xref: /linux/kernel/signal.c (revision b68fc09be48edbc47de1a0f3d42ef8adf6c0ac55)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/user.h>
18 #include <linux/sched/debug.h>
19 #include <linux/sched/task.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/sched/cputime.h>
22 #include <linux/fs.h>
23 #include <linux/tty.h>
24 #include <linux/binfmts.h>
25 #include <linux/coredump.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/ptrace.h>
29 #include <linux/signal.h>
30 #include <linux/signalfd.h>
31 #include <linux/ratelimit.h>
32 #include <linux/tracehook.h>
33 #include <linux/capability.h>
34 #include <linux/freezer.h>
35 #include <linux/pid_namespace.h>
36 #include <linux/nsproxy.h>
37 #include <linux/user_namespace.h>
38 #include <linux/uprobes.h>
39 #include <linux/compat.h>
40 #include <linux/cn_proc.h>
41 #include <linux/compiler.h>
42 #include <linux/posix-timers.h>
43 #include <linux/livepatch.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/signal.h>
47 
48 #include <asm/param.h>
49 #include <linux/uaccess.h>
50 #include <asm/unistd.h>
51 #include <asm/siginfo.h>
52 #include <asm/cacheflush.h>
53 #include "audit.h"	/* audit_signal_info() */
54 
55 /*
56  * SLAB caches for signal bits.
57  */
58 
59 static struct kmem_cache *sigqueue_cachep;
60 
61 int print_fatal_signals __read_mostly;
62 
63 static void __user *sig_handler(struct task_struct *t, int sig)
64 {
65 	return t->sighand->action[sig - 1].sa.sa_handler;
66 }
67 
68 static inline bool sig_handler_ignored(void __user *handler, int sig)
69 {
70 	/* Is it explicitly or implicitly ignored? */
71 	return handler == SIG_IGN ||
72 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
73 }
74 
75 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
76 {
77 	void __user *handler;
78 
79 	handler = sig_handler(t, sig);
80 
81 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
82 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
83 		return true;
84 
85 	return sig_handler_ignored(handler, sig);
86 }
87 
88 static bool sig_ignored(struct task_struct *t, int sig, bool force)
89 {
90 	/*
91 	 * Blocked signals are never ignored, since the
92 	 * signal handler may change by the time it is
93 	 * unblocked.
94 	 */
95 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
96 		return false;
97 
98 	/*
99 	 * Tracers may want to know about even ignored signal unless it
100 	 * is SIGKILL which can't be reported anyway but can be ignored
101 	 * by SIGNAL_UNKILLABLE task.
102 	 */
103 	if (t->ptrace && sig != SIGKILL)
104 		return false;
105 
106 	return sig_task_ignored(t, sig, force);
107 }
108 
109 /*
110  * Re-calculate pending state from the set of locally pending
111  * signals, globally pending signals, and blocked signals.
112  */
113 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
114 {
115 	unsigned long ready;
116 	long i;
117 
118 	switch (_NSIG_WORDS) {
119 	default:
120 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
121 			ready |= signal->sig[i] &~ blocked->sig[i];
122 		break;
123 
124 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
125 		ready |= signal->sig[2] &~ blocked->sig[2];
126 		ready |= signal->sig[1] &~ blocked->sig[1];
127 		ready |= signal->sig[0] &~ blocked->sig[0];
128 		break;
129 
130 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
131 		ready |= signal->sig[0] &~ blocked->sig[0];
132 		break;
133 
134 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
135 	}
136 	return ready !=	0;
137 }
138 
139 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
140 
141 static bool recalc_sigpending_tsk(struct task_struct *t)
142 {
143 	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
144 	    PENDING(&t->pending, &t->blocked) ||
145 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
146 		set_tsk_thread_flag(t, TIF_SIGPENDING);
147 		return true;
148 	}
149 
150 	/*
151 	 * We must never clear the flag in another thread, or in current
152 	 * when it's possible the current syscall is returning -ERESTART*.
153 	 * So we don't clear it here, and only callers who know they should do.
154 	 */
155 	return false;
156 }
157 
158 /*
159  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
160  * This is superfluous when called on current, the wakeup is a harmless no-op.
161  */
162 void recalc_sigpending_and_wake(struct task_struct *t)
163 {
164 	if (recalc_sigpending_tsk(t))
165 		signal_wake_up(t, 0);
166 }
167 
168 void recalc_sigpending(void)
169 {
170 	if (!recalc_sigpending_tsk(current) && !freezing(current) &&
171 	    !klp_patch_pending(current))
172 		clear_thread_flag(TIF_SIGPENDING);
173 
174 }
175 
176 void calculate_sigpending(void)
177 {
178 	/* Have any signals or users of TIF_SIGPENDING been delayed
179 	 * until after fork?
180 	 */
181 	spin_lock_irq(&current->sighand->siglock);
182 	set_tsk_thread_flag(current, TIF_SIGPENDING);
183 	recalc_sigpending();
184 	spin_unlock_irq(&current->sighand->siglock);
185 }
186 
187 /* Given the mask, find the first available signal that should be serviced. */
188 
189 #define SYNCHRONOUS_MASK \
190 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
191 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
192 
193 int next_signal(struct sigpending *pending, sigset_t *mask)
194 {
195 	unsigned long i, *s, *m, x;
196 	int sig = 0;
197 
198 	s = pending->signal.sig;
199 	m = mask->sig;
200 
201 	/*
202 	 * Handle the first word specially: it contains the
203 	 * synchronous signals that need to be dequeued first.
204 	 */
205 	x = *s &~ *m;
206 	if (x) {
207 		if (x & SYNCHRONOUS_MASK)
208 			x &= SYNCHRONOUS_MASK;
209 		sig = ffz(~x) + 1;
210 		return sig;
211 	}
212 
213 	switch (_NSIG_WORDS) {
214 	default:
215 		for (i = 1; i < _NSIG_WORDS; ++i) {
216 			x = *++s &~ *++m;
217 			if (!x)
218 				continue;
219 			sig = ffz(~x) + i*_NSIG_BPW + 1;
220 			break;
221 		}
222 		break;
223 
224 	case 2:
225 		x = s[1] &~ m[1];
226 		if (!x)
227 			break;
228 		sig = ffz(~x) + _NSIG_BPW + 1;
229 		break;
230 
231 	case 1:
232 		/* Nothing to do */
233 		break;
234 	}
235 
236 	return sig;
237 }
238 
239 static inline void print_dropped_signal(int sig)
240 {
241 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
242 
243 	if (!print_fatal_signals)
244 		return;
245 
246 	if (!__ratelimit(&ratelimit_state))
247 		return;
248 
249 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
250 				current->comm, current->pid, sig);
251 }
252 
253 /**
254  * task_set_jobctl_pending - set jobctl pending bits
255  * @task: target task
256  * @mask: pending bits to set
257  *
258  * Clear @mask from @task->jobctl.  @mask must be subset of
259  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
260  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
261  * cleared.  If @task is already being killed or exiting, this function
262  * becomes noop.
263  *
264  * CONTEXT:
265  * Must be called with @task->sighand->siglock held.
266  *
267  * RETURNS:
268  * %true if @mask is set, %false if made noop because @task was dying.
269  */
270 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
271 {
272 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
273 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
274 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
275 
276 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
277 		return false;
278 
279 	if (mask & JOBCTL_STOP_SIGMASK)
280 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
281 
282 	task->jobctl |= mask;
283 	return true;
284 }
285 
286 /**
287  * task_clear_jobctl_trapping - clear jobctl trapping bit
288  * @task: target task
289  *
290  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
291  * Clear it and wake up the ptracer.  Note that we don't need any further
292  * locking.  @task->siglock guarantees that @task->parent points to the
293  * ptracer.
294  *
295  * CONTEXT:
296  * Must be called with @task->sighand->siglock held.
297  */
298 void task_clear_jobctl_trapping(struct task_struct *task)
299 {
300 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
301 		task->jobctl &= ~JOBCTL_TRAPPING;
302 		smp_mb();	/* advised by wake_up_bit() */
303 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
304 	}
305 }
306 
307 /**
308  * task_clear_jobctl_pending - clear jobctl pending bits
309  * @task: target task
310  * @mask: pending bits to clear
311  *
312  * Clear @mask from @task->jobctl.  @mask must be subset of
313  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
314  * STOP bits are cleared together.
315  *
316  * If clearing of @mask leaves no stop or trap pending, this function calls
317  * task_clear_jobctl_trapping().
318  *
319  * CONTEXT:
320  * Must be called with @task->sighand->siglock held.
321  */
322 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
323 {
324 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
325 
326 	if (mask & JOBCTL_STOP_PENDING)
327 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
328 
329 	task->jobctl &= ~mask;
330 
331 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
332 		task_clear_jobctl_trapping(task);
333 }
334 
335 /**
336  * task_participate_group_stop - participate in a group stop
337  * @task: task participating in a group stop
338  *
339  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
340  * Group stop states are cleared and the group stop count is consumed if
341  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
342  * stop, the appropriate %SIGNAL_* flags are set.
343  *
344  * CONTEXT:
345  * Must be called with @task->sighand->siglock held.
346  *
347  * RETURNS:
348  * %true if group stop completion should be notified to the parent, %false
349  * otherwise.
350  */
351 static bool task_participate_group_stop(struct task_struct *task)
352 {
353 	struct signal_struct *sig = task->signal;
354 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
355 
356 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
357 
358 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
359 
360 	if (!consume)
361 		return false;
362 
363 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
364 		sig->group_stop_count--;
365 
366 	/*
367 	 * Tell the caller to notify completion iff we are entering into a
368 	 * fresh group stop.  Read comment in do_signal_stop() for details.
369 	 */
370 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
371 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
372 		return true;
373 	}
374 	return false;
375 }
376 
377 void task_join_group_stop(struct task_struct *task)
378 {
379 	/* Have the new thread join an on-going signal group stop */
380 	unsigned long jobctl = current->jobctl;
381 	if (jobctl & JOBCTL_STOP_PENDING) {
382 		struct signal_struct *sig = current->signal;
383 		unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK;
384 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
385 		if (task_set_jobctl_pending(task, signr | gstop)) {
386 			sig->group_stop_count++;
387 		}
388 	}
389 }
390 
391 /*
392  * allocate a new signal queue record
393  * - this may be called without locks if and only if t == current, otherwise an
394  *   appropriate lock must be held to stop the target task from exiting
395  */
396 static struct sigqueue *
397 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
398 {
399 	struct sigqueue *q = NULL;
400 	struct user_struct *user;
401 
402 	/*
403 	 * Protect access to @t credentials. This can go away when all
404 	 * callers hold rcu read lock.
405 	 */
406 	rcu_read_lock();
407 	user = get_uid(__task_cred(t)->user);
408 	atomic_inc(&user->sigpending);
409 	rcu_read_unlock();
410 
411 	if (override_rlimit ||
412 	    atomic_read(&user->sigpending) <=
413 			task_rlimit(t, RLIMIT_SIGPENDING)) {
414 		q = kmem_cache_alloc(sigqueue_cachep, flags);
415 	} else {
416 		print_dropped_signal(sig);
417 	}
418 
419 	if (unlikely(q == NULL)) {
420 		atomic_dec(&user->sigpending);
421 		free_uid(user);
422 	} else {
423 		INIT_LIST_HEAD(&q->list);
424 		q->flags = 0;
425 		q->user = user;
426 	}
427 
428 	return q;
429 }
430 
431 static void __sigqueue_free(struct sigqueue *q)
432 {
433 	if (q->flags & SIGQUEUE_PREALLOC)
434 		return;
435 	atomic_dec(&q->user->sigpending);
436 	free_uid(q->user);
437 	kmem_cache_free(sigqueue_cachep, q);
438 }
439 
440 void flush_sigqueue(struct sigpending *queue)
441 {
442 	struct sigqueue *q;
443 
444 	sigemptyset(&queue->signal);
445 	while (!list_empty(&queue->list)) {
446 		q = list_entry(queue->list.next, struct sigqueue , list);
447 		list_del_init(&q->list);
448 		__sigqueue_free(q);
449 	}
450 }
451 
452 /*
453  * Flush all pending signals for this kthread.
454  */
455 void flush_signals(struct task_struct *t)
456 {
457 	unsigned long flags;
458 
459 	spin_lock_irqsave(&t->sighand->siglock, flags);
460 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
461 	flush_sigqueue(&t->pending);
462 	flush_sigqueue(&t->signal->shared_pending);
463 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
464 }
465 
466 #ifdef CONFIG_POSIX_TIMERS
467 static void __flush_itimer_signals(struct sigpending *pending)
468 {
469 	sigset_t signal, retain;
470 	struct sigqueue *q, *n;
471 
472 	signal = pending->signal;
473 	sigemptyset(&retain);
474 
475 	list_for_each_entry_safe(q, n, &pending->list, list) {
476 		int sig = q->info.si_signo;
477 
478 		if (likely(q->info.si_code != SI_TIMER)) {
479 			sigaddset(&retain, sig);
480 		} else {
481 			sigdelset(&signal, sig);
482 			list_del_init(&q->list);
483 			__sigqueue_free(q);
484 		}
485 	}
486 
487 	sigorsets(&pending->signal, &signal, &retain);
488 }
489 
490 void flush_itimer_signals(void)
491 {
492 	struct task_struct *tsk = current;
493 	unsigned long flags;
494 
495 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
496 	__flush_itimer_signals(&tsk->pending);
497 	__flush_itimer_signals(&tsk->signal->shared_pending);
498 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
499 }
500 #endif
501 
502 void ignore_signals(struct task_struct *t)
503 {
504 	int i;
505 
506 	for (i = 0; i < _NSIG; ++i)
507 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
508 
509 	flush_signals(t);
510 }
511 
512 /*
513  * Flush all handlers for a task.
514  */
515 
516 void
517 flush_signal_handlers(struct task_struct *t, int force_default)
518 {
519 	int i;
520 	struct k_sigaction *ka = &t->sighand->action[0];
521 	for (i = _NSIG ; i != 0 ; i--) {
522 		if (force_default || ka->sa.sa_handler != SIG_IGN)
523 			ka->sa.sa_handler = SIG_DFL;
524 		ka->sa.sa_flags = 0;
525 #ifdef __ARCH_HAS_SA_RESTORER
526 		ka->sa.sa_restorer = NULL;
527 #endif
528 		sigemptyset(&ka->sa.sa_mask);
529 		ka++;
530 	}
531 }
532 
533 bool unhandled_signal(struct task_struct *tsk, int sig)
534 {
535 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
536 	if (is_global_init(tsk))
537 		return true;
538 
539 	if (handler != SIG_IGN && handler != SIG_DFL)
540 		return false;
541 
542 	/* if ptraced, let the tracer determine */
543 	return !tsk->ptrace;
544 }
545 
546 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info,
547 			   bool *resched_timer)
548 {
549 	struct sigqueue *q, *first = NULL;
550 
551 	/*
552 	 * Collect the siginfo appropriate to this signal.  Check if
553 	 * there is another siginfo for the same signal.
554 	*/
555 	list_for_each_entry(q, &list->list, list) {
556 		if (q->info.si_signo == sig) {
557 			if (first)
558 				goto still_pending;
559 			first = q;
560 		}
561 	}
562 
563 	sigdelset(&list->signal, sig);
564 
565 	if (first) {
566 still_pending:
567 		list_del_init(&first->list);
568 		copy_siginfo(info, &first->info);
569 
570 		*resched_timer =
571 			(first->flags & SIGQUEUE_PREALLOC) &&
572 			(info->si_code == SI_TIMER) &&
573 			(info->si_sys_private);
574 
575 		__sigqueue_free(first);
576 	} else {
577 		/*
578 		 * Ok, it wasn't in the queue.  This must be
579 		 * a fast-pathed signal or we must have been
580 		 * out of queue space.  So zero out the info.
581 		 */
582 		clear_siginfo(info);
583 		info->si_signo = sig;
584 		info->si_errno = 0;
585 		info->si_code = SI_USER;
586 		info->si_pid = 0;
587 		info->si_uid = 0;
588 	}
589 }
590 
591 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
592 			siginfo_t *info, bool *resched_timer)
593 {
594 	int sig = next_signal(pending, mask);
595 
596 	if (sig)
597 		collect_signal(sig, pending, info, resched_timer);
598 	return sig;
599 }
600 
601 /*
602  * Dequeue a signal and return the element to the caller, which is
603  * expected to free it.
604  *
605  * All callers have to hold the siglock.
606  */
607 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
608 {
609 	bool resched_timer = false;
610 	int signr;
611 
612 	/* We only dequeue private signals from ourselves, we don't let
613 	 * signalfd steal them
614 	 */
615 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
616 	if (!signr) {
617 		signr = __dequeue_signal(&tsk->signal->shared_pending,
618 					 mask, info, &resched_timer);
619 #ifdef CONFIG_POSIX_TIMERS
620 		/*
621 		 * itimer signal ?
622 		 *
623 		 * itimers are process shared and we restart periodic
624 		 * itimers in the signal delivery path to prevent DoS
625 		 * attacks in the high resolution timer case. This is
626 		 * compliant with the old way of self-restarting
627 		 * itimers, as the SIGALRM is a legacy signal and only
628 		 * queued once. Changing the restart behaviour to
629 		 * restart the timer in the signal dequeue path is
630 		 * reducing the timer noise on heavy loaded !highres
631 		 * systems too.
632 		 */
633 		if (unlikely(signr == SIGALRM)) {
634 			struct hrtimer *tmr = &tsk->signal->real_timer;
635 
636 			if (!hrtimer_is_queued(tmr) &&
637 			    tsk->signal->it_real_incr != 0) {
638 				hrtimer_forward(tmr, tmr->base->get_time(),
639 						tsk->signal->it_real_incr);
640 				hrtimer_restart(tmr);
641 			}
642 		}
643 #endif
644 	}
645 
646 	recalc_sigpending();
647 	if (!signr)
648 		return 0;
649 
650 	if (unlikely(sig_kernel_stop(signr))) {
651 		/*
652 		 * Set a marker that we have dequeued a stop signal.  Our
653 		 * caller might release the siglock and then the pending
654 		 * stop signal it is about to process is no longer in the
655 		 * pending bitmasks, but must still be cleared by a SIGCONT
656 		 * (and overruled by a SIGKILL).  So those cases clear this
657 		 * shared flag after we've set it.  Note that this flag may
658 		 * remain set after the signal we return is ignored or
659 		 * handled.  That doesn't matter because its only purpose
660 		 * is to alert stop-signal processing code when another
661 		 * processor has come along and cleared the flag.
662 		 */
663 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
664 	}
665 #ifdef CONFIG_POSIX_TIMERS
666 	if (resched_timer) {
667 		/*
668 		 * Release the siglock to ensure proper locking order
669 		 * of timer locks outside of siglocks.  Note, we leave
670 		 * irqs disabled here, since the posix-timers code is
671 		 * about to disable them again anyway.
672 		 */
673 		spin_unlock(&tsk->sighand->siglock);
674 		posixtimer_rearm(info);
675 		spin_lock(&tsk->sighand->siglock);
676 
677 		/* Don't expose the si_sys_private value to userspace */
678 		info->si_sys_private = 0;
679 	}
680 #endif
681 	return signr;
682 }
683 
684 /*
685  * Tell a process that it has a new active signal..
686  *
687  * NOTE! we rely on the previous spin_lock to
688  * lock interrupts for us! We can only be called with
689  * "siglock" held, and the local interrupt must
690  * have been disabled when that got acquired!
691  *
692  * No need to set need_resched since signal event passing
693  * goes through ->blocked
694  */
695 void signal_wake_up_state(struct task_struct *t, unsigned int state)
696 {
697 	set_tsk_thread_flag(t, TIF_SIGPENDING);
698 	/*
699 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
700 	 * case. We don't check t->state here because there is a race with it
701 	 * executing another processor and just now entering stopped state.
702 	 * By using wake_up_state, we ensure the process will wake up and
703 	 * handle its death signal.
704 	 */
705 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
706 		kick_process(t);
707 }
708 
709 /*
710  * Remove signals in mask from the pending set and queue.
711  * Returns 1 if any signals were found.
712  *
713  * All callers must be holding the siglock.
714  */
715 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
716 {
717 	struct sigqueue *q, *n;
718 	sigset_t m;
719 
720 	sigandsets(&m, mask, &s->signal);
721 	if (sigisemptyset(&m))
722 		return;
723 
724 	sigandnsets(&s->signal, &s->signal, mask);
725 	list_for_each_entry_safe(q, n, &s->list, list) {
726 		if (sigismember(mask, q->info.si_signo)) {
727 			list_del_init(&q->list);
728 			__sigqueue_free(q);
729 		}
730 	}
731 }
732 
733 static inline int is_si_special(const struct siginfo *info)
734 {
735 	return info <= SEND_SIG_FORCED;
736 }
737 
738 static inline bool si_fromuser(const struct siginfo *info)
739 {
740 	return info == SEND_SIG_NOINFO ||
741 		(!is_si_special(info) && SI_FROMUSER(info));
742 }
743 
744 /*
745  * called with RCU read lock from check_kill_permission()
746  */
747 static bool kill_ok_by_cred(struct task_struct *t)
748 {
749 	const struct cred *cred = current_cred();
750 	const struct cred *tcred = __task_cred(t);
751 
752 	return uid_eq(cred->euid, tcred->suid) ||
753 	       uid_eq(cred->euid, tcred->uid) ||
754 	       uid_eq(cred->uid, tcred->suid) ||
755 	       uid_eq(cred->uid, tcred->uid) ||
756 	       ns_capable(tcred->user_ns, CAP_KILL);
757 }
758 
759 /*
760  * Bad permissions for sending the signal
761  * - the caller must hold the RCU read lock
762  */
763 static int check_kill_permission(int sig, struct siginfo *info,
764 				 struct task_struct *t)
765 {
766 	struct pid *sid;
767 	int error;
768 
769 	if (!valid_signal(sig))
770 		return -EINVAL;
771 
772 	if (!si_fromuser(info))
773 		return 0;
774 
775 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
776 	if (error)
777 		return error;
778 
779 	if (!same_thread_group(current, t) &&
780 	    !kill_ok_by_cred(t)) {
781 		switch (sig) {
782 		case SIGCONT:
783 			sid = task_session(t);
784 			/*
785 			 * We don't return the error if sid == NULL. The
786 			 * task was unhashed, the caller must notice this.
787 			 */
788 			if (!sid || sid == task_session(current))
789 				break;
790 		default:
791 			return -EPERM;
792 		}
793 	}
794 
795 	return security_task_kill(t, info, sig, NULL);
796 }
797 
798 /**
799  * ptrace_trap_notify - schedule trap to notify ptracer
800  * @t: tracee wanting to notify tracer
801  *
802  * This function schedules sticky ptrace trap which is cleared on the next
803  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
804  * ptracer.
805  *
806  * If @t is running, STOP trap will be taken.  If trapped for STOP and
807  * ptracer is listening for events, tracee is woken up so that it can
808  * re-trap for the new event.  If trapped otherwise, STOP trap will be
809  * eventually taken without returning to userland after the existing traps
810  * are finished by PTRACE_CONT.
811  *
812  * CONTEXT:
813  * Must be called with @task->sighand->siglock held.
814  */
815 static void ptrace_trap_notify(struct task_struct *t)
816 {
817 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
818 	assert_spin_locked(&t->sighand->siglock);
819 
820 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
821 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
822 }
823 
824 /*
825  * Handle magic process-wide effects of stop/continue signals. Unlike
826  * the signal actions, these happen immediately at signal-generation
827  * time regardless of blocking, ignoring, or handling.  This does the
828  * actual continuing for SIGCONT, but not the actual stopping for stop
829  * signals. The process stop is done as a signal action for SIG_DFL.
830  *
831  * Returns true if the signal should be actually delivered, otherwise
832  * it should be dropped.
833  */
834 static bool prepare_signal(int sig, struct task_struct *p, bool force)
835 {
836 	struct signal_struct *signal = p->signal;
837 	struct task_struct *t;
838 	sigset_t flush;
839 
840 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
841 		if (!(signal->flags & SIGNAL_GROUP_EXIT))
842 			return sig == SIGKILL;
843 		/*
844 		 * The process is in the middle of dying, nothing to do.
845 		 */
846 	} else if (sig_kernel_stop(sig)) {
847 		/*
848 		 * This is a stop signal.  Remove SIGCONT from all queues.
849 		 */
850 		siginitset(&flush, sigmask(SIGCONT));
851 		flush_sigqueue_mask(&flush, &signal->shared_pending);
852 		for_each_thread(p, t)
853 			flush_sigqueue_mask(&flush, &t->pending);
854 	} else if (sig == SIGCONT) {
855 		unsigned int why;
856 		/*
857 		 * Remove all stop signals from all queues, wake all threads.
858 		 */
859 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
860 		flush_sigqueue_mask(&flush, &signal->shared_pending);
861 		for_each_thread(p, t) {
862 			flush_sigqueue_mask(&flush, &t->pending);
863 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
864 			if (likely(!(t->ptrace & PT_SEIZED)))
865 				wake_up_state(t, __TASK_STOPPED);
866 			else
867 				ptrace_trap_notify(t);
868 		}
869 
870 		/*
871 		 * Notify the parent with CLD_CONTINUED if we were stopped.
872 		 *
873 		 * If we were in the middle of a group stop, we pretend it
874 		 * was already finished, and then continued. Since SIGCHLD
875 		 * doesn't queue we report only CLD_STOPPED, as if the next
876 		 * CLD_CONTINUED was dropped.
877 		 */
878 		why = 0;
879 		if (signal->flags & SIGNAL_STOP_STOPPED)
880 			why |= SIGNAL_CLD_CONTINUED;
881 		else if (signal->group_stop_count)
882 			why |= SIGNAL_CLD_STOPPED;
883 
884 		if (why) {
885 			/*
886 			 * The first thread which returns from do_signal_stop()
887 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
888 			 * notify its parent. See get_signal_to_deliver().
889 			 */
890 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
891 			signal->group_stop_count = 0;
892 			signal->group_exit_code = 0;
893 		}
894 	}
895 
896 	return !sig_ignored(p, sig, force);
897 }
898 
899 /*
900  * Test if P wants to take SIG.  After we've checked all threads with this,
901  * it's equivalent to finding no threads not blocking SIG.  Any threads not
902  * blocking SIG were ruled out because they are not running and already
903  * have pending signals.  Such threads will dequeue from the shared queue
904  * as soon as they're available, so putting the signal on the shared queue
905  * will be equivalent to sending it to one such thread.
906  */
907 static inline bool wants_signal(int sig, struct task_struct *p)
908 {
909 	if (sigismember(&p->blocked, sig))
910 		return false;
911 
912 	if (p->flags & PF_EXITING)
913 		return false;
914 
915 	if (sig == SIGKILL)
916 		return true;
917 
918 	if (task_is_stopped_or_traced(p))
919 		return false;
920 
921 	return task_curr(p) || !signal_pending(p);
922 }
923 
924 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
925 {
926 	struct signal_struct *signal = p->signal;
927 	struct task_struct *t;
928 
929 	/*
930 	 * Now find a thread we can wake up to take the signal off the queue.
931 	 *
932 	 * If the main thread wants the signal, it gets first crack.
933 	 * Probably the least surprising to the average bear.
934 	 */
935 	if (wants_signal(sig, p))
936 		t = p;
937 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
938 		/*
939 		 * There is just one thread and it does not need to be woken.
940 		 * It will dequeue unblocked signals before it runs again.
941 		 */
942 		return;
943 	else {
944 		/*
945 		 * Otherwise try to find a suitable thread.
946 		 */
947 		t = signal->curr_target;
948 		while (!wants_signal(sig, t)) {
949 			t = next_thread(t);
950 			if (t == signal->curr_target)
951 				/*
952 				 * No thread needs to be woken.
953 				 * Any eligible threads will see
954 				 * the signal in the queue soon.
955 				 */
956 				return;
957 		}
958 		signal->curr_target = t;
959 	}
960 
961 	/*
962 	 * Found a killable thread.  If the signal will be fatal,
963 	 * then start taking the whole group down immediately.
964 	 */
965 	if (sig_fatal(p, sig) &&
966 	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
967 	    !sigismember(&t->real_blocked, sig) &&
968 	    (sig == SIGKILL || !p->ptrace)) {
969 		/*
970 		 * This signal will be fatal to the whole group.
971 		 */
972 		if (!sig_kernel_coredump(sig)) {
973 			/*
974 			 * Start a group exit and wake everybody up.
975 			 * This way we don't have other threads
976 			 * running and doing things after a slower
977 			 * thread has the fatal signal pending.
978 			 */
979 			signal->flags = SIGNAL_GROUP_EXIT;
980 			signal->group_exit_code = sig;
981 			signal->group_stop_count = 0;
982 			t = p;
983 			do {
984 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
985 				sigaddset(&t->pending.signal, SIGKILL);
986 				signal_wake_up(t, 1);
987 			} while_each_thread(p, t);
988 			return;
989 		}
990 	}
991 
992 	/*
993 	 * The signal is already in the shared-pending queue.
994 	 * Tell the chosen thread to wake up and dequeue it.
995 	 */
996 	signal_wake_up(t, sig == SIGKILL);
997 	return;
998 }
999 
1000 static inline bool legacy_queue(struct sigpending *signals, int sig)
1001 {
1002 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1003 }
1004 
1005 #ifdef CONFIG_USER_NS
1006 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1007 {
1008 	if (current_user_ns() == task_cred_xxx(t, user_ns))
1009 		return;
1010 
1011 	if (SI_FROMKERNEL(info))
1012 		return;
1013 
1014 	rcu_read_lock();
1015 	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1016 					make_kuid(current_user_ns(), info->si_uid));
1017 	rcu_read_unlock();
1018 }
1019 #else
1020 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1021 {
1022 	return;
1023 }
1024 #endif
1025 
1026 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1027 			enum pid_type type, int from_ancestor_ns)
1028 {
1029 	struct sigpending *pending;
1030 	struct sigqueue *q;
1031 	int override_rlimit;
1032 	int ret = 0, result;
1033 
1034 	assert_spin_locked(&t->sighand->siglock);
1035 
1036 	result = TRACE_SIGNAL_IGNORED;
1037 	if (!prepare_signal(sig, t,
1038 			from_ancestor_ns || (info == SEND_SIG_FORCED)))
1039 		goto ret;
1040 
1041 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1042 	/*
1043 	 * Short-circuit ignored signals and support queuing
1044 	 * exactly one non-rt signal, so that we can get more
1045 	 * detailed information about the cause of the signal.
1046 	 */
1047 	result = TRACE_SIGNAL_ALREADY_PENDING;
1048 	if (legacy_queue(pending, sig))
1049 		goto ret;
1050 
1051 	result = TRACE_SIGNAL_DELIVERED;
1052 	/*
1053 	 * fast-pathed signals for kernel-internal things like SIGSTOP
1054 	 * or SIGKILL.
1055 	 */
1056 	if (info == SEND_SIG_FORCED)
1057 		goto out_set;
1058 
1059 	/*
1060 	 * Real-time signals must be queued if sent by sigqueue, or
1061 	 * some other real-time mechanism.  It is implementation
1062 	 * defined whether kill() does so.  We attempt to do so, on
1063 	 * the principle of least surprise, but since kill is not
1064 	 * allowed to fail with EAGAIN when low on memory we just
1065 	 * make sure at least one signal gets delivered and don't
1066 	 * pass on the info struct.
1067 	 */
1068 	if (sig < SIGRTMIN)
1069 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1070 	else
1071 		override_rlimit = 0;
1072 
1073 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1074 	if (q) {
1075 		list_add_tail(&q->list, &pending->list);
1076 		switch ((unsigned long) info) {
1077 		case (unsigned long) SEND_SIG_NOINFO:
1078 			clear_siginfo(&q->info);
1079 			q->info.si_signo = sig;
1080 			q->info.si_errno = 0;
1081 			q->info.si_code = SI_USER;
1082 			q->info.si_pid = task_tgid_nr_ns(current,
1083 							task_active_pid_ns(t));
1084 			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1085 			break;
1086 		case (unsigned long) SEND_SIG_PRIV:
1087 			clear_siginfo(&q->info);
1088 			q->info.si_signo = sig;
1089 			q->info.si_errno = 0;
1090 			q->info.si_code = SI_KERNEL;
1091 			q->info.si_pid = 0;
1092 			q->info.si_uid = 0;
1093 			break;
1094 		default:
1095 			copy_siginfo(&q->info, info);
1096 			if (from_ancestor_ns)
1097 				q->info.si_pid = 0;
1098 			break;
1099 		}
1100 
1101 		userns_fixup_signal_uid(&q->info, t);
1102 
1103 	} else if (!is_si_special(info)) {
1104 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1105 			/*
1106 			 * Queue overflow, abort.  We may abort if the
1107 			 * signal was rt and sent by user using something
1108 			 * other than kill().
1109 			 */
1110 			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1111 			ret = -EAGAIN;
1112 			goto ret;
1113 		} else {
1114 			/*
1115 			 * This is a silent loss of information.  We still
1116 			 * send the signal, but the *info bits are lost.
1117 			 */
1118 			result = TRACE_SIGNAL_LOSE_INFO;
1119 		}
1120 	}
1121 
1122 out_set:
1123 	signalfd_notify(t, sig);
1124 	sigaddset(&pending->signal, sig);
1125 
1126 	/* Let multiprocess signals appear after on-going forks */
1127 	if (type > PIDTYPE_TGID) {
1128 		struct multiprocess_signals *delayed;
1129 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1130 			sigset_t *signal = &delayed->signal;
1131 			/* Can't queue both a stop and a continue signal */
1132 			if (sig == SIGCONT)
1133 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1134 			else if (sig_kernel_stop(sig))
1135 				sigdelset(signal, SIGCONT);
1136 			sigaddset(signal, sig);
1137 		}
1138 	}
1139 
1140 	complete_signal(sig, t, type);
1141 ret:
1142 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1143 	return ret;
1144 }
1145 
1146 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1147 			enum pid_type type)
1148 {
1149 	int from_ancestor_ns = 0;
1150 
1151 #ifdef CONFIG_PID_NS
1152 	from_ancestor_ns = si_fromuser(info) &&
1153 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1154 #endif
1155 
1156 	return __send_signal(sig, info, t, type, from_ancestor_ns);
1157 }
1158 
1159 static void print_fatal_signal(int signr)
1160 {
1161 	struct pt_regs *regs = signal_pt_regs();
1162 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1163 
1164 #if defined(__i386__) && !defined(__arch_um__)
1165 	pr_info("code at %08lx: ", regs->ip);
1166 	{
1167 		int i;
1168 		for (i = 0; i < 16; i++) {
1169 			unsigned char insn;
1170 
1171 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1172 				break;
1173 			pr_cont("%02x ", insn);
1174 		}
1175 	}
1176 	pr_cont("\n");
1177 #endif
1178 	preempt_disable();
1179 	show_regs(regs);
1180 	preempt_enable();
1181 }
1182 
1183 static int __init setup_print_fatal_signals(char *str)
1184 {
1185 	get_option (&str, &print_fatal_signals);
1186 
1187 	return 1;
1188 }
1189 
1190 __setup("print-fatal-signals=", setup_print_fatal_signals);
1191 
1192 int
1193 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1194 {
1195 	return send_signal(sig, info, p, PIDTYPE_TGID);
1196 }
1197 
1198 static int
1199 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1200 {
1201 	return send_signal(sig, info, t, PIDTYPE_PID);
1202 }
1203 
1204 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1205 			enum pid_type type)
1206 {
1207 	unsigned long flags;
1208 	int ret = -ESRCH;
1209 
1210 	if (lock_task_sighand(p, &flags)) {
1211 		ret = send_signal(sig, info, p, type);
1212 		unlock_task_sighand(p, &flags);
1213 	}
1214 
1215 	return ret;
1216 }
1217 
1218 /*
1219  * Force a signal that the process can't ignore: if necessary
1220  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1221  *
1222  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1223  * since we do not want to have a signal handler that was blocked
1224  * be invoked when user space had explicitly blocked it.
1225  *
1226  * We don't want to have recursive SIGSEGV's etc, for example,
1227  * that is why we also clear SIGNAL_UNKILLABLE.
1228  */
1229 int
1230 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1231 {
1232 	unsigned long int flags;
1233 	int ret, blocked, ignored;
1234 	struct k_sigaction *action;
1235 
1236 	spin_lock_irqsave(&t->sighand->siglock, flags);
1237 	action = &t->sighand->action[sig-1];
1238 	ignored = action->sa.sa_handler == SIG_IGN;
1239 	blocked = sigismember(&t->blocked, sig);
1240 	if (blocked || ignored) {
1241 		action->sa.sa_handler = SIG_DFL;
1242 		if (blocked) {
1243 			sigdelset(&t->blocked, sig);
1244 			recalc_sigpending_and_wake(t);
1245 		}
1246 	}
1247 	/*
1248 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1249 	 * debugging to leave init killable.
1250 	 */
1251 	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1252 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1253 	ret = specific_send_sig_info(sig, info, t);
1254 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1255 
1256 	return ret;
1257 }
1258 
1259 /*
1260  * Nuke all other threads in the group.
1261  */
1262 int zap_other_threads(struct task_struct *p)
1263 {
1264 	struct task_struct *t = p;
1265 	int count = 0;
1266 
1267 	p->signal->group_stop_count = 0;
1268 
1269 	while_each_thread(p, t) {
1270 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1271 		count++;
1272 
1273 		/* Don't bother with already dead threads */
1274 		if (t->exit_state)
1275 			continue;
1276 		sigaddset(&t->pending.signal, SIGKILL);
1277 		signal_wake_up(t, 1);
1278 	}
1279 
1280 	return count;
1281 }
1282 
1283 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1284 					   unsigned long *flags)
1285 {
1286 	struct sighand_struct *sighand;
1287 
1288 	rcu_read_lock();
1289 	for (;;) {
1290 		sighand = rcu_dereference(tsk->sighand);
1291 		if (unlikely(sighand == NULL))
1292 			break;
1293 
1294 		/*
1295 		 * This sighand can be already freed and even reused, but
1296 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1297 		 * initializes ->siglock: this slab can't go away, it has
1298 		 * the same object type, ->siglock can't be reinitialized.
1299 		 *
1300 		 * We need to ensure that tsk->sighand is still the same
1301 		 * after we take the lock, we can race with de_thread() or
1302 		 * __exit_signal(). In the latter case the next iteration
1303 		 * must see ->sighand == NULL.
1304 		 */
1305 		spin_lock_irqsave(&sighand->siglock, *flags);
1306 		if (likely(sighand == tsk->sighand))
1307 			break;
1308 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1309 	}
1310 	rcu_read_unlock();
1311 
1312 	return sighand;
1313 }
1314 
1315 /*
1316  * send signal info to all the members of a group
1317  */
1318 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1319 			enum pid_type type)
1320 {
1321 	int ret;
1322 
1323 	rcu_read_lock();
1324 	ret = check_kill_permission(sig, info, p);
1325 	rcu_read_unlock();
1326 
1327 	if (!ret && sig)
1328 		ret = do_send_sig_info(sig, info, p, type);
1329 
1330 	return ret;
1331 }
1332 
1333 /*
1334  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1335  * control characters do (^C, ^Z etc)
1336  * - the caller must hold at least a readlock on tasklist_lock
1337  */
1338 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1339 {
1340 	struct task_struct *p = NULL;
1341 	int retval, success;
1342 
1343 	success = 0;
1344 	retval = -ESRCH;
1345 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1346 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1347 		success |= !err;
1348 		retval = err;
1349 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1350 	return success ? 0 : retval;
1351 }
1352 
1353 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1354 {
1355 	int error = -ESRCH;
1356 	struct task_struct *p;
1357 
1358 	for (;;) {
1359 		rcu_read_lock();
1360 		p = pid_task(pid, PIDTYPE_PID);
1361 		if (p)
1362 			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1363 		rcu_read_unlock();
1364 		if (likely(!p || error != -ESRCH))
1365 			return error;
1366 
1367 		/*
1368 		 * The task was unhashed in between, try again.  If it
1369 		 * is dead, pid_task() will return NULL, if we race with
1370 		 * de_thread() it will find the new leader.
1371 		 */
1372 	}
1373 }
1374 
1375 static int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1376 {
1377 	int error;
1378 	rcu_read_lock();
1379 	error = kill_pid_info(sig, info, find_vpid(pid));
1380 	rcu_read_unlock();
1381 	return error;
1382 }
1383 
1384 static inline bool kill_as_cred_perm(const struct cred *cred,
1385 				     struct task_struct *target)
1386 {
1387 	const struct cred *pcred = __task_cred(target);
1388 
1389 	return uid_eq(cred->euid, pcred->suid) ||
1390 	       uid_eq(cred->euid, pcred->uid) ||
1391 	       uid_eq(cred->uid, pcred->suid) ||
1392 	       uid_eq(cred->uid, pcred->uid);
1393 }
1394 
1395 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1396 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1397 			 const struct cred *cred)
1398 {
1399 	int ret = -EINVAL;
1400 	struct task_struct *p;
1401 	unsigned long flags;
1402 
1403 	if (!valid_signal(sig))
1404 		return ret;
1405 
1406 	rcu_read_lock();
1407 	p = pid_task(pid, PIDTYPE_PID);
1408 	if (!p) {
1409 		ret = -ESRCH;
1410 		goto out_unlock;
1411 	}
1412 	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1413 		ret = -EPERM;
1414 		goto out_unlock;
1415 	}
1416 	ret = security_task_kill(p, info, sig, cred);
1417 	if (ret)
1418 		goto out_unlock;
1419 
1420 	if (sig) {
1421 		if (lock_task_sighand(p, &flags)) {
1422 			ret = __send_signal(sig, info, p, PIDTYPE_TGID, 0);
1423 			unlock_task_sighand(p, &flags);
1424 		} else
1425 			ret = -ESRCH;
1426 	}
1427 out_unlock:
1428 	rcu_read_unlock();
1429 	return ret;
1430 }
1431 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1432 
1433 /*
1434  * kill_something_info() interprets pid in interesting ways just like kill(2).
1435  *
1436  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1437  * is probably wrong.  Should make it like BSD or SYSV.
1438  */
1439 
1440 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1441 {
1442 	int ret;
1443 
1444 	if (pid > 0) {
1445 		rcu_read_lock();
1446 		ret = kill_pid_info(sig, info, find_vpid(pid));
1447 		rcu_read_unlock();
1448 		return ret;
1449 	}
1450 
1451 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1452 	if (pid == INT_MIN)
1453 		return -ESRCH;
1454 
1455 	read_lock(&tasklist_lock);
1456 	if (pid != -1) {
1457 		ret = __kill_pgrp_info(sig, info,
1458 				pid ? find_vpid(-pid) : task_pgrp(current));
1459 	} else {
1460 		int retval = 0, count = 0;
1461 		struct task_struct * p;
1462 
1463 		for_each_process(p) {
1464 			if (task_pid_vnr(p) > 1 &&
1465 					!same_thread_group(p, current)) {
1466 				int err = group_send_sig_info(sig, info, p,
1467 							      PIDTYPE_MAX);
1468 				++count;
1469 				if (err != -EPERM)
1470 					retval = err;
1471 			}
1472 		}
1473 		ret = count ? retval : -ESRCH;
1474 	}
1475 	read_unlock(&tasklist_lock);
1476 
1477 	return ret;
1478 }
1479 
1480 /*
1481  * These are for backward compatibility with the rest of the kernel source.
1482  */
1483 
1484 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1485 {
1486 	/*
1487 	 * Make sure legacy kernel users don't send in bad values
1488 	 * (normal paths check this in check_kill_permission).
1489 	 */
1490 	if (!valid_signal(sig))
1491 		return -EINVAL;
1492 
1493 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1494 }
1495 
1496 #define __si_special(priv) \
1497 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1498 
1499 int
1500 send_sig(int sig, struct task_struct *p, int priv)
1501 {
1502 	return send_sig_info(sig, __si_special(priv), p);
1503 }
1504 
1505 void force_sig(int sig, struct task_struct *p)
1506 {
1507 	force_sig_info(sig, SEND_SIG_PRIV, p);
1508 }
1509 
1510 /*
1511  * When things go south during signal handling, we
1512  * will force a SIGSEGV. And if the signal that caused
1513  * the problem was already a SIGSEGV, we'll want to
1514  * make sure we don't even try to deliver the signal..
1515  */
1516 void force_sigsegv(int sig, struct task_struct *p)
1517 {
1518 	if (sig == SIGSEGV) {
1519 		unsigned long flags;
1520 		spin_lock_irqsave(&p->sighand->siglock, flags);
1521 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1522 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1523 	}
1524 	force_sig(SIGSEGV, p);
1525 }
1526 
1527 int force_sig_fault(int sig, int code, void __user *addr
1528 	___ARCH_SI_TRAPNO(int trapno)
1529 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1530 	, struct task_struct *t)
1531 {
1532 	struct siginfo info;
1533 
1534 	clear_siginfo(&info);
1535 	info.si_signo = sig;
1536 	info.si_errno = 0;
1537 	info.si_code  = code;
1538 	info.si_addr  = addr;
1539 #ifdef __ARCH_SI_TRAPNO
1540 	info.si_trapno = trapno;
1541 #endif
1542 #ifdef __ia64__
1543 	info.si_imm = imm;
1544 	info.si_flags = flags;
1545 	info.si_isr = isr;
1546 #endif
1547 	return force_sig_info(info.si_signo, &info, t);
1548 }
1549 
1550 int send_sig_fault(int sig, int code, void __user *addr
1551 	___ARCH_SI_TRAPNO(int trapno)
1552 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1553 	, struct task_struct *t)
1554 {
1555 	struct siginfo info;
1556 
1557 	clear_siginfo(&info);
1558 	info.si_signo = sig;
1559 	info.si_errno = 0;
1560 	info.si_code  = code;
1561 	info.si_addr  = addr;
1562 #ifdef __ARCH_SI_TRAPNO
1563 	info.si_trapno = trapno;
1564 #endif
1565 #ifdef __ia64__
1566 	info.si_imm = imm;
1567 	info.si_flags = flags;
1568 	info.si_isr = isr;
1569 #endif
1570 	return send_sig_info(info.si_signo, &info, t);
1571 }
1572 
1573 int force_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1574 {
1575 	struct siginfo info;
1576 
1577 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1578 	clear_siginfo(&info);
1579 	info.si_signo = SIGBUS;
1580 	info.si_errno = 0;
1581 	info.si_code = code;
1582 	info.si_addr = addr;
1583 	info.si_addr_lsb = lsb;
1584 	return force_sig_info(info.si_signo, &info, t);
1585 }
1586 
1587 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1588 {
1589 	struct siginfo info;
1590 
1591 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1592 	clear_siginfo(&info);
1593 	info.si_signo = SIGBUS;
1594 	info.si_errno = 0;
1595 	info.si_code = code;
1596 	info.si_addr = addr;
1597 	info.si_addr_lsb = lsb;
1598 	return send_sig_info(info.si_signo, &info, t);
1599 }
1600 EXPORT_SYMBOL(send_sig_mceerr);
1601 
1602 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1603 {
1604 	struct siginfo info;
1605 
1606 	clear_siginfo(&info);
1607 	info.si_signo = SIGSEGV;
1608 	info.si_errno = 0;
1609 	info.si_code  = SEGV_BNDERR;
1610 	info.si_addr  = addr;
1611 	info.si_lower = lower;
1612 	info.si_upper = upper;
1613 	return force_sig_info(info.si_signo, &info, current);
1614 }
1615 
1616 #ifdef SEGV_PKUERR
1617 int force_sig_pkuerr(void __user *addr, u32 pkey)
1618 {
1619 	struct siginfo info;
1620 
1621 	clear_siginfo(&info);
1622 	info.si_signo = SIGSEGV;
1623 	info.si_errno = 0;
1624 	info.si_code  = SEGV_PKUERR;
1625 	info.si_addr  = addr;
1626 	info.si_pkey  = pkey;
1627 	return force_sig_info(info.si_signo, &info, current);
1628 }
1629 #endif
1630 
1631 /* For the crazy architectures that include trap information in
1632  * the errno field, instead of an actual errno value.
1633  */
1634 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1635 {
1636 	struct siginfo info;
1637 
1638 	clear_siginfo(&info);
1639 	info.si_signo = SIGTRAP;
1640 	info.si_errno = errno;
1641 	info.si_code  = TRAP_HWBKPT;
1642 	info.si_addr  = addr;
1643 	return force_sig_info(info.si_signo, &info, current);
1644 }
1645 
1646 int kill_pgrp(struct pid *pid, int sig, int priv)
1647 {
1648 	int ret;
1649 
1650 	read_lock(&tasklist_lock);
1651 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1652 	read_unlock(&tasklist_lock);
1653 
1654 	return ret;
1655 }
1656 EXPORT_SYMBOL(kill_pgrp);
1657 
1658 int kill_pid(struct pid *pid, int sig, int priv)
1659 {
1660 	return kill_pid_info(sig, __si_special(priv), pid);
1661 }
1662 EXPORT_SYMBOL(kill_pid);
1663 
1664 /*
1665  * These functions support sending signals using preallocated sigqueue
1666  * structures.  This is needed "because realtime applications cannot
1667  * afford to lose notifications of asynchronous events, like timer
1668  * expirations or I/O completions".  In the case of POSIX Timers
1669  * we allocate the sigqueue structure from the timer_create.  If this
1670  * allocation fails we are able to report the failure to the application
1671  * with an EAGAIN error.
1672  */
1673 struct sigqueue *sigqueue_alloc(void)
1674 {
1675 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1676 
1677 	if (q)
1678 		q->flags |= SIGQUEUE_PREALLOC;
1679 
1680 	return q;
1681 }
1682 
1683 void sigqueue_free(struct sigqueue *q)
1684 {
1685 	unsigned long flags;
1686 	spinlock_t *lock = &current->sighand->siglock;
1687 
1688 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1689 	/*
1690 	 * We must hold ->siglock while testing q->list
1691 	 * to serialize with collect_signal() or with
1692 	 * __exit_signal()->flush_sigqueue().
1693 	 */
1694 	spin_lock_irqsave(lock, flags);
1695 	q->flags &= ~SIGQUEUE_PREALLOC;
1696 	/*
1697 	 * If it is queued it will be freed when dequeued,
1698 	 * like the "regular" sigqueue.
1699 	 */
1700 	if (!list_empty(&q->list))
1701 		q = NULL;
1702 	spin_unlock_irqrestore(lock, flags);
1703 
1704 	if (q)
1705 		__sigqueue_free(q);
1706 }
1707 
1708 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1709 {
1710 	int sig = q->info.si_signo;
1711 	struct sigpending *pending;
1712 	struct task_struct *t;
1713 	unsigned long flags;
1714 	int ret, result;
1715 
1716 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1717 
1718 	ret = -1;
1719 	rcu_read_lock();
1720 	t = pid_task(pid, type);
1721 	if (!t || !likely(lock_task_sighand(t, &flags)))
1722 		goto ret;
1723 
1724 	ret = 1; /* the signal is ignored */
1725 	result = TRACE_SIGNAL_IGNORED;
1726 	if (!prepare_signal(sig, t, false))
1727 		goto out;
1728 
1729 	ret = 0;
1730 	if (unlikely(!list_empty(&q->list))) {
1731 		/*
1732 		 * If an SI_TIMER entry is already queue just increment
1733 		 * the overrun count.
1734 		 */
1735 		BUG_ON(q->info.si_code != SI_TIMER);
1736 		q->info.si_overrun++;
1737 		result = TRACE_SIGNAL_ALREADY_PENDING;
1738 		goto out;
1739 	}
1740 	q->info.si_overrun = 0;
1741 
1742 	signalfd_notify(t, sig);
1743 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1744 	list_add_tail(&q->list, &pending->list);
1745 	sigaddset(&pending->signal, sig);
1746 	complete_signal(sig, t, type);
1747 	result = TRACE_SIGNAL_DELIVERED;
1748 out:
1749 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1750 	unlock_task_sighand(t, &flags);
1751 ret:
1752 	rcu_read_unlock();
1753 	return ret;
1754 }
1755 
1756 /*
1757  * Let a parent know about the death of a child.
1758  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1759  *
1760  * Returns true if our parent ignored us and so we've switched to
1761  * self-reaping.
1762  */
1763 bool do_notify_parent(struct task_struct *tsk, int sig)
1764 {
1765 	struct siginfo info;
1766 	unsigned long flags;
1767 	struct sighand_struct *psig;
1768 	bool autoreap = false;
1769 	u64 utime, stime;
1770 
1771 	BUG_ON(sig == -1);
1772 
1773  	/* do_notify_parent_cldstop should have been called instead.  */
1774  	BUG_ON(task_is_stopped_or_traced(tsk));
1775 
1776 	BUG_ON(!tsk->ptrace &&
1777 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1778 
1779 	if (sig != SIGCHLD) {
1780 		/*
1781 		 * This is only possible if parent == real_parent.
1782 		 * Check if it has changed security domain.
1783 		 */
1784 		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1785 			sig = SIGCHLD;
1786 	}
1787 
1788 	clear_siginfo(&info);
1789 	info.si_signo = sig;
1790 	info.si_errno = 0;
1791 	/*
1792 	 * We are under tasklist_lock here so our parent is tied to
1793 	 * us and cannot change.
1794 	 *
1795 	 * task_active_pid_ns will always return the same pid namespace
1796 	 * until a task passes through release_task.
1797 	 *
1798 	 * write_lock() currently calls preempt_disable() which is the
1799 	 * same as rcu_read_lock(), but according to Oleg, this is not
1800 	 * correct to rely on this
1801 	 */
1802 	rcu_read_lock();
1803 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1804 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1805 				       task_uid(tsk));
1806 	rcu_read_unlock();
1807 
1808 	task_cputime(tsk, &utime, &stime);
1809 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1810 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1811 
1812 	info.si_status = tsk->exit_code & 0x7f;
1813 	if (tsk->exit_code & 0x80)
1814 		info.si_code = CLD_DUMPED;
1815 	else if (tsk->exit_code & 0x7f)
1816 		info.si_code = CLD_KILLED;
1817 	else {
1818 		info.si_code = CLD_EXITED;
1819 		info.si_status = tsk->exit_code >> 8;
1820 	}
1821 
1822 	psig = tsk->parent->sighand;
1823 	spin_lock_irqsave(&psig->siglock, flags);
1824 	if (!tsk->ptrace && sig == SIGCHLD &&
1825 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1826 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1827 		/*
1828 		 * We are exiting and our parent doesn't care.  POSIX.1
1829 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1830 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1831 		 * automatically and not left for our parent's wait4 call.
1832 		 * Rather than having the parent do it as a magic kind of
1833 		 * signal handler, we just set this to tell do_exit that we
1834 		 * can be cleaned up without becoming a zombie.  Note that
1835 		 * we still call __wake_up_parent in this case, because a
1836 		 * blocked sys_wait4 might now return -ECHILD.
1837 		 *
1838 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1839 		 * is implementation-defined: we do (if you don't want
1840 		 * it, just use SIG_IGN instead).
1841 		 */
1842 		autoreap = true;
1843 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1844 			sig = 0;
1845 	}
1846 	if (valid_signal(sig) && sig)
1847 		__group_send_sig_info(sig, &info, tsk->parent);
1848 	__wake_up_parent(tsk, tsk->parent);
1849 	spin_unlock_irqrestore(&psig->siglock, flags);
1850 
1851 	return autoreap;
1852 }
1853 
1854 /**
1855  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1856  * @tsk: task reporting the state change
1857  * @for_ptracer: the notification is for ptracer
1858  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1859  *
1860  * Notify @tsk's parent that the stopped/continued state has changed.  If
1861  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1862  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1863  *
1864  * CONTEXT:
1865  * Must be called with tasklist_lock at least read locked.
1866  */
1867 static void do_notify_parent_cldstop(struct task_struct *tsk,
1868 				     bool for_ptracer, int why)
1869 {
1870 	struct siginfo info;
1871 	unsigned long flags;
1872 	struct task_struct *parent;
1873 	struct sighand_struct *sighand;
1874 	u64 utime, stime;
1875 
1876 	if (for_ptracer) {
1877 		parent = tsk->parent;
1878 	} else {
1879 		tsk = tsk->group_leader;
1880 		parent = tsk->real_parent;
1881 	}
1882 
1883 	clear_siginfo(&info);
1884 	info.si_signo = SIGCHLD;
1885 	info.si_errno = 0;
1886 	/*
1887 	 * see comment in do_notify_parent() about the following 4 lines
1888 	 */
1889 	rcu_read_lock();
1890 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1891 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1892 	rcu_read_unlock();
1893 
1894 	task_cputime(tsk, &utime, &stime);
1895 	info.si_utime = nsec_to_clock_t(utime);
1896 	info.si_stime = nsec_to_clock_t(stime);
1897 
1898  	info.si_code = why;
1899  	switch (why) {
1900  	case CLD_CONTINUED:
1901  		info.si_status = SIGCONT;
1902  		break;
1903  	case CLD_STOPPED:
1904  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1905  		break;
1906  	case CLD_TRAPPED:
1907  		info.si_status = tsk->exit_code & 0x7f;
1908  		break;
1909  	default:
1910  		BUG();
1911  	}
1912 
1913 	sighand = parent->sighand;
1914 	spin_lock_irqsave(&sighand->siglock, flags);
1915 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1916 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1917 		__group_send_sig_info(SIGCHLD, &info, parent);
1918 	/*
1919 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1920 	 */
1921 	__wake_up_parent(tsk, parent);
1922 	spin_unlock_irqrestore(&sighand->siglock, flags);
1923 }
1924 
1925 static inline bool may_ptrace_stop(void)
1926 {
1927 	if (!likely(current->ptrace))
1928 		return false;
1929 	/*
1930 	 * Are we in the middle of do_coredump?
1931 	 * If so and our tracer is also part of the coredump stopping
1932 	 * is a deadlock situation, and pointless because our tracer
1933 	 * is dead so don't allow us to stop.
1934 	 * If SIGKILL was already sent before the caller unlocked
1935 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1936 	 * is safe to enter schedule().
1937 	 *
1938 	 * This is almost outdated, a task with the pending SIGKILL can't
1939 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1940 	 * after SIGKILL was already dequeued.
1941 	 */
1942 	if (unlikely(current->mm->core_state) &&
1943 	    unlikely(current->mm == current->parent->mm))
1944 		return false;
1945 
1946 	return true;
1947 }
1948 
1949 /*
1950  * Return non-zero if there is a SIGKILL that should be waking us up.
1951  * Called with the siglock held.
1952  */
1953 static bool sigkill_pending(struct task_struct *tsk)
1954 {
1955 	return sigismember(&tsk->pending.signal, SIGKILL) ||
1956 	       sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1957 }
1958 
1959 /*
1960  * This must be called with current->sighand->siglock held.
1961  *
1962  * This should be the path for all ptrace stops.
1963  * We always set current->last_siginfo while stopped here.
1964  * That makes it a way to test a stopped process for
1965  * being ptrace-stopped vs being job-control-stopped.
1966  *
1967  * If we actually decide not to stop at all because the tracer
1968  * is gone, we keep current->exit_code unless clear_code.
1969  */
1970 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1971 	__releases(&current->sighand->siglock)
1972 	__acquires(&current->sighand->siglock)
1973 {
1974 	bool gstop_done = false;
1975 
1976 	if (arch_ptrace_stop_needed(exit_code, info)) {
1977 		/*
1978 		 * The arch code has something special to do before a
1979 		 * ptrace stop.  This is allowed to block, e.g. for faults
1980 		 * on user stack pages.  We can't keep the siglock while
1981 		 * calling arch_ptrace_stop, so we must release it now.
1982 		 * To preserve proper semantics, we must do this before
1983 		 * any signal bookkeeping like checking group_stop_count.
1984 		 * Meanwhile, a SIGKILL could come in before we retake the
1985 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1986 		 * So after regaining the lock, we must check for SIGKILL.
1987 		 */
1988 		spin_unlock_irq(&current->sighand->siglock);
1989 		arch_ptrace_stop(exit_code, info);
1990 		spin_lock_irq(&current->sighand->siglock);
1991 		if (sigkill_pending(current))
1992 			return;
1993 	}
1994 
1995 	set_special_state(TASK_TRACED);
1996 
1997 	/*
1998 	 * We're committing to trapping.  TRACED should be visible before
1999 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2000 	 * Also, transition to TRACED and updates to ->jobctl should be
2001 	 * atomic with respect to siglock and should be done after the arch
2002 	 * hook as siglock is released and regrabbed across it.
2003 	 *
2004 	 *     TRACER				    TRACEE
2005 	 *
2006 	 *     ptrace_attach()
2007 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2008 	 *     do_wait()
2009 	 *       set_current_state()                smp_wmb();
2010 	 *       ptrace_do_wait()
2011 	 *         wait_task_stopped()
2012 	 *           task_stopped_code()
2013 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2014 	 */
2015 	smp_wmb();
2016 
2017 	current->last_siginfo = info;
2018 	current->exit_code = exit_code;
2019 
2020 	/*
2021 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2022 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2023 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2024 	 * could be clear now.  We act as if SIGCONT is received after
2025 	 * TASK_TRACED is entered - ignore it.
2026 	 */
2027 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2028 		gstop_done = task_participate_group_stop(current);
2029 
2030 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2031 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2032 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2033 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2034 
2035 	/* entering a trap, clear TRAPPING */
2036 	task_clear_jobctl_trapping(current);
2037 
2038 	spin_unlock_irq(&current->sighand->siglock);
2039 	read_lock(&tasklist_lock);
2040 	if (may_ptrace_stop()) {
2041 		/*
2042 		 * Notify parents of the stop.
2043 		 *
2044 		 * While ptraced, there are two parents - the ptracer and
2045 		 * the real_parent of the group_leader.  The ptracer should
2046 		 * know about every stop while the real parent is only
2047 		 * interested in the completion of group stop.  The states
2048 		 * for the two don't interact with each other.  Notify
2049 		 * separately unless they're gonna be duplicates.
2050 		 */
2051 		do_notify_parent_cldstop(current, true, why);
2052 		if (gstop_done && ptrace_reparented(current))
2053 			do_notify_parent_cldstop(current, false, why);
2054 
2055 		/*
2056 		 * Don't want to allow preemption here, because
2057 		 * sys_ptrace() needs this task to be inactive.
2058 		 *
2059 		 * XXX: implement read_unlock_no_resched().
2060 		 */
2061 		preempt_disable();
2062 		read_unlock(&tasklist_lock);
2063 		preempt_enable_no_resched();
2064 		freezable_schedule();
2065 	} else {
2066 		/*
2067 		 * By the time we got the lock, our tracer went away.
2068 		 * Don't drop the lock yet, another tracer may come.
2069 		 *
2070 		 * If @gstop_done, the ptracer went away between group stop
2071 		 * completion and here.  During detach, it would have set
2072 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2073 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2074 		 * the real parent of the group stop completion is enough.
2075 		 */
2076 		if (gstop_done)
2077 			do_notify_parent_cldstop(current, false, why);
2078 
2079 		/* tasklist protects us from ptrace_freeze_traced() */
2080 		__set_current_state(TASK_RUNNING);
2081 		if (clear_code)
2082 			current->exit_code = 0;
2083 		read_unlock(&tasklist_lock);
2084 	}
2085 
2086 	/*
2087 	 * We are back.  Now reacquire the siglock before touching
2088 	 * last_siginfo, so that we are sure to have synchronized with
2089 	 * any signal-sending on another CPU that wants to examine it.
2090 	 */
2091 	spin_lock_irq(&current->sighand->siglock);
2092 	current->last_siginfo = NULL;
2093 
2094 	/* LISTENING can be set only during STOP traps, clear it */
2095 	current->jobctl &= ~JOBCTL_LISTENING;
2096 
2097 	/*
2098 	 * Queued signals ignored us while we were stopped for tracing.
2099 	 * So check for any that we should take before resuming user mode.
2100 	 * This sets TIF_SIGPENDING, but never clears it.
2101 	 */
2102 	recalc_sigpending_tsk(current);
2103 }
2104 
2105 static void ptrace_do_notify(int signr, int exit_code, int why)
2106 {
2107 	siginfo_t info;
2108 
2109 	clear_siginfo(&info);
2110 	info.si_signo = signr;
2111 	info.si_code = exit_code;
2112 	info.si_pid = task_pid_vnr(current);
2113 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2114 
2115 	/* Let the debugger run.  */
2116 	ptrace_stop(exit_code, why, 1, &info);
2117 }
2118 
2119 void ptrace_notify(int exit_code)
2120 {
2121 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2122 	if (unlikely(current->task_works))
2123 		task_work_run();
2124 
2125 	spin_lock_irq(&current->sighand->siglock);
2126 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2127 	spin_unlock_irq(&current->sighand->siglock);
2128 }
2129 
2130 /**
2131  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2132  * @signr: signr causing group stop if initiating
2133  *
2134  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2135  * and participate in it.  If already set, participate in the existing
2136  * group stop.  If participated in a group stop (and thus slept), %true is
2137  * returned with siglock released.
2138  *
2139  * If ptraced, this function doesn't handle stop itself.  Instead,
2140  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2141  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2142  * places afterwards.
2143  *
2144  * CONTEXT:
2145  * Must be called with @current->sighand->siglock held, which is released
2146  * on %true return.
2147  *
2148  * RETURNS:
2149  * %false if group stop is already cancelled or ptrace trap is scheduled.
2150  * %true if participated in group stop.
2151  */
2152 static bool do_signal_stop(int signr)
2153 	__releases(&current->sighand->siglock)
2154 {
2155 	struct signal_struct *sig = current->signal;
2156 
2157 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2158 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2159 		struct task_struct *t;
2160 
2161 		/* signr will be recorded in task->jobctl for retries */
2162 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2163 
2164 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2165 		    unlikely(signal_group_exit(sig)))
2166 			return false;
2167 		/*
2168 		 * There is no group stop already in progress.  We must
2169 		 * initiate one now.
2170 		 *
2171 		 * While ptraced, a task may be resumed while group stop is
2172 		 * still in effect and then receive a stop signal and
2173 		 * initiate another group stop.  This deviates from the
2174 		 * usual behavior as two consecutive stop signals can't
2175 		 * cause two group stops when !ptraced.  That is why we
2176 		 * also check !task_is_stopped(t) below.
2177 		 *
2178 		 * The condition can be distinguished by testing whether
2179 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2180 		 * group_exit_code in such case.
2181 		 *
2182 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2183 		 * an intervening stop signal is required to cause two
2184 		 * continued events regardless of ptrace.
2185 		 */
2186 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2187 			sig->group_exit_code = signr;
2188 
2189 		sig->group_stop_count = 0;
2190 
2191 		if (task_set_jobctl_pending(current, signr | gstop))
2192 			sig->group_stop_count++;
2193 
2194 		t = current;
2195 		while_each_thread(current, t) {
2196 			/*
2197 			 * Setting state to TASK_STOPPED for a group
2198 			 * stop is always done with the siglock held,
2199 			 * so this check has no races.
2200 			 */
2201 			if (!task_is_stopped(t) &&
2202 			    task_set_jobctl_pending(t, signr | gstop)) {
2203 				sig->group_stop_count++;
2204 				if (likely(!(t->ptrace & PT_SEIZED)))
2205 					signal_wake_up(t, 0);
2206 				else
2207 					ptrace_trap_notify(t);
2208 			}
2209 		}
2210 	}
2211 
2212 	if (likely(!current->ptrace)) {
2213 		int notify = 0;
2214 
2215 		/*
2216 		 * If there are no other threads in the group, or if there
2217 		 * is a group stop in progress and we are the last to stop,
2218 		 * report to the parent.
2219 		 */
2220 		if (task_participate_group_stop(current))
2221 			notify = CLD_STOPPED;
2222 
2223 		set_special_state(TASK_STOPPED);
2224 		spin_unlock_irq(&current->sighand->siglock);
2225 
2226 		/*
2227 		 * Notify the parent of the group stop completion.  Because
2228 		 * we're not holding either the siglock or tasklist_lock
2229 		 * here, ptracer may attach inbetween; however, this is for
2230 		 * group stop and should always be delivered to the real
2231 		 * parent of the group leader.  The new ptracer will get
2232 		 * its notification when this task transitions into
2233 		 * TASK_TRACED.
2234 		 */
2235 		if (notify) {
2236 			read_lock(&tasklist_lock);
2237 			do_notify_parent_cldstop(current, false, notify);
2238 			read_unlock(&tasklist_lock);
2239 		}
2240 
2241 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2242 		freezable_schedule();
2243 		return true;
2244 	} else {
2245 		/*
2246 		 * While ptraced, group stop is handled by STOP trap.
2247 		 * Schedule it and let the caller deal with it.
2248 		 */
2249 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2250 		return false;
2251 	}
2252 }
2253 
2254 /**
2255  * do_jobctl_trap - take care of ptrace jobctl traps
2256  *
2257  * When PT_SEIZED, it's used for both group stop and explicit
2258  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2259  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2260  * the stop signal; otherwise, %SIGTRAP.
2261  *
2262  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2263  * number as exit_code and no siginfo.
2264  *
2265  * CONTEXT:
2266  * Must be called with @current->sighand->siglock held, which may be
2267  * released and re-acquired before returning with intervening sleep.
2268  */
2269 static void do_jobctl_trap(void)
2270 {
2271 	struct signal_struct *signal = current->signal;
2272 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2273 
2274 	if (current->ptrace & PT_SEIZED) {
2275 		if (!signal->group_stop_count &&
2276 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2277 			signr = SIGTRAP;
2278 		WARN_ON_ONCE(!signr);
2279 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2280 				 CLD_STOPPED);
2281 	} else {
2282 		WARN_ON_ONCE(!signr);
2283 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2284 		current->exit_code = 0;
2285 	}
2286 }
2287 
2288 static int ptrace_signal(int signr, siginfo_t *info)
2289 {
2290 	/*
2291 	 * We do not check sig_kernel_stop(signr) but set this marker
2292 	 * unconditionally because we do not know whether debugger will
2293 	 * change signr. This flag has no meaning unless we are going
2294 	 * to stop after return from ptrace_stop(). In this case it will
2295 	 * be checked in do_signal_stop(), we should only stop if it was
2296 	 * not cleared by SIGCONT while we were sleeping. See also the
2297 	 * comment in dequeue_signal().
2298 	 */
2299 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2300 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2301 
2302 	/* We're back.  Did the debugger cancel the sig?  */
2303 	signr = current->exit_code;
2304 	if (signr == 0)
2305 		return signr;
2306 
2307 	current->exit_code = 0;
2308 
2309 	/*
2310 	 * Update the siginfo structure if the signal has
2311 	 * changed.  If the debugger wanted something
2312 	 * specific in the siginfo structure then it should
2313 	 * have updated *info via PTRACE_SETSIGINFO.
2314 	 */
2315 	if (signr != info->si_signo) {
2316 		clear_siginfo(info);
2317 		info->si_signo = signr;
2318 		info->si_errno = 0;
2319 		info->si_code = SI_USER;
2320 		rcu_read_lock();
2321 		info->si_pid = task_pid_vnr(current->parent);
2322 		info->si_uid = from_kuid_munged(current_user_ns(),
2323 						task_uid(current->parent));
2324 		rcu_read_unlock();
2325 	}
2326 
2327 	/* If the (new) signal is now blocked, requeue it.  */
2328 	if (sigismember(&current->blocked, signr)) {
2329 		specific_send_sig_info(signr, info, current);
2330 		signr = 0;
2331 	}
2332 
2333 	return signr;
2334 }
2335 
2336 bool get_signal(struct ksignal *ksig)
2337 {
2338 	struct sighand_struct *sighand = current->sighand;
2339 	struct signal_struct *signal = current->signal;
2340 	int signr;
2341 
2342 	if (unlikely(current->task_works))
2343 		task_work_run();
2344 
2345 	if (unlikely(uprobe_deny_signal()))
2346 		return false;
2347 
2348 	/*
2349 	 * Do this once, we can't return to user-mode if freezing() == T.
2350 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2351 	 * thus do not need another check after return.
2352 	 */
2353 	try_to_freeze();
2354 
2355 relock:
2356 	spin_lock_irq(&sighand->siglock);
2357 	/*
2358 	 * Every stopped thread goes here after wakeup. Check to see if
2359 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2360 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2361 	 */
2362 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2363 		int why;
2364 
2365 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2366 			why = CLD_CONTINUED;
2367 		else
2368 			why = CLD_STOPPED;
2369 
2370 		signal->flags &= ~SIGNAL_CLD_MASK;
2371 
2372 		spin_unlock_irq(&sighand->siglock);
2373 
2374 		/*
2375 		 * Notify the parent that we're continuing.  This event is
2376 		 * always per-process and doesn't make whole lot of sense
2377 		 * for ptracers, who shouldn't consume the state via
2378 		 * wait(2) either, but, for backward compatibility, notify
2379 		 * the ptracer of the group leader too unless it's gonna be
2380 		 * a duplicate.
2381 		 */
2382 		read_lock(&tasklist_lock);
2383 		do_notify_parent_cldstop(current, false, why);
2384 
2385 		if (ptrace_reparented(current->group_leader))
2386 			do_notify_parent_cldstop(current->group_leader,
2387 						true, why);
2388 		read_unlock(&tasklist_lock);
2389 
2390 		goto relock;
2391 	}
2392 
2393 	for (;;) {
2394 		struct k_sigaction *ka;
2395 
2396 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2397 		    do_signal_stop(0))
2398 			goto relock;
2399 
2400 		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2401 			do_jobctl_trap();
2402 			spin_unlock_irq(&sighand->siglock);
2403 			goto relock;
2404 		}
2405 
2406 		signr = dequeue_signal(current, &current->blocked, &ksig->info);
2407 
2408 		if (!signr)
2409 			break; /* will return 0 */
2410 
2411 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2412 			signr = ptrace_signal(signr, &ksig->info);
2413 			if (!signr)
2414 				continue;
2415 		}
2416 
2417 		ka = &sighand->action[signr-1];
2418 
2419 		/* Trace actually delivered signals. */
2420 		trace_signal_deliver(signr, &ksig->info, ka);
2421 
2422 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2423 			continue;
2424 		if (ka->sa.sa_handler != SIG_DFL) {
2425 			/* Run the handler.  */
2426 			ksig->ka = *ka;
2427 
2428 			if (ka->sa.sa_flags & SA_ONESHOT)
2429 				ka->sa.sa_handler = SIG_DFL;
2430 
2431 			break; /* will return non-zero "signr" value */
2432 		}
2433 
2434 		/*
2435 		 * Now we are doing the default action for this signal.
2436 		 */
2437 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2438 			continue;
2439 
2440 		/*
2441 		 * Global init gets no signals it doesn't want.
2442 		 * Container-init gets no signals it doesn't want from same
2443 		 * container.
2444 		 *
2445 		 * Note that if global/container-init sees a sig_kernel_only()
2446 		 * signal here, the signal must have been generated internally
2447 		 * or must have come from an ancestor namespace. In either
2448 		 * case, the signal cannot be dropped.
2449 		 */
2450 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2451 				!sig_kernel_only(signr))
2452 			continue;
2453 
2454 		if (sig_kernel_stop(signr)) {
2455 			/*
2456 			 * The default action is to stop all threads in
2457 			 * the thread group.  The job control signals
2458 			 * do nothing in an orphaned pgrp, but SIGSTOP
2459 			 * always works.  Note that siglock needs to be
2460 			 * dropped during the call to is_orphaned_pgrp()
2461 			 * because of lock ordering with tasklist_lock.
2462 			 * This allows an intervening SIGCONT to be posted.
2463 			 * We need to check for that and bail out if necessary.
2464 			 */
2465 			if (signr != SIGSTOP) {
2466 				spin_unlock_irq(&sighand->siglock);
2467 
2468 				/* signals can be posted during this window */
2469 
2470 				if (is_current_pgrp_orphaned())
2471 					goto relock;
2472 
2473 				spin_lock_irq(&sighand->siglock);
2474 			}
2475 
2476 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2477 				/* It released the siglock.  */
2478 				goto relock;
2479 			}
2480 
2481 			/*
2482 			 * We didn't actually stop, due to a race
2483 			 * with SIGCONT or something like that.
2484 			 */
2485 			continue;
2486 		}
2487 
2488 		spin_unlock_irq(&sighand->siglock);
2489 
2490 		/*
2491 		 * Anything else is fatal, maybe with a core dump.
2492 		 */
2493 		current->flags |= PF_SIGNALED;
2494 
2495 		if (sig_kernel_coredump(signr)) {
2496 			if (print_fatal_signals)
2497 				print_fatal_signal(ksig->info.si_signo);
2498 			proc_coredump_connector(current);
2499 			/*
2500 			 * If it was able to dump core, this kills all
2501 			 * other threads in the group and synchronizes with
2502 			 * their demise.  If we lost the race with another
2503 			 * thread getting here, it set group_exit_code
2504 			 * first and our do_group_exit call below will use
2505 			 * that value and ignore the one we pass it.
2506 			 */
2507 			do_coredump(&ksig->info);
2508 		}
2509 
2510 		/*
2511 		 * Death signals, no core dump.
2512 		 */
2513 		do_group_exit(ksig->info.si_signo);
2514 		/* NOTREACHED */
2515 	}
2516 	spin_unlock_irq(&sighand->siglock);
2517 
2518 	ksig->sig = signr;
2519 	return ksig->sig > 0;
2520 }
2521 
2522 /**
2523  * signal_delivered -
2524  * @ksig:		kernel signal struct
2525  * @stepping:		nonzero if debugger single-step or block-step in use
2526  *
2527  * This function should be called when a signal has successfully been
2528  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2529  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2530  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2531  */
2532 static void signal_delivered(struct ksignal *ksig, int stepping)
2533 {
2534 	sigset_t blocked;
2535 
2536 	/* A signal was successfully delivered, and the
2537 	   saved sigmask was stored on the signal frame,
2538 	   and will be restored by sigreturn.  So we can
2539 	   simply clear the restore sigmask flag.  */
2540 	clear_restore_sigmask();
2541 
2542 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2543 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2544 		sigaddset(&blocked, ksig->sig);
2545 	set_current_blocked(&blocked);
2546 	tracehook_signal_handler(stepping);
2547 }
2548 
2549 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2550 {
2551 	if (failed)
2552 		force_sigsegv(ksig->sig, current);
2553 	else
2554 		signal_delivered(ksig, stepping);
2555 }
2556 
2557 /*
2558  * It could be that complete_signal() picked us to notify about the
2559  * group-wide signal. Other threads should be notified now to take
2560  * the shared signals in @which since we will not.
2561  */
2562 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2563 {
2564 	sigset_t retarget;
2565 	struct task_struct *t;
2566 
2567 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2568 	if (sigisemptyset(&retarget))
2569 		return;
2570 
2571 	t = tsk;
2572 	while_each_thread(tsk, t) {
2573 		if (t->flags & PF_EXITING)
2574 			continue;
2575 
2576 		if (!has_pending_signals(&retarget, &t->blocked))
2577 			continue;
2578 		/* Remove the signals this thread can handle. */
2579 		sigandsets(&retarget, &retarget, &t->blocked);
2580 
2581 		if (!signal_pending(t))
2582 			signal_wake_up(t, 0);
2583 
2584 		if (sigisemptyset(&retarget))
2585 			break;
2586 	}
2587 }
2588 
2589 void exit_signals(struct task_struct *tsk)
2590 {
2591 	int group_stop = 0;
2592 	sigset_t unblocked;
2593 
2594 	/*
2595 	 * @tsk is about to have PF_EXITING set - lock out users which
2596 	 * expect stable threadgroup.
2597 	 */
2598 	cgroup_threadgroup_change_begin(tsk);
2599 
2600 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2601 		tsk->flags |= PF_EXITING;
2602 		cgroup_threadgroup_change_end(tsk);
2603 		return;
2604 	}
2605 
2606 	spin_lock_irq(&tsk->sighand->siglock);
2607 	/*
2608 	 * From now this task is not visible for group-wide signals,
2609 	 * see wants_signal(), do_signal_stop().
2610 	 */
2611 	tsk->flags |= PF_EXITING;
2612 
2613 	cgroup_threadgroup_change_end(tsk);
2614 
2615 	if (!signal_pending(tsk))
2616 		goto out;
2617 
2618 	unblocked = tsk->blocked;
2619 	signotset(&unblocked);
2620 	retarget_shared_pending(tsk, &unblocked);
2621 
2622 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2623 	    task_participate_group_stop(tsk))
2624 		group_stop = CLD_STOPPED;
2625 out:
2626 	spin_unlock_irq(&tsk->sighand->siglock);
2627 
2628 	/*
2629 	 * If group stop has completed, deliver the notification.  This
2630 	 * should always go to the real parent of the group leader.
2631 	 */
2632 	if (unlikely(group_stop)) {
2633 		read_lock(&tasklist_lock);
2634 		do_notify_parent_cldstop(tsk, false, group_stop);
2635 		read_unlock(&tasklist_lock);
2636 	}
2637 }
2638 
2639 EXPORT_SYMBOL(recalc_sigpending);
2640 EXPORT_SYMBOL_GPL(dequeue_signal);
2641 EXPORT_SYMBOL(flush_signals);
2642 EXPORT_SYMBOL(force_sig);
2643 EXPORT_SYMBOL(send_sig);
2644 EXPORT_SYMBOL(send_sig_info);
2645 EXPORT_SYMBOL(sigprocmask);
2646 
2647 /*
2648  * System call entry points.
2649  */
2650 
2651 /**
2652  *  sys_restart_syscall - restart a system call
2653  */
2654 SYSCALL_DEFINE0(restart_syscall)
2655 {
2656 	struct restart_block *restart = &current->restart_block;
2657 	return restart->fn(restart);
2658 }
2659 
2660 long do_no_restart_syscall(struct restart_block *param)
2661 {
2662 	return -EINTR;
2663 }
2664 
2665 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2666 {
2667 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2668 		sigset_t newblocked;
2669 		/* A set of now blocked but previously unblocked signals. */
2670 		sigandnsets(&newblocked, newset, &current->blocked);
2671 		retarget_shared_pending(tsk, &newblocked);
2672 	}
2673 	tsk->blocked = *newset;
2674 	recalc_sigpending();
2675 }
2676 
2677 /**
2678  * set_current_blocked - change current->blocked mask
2679  * @newset: new mask
2680  *
2681  * It is wrong to change ->blocked directly, this helper should be used
2682  * to ensure the process can't miss a shared signal we are going to block.
2683  */
2684 void set_current_blocked(sigset_t *newset)
2685 {
2686 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2687 	__set_current_blocked(newset);
2688 }
2689 
2690 void __set_current_blocked(const sigset_t *newset)
2691 {
2692 	struct task_struct *tsk = current;
2693 
2694 	/*
2695 	 * In case the signal mask hasn't changed, there is nothing we need
2696 	 * to do. The current->blocked shouldn't be modified by other task.
2697 	 */
2698 	if (sigequalsets(&tsk->blocked, newset))
2699 		return;
2700 
2701 	spin_lock_irq(&tsk->sighand->siglock);
2702 	__set_task_blocked(tsk, newset);
2703 	spin_unlock_irq(&tsk->sighand->siglock);
2704 }
2705 
2706 /*
2707  * This is also useful for kernel threads that want to temporarily
2708  * (or permanently) block certain signals.
2709  *
2710  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2711  * interface happily blocks "unblockable" signals like SIGKILL
2712  * and friends.
2713  */
2714 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2715 {
2716 	struct task_struct *tsk = current;
2717 	sigset_t newset;
2718 
2719 	/* Lockless, only current can change ->blocked, never from irq */
2720 	if (oldset)
2721 		*oldset = tsk->blocked;
2722 
2723 	switch (how) {
2724 	case SIG_BLOCK:
2725 		sigorsets(&newset, &tsk->blocked, set);
2726 		break;
2727 	case SIG_UNBLOCK:
2728 		sigandnsets(&newset, &tsk->blocked, set);
2729 		break;
2730 	case SIG_SETMASK:
2731 		newset = *set;
2732 		break;
2733 	default:
2734 		return -EINVAL;
2735 	}
2736 
2737 	__set_current_blocked(&newset);
2738 	return 0;
2739 }
2740 
2741 /**
2742  *  sys_rt_sigprocmask - change the list of currently blocked signals
2743  *  @how: whether to add, remove, or set signals
2744  *  @nset: stores pending signals
2745  *  @oset: previous value of signal mask if non-null
2746  *  @sigsetsize: size of sigset_t type
2747  */
2748 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2749 		sigset_t __user *, oset, size_t, sigsetsize)
2750 {
2751 	sigset_t old_set, new_set;
2752 	int error;
2753 
2754 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2755 	if (sigsetsize != sizeof(sigset_t))
2756 		return -EINVAL;
2757 
2758 	old_set = current->blocked;
2759 
2760 	if (nset) {
2761 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2762 			return -EFAULT;
2763 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2764 
2765 		error = sigprocmask(how, &new_set, NULL);
2766 		if (error)
2767 			return error;
2768 	}
2769 
2770 	if (oset) {
2771 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2772 			return -EFAULT;
2773 	}
2774 
2775 	return 0;
2776 }
2777 
2778 #ifdef CONFIG_COMPAT
2779 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2780 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2781 {
2782 	sigset_t old_set = current->blocked;
2783 
2784 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2785 	if (sigsetsize != sizeof(sigset_t))
2786 		return -EINVAL;
2787 
2788 	if (nset) {
2789 		sigset_t new_set;
2790 		int error;
2791 		if (get_compat_sigset(&new_set, nset))
2792 			return -EFAULT;
2793 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2794 
2795 		error = sigprocmask(how, &new_set, NULL);
2796 		if (error)
2797 			return error;
2798 	}
2799 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
2800 }
2801 #endif
2802 
2803 static void do_sigpending(sigset_t *set)
2804 {
2805 	spin_lock_irq(&current->sighand->siglock);
2806 	sigorsets(set, &current->pending.signal,
2807 		  &current->signal->shared_pending.signal);
2808 	spin_unlock_irq(&current->sighand->siglock);
2809 
2810 	/* Outside the lock because only this thread touches it.  */
2811 	sigandsets(set, &current->blocked, set);
2812 }
2813 
2814 /**
2815  *  sys_rt_sigpending - examine a pending signal that has been raised
2816  *			while blocked
2817  *  @uset: stores pending signals
2818  *  @sigsetsize: size of sigset_t type or larger
2819  */
2820 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2821 {
2822 	sigset_t set;
2823 
2824 	if (sigsetsize > sizeof(*uset))
2825 		return -EINVAL;
2826 
2827 	do_sigpending(&set);
2828 
2829 	if (copy_to_user(uset, &set, sigsetsize))
2830 		return -EFAULT;
2831 
2832 	return 0;
2833 }
2834 
2835 #ifdef CONFIG_COMPAT
2836 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2837 		compat_size_t, sigsetsize)
2838 {
2839 	sigset_t set;
2840 
2841 	if (sigsetsize > sizeof(*uset))
2842 		return -EINVAL;
2843 
2844 	do_sigpending(&set);
2845 
2846 	return put_compat_sigset(uset, &set, sigsetsize);
2847 }
2848 #endif
2849 
2850 enum siginfo_layout siginfo_layout(int sig, int si_code)
2851 {
2852 	enum siginfo_layout layout = SIL_KILL;
2853 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
2854 		static const struct {
2855 			unsigned char limit, layout;
2856 		} filter[] = {
2857 			[SIGILL]  = { NSIGILL,  SIL_FAULT },
2858 			[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
2859 			[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
2860 			[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
2861 			[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
2862 #if defined(SIGEMT) && defined(NSIGEMT)
2863 			[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
2864 #endif
2865 			[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
2866 			[SIGPOLL] = { NSIGPOLL, SIL_POLL },
2867 			[SIGSYS]  = { NSIGSYS,  SIL_SYS },
2868 		};
2869 		if ((sig < ARRAY_SIZE(filter)) && (si_code <= filter[sig].limit)) {
2870 			layout = filter[sig].layout;
2871 			/* Handle the exceptions */
2872 			if ((sig == SIGBUS) &&
2873 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
2874 				layout = SIL_FAULT_MCEERR;
2875 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
2876 				layout = SIL_FAULT_BNDERR;
2877 #ifdef SEGV_PKUERR
2878 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
2879 				layout = SIL_FAULT_PKUERR;
2880 #endif
2881 		}
2882 		else if (si_code <= NSIGPOLL)
2883 			layout = SIL_POLL;
2884 	} else {
2885 		if (si_code == SI_TIMER)
2886 			layout = SIL_TIMER;
2887 		else if (si_code == SI_SIGIO)
2888 			layout = SIL_POLL;
2889 		else if (si_code < 0)
2890 			layout = SIL_RT;
2891 	}
2892 	return layout;
2893 }
2894 
2895 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2896 {
2897 	if (copy_to_user(to, from , sizeof(struct siginfo)))
2898 		return -EFAULT;
2899 	return 0;
2900 }
2901 
2902 #ifdef CONFIG_COMPAT
2903 int copy_siginfo_to_user32(struct compat_siginfo __user *to,
2904 			   const struct siginfo *from)
2905 #if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
2906 {
2907 	return __copy_siginfo_to_user32(to, from, in_x32_syscall());
2908 }
2909 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
2910 			     const struct siginfo *from, bool x32_ABI)
2911 #endif
2912 {
2913 	struct compat_siginfo new;
2914 	memset(&new, 0, sizeof(new));
2915 
2916 	new.si_signo = from->si_signo;
2917 	new.si_errno = from->si_errno;
2918 	new.si_code  = from->si_code;
2919 	switch(siginfo_layout(from->si_signo, from->si_code)) {
2920 	case SIL_KILL:
2921 		new.si_pid = from->si_pid;
2922 		new.si_uid = from->si_uid;
2923 		break;
2924 	case SIL_TIMER:
2925 		new.si_tid     = from->si_tid;
2926 		new.si_overrun = from->si_overrun;
2927 		new.si_int     = from->si_int;
2928 		break;
2929 	case SIL_POLL:
2930 		new.si_band = from->si_band;
2931 		new.si_fd   = from->si_fd;
2932 		break;
2933 	case SIL_FAULT:
2934 		new.si_addr = ptr_to_compat(from->si_addr);
2935 #ifdef __ARCH_SI_TRAPNO
2936 		new.si_trapno = from->si_trapno;
2937 #endif
2938 		break;
2939 	case SIL_FAULT_MCEERR:
2940 		new.si_addr = ptr_to_compat(from->si_addr);
2941 #ifdef __ARCH_SI_TRAPNO
2942 		new.si_trapno = from->si_trapno;
2943 #endif
2944 		new.si_addr_lsb = from->si_addr_lsb;
2945 		break;
2946 	case SIL_FAULT_BNDERR:
2947 		new.si_addr = ptr_to_compat(from->si_addr);
2948 #ifdef __ARCH_SI_TRAPNO
2949 		new.si_trapno = from->si_trapno;
2950 #endif
2951 		new.si_lower = ptr_to_compat(from->si_lower);
2952 		new.si_upper = ptr_to_compat(from->si_upper);
2953 		break;
2954 	case SIL_FAULT_PKUERR:
2955 		new.si_addr = ptr_to_compat(from->si_addr);
2956 #ifdef __ARCH_SI_TRAPNO
2957 		new.si_trapno = from->si_trapno;
2958 #endif
2959 		new.si_pkey = from->si_pkey;
2960 		break;
2961 	case SIL_CHLD:
2962 		new.si_pid    = from->si_pid;
2963 		new.si_uid    = from->si_uid;
2964 		new.si_status = from->si_status;
2965 #ifdef CONFIG_X86_X32_ABI
2966 		if (x32_ABI) {
2967 			new._sifields._sigchld_x32._utime = from->si_utime;
2968 			new._sifields._sigchld_x32._stime = from->si_stime;
2969 		} else
2970 #endif
2971 		{
2972 			new.si_utime = from->si_utime;
2973 			new.si_stime = from->si_stime;
2974 		}
2975 		break;
2976 	case SIL_RT:
2977 		new.si_pid = from->si_pid;
2978 		new.si_uid = from->si_uid;
2979 		new.si_int = from->si_int;
2980 		break;
2981 	case SIL_SYS:
2982 		new.si_call_addr = ptr_to_compat(from->si_call_addr);
2983 		new.si_syscall   = from->si_syscall;
2984 		new.si_arch      = from->si_arch;
2985 		break;
2986 	}
2987 
2988 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
2989 		return -EFAULT;
2990 
2991 	return 0;
2992 }
2993 
2994 int copy_siginfo_from_user32(struct siginfo *to,
2995 			     const struct compat_siginfo __user *ufrom)
2996 {
2997 	struct compat_siginfo from;
2998 
2999 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3000 		return -EFAULT;
3001 
3002 	clear_siginfo(to);
3003 	to->si_signo = from.si_signo;
3004 	to->si_errno = from.si_errno;
3005 	to->si_code  = from.si_code;
3006 	switch(siginfo_layout(from.si_signo, from.si_code)) {
3007 	case SIL_KILL:
3008 		to->si_pid = from.si_pid;
3009 		to->si_uid = from.si_uid;
3010 		break;
3011 	case SIL_TIMER:
3012 		to->si_tid     = from.si_tid;
3013 		to->si_overrun = from.si_overrun;
3014 		to->si_int     = from.si_int;
3015 		break;
3016 	case SIL_POLL:
3017 		to->si_band = from.si_band;
3018 		to->si_fd   = from.si_fd;
3019 		break;
3020 	case SIL_FAULT:
3021 		to->si_addr = compat_ptr(from.si_addr);
3022 #ifdef __ARCH_SI_TRAPNO
3023 		to->si_trapno = from.si_trapno;
3024 #endif
3025 		break;
3026 	case SIL_FAULT_MCEERR:
3027 		to->si_addr = compat_ptr(from.si_addr);
3028 #ifdef __ARCH_SI_TRAPNO
3029 		to->si_trapno = from.si_trapno;
3030 #endif
3031 		to->si_addr_lsb = from.si_addr_lsb;
3032 		break;
3033 	case SIL_FAULT_BNDERR:
3034 		to->si_addr = compat_ptr(from.si_addr);
3035 #ifdef __ARCH_SI_TRAPNO
3036 		to->si_trapno = from.si_trapno;
3037 #endif
3038 		to->si_lower = compat_ptr(from.si_lower);
3039 		to->si_upper = compat_ptr(from.si_upper);
3040 		break;
3041 	case SIL_FAULT_PKUERR:
3042 		to->si_addr = compat_ptr(from.si_addr);
3043 #ifdef __ARCH_SI_TRAPNO
3044 		to->si_trapno = from.si_trapno;
3045 #endif
3046 		to->si_pkey = from.si_pkey;
3047 		break;
3048 	case SIL_CHLD:
3049 		to->si_pid    = from.si_pid;
3050 		to->si_uid    = from.si_uid;
3051 		to->si_status = from.si_status;
3052 #ifdef CONFIG_X86_X32_ABI
3053 		if (in_x32_syscall()) {
3054 			to->si_utime = from._sifields._sigchld_x32._utime;
3055 			to->si_stime = from._sifields._sigchld_x32._stime;
3056 		} else
3057 #endif
3058 		{
3059 			to->si_utime = from.si_utime;
3060 			to->si_stime = from.si_stime;
3061 		}
3062 		break;
3063 	case SIL_RT:
3064 		to->si_pid = from.si_pid;
3065 		to->si_uid = from.si_uid;
3066 		to->si_int = from.si_int;
3067 		break;
3068 	case SIL_SYS:
3069 		to->si_call_addr = compat_ptr(from.si_call_addr);
3070 		to->si_syscall   = from.si_syscall;
3071 		to->si_arch      = from.si_arch;
3072 		break;
3073 	}
3074 	return 0;
3075 }
3076 #endif /* CONFIG_COMPAT */
3077 
3078 /**
3079  *  do_sigtimedwait - wait for queued signals specified in @which
3080  *  @which: queued signals to wait for
3081  *  @info: if non-null, the signal's siginfo is returned here
3082  *  @ts: upper bound on process time suspension
3083  */
3084 static int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
3085 		    const struct timespec *ts)
3086 {
3087 	ktime_t *to = NULL, timeout = KTIME_MAX;
3088 	struct task_struct *tsk = current;
3089 	sigset_t mask = *which;
3090 	int sig, ret = 0;
3091 
3092 	if (ts) {
3093 		if (!timespec_valid(ts))
3094 			return -EINVAL;
3095 		timeout = timespec_to_ktime(*ts);
3096 		to = &timeout;
3097 	}
3098 
3099 	/*
3100 	 * Invert the set of allowed signals to get those we want to block.
3101 	 */
3102 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3103 	signotset(&mask);
3104 
3105 	spin_lock_irq(&tsk->sighand->siglock);
3106 	sig = dequeue_signal(tsk, &mask, info);
3107 	if (!sig && timeout) {
3108 		/*
3109 		 * None ready, temporarily unblock those we're interested
3110 		 * while we are sleeping in so that we'll be awakened when
3111 		 * they arrive. Unblocking is always fine, we can avoid
3112 		 * set_current_blocked().
3113 		 */
3114 		tsk->real_blocked = tsk->blocked;
3115 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3116 		recalc_sigpending();
3117 		spin_unlock_irq(&tsk->sighand->siglock);
3118 
3119 		__set_current_state(TASK_INTERRUPTIBLE);
3120 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3121 							 HRTIMER_MODE_REL);
3122 		spin_lock_irq(&tsk->sighand->siglock);
3123 		__set_task_blocked(tsk, &tsk->real_blocked);
3124 		sigemptyset(&tsk->real_blocked);
3125 		sig = dequeue_signal(tsk, &mask, info);
3126 	}
3127 	spin_unlock_irq(&tsk->sighand->siglock);
3128 
3129 	if (sig)
3130 		return sig;
3131 	return ret ? -EINTR : -EAGAIN;
3132 }
3133 
3134 /**
3135  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3136  *			in @uthese
3137  *  @uthese: queued signals to wait for
3138  *  @uinfo: if non-null, the signal's siginfo is returned here
3139  *  @uts: upper bound on process time suspension
3140  *  @sigsetsize: size of sigset_t type
3141  */
3142 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3143 		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
3144 		size_t, sigsetsize)
3145 {
3146 	sigset_t these;
3147 	struct timespec ts;
3148 	siginfo_t info;
3149 	int ret;
3150 
3151 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3152 	if (sigsetsize != sizeof(sigset_t))
3153 		return -EINVAL;
3154 
3155 	if (copy_from_user(&these, uthese, sizeof(these)))
3156 		return -EFAULT;
3157 
3158 	if (uts) {
3159 		if (copy_from_user(&ts, uts, sizeof(ts)))
3160 			return -EFAULT;
3161 	}
3162 
3163 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3164 
3165 	if (ret > 0 && uinfo) {
3166 		if (copy_siginfo_to_user(uinfo, &info))
3167 			ret = -EFAULT;
3168 	}
3169 
3170 	return ret;
3171 }
3172 
3173 #ifdef CONFIG_COMPAT
3174 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait, compat_sigset_t __user *, uthese,
3175 		struct compat_siginfo __user *, uinfo,
3176 		struct compat_timespec __user *, uts, compat_size_t, sigsetsize)
3177 {
3178 	sigset_t s;
3179 	struct timespec t;
3180 	siginfo_t info;
3181 	long ret;
3182 
3183 	if (sigsetsize != sizeof(sigset_t))
3184 		return -EINVAL;
3185 
3186 	if (get_compat_sigset(&s, uthese))
3187 		return -EFAULT;
3188 
3189 	if (uts) {
3190 		if (compat_get_timespec(&t, uts))
3191 			return -EFAULT;
3192 	}
3193 
3194 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3195 
3196 	if (ret > 0 && uinfo) {
3197 		if (copy_siginfo_to_user32(uinfo, &info))
3198 			ret = -EFAULT;
3199 	}
3200 
3201 	return ret;
3202 }
3203 #endif
3204 
3205 /**
3206  *  sys_kill - send a signal to a process
3207  *  @pid: the PID of the process
3208  *  @sig: signal to be sent
3209  */
3210 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3211 {
3212 	struct siginfo info;
3213 
3214 	clear_siginfo(&info);
3215 	info.si_signo = sig;
3216 	info.si_errno = 0;
3217 	info.si_code = SI_USER;
3218 	info.si_pid = task_tgid_vnr(current);
3219 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3220 
3221 	return kill_something_info(sig, &info, pid);
3222 }
3223 
3224 static int
3225 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
3226 {
3227 	struct task_struct *p;
3228 	int error = -ESRCH;
3229 
3230 	rcu_read_lock();
3231 	p = find_task_by_vpid(pid);
3232 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3233 		error = check_kill_permission(sig, info, p);
3234 		/*
3235 		 * The null signal is a permissions and process existence
3236 		 * probe.  No signal is actually delivered.
3237 		 */
3238 		if (!error && sig) {
3239 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3240 			/*
3241 			 * If lock_task_sighand() failed we pretend the task
3242 			 * dies after receiving the signal. The window is tiny,
3243 			 * and the signal is private anyway.
3244 			 */
3245 			if (unlikely(error == -ESRCH))
3246 				error = 0;
3247 		}
3248 	}
3249 	rcu_read_unlock();
3250 
3251 	return error;
3252 }
3253 
3254 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3255 {
3256 	struct siginfo info;
3257 
3258 	clear_siginfo(&info);
3259 	info.si_signo = sig;
3260 	info.si_errno = 0;
3261 	info.si_code = SI_TKILL;
3262 	info.si_pid = task_tgid_vnr(current);
3263 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3264 
3265 	return do_send_specific(tgid, pid, sig, &info);
3266 }
3267 
3268 /**
3269  *  sys_tgkill - send signal to one specific thread
3270  *  @tgid: the thread group ID of the thread
3271  *  @pid: the PID of the thread
3272  *  @sig: signal to be sent
3273  *
3274  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3275  *  exists but it's not belonging to the target process anymore. This
3276  *  method solves the problem of threads exiting and PIDs getting reused.
3277  */
3278 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3279 {
3280 	/* This is only valid for single tasks */
3281 	if (pid <= 0 || tgid <= 0)
3282 		return -EINVAL;
3283 
3284 	return do_tkill(tgid, pid, sig);
3285 }
3286 
3287 /**
3288  *  sys_tkill - send signal to one specific task
3289  *  @pid: the PID of the task
3290  *  @sig: signal to be sent
3291  *
3292  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3293  */
3294 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3295 {
3296 	/* This is only valid for single tasks */
3297 	if (pid <= 0)
3298 		return -EINVAL;
3299 
3300 	return do_tkill(0, pid, sig);
3301 }
3302 
3303 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
3304 {
3305 	/* Not even root can pretend to send signals from the kernel.
3306 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3307 	 */
3308 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3309 	    (task_pid_vnr(current) != pid))
3310 		return -EPERM;
3311 
3312 	info->si_signo = sig;
3313 
3314 	/* POSIX.1b doesn't mention process groups.  */
3315 	return kill_proc_info(sig, info, pid);
3316 }
3317 
3318 /**
3319  *  sys_rt_sigqueueinfo - send signal information to a signal
3320  *  @pid: the PID of the thread
3321  *  @sig: signal to be sent
3322  *  @uinfo: signal info to be sent
3323  */
3324 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3325 		siginfo_t __user *, uinfo)
3326 {
3327 	siginfo_t info;
3328 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3329 		return -EFAULT;
3330 	return do_rt_sigqueueinfo(pid, sig, &info);
3331 }
3332 
3333 #ifdef CONFIG_COMPAT
3334 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3335 			compat_pid_t, pid,
3336 			int, sig,
3337 			struct compat_siginfo __user *, uinfo)
3338 {
3339 	siginfo_t info;
3340 	int ret = copy_siginfo_from_user32(&info, uinfo);
3341 	if (unlikely(ret))
3342 		return ret;
3343 	return do_rt_sigqueueinfo(pid, sig, &info);
3344 }
3345 #endif
3346 
3347 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3348 {
3349 	/* This is only valid for single tasks */
3350 	if (pid <= 0 || tgid <= 0)
3351 		return -EINVAL;
3352 
3353 	/* Not even root can pretend to send signals from the kernel.
3354 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3355 	 */
3356 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3357 	    (task_pid_vnr(current) != pid))
3358 		return -EPERM;
3359 
3360 	info->si_signo = sig;
3361 
3362 	return do_send_specific(tgid, pid, sig, info);
3363 }
3364 
3365 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3366 		siginfo_t __user *, uinfo)
3367 {
3368 	siginfo_t info;
3369 
3370 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3371 		return -EFAULT;
3372 
3373 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3374 }
3375 
3376 #ifdef CONFIG_COMPAT
3377 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3378 			compat_pid_t, tgid,
3379 			compat_pid_t, pid,
3380 			int, sig,
3381 			struct compat_siginfo __user *, uinfo)
3382 {
3383 	siginfo_t info;
3384 
3385 	if (copy_siginfo_from_user32(&info, uinfo))
3386 		return -EFAULT;
3387 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3388 }
3389 #endif
3390 
3391 /*
3392  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3393  */
3394 void kernel_sigaction(int sig, __sighandler_t action)
3395 {
3396 	spin_lock_irq(&current->sighand->siglock);
3397 	current->sighand->action[sig - 1].sa.sa_handler = action;
3398 	if (action == SIG_IGN) {
3399 		sigset_t mask;
3400 
3401 		sigemptyset(&mask);
3402 		sigaddset(&mask, sig);
3403 
3404 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3405 		flush_sigqueue_mask(&mask, &current->pending);
3406 		recalc_sigpending();
3407 	}
3408 	spin_unlock_irq(&current->sighand->siglock);
3409 }
3410 EXPORT_SYMBOL(kernel_sigaction);
3411 
3412 void __weak sigaction_compat_abi(struct k_sigaction *act,
3413 		struct k_sigaction *oact)
3414 {
3415 }
3416 
3417 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3418 {
3419 	struct task_struct *p = current, *t;
3420 	struct k_sigaction *k;
3421 	sigset_t mask;
3422 
3423 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3424 		return -EINVAL;
3425 
3426 	k = &p->sighand->action[sig-1];
3427 
3428 	spin_lock_irq(&p->sighand->siglock);
3429 	if (oact)
3430 		*oact = *k;
3431 
3432 	sigaction_compat_abi(act, oact);
3433 
3434 	if (act) {
3435 		sigdelsetmask(&act->sa.sa_mask,
3436 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3437 		*k = *act;
3438 		/*
3439 		 * POSIX 3.3.1.3:
3440 		 *  "Setting a signal action to SIG_IGN for a signal that is
3441 		 *   pending shall cause the pending signal to be discarded,
3442 		 *   whether or not it is blocked."
3443 		 *
3444 		 *  "Setting a signal action to SIG_DFL for a signal that is
3445 		 *   pending and whose default action is to ignore the signal
3446 		 *   (for example, SIGCHLD), shall cause the pending signal to
3447 		 *   be discarded, whether or not it is blocked"
3448 		 */
3449 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3450 			sigemptyset(&mask);
3451 			sigaddset(&mask, sig);
3452 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3453 			for_each_thread(p, t)
3454 				flush_sigqueue_mask(&mask, &t->pending);
3455 		}
3456 	}
3457 
3458 	spin_unlock_irq(&p->sighand->siglock);
3459 	return 0;
3460 }
3461 
3462 static int
3463 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp)
3464 {
3465 	struct task_struct *t = current;
3466 
3467 	if (oss) {
3468 		memset(oss, 0, sizeof(stack_t));
3469 		oss->ss_sp = (void __user *) t->sas_ss_sp;
3470 		oss->ss_size = t->sas_ss_size;
3471 		oss->ss_flags = sas_ss_flags(sp) |
3472 			(current->sas_ss_flags & SS_FLAG_BITS);
3473 	}
3474 
3475 	if (ss) {
3476 		void __user *ss_sp = ss->ss_sp;
3477 		size_t ss_size = ss->ss_size;
3478 		unsigned ss_flags = ss->ss_flags;
3479 		int ss_mode;
3480 
3481 		if (unlikely(on_sig_stack(sp)))
3482 			return -EPERM;
3483 
3484 		ss_mode = ss_flags & ~SS_FLAG_BITS;
3485 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3486 				ss_mode != 0))
3487 			return -EINVAL;
3488 
3489 		if (ss_mode == SS_DISABLE) {
3490 			ss_size = 0;
3491 			ss_sp = NULL;
3492 		} else {
3493 			if (unlikely(ss_size < MINSIGSTKSZ))
3494 				return -ENOMEM;
3495 		}
3496 
3497 		t->sas_ss_sp = (unsigned long) ss_sp;
3498 		t->sas_ss_size = ss_size;
3499 		t->sas_ss_flags = ss_flags;
3500 	}
3501 	return 0;
3502 }
3503 
3504 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3505 {
3506 	stack_t new, old;
3507 	int err;
3508 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
3509 		return -EFAULT;
3510 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
3511 			      current_user_stack_pointer());
3512 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
3513 		err = -EFAULT;
3514 	return err;
3515 }
3516 
3517 int restore_altstack(const stack_t __user *uss)
3518 {
3519 	stack_t new;
3520 	if (copy_from_user(&new, uss, sizeof(stack_t)))
3521 		return -EFAULT;
3522 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer());
3523 	/* squash all but EFAULT for now */
3524 	return 0;
3525 }
3526 
3527 int __save_altstack(stack_t __user *uss, unsigned long sp)
3528 {
3529 	struct task_struct *t = current;
3530 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3531 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3532 		__put_user(t->sas_ss_size, &uss->ss_size);
3533 	if (err)
3534 		return err;
3535 	if (t->sas_ss_flags & SS_AUTODISARM)
3536 		sas_ss_reset(t);
3537 	return 0;
3538 }
3539 
3540 #ifdef CONFIG_COMPAT
3541 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
3542 				 compat_stack_t __user *uoss_ptr)
3543 {
3544 	stack_t uss, uoss;
3545 	int ret;
3546 
3547 	if (uss_ptr) {
3548 		compat_stack_t uss32;
3549 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3550 			return -EFAULT;
3551 		uss.ss_sp = compat_ptr(uss32.ss_sp);
3552 		uss.ss_flags = uss32.ss_flags;
3553 		uss.ss_size = uss32.ss_size;
3554 	}
3555 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
3556 			     compat_user_stack_pointer());
3557 	if (ret >= 0 && uoss_ptr)  {
3558 		compat_stack_t old;
3559 		memset(&old, 0, sizeof(old));
3560 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
3561 		old.ss_flags = uoss.ss_flags;
3562 		old.ss_size = uoss.ss_size;
3563 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
3564 			ret = -EFAULT;
3565 	}
3566 	return ret;
3567 }
3568 
3569 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3570 			const compat_stack_t __user *, uss_ptr,
3571 			compat_stack_t __user *, uoss_ptr)
3572 {
3573 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
3574 }
3575 
3576 int compat_restore_altstack(const compat_stack_t __user *uss)
3577 {
3578 	int err = do_compat_sigaltstack(uss, NULL);
3579 	/* squash all but -EFAULT for now */
3580 	return err == -EFAULT ? err : 0;
3581 }
3582 
3583 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3584 {
3585 	int err;
3586 	struct task_struct *t = current;
3587 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3588 			 &uss->ss_sp) |
3589 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3590 		__put_user(t->sas_ss_size, &uss->ss_size);
3591 	if (err)
3592 		return err;
3593 	if (t->sas_ss_flags & SS_AUTODISARM)
3594 		sas_ss_reset(t);
3595 	return 0;
3596 }
3597 #endif
3598 
3599 #ifdef __ARCH_WANT_SYS_SIGPENDING
3600 
3601 /**
3602  *  sys_sigpending - examine pending signals
3603  *  @uset: where mask of pending signal is returned
3604  */
3605 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
3606 {
3607 	sigset_t set;
3608 
3609 	if (sizeof(old_sigset_t) > sizeof(*uset))
3610 		return -EINVAL;
3611 
3612 	do_sigpending(&set);
3613 
3614 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
3615 		return -EFAULT;
3616 
3617 	return 0;
3618 }
3619 
3620 #ifdef CONFIG_COMPAT
3621 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
3622 {
3623 	sigset_t set;
3624 
3625 	do_sigpending(&set);
3626 
3627 	return put_user(set.sig[0], set32);
3628 }
3629 #endif
3630 
3631 #endif
3632 
3633 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3634 /**
3635  *  sys_sigprocmask - examine and change blocked signals
3636  *  @how: whether to add, remove, or set signals
3637  *  @nset: signals to add or remove (if non-null)
3638  *  @oset: previous value of signal mask if non-null
3639  *
3640  * Some platforms have their own version with special arguments;
3641  * others support only sys_rt_sigprocmask.
3642  */
3643 
3644 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3645 		old_sigset_t __user *, oset)
3646 {
3647 	old_sigset_t old_set, new_set;
3648 	sigset_t new_blocked;
3649 
3650 	old_set = current->blocked.sig[0];
3651 
3652 	if (nset) {
3653 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3654 			return -EFAULT;
3655 
3656 		new_blocked = current->blocked;
3657 
3658 		switch (how) {
3659 		case SIG_BLOCK:
3660 			sigaddsetmask(&new_blocked, new_set);
3661 			break;
3662 		case SIG_UNBLOCK:
3663 			sigdelsetmask(&new_blocked, new_set);
3664 			break;
3665 		case SIG_SETMASK:
3666 			new_blocked.sig[0] = new_set;
3667 			break;
3668 		default:
3669 			return -EINVAL;
3670 		}
3671 
3672 		set_current_blocked(&new_blocked);
3673 	}
3674 
3675 	if (oset) {
3676 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3677 			return -EFAULT;
3678 	}
3679 
3680 	return 0;
3681 }
3682 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3683 
3684 #ifndef CONFIG_ODD_RT_SIGACTION
3685 /**
3686  *  sys_rt_sigaction - alter an action taken by a process
3687  *  @sig: signal to be sent
3688  *  @act: new sigaction
3689  *  @oact: used to save the previous sigaction
3690  *  @sigsetsize: size of sigset_t type
3691  */
3692 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3693 		const struct sigaction __user *, act,
3694 		struct sigaction __user *, oact,
3695 		size_t, sigsetsize)
3696 {
3697 	struct k_sigaction new_sa, old_sa;
3698 	int ret;
3699 
3700 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3701 	if (sigsetsize != sizeof(sigset_t))
3702 		return -EINVAL;
3703 
3704 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3705 		return -EFAULT;
3706 
3707 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3708 	if (ret)
3709 		return ret;
3710 
3711 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3712 		return -EFAULT;
3713 
3714 	return 0;
3715 }
3716 #ifdef CONFIG_COMPAT
3717 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3718 		const struct compat_sigaction __user *, act,
3719 		struct compat_sigaction __user *, oact,
3720 		compat_size_t, sigsetsize)
3721 {
3722 	struct k_sigaction new_ka, old_ka;
3723 #ifdef __ARCH_HAS_SA_RESTORER
3724 	compat_uptr_t restorer;
3725 #endif
3726 	int ret;
3727 
3728 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3729 	if (sigsetsize != sizeof(compat_sigset_t))
3730 		return -EINVAL;
3731 
3732 	if (act) {
3733 		compat_uptr_t handler;
3734 		ret = get_user(handler, &act->sa_handler);
3735 		new_ka.sa.sa_handler = compat_ptr(handler);
3736 #ifdef __ARCH_HAS_SA_RESTORER
3737 		ret |= get_user(restorer, &act->sa_restorer);
3738 		new_ka.sa.sa_restorer = compat_ptr(restorer);
3739 #endif
3740 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
3741 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3742 		if (ret)
3743 			return -EFAULT;
3744 	}
3745 
3746 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3747 	if (!ret && oact) {
3748 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3749 			       &oact->sa_handler);
3750 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
3751 					 sizeof(oact->sa_mask));
3752 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3753 #ifdef __ARCH_HAS_SA_RESTORER
3754 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3755 				&oact->sa_restorer);
3756 #endif
3757 	}
3758 	return ret;
3759 }
3760 #endif
3761 #endif /* !CONFIG_ODD_RT_SIGACTION */
3762 
3763 #ifdef CONFIG_OLD_SIGACTION
3764 SYSCALL_DEFINE3(sigaction, int, sig,
3765 		const struct old_sigaction __user *, act,
3766 	        struct old_sigaction __user *, oact)
3767 {
3768 	struct k_sigaction new_ka, old_ka;
3769 	int ret;
3770 
3771 	if (act) {
3772 		old_sigset_t mask;
3773 		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3774 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3775 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3776 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3777 		    __get_user(mask, &act->sa_mask))
3778 			return -EFAULT;
3779 #ifdef __ARCH_HAS_KA_RESTORER
3780 		new_ka.ka_restorer = NULL;
3781 #endif
3782 		siginitset(&new_ka.sa.sa_mask, mask);
3783 	}
3784 
3785 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3786 
3787 	if (!ret && oact) {
3788 		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3789 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3790 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3791 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3792 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3793 			return -EFAULT;
3794 	}
3795 
3796 	return ret;
3797 }
3798 #endif
3799 #ifdef CONFIG_COMPAT_OLD_SIGACTION
3800 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3801 		const struct compat_old_sigaction __user *, act,
3802 	        struct compat_old_sigaction __user *, oact)
3803 {
3804 	struct k_sigaction new_ka, old_ka;
3805 	int ret;
3806 	compat_old_sigset_t mask;
3807 	compat_uptr_t handler, restorer;
3808 
3809 	if (act) {
3810 		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3811 		    __get_user(handler, &act->sa_handler) ||
3812 		    __get_user(restorer, &act->sa_restorer) ||
3813 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3814 		    __get_user(mask, &act->sa_mask))
3815 			return -EFAULT;
3816 
3817 #ifdef __ARCH_HAS_KA_RESTORER
3818 		new_ka.ka_restorer = NULL;
3819 #endif
3820 		new_ka.sa.sa_handler = compat_ptr(handler);
3821 		new_ka.sa.sa_restorer = compat_ptr(restorer);
3822 		siginitset(&new_ka.sa.sa_mask, mask);
3823 	}
3824 
3825 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3826 
3827 	if (!ret && oact) {
3828 		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3829 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3830 			       &oact->sa_handler) ||
3831 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3832 			       &oact->sa_restorer) ||
3833 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3834 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3835 			return -EFAULT;
3836 	}
3837 	return ret;
3838 }
3839 #endif
3840 
3841 #ifdef CONFIG_SGETMASK_SYSCALL
3842 
3843 /*
3844  * For backwards compatibility.  Functionality superseded by sigprocmask.
3845  */
3846 SYSCALL_DEFINE0(sgetmask)
3847 {
3848 	/* SMP safe */
3849 	return current->blocked.sig[0];
3850 }
3851 
3852 SYSCALL_DEFINE1(ssetmask, int, newmask)
3853 {
3854 	int old = current->blocked.sig[0];
3855 	sigset_t newset;
3856 
3857 	siginitset(&newset, newmask);
3858 	set_current_blocked(&newset);
3859 
3860 	return old;
3861 }
3862 #endif /* CONFIG_SGETMASK_SYSCALL */
3863 
3864 #ifdef __ARCH_WANT_SYS_SIGNAL
3865 /*
3866  * For backwards compatibility.  Functionality superseded by sigaction.
3867  */
3868 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3869 {
3870 	struct k_sigaction new_sa, old_sa;
3871 	int ret;
3872 
3873 	new_sa.sa.sa_handler = handler;
3874 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3875 	sigemptyset(&new_sa.sa.sa_mask);
3876 
3877 	ret = do_sigaction(sig, &new_sa, &old_sa);
3878 
3879 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3880 }
3881 #endif /* __ARCH_WANT_SYS_SIGNAL */
3882 
3883 #ifdef __ARCH_WANT_SYS_PAUSE
3884 
3885 SYSCALL_DEFINE0(pause)
3886 {
3887 	while (!signal_pending(current)) {
3888 		__set_current_state(TASK_INTERRUPTIBLE);
3889 		schedule();
3890 	}
3891 	return -ERESTARTNOHAND;
3892 }
3893 
3894 #endif
3895 
3896 static int sigsuspend(sigset_t *set)
3897 {
3898 	current->saved_sigmask = current->blocked;
3899 	set_current_blocked(set);
3900 
3901 	while (!signal_pending(current)) {
3902 		__set_current_state(TASK_INTERRUPTIBLE);
3903 		schedule();
3904 	}
3905 	set_restore_sigmask();
3906 	return -ERESTARTNOHAND;
3907 }
3908 
3909 /**
3910  *  sys_rt_sigsuspend - replace the signal mask for a value with the
3911  *	@unewset value until a signal is received
3912  *  @unewset: new signal mask value
3913  *  @sigsetsize: size of sigset_t type
3914  */
3915 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3916 {
3917 	sigset_t newset;
3918 
3919 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3920 	if (sigsetsize != sizeof(sigset_t))
3921 		return -EINVAL;
3922 
3923 	if (copy_from_user(&newset, unewset, sizeof(newset)))
3924 		return -EFAULT;
3925 	return sigsuspend(&newset);
3926 }
3927 
3928 #ifdef CONFIG_COMPAT
3929 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3930 {
3931 	sigset_t newset;
3932 
3933 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3934 	if (sigsetsize != sizeof(sigset_t))
3935 		return -EINVAL;
3936 
3937 	if (get_compat_sigset(&newset, unewset))
3938 		return -EFAULT;
3939 	return sigsuspend(&newset);
3940 }
3941 #endif
3942 
3943 #ifdef CONFIG_OLD_SIGSUSPEND
3944 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3945 {
3946 	sigset_t blocked;
3947 	siginitset(&blocked, mask);
3948 	return sigsuspend(&blocked);
3949 }
3950 #endif
3951 #ifdef CONFIG_OLD_SIGSUSPEND3
3952 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3953 {
3954 	sigset_t blocked;
3955 	siginitset(&blocked, mask);
3956 	return sigsuspend(&blocked);
3957 }
3958 #endif
3959 
3960 __weak const char *arch_vma_name(struct vm_area_struct *vma)
3961 {
3962 	return NULL;
3963 }
3964 
3965 void __init signals_init(void)
3966 {
3967 	/* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
3968 	BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
3969 		!= offsetof(struct siginfo, _sifields._pad));
3970 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
3971 
3972 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3973 }
3974 
3975 #ifdef CONFIG_KGDB_KDB
3976 #include <linux/kdb.h>
3977 /*
3978  * kdb_send_sig - Allows kdb to send signals without exposing
3979  * signal internals.  This function checks if the required locks are
3980  * available before calling the main signal code, to avoid kdb
3981  * deadlocks.
3982  */
3983 void kdb_send_sig(struct task_struct *t, int sig)
3984 {
3985 	static struct task_struct *kdb_prev_t;
3986 	int new_t, ret;
3987 	if (!spin_trylock(&t->sighand->siglock)) {
3988 		kdb_printf("Can't do kill command now.\n"
3989 			   "The sigmask lock is held somewhere else in "
3990 			   "kernel, try again later\n");
3991 		return;
3992 	}
3993 	new_t = kdb_prev_t != t;
3994 	kdb_prev_t = t;
3995 	if (t->state != TASK_RUNNING && new_t) {
3996 		spin_unlock(&t->sighand->siglock);
3997 		kdb_printf("Process is not RUNNING, sending a signal from "
3998 			   "kdb risks deadlock\n"
3999 			   "on the run queue locks. "
4000 			   "The signal has _not_ been sent.\n"
4001 			   "Reissue the kill command if you want to risk "
4002 			   "the deadlock.\n");
4003 		return;
4004 	}
4005 	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4006 	spin_unlock(&t->sighand->siglock);
4007 	if (ret)
4008 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4009 			   sig, t->pid);
4010 	else
4011 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4012 }
4013 #endif	/* CONFIG_KGDB_KDB */
4014