_blocked(&new_blocked);
3152 	}
3153 
3154 	if (oset) {
3155 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3156 			return -EFAULT;
3157 	}
3158 
3159 	return 0;
3160 }
3161 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3162 
3163 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
3164 /**
3165  *  sys_rt_sigaction - alter an action taken by a process
3166  *  @sig: signal to be sent
3167  *  @act: new sigaction
3168  *  @oact: used to save the previous sigaction
3169  *  @sigsetsize: size of sigset_t type
3170  */
3171 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3172 		const struct sigaction __user *, act,
3173 		struct sigaction __user *, oact,
3174 		size_t, sigsetsize)
3175 {
3176 	struct k_sigaction new_sa, old_sa;
3177 	int ret = -EINVAL;
3178 
3179 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3180 	if (sigsetsize != sizeof(sigset_t))
3181 		goto out;
3182 
3183 	if (act) {
3184 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3185 			return -EFAULT;
3186 	}
3187 
3188 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3189 
3190 	if (!ret && oact) {
3191 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3192 			return -EFAULT;
3193 	}
3194 out:
3195 	return ret;
3196 }
3197 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
3198 
3199 #ifdef __ARCH_WANT_SYS_SGETMASK
3200 
3201 /*
3202  * For backwards compatibility.  Functionality superseded by sigprocmask.
3203  */
3204 SYSCALL_DEFINE0(sgetmask)
3205 {
3206 	/* SMP safe */
3207 	return current->blocked.sig[0];
3208 }
3209 
3210 SYSCALL_DEFINE1(ssetmask, int, newmask)
3211 {
3212 	int old = current->blocked.sig[0];
3213 	sigset_t newset;
3214 
3215 	set_current_blocked(&newset);
3216 
3217 	return old;
3218 }
3219 #endif /* __ARCH_WANT_SGETMASK */
3220 
3221 #ifdef __ARCH_WANT_SYS_SIGNAL
3222 /*
3223  * For backwards compatibility.  Functionality superseded by sigaction.
3224  */
3225 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3226 {
3227 	struct k_sigaction new_sa, old_sa;
3228 	int ret;
3229 
3230 	new_sa.sa.sa_handler = handler;
3231 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3232 	sigemptyset(&new_sa.sa.sa_mask);
3233 
3234 	ret = do_sigaction(sig, &new_sa, &old_sa);
3235 
3236 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3237 }
3238 #endif /* __ARCH_WANT_SYS_SIGNAL */
3239 
3240 #ifdef __ARCH_WANT_SYS_PAUSE
3241 
3242 SYSCALL_DEFINE0(pause)
3243 {
3244 	while (!signal_pending(current)) {
3245 		current->state = TASK_INTERRUPTIBLE;
3246 		schedule();
3247 	}
3248 	return -ERESTARTNOHAND;
3249 }
3250 
3251 #endif
3252 
3253 int sigsuspend(sigset_t *set)
3254 {
3255 	current->saved_sigmask = current->blocked;
3256 	set_current_blocked(set);
3257 
3258 	current->state = TASK_INTERRUPTIBLE;
3259 	schedule();
3260 	set_restore_sigmask();
3261 	return -ERESTARTNOHAND;
3262 }
3263 
3264 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
3265 /**
3266  *  sys_rt_sigsuspend - replace the signal mask for a value with the
3267  *	@unewset value until a signal is received
3268  *  @unewset: new signal mask value
3269  *  @sigsetsize: size of sigset_t type
3270  */
3271 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3272 {
3273 	sigset_t newset;
3274 
3275 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3276 	if (sigsetsize != sizeof(sigset_t))
3277 		return -EINVAL;
3278 
3279 	if (copy_from_user(&newset, unewset, sizeof(newset)))
3280 		return -EFAULT;
3281 	return sigsuspend(&newset);
3282 }
3283 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
3284 
3285 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3286 {
3287 	return NULL;
3288 }
3289 
3290 void __init signals_init(void)
3291 {
3292 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3293 }
3294 
3295 #ifdef CONFIG_KGDB_KDB
3296 #include <linux/kdb.h>
3297 /*
3298  * kdb_send_sig_info - Allows kdb to send signals without exposing
3299  * signal internals.  This function checks if the required locks are
3300  * available before calling the main signal code, to avoid kdb
3301  * deadlocks.
3302  */
3303 void
3304 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3305 {
3306 	static struct task_struct *kdb_prev_t;
3307 	int sig, new_t;
3308 	if (!spin_trylock(&t->sighand->siglock)) {
3309 		kdb_printf("Can't do kill command now.\n"
3310 			   "The sigmask lock is held somewhere else in "
3311 			   "kernel, try again later\n");
3312 		return;
3313 	}
3314 	spin_unlock(&t->sighand->siglock);
3315 	new_t = kdb_prev_t != t;
3316 	kdb_prev_t = t;
3317 	if (t->state != TASK_RUNNING && new_t) {
3318 		kdb_printf("Process is not RUNNING, sending a signal from "
3319 			   "kdb risks deadlock\n"
3320 			   "on the run queue locks. "
3321 			   "The signal has _not_ been sent.\n"
3322 			   "Reissue the kill command if you want to risk "
3323 			   "the deadlock.\n");
3324 		return;
3325 	}
3326 	sig = info->si_signo;
3327 	if (send_sig_info(sig, info, t))
3328 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3329 			   sig, t->pid);
3330 	else
3331 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3332 }
3333 #endif	/* CONFIG_KGDB_KDB */
3334