xref: /linux/kernel/signal.c (revision b8321ed4a40c02054f930ca59d3570caa27bc86c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/task_work.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/cgroup.h>
47 #include <linux/audit.h>
48 
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/signal.h>
51 
52 #include <asm/param.h>
53 #include <linux/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/siginfo.h>
56 #include <asm/cacheflush.h>
57 #include <asm/syscall.h>	/* for syscall_get_* */
58 
59 /*
60  * SLAB caches for signal bits.
61  */
62 
63 static struct kmem_cache *sigqueue_cachep;
64 
65 int print_fatal_signals __read_mostly;
66 
67 static void __user *sig_handler(struct task_struct *t, int sig)
68 {
69 	return t->sighand->action[sig - 1].sa.sa_handler;
70 }
71 
72 static inline bool sig_handler_ignored(void __user *handler, int sig)
73 {
74 	/* Is it explicitly or implicitly ignored? */
75 	return handler == SIG_IGN ||
76 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
77 }
78 
79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
80 {
81 	void __user *handler;
82 
83 	handler = sig_handler(t, sig);
84 
85 	/* SIGKILL and SIGSTOP may not be sent to the global init */
86 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
87 		return true;
88 
89 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
91 		return true;
92 
93 	/* Only allow kernel generated signals to this kthread */
94 	if (unlikely((t->flags & PF_KTHREAD) &&
95 		     (handler == SIG_KTHREAD_KERNEL) && !force))
96 		return true;
97 
98 	return sig_handler_ignored(handler, sig);
99 }
100 
101 static bool sig_ignored(struct task_struct *t, int sig, bool force)
102 {
103 	/*
104 	 * Blocked signals are never ignored, since the
105 	 * signal handler may change by the time it is
106 	 * unblocked.
107 	 */
108 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
109 		return false;
110 
111 	/*
112 	 * Tracers may want to know about even ignored signal unless it
113 	 * is SIGKILL which can't be reported anyway but can be ignored
114 	 * by SIGNAL_UNKILLABLE task.
115 	 */
116 	if (t->ptrace && sig != SIGKILL)
117 		return false;
118 
119 	return sig_task_ignored(t, sig, force);
120 }
121 
122 /*
123  * Re-calculate pending state from the set of locally pending
124  * signals, globally pending signals, and blocked signals.
125  */
126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
127 {
128 	unsigned long ready;
129 	long i;
130 
131 	switch (_NSIG_WORDS) {
132 	default:
133 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
134 			ready |= signal->sig[i] &~ blocked->sig[i];
135 		break;
136 
137 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
138 		ready |= signal->sig[2] &~ blocked->sig[2];
139 		ready |= signal->sig[1] &~ blocked->sig[1];
140 		ready |= signal->sig[0] &~ blocked->sig[0];
141 		break;
142 
143 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
144 		ready |= signal->sig[0] &~ blocked->sig[0];
145 		break;
146 
147 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
148 	}
149 	return ready !=	0;
150 }
151 
152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
153 
154 static bool recalc_sigpending_tsk(struct task_struct *t)
155 {
156 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
157 	    PENDING(&t->pending, &t->blocked) ||
158 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
159 	    cgroup_task_frozen(t)) {
160 		set_tsk_thread_flag(t, TIF_SIGPENDING);
161 		return true;
162 	}
163 
164 	/*
165 	 * We must never clear the flag in another thread, or in current
166 	 * when it's possible the current syscall is returning -ERESTART*.
167 	 * So we don't clear it here, and only callers who know they should do.
168 	 */
169 	return false;
170 }
171 
172 /*
173  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
174  * This is superfluous when called on current, the wakeup is a harmless no-op.
175  */
176 void recalc_sigpending_and_wake(struct task_struct *t)
177 {
178 	if (recalc_sigpending_tsk(t))
179 		signal_wake_up(t, 0);
180 }
181 
182 void recalc_sigpending(void)
183 {
184 	if (!recalc_sigpending_tsk(current) && !freezing(current))
185 		clear_thread_flag(TIF_SIGPENDING);
186 
187 }
188 EXPORT_SYMBOL(recalc_sigpending);
189 
190 void calculate_sigpending(void)
191 {
192 	/* Have any signals or users of TIF_SIGPENDING been delayed
193 	 * until after fork?
194 	 */
195 	spin_lock_irq(&current->sighand->siglock);
196 	set_tsk_thread_flag(current, TIF_SIGPENDING);
197 	recalc_sigpending();
198 	spin_unlock_irq(&current->sighand->siglock);
199 }
200 
201 /* Given the mask, find the first available signal that should be serviced. */
202 
203 #define SYNCHRONOUS_MASK \
204 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
205 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
206 
207 int next_signal(struct sigpending *pending, sigset_t *mask)
208 {
209 	unsigned long i, *s, *m, x;
210 	int sig = 0;
211 
212 	s = pending->signal.sig;
213 	m = mask->sig;
214 
215 	/*
216 	 * Handle the first word specially: it contains the
217 	 * synchronous signals that need to be dequeued first.
218 	 */
219 	x = *s &~ *m;
220 	if (x) {
221 		if (x & SYNCHRONOUS_MASK)
222 			x &= SYNCHRONOUS_MASK;
223 		sig = ffz(~x) + 1;
224 		return sig;
225 	}
226 
227 	switch (_NSIG_WORDS) {
228 	default:
229 		for (i = 1; i < _NSIG_WORDS; ++i) {
230 			x = *++s &~ *++m;
231 			if (!x)
232 				continue;
233 			sig = ffz(~x) + i*_NSIG_BPW + 1;
234 			break;
235 		}
236 		break;
237 
238 	case 2:
239 		x = s[1] &~ m[1];
240 		if (!x)
241 			break;
242 		sig = ffz(~x) + _NSIG_BPW + 1;
243 		break;
244 
245 	case 1:
246 		/* Nothing to do */
247 		break;
248 	}
249 
250 	return sig;
251 }
252 
253 static inline void print_dropped_signal(int sig)
254 {
255 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
256 
257 	if (!print_fatal_signals)
258 		return;
259 
260 	if (!__ratelimit(&ratelimit_state))
261 		return;
262 
263 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
264 				current->comm, current->pid, sig);
265 }
266 
267 /**
268  * task_set_jobctl_pending - set jobctl pending bits
269  * @task: target task
270  * @mask: pending bits to set
271  *
272  * Clear @mask from @task->jobctl.  @mask must be subset of
273  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
274  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
275  * cleared.  If @task is already being killed or exiting, this function
276  * becomes noop.
277  *
278  * CONTEXT:
279  * Must be called with @task->sighand->siglock held.
280  *
281  * RETURNS:
282  * %true if @mask is set, %false if made noop because @task was dying.
283  */
284 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
285 {
286 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
287 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
288 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
289 
290 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
291 		return false;
292 
293 	if (mask & JOBCTL_STOP_SIGMASK)
294 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
295 
296 	task->jobctl |= mask;
297 	return true;
298 }
299 
300 /**
301  * task_clear_jobctl_trapping - clear jobctl trapping bit
302  * @task: target task
303  *
304  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
305  * Clear it and wake up the ptracer.  Note that we don't need any further
306  * locking.  @task->siglock guarantees that @task->parent points to the
307  * ptracer.
308  *
309  * CONTEXT:
310  * Must be called with @task->sighand->siglock held.
311  */
312 void task_clear_jobctl_trapping(struct task_struct *task)
313 {
314 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
315 		task->jobctl &= ~JOBCTL_TRAPPING;
316 		smp_mb();	/* advised by wake_up_bit() */
317 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
318 	}
319 }
320 
321 /**
322  * task_clear_jobctl_pending - clear jobctl pending bits
323  * @task: target task
324  * @mask: pending bits to clear
325  *
326  * Clear @mask from @task->jobctl.  @mask must be subset of
327  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
328  * STOP bits are cleared together.
329  *
330  * If clearing of @mask leaves no stop or trap pending, this function calls
331  * task_clear_jobctl_trapping().
332  *
333  * CONTEXT:
334  * Must be called with @task->sighand->siglock held.
335  */
336 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
337 {
338 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
339 
340 	if (mask & JOBCTL_STOP_PENDING)
341 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
342 
343 	task->jobctl &= ~mask;
344 
345 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
346 		task_clear_jobctl_trapping(task);
347 }
348 
349 /**
350  * task_participate_group_stop - participate in a group stop
351  * @task: task participating in a group stop
352  *
353  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
354  * Group stop states are cleared and the group stop count is consumed if
355  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
356  * stop, the appropriate `SIGNAL_*` flags are set.
357  *
358  * CONTEXT:
359  * Must be called with @task->sighand->siglock held.
360  *
361  * RETURNS:
362  * %true if group stop completion should be notified to the parent, %false
363  * otherwise.
364  */
365 static bool task_participate_group_stop(struct task_struct *task)
366 {
367 	struct signal_struct *sig = task->signal;
368 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
369 
370 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
371 
372 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
373 
374 	if (!consume)
375 		return false;
376 
377 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
378 		sig->group_stop_count--;
379 
380 	/*
381 	 * Tell the caller to notify completion iff we are entering into a
382 	 * fresh group stop.  Read comment in do_signal_stop() for details.
383 	 */
384 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
385 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
386 		return true;
387 	}
388 	return false;
389 }
390 
391 void task_join_group_stop(struct task_struct *task)
392 {
393 	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
394 	struct signal_struct *sig = current->signal;
395 
396 	if (sig->group_stop_count) {
397 		sig->group_stop_count++;
398 		mask |= JOBCTL_STOP_CONSUME;
399 	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
400 		return;
401 
402 	/* Have the new thread join an on-going signal group stop */
403 	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
404 }
405 
406 /*
407  * allocate a new signal queue record
408  * - this may be called without locks if and only if t == current, otherwise an
409  *   appropriate lock must be held to stop the target task from exiting
410  */
411 static struct sigqueue *
412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
413 		 int override_rlimit, const unsigned int sigqueue_flags)
414 {
415 	struct sigqueue *q = NULL;
416 	struct ucounts *ucounts = NULL;
417 	long sigpending;
418 
419 	/*
420 	 * Protect access to @t credentials. This can go away when all
421 	 * callers hold rcu read lock.
422 	 *
423 	 * NOTE! A pending signal will hold on to the user refcount,
424 	 * and we get/put the refcount only when the sigpending count
425 	 * changes from/to zero.
426 	 */
427 	rcu_read_lock();
428 	ucounts = task_ucounts(t);
429 	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
430 	rcu_read_unlock();
431 	if (!sigpending)
432 		return NULL;
433 
434 	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
435 		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
436 	} else {
437 		print_dropped_signal(sig);
438 	}
439 
440 	if (unlikely(q == NULL)) {
441 		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
442 	} else {
443 		INIT_LIST_HEAD(&q->list);
444 		q->flags = sigqueue_flags;
445 		q->ucounts = ucounts;
446 	}
447 	return q;
448 }
449 
450 static void __sigqueue_free(struct sigqueue *q)
451 {
452 	if (q->flags & SIGQUEUE_PREALLOC)
453 		return;
454 	if (q->ucounts) {
455 		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
456 		q->ucounts = NULL;
457 	}
458 	kmem_cache_free(sigqueue_cachep, q);
459 }
460 
461 void flush_sigqueue(struct sigpending *queue)
462 {
463 	struct sigqueue *q;
464 
465 	sigemptyset(&queue->signal);
466 	while (!list_empty(&queue->list)) {
467 		q = list_entry(queue->list.next, struct sigqueue , list);
468 		list_del_init(&q->list);
469 		__sigqueue_free(q);
470 	}
471 }
472 
473 /*
474  * Flush all pending signals for this kthread.
475  */
476 void flush_signals(struct task_struct *t)
477 {
478 	unsigned long flags;
479 
480 	spin_lock_irqsave(&t->sighand->siglock, flags);
481 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
482 	flush_sigqueue(&t->pending);
483 	flush_sigqueue(&t->signal->shared_pending);
484 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
485 }
486 EXPORT_SYMBOL(flush_signals);
487 
488 #ifdef CONFIG_POSIX_TIMERS
489 static void __flush_itimer_signals(struct sigpending *pending)
490 {
491 	sigset_t signal, retain;
492 	struct sigqueue *q, *n;
493 
494 	signal = pending->signal;
495 	sigemptyset(&retain);
496 
497 	list_for_each_entry_safe(q, n, &pending->list, list) {
498 		int sig = q->info.si_signo;
499 
500 		if (likely(q->info.si_code != SI_TIMER)) {
501 			sigaddset(&retain, sig);
502 		} else {
503 			sigdelset(&signal, sig);
504 			list_del_init(&q->list);
505 			__sigqueue_free(q);
506 		}
507 	}
508 
509 	sigorsets(&pending->signal, &signal, &retain);
510 }
511 
512 void flush_itimer_signals(void)
513 {
514 	struct task_struct *tsk = current;
515 	unsigned long flags;
516 
517 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
518 	__flush_itimer_signals(&tsk->pending);
519 	__flush_itimer_signals(&tsk->signal->shared_pending);
520 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
521 }
522 #endif
523 
524 void ignore_signals(struct task_struct *t)
525 {
526 	int i;
527 
528 	for (i = 0; i < _NSIG; ++i)
529 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
530 
531 	flush_signals(t);
532 }
533 
534 /*
535  * Flush all handlers for a task.
536  */
537 
538 void
539 flush_signal_handlers(struct task_struct *t, int force_default)
540 {
541 	int i;
542 	struct k_sigaction *ka = &t->sighand->action[0];
543 	for (i = _NSIG ; i != 0 ; i--) {
544 		if (force_default || ka->sa.sa_handler != SIG_IGN)
545 			ka->sa.sa_handler = SIG_DFL;
546 		ka->sa.sa_flags = 0;
547 #ifdef __ARCH_HAS_SA_RESTORER
548 		ka->sa.sa_restorer = NULL;
549 #endif
550 		sigemptyset(&ka->sa.sa_mask);
551 		ka++;
552 	}
553 }
554 
555 bool unhandled_signal(struct task_struct *tsk, int sig)
556 {
557 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
558 	if (is_global_init(tsk))
559 		return true;
560 
561 	if (handler != SIG_IGN && handler != SIG_DFL)
562 		return false;
563 
564 	/* if ptraced, let the tracer determine */
565 	return !tsk->ptrace;
566 }
567 
568 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
569 			   bool *resched_timer)
570 {
571 	struct sigqueue *q, *first = NULL;
572 
573 	/*
574 	 * Collect the siginfo appropriate to this signal.  Check if
575 	 * there is another siginfo for the same signal.
576 	*/
577 	list_for_each_entry(q, &list->list, list) {
578 		if (q->info.si_signo == sig) {
579 			if (first)
580 				goto still_pending;
581 			first = q;
582 		}
583 	}
584 
585 	sigdelset(&list->signal, sig);
586 
587 	if (first) {
588 still_pending:
589 		list_del_init(&first->list);
590 		copy_siginfo(info, &first->info);
591 
592 		*resched_timer =
593 			(first->flags & SIGQUEUE_PREALLOC) &&
594 			(info->si_code == SI_TIMER) &&
595 			(info->si_sys_private);
596 
597 		__sigqueue_free(first);
598 	} else {
599 		/*
600 		 * Ok, it wasn't in the queue.  This must be
601 		 * a fast-pathed signal or we must have been
602 		 * out of queue space.  So zero out the info.
603 		 */
604 		clear_siginfo(info);
605 		info->si_signo = sig;
606 		info->si_errno = 0;
607 		info->si_code = SI_USER;
608 		info->si_pid = 0;
609 		info->si_uid = 0;
610 	}
611 }
612 
613 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
614 			kernel_siginfo_t *info, bool *resched_timer)
615 {
616 	int sig = next_signal(pending, mask);
617 
618 	if (sig)
619 		collect_signal(sig, pending, info, resched_timer);
620 	return sig;
621 }
622 
623 /*
624  * Dequeue a signal and return the element to the caller, which is
625  * expected to free it.
626  *
627  * All callers have to hold the siglock.
628  */
629 int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
630 		   kernel_siginfo_t *info, enum pid_type *type)
631 {
632 	bool resched_timer = false;
633 	int signr;
634 
635 	/* We only dequeue private signals from ourselves, we don't let
636 	 * signalfd steal them
637 	 */
638 	*type = PIDTYPE_PID;
639 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
640 	if (!signr) {
641 		*type = PIDTYPE_TGID;
642 		signr = __dequeue_signal(&tsk->signal->shared_pending,
643 					 mask, info, &resched_timer);
644 #ifdef CONFIG_POSIX_TIMERS
645 		/*
646 		 * itimer signal ?
647 		 *
648 		 * itimers are process shared and we restart periodic
649 		 * itimers in the signal delivery path to prevent DoS
650 		 * attacks in the high resolution timer case. This is
651 		 * compliant with the old way of self-restarting
652 		 * itimers, as the SIGALRM is a legacy signal and only
653 		 * queued once. Changing the restart behaviour to
654 		 * restart the timer in the signal dequeue path is
655 		 * reducing the timer noise on heavy loaded !highres
656 		 * systems too.
657 		 */
658 		if (unlikely(signr == SIGALRM)) {
659 			struct hrtimer *tmr = &tsk->signal->real_timer;
660 
661 			if (!hrtimer_is_queued(tmr) &&
662 			    tsk->signal->it_real_incr != 0) {
663 				hrtimer_forward(tmr, tmr->base->get_time(),
664 						tsk->signal->it_real_incr);
665 				hrtimer_restart(tmr);
666 			}
667 		}
668 #endif
669 	}
670 
671 	recalc_sigpending();
672 	if (!signr)
673 		return 0;
674 
675 	if (unlikely(sig_kernel_stop(signr))) {
676 		/*
677 		 * Set a marker that we have dequeued a stop signal.  Our
678 		 * caller might release the siglock and then the pending
679 		 * stop signal it is about to process is no longer in the
680 		 * pending bitmasks, but must still be cleared by a SIGCONT
681 		 * (and overruled by a SIGKILL).  So those cases clear this
682 		 * shared flag after we've set it.  Note that this flag may
683 		 * remain set after the signal we return is ignored or
684 		 * handled.  That doesn't matter because its only purpose
685 		 * is to alert stop-signal processing code when another
686 		 * processor has come along and cleared the flag.
687 		 */
688 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
689 	}
690 #ifdef CONFIG_POSIX_TIMERS
691 	if (resched_timer) {
692 		/*
693 		 * Release the siglock to ensure proper locking order
694 		 * of timer locks outside of siglocks.  Note, we leave
695 		 * irqs disabled here, since the posix-timers code is
696 		 * about to disable them again anyway.
697 		 */
698 		spin_unlock(&tsk->sighand->siglock);
699 		posixtimer_rearm(info);
700 		spin_lock(&tsk->sighand->siglock);
701 
702 		/* Don't expose the si_sys_private value to userspace */
703 		info->si_sys_private = 0;
704 	}
705 #endif
706 	return signr;
707 }
708 EXPORT_SYMBOL_GPL(dequeue_signal);
709 
710 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
711 {
712 	struct task_struct *tsk = current;
713 	struct sigpending *pending = &tsk->pending;
714 	struct sigqueue *q, *sync = NULL;
715 
716 	/*
717 	 * Might a synchronous signal be in the queue?
718 	 */
719 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
720 		return 0;
721 
722 	/*
723 	 * Return the first synchronous signal in the queue.
724 	 */
725 	list_for_each_entry(q, &pending->list, list) {
726 		/* Synchronous signals have a positive si_code */
727 		if ((q->info.si_code > SI_USER) &&
728 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
729 			sync = q;
730 			goto next;
731 		}
732 	}
733 	return 0;
734 next:
735 	/*
736 	 * Check if there is another siginfo for the same signal.
737 	 */
738 	list_for_each_entry_continue(q, &pending->list, list) {
739 		if (q->info.si_signo == sync->info.si_signo)
740 			goto still_pending;
741 	}
742 
743 	sigdelset(&pending->signal, sync->info.si_signo);
744 	recalc_sigpending();
745 still_pending:
746 	list_del_init(&sync->list);
747 	copy_siginfo(info, &sync->info);
748 	__sigqueue_free(sync);
749 	return info->si_signo;
750 }
751 
752 /*
753  * Tell a process that it has a new active signal..
754  *
755  * NOTE! we rely on the previous spin_lock to
756  * lock interrupts for us! We can only be called with
757  * "siglock" held, and the local interrupt must
758  * have been disabled when that got acquired!
759  *
760  * No need to set need_resched since signal event passing
761  * goes through ->blocked
762  */
763 void signal_wake_up_state(struct task_struct *t, unsigned int state)
764 {
765 	set_tsk_thread_flag(t, TIF_SIGPENDING);
766 	/*
767 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
768 	 * case. We don't check t->state here because there is a race with it
769 	 * executing another processor and just now entering stopped state.
770 	 * By using wake_up_state, we ensure the process will wake up and
771 	 * handle its death signal.
772 	 */
773 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
774 		kick_process(t);
775 }
776 
777 /*
778  * Remove signals in mask from the pending set and queue.
779  * Returns 1 if any signals were found.
780  *
781  * All callers must be holding the siglock.
782  */
783 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
784 {
785 	struct sigqueue *q, *n;
786 	sigset_t m;
787 
788 	sigandsets(&m, mask, &s->signal);
789 	if (sigisemptyset(&m))
790 		return;
791 
792 	sigandnsets(&s->signal, &s->signal, mask);
793 	list_for_each_entry_safe(q, n, &s->list, list) {
794 		if (sigismember(mask, q->info.si_signo)) {
795 			list_del_init(&q->list);
796 			__sigqueue_free(q);
797 		}
798 	}
799 }
800 
801 static inline int is_si_special(const struct kernel_siginfo *info)
802 {
803 	return info <= SEND_SIG_PRIV;
804 }
805 
806 static inline bool si_fromuser(const struct kernel_siginfo *info)
807 {
808 	return info == SEND_SIG_NOINFO ||
809 		(!is_si_special(info) && SI_FROMUSER(info));
810 }
811 
812 /*
813  * called with RCU read lock from check_kill_permission()
814  */
815 static bool kill_ok_by_cred(struct task_struct *t)
816 {
817 	const struct cred *cred = current_cred();
818 	const struct cred *tcred = __task_cred(t);
819 
820 	return uid_eq(cred->euid, tcred->suid) ||
821 	       uid_eq(cred->euid, tcred->uid) ||
822 	       uid_eq(cred->uid, tcred->suid) ||
823 	       uid_eq(cred->uid, tcred->uid) ||
824 	       ns_capable(tcred->user_ns, CAP_KILL);
825 }
826 
827 /*
828  * Bad permissions for sending the signal
829  * - the caller must hold the RCU read lock
830  */
831 static int check_kill_permission(int sig, struct kernel_siginfo *info,
832 				 struct task_struct *t)
833 {
834 	struct pid *sid;
835 	int error;
836 
837 	if (!valid_signal(sig))
838 		return -EINVAL;
839 
840 	if (!si_fromuser(info))
841 		return 0;
842 
843 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
844 	if (error)
845 		return error;
846 
847 	if (!same_thread_group(current, t) &&
848 	    !kill_ok_by_cred(t)) {
849 		switch (sig) {
850 		case SIGCONT:
851 			sid = task_session(t);
852 			/*
853 			 * We don't return the error if sid == NULL. The
854 			 * task was unhashed, the caller must notice this.
855 			 */
856 			if (!sid || sid == task_session(current))
857 				break;
858 			fallthrough;
859 		default:
860 			return -EPERM;
861 		}
862 	}
863 
864 	return security_task_kill(t, info, sig, NULL);
865 }
866 
867 /**
868  * ptrace_trap_notify - schedule trap to notify ptracer
869  * @t: tracee wanting to notify tracer
870  *
871  * This function schedules sticky ptrace trap which is cleared on the next
872  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
873  * ptracer.
874  *
875  * If @t is running, STOP trap will be taken.  If trapped for STOP and
876  * ptracer is listening for events, tracee is woken up so that it can
877  * re-trap for the new event.  If trapped otherwise, STOP trap will be
878  * eventually taken without returning to userland after the existing traps
879  * are finished by PTRACE_CONT.
880  *
881  * CONTEXT:
882  * Must be called with @task->sighand->siglock held.
883  */
884 static void ptrace_trap_notify(struct task_struct *t)
885 {
886 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
887 	assert_spin_locked(&t->sighand->siglock);
888 
889 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
890 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
891 }
892 
893 /*
894  * Handle magic process-wide effects of stop/continue signals. Unlike
895  * the signal actions, these happen immediately at signal-generation
896  * time regardless of blocking, ignoring, or handling.  This does the
897  * actual continuing for SIGCONT, but not the actual stopping for stop
898  * signals. The process stop is done as a signal action for SIG_DFL.
899  *
900  * Returns true if the signal should be actually delivered, otherwise
901  * it should be dropped.
902  */
903 static bool prepare_signal(int sig, struct task_struct *p, bool force)
904 {
905 	struct signal_struct *signal = p->signal;
906 	struct task_struct *t;
907 	sigset_t flush;
908 
909 	if (signal->flags & SIGNAL_GROUP_EXIT) {
910 		if (signal->core_state)
911 			return sig == SIGKILL;
912 		/*
913 		 * The process is in the middle of dying, nothing to do.
914 		 */
915 	} else if (sig_kernel_stop(sig)) {
916 		/*
917 		 * This is a stop signal.  Remove SIGCONT from all queues.
918 		 */
919 		siginitset(&flush, sigmask(SIGCONT));
920 		flush_sigqueue_mask(&flush, &signal->shared_pending);
921 		for_each_thread(p, t)
922 			flush_sigqueue_mask(&flush, &t->pending);
923 	} else if (sig == SIGCONT) {
924 		unsigned int why;
925 		/*
926 		 * Remove all stop signals from all queues, wake all threads.
927 		 */
928 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
929 		flush_sigqueue_mask(&flush, &signal->shared_pending);
930 		for_each_thread(p, t) {
931 			flush_sigqueue_mask(&flush, &t->pending);
932 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
933 			if (likely(!(t->ptrace & PT_SEIZED)))
934 				wake_up_state(t, __TASK_STOPPED);
935 			else
936 				ptrace_trap_notify(t);
937 		}
938 
939 		/*
940 		 * Notify the parent with CLD_CONTINUED if we were stopped.
941 		 *
942 		 * If we were in the middle of a group stop, we pretend it
943 		 * was already finished, and then continued. Since SIGCHLD
944 		 * doesn't queue we report only CLD_STOPPED, as if the next
945 		 * CLD_CONTINUED was dropped.
946 		 */
947 		why = 0;
948 		if (signal->flags & SIGNAL_STOP_STOPPED)
949 			why |= SIGNAL_CLD_CONTINUED;
950 		else if (signal->group_stop_count)
951 			why |= SIGNAL_CLD_STOPPED;
952 
953 		if (why) {
954 			/*
955 			 * The first thread which returns from do_signal_stop()
956 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
957 			 * notify its parent. See get_signal().
958 			 */
959 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
960 			signal->group_stop_count = 0;
961 			signal->group_exit_code = 0;
962 		}
963 	}
964 
965 	return !sig_ignored(p, sig, force);
966 }
967 
968 /*
969  * Test if P wants to take SIG.  After we've checked all threads with this,
970  * it's equivalent to finding no threads not blocking SIG.  Any threads not
971  * blocking SIG were ruled out because they are not running and already
972  * have pending signals.  Such threads will dequeue from the shared queue
973  * as soon as they're available, so putting the signal on the shared queue
974  * will be equivalent to sending it to one such thread.
975  */
976 static inline bool wants_signal(int sig, struct task_struct *p)
977 {
978 	if (sigismember(&p->blocked, sig))
979 		return false;
980 
981 	if (p->flags & PF_EXITING)
982 		return false;
983 
984 	if (sig == SIGKILL)
985 		return true;
986 
987 	if (task_is_stopped_or_traced(p))
988 		return false;
989 
990 	return task_curr(p) || !task_sigpending(p);
991 }
992 
993 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
994 {
995 	struct signal_struct *signal = p->signal;
996 	struct task_struct *t;
997 
998 	/*
999 	 * Now find a thread we can wake up to take the signal off the queue.
1000 	 *
1001 	 * If the main thread wants the signal, it gets first crack.
1002 	 * Probably the least surprising to the average bear.
1003 	 */
1004 	if (wants_signal(sig, p))
1005 		t = p;
1006 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1007 		/*
1008 		 * There is just one thread and it does not need to be woken.
1009 		 * It will dequeue unblocked signals before it runs again.
1010 		 */
1011 		return;
1012 	else {
1013 		/*
1014 		 * Otherwise try to find a suitable thread.
1015 		 */
1016 		t = signal->curr_target;
1017 		while (!wants_signal(sig, t)) {
1018 			t = next_thread(t);
1019 			if (t == signal->curr_target)
1020 				/*
1021 				 * No thread needs to be woken.
1022 				 * Any eligible threads will see
1023 				 * the signal in the queue soon.
1024 				 */
1025 				return;
1026 		}
1027 		signal->curr_target = t;
1028 	}
1029 
1030 	/*
1031 	 * Found a killable thread.  If the signal will be fatal,
1032 	 * then start taking the whole group down immediately.
1033 	 */
1034 	if (sig_fatal(p, sig) &&
1035 	    (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1036 	    !sigismember(&t->real_blocked, sig) &&
1037 	    (sig == SIGKILL || !p->ptrace)) {
1038 		/*
1039 		 * This signal will be fatal to the whole group.
1040 		 */
1041 		if (!sig_kernel_coredump(sig)) {
1042 			/*
1043 			 * Start a group exit and wake everybody up.
1044 			 * This way we don't have other threads
1045 			 * running and doing things after a slower
1046 			 * thread has the fatal signal pending.
1047 			 */
1048 			signal->flags = SIGNAL_GROUP_EXIT;
1049 			signal->group_exit_code = sig;
1050 			signal->group_stop_count = 0;
1051 			t = p;
1052 			do {
1053 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1054 				sigaddset(&t->pending.signal, SIGKILL);
1055 				signal_wake_up(t, 1);
1056 			} while_each_thread(p, t);
1057 			return;
1058 		}
1059 	}
1060 
1061 	/*
1062 	 * The signal is already in the shared-pending queue.
1063 	 * Tell the chosen thread to wake up and dequeue it.
1064 	 */
1065 	signal_wake_up(t, sig == SIGKILL);
1066 	return;
1067 }
1068 
1069 static inline bool legacy_queue(struct sigpending *signals, int sig)
1070 {
1071 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1072 }
1073 
1074 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1075 			enum pid_type type, bool force)
1076 {
1077 	struct sigpending *pending;
1078 	struct sigqueue *q;
1079 	int override_rlimit;
1080 	int ret = 0, result;
1081 
1082 	assert_spin_locked(&t->sighand->siglock);
1083 
1084 	result = TRACE_SIGNAL_IGNORED;
1085 	if (!prepare_signal(sig, t, force))
1086 		goto ret;
1087 
1088 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1089 	/*
1090 	 * Short-circuit ignored signals and support queuing
1091 	 * exactly one non-rt signal, so that we can get more
1092 	 * detailed information about the cause of the signal.
1093 	 */
1094 	result = TRACE_SIGNAL_ALREADY_PENDING;
1095 	if (legacy_queue(pending, sig))
1096 		goto ret;
1097 
1098 	result = TRACE_SIGNAL_DELIVERED;
1099 	/*
1100 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1101 	 */
1102 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1103 		goto out_set;
1104 
1105 	/*
1106 	 * Real-time signals must be queued if sent by sigqueue, or
1107 	 * some other real-time mechanism.  It is implementation
1108 	 * defined whether kill() does so.  We attempt to do so, on
1109 	 * the principle of least surprise, but since kill is not
1110 	 * allowed to fail with EAGAIN when low on memory we just
1111 	 * make sure at least one signal gets delivered and don't
1112 	 * pass on the info struct.
1113 	 */
1114 	if (sig < SIGRTMIN)
1115 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1116 	else
1117 		override_rlimit = 0;
1118 
1119 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1120 
1121 	if (q) {
1122 		list_add_tail(&q->list, &pending->list);
1123 		switch ((unsigned long) info) {
1124 		case (unsigned long) SEND_SIG_NOINFO:
1125 			clear_siginfo(&q->info);
1126 			q->info.si_signo = sig;
1127 			q->info.si_errno = 0;
1128 			q->info.si_code = SI_USER;
1129 			q->info.si_pid = task_tgid_nr_ns(current,
1130 							task_active_pid_ns(t));
1131 			rcu_read_lock();
1132 			q->info.si_uid =
1133 				from_kuid_munged(task_cred_xxx(t, user_ns),
1134 						 current_uid());
1135 			rcu_read_unlock();
1136 			break;
1137 		case (unsigned long) SEND_SIG_PRIV:
1138 			clear_siginfo(&q->info);
1139 			q->info.si_signo = sig;
1140 			q->info.si_errno = 0;
1141 			q->info.si_code = SI_KERNEL;
1142 			q->info.si_pid = 0;
1143 			q->info.si_uid = 0;
1144 			break;
1145 		default:
1146 			copy_siginfo(&q->info, info);
1147 			break;
1148 		}
1149 	} else if (!is_si_special(info) &&
1150 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1151 		/*
1152 		 * Queue overflow, abort.  We may abort if the
1153 		 * signal was rt and sent by user using something
1154 		 * other than kill().
1155 		 */
1156 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1157 		ret = -EAGAIN;
1158 		goto ret;
1159 	} else {
1160 		/*
1161 		 * This is a silent loss of information.  We still
1162 		 * send the signal, but the *info bits are lost.
1163 		 */
1164 		result = TRACE_SIGNAL_LOSE_INFO;
1165 	}
1166 
1167 out_set:
1168 	signalfd_notify(t, sig);
1169 	sigaddset(&pending->signal, sig);
1170 
1171 	/* Let multiprocess signals appear after on-going forks */
1172 	if (type > PIDTYPE_TGID) {
1173 		struct multiprocess_signals *delayed;
1174 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1175 			sigset_t *signal = &delayed->signal;
1176 			/* Can't queue both a stop and a continue signal */
1177 			if (sig == SIGCONT)
1178 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1179 			else if (sig_kernel_stop(sig))
1180 				sigdelset(signal, SIGCONT);
1181 			sigaddset(signal, sig);
1182 		}
1183 	}
1184 
1185 	complete_signal(sig, t, type);
1186 ret:
1187 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1188 	return ret;
1189 }
1190 
1191 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1192 {
1193 	bool ret = false;
1194 	switch (siginfo_layout(info->si_signo, info->si_code)) {
1195 	case SIL_KILL:
1196 	case SIL_CHLD:
1197 	case SIL_RT:
1198 		ret = true;
1199 		break;
1200 	case SIL_TIMER:
1201 	case SIL_POLL:
1202 	case SIL_FAULT:
1203 	case SIL_FAULT_TRAPNO:
1204 	case SIL_FAULT_MCEERR:
1205 	case SIL_FAULT_BNDERR:
1206 	case SIL_FAULT_PKUERR:
1207 	case SIL_FAULT_PERF_EVENT:
1208 	case SIL_SYS:
1209 		ret = false;
1210 		break;
1211 	}
1212 	return ret;
1213 }
1214 
1215 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1216 			enum pid_type type)
1217 {
1218 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1219 	bool force = false;
1220 
1221 	if (info == SEND_SIG_NOINFO) {
1222 		/* Force if sent from an ancestor pid namespace */
1223 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1224 	} else if (info == SEND_SIG_PRIV) {
1225 		/* Don't ignore kernel generated signals */
1226 		force = true;
1227 	} else if (has_si_pid_and_uid(info)) {
1228 		/* SIGKILL and SIGSTOP is special or has ids */
1229 		struct user_namespace *t_user_ns;
1230 
1231 		rcu_read_lock();
1232 		t_user_ns = task_cred_xxx(t, user_ns);
1233 		if (current_user_ns() != t_user_ns) {
1234 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1235 			info->si_uid = from_kuid_munged(t_user_ns, uid);
1236 		}
1237 		rcu_read_unlock();
1238 
1239 		/* A kernel generated signal? */
1240 		force = (info->si_code == SI_KERNEL);
1241 
1242 		/* From an ancestor pid namespace? */
1243 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1244 			info->si_pid = 0;
1245 			force = true;
1246 		}
1247 	}
1248 	return __send_signal(sig, info, t, type, force);
1249 }
1250 
1251 static void print_fatal_signal(int signr)
1252 {
1253 	struct pt_regs *regs = signal_pt_regs();
1254 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1255 
1256 #if defined(__i386__) && !defined(__arch_um__)
1257 	pr_info("code at %08lx: ", regs->ip);
1258 	{
1259 		int i;
1260 		for (i = 0; i < 16; i++) {
1261 			unsigned char insn;
1262 
1263 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1264 				break;
1265 			pr_cont("%02x ", insn);
1266 		}
1267 	}
1268 	pr_cont("\n");
1269 #endif
1270 	preempt_disable();
1271 	show_regs(regs);
1272 	preempt_enable();
1273 }
1274 
1275 static int __init setup_print_fatal_signals(char *str)
1276 {
1277 	get_option (&str, &print_fatal_signals);
1278 
1279 	return 1;
1280 }
1281 
1282 __setup("print-fatal-signals=", setup_print_fatal_signals);
1283 
1284 int
1285 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1286 {
1287 	return send_signal(sig, info, p, PIDTYPE_TGID);
1288 }
1289 
1290 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1291 			enum pid_type type)
1292 {
1293 	unsigned long flags;
1294 	int ret = -ESRCH;
1295 
1296 	if (lock_task_sighand(p, &flags)) {
1297 		ret = send_signal(sig, info, p, type);
1298 		unlock_task_sighand(p, &flags);
1299 	}
1300 
1301 	return ret;
1302 }
1303 
1304 enum sig_handler {
1305 	HANDLER_CURRENT, /* If reachable use the current handler */
1306 	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1307 	HANDLER_EXIT,	 /* Only visible as the process exit code */
1308 };
1309 
1310 /*
1311  * On some archictectures, PREEMPT_RT has to delay sending a signal from a
1312  * trap since it cannot enable preemption, and the signal code's
1313  * spin_locks turn into mutexes. Instead, it must set TIF_NOTIFY_RESUME
1314  * which will send the signal on exit of the trap.
1315  */
1316 #ifdef CONFIG_RT_DELAYED_SIGNALS
1317 static inline bool force_sig_delayed(struct kernel_siginfo *info,
1318 				     struct task_struct *t)
1319 {
1320 	if (!in_atomic())
1321 		return false;
1322 
1323 	if (WARN_ON_ONCE(t->forced_info.si_signo))
1324 		return true;
1325 
1326 	if (is_si_special(info)) {
1327 		WARN_ON_ONCE(info != SEND_SIG_PRIV);
1328 		t->forced_info.si_signo = info->si_signo;
1329 		t->forced_info.si_errno = 0;
1330 		t->forced_info.si_code = SI_KERNEL;
1331 		t->forced_info.si_pid = 0;
1332 		t->forced_info.si_uid = 0;
1333 	} else {
1334 		t->forced_info = *info;
1335 	}
1336 	set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1337 	return true;
1338 }
1339 #else
1340 static inline bool force_sig_delayed(struct kernel_siginfo *info,
1341 				     struct task_struct *t)
1342 {
1343 	return false;
1344 }
1345 #endif
1346 
1347 /*
1348  * Force a signal that the process can't ignore: if necessary
1349  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1350  *
1351  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1352  * since we do not want to have a signal handler that was blocked
1353  * be invoked when user space had explicitly blocked it.
1354  *
1355  * We don't want to have recursive SIGSEGV's etc, for example,
1356  * that is why we also clear SIGNAL_UNKILLABLE.
1357  */
1358 static int
1359 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1360 	enum sig_handler handler)
1361 {
1362 	unsigned long int flags;
1363 	int ret, blocked, ignored;
1364 	struct k_sigaction *action;
1365 	int sig = info->si_signo;
1366 
1367 	if (force_sig_delayed(info, t))
1368 		return 0;
1369 
1370 	spin_lock_irqsave(&t->sighand->siglock, flags);
1371 	action = &t->sighand->action[sig-1];
1372 	ignored = action->sa.sa_handler == SIG_IGN;
1373 	blocked = sigismember(&t->blocked, sig);
1374 	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1375 		action->sa.sa_handler = SIG_DFL;
1376 		if (handler == HANDLER_EXIT)
1377 			action->sa.sa_flags |= SA_IMMUTABLE;
1378 		if (blocked) {
1379 			sigdelset(&t->blocked, sig);
1380 			recalc_sigpending_and_wake(t);
1381 		}
1382 	}
1383 	/*
1384 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1385 	 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1386 	 */
1387 	if (action->sa.sa_handler == SIG_DFL &&
1388 	    (!t->ptrace || (handler == HANDLER_EXIT)))
1389 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1390 	ret = send_signal(sig, info, t, PIDTYPE_PID);
1391 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1392 
1393 	return ret;
1394 }
1395 
1396 int force_sig_info(struct kernel_siginfo *info)
1397 {
1398 	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1399 }
1400 
1401 /*
1402  * Nuke all other threads in the group.
1403  */
1404 int zap_other_threads(struct task_struct *p)
1405 {
1406 	struct task_struct *t = p;
1407 	int count = 0;
1408 
1409 	p->signal->group_stop_count = 0;
1410 
1411 	while_each_thread(p, t) {
1412 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1413 		count++;
1414 
1415 		/* Don't bother with already dead threads */
1416 		if (t->exit_state)
1417 			continue;
1418 		sigaddset(&t->pending.signal, SIGKILL);
1419 		signal_wake_up(t, 1);
1420 	}
1421 
1422 	return count;
1423 }
1424 
1425 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1426 					   unsigned long *flags)
1427 {
1428 	struct sighand_struct *sighand;
1429 
1430 	rcu_read_lock();
1431 	for (;;) {
1432 		sighand = rcu_dereference(tsk->sighand);
1433 		if (unlikely(sighand == NULL))
1434 			break;
1435 
1436 		/*
1437 		 * This sighand can be already freed and even reused, but
1438 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1439 		 * initializes ->siglock: this slab can't go away, it has
1440 		 * the same object type, ->siglock can't be reinitialized.
1441 		 *
1442 		 * We need to ensure that tsk->sighand is still the same
1443 		 * after we take the lock, we can race with de_thread() or
1444 		 * __exit_signal(). In the latter case the next iteration
1445 		 * must see ->sighand == NULL.
1446 		 */
1447 		spin_lock_irqsave(&sighand->siglock, *flags);
1448 		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1449 			break;
1450 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1451 	}
1452 	rcu_read_unlock();
1453 
1454 	return sighand;
1455 }
1456 
1457 #ifdef CONFIG_LOCKDEP
1458 void lockdep_assert_task_sighand_held(struct task_struct *task)
1459 {
1460 	struct sighand_struct *sighand;
1461 
1462 	rcu_read_lock();
1463 	sighand = rcu_dereference(task->sighand);
1464 	if (sighand)
1465 		lockdep_assert_held(&sighand->siglock);
1466 	else
1467 		WARN_ON_ONCE(1);
1468 	rcu_read_unlock();
1469 }
1470 #endif
1471 
1472 /*
1473  * send signal info to all the members of a group
1474  */
1475 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1476 			struct task_struct *p, enum pid_type type)
1477 {
1478 	int ret;
1479 
1480 	rcu_read_lock();
1481 	ret = check_kill_permission(sig, info, p);
1482 	rcu_read_unlock();
1483 
1484 	if (!ret && sig)
1485 		ret = do_send_sig_info(sig, info, p, type);
1486 
1487 	return ret;
1488 }
1489 
1490 /*
1491  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1492  * control characters do (^C, ^Z etc)
1493  * - the caller must hold at least a readlock on tasklist_lock
1494  */
1495 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1496 {
1497 	struct task_struct *p = NULL;
1498 	int retval, success;
1499 
1500 	success = 0;
1501 	retval = -ESRCH;
1502 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1503 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1504 		success |= !err;
1505 		retval = err;
1506 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1507 	return success ? 0 : retval;
1508 }
1509 
1510 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1511 {
1512 	int error = -ESRCH;
1513 	struct task_struct *p;
1514 
1515 	for (;;) {
1516 		rcu_read_lock();
1517 		p = pid_task(pid, PIDTYPE_PID);
1518 		if (p)
1519 			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1520 		rcu_read_unlock();
1521 		if (likely(!p || error != -ESRCH))
1522 			return error;
1523 
1524 		/*
1525 		 * The task was unhashed in between, try again.  If it
1526 		 * is dead, pid_task() will return NULL, if we race with
1527 		 * de_thread() it will find the new leader.
1528 		 */
1529 	}
1530 }
1531 
1532 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1533 {
1534 	int error;
1535 	rcu_read_lock();
1536 	error = kill_pid_info(sig, info, find_vpid(pid));
1537 	rcu_read_unlock();
1538 	return error;
1539 }
1540 
1541 static inline bool kill_as_cred_perm(const struct cred *cred,
1542 				     struct task_struct *target)
1543 {
1544 	const struct cred *pcred = __task_cred(target);
1545 
1546 	return uid_eq(cred->euid, pcred->suid) ||
1547 	       uid_eq(cred->euid, pcred->uid) ||
1548 	       uid_eq(cred->uid, pcred->suid) ||
1549 	       uid_eq(cred->uid, pcred->uid);
1550 }
1551 
1552 /*
1553  * The usb asyncio usage of siginfo is wrong.  The glibc support
1554  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1555  * AKA after the generic fields:
1556  *	kernel_pid_t	si_pid;
1557  *	kernel_uid32_t	si_uid;
1558  *	sigval_t	si_value;
1559  *
1560  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1561  * after the generic fields is:
1562  *	void __user 	*si_addr;
1563  *
1564  * This is a practical problem when there is a 64bit big endian kernel
1565  * and a 32bit userspace.  As the 32bit address will encoded in the low
1566  * 32bits of the pointer.  Those low 32bits will be stored at higher
1567  * address than appear in a 32 bit pointer.  So userspace will not
1568  * see the address it was expecting for it's completions.
1569  *
1570  * There is nothing in the encoding that can allow
1571  * copy_siginfo_to_user32 to detect this confusion of formats, so
1572  * handle this by requiring the caller of kill_pid_usb_asyncio to
1573  * notice when this situration takes place and to store the 32bit
1574  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1575  * parameter.
1576  */
1577 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1578 			 struct pid *pid, const struct cred *cred)
1579 {
1580 	struct kernel_siginfo info;
1581 	struct task_struct *p;
1582 	unsigned long flags;
1583 	int ret = -EINVAL;
1584 
1585 	if (!valid_signal(sig))
1586 		return ret;
1587 
1588 	clear_siginfo(&info);
1589 	info.si_signo = sig;
1590 	info.si_errno = errno;
1591 	info.si_code = SI_ASYNCIO;
1592 	*((sigval_t *)&info.si_pid) = addr;
1593 
1594 	rcu_read_lock();
1595 	p = pid_task(pid, PIDTYPE_PID);
1596 	if (!p) {
1597 		ret = -ESRCH;
1598 		goto out_unlock;
1599 	}
1600 	if (!kill_as_cred_perm(cred, p)) {
1601 		ret = -EPERM;
1602 		goto out_unlock;
1603 	}
1604 	ret = security_task_kill(p, &info, sig, cred);
1605 	if (ret)
1606 		goto out_unlock;
1607 
1608 	if (sig) {
1609 		if (lock_task_sighand(p, &flags)) {
1610 			ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1611 			unlock_task_sighand(p, &flags);
1612 		} else
1613 			ret = -ESRCH;
1614 	}
1615 out_unlock:
1616 	rcu_read_unlock();
1617 	return ret;
1618 }
1619 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1620 
1621 /*
1622  * kill_something_info() interprets pid in interesting ways just like kill(2).
1623  *
1624  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1625  * is probably wrong.  Should make it like BSD or SYSV.
1626  */
1627 
1628 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1629 {
1630 	int ret;
1631 
1632 	if (pid > 0)
1633 		return kill_proc_info(sig, info, pid);
1634 
1635 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1636 	if (pid == INT_MIN)
1637 		return -ESRCH;
1638 
1639 	read_lock(&tasklist_lock);
1640 	if (pid != -1) {
1641 		ret = __kill_pgrp_info(sig, info,
1642 				pid ? find_vpid(-pid) : task_pgrp(current));
1643 	} else {
1644 		int retval = 0, count = 0;
1645 		struct task_struct * p;
1646 
1647 		for_each_process(p) {
1648 			if (task_pid_vnr(p) > 1 &&
1649 					!same_thread_group(p, current)) {
1650 				int err = group_send_sig_info(sig, info, p,
1651 							      PIDTYPE_MAX);
1652 				++count;
1653 				if (err != -EPERM)
1654 					retval = err;
1655 			}
1656 		}
1657 		ret = count ? retval : -ESRCH;
1658 	}
1659 	read_unlock(&tasklist_lock);
1660 
1661 	return ret;
1662 }
1663 
1664 /*
1665  * These are for backward compatibility with the rest of the kernel source.
1666  */
1667 
1668 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1669 {
1670 	/*
1671 	 * Make sure legacy kernel users don't send in bad values
1672 	 * (normal paths check this in check_kill_permission).
1673 	 */
1674 	if (!valid_signal(sig))
1675 		return -EINVAL;
1676 
1677 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1678 }
1679 EXPORT_SYMBOL(send_sig_info);
1680 
1681 #define __si_special(priv) \
1682 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1683 
1684 int
1685 send_sig(int sig, struct task_struct *p, int priv)
1686 {
1687 	return send_sig_info(sig, __si_special(priv), p);
1688 }
1689 EXPORT_SYMBOL(send_sig);
1690 
1691 void force_sig(int sig)
1692 {
1693 	struct kernel_siginfo info;
1694 
1695 	clear_siginfo(&info);
1696 	info.si_signo = sig;
1697 	info.si_errno = 0;
1698 	info.si_code = SI_KERNEL;
1699 	info.si_pid = 0;
1700 	info.si_uid = 0;
1701 	force_sig_info(&info);
1702 }
1703 EXPORT_SYMBOL(force_sig);
1704 
1705 void force_fatal_sig(int sig)
1706 {
1707 	struct kernel_siginfo info;
1708 
1709 	clear_siginfo(&info);
1710 	info.si_signo = sig;
1711 	info.si_errno = 0;
1712 	info.si_code = SI_KERNEL;
1713 	info.si_pid = 0;
1714 	info.si_uid = 0;
1715 	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1716 }
1717 
1718 void force_exit_sig(int sig)
1719 {
1720 	struct kernel_siginfo info;
1721 
1722 	clear_siginfo(&info);
1723 	info.si_signo = sig;
1724 	info.si_errno = 0;
1725 	info.si_code = SI_KERNEL;
1726 	info.si_pid = 0;
1727 	info.si_uid = 0;
1728 	force_sig_info_to_task(&info, current, HANDLER_EXIT);
1729 }
1730 
1731 /*
1732  * When things go south during signal handling, we
1733  * will force a SIGSEGV. And if the signal that caused
1734  * the problem was already a SIGSEGV, we'll want to
1735  * make sure we don't even try to deliver the signal..
1736  */
1737 void force_sigsegv(int sig)
1738 {
1739 	if (sig == SIGSEGV)
1740 		force_fatal_sig(SIGSEGV);
1741 	else
1742 		force_sig(SIGSEGV);
1743 }
1744 
1745 int force_sig_fault_to_task(int sig, int code, void __user *addr
1746 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1747 	, struct task_struct *t)
1748 {
1749 	struct kernel_siginfo info;
1750 
1751 	clear_siginfo(&info);
1752 	info.si_signo = sig;
1753 	info.si_errno = 0;
1754 	info.si_code  = code;
1755 	info.si_addr  = addr;
1756 #ifdef __ia64__
1757 	info.si_imm = imm;
1758 	info.si_flags = flags;
1759 	info.si_isr = isr;
1760 #endif
1761 	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1762 }
1763 
1764 int force_sig_fault(int sig, int code, void __user *addr
1765 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1766 {
1767 	return force_sig_fault_to_task(sig, code, addr
1768 				       ___ARCH_SI_IA64(imm, flags, isr), current);
1769 }
1770 
1771 int send_sig_fault(int sig, int code, void __user *addr
1772 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1773 	, struct task_struct *t)
1774 {
1775 	struct kernel_siginfo info;
1776 
1777 	clear_siginfo(&info);
1778 	info.si_signo = sig;
1779 	info.si_errno = 0;
1780 	info.si_code  = code;
1781 	info.si_addr  = addr;
1782 #ifdef __ia64__
1783 	info.si_imm = imm;
1784 	info.si_flags = flags;
1785 	info.si_isr = isr;
1786 #endif
1787 	return send_sig_info(info.si_signo, &info, t);
1788 }
1789 
1790 int force_sig_mceerr(int code, void __user *addr, short lsb)
1791 {
1792 	struct kernel_siginfo info;
1793 
1794 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1795 	clear_siginfo(&info);
1796 	info.si_signo = SIGBUS;
1797 	info.si_errno = 0;
1798 	info.si_code = code;
1799 	info.si_addr = addr;
1800 	info.si_addr_lsb = lsb;
1801 	return force_sig_info(&info);
1802 }
1803 
1804 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1805 {
1806 	struct kernel_siginfo info;
1807 
1808 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1809 	clear_siginfo(&info);
1810 	info.si_signo = SIGBUS;
1811 	info.si_errno = 0;
1812 	info.si_code = code;
1813 	info.si_addr = addr;
1814 	info.si_addr_lsb = lsb;
1815 	return send_sig_info(info.si_signo, &info, t);
1816 }
1817 EXPORT_SYMBOL(send_sig_mceerr);
1818 
1819 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1820 {
1821 	struct kernel_siginfo info;
1822 
1823 	clear_siginfo(&info);
1824 	info.si_signo = SIGSEGV;
1825 	info.si_errno = 0;
1826 	info.si_code  = SEGV_BNDERR;
1827 	info.si_addr  = addr;
1828 	info.si_lower = lower;
1829 	info.si_upper = upper;
1830 	return force_sig_info(&info);
1831 }
1832 
1833 #ifdef SEGV_PKUERR
1834 int force_sig_pkuerr(void __user *addr, u32 pkey)
1835 {
1836 	struct kernel_siginfo info;
1837 
1838 	clear_siginfo(&info);
1839 	info.si_signo = SIGSEGV;
1840 	info.si_errno = 0;
1841 	info.si_code  = SEGV_PKUERR;
1842 	info.si_addr  = addr;
1843 	info.si_pkey  = pkey;
1844 	return force_sig_info(&info);
1845 }
1846 #endif
1847 
1848 int force_sig_perf(void __user *addr, u32 type, u64 sig_data)
1849 {
1850 	struct kernel_siginfo info;
1851 
1852 	clear_siginfo(&info);
1853 	info.si_signo     = SIGTRAP;
1854 	info.si_errno     = 0;
1855 	info.si_code      = TRAP_PERF;
1856 	info.si_addr      = addr;
1857 	info.si_perf_data = sig_data;
1858 	info.si_perf_type = type;
1859 
1860 	return force_sig_info(&info);
1861 }
1862 
1863 /**
1864  * force_sig_seccomp - signals the task to allow in-process syscall emulation
1865  * @syscall: syscall number to send to userland
1866  * @reason: filter-supplied reason code to send to userland (via si_errno)
1867  * @force_coredump: true to trigger a coredump
1868  *
1869  * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1870  */
1871 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1872 {
1873 	struct kernel_siginfo info;
1874 
1875 	clear_siginfo(&info);
1876 	info.si_signo = SIGSYS;
1877 	info.si_code = SYS_SECCOMP;
1878 	info.si_call_addr = (void __user *)KSTK_EIP(current);
1879 	info.si_errno = reason;
1880 	info.si_arch = syscall_get_arch(current);
1881 	info.si_syscall = syscall;
1882 	return force_sig_info_to_task(&info, current,
1883 		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1884 }
1885 
1886 /* For the crazy architectures that include trap information in
1887  * the errno field, instead of an actual errno value.
1888  */
1889 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1890 {
1891 	struct kernel_siginfo info;
1892 
1893 	clear_siginfo(&info);
1894 	info.si_signo = SIGTRAP;
1895 	info.si_errno = errno;
1896 	info.si_code  = TRAP_HWBKPT;
1897 	info.si_addr  = addr;
1898 	return force_sig_info(&info);
1899 }
1900 
1901 /* For the rare architectures that include trap information using
1902  * si_trapno.
1903  */
1904 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1905 {
1906 	struct kernel_siginfo info;
1907 
1908 	clear_siginfo(&info);
1909 	info.si_signo = sig;
1910 	info.si_errno = 0;
1911 	info.si_code  = code;
1912 	info.si_addr  = addr;
1913 	info.si_trapno = trapno;
1914 	return force_sig_info(&info);
1915 }
1916 
1917 /* For the rare architectures that include trap information using
1918  * si_trapno.
1919  */
1920 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1921 			  struct task_struct *t)
1922 {
1923 	struct kernel_siginfo info;
1924 
1925 	clear_siginfo(&info);
1926 	info.si_signo = sig;
1927 	info.si_errno = 0;
1928 	info.si_code  = code;
1929 	info.si_addr  = addr;
1930 	info.si_trapno = trapno;
1931 	return send_sig_info(info.si_signo, &info, t);
1932 }
1933 
1934 int kill_pgrp(struct pid *pid, int sig, int priv)
1935 {
1936 	int ret;
1937 
1938 	read_lock(&tasklist_lock);
1939 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1940 	read_unlock(&tasklist_lock);
1941 
1942 	return ret;
1943 }
1944 EXPORT_SYMBOL(kill_pgrp);
1945 
1946 int kill_pid(struct pid *pid, int sig, int priv)
1947 {
1948 	return kill_pid_info(sig, __si_special(priv), pid);
1949 }
1950 EXPORT_SYMBOL(kill_pid);
1951 
1952 /*
1953  * These functions support sending signals using preallocated sigqueue
1954  * structures.  This is needed "because realtime applications cannot
1955  * afford to lose notifications of asynchronous events, like timer
1956  * expirations or I/O completions".  In the case of POSIX Timers
1957  * we allocate the sigqueue structure from the timer_create.  If this
1958  * allocation fails we are able to report the failure to the application
1959  * with an EAGAIN error.
1960  */
1961 struct sigqueue *sigqueue_alloc(void)
1962 {
1963 	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1964 }
1965 
1966 void sigqueue_free(struct sigqueue *q)
1967 {
1968 	unsigned long flags;
1969 	spinlock_t *lock = &current->sighand->siglock;
1970 
1971 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1972 	/*
1973 	 * We must hold ->siglock while testing q->list
1974 	 * to serialize with collect_signal() or with
1975 	 * __exit_signal()->flush_sigqueue().
1976 	 */
1977 	spin_lock_irqsave(lock, flags);
1978 	q->flags &= ~SIGQUEUE_PREALLOC;
1979 	/*
1980 	 * If it is queued it will be freed when dequeued,
1981 	 * like the "regular" sigqueue.
1982 	 */
1983 	if (!list_empty(&q->list))
1984 		q = NULL;
1985 	spin_unlock_irqrestore(lock, flags);
1986 
1987 	if (q)
1988 		__sigqueue_free(q);
1989 }
1990 
1991 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1992 {
1993 	int sig = q->info.si_signo;
1994 	struct sigpending *pending;
1995 	struct task_struct *t;
1996 	unsigned long flags;
1997 	int ret, result;
1998 
1999 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
2000 
2001 	ret = -1;
2002 	rcu_read_lock();
2003 	t = pid_task(pid, type);
2004 	if (!t || !likely(lock_task_sighand(t, &flags)))
2005 		goto ret;
2006 
2007 	ret = 1; /* the signal is ignored */
2008 	result = TRACE_SIGNAL_IGNORED;
2009 	if (!prepare_signal(sig, t, false))
2010 		goto out;
2011 
2012 	ret = 0;
2013 	if (unlikely(!list_empty(&q->list))) {
2014 		/*
2015 		 * If an SI_TIMER entry is already queue just increment
2016 		 * the overrun count.
2017 		 */
2018 		BUG_ON(q->info.si_code != SI_TIMER);
2019 		q->info.si_overrun++;
2020 		result = TRACE_SIGNAL_ALREADY_PENDING;
2021 		goto out;
2022 	}
2023 	q->info.si_overrun = 0;
2024 
2025 	signalfd_notify(t, sig);
2026 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
2027 	list_add_tail(&q->list, &pending->list);
2028 	sigaddset(&pending->signal, sig);
2029 	complete_signal(sig, t, type);
2030 	result = TRACE_SIGNAL_DELIVERED;
2031 out:
2032 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2033 	unlock_task_sighand(t, &flags);
2034 ret:
2035 	rcu_read_unlock();
2036 	return ret;
2037 }
2038 
2039 static void do_notify_pidfd(struct task_struct *task)
2040 {
2041 	struct pid *pid;
2042 
2043 	WARN_ON(task->exit_state == 0);
2044 	pid = task_pid(task);
2045 	wake_up_all(&pid->wait_pidfd);
2046 }
2047 
2048 /*
2049  * Let a parent know about the death of a child.
2050  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2051  *
2052  * Returns true if our parent ignored us and so we've switched to
2053  * self-reaping.
2054  */
2055 bool do_notify_parent(struct task_struct *tsk, int sig)
2056 {
2057 	struct kernel_siginfo info;
2058 	unsigned long flags;
2059 	struct sighand_struct *psig;
2060 	bool autoreap = false;
2061 	u64 utime, stime;
2062 
2063 	BUG_ON(sig == -1);
2064 
2065  	/* do_notify_parent_cldstop should have been called instead.  */
2066  	BUG_ON(task_is_stopped_or_traced(tsk));
2067 
2068 	BUG_ON(!tsk->ptrace &&
2069 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2070 
2071 	/* Wake up all pidfd waiters */
2072 	do_notify_pidfd(tsk);
2073 
2074 	if (sig != SIGCHLD) {
2075 		/*
2076 		 * This is only possible if parent == real_parent.
2077 		 * Check if it has changed security domain.
2078 		 */
2079 		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2080 			sig = SIGCHLD;
2081 	}
2082 
2083 	clear_siginfo(&info);
2084 	info.si_signo = sig;
2085 	info.si_errno = 0;
2086 	/*
2087 	 * We are under tasklist_lock here so our parent is tied to
2088 	 * us and cannot change.
2089 	 *
2090 	 * task_active_pid_ns will always return the same pid namespace
2091 	 * until a task passes through release_task.
2092 	 *
2093 	 * write_lock() currently calls preempt_disable() which is the
2094 	 * same as rcu_read_lock(), but according to Oleg, this is not
2095 	 * correct to rely on this
2096 	 */
2097 	rcu_read_lock();
2098 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2099 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2100 				       task_uid(tsk));
2101 	rcu_read_unlock();
2102 
2103 	task_cputime(tsk, &utime, &stime);
2104 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2105 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2106 
2107 	info.si_status = tsk->exit_code & 0x7f;
2108 	if (tsk->exit_code & 0x80)
2109 		info.si_code = CLD_DUMPED;
2110 	else if (tsk->exit_code & 0x7f)
2111 		info.si_code = CLD_KILLED;
2112 	else {
2113 		info.si_code = CLD_EXITED;
2114 		info.si_status = tsk->exit_code >> 8;
2115 	}
2116 
2117 	psig = tsk->parent->sighand;
2118 	spin_lock_irqsave(&psig->siglock, flags);
2119 	if (!tsk->ptrace && sig == SIGCHLD &&
2120 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2121 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2122 		/*
2123 		 * We are exiting and our parent doesn't care.  POSIX.1
2124 		 * defines special semantics for setting SIGCHLD to SIG_IGN
2125 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2126 		 * automatically and not left for our parent's wait4 call.
2127 		 * Rather than having the parent do it as a magic kind of
2128 		 * signal handler, we just set this to tell do_exit that we
2129 		 * can be cleaned up without becoming a zombie.  Note that
2130 		 * we still call __wake_up_parent in this case, because a
2131 		 * blocked sys_wait4 might now return -ECHILD.
2132 		 *
2133 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2134 		 * is implementation-defined: we do (if you don't want
2135 		 * it, just use SIG_IGN instead).
2136 		 */
2137 		autoreap = true;
2138 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2139 			sig = 0;
2140 	}
2141 	/*
2142 	 * Send with __send_signal as si_pid and si_uid are in the
2143 	 * parent's namespaces.
2144 	 */
2145 	if (valid_signal(sig) && sig)
2146 		__send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2147 	__wake_up_parent(tsk, tsk->parent);
2148 	spin_unlock_irqrestore(&psig->siglock, flags);
2149 
2150 	return autoreap;
2151 }
2152 
2153 /**
2154  * do_notify_parent_cldstop - notify parent of stopped/continued state change
2155  * @tsk: task reporting the state change
2156  * @for_ptracer: the notification is for ptracer
2157  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2158  *
2159  * Notify @tsk's parent that the stopped/continued state has changed.  If
2160  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2161  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2162  *
2163  * CONTEXT:
2164  * Must be called with tasklist_lock at least read locked.
2165  */
2166 static void do_notify_parent_cldstop(struct task_struct *tsk,
2167 				     bool for_ptracer, int why)
2168 {
2169 	struct kernel_siginfo info;
2170 	unsigned long flags;
2171 	struct task_struct *parent;
2172 	struct sighand_struct *sighand;
2173 	u64 utime, stime;
2174 
2175 	if (for_ptracer) {
2176 		parent = tsk->parent;
2177 	} else {
2178 		tsk = tsk->group_leader;
2179 		parent = tsk->real_parent;
2180 	}
2181 
2182 	clear_siginfo(&info);
2183 	info.si_signo = SIGCHLD;
2184 	info.si_errno = 0;
2185 	/*
2186 	 * see comment in do_notify_parent() about the following 4 lines
2187 	 */
2188 	rcu_read_lock();
2189 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2190 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2191 	rcu_read_unlock();
2192 
2193 	task_cputime(tsk, &utime, &stime);
2194 	info.si_utime = nsec_to_clock_t(utime);
2195 	info.si_stime = nsec_to_clock_t(stime);
2196 
2197  	info.si_code = why;
2198  	switch (why) {
2199  	case CLD_CONTINUED:
2200  		info.si_status = SIGCONT;
2201  		break;
2202  	case CLD_STOPPED:
2203  		info.si_status = tsk->signal->group_exit_code & 0x7f;
2204  		break;
2205  	case CLD_TRAPPED:
2206  		info.si_status = tsk->exit_code & 0x7f;
2207  		break;
2208  	default:
2209  		BUG();
2210  	}
2211 
2212 	sighand = parent->sighand;
2213 	spin_lock_irqsave(&sighand->siglock, flags);
2214 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2215 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2216 		__group_send_sig_info(SIGCHLD, &info, parent);
2217 	/*
2218 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2219 	 */
2220 	__wake_up_parent(tsk, parent);
2221 	spin_unlock_irqrestore(&sighand->siglock, flags);
2222 }
2223 
2224 /*
2225  * This must be called with current->sighand->siglock held.
2226  *
2227  * This should be the path for all ptrace stops.
2228  * We always set current->last_siginfo while stopped here.
2229  * That makes it a way to test a stopped process for
2230  * being ptrace-stopped vs being job-control-stopped.
2231  *
2232  * Returns the signal the ptracer requested the code resume
2233  * with.  If the code did not stop because the tracer is gone,
2234  * the stop signal remains unchanged unless clear_code.
2235  */
2236 static int ptrace_stop(int exit_code, int why, int clear_code,
2237 			unsigned long message, kernel_siginfo_t *info)
2238 	__releases(&current->sighand->siglock)
2239 	__acquires(&current->sighand->siglock)
2240 {
2241 	bool gstop_done = false;
2242 	bool read_code = true;
2243 
2244 	if (arch_ptrace_stop_needed()) {
2245 		/*
2246 		 * The arch code has something special to do before a
2247 		 * ptrace stop.  This is allowed to block, e.g. for faults
2248 		 * on user stack pages.  We can't keep the siglock while
2249 		 * calling arch_ptrace_stop, so we must release it now.
2250 		 * To preserve proper semantics, we must do this before
2251 		 * any signal bookkeeping like checking group_stop_count.
2252 		 */
2253 		spin_unlock_irq(&current->sighand->siglock);
2254 		arch_ptrace_stop();
2255 		spin_lock_irq(&current->sighand->siglock);
2256 	}
2257 
2258 	/*
2259 	 * schedule() will not sleep if there is a pending signal that
2260 	 * can awaken the task.
2261 	 */
2262 	set_special_state(TASK_TRACED);
2263 
2264 	/*
2265 	 * We're committing to trapping.  TRACED should be visible before
2266 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2267 	 * Also, transition to TRACED and updates to ->jobctl should be
2268 	 * atomic with respect to siglock and should be done after the arch
2269 	 * hook as siglock is released and regrabbed across it.
2270 	 *
2271 	 *     TRACER				    TRACEE
2272 	 *
2273 	 *     ptrace_attach()
2274 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2275 	 *     do_wait()
2276 	 *       set_current_state()                smp_wmb();
2277 	 *       ptrace_do_wait()
2278 	 *         wait_task_stopped()
2279 	 *           task_stopped_code()
2280 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2281 	 */
2282 	smp_wmb();
2283 
2284 	current->ptrace_message = message;
2285 	current->last_siginfo = info;
2286 	current->exit_code = exit_code;
2287 
2288 	/*
2289 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2290 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2291 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2292 	 * could be clear now.  We act as if SIGCONT is received after
2293 	 * TASK_TRACED is entered - ignore it.
2294 	 */
2295 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2296 		gstop_done = task_participate_group_stop(current);
2297 
2298 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2299 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2300 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2301 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2302 
2303 	/* entering a trap, clear TRAPPING */
2304 	task_clear_jobctl_trapping(current);
2305 
2306 	spin_unlock_irq(&current->sighand->siglock);
2307 	read_lock(&tasklist_lock);
2308 	if (likely(current->ptrace)) {
2309 		/*
2310 		 * Notify parents of the stop.
2311 		 *
2312 		 * While ptraced, there are two parents - the ptracer and
2313 		 * the real_parent of the group_leader.  The ptracer should
2314 		 * know about every stop while the real parent is only
2315 		 * interested in the completion of group stop.  The states
2316 		 * for the two don't interact with each other.  Notify
2317 		 * separately unless they're gonna be duplicates.
2318 		 */
2319 		do_notify_parent_cldstop(current, true, why);
2320 		if (gstop_done && ptrace_reparented(current))
2321 			do_notify_parent_cldstop(current, false, why);
2322 
2323 		/*
2324 		 * Don't want to allow preemption here, because
2325 		 * sys_ptrace() needs this task to be inactive.
2326 		 *
2327 		 * XXX: implement read_unlock_no_resched().
2328 		 */
2329 		preempt_disable();
2330 		read_unlock(&tasklist_lock);
2331 		cgroup_enter_frozen();
2332 		preempt_enable_no_resched();
2333 		freezable_schedule();
2334 		cgroup_leave_frozen(true);
2335 	} else {
2336 		/*
2337 		 * By the time we got the lock, our tracer went away.
2338 		 * Don't drop the lock yet, another tracer may come.
2339 		 *
2340 		 * If @gstop_done, the ptracer went away between group stop
2341 		 * completion and here.  During detach, it would have set
2342 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2343 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2344 		 * the real parent of the group stop completion is enough.
2345 		 */
2346 		if (gstop_done)
2347 			do_notify_parent_cldstop(current, false, why);
2348 
2349 		/* tasklist protects us from ptrace_freeze_traced() */
2350 		__set_current_state(TASK_RUNNING);
2351 		read_code = false;
2352 		if (clear_code)
2353 			exit_code = 0;
2354 		read_unlock(&tasklist_lock);
2355 	}
2356 
2357 	/*
2358 	 * We are back.  Now reacquire the siglock before touching
2359 	 * last_siginfo, so that we are sure to have synchronized with
2360 	 * any signal-sending on another CPU that wants to examine it.
2361 	 */
2362 	spin_lock_irq(&current->sighand->siglock);
2363 	if (read_code)
2364 		exit_code = current->exit_code;
2365 	current->last_siginfo = NULL;
2366 	current->ptrace_message = 0;
2367 	current->exit_code = 0;
2368 
2369 	/* LISTENING can be set only during STOP traps, clear it */
2370 	current->jobctl &= ~JOBCTL_LISTENING;
2371 
2372 	/*
2373 	 * Queued signals ignored us while we were stopped for tracing.
2374 	 * So check for any that we should take before resuming user mode.
2375 	 * This sets TIF_SIGPENDING, but never clears it.
2376 	 */
2377 	recalc_sigpending_tsk(current);
2378 	return exit_code;
2379 }
2380 
2381 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2382 {
2383 	kernel_siginfo_t info;
2384 
2385 	clear_siginfo(&info);
2386 	info.si_signo = signr;
2387 	info.si_code = exit_code;
2388 	info.si_pid = task_pid_vnr(current);
2389 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2390 
2391 	/* Let the debugger run.  */
2392 	return ptrace_stop(exit_code, why, 1, message, &info);
2393 }
2394 
2395 int ptrace_notify(int exit_code, unsigned long message)
2396 {
2397 	int signr;
2398 
2399 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2400 	if (unlikely(task_work_pending(current)))
2401 		task_work_run();
2402 
2403 	spin_lock_irq(&current->sighand->siglock);
2404 	signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2405 	spin_unlock_irq(&current->sighand->siglock);
2406 	return signr;
2407 }
2408 
2409 /**
2410  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2411  * @signr: signr causing group stop if initiating
2412  *
2413  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2414  * and participate in it.  If already set, participate in the existing
2415  * group stop.  If participated in a group stop (and thus slept), %true is
2416  * returned with siglock released.
2417  *
2418  * If ptraced, this function doesn't handle stop itself.  Instead,
2419  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2420  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2421  * places afterwards.
2422  *
2423  * CONTEXT:
2424  * Must be called with @current->sighand->siglock held, which is released
2425  * on %true return.
2426  *
2427  * RETURNS:
2428  * %false if group stop is already cancelled or ptrace trap is scheduled.
2429  * %true if participated in group stop.
2430  */
2431 static bool do_signal_stop(int signr)
2432 	__releases(&current->sighand->siglock)
2433 {
2434 	struct signal_struct *sig = current->signal;
2435 
2436 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2437 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2438 		struct task_struct *t;
2439 
2440 		/* signr will be recorded in task->jobctl for retries */
2441 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2442 
2443 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2444 		    unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2445 		    unlikely(sig->group_exec_task))
2446 			return false;
2447 		/*
2448 		 * There is no group stop already in progress.  We must
2449 		 * initiate one now.
2450 		 *
2451 		 * While ptraced, a task may be resumed while group stop is
2452 		 * still in effect and then receive a stop signal and
2453 		 * initiate another group stop.  This deviates from the
2454 		 * usual behavior as two consecutive stop signals can't
2455 		 * cause two group stops when !ptraced.  That is why we
2456 		 * also check !task_is_stopped(t) below.
2457 		 *
2458 		 * The condition can be distinguished by testing whether
2459 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2460 		 * group_exit_code in such case.
2461 		 *
2462 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2463 		 * an intervening stop signal is required to cause two
2464 		 * continued events regardless of ptrace.
2465 		 */
2466 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2467 			sig->group_exit_code = signr;
2468 
2469 		sig->group_stop_count = 0;
2470 
2471 		if (task_set_jobctl_pending(current, signr | gstop))
2472 			sig->group_stop_count++;
2473 
2474 		t = current;
2475 		while_each_thread(current, t) {
2476 			/*
2477 			 * Setting state to TASK_STOPPED for a group
2478 			 * stop is always done with the siglock held,
2479 			 * so this check has no races.
2480 			 */
2481 			if (!task_is_stopped(t) &&
2482 			    task_set_jobctl_pending(t, signr | gstop)) {
2483 				sig->group_stop_count++;
2484 				if (likely(!(t->ptrace & PT_SEIZED)))
2485 					signal_wake_up(t, 0);
2486 				else
2487 					ptrace_trap_notify(t);
2488 			}
2489 		}
2490 	}
2491 
2492 	if (likely(!current->ptrace)) {
2493 		int notify = 0;
2494 
2495 		/*
2496 		 * If there are no other threads in the group, or if there
2497 		 * is a group stop in progress and we are the last to stop,
2498 		 * report to the parent.
2499 		 */
2500 		if (task_participate_group_stop(current))
2501 			notify = CLD_STOPPED;
2502 
2503 		set_special_state(TASK_STOPPED);
2504 		spin_unlock_irq(&current->sighand->siglock);
2505 
2506 		/*
2507 		 * Notify the parent of the group stop completion.  Because
2508 		 * we're not holding either the siglock or tasklist_lock
2509 		 * here, ptracer may attach inbetween; however, this is for
2510 		 * group stop and should always be delivered to the real
2511 		 * parent of the group leader.  The new ptracer will get
2512 		 * its notification when this task transitions into
2513 		 * TASK_TRACED.
2514 		 */
2515 		if (notify) {
2516 			read_lock(&tasklist_lock);
2517 			do_notify_parent_cldstop(current, false, notify);
2518 			read_unlock(&tasklist_lock);
2519 		}
2520 
2521 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2522 		cgroup_enter_frozen();
2523 		freezable_schedule();
2524 		return true;
2525 	} else {
2526 		/*
2527 		 * While ptraced, group stop is handled by STOP trap.
2528 		 * Schedule it and let the caller deal with it.
2529 		 */
2530 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2531 		return false;
2532 	}
2533 }
2534 
2535 /**
2536  * do_jobctl_trap - take care of ptrace jobctl traps
2537  *
2538  * When PT_SEIZED, it's used for both group stop and explicit
2539  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2540  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2541  * the stop signal; otherwise, %SIGTRAP.
2542  *
2543  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2544  * number as exit_code and no siginfo.
2545  *
2546  * CONTEXT:
2547  * Must be called with @current->sighand->siglock held, which may be
2548  * released and re-acquired before returning with intervening sleep.
2549  */
2550 static void do_jobctl_trap(void)
2551 {
2552 	struct signal_struct *signal = current->signal;
2553 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2554 
2555 	if (current->ptrace & PT_SEIZED) {
2556 		if (!signal->group_stop_count &&
2557 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2558 			signr = SIGTRAP;
2559 		WARN_ON_ONCE(!signr);
2560 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2561 				 CLD_STOPPED, 0);
2562 	} else {
2563 		WARN_ON_ONCE(!signr);
2564 		ptrace_stop(signr, CLD_STOPPED, 0, 0, NULL);
2565 	}
2566 }
2567 
2568 /**
2569  * do_freezer_trap - handle the freezer jobctl trap
2570  *
2571  * Puts the task into frozen state, if only the task is not about to quit.
2572  * In this case it drops JOBCTL_TRAP_FREEZE.
2573  *
2574  * CONTEXT:
2575  * Must be called with @current->sighand->siglock held,
2576  * which is always released before returning.
2577  */
2578 static void do_freezer_trap(void)
2579 	__releases(&current->sighand->siglock)
2580 {
2581 	/*
2582 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2583 	 * let's make another loop to give it a chance to be handled.
2584 	 * In any case, we'll return back.
2585 	 */
2586 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2587 	     JOBCTL_TRAP_FREEZE) {
2588 		spin_unlock_irq(&current->sighand->siglock);
2589 		return;
2590 	}
2591 
2592 	/*
2593 	 * Now we're sure that there is no pending fatal signal and no
2594 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2595 	 * immediately (if there is a non-fatal signal pending), and
2596 	 * put the task into sleep.
2597 	 */
2598 	__set_current_state(TASK_INTERRUPTIBLE);
2599 	clear_thread_flag(TIF_SIGPENDING);
2600 	spin_unlock_irq(&current->sighand->siglock);
2601 	cgroup_enter_frozen();
2602 	freezable_schedule();
2603 }
2604 
2605 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2606 {
2607 	/*
2608 	 * We do not check sig_kernel_stop(signr) but set this marker
2609 	 * unconditionally because we do not know whether debugger will
2610 	 * change signr. This flag has no meaning unless we are going
2611 	 * to stop after return from ptrace_stop(). In this case it will
2612 	 * be checked in do_signal_stop(), we should only stop if it was
2613 	 * not cleared by SIGCONT while we were sleeping. See also the
2614 	 * comment in dequeue_signal().
2615 	 */
2616 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2617 	signr = ptrace_stop(signr, CLD_TRAPPED, 0, 0, info);
2618 
2619 	/* We're back.  Did the debugger cancel the sig?  */
2620 	if (signr == 0)
2621 		return signr;
2622 
2623 	/*
2624 	 * Update the siginfo structure if the signal has
2625 	 * changed.  If the debugger wanted something
2626 	 * specific in the siginfo structure then it should
2627 	 * have updated *info via PTRACE_SETSIGINFO.
2628 	 */
2629 	if (signr != info->si_signo) {
2630 		clear_siginfo(info);
2631 		info->si_signo = signr;
2632 		info->si_errno = 0;
2633 		info->si_code = SI_USER;
2634 		rcu_read_lock();
2635 		info->si_pid = task_pid_vnr(current->parent);
2636 		info->si_uid = from_kuid_munged(current_user_ns(),
2637 						task_uid(current->parent));
2638 		rcu_read_unlock();
2639 	}
2640 
2641 	/* If the (new) signal is now blocked, requeue it.  */
2642 	if (sigismember(&current->blocked, signr) ||
2643 	    fatal_signal_pending(current)) {
2644 		send_signal(signr, info, current, type);
2645 		signr = 0;
2646 	}
2647 
2648 	return signr;
2649 }
2650 
2651 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2652 {
2653 	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2654 	case SIL_FAULT:
2655 	case SIL_FAULT_TRAPNO:
2656 	case SIL_FAULT_MCEERR:
2657 	case SIL_FAULT_BNDERR:
2658 	case SIL_FAULT_PKUERR:
2659 	case SIL_FAULT_PERF_EVENT:
2660 		ksig->info.si_addr = arch_untagged_si_addr(
2661 			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2662 		break;
2663 	case SIL_KILL:
2664 	case SIL_TIMER:
2665 	case SIL_POLL:
2666 	case SIL_CHLD:
2667 	case SIL_RT:
2668 	case SIL_SYS:
2669 		break;
2670 	}
2671 }
2672 
2673 bool get_signal(struct ksignal *ksig)
2674 {
2675 	struct sighand_struct *sighand = current->sighand;
2676 	struct signal_struct *signal = current->signal;
2677 	int signr;
2678 
2679 	clear_notify_signal();
2680 	if (unlikely(task_work_pending(current)))
2681 		task_work_run();
2682 
2683 	if (!task_sigpending(current))
2684 		return false;
2685 
2686 	if (unlikely(uprobe_deny_signal()))
2687 		return false;
2688 
2689 	/*
2690 	 * Do this once, we can't return to user-mode if freezing() == T.
2691 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2692 	 * thus do not need another check after return.
2693 	 */
2694 	try_to_freeze();
2695 
2696 relock:
2697 	spin_lock_irq(&sighand->siglock);
2698 
2699 	/*
2700 	 * Every stopped thread goes here after wakeup. Check to see if
2701 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2702 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2703 	 */
2704 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2705 		int why;
2706 
2707 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2708 			why = CLD_CONTINUED;
2709 		else
2710 			why = CLD_STOPPED;
2711 
2712 		signal->flags &= ~SIGNAL_CLD_MASK;
2713 
2714 		spin_unlock_irq(&sighand->siglock);
2715 
2716 		/*
2717 		 * Notify the parent that we're continuing.  This event is
2718 		 * always per-process and doesn't make whole lot of sense
2719 		 * for ptracers, who shouldn't consume the state via
2720 		 * wait(2) either, but, for backward compatibility, notify
2721 		 * the ptracer of the group leader too unless it's gonna be
2722 		 * a duplicate.
2723 		 */
2724 		read_lock(&tasklist_lock);
2725 		do_notify_parent_cldstop(current, false, why);
2726 
2727 		if (ptrace_reparented(current->group_leader))
2728 			do_notify_parent_cldstop(current->group_leader,
2729 						true, why);
2730 		read_unlock(&tasklist_lock);
2731 
2732 		goto relock;
2733 	}
2734 
2735 	for (;;) {
2736 		struct k_sigaction *ka;
2737 		enum pid_type type;
2738 
2739 		/* Has this task already been marked for death? */
2740 		if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2741 		     signal->group_exec_task) {
2742 			ksig->info.si_signo = signr = SIGKILL;
2743 			sigdelset(&current->pending.signal, SIGKILL);
2744 			trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2745 				&sighand->action[SIGKILL - 1]);
2746 			recalc_sigpending();
2747 			goto fatal;
2748 		}
2749 
2750 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2751 		    do_signal_stop(0))
2752 			goto relock;
2753 
2754 		if (unlikely(current->jobctl &
2755 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2756 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2757 				do_jobctl_trap();
2758 				spin_unlock_irq(&sighand->siglock);
2759 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2760 				do_freezer_trap();
2761 
2762 			goto relock;
2763 		}
2764 
2765 		/*
2766 		 * If the task is leaving the frozen state, let's update
2767 		 * cgroup counters and reset the frozen bit.
2768 		 */
2769 		if (unlikely(cgroup_task_frozen(current))) {
2770 			spin_unlock_irq(&sighand->siglock);
2771 			cgroup_leave_frozen(false);
2772 			goto relock;
2773 		}
2774 
2775 		/*
2776 		 * Signals generated by the execution of an instruction
2777 		 * need to be delivered before any other pending signals
2778 		 * so that the instruction pointer in the signal stack
2779 		 * frame points to the faulting instruction.
2780 		 */
2781 		type = PIDTYPE_PID;
2782 		signr = dequeue_synchronous_signal(&ksig->info);
2783 		if (!signr)
2784 			signr = dequeue_signal(current, &current->blocked,
2785 					       &ksig->info, &type);
2786 
2787 		if (!signr)
2788 			break; /* will return 0 */
2789 
2790 		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2791 		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2792 			signr = ptrace_signal(signr, &ksig->info, type);
2793 			if (!signr)
2794 				continue;
2795 		}
2796 
2797 		ka = &sighand->action[signr-1];
2798 
2799 		/* Trace actually delivered signals. */
2800 		trace_signal_deliver(signr, &ksig->info, ka);
2801 
2802 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2803 			continue;
2804 		if (ka->sa.sa_handler != SIG_DFL) {
2805 			/* Run the handler.  */
2806 			ksig->ka = *ka;
2807 
2808 			if (ka->sa.sa_flags & SA_ONESHOT)
2809 				ka->sa.sa_handler = SIG_DFL;
2810 
2811 			break; /* will return non-zero "signr" value */
2812 		}
2813 
2814 		/*
2815 		 * Now we are doing the default action for this signal.
2816 		 */
2817 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2818 			continue;
2819 
2820 		/*
2821 		 * Global init gets no signals it doesn't want.
2822 		 * Container-init gets no signals it doesn't want from same
2823 		 * container.
2824 		 *
2825 		 * Note that if global/container-init sees a sig_kernel_only()
2826 		 * signal here, the signal must have been generated internally
2827 		 * or must have come from an ancestor namespace. In either
2828 		 * case, the signal cannot be dropped.
2829 		 */
2830 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2831 				!sig_kernel_only(signr))
2832 			continue;
2833 
2834 		if (sig_kernel_stop(signr)) {
2835 			/*
2836 			 * The default action is to stop all threads in
2837 			 * the thread group.  The job control signals
2838 			 * do nothing in an orphaned pgrp, but SIGSTOP
2839 			 * always works.  Note that siglock needs to be
2840 			 * dropped during the call to is_orphaned_pgrp()
2841 			 * because of lock ordering with tasklist_lock.
2842 			 * This allows an intervening SIGCONT to be posted.
2843 			 * We need to check for that and bail out if necessary.
2844 			 */
2845 			if (signr != SIGSTOP) {
2846 				spin_unlock_irq(&sighand->siglock);
2847 
2848 				/* signals can be posted during this window */
2849 
2850 				if (is_current_pgrp_orphaned())
2851 					goto relock;
2852 
2853 				spin_lock_irq(&sighand->siglock);
2854 			}
2855 
2856 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2857 				/* It released the siglock.  */
2858 				goto relock;
2859 			}
2860 
2861 			/*
2862 			 * We didn't actually stop, due to a race
2863 			 * with SIGCONT or something like that.
2864 			 */
2865 			continue;
2866 		}
2867 
2868 	fatal:
2869 		spin_unlock_irq(&sighand->siglock);
2870 		if (unlikely(cgroup_task_frozen(current)))
2871 			cgroup_leave_frozen(true);
2872 
2873 		/*
2874 		 * Anything else is fatal, maybe with a core dump.
2875 		 */
2876 		current->flags |= PF_SIGNALED;
2877 
2878 		if (sig_kernel_coredump(signr)) {
2879 			if (print_fatal_signals)
2880 				print_fatal_signal(ksig->info.si_signo);
2881 			proc_coredump_connector(current);
2882 			/*
2883 			 * If it was able to dump core, this kills all
2884 			 * other threads in the group and synchronizes with
2885 			 * their demise.  If we lost the race with another
2886 			 * thread getting here, it set group_exit_code
2887 			 * first and our do_group_exit call below will use
2888 			 * that value and ignore the one we pass it.
2889 			 */
2890 			do_coredump(&ksig->info);
2891 		}
2892 
2893 		/*
2894 		 * PF_IO_WORKER threads will catch and exit on fatal signals
2895 		 * themselves. They have cleanup that must be performed, so
2896 		 * we cannot call do_exit() on their behalf.
2897 		 */
2898 		if (current->flags & PF_IO_WORKER)
2899 			goto out;
2900 
2901 		/*
2902 		 * Death signals, no core dump.
2903 		 */
2904 		do_group_exit(ksig->info.si_signo);
2905 		/* NOTREACHED */
2906 	}
2907 	spin_unlock_irq(&sighand->siglock);
2908 out:
2909 	ksig->sig = signr;
2910 
2911 	if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2912 		hide_si_addr_tag_bits(ksig);
2913 
2914 	return ksig->sig > 0;
2915 }
2916 
2917 /**
2918  * signal_delivered - called after signal delivery to update blocked signals
2919  * @ksig:		kernel signal struct
2920  * @stepping:		nonzero if debugger single-step or block-step in use
2921  *
2922  * This function should be called when a signal has successfully been
2923  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2924  * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2925  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2926  */
2927 static void signal_delivered(struct ksignal *ksig, int stepping)
2928 {
2929 	sigset_t blocked;
2930 
2931 	/* A signal was successfully delivered, and the
2932 	   saved sigmask was stored on the signal frame,
2933 	   and will be restored by sigreturn.  So we can
2934 	   simply clear the restore sigmask flag.  */
2935 	clear_restore_sigmask();
2936 
2937 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2938 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2939 		sigaddset(&blocked, ksig->sig);
2940 	set_current_blocked(&blocked);
2941 	if (current->sas_ss_flags & SS_AUTODISARM)
2942 		sas_ss_reset(current);
2943 	if (stepping)
2944 		ptrace_notify(SIGTRAP, 0);
2945 }
2946 
2947 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2948 {
2949 	if (failed)
2950 		force_sigsegv(ksig->sig);
2951 	else
2952 		signal_delivered(ksig, stepping);
2953 }
2954 
2955 /*
2956  * It could be that complete_signal() picked us to notify about the
2957  * group-wide signal. Other threads should be notified now to take
2958  * the shared signals in @which since we will not.
2959  */
2960 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2961 {
2962 	sigset_t retarget;
2963 	struct task_struct *t;
2964 
2965 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2966 	if (sigisemptyset(&retarget))
2967 		return;
2968 
2969 	t = tsk;
2970 	while_each_thread(tsk, t) {
2971 		if (t->flags & PF_EXITING)
2972 			continue;
2973 
2974 		if (!has_pending_signals(&retarget, &t->blocked))
2975 			continue;
2976 		/* Remove the signals this thread can handle. */
2977 		sigandsets(&retarget, &retarget, &t->blocked);
2978 
2979 		if (!task_sigpending(t))
2980 			signal_wake_up(t, 0);
2981 
2982 		if (sigisemptyset(&retarget))
2983 			break;
2984 	}
2985 }
2986 
2987 void exit_signals(struct task_struct *tsk)
2988 {
2989 	int group_stop = 0;
2990 	sigset_t unblocked;
2991 
2992 	/*
2993 	 * @tsk is about to have PF_EXITING set - lock out users which
2994 	 * expect stable threadgroup.
2995 	 */
2996 	cgroup_threadgroup_change_begin(tsk);
2997 
2998 	if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
2999 		tsk->flags |= PF_EXITING;
3000 		cgroup_threadgroup_change_end(tsk);
3001 		return;
3002 	}
3003 
3004 	spin_lock_irq(&tsk->sighand->siglock);
3005 	/*
3006 	 * From now this task is not visible for group-wide signals,
3007 	 * see wants_signal(), do_signal_stop().
3008 	 */
3009 	tsk->flags |= PF_EXITING;
3010 
3011 	cgroup_threadgroup_change_end(tsk);
3012 
3013 	if (!task_sigpending(tsk))
3014 		goto out;
3015 
3016 	unblocked = tsk->blocked;
3017 	signotset(&unblocked);
3018 	retarget_shared_pending(tsk, &unblocked);
3019 
3020 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3021 	    task_participate_group_stop(tsk))
3022 		group_stop = CLD_STOPPED;
3023 out:
3024 	spin_unlock_irq(&tsk->sighand->siglock);
3025 
3026 	/*
3027 	 * If group stop has completed, deliver the notification.  This
3028 	 * should always go to the real parent of the group leader.
3029 	 */
3030 	if (unlikely(group_stop)) {
3031 		read_lock(&tasklist_lock);
3032 		do_notify_parent_cldstop(tsk, false, group_stop);
3033 		read_unlock(&tasklist_lock);
3034 	}
3035 }
3036 
3037 /*
3038  * System call entry points.
3039  */
3040 
3041 /**
3042  *  sys_restart_syscall - restart a system call
3043  */
3044 SYSCALL_DEFINE0(restart_syscall)
3045 {
3046 	struct restart_block *restart = &current->restart_block;
3047 	return restart->fn(restart);
3048 }
3049 
3050 long do_no_restart_syscall(struct restart_block *param)
3051 {
3052 	return -EINTR;
3053 }
3054 
3055 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3056 {
3057 	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3058 		sigset_t newblocked;
3059 		/* A set of now blocked but previously unblocked signals. */
3060 		sigandnsets(&newblocked, newset, &current->blocked);
3061 		retarget_shared_pending(tsk, &newblocked);
3062 	}
3063 	tsk->blocked = *newset;
3064 	recalc_sigpending();
3065 }
3066 
3067 /**
3068  * set_current_blocked - change current->blocked mask
3069  * @newset: new mask
3070  *
3071  * It is wrong to change ->blocked directly, this helper should be used
3072  * to ensure the process can't miss a shared signal we are going to block.
3073  */
3074 void set_current_blocked(sigset_t *newset)
3075 {
3076 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3077 	__set_current_blocked(newset);
3078 }
3079 
3080 void __set_current_blocked(const sigset_t *newset)
3081 {
3082 	struct task_struct *tsk = current;
3083 
3084 	/*
3085 	 * In case the signal mask hasn't changed, there is nothing we need
3086 	 * to do. The current->blocked shouldn't be modified by other task.
3087 	 */
3088 	if (sigequalsets(&tsk->blocked, newset))
3089 		return;
3090 
3091 	spin_lock_irq(&tsk->sighand->siglock);
3092 	__set_task_blocked(tsk, newset);
3093 	spin_unlock_irq(&tsk->sighand->siglock);
3094 }
3095 
3096 /*
3097  * This is also useful for kernel threads that want to temporarily
3098  * (or permanently) block certain signals.
3099  *
3100  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3101  * interface happily blocks "unblockable" signals like SIGKILL
3102  * and friends.
3103  */
3104 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3105 {
3106 	struct task_struct *tsk = current;
3107 	sigset_t newset;
3108 
3109 	/* Lockless, only current can change ->blocked, never from irq */
3110 	if (oldset)
3111 		*oldset = tsk->blocked;
3112 
3113 	switch (how) {
3114 	case SIG_BLOCK:
3115 		sigorsets(&newset, &tsk->blocked, set);
3116 		break;
3117 	case SIG_UNBLOCK:
3118 		sigandnsets(&newset, &tsk->blocked, set);
3119 		break;
3120 	case SIG_SETMASK:
3121 		newset = *set;
3122 		break;
3123 	default:
3124 		return -EINVAL;
3125 	}
3126 
3127 	__set_current_blocked(&newset);
3128 	return 0;
3129 }
3130 EXPORT_SYMBOL(sigprocmask);
3131 
3132 /*
3133  * The api helps set app-provided sigmasks.
3134  *
3135  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3136  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3137  *
3138  * Note that it does set_restore_sigmask() in advance, so it must be always
3139  * paired with restore_saved_sigmask_unless() before return from syscall.
3140  */
3141 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3142 {
3143 	sigset_t kmask;
3144 
3145 	if (!umask)
3146 		return 0;
3147 	if (sigsetsize != sizeof(sigset_t))
3148 		return -EINVAL;
3149 	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3150 		return -EFAULT;
3151 
3152 	set_restore_sigmask();
3153 	current->saved_sigmask = current->blocked;
3154 	set_current_blocked(&kmask);
3155 
3156 	return 0;
3157 }
3158 
3159 #ifdef CONFIG_COMPAT
3160 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3161 			    size_t sigsetsize)
3162 {
3163 	sigset_t kmask;
3164 
3165 	if (!umask)
3166 		return 0;
3167 	if (sigsetsize != sizeof(compat_sigset_t))
3168 		return -EINVAL;
3169 	if (get_compat_sigset(&kmask, umask))
3170 		return -EFAULT;
3171 
3172 	set_restore_sigmask();
3173 	current->saved_sigmask = current->blocked;
3174 	set_current_blocked(&kmask);
3175 
3176 	return 0;
3177 }
3178 #endif
3179 
3180 /**
3181  *  sys_rt_sigprocmask - change the list of currently blocked signals
3182  *  @how: whether to add, remove, or set signals
3183  *  @nset: stores pending signals
3184  *  @oset: previous value of signal mask if non-null
3185  *  @sigsetsize: size of sigset_t type
3186  */
3187 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3188 		sigset_t __user *, oset, size_t, sigsetsize)
3189 {
3190 	sigset_t old_set, new_set;
3191 	int error;
3192 
3193 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3194 	if (sigsetsize != sizeof(sigset_t))
3195 		return -EINVAL;
3196 
3197 	old_set = current->blocked;
3198 
3199 	if (nset) {
3200 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3201 			return -EFAULT;
3202 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3203 
3204 		error = sigprocmask(how, &new_set, NULL);
3205 		if (error)
3206 			return error;
3207 	}
3208 
3209 	if (oset) {
3210 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3211 			return -EFAULT;
3212 	}
3213 
3214 	return 0;
3215 }
3216 
3217 #ifdef CONFIG_COMPAT
3218 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3219 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3220 {
3221 	sigset_t old_set = current->blocked;
3222 
3223 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3224 	if (sigsetsize != sizeof(sigset_t))
3225 		return -EINVAL;
3226 
3227 	if (nset) {
3228 		sigset_t new_set;
3229 		int error;
3230 		if (get_compat_sigset(&new_set, nset))
3231 			return -EFAULT;
3232 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3233 
3234 		error = sigprocmask(how, &new_set, NULL);
3235 		if (error)
3236 			return error;
3237 	}
3238 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3239 }
3240 #endif
3241 
3242 static void do_sigpending(sigset_t *set)
3243 {
3244 	spin_lock_irq(&current->sighand->siglock);
3245 	sigorsets(set, &current->pending.signal,
3246 		  &current->signal->shared_pending.signal);
3247 	spin_unlock_irq(&current->sighand->siglock);
3248 
3249 	/* Outside the lock because only this thread touches it.  */
3250 	sigandsets(set, &current->blocked, set);
3251 }
3252 
3253 /**
3254  *  sys_rt_sigpending - examine a pending signal that has been raised
3255  *			while blocked
3256  *  @uset: stores pending signals
3257  *  @sigsetsize: size of sigset_t type or larger
3258  */
3259 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3260 {
3261 	sigset_t set;
3262 
3263 	if (sigsetsize > sizeof(*uset))
3264 		return -EINVAL;
3265 
3266 	do_sigpending(&set);
3267 
3268 	if (copy_to_user(uset, &set, sigsetsize))
3269 		return -EFAULT;
3270 
3271 	return 0;
3272 }
3273 
3274 #ifdef CONFIG_COMPAT
3275 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3276 		compat_size_t, sigsetsize)
3277 {
3278 	sigset_t set;
3279 
3280 	if (sigsetsize > sizeof(*uset))
3281 		return -EINVAL;
3282 
3283 	do_sigpending(&set);
3284 
3285 	return put_compat_sigset(uset, &set, sigsetsize);
3286 }
3287 #endif
3288 
3289 static const struct {
3290 	unsigned char limit, layout;
3291 } sig_sicodes[] = {
3292 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3293 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3294 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3295 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3296 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3297 #if defined(SIGEMT)
3298 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3299 #endif
3300 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3301 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3302 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3303 };
3304 
3305 static bool known_siginfo_layout(unsigned sig, int si_code)
3306 {
3307 	if (si_code == SI_KERNEL)
3308 		return true;
3309 	else if ((si_code > SI_USER)) {
3310 		if (sig_specific_sicodes(sig)) {
3311 			if (si_code <= sig_sicodes[sig].limit)
3312 				return true;
3313 		}
3314 		else if (si_code <= NSIGPOLL)
3315 			return true;
3316 	}
3317 	else if (si_code >= SI_DETHREAD)
3318 		return true;
3319 	else if (si_code == SI_ASYNCNL)
3320 		return true;
3321 	return false;
3322 }
3323 
3324 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3325 {
3326 	enum siginfo_layout layout = SIL_KILL;
3327 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3328 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3329 		    (si_code <= sig_sicodes[sig].limit)) {
3330 			layout = sig_sicodes[sig].layout;
3331 			/* Handle the exceptions */
3332 			if ((sig == SIGBUS) &&
3333 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3334 				layout = SIL_FAULT_MCEERR;
3335 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3336 				layout = SIL_FAULT_BNDERR;
3337 #ifdef SEGV_PKUERR
3338 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3339 				layout = SIL_FAULT_PKUERR;
3340 #endif
3341 			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3342 				layout = SIL_FAULT_PERF_EVENT;
3343 			else if (IS_ENABLED(CONFIG_SPARC) &&
3344 				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3345 				layout = SIL_FAULT_TRAPNO;
3346 			else if (IS_ENABLED(CONFIG_ALPHA) &&
3347 				 ((sig == SIGFPE) ||
3348 				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3349 				layout = SIL_FAULT_TRAPNO;
3350 		}
3351 		else if (si_code <= NSIGPOLL)
3352 			layout = SIL_POLL;
3353 	} else {
3354 		if (si_code == SI_TIMER)
3355 			layout = SIL_TIMER;
3356 		else if (si_code == SI_SIGIO)
3357 			layout = SIL_POLL;
3358 		else if (si_code < 0)
3359 			layout = SIL_RT;
3360 	}
3361 	return layout;
3362 }
3363 
3364 static inline char __user *si_expansion(const siginfo_t __user *info)
3365 {
3366 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3367 }
3368 
3369 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3370 {
3371 	char __user *expansion = si_expansion(to);
3372 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3373 		return -EFAULT;
3374 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3375 		return -EFAULT;
3376 	return 0;
3377 }
3378 
3379 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3380 				       const siginfo_t __user *from)
3381 {
3382 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3383 		char __user *expansion = si_expansion(from);
3384 		char buf[SI_EXPANSION_SIZE];
3385 		int i;
3386 		/*
3387 		 * An unknown si_code might need more than
3388 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3389 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3390 		 * will return this data to userspace exactly.
3391 		 */
3392 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3393 			return -EFAULT;
3394 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3395 			if (buf[i] != 0)
3396 				return -E2BIG;
3397 		}
3398 	}
3399 	return 0;
3400 }
3401 
3402 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3403 				    const siginfo_t __user *from)
3404 {
3405 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3406 		return -EFAULT;
3407 	to->si_signo = signo;
3408 	return post_copy_siginfo_from_user(to, from);
3409 }
3410 
3411 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3412 {
3413 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3414 		return -EFAULT;
3415 	return post_copy_siginfo_from_user(to, from);
3416 }
3417 
3418 #ifdef CONFIG_COMPAT
3419 /**
3420  * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3421  * @to: compat siginfo destination
3422  * @from: kernel siginfo source
3423  *
3424  * Note: This function does not work properly for the SIGCHLD on x32, but
3425  * fortunately it doesn't have to.  The only valid callers for this function are
3426  * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3427  * The latter does not care because SIGCHLD will never cause a coredump.
3428  */
3429 void copy_siginfo_to_external32(struct compat_siginfo *to,
3430 		const struct kernel_siginfo *from)
3431 {
3432 	memset(to, 0, sizeof(*to));
3433 
3434 	to->si_signo = from->si_signo;
3435 	to->si_errno = from->si_errno;
3436 	to->si_code  = from->si_code;
3437 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3438 	case SIL_KILL:
3439 		to->si_pid = from->si_pid;
3440 		to->si_uid = from->si_uid;
3441 		break;
3442 	case SIL_TIMER:
3443 		to->si_tid     = from->si_tid;
3444 		to->si_overrun = from->si_overrun;
3445 		to->si_int     = from->si_int;
3446 		break;
3447 	case SIL_POLL:
3448 		to->si_band = from->si_band;
3449 		to->si_fd   = from->si_fd;
3450 		break;
3451 	case SIL_FAULT:
3452 		to->si_addr = ptr_to_compat(from->si_addr);
3453 		break;
3454 	case SIL_FAULT_TRAPNO:
3455 		to->si_addr = ptr_to_compat(from->si_addr);
3456 		to->si_trapno = from->si_trapno;
3457 		break;
3458 	case SIL_FAULT_MCEERR:
3459 		to->si_addr = ptr_to_compat(from->si_addr);
3460 		to->si_addr_lsb = from->si_addr_lsb;
3461 		break;
3462 	case SIL_FAULT_BNDERR:
3463 		to->si_addr = ptr_to_compat(from->si_addr);
3464 		to->si_lower = ptr_to_compat(from->si_lower);
3465 		to->si_upper = ptr_to_compat(from->si_upper);
3466 		break;
3467 	case SIL_FAULT_PKUERR:
3468 		to->si_addr = ptr_to_compat(from->si_addr);
3469 		to->si_pkey = from->si_pkey;
3470 		break;
3471 	case SIL_FAULT_PERF_EVENT:
3472 		to->si_addr = ptr_to_compat(from->si_addr);
3473 		to->si_perf_data = from->si_perf_data;
3474 		to->si_perf_type = from->si_perf_type;
3475 		break;
3476 	case SIL_CHLD:
3477 		to->si_pid = from->si_pid;
3478 		to->si_uid = from->si_uid;
3479 		to->si_status = from->si_status;
3480 		to->si_utime = from->si_utime;
3481 		to->si_stime = from->si_stime;
3482 		break;
3483 	case SIL_RT:
3484 		to->si_pid = from->si_pid;
3485 		to->si_uid = from->si_uid;
3486 		to->si_int = from->si_int;
3487 		break;
3488 	case SIL_SYS:
3489 		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3490 		to->si_syscall   = from->si_syscall;
3491 		to->si_arch      = from->si_arch;
3492 		break;
3493 	}
3494 }
3495 
3496 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3497 			   const struct kernel_siginfo *from)
3498 {
3499 	struct compat_siginfo new;
3500 
3501 	copy_siginfo_to_external32(&new, from);
3502 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3503 		return -EFAULT;
3504 	return 0;
3505 }
3506 
3507 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3508 					 const struct compat_siginfo *from)
3509 {
3510 	clear_siginfo(to);
3511 	to->si_signo = from->si_signo;
3512 	to->si_errno = from->si_errno;
3513 	to->si_code  = from->si_code;
3514 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3515 	case SIL_KILL:
3516 		to->si_pid = from->si_pid;
3517 		to->si_uid = from->si_uid;
3518 		break;
3519 	case SIL_TIMER:
3520 		to->si_tid     = from->si_tid;
3521 		to->si_overrun = from->si_overrun;
3522 		to->si_int     = from->si_int;
3523 		break;
3524 	case SIL_POLL:
3525 		to->si_band = from->si_band;
3526 		to->si_fd   = from->si_fd;
3527 		break;
3528 	case SIL_FAULT:
3529 		to->si_addr = compat_ptr(from->si_addr);
3530 		break;
3531 	case SIL_FAULT_TRAPNO:
3532 		to->si_addr = compat_ptr(from->si_addr);
3533 		to->si_trapno = from->si_trapno;
3534 		break;
3535 	case SIL_FAULT_MCEERR:
3536 		to->si_addr = compat_ptr(from->si_addr);
3537 		to->si_addr_lsb = from->si_addr_lsb;
3538 		break;
3539 	case SIL_FAULT_BNDERR:
3540 		to->si_addr = compat_ptr(from->si_addr);
3541 		to->si_lower = compat_ptr(from->si_lower);
3542 		to->si_upper = compat_ptr(from->si_upper);
3543 		break;
3544 	case SIL_FAULT_PKUERR:
3545 		to->si_addr = compat_ptr(from->si_addr);
3546 		to->si_pkey = from->si_pkey;
3547 		break;
3548 	case SIL_FAULT_PERF_EVENT:
3549 		to->si_addr = compat_ptr(from->si_addr);
3550 		to->si_perf_data = from->si_perf_data;
3551 		to->si_perf_type = from->si_perf_type;
3552 		break;
3553 	case SIL_CHLD:
3554 		to->si_pid    = from->si_pid;
3555 		to->si_uid    = from->si_uid;
3556 		to->si_status = from->si_status;
3557 #ifdef CONFIG_X86_X32_ABI
3558 		if (in_x32_syscall()) {
3559 			to->si_utime = from->_sifields._sigchld_x32._utime;
3560 			to->si_stime = from->_sifields._sigchld_x32._stime;
3561 		} else
3562 #endif
3563 		{
3564 			to->si_utime = from->si_utime;
3565 			to->si_stime = from->si_stime;
3566 		}
3567 		break;
3568 	case SIL_RT:
3569 		to->si_pid = from->si_pid;
3570 		to->si_uid = from->si_uid;
3571 		to->si_int = from->si_int;
3572 		break;
3573 	case SIL_SYS:
3574 		to->si_call_addr = compat_ptr(from->si_call_addr);
3575 		to->si_syscall   = from->si_syscall;
3576 		to->si_arch      = from->si_arch;
3577 		break;
3578 	}
3579 	return 0;
3580 }
3581 
3582 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3583 				      const struct compat_siginfo __user *ufrom)
3584 {
3585 	struct compat_siginfo from;
3586 
3587 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3588 		return -EFAULT;
3589 
3590 	from.si_signo = signo;
3591 	return post_copy_siginfo_from_user32(to, &from);
3592 }
3593 
3594 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3595 			     const struct compat_siginfo __user *ufrom)
3596 {
3597 	struct compat_siginfo from;
3598 
3599 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3600 		return -EFAULT;
3601 
3602 	return post_copy_siginfo_from_user32(to, &from);
3603 }
3604 #endif /* CONFIG_COMPAT */
3605 
3606 /**
3607  *  do_sigtimedwait - wait for queued signals specified in @which
3608  *  @which: queued signals to wait for
3609  *  @info: if non-null, the signal's siginfo is returned here
3610  *  @ts: upper bound on process time suspension
3611  */
3612 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3613 		    const struct timespec64 *ts)
3614 {
3615 	ktime_t *to = NULL, timeout = KTIME_MAX;
3616 	struct task_struct *tsk = current;
3617 	sigset_t mask = *which;
3618 	enum pid_type type;
3619 	int sig, ret = 0;
3620 
3621 	if (ts) {
3622 		if (!timespec64_valid(ts))
3623 			return -EINVAL;
3624 		timeout = timespec64_to_ktime(*ts);
3625 		to = &timeout;
3626 	}
3627 
3628 	/*
3629 	 * Invert the set of allowed signals to get those we want to block.
3630 	 */
3631 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3632 	signotset(&mask);
3633 
3634 	spin_lock_irq(&tsk->sighand->siglock);
3635 	sig = dequeue_signal(tsk, &mask, info, &type);
3636 	if (!sig && timeout) {
3637 		/*
3638 		 * None ready, temporarily unblock those we're interested
3639 		 * while we are sleeping in so that we'll be awakened when
3640 		 * they arrive. Unblocking is always fine, we can avoid
3641 		 * set_current_blocked().
3642 		 */
3643 		tsk->real_blocked = tsk->blocked;
3644 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3645 		recalc_sigpending();
3646 		spin_unlock_irq(&tsk->sighand->siglock);
3647 
3648 		__set_current_state(TASK_INTERRUPTIBLE);
3649 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3650 							 HRTIMER_MODE_REL);
3651 		spin_lock_irq(&tsk->sighand->siglock);
3652 		__set_task_blocked(tsk, &tsk->real_blocked);
3653 		sigemptyset(&tsk->real_blocked);
3654 		sig = dequeue_signal(tsk, &mask, info, &type);
3655 	}
3656 	spin_unlock_irq(&tsk->sighand->siglock);
3657 
3658 	if (sig)
3659 		return sig;
3660 	return ret ? -EINTR : -EAGAIN;
3661 }
3662 
3663 /**
3664  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3665  *			in @uthese
3666  *  @uthese: queued signals to wait for
3667  *  @uinfo: if non-null, the signal's siginfo is returned here
3668  *  @uts: upper bound on process time suspension
3669  *  @sigsetsize: size of sigset_t type
3670  */
3671 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3672 		siginfo_t __user *, uinfo,
3673 		const struct __kernel_timespec __user *, uts,
3674 		size_t, sigsetsize)
3675 {
3676 	sigset_t these;
3677 	struct timespec64 ts;
3678 	kernel_siginfo_t info;
3679 	int ret;
3680 
3681 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3682 	if (sigsetsize != sizeof(sigset_t))
3683 		return -EINVAL;
3684 
3685 	if (copy_from_user(&these, uthese, sizeof(these)))
3686 		return -EFAULT;
3687 
3688 	if (uts) {
3689 		if (get_timespec64(&ts, uts))
3690 			return -EFAULT;
3691 	}
3692 
3693 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3694 
3695 	if (ret > 0 && uinfo) {
3696 		if (copy_siginfo_to_user(uinfo, &info))
3697 			ret = -EFAULT;
3698 	}
3699 
3700 	return ret;
3701 }
3702 
3703 #ifdef CONFIG_COMPAT_32BIT_TIME
3704 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3705 		siginfo_t __user *, uinfo,
3706 		const struct old_timespec32 __user *, uts,
3707 		size_t, sigsetsize)
3708 {
3709 	sigset_t these;
3710 	struct timespec64 ts;
3711 	kernel_siginfo_t info;
3712 	int ret;
3713 
3714 	if (sigsetsize != sizeof(sigset_t))
3715 		return -EINVAL;
3716 
3717 	if (copy_from_user(&these, uthese, sizeof(these)))
3718 		return -EFAULT;
3719 
3720 	if (uts) {
3721 		if (get_old_timespec32(&ts, uts))
3722 			return -EFAULT;
3723 	}
3724 
3725 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3726 
3727 	if (ret > 0 && uinfo) {
3728 		if (copy_siginfo_to_user(uinfo, &info))
3729 			ret = -EFAULT;
3730 	}
3731 
3732 	return ret;
3733 }
3734 #endif
3735 
3736 #ifdef CONFIG_COMPAT
3737 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3738 		struct compat_siginfo __user *, uinfo,
3739 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3740 {
3741 	sigset_t s;
3742 	struct timespec64 t;
3743 	kernel_siginfo_t info;
3744 	long ret;
3745 
3746 	if (sigsetsize != sizeof(sigset_t))
3747 		return -EINVAL;
3748 
3749 	if (get_compat_sigset(&s, uthese))
3750 		return -EFAULT;
3751 
3752 	if (uts) {
3753 		if (get_timespec64(&t, uts))
3754 			return -EFAULT;
3755 	}
3756 
3757 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3758 
3759 	if (ret > 0 && uinfo) {
3760 		if (copy_siginfo_to_user32(uinfo, &info))
3761 			ret = -EFAULT;
3762 	}
3763 
3764 	return ret;
3765 }
3766 
3767 #ifdef CONFIG_COMPAT_32BIT_TIME
3768 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3769 		struct compat_siginfo __user *, uinfo,
3770 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3771 {
3772 	sigset_t s;
3773 	struct timespec64 t;
3774 	kernel_siginfo_t info;
3775 	long ret;
3776 
3777 	if (sigsetsize != sizeof(sigset_t))
3778 		return -EINVAL;
3779 
3780 	if (get_compat_sigset(&s, uthese))
3781 		return -EFAULT;
3782 
3783 	if (uts) {
3784 		if (get_old_timespec32(&t, uts))
3785 			return -EFAULT;
3786 	}
3787 
3788 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3789 
3790 	if (ret > 0 && uinfo) {
3791 		if (copy_siginfo_to_user32(uinfo, &info))
3792 			ret = -EFAULT;
3793 	}
3794 
3795 	return ret;
3796 }
3797 #endif
3798 #endif
3799 
3800 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3801 {
3802 	clear_siginfo(info);
3803 	info->si_signo = sig;
3804 	info->si_errno = 0;
3805 	info->si_code = SI_USER;
3806 	info->si_pid = task_tgid_vnr(current);
3807 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3808 }
3809 
3810 /**
3811  *  sys_kill - send a signal to a process
3812  *  @pid: the PID of the process
3813  *  @sig: signal to be sent
3814  */
3815 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3816 {
3817 	struct kernel_siginfo info;
3818 
3819 	prepare_kill_siginfo(sig, &info);
3820 
3821 	return kill_something_info(sig, &info, pid);
3822 }
3823 
3824 /*
3825  * Verify that the signaler and signalee either are in the same pid namespace
3826  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3827  * namespace.
3828  */
3829 static bool access_pidfd_pidns(struct pid *pid)
3830 {
3831 	struct pid_namespace *active = task_active_pid_ns(current);
3832 	struct pid_namespace *p = ns_of_pid(pid);
3833 
3834 	for (;;) {
3835 		if (!p)
3836 			return false;
3837 		if (p == active)
3838 			break;
3839 		p = p->parent;
3840 	}
3841 
3842 	return true;
3843 }
3844 
3845 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3846 		siginfo_t __user *info)
3847 {
3848 #ifdef CONFIG_COMPAT
3849 	/*
3850 	 * Avoid hooking up compat syscalls and instead handle necessary
3851 	 * conversions here. Note, this is a stop-gap measure and should not be
3852 	 * considered a generic solution.
3853 	 */
3854 	if (in_compat_syscall())
3855 		return copy_siginfo_from_user32(
3856 			kinfo, (struct compat_siginfo __user *)info);
3857 #endif
3858 	return copy_siginfo_from_user(kinfo, info);
3859 }
3860 
3861 static struct pid *pidfd_to_pid(const struct file *file)
3862 {
3863 	struct pid *pid;
3864 
3865 	pid = pidfd_pid(file);
3866 	if (!IS_ERR(pid))
3867 		return pid;
3868 
3869 	return tgid_pidfd_to_pid(file);
3870 }
3871 
3872 /**
3873  * sys_pidfd_send_signal - Signal a process through a pidfd
3874  * @pidfd:  file descriptor of the process
3875  * @sig:    signal to send
3876  * @info:   signal info
3877  * @flags:  future flags
3878  *
3879  * The syscall currently only signals via PIDTYPE_PID which covers
3880  * kill(<positive-pid>, <signal>. It does not signal threads or process
3881  * groups.
3882  * In order to extend the syscall to threads and process groups the @flags
3883  * argument should be used. In essence, the @flags argument will determine
3884  * what is signaled and not the file descriptor itself. Put in other words,
3885  * grouping is a property of the flags argument not a property of the file
3886  * descriptor.
3887  *
3888  * Return: 0 on success, negative errno on failure
3889  */
3890 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3891 		siginfo_t __user *, info, unsigned int, flags)
3892 {
3893 	int ret;
3894 	struct fd f;
3895 	struct pid *pid;
3896 	kernel_siginfo_t kinfo;
3897 
3898 	/* Enforce flags be set to 0 until we add an extension. */
3899 	if (flags)
3900 		return -EINVAL;
3901 
3902 	f = fdget(pidfd);
3903 	if (!f.file)
3904 		return -EBADF;
3905 
3906 	/* Is this a pidfd? */
3907 	pid = pidfd_to_pid(f.file);
3908 	if (IS_ERR(pid)) {
3909 		ret = PTR_ERR(pid);
3910 		goto err;
3911 	}
3912 
3913 	ret = -EINVAL;
3914 	if (!access_pidfd_pidns(pid))
3915 		goto err;
3916 
3917 	if (info) {
3918 		ret = copy_siginfo_from_user_any(&kinfo, info);
3919 		if (unlikely(ret))
3920 			goto err;
3921 
3922 		ret = -EINVAL;
3923 		if (unlikely(sig != kinfo.si_signo))
3924 			goto err;
3925 
3926 		/* Only allow sending arbitrary signals to yourself. */
3927 		ret = -EPERM;
3928 		if ((task_pid(current) != pid) &&
3929 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3930 			goto err;
3931 	} else {
3932 		prepare_kill_siginfo(sig, &kinfo);
3933 	}
3934 
3935 	ret = kill_pid_info(sig, &kinfo, pid);
3936 
3937 err:
3938 	fdput(f);
3939 	return ret;
3940 }
3941 
3942 static int
3943 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3944 {
3945 	struct task_struct *p;
3946 	int error = -ESRCH;
3947 
3948 	rcu_read_lock();
3949 	p = find_task_by_vpid(pid);
3950 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3951 		error = check_kill_permission(sig, info, p);
3952 		/*
3953 		 * The null signal is a permissions and process existence
3954 		 * probe.  No signal is actually delivered.
3955 		 */
3956 		if (!error && sig) {
3957 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3958 			/*
3959 			 * If lock_task_sighand() failed we pretend the task
3960 			 * dies after receiving the signal. The window is tiny,
3961 			 * and the signal is private anyway.
3962 			 */
3963 			if (unlikely(error == -ESRCH))
3964 				error = 0;
3965 		}
3966 	}
3967 	rcu_read_unlock();
3968 
3969 	return error;
3970 }
3971 
3972 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3973 {
3974 	struct kernel_siginfo info;
3975 
3976 	clear_siginfo(&info);
3977 	info.si_signo = sig;
3978 	info.si_errno = 0;
3979 	info.si_code = SI_TKILL;
3980 	info.si_pid = task_tgid_vnr(current);
3981 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3982 
3983 	return do_send_specific(tgid, pid, sig, &info);
3984 }
3985 
3986 /**
3987  *  sys_tgkill - send signal to one specific thread
3988  *  @tgid: the thread group ID of the thread
3989  *  @pid: the PID of the thread
3990  *  @sig: signal to be sent
3991  *
3992  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3993  *  exists but it's not belonging to the target process anymore. This
3994  *  method solves the problem of threads exiting and PIDs getting reused.
3995  */
3996 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3997 {
3998 	/* This is only valid for single tasks */
3999 	if (pid <= 0 || tgid <= 0)
4000 		return -EINVAL;
4001 
4002 	return do_tkill(tgid, pid, sig);
4003 }
4004 
4005 /**
4006  *  sys_tkill - send signal to one specific task
4007  *  @pid: the PID of the task
4008  *  @sig: signal to be sent
4009  *
4010  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
4011  */
4012 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4013 {
4014 	/* This is only valid for single tasks */
4015 	if (pid <= 0)
4016 		return -EINVAL;
4017 
4018 	return do_tkill(0, pid, sig);
4019 }
4020 
4021 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4022 {
4023 	/* Not even root can pretend to send signals from the kernel.
4024 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4025 	 */
4026 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4027 	    (task_pid_vnr(current) != pid))
4028 		return -EPERM;
4029 
4030 	/* POSIX.1b doesn't mention process groups.  */
4031 	return kill_proc_info(sig, info, pid);
4032 }
4033 
4034 /**
4035  *  sys_rt_sigqueueinfo - send signal information to a signal
4036  *  @pid: the PID of the thread
4037  *  @sig: signal to be sent
4038  *  @uinfo: signal info to be sent
4039  */
4040 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4041 		siginfo_t __user *, uinfo)
4042 {
4043 	kernel_siginfo_t info;
4044 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4045 	if (unlikely(ret))
4046 		return ret;
4047 	return do_rt_sigqueueinfo(pid, sig, &info);
4048 }
4049 
4050 #ifdef CONFIG_COMPAT
4051 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4052 			compat_pid_t, pid,
4053 			int, sig,
4054 			struct compat_siginfo __user *, uinfo)
4055 {
4056 	kernel_siginfo_t info;
4057 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4058 	if (unlikely(ret))
4059 		return ret;
4060 	return do_rt_sigqueueinfo(pid, sig, &info);
4061 }
4062 #endif
4063 
4064 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4065 {
4066 	/* This is only valid for single tasks */
4067 	if (pid <= 0 || tgid <= 0)
4068 		return -EINVAL;
4069 
4070 	/* Not even root can pretend to send signals from the kernel.
4071 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4072 	 */
4073 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4074 	    (task_pid_vnr(current) != pid))
4075 		return -EPERM;
4076 
4077 	return do_send_specific(tgid, pid, sig, info);
4078 }
4079 
4080 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4081 		siginfo_t __user *, uinfo)
4082 {
4083 	kernel_siginfo_t info;
4084 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4085 	if (unlikely(ret))
4086 		return ret;
4087 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4088 }
4089 
4090 #ifdef CONFIG_COMPAT
4091 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4092 			compat_pid_t, tgid,
4093 			compat_pid_t, pid,
4094 			int, sig,
4095 			struct compat_siginfo __user *, uinfo)
4096 {
4097 	kernel_siginfo_t info;
4098 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4099 	if (unlikely(ret))
4100 		return ret;
4101 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4102 }
4103 #endif
4104 
4105 /*
4106  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4107  */
4108 void kernel_sigaction(int sig, __sighandler_t action)
4109 {
4110 	spin_lock_irq(&current->sighand->siglock);
4111 	current->sighand->action[sig - 1].sa.sa_handler = action;
4112 	if (action == SIG_IGN) {
4113 		sigset_t mask;
4114 
4115 		sigemptyset(&mask);
4116 		sigaddset(&mask, sig);
4117 
4118 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4119 		flush_sigqueue_mask(&mask, &current->pending);
4120 		recalc_sigpending();
4121 	}
4122 	spin_unlock_irq(&current->sighand->siglock);
4123 }
4124 EXPORT_SYMBOL(kernel_sigaction);
4125 
4126 void __weak sigaction_compat_abi(struct k_sigaction *act,
4127 		struct k_sigaction *oact)
4128 {
4129 }
4130 
4131 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4132 {
4133 	struct task_struct *p = current, *t;
4134 	struct k_sigaction *k;
4135 	sigset_t mask;
4136 
4137 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4138 		return -EINVAL;
4139 
4140 	k = &p->sighand->action[sig-1];
4141 
4142 	spin_lock_irq(&p->sighand->siglock);
4143 	if (k->sa.sa_flags & SA_IMMUTABLE) {
4144 		spin_unlock_irq(&p->sighand->siglock);
4145 		return -EINVAL;
4146 	}
4147 	if (oact)
4148 		*oact = *k;
4149 
4150 	/*
4151 	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4152 	 * e.g. by having an architecture use the bit in their uapi.
4153 	 */
4154 	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4155 
4156 	/*
4157 	 * Clear unknown flag bits in order to allow userspace to detect missing
4158 	 * support for flag bits and to allow the kernel to use non-uapi bits
4159 	 * internally.
4160 	 */
4161 	if (act)
4162 		act->sa.sa_flags &= UAPI_SA_FLAGS;
4163 	if (oact)
4164 		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4165 
4166 	sigaction_compat_abi(act, oact);
4167 
4168 	if (act) {
4169 		sigdelsetmask(&act->sa.sa_mask,
4170 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4171 		*k = *act;
4172 		/*
4173 		 * POSIX 3.3.1.3:
4174 		 *  "Setting a signal action to SIG_IGN for a signal that is
4175 		 *   pending shall cause the pending signal to be discarded,
4176 		 *   whether or not it is blocked."
4177 		 *
4178 		 *  "Setting a signal action to SIG_DFL for a signal that is
4179 		 *   pending and whose default action is to ignore the signal
4180 		 *   (for example, SIGCHLD), shall cause the pending signal to
4181 		 *   be discarded, whether or not it is blocked"
4182 		 */
4183 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4184 			sigemptyset(&mask);
4185 			sigaddset(&mask, sig);
4186 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4187 			for_each_thread(p, t)
4188 				flush_sigqueue_mask(&mask, &t->pending);
4189 		}
4190 	}
4191 
4192 	spin_unlock_irq(&p->sighand->siglock);
4193 	return 0;
4194 }
4195 
4196 #ifdef CONFIG_DYNAMIC_SIGFRAME
4197 static inline void sigaltstack_lock(void)
4198 	__acquires(&current->sighand->siglock)
4199 {
4200 	spin_lock_irq(&current->sighand->siglock);
4201 }
4202 
4203 static inline void sigaltstack_unlock(void)
4204 	__releases(&current->sighand->siglock)
4205 {
4206 	spin_unlock_irq(&current->sighand->siglock);
4207 }
4208 #else
4209 static inline void sigaltstack_lock(void) { }
4210 static inline void sigaltstack_unlock(void) { }
4211 #endif
4212 
4213 static int
4214 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4215 		size_t min_ss_size)
4216 {
4217 	struct task_struct *t = current;
4218 	int ret = 0;
4219 
4220 	if (oss) {
4221 		memset(oss, 0, sizeof(stack_t));
4222 		oss->ss_sp = (void __user *) t->sas_ss_sp;
4223 		oss->ss_size = t->sas_ss_size;
4224 		oss->ss_flags = sas_ss_flags(sp) |
4225 			(current->sas_ss_flags & SS_FLAG_BITS);
4226 	}
4227 
4228 	if (ss) {
4229 		void __user *ss_sp = ss->ss_sp;
4230 		size_t ss_size = ss->ss_size;
4231 		unsigned ss_flags = ss->ss_flags;
4232 		int ss_mode;
4233 
4234 		if (unlikely(on_sig_stack(sp)))
4235 			return -EPERM;
4236 
4237 		ss_mode = ss_flags & ~SS_FLAG_BITS;
4238 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4239 				ss_mode != 0))
4240 			return -EINVAL;
4241 
4242 		/*
4243 		 * Return before taking any locks if no actual
4244 		 * sigaltstack changes were requested.
4245 		 */
4246 		if (t->sas_ss_sp == (unsigned long)ss_sp &&
4247 		    t->sas_ss_size == ss_size &&
4248 		    t->sas_ss_flags == ss_flags)
4249 			return 0;
4250 
4251 		sigaltstack_lock();
4252 		if (ss_mode == SS_DISABLE) {
4253 			ss_size = 0;
4254 			ss_sp = NULL;
4255 		} else {
4256 			if (unlikely(ss_size < min_ss_size))
4257 				ret = -ENOMEM;
4258 			if (!sigaltstack_size_valid(ss_size))
4259 				ret = -ENOMEM;
4260 		}
4261 		if (!ret) {
4262 			t->sas_ss_sp = (unsigned long) ss_sp;
4263 			t->sas_ss_size = ss_size;
4264 			t->sas_ss_flags = ss_flags;
4265 		}
4266 		sigaltstack_unlock();
4267 	}
4268 	return ret;
4269 }
4270 
4271 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4272 {
4273 	stack_t new, old;
4274 	int err;
4275 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4276 		return -EFAULT;
4277 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4278 			      current_user_stack_pointer(),
4279 			      MINSIGSTKSZ);
4280 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4281 		err = -EFAULT;
4282 	return err;
4283 }
4284 
4285 int restore_altstack(const stack_t __user *uss)
4286 {
4287 	stack_t new;
4288 	if (copy_from_user(&new, uss, sizeof(stack_t)))
4289 		return -EFAULT;
4290 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4291 			     MINSIGSTKSZ);
4292 	/* squash all but EFAULT for now */
4293 	return 0;
4294 }
4295 
4296 int __save_altstack(stack_t __user *uss, unsigned long sp)
4297 {
4298 	struct task_struct *t = current;
4299 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4300 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4301 		__put_user(t->sas_ss_size, &uss->ss_size);
4302 	return err;
4303 }
4304 
4305 #ifdef CONFIG_COMPAT
4306 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4307 				 compat_stack_t __user *uoss_ptr)
4308 {
4309 	stack_t uss, uoss;
4310 	int ret;
4311 
4312 	if (uss_ptr) {
4313 		compat_stack_t uss32;
4314 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4315 			return -EFAULT;
4316 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4317 		uss.ss_flags = uss32.ss_flags;
4318 		uss.ss_size = uss32.ss_size;
4319 	}
4320 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4321 			     compat_user_stack_pointer(),
4322 			     COMPAT_MINSIGSTKSZ);
4323 	if (ret >= 0 && uoss_ptr)  {
4324 		compat_stack_t old;
4325 		memset(&old, 0, sizeof(old));
4326 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4327 		old.ss_flags = uoss.ss_flags;
4328 		old.ss_size = uoss.ss_size;
4329 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4330 			ret = -EFAULT;
4331 	}
4332 	return ret;
4333 }
4334 
4335 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4336 			const compat_stack_t __user *, uss_ptr,
4337 			compat_stack_t __user *, uoss_ptr)
4338 {
4339 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4340 }
4341 
4342 int compat_restore_altstack(const compat_stack_t __user *uss)
4343 {
4344 	int err = do_compat_sigaltstack(uss, NULL);
4345 	/* squash all but -EFAULT for now */
4346 	return err == -EFAULT ? err : 0;
4347 }
4348 
4349 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4350 {
4351 	int err;
4352 	struct task_struct *t = current;
4353 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4354 			 &uss->ss_sp) |
4355 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4356 		__put_user(t->sas_ss_size, &uss->ss_size);
4357 	return err;
4358 }
4359 #endif
4360 
4361 #ifdef __ARCH_WANT_SYS_SIGPENDING
4362 
4363 /**
4364  *  sys_sigpending - examine pending signals
4365  *  @uset: where mask of pending signal is returned
4366  */
4367 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4368 {
4369 	sigset_t set;
4370 
4371 	if (sizeof(old_sigset_t) > sizeof(*uset))
4372 		return -EINVAL;
4373 
4374 	do_sigpending(&set);
4375 
4376 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4377 		return -EFAULT;
4378 
4379 	return 0;
4380 }
4381 
4382 #ifdef CONFIG_COMPAT
4383 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4384 {
4385 	sigset_t set;
4386 
4387 	do_sigpending(&set);
4388 
4389 	return put_user(set.sig[0], set32);
4390 }
4391 #endif
4392 
4393 #endif
4394 
4395 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4396 /**
4397  *  sys_sigprocmask - examine and change blocked signals
4398  *  @how: whether to add, remove, or set signals
4399  *  @nset: signals to add or remove (if non-null)
4400  *  @oset: previous value of signal mask if non-null
4401  *
4402  * Some platforms have their own version with special arguments;
4403  * others support only sys_rt_sigprocmask.
4404  */
4405 
4406 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4407 		old_sigset_t __user *, oset)
4408 {
4409 	old_sigset_t old_set, new_set;
4410 	sigset_t new_blocked;
4411 
4412 	old_set = current->blocked.sig[0];
4413 
4414 	if (nset) {
4415 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4416 			return -EFAULT;
4417 
4418 		new_blocked = current->blocked;
4419 
4420 		switch (how) {
4421 		case SIG_BLOCK:
4422 			sigaddsetmask(&new_blocked, new_set);
4423 			break;
4424 		case SIG_UNBLOCK:
4425 			sigdelsetmask(&new_blocked, new_set);
4426 			break;
4427 		case SIG_SETMASK:
4428 			new_blocked.sig[0] = new_set;
4429 			break;
4430 		default:
4431 			return -EINVAL;
4432 		}
4433 
4434 		set_current_blocked(&new_blocked);
4435 	}
4436 
4437 	if (oset) {
4438 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4439 			return -EFAULT;
4440 	}
4441 
4442 	return 0;
4443 }
4444 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4445 
4446 #ifndef CONFIG_ODD_RT_SIGACTION
4447 /**
4448  *  sys_rt_sigaction - alter an action taken by a process
4449  *  @sig: signal to be sent
4450  *  @act: new sigaction
4451  *  @oact: used to save the previous sigaction
4452  *  @sigsetsize: size of sigset_t type
4453  */
4454 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4455 		const struct sigaction __user *, act,
4456 		struct sigaction __user *, oact,
4457 		size_t, sigsetsize)
4458 {
4459 	struct k_sigaction new_sa, old_sa;
4460 	int ret;
4461 
4462 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4463 	if (sigsetsize != sizeof(sigset_t))
4464 		return -EINVAL;
4465 
4466 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4467 		return -EFAULT;
4468 
4469 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4470 	if (ret)
4471 		return ret;
4472 
4473 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4474 		return -EFAULT;
4475 
4476 	return 0;
4477 }
4478 #ifdef CONFIG_COMPAT
4479 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4480 		const struct compat_sigaction __user *, act,
4481 		struct compat_sigaction __user *, oact,
4482 		compat_size_t, sigsetsize)
4483 {
4484 	struct k_sigaction new_ka, old_ka;
4485 #ifdef __ARCH_HAS_SA_RESTORER
4486 	compat_uptr_t restorer;
4487 #endif
4488 	int ret;
4489 
4490 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4491 	if (sigsetsize != sizeof(compat_sigset_t))
4492 		return -EINVAL;
4493 
4494 	if (act) {
4495 		compat_uptr_t handler;
4496 		ret = get_user(handler, &act->sa_handler);
4497 		new_ka.sa.sa_handler = compat_ptr(handler);
4498 #ifdef __ARCH_HAS_SA_RESTORER
4499 		ret |= get_user(restorer, &act->sa_restorer);
4500 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4501 #endif
4502 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4503 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4504 		if (ret)
4505 			return -EFAULT;
4506 	}
4507 
4508 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4509 	if (!ret && oact) {
4510 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4511 			       &oact->sa_handler);
4512 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4513 					 sizeof(oact->sa_mask));
4514 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4515 #ifdef __ARCH_HAS_SA_RESTORER
4516 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4517 				&oact->sa_restorer);
4518 #endif
4519 	}
4520 	return ret;
4521 }
4522 #endif
4523 #endif /* !CONFIG_ODD_RT_SIGACTION */
4524 
4525 #ifdef CONFIG_OLD_SIGACTION
4526 SYSCALL_DEFINE3(sigaction, int, sig,
4527 		const struct old_sigaction __user *, act,
4528 	        struct old_sigaction __user *, oact)
4529 {
4530 	struct k_sigaction new_ka, old_ka;
4531 	int ret;
4532 
4533 	if (act) {
4534 		old_sigset_t mask;
4535 		if (!access_ok(act, sizeof(*act)) ||
4536 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4537 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4538 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4539 		    __get_user(mask, &act->sa_mask))
4540 			return -EFAULT;
4541 #ifdef __ARCH_HAS_KA_RESTORER
4542 		new_ka.ka_restorer = NULL;
4543 #endif
4544 		siginitset(&new_ka.sa.sa_mask, mask);
4545 	}
4546 
4547 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4548 
4549 	if (!ret && oact) {
4550 		if (!access_ok(oact, sizeof(*oact)) ||
4551 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4552 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4553 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4554 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4555 			return -EFAULT;
4556 	}
4557 
4558 	return ret;
4559 }
4560 #endif
4561 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4562 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4563 		const struct compat_old_sigaction __user *, act,
4564 	        struct compat_old_sigaction __user *, oact)
4565 {
4566 	struct k_sigaction new_ka, old_ka;
4567 	int ret;
4568 	compat_old_sigset_t mask;
4569 	compat_uptr_t handler, restorer;
4570 
4571 	if (act) {
4572 		if (!access_ok(act, sizeof(*act)) ||
4573 		    __get_user(handler, &act->sa_handler) ||
4574 		    __get_user(restorer, &act->sa_restorer) ||
4575 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4576 		    __get_user(mask, &act->sa_mask))
4577 			return -EFAULT;
4578 
4579 #ifdef __ARCH_HAS_KA_RESTORER
4580 		new_ka.ka_restorer = NULL;
4581 #endif
4582 		new_ka.sa.sa_handler = compat_ptr(handler);
4583 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4584 		siginitset(&new_ka.sa.sa_mask, mask);
4585 	}
4586 
4587 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4588 
4589 	if (!ret && oact) {
4590 		if (!access_ok(oact, sizeof(*oact)) ||
4591 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4592 			       &oact->sa_handler) ||
4593 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4594 			       &oact->sa_restorer) ||
4595 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4596 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4597 			return -EFAULT;
4598 	}
4599 	return ret;
4600 }
4601 #endif
4602 
4603 #ifdef CONFIG_SGETMASK_SYSCALL
4604 
4605 /*
4606  * For backwards compatibility.  Functionality superseded by sigprocmask.
4607  */
4608 SYSCALL_DEFINE0(sgetmask)
4609 {
4610 	/* SMP safe */
4611 	return current->blocked.sig[0];
4612 }
4613 
4614 SYSCALL_DEFINE1(ssetmask, int, newmask)
4615 {
4616 	int old = current->blocked.sig[0];
4617 	sigset_t newset;
4618 
4619 	siginitset(&newset, newmask);
4620 	set_current_blocked(&newset);
4621 
4622 	return old;
4623 }
4624 #endif /* CONFIG_SGETMASK_SYSCALL */
4625 
4626 #ifdef __ARCH_WANT_SYS_SIGNAL
4627 /*
4628  * For backwards compatibility.  Functionality superseded by sigaction.
4629  */
4630 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4631 {
4632 	struct k_sigaction new_sa, old_sa;
4633 	int ret;
4634 
4635 	new_sa.sa.sa_handler = handler;
4636 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4637 	sigemptyset(&new_sa.sa.sa_mask);
4638 
4639 	ret = do_sigaction(sig, &new_sa, &old_sa);
4640 
4641 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4642 }
4643 #endif /* __ARCH_WANT_SYS_SIGNAL */
4644 
4645 #ifdef __ARCH_WANT_SYS_PAUSE
4646 
4647 SYSCALL_DEFINE0(pause)
4648 {
4649 	while (!signal_pending(current)) {
4650 		__set_current_state(TASK_INTERRUPTIBLE);
4651 		schedule();
4652 	}
4653 	return -ERESTARTNOHAND;
4654 }
4655 
4656 #endif
4657 
4658 static int sigsuspend(sigset_t *set)
4659 {
4660 	current->saved_sigmask = current->blocked;
4661 	set_current_blocked(set);
4662 
4663 	while (!signal_pending(current)) {
4664 		__set_current_state(TASK_INTERRUPTIBLE);
4665 		schedule();
4666 	}
4667 	set_restore_sigmask();
4668 	return -ERESTARTNOHAND;
4669 }
4670 
4671 /**
4672  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4673  *	@unewset value until a signal is received
4674  *  @unewset: new signal mask value
4675  *  @sigsetsize: size of sigset_t type
4676  */
4677 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4678 {
4679 	sigset_t newset;
4680 
4681 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4682 	if (sigsetsize != sizeof(sigset_t))
4683 		return -EINVAL;
4684 
4685 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4686 		return -EFAULT;
4687 	return sigsuspend(&newset);
4688 }
4689 
4690 #ifdef CONFIG_COMPAT
4691 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4692 {
4693 	sigset_t newset;
4694 
4695 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4696 	if (sigsetsize != sizeof(sigset_t))
4697 		return -EINVAL;
4698 
4699 	if (get_compat_sigset(&newset, unewset))
4700 		return -EFAULT;
4701 	return sigsuspend(&newset);
4702 }
4703 #endif
4704 
4705 #ifdef CONFIG_OLD_SIGSUSPEND
4706 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4707 {
4708 	sigset_t blocked;
4709 	siginitset(&blocked, mask);
4710 	return sigsuspend(&blocked);
4711 }
4712 #endif
4713 #ifdef CONFIG_OLD_SIGSUSPEND3
4714 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4715 {
4716 	sigset_t blocked;
4717 	siginitset(&blocked, mask);
4718 	return sigsuspend(&blocked);
4719 }
4720 #endif
4721 
4722 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4723 {
4724 	return NULL;
4725 }
4726 
4727 static inline void siginfo_buildtime_checks(void)
4728 {
4729 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4730 
4731 	/* Verify the offsets in the two siginfos match */
4732 #define CHECK_OFFSET(field) \
4733 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4734 
4735 	/* kill */
4736 	CHECK_OFFSET(si_pid);
4737 	CHECK_OFFSET(si_uid);
4738 
4739 	/* timer */
4740 	CHECK_OFFSET(si_tid);
4741 	CHECK_OFFSET(si_overrun);
4742 	CHECK_OFFSET(si_value);
4743 
4744 	/* rt */
4745 	CHECK_OFFSET(si_pid);
4746 	CHECK_OFFSET(si_uid);
4747 	CHECK_OFFSET(si_value);
4748 
4749 	/* sigchld */
4750 	CHECK_OFFSET(si_pid);
4751 	CHECK_OFFSET(si_uid);
4752 	CHECK_OFFSET(si_status);
4753 	CHECK_OFFSET(si_utime);
4754 	CHECK_OFFSET(si_stime);
4755 
4756 	/* sigfault */
4757 	CHECK_OFFSET(si_addr);
4758 	CHECK_OFFSET(si_trapno);
4759 	CHECK_OFFSET(si_addr_lsb);
4760 	CHECK_OFFSET(si_lower);
4761 	CHECK_OFFSET(si_upper);
4762 	CHECK_OFFSET(si_pkey);
4763 	CHECK_OFFSET(si_perf_data);
4764 	CHECK_OFFSET(si_perf_type);
4765 
4766 	/* sigpoll */
4767 	CHECK_OFFSET(si_band);
4768 	CHECK_OFFSET(si_fd);
4769 
4770 	/* sigsys */
4771 	CHECK_OFFSET(si_call_addr);
4772 	CHECK_OFFSET(si_syscall);
4773 	CHECK_OFFSET(si_arch);
4774 #undef CHECK_OFFSET
4775 
4776 	/* usb asyncio */
4777 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4778 		     offsetof(struct siginfo, si_addr));
4779 	if (sizeof(int) == sizeof(void __user *)) {
4780 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4781 			     sizeof(void __user *));
4782 	} else {
4783 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4784 			      sizeof_field(struct siginfo, si_uid)) !=
4785 			     sizeof(void __user *));
4786 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4787 			     offsetof(struct siginfo, si_uid));
4788 	}
4789 #ifdef CONFIG_COMPAT
4790 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4791 		     offsetof(struct compat_siginfo, si_addr));
4792 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4793 		     sizeof(compat_uptr_t));
4794 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4795 		     sizeof_field(struct siginfo, si_pid));
4796 #endif
4797 }
4798 
4799 void __init signals_init(void)
4800 {
4801 	siginfo_buildtime_checks();
4802 
4803 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4804 }
4805 
4806 #ifdef CONFIG_KGDB_KDB
4807 #include <linux/kdb.h>
4808 /*
4809  * kdb_send_sig - Allows kdb to send signals without exposing
4810  * signal internals.  This function checks if the required locks are
4811  * available before calling the main signal code, to avoid kdb
4812  * deadlocks.
4813  */
4814 void kdb_send_sig(struct task_struct *t, int sig)
4815 {
4816 	static struct task_struct *kdb_prev_t;
4817 	int new_t, ret;
4818 	if (!spin_trylock(&t->sighand->siglock)) {
4819 		kdb_printf("Can't do kill command now.\n"
4820 			   "The sigmask lock is held somewhere else in "
4821 			   "kernel, try again later\n");
4822 		return;
4823 	}
4824 	new_t = kdb_prev_t != t;
4825 	kdb_prev_t = t;
4826 	if (!task_is_running(t) && new_t) {
4827 		spin_unlock(&t->sighand->siglock);
4828 		kdb_printf("Process is not RUNNING, sending a signal from "
4829 			   "kdb risks deadlock\n"
4830 			   "on the run queue locks. "
4831 			   "The signal has _not_ been sent.\n"
4832 			   "Reissue the kill command if you want to risk "
4833 			   "the deadlock.\n");
4834 		return;
4835 	}
4836 	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4837 	spin_unlock(&t->sighand->siglock);
4838 	if (ret)
4839 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4840 			   sig, t->pid);
4841 	else
4842 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4843 }
4844 #endif	/* CONFIG_KGDB_KDB */
4845