xref: /linux/kernel/signal.c (revision b58b13f156c00c2457035b7071eaaac105fe6836)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/mm.h>
26 #include <linux/proc_fs.h>
27 #include <linux/tty.h>
28 #include <linux/binfmts.h>
29 #include <linux/coredump.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/ptrace.h>
33 #include <linux/signal.h>
34 #include <linux/signalfd.h>
35 #include <linux/ratelimit.h>
36 #include <linux/task_work.h>
37 #include <linux/capability.h>
38 #include <linux/freezer.h>
39 #include <linux/pid_namespace.h>
40 #include <linux/nsproxy.h>
41 #include <linux/user_namespace.h>
42 #include <linux/uprobes.h>
43 #include <linux/compat.h>
44 #include <linux/cn_proc.h>
45 #include <linux/compiler.h>
46 #include <linux/posix-timers.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49 #include <linux/sysctl.h>
50 
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/signal.h>
53 
54 #include <asm/param.h>
55 #include <linux/uaccess.h>
56 #include <asm/unistd.h>
57 #include <asm/siginfo.h>
58 #include <asm/cacheflush.h>
59 #include <asm/syscall.h>	/* for syscall_get_* */
60 
61 /*
62  * SLAB caches for signal bits.
63  */
64 
65 static struct kmem_cache *sigqueue_cachep;
66 
67 int print_fatal_signals __read_mostly;
68 
69 static void __user *sig_handler(struct task_struct *t, int sig)
70 {
71 	return t->sighand->action[sig - 1].sa.sa_handler;
72 }
73 
74 static inline bool sig_handler_ignored(void __user *handler, int sig)
75 {
76 	/* Is it explicitly or implicitly ignored? */
77 	return handler == SIG_IGN ||
78 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
79 }
80 
81 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
82 {
83 	void __user *handler;
84 
85 	handler = sig_handler(t, sig);
86 
87 	/* SIGKILL and SIGSTOP may not be sent to the global init */
88 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
89 		return true;
90 
91 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
92 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
93 		return true;
94 
95 	/* Only allow kernel generated signals to this kthread */
96 	if (unlikely((t->flags & PF_KTHREAD) &&
97 		     (handler == SIG_KTHREAD_KERNEL) && !force))
98 		return true;
99 
100 	return sig_handler_ignored(handler, sig);
101 }
102 
103 static bool sig_ignored(struct task_struct *t, int sig, bool force)
104 {
105 	/*
106 	 * Blocked signals are never ignored, since the
107 	 * signal handler may change by the time it is
108 	 * unblocked.
109 	 */
110 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
111 		return false;
112 
113 	/*
114 	 * Tracers may want to know about even ignored signal unless it
115 	 * is SIGKILL which can't be reported anyway but can be ignored
116 	 * by SIGNAL_UNKILLABLE task.
117 	 */
118 	if (t->ptrace && sig != SIGKILL)
119 		return false;
120 
121 	return sig_task_ignored(t, sig, force);
122 }
123 
124 /*
125  * Re-calculate pending state from the set of locally pending
126  * signals, globally pending signals, and blocked signals.
127  */
128 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
129 {
130 	unsigned long ready;
131 	long i;
132 
133 	switch (_NSIG_WORDS) {
134 	default:
135 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
136 			ready |= signal->sig[i] &~ blocked->sig[i];
137 		break;
138 
139 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
140 		ready |= signal->sig[2] &~ blocked->sig[2];
141 		ready |= signal->sig[1] &~ blocked->sig[1];
142 		ready |= signal->sig[0] &~ blocked->sig[0];
143 		break;
144 
145 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
146 		ready |= signal->sig[0] &~ blocked->sig[0];
147 		break;
148 
149 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
150 	}
151 	return ready !=	0;
152 }
153 
154 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
155 
156 static bool recalc_sigpending_tsk(struct task_struct *t)
157 {
158 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
159 	    PENDING(&t->pending, &t->blocked) ||
160 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
161 	    cgroup_task_frozen(t)) {
162 		set_tsk_thread_flag(t, TIF_SIGPENDING);
163 		return true;
164 	}
165 
166 	/*
167 	 * We must never clear the flag in another thread, or in current
168 	 * when it's possible the current syscall is returning -ERESTART*.
169 	 * So we don't clear it here, and only callers who know they should do.
170 	 */
171 	return false;
172 }
173 
174 void recalc_sigpending(void)
175 {
176 	if (!recalc_sigpending_tsk(current) && !freezing(current))
177 		clear_thread_flag(TIF_SIGPENDING);
178 
179 }
180 EXPORT_SYMBOL(recalc_sigpending);
181 
182 void calculate_sigpending(void)
183 {
184 	/* Have any signals or users of TIF_SIGPENDING been delayed
185 	 * until after fork?
186 	 */
187 	spin_lock_irq(&current->sighand->siglock);
188 	set_tsk_thread_flag(current, TIF_SIGPENDING);
189 	recalc_sigpending();
190 	spin_unlock_irq(&current->sighand->siglock);
191 }
192 
193 /* Given the mask, find the first available signal that should be serviced. */
194 
195 #define SYNCHRONOUS_MASK \
196 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
197 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
198 
199 int next_signal(struct sigpending *pending, sigset_t *mask)
200 {
201 	unsigned long i, *s, *m, x;
202 	int sig = 0;
203 
204 	s = pending->signal.sig;
205 	m = mask->sig;
206 
207 	/*
208 	 * Handle the first word specially: it contains the
209 	 * synchronous signals that need to be dequeued first.
210 	 */
211 	x = *s &~ *m;
212 	if (x) {
213 		if (x & SYNCHRONOUS_MASK)
214 			x &= SYNCHRONOUS_MASK;
215 		sig = ffz(~x) + 1;
216 		return sig;
217 	}
218 
219 	switch (_NSIG_WORDS) {
220 	default:
221 		for (i = 1; i < _NSIG_WORDS; ++i) {
222 			x = *++s &~ *++m;
223 			if (!x)
224 				continue;
225 			sig = ffz(~x) + i*_NSIG_BPW + 1;
226 			break;
227 		}
228 		break;
229 
230 	case 2:
231 		x = s[1] &~ m[1];
232 		if (!x)
233 			break;
234 		sig = ffz(~x) + _NSIG_BPW + 1;
235 		break;
236 
237 	case 1:
238 		/* Nothing to do */
239 		break;
240 	}
241 
242 	return sig;
243 }
244 
245 static inline void print_dropped_signal(int sig)
246 {
247 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
248 
249 	if (!print_fatal_signals)
250 		return;
251 
252 	if (!__ratelimit(&ratelimit_state))
253 		return;
254 
255 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
256 				current->comm, current->pid, sig);
257 }
258 
259 /**
260  * task_set_jobctl_pending - set jobctl pending bits
261  * @task: target task
262  * @mask: pending bits to set
263  *
264  * Clear @mask from @task->jobctl.  @mask must be subset of
265  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
266  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
267  * cleared.  If @task is already being killed or exiting, this function
268  * becomes noop.
269  *
270  * CONTEXT:
271  * Must be called with @task->sighand->siglock held.
272  *
273  * RETURNS:
274  * %true if @mask is set, %false if made noop because @task was dying.
275  */
276 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
277 {
278 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
279 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
280 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
281 
282 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
283 		return false;
284 
285 	if (mask & JOBCTL_STOP_SIGMASK)
286 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
287 
288 	task->jobctl |= mask;
289 	return true;
290 }
291 
292 /**
293  * task_clear_jobctl_trapping - clear jobctl trapping bit
294  * @task: target task
295  *
296  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
297  * Clear it and wake up the ptracer.  Note that we don't need any further
298  * locking.  @task->siglock guarantees that @task->parent points to the
299  * ptracer.
300  *
301  * CONTEXT:
302  * Must be called with @task->sighand->siglock held.
303  */
304 void task_clear_jobctl_trapping(struct task_struct *task)
305 {
306 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
307 		task->jobctl &= ~JOBCTL_TRAPPING;
308 		smp_mb();	/* advised by wake_up_bit() */
309 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
310 	}
311 }
312 
313 /**
314  * task_clear_jobctl_pending - clear jobctl pending bits
315  * @task: target task
316  * @mask: pending bits to clear
317  *
318  * Clear @mask from @task->jobctl.  @mask must be subset of
319  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
320  * STOP bits are cleared together.
321  *
322  * If clearing of @mask leaves no stop or trap pending, this function calls
323  * task_clear_jobctl_trapping().
324  *
325  * CONTEXT:
326  * Must be called with @task->sighand->siglock held.
327  */
328 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
329 {
330 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
331 
332 	if (mask & JOBCTL_STOP_PENDING)
333 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
334 
335 	task->jobctl &= ~mask;
336 
337 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
338 		task_clear_jobctl_trapping(task);
339 }
340 
341 /**
342  * task_participate_group_stop - participate in a group stop
343  * @task: task participating in a group stop
344  *
345  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
346  * Group stop states are cleared and the group stop count is consumed if
347  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
348  * stop, the appropriate `SIGNAL_*` flags are set.
349  *
350  * CONTEXT:
351  * Must be called with @task->sighand->siglock held.
352  *
353  * RETURNS:
354  * %true if group stop completion should be notified to the parent, %false
355  * otherwise.
356  */
357 static bool task_participate_group_stop(struct task_struct *task)
358 {
359 	struct signal_struct *sig = task->signal;
360 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
361 
362 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
363 
364 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
365 
366 	if (!consume)
367 		return false;
368 
369 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
370 		sig->group_stop_count--;
371 
372 	/*
373 	 * Tell the caller to notify completion iff we are entering into a
374 	 * fresh group stop.  Read comment in do_signal_stop() for details.
375 	 */
376 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
377 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
378 		return true;
379 	}
380 	return false;
381 }
382 
383 void task_join_group_stop(struct task_struct *task)
384 {
385 	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
386 	struct signal_struct *sig = current->signal;
387 
388 	if (sig->group_stop_count) {
389 		sig->group_stop_count++;
390 		mask |= JOBCTL_STOP_CONSUME;
391 	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
392 		return;
393 
394 	/* Have the new thread join an on-going signal group stop */
395 	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
396 }
397 
398 /*
399  * allocate a new signal queue record
400  * - this may be called without locks if and only if t == current, otherwise an
401  *   appropriate lock must be held to stop the target task from exiting
402  */
403 static struct sigqueue *
404 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
405 		 int override_rlimit, const unsigned int sigqueue_flags)
406 {
407 	struct sigqueue *q = NULL;
408 	struct ucounts *ucounts;
409 	long sigpending;
410 
411 	/*
412 	 * Protect access to @t credentials. This can go away when all
413 	 * callers hold rcu read lock.
414 	 *
415 	 * NOTE! A pending signal will hold on to the user refcount,
416 	 * and we get/put the refcount only when the sigpending count
417 	 * changes from/to zero.
418 	 */
419 	rcu_read_lock();
420 	ucounts = task_ucounts(t);
421 	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
422 	rcu_read_unlock();
423 	if (!sigpending)
424 		return NULL;
425 
426 	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
427 		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
428 	} else {
429 		print_dropped_signal(sig);
430 	}
431 
432 	if (unlikely(q == NULL)) {
433 		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
434 	} else {
435 		INIT_LIST_HEAD(&q->list);
436 		q->flags = sigqueue_flags;
437 		q->ucounts = ucounts;
438 	}
439 	return q;
440 }
441 
442 static void __sigqueue_free(struct sigqueue *q)
443 {
444 	if (q->flags & SIGQUEUE_PREALLOC)
445 		return;
446 	if (q->ucounts) {
447 		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
448 		q->ucounts = NULL;
449 	}
450 	kmem_cache_free(sigqueue_cachep, q);
451 }
452 
453 void flush_sigqueue(struct sigpending *queue)
454 {
455 	struct sigqueue *q;
456 
457 	sigemptyset(&queue->signal);
458 	while (!list_empty(&queue->list)) {
459 		q = list_entry(queue->list.next, struct sigqueue , list);
460 		list_del_init(&q->list);
461 		__sigqueue_free(q);
462 	}
463 }
464 
465 /*
466  * Flush all pending signals for this kthread.
467  */
468 void flush_signals(struct task_struct *t)
469 {
470 	unsigned long flags;
471 
472 	spin_lock_irqsave(&t->sighand->siglock, flags);
473 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
474 	flush_sigqueue(&t->pending);
475 	flush_sigqueue(&t->signal->shared_pending);
476 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
477 }
478 EXPORT_SYMBOL(flush_signals);
479 
480 #ifdef CONFIG_POSIX_TIMERS
481 static void __flush_itimer_signals(struct sigpending *pending)
482 {
483 	sigset_t signal, retain;
484 	struct sigqueue *q, *n;
485 
486 	signal = pending->signal;
487 	sigemptyset(&retain);
488 
489 	list_for_each_entry_safe(q, n, &pending->list, list) {
490 		int sig = q->info.si_signo;
491 
492 		if (likely(q->info.si_code != SI_TIMER)) {
493 			sigaddset(&retain, sig);
494 		} else {
495 			sigdelset(&signal, sig);
496 			list_del_init(&q->list);
497 			__sigqueue_free(q);
498 		}
499 	}
500 
501 	sigorsets(&pending->signal, &signal, &retain);
502 }
503 
504 void flush_itimer_signals(void)
505 {
506 	struct task_struct *tsk = current;
507 	unsigned long flags;
508 
509 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
510 	__flush_itimer_signals(&tsk->pending);
511 	__flush_itimer_signals(&tsk->signal->shared_pending);
512 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
513 }
514 #endif
515 
516 void ignore_signals(struct task_struct *t)
517 {
518 	int i;
519 
520 	for (i = 0; i < _NSIG; ++i)
521 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
522 
523 	flush_signals(t);
524 }
525 
526 /*
527  * Flush all handlers for a task.
528  */
529 
530 void
531 flush_signal_handlers(struct task_struct *t, int force_default)
532 {
533 	int i;
534 	struct k_sigaction *ka = &t->sighand->action[0];
535 	for (i = _NSIG ; i != 0 ; i--) {
536 		if (force_default || ka->sa.sa_handler != SIG_IGN)
537 			ka->sa.sa_handler = SIG_DFL;
538 		ka->sa.sa_flags = 0;
539 #ifdef __ARCH_HAS_SA_RESTORER
540 		ka->sa.sa_restorer = NULL;
541 #endif
542 		sigemptyset(&ka->sa.sa_mask);
543 		ka++;
544 	}
545 }
546 
547 bool unhandled_signal(struct task_struct *tsk, int sig)
548 {
549 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
550 	if (is_global_init(tsk))
551 		return true;
552 
553 	if (handler != SIG_IGN && handler != SIG_DFL)
554 		return false;
555 
556 	/* If dying, we handle all new signals by ignoring them */
557 	if (fatal_signal_pending(tsk))
558 		return false;
559 
560 	/* if ptraced, let the tracer determine */
561 	return !tsk->ptrace;
562 }
563 
564 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
565 			   bool *resched_timer)
566 {
567 	struct sigqueue *q, *first = NULL;
568 
569 	/*
570 	 * Collect the siginfo appropriate to this signal.  Check if
571 	 * there is another siginfo for the same signal.
572 	*/
573 	list_for_each_entry(q, &list->list, list) {
574 		if (q->info.si_signo == sig) {
575 			if (first)
576 				goto still_pending;
577 			first = q;
578 		}
579 	}
580 
581 	sigdelset(&list->signal, sig);
582 
583 	if (first) {
584 still_pending:
585 		list_del_init(&first->list);
586 		copy_siginfo(info, &first->info);
587 
588 		*resched_timer =
589 			(first->flags & SIGQUEUE_PREALLOC) &&
590 			(info->si_code == SI_TIMER) &&
591 			(info->si_sys_private);
592 
593 		__sigqueue_free(first);
594 	} else {
595 		/*
596 		 * Ok, it wasn't in the queue.  This must be
597 		 * a fast-pathed signal or we must have been
598 		 * out of queue space.  So zero out the info.
599 		 */
600 		clear_siginfo(info);
601 		info->si_signo = sig;
602 		info->si_errno = 0;
603 		info->si_code = SI_USER;
604 		info->si_pid = 0;
605 		info->si_uid = 0;
606 	}
607 }
608 
609 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
610 			kernel_siginfo_t *info, bool *resched_timer)
611 {
612 	int sig = next_signal(pending, mask);
613 
614 	if (sig)
615 		collect_signal(sig, pending, info, resched_timer);
616 	return sig;
617 }
618 
619 /*
620  * Dequeue a signal and return the element to the caller, which is
621  * expected to free it.
622  *
623  * All callers have to hold the siglock.
624  */
625 int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
626 		   kernel_siginfo_t *info, enum pid_type *type)
627 {
628 	bool resched_timer = false;
629 	int signr;
630 
631 	/* We only dequeue private signals from ourselves, we don't let
632 	 * signalfd steal them
633 	 */
634 	*type = PIDTYPE_PID;
635 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
636 	if (!signr) {
637 		*type = PIDTYPE_TGID;
638 		signr = __dequeue_signal(&tsk->signal->shared_pending,
639 					 mask, info, &resched_timer);
640 #ifdef CONFIG_POSIX_TIMERS
641 		/*
642 		 * itimer signal ?
643 		 *
644 		 * itimers are process shared and we restart periodic
645 		 * itimers in the signal delivery path to prevent DoS
646 		 * attacks in the high resolution timer case. This is
647 		 * compliant with the old way of self-restarting
648 		 * itimers, as the SIGALRM is a legacy signal and only
649 		 * queued once. Changing the restart behaviour to
650 		 * restart the timer in the signal dequeue path is
651 		 * reducing the timer noise on heavy loaded !highres
652 		 * systems too.
653 		 */
654 		if (unlikely(signr == SIGALRM)) {
655 			struct hrtimer *tmr = &tsk->signal->real_timer;
656 
657 			if (!hrtimer_is_queued(tmr) &&
658 			    tsk->signal->it_real_incr != 0) {
659 				hrtimer_forward(tmr, tmr->base->get_time(),
660 						tsk->signal->it_real_incr);
661 				hrtimer_restart(tmr);
662 			}
663 		}
664 #endif
665 	}
666 
667 	recalc_sigpending();
668 	if (!signr)
669 		return 0;
670 
671 	if (unlikely(sig_kernel_stop(signr))) {
672 		/*
673 		 * Set a marker that we have dequeued a stop signal.  Our
674 		 * caller might release the siglock and then the pending
675 		 * stop signal it is about to process is no longer in the
676 		 * pending bitmasks, but must still be cleared by a SIGCONT
677 		 * (and overruled by a SIGKILL).  So those cases clear this
678 		 * shared flag after we've set it.  Note that this flag may
679 		 * remain set after the signal we return is ignored or
680 		 * handled.  That doesn't matter because its only purpose
681 		 * is to alert stop-signal processing code when another
682 		 * processor has come along and cleared the flag.
683 		 */
684 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
685 	}
686 #ifdef CONFIG_POSIX_TIMERS
687 	if (resched_timer) {
688 		/*
689 		 * Release the siglock to ensure proper locking order
690 		 * of timer locks outside of siglocks.  Note, we leave
691 		 * irqs disabled here, since the posix-timers code is
692 		 * about to disable them again anyway.
693 		 */
694 		spin_unlock(&tsk->sighand->siglock);
695 		posixtimer_rearm(info);
696 		spin_lock(&tsk->sighand->siglock);
697 
698 		/* Don't expose the si_sys_private value to userspace */
699 		info->si_sys_private = 0;
700 	}
701 #endif
702 	return signr;
703 }
704 EXPORT_SYMBOL_GPL(dequeue_signal);
705 
706 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
707 {
708 	struct task_struct *tsk = current;
709 	struct sigpending *pending = &tsk->pending;
710 	struct sigqueue *q, *sync = NULL;
711 
712 	/*
713 	 * Might a synchronous signal be in the queue?
714 	 */
715 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
716 		return 0;
717 
718 	/*
719 	 * Return the first synchronous signal in the queue.
720 	 */
721 	list_for_each_entry(q, &pending->list, list) {
722 		/* Synchronous signals have a positive si_code */
723 		if ((q->info.si_code > SI_USER) &&
724 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
725 			sync = q;
726 			goto next;
727 		}
728 	}
729 	return 0;
730 next:
731 	/*
732 	 * Check if there is another siginfo for the same signal.
733 	 */
734 	list_for_each_entry_continue(q, &pending->list, list) {
735 		if (q->info.si_signo == sync->info.si_signo)
736 			goto still_pending;
737 	}
738 
739 	sigdelset(&pending->signal, sync->info.si_signo);
740 	recalc_sigpending();
741 still_pending:
742 	list_del_init(&sync->list);
743 	copy_siginfo(info, &sync->info);
744 	__sigqueue_free(sync);
745 	return info->si_signo;
746 }
747 
748 /*
749  * Tell a process that it has a new active signal..
750  *
751  * NOTE! we rely on the previous spin_lock to
752  * lock interrupts for us! We can only be called with
753  * "siglock" held, and the local interrupt must
754  * have been disabled when that got acquired!
755  *
756  * No need to set need_resched since signal event passing
757  * goes through ->blocked
758  */
759 void signal_wake_up_state(struct task_struct *t, unsigned int state)
760 {
761 	lockdep_assert_held(&t->sighand->siglock);
762 
763 	set_tsk_thread_flag(t, TIF_SIGPENDING);
764 
765 	/*
766 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
767 	 * case. We don't check t->state here because there is a race with it
768 	 * executing another processor and just now entering stopped state.
769 	 * By using wake_up_state, we ensure the process will wake up and
770 	 * handle its death signal.
771 	 */
772 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
773 		kick_process(t);
774 }
775 
776 /*
777  * Remove signals in mask from the pending set and queue.
778  * Returns 1 if any signals were found.
779  *
780  * All callers must be holding the siglock.
781  */
782 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
783 {
784 	struct sigqueue *q, *n;
785 	sigset_t m;
786 
787 	sigandsets(&m, mask, &s->signal);
788 	if (sigisemptyset(&m))
789 		return;
790 
791 	sigandnsets(&s->signal, &s->signal, mask);
792 	list_for_each_entry_safe(q, n, &s->list, list) {
793 		if (sigismember(mask, q->info.si_signo)) {
794 			list_del_init(&q->list);
795 			__sigqueue_free(q);
796 		}
797 	}
798 }
799 
800 static inline int is_si_special(const struct kernel_siginfo *info)
801 {
802 	return info <= SEND_SIG_PRIV;
803 }
804 
805 static inline bool si_fromuser(const struct kernel_siginfo *info)
806 {
807 	return info == SEND_SIG_NOINFO ||
808 		(!is_si_special(info) && SI_FROMUSER(info));
809 }
810 
811 /*
812  * called with RCU read lock from check_kill_permission()
813  */
814 static bool kill_ok_by_cred(struct task_struct *t)
815 {
816 	const struct cred *cred = current_cred();
817 	const struct cred *tcred = __task_cred(t);
818 
819 	return uid_eq(cred->euid, tcred->suid) ||
820 	       uid_eq(cred->euid, tcred->uid) ||
821 	       uid_eq(cred->uid, tcred->suid) ||
822 	       uid_eq(cred->uid, tcred->uid) ||
823 	       ns_capable(tcred->user_ns, CAP_KILL);
824 }
825 
826 /*
827  * Bad permissions for sending the signal
828  * - the caller must hold the RCU read lock
829  */
830 static int check_kill_permission(int sig, struct kernel_siginfo *info,
831 				 struct task_struct *t)
832 {
833 	struct pid *sid;
834 	int error;
835 
836 	if (!valid_signal(sig))
837 		return -EINVAL;
838 
839 	if (!si_fromuser(info))
840 		return 0;
841 
842 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
843 	if (error)
844 		return error;
845 
846 	if (!same_thread_group(current, t) &&
847 	    !kill_ok_by_cred(t)) {
848 		switch (sig) {
849 		case SIGCONT:
850 			sid = task_session(t);
851 			/*
852 			 * We don't return the error if sid == NULL. The
853 			 * task was unhashed, the caller must notice this.
854 			 */
855 			if (!sid || sid == task_session(current))
856 				break;
857 			fallthrough;
858 		default:
859 			return -EPERM;
860 		}
861 	}
862 
863 	return security_task_kill(t, info, sig, NULL);
864 }
865 
866 /**
867  * ptrace_trap_notify - schedule trap to notify ptracer
868  * @t: tracee wanting to notify tracer
869  *
870  * This function schedules sticky ptrace trap which is cleared on the next
871  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
872  * ptracer.
873  *
874  * If @t is running, STOP trap will be taken.  If trapped for STOP and
875  * ptracer is listening for events, tracee is woken up so that it can
876  * re-trap for the new event.  If trapped otherwise, STOP trap will be
877  * eventually taken without returning to userland after the existing traps
878  * are finished by PTRACE_CONT.
879  *
880  * CONTEXT:
881  * Must be called with @task->sighand->siglock held.
882  */
883 static void ptrace_trap_notify(struct task_struct *t)
884 {
885 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
886 	lockdep_assert_held(&t->sighand->siglock);
887 
888 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
889 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
890 }
891 
892 /*
893  * Handle magic process-wide effects of stop/continue signals. Unlike
894  * the signal actions, these happen immediately at signal-generation
895  * time regardless of blocking, ignoring, or handling.  This does the
896  * actual continuing for SIGCONT, but not the actual stopping for stop
897  * signals. The process stop is done as a signal action for SIG_DFL.
898  *
899  * Returns true if the signal should be actually delivered, otherwise
900  * it should be dropped.
901  */
902 static bool prepare_signal(int sig, struct task_struct *p, bool force)
903 {
904 	struct signal_struct *signal = p->signal;
905 	struct task_struct *t;
906 	sigset_t flush;
907 
908 	if (signal->flags & SIGNAL_GROUP_EXIT) {
909 		if (signal->core_state)
910 			return sig == SIGKILL;
911 		/*
912 		 * The process is in the middle of dying, drop the signal.
913 		 */
914 		return false;
915 	} else if (sig_kernel_stop(sig)) {
916 		/*
917 		 * This is a stop signal.  Remove SIGCONT from all queues.
918 		 */
919 		siginitset(&flush, sigmask(SIGCONT));
920 		flush_sigqueue_mask(&flush, &signal->shared_pending);
921 		for_each_thread(p, t)
922 			flush_sigqueue_mask(&flush, &t->pending);
923 	} else if (sig == SIGCONT) {
924 		unsigned int why;
925 		/*
926 		 * Remove all stop signals from all queues, wake all threads.
927 		 */
928 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
929 		flush_sigqueue_mask(&flush, &signal->shared_pending);
930 		for_each_thread(p, t) {
931 			flush_sigqueue_mask(&flush, &t->pending);
932 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
933 			if (likely(!(t->ptrace & PT_SEIZED))) {
934 				t->jobctl &= ~JOBCTL_STOPPED;
935 				wake_up_state(t, __TASK_STOPPED);
936 			} else
937 				ptrace_trap_notify(t);
938 		}
939 
940 		/*
941 		 * Notify the parent with CLD_CONTINUED if we were stopped.
942 		 *
943 		 * If we were in the middle of a group stop, we pretend it
944 		 * was already finished, and then continued. Since SIGCHLD
945 		 * doesn't queue we report only CLD_STOPPED, as if the next
946 		 * CLD_CONTINUED was dropped.
947 		 */
948 		why = 0;
949 		if (signal->flags & SIGNAL_STOP_STOPPED)
950 			why |= SIGNAL_CLD_CONTINUED;
951 		else if (signal->group_stop_count)
952 			why |= SIGNAL_CLD_STOPPED;
953 
954 		if (why) {
955 			/*
956 			 * The first thread which returns from do_signal_stop()
957 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
958 			 * notify its parent. See get_signal().
959 			 */
960 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
961 			signal->group_stop_count = 0;
962 			signal->group_exit_code = 0;
963 		}
964 	}
965 
966 	return !sig_ignored(p, sig, force);
967 }
968 
969 /*
970  * Test if P wants to take SIG.  After we've checked all threads with this,
971  * it's equivalent to finding no threads not blocking SIG.  Any threads not
972  * blocking SIG were ruled out because they are not running and already
973  * have pending signals.  Such threads will dequeue from the shared queue
974  * as soon as they're available, so putting the signal on the shared queue
975  * will be equivalent to sending it to one such thread.
976  */
977 static inline bool wants_signal(int sig, struct task_struct *p)
978 {
979 	if (sigismember(&p->blocked, sig))
980 		return false;
981 
982 	if (p->flags & PF_EXITING)
983 		return false;
984 
985 	if (sig == SIGKILL)
986 		return true;
987 
988 	if (task_is_stopped_or_traced(p))
989 		return false;
990 
991 	return task_curr(p) || !task_sigpending(p);
992 }
993 
994 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
995 {
996 	struct signal_struct *signal = p->signal;
997 	struct task_struct *t;
998 
999 	/*
1000 	 * Now find a thread we can wake up to take the signal off the queue.
1001 	 *
1002 	 * Try the suggested task first (may or may not be the main thread).
1003 	 */
1004 	if (wants_signal(sig, p))
1005 		t = p;
1006 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1007 		/*
1008 		 * There is just one thread and it does not need to be woken.
1009 		 * It will dequeue unblocked signals before it runs again.
1010 		 */
1011 		return;
1012 	else {
1013 		/*
1014 		 * Otherwise try to find a suitable thread.
1015 		 */
1016 		t = signal->curr_target;
1017 		while (!wants_signal(sig, t)) {
1018 			t = next_thread(t);
1019 			if (t == signal->curr_target)
1020 				/*
1021 				 * No thread needs to be woken.
1022 				 * Any eligible threads will see
1023 				 * the signal in the queue soon.
1024 				 */
1025 				return;
1026 		}
1027 		signal->curr_target = t;
1028 	}
1029 
1030 	/*
1031 	 * Found a killable thread.  If the signal will be fatal,
1032 	 * then start taking the whole group down immediately.
1033 	 */
1034 	if (sig_fatal(p, sig) &&
1035 	    (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1036 	    !sigismember(&t->real_blocked, sig) &&
1037 	    (sig == SIGKILL || !p->ptrace)) {
1038 		/*
1039 		 * This signal will be fatal to the whole group.
1040 		 */
1041 		if (!sig_kernel_coredump(sig)) {
1042 			/*
1043 			 * Start a group exit and wake everybody up.
1044 			 * This way we don't have other threads
1045 			 * running and doing things after a slower
1046 			 * thread has the fatal signal pending.
1047 			 */
1048 			signal->flags = SIGNAL_GROUP_EXIT;
1049 			signal->group_exit_code = sig;
1050 			signal->group_stop_count = 0;
1051 			__for_each_thread(signal, t) {
1052 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1053 				sigaddset(&t->pending.signal, SIGKILL);
1054 				signal_wake_up(t, 1);
1055 			}
1056 			return;
1057 		}
1058 	}
1059 
1060 	/*
1061 	 * The signal is already in the shared-pending queue.
1062 	 * Tell the chosen thread to wake up and dequeue it.
1063 	 */
1064 	signal_wake_up(t, sig == SIGKILL);
1065 	return;
1066 }
1067 
1068 static inline bool legacy_queue(struct sigpending *signals, int sig)
1069 {
1070 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1071 }
1072 
1073 static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1074 				struct task_struct *t, enum pid_type type, bool force)
1075 {
1076 	struct sigpending *pending;
1077 	struct sigqueue *q;
1078 	int override_rlimit;
1079 	int ret = 0, result;
1080 
1081 	lockdep_assert_held(&t->sighand->siglock);
1082 
1083 	result = TRACE_SIGNAL_IGNORED;
1084 	if (!prepare_signal(sig, t, force))
1085 		goto ret;
1086 
1087 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1088 	/*
1089 	 * Short-circuit ignored signals and support queuing
1090 	 * exactly one non-rt signal, so that we can get more
1091 	 * detailed information about the cause of the signal.
1092 	 */
1093 	result = TRACE_SIGNAL_ALREADY_PENDING;
1094 	if (legacy_queue(pending, sig))
1095 		goto ret;
1096 
1097 	result = TRACE_SIGNAL_DELIVERED;
1098 	/*
1099 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1100 	 */
1101 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1102 		goto out_set;
1103 
1104 	/*
1105 	 * Real-time signals must be queued if sent by sigqueue, or
1106 	 * some other real-time mechanism.  It is implementation
1107 	 * defined whether kill() does so.  We attempt to do so, on
1108 	 * the principle of least surprise, but since kill is not
1109 	 * allowed to fail with EAGAIN when low on memory we just
1110 	 * make sure at least one signal gets delivered and don't
1111 	 * pass on the info struct.
1112 	 */
1113 	if (sig < SIGRTMIN)
1114 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1115 	else
1116 		override_rlimit = 0;
1117 
1118 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1119 
1120 	if (q) {
1121 		list_add_tail(&q->list, &pending->list);
1122 		switch ((unsigned long) info) {
1123 		case (unsigned long) SEND_SIG_NOINFO:
1124 			clear_siginfo(&q->info);
1125 			q->info.si_signo = sig;
1126 			q->info.si_errno = 0;
1127 			q->info.si_code = SI_USER;
1128 			q->info.si_pid = task_tgid_nr_ns(current,
1129 							task_active_pid_ns(t));
1130 			rcu_read_lock();
1131 			q->info.si_uid =
1132 				from_kuid_munged(task_cred_xxx(t, user_ns),
1133 						 current_uid());
1134 			rcu_read_unlock();
1135 			break;
1136 		case (unsigned long) SEND_SIG_PRIV:
1137 			clear_siginfo(&q->info);
1138 			q->info.si_signo = sig;
1139 			q->info.si_errno = 0;
1140 			q->info.si_code = SI_KERNEL;
1141 			q->info.si_pid = 0;
1142 			q->info.si_uid = 0;
1143 			break;
1144 		default:
1145 			copy_siginfo(&q->info, info);
1146 			break;
1147 		}
1148 	} else if (!is_si_special(info) &&
1149 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1150 		/*
1151 		 * Queue overflow, abort.  We may abort if the
1152 		 * signal was rt and sent by user using something
1153 		 * other than kill().
1154 		 */
1155 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1156 		ret = -EAGAIN;
1157 		goto ret;
1158 	} else {
1159 		/*
1160 		 * This is a silent loss of information.  We still
1161 		 * send the signal, but the *info bits are lost.
1162 		 */
1163 		result = TRACE_SIGNAL_LOSE_INFO;
1164 	}
1165 
1166 out_set:
1167 	signalfd_notify(t, sig);
1168 	sigaddset(&pending->signal, sig);
1169 
1170 	/* Let multiprocess signals appear after on-going forks */
1171 	if (type > PIDTYPE_TGID) {
1172 		struct multiprocess_signals *delayed;
1173 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1174 			sigset_t *signal = &delayed->signal;
1175 			/* Can't queue both a stop and a continue signal */
1176 			if (sig == SIGCONT)
1177 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1178 			else if (sig_kernel_stop(sig))
1179 				sigdelset(signal, SIGCONT);
1180 			sigaddset(signal, sig);
1181 		}
1182 	}
1183 
1184 	complete_signal(sig, t, type);
1185 ret:
1186 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1187 	return ret;
1188 }
1189 
1190 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1191 {
1192 	bool ret = false;
1193 	switch (siginfo_layout(info->si_signo, info->si_code)) {
1194 	case SIL_KILL:
1195 	case SIL_CHLD:
1196 	case SIL_RT:
1197 		ret = true;
1198 		break;
1199 	case SIL_TIMER:
1200 	case SIL_POLL:
1201 	case SIL_FAULT:
1202 	case SIL_FAULT_TRAPNO:
1203 	case SIL_FAULT_MCEERR:
1204 	case SIL_FAULT_BNDERR:
1205 	case SIL_FAULT_PKUERR:
1206 	case SIL_FAULT_PERF_EVENT:
1207 	case SIL_SYS:
1208 		ret = false;
1209 		break;
1210 	}
1211 	return ret;
1212 }
1213 
1214 int send_signal_locked(int sig, struct kernel_siginfo *info,
1215 		       struct task_struct *t, enum pid_type type)
1216 {
1217 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1218 	bool force = false;
1219 
1220 	if (info == SEND_SIG_NOINFO) {
1221 		/* Force if sent from an ancestor pid namespace */
1222 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1223 	} else if (info == SEND_SIG_PRIV) {
1224 		/* Don't ignore kernel generated signals */
1225 		force = true;
1226 	} else if (has_si_pid_and_uid(info)) {
1227 		/* SIGKILL and SIGSTOP is special or has ids */
1228 		struct user_namespace *t_user_ns;
1229 
1230 		rcu_read_lock();
1231 		t_user_ns = task_cred_xxx(t, user_ns);
1232 		if (current_user_ns() != t_user_ns) {
1233 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1234 			info->si_uid = from_kuid_munged(t_user_ns, uid);
1235 		}
1236 		rcu_read_unlock();
1237 
1238 		/* A kernel generated signal? */
1239 		force = (info->si_code == SI_KERNEL);
1240 
1241 		/* From an ancestor pid namespace? */
1242 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1243 			info->si_pid = 0;
1244 			force = true;
1245 		}
1246 	}
1247 	return __send_signal_locked(sig, info, t, type, force);
1248 }
1249 
1250 static void print_fatal_signal(int signr)
1251 {
1252 	struct pt_regs *regs = task_pt_regs(current);
1253 	struct file *exe_file;
1254 
1255 	exe_file = get_task_exe_file(current);
1256 	if (exe_file) {
1257 		pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
1258 			exe_file, current->comm, signr);
1259 		fput(exe_file);
1260 	} else {
1261 		pr_info("%s: potentially unexpected fatal signal %d.\n",
1262 			current->comm, signr);
1263 	}
1264 
1265 #if defined(__i386__) && !defined(__arch_um__)
1266 	pr_info("code at %08lx: ", regs->ip);
1267 	{
1268 		int i;
1269 		for (i = 0; i < 16; i++) {
1270 			unsigned char insn;
1271 
1272 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1273 				break;
1274 			pr_cont("%02x ", insn);
1275 		}
1276 	}
1277 	pr_cont("\n");
1278 #endif
1279 	preempt_disable();
1280 	show_regs(regs);
1281 	preempt_enable();
1282 }
1283 
1284 static int __init setup_print_fatal_signals(char *str)
1285 {
1286 	get_option (&str, &print_fatal_signals);
1287 
1288 	return 1;
1289 }
1290 
1291 __setup("print-fatal-signals=", setup_print_fatal_signals);
1292 
1293 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1294 			enum pid_type type)
1295 {
1296 	unsigned long flags;
1297 	int ret = -ESRCH;
1298 
1299 	if (lock_task_sighand(p, &flags)) {
1300 		ret = send_signal_locked(sig, info, p, type);
1301 		unlock_task_sighand(p, &flags);
1302 	}
1303 
1304 	return ret;
1305 }
1306 
1307 enum sig_handler {
1308 	HANDLER_CURRENT, /* If reachable use the current handler */
1309 	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1310 	HANDLER_EXIT,	 /* Only visible as the process exit code */
1311 };
1312 
1313 /*
1314  * Force a signal that the process can't ignore: if necessary
1315  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1316  *
1317  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1318  * since we do not want to have a signal handler that was blocked
1319  * be invoked when user space had explicitly blocked it.
1320  *
1321  * We don't want to have recursive SIGSEGV's etc, for example,
1322  * that is why we also clear SIGNAL_UNKILLABLE.
1323  */
1324 static int
1325 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1326 	enum sig_handler handler)
1327 {
1328 	unsigned long int flags;
1329 	int ret, blocked, ignored;
1330 	struct k_sigaction *action;
1331 	int sig = info->si_signo;
1332 
1333 	spin_lock_irqsave(&t->sighand->siglock, flags);
1334 	action = &t->sighand->action[sig-1];
1335 	ignored = action->sa.sa_handler == SIG_IGN;
1336 	blocked = sigismember(&t->blocked, sig);
1337 	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1338 		action->sa.sa_handler = SIG_DFL;
1339 		if (handler == HANDLER_EXIT)
1340 			action->sa.sa_flags |= SA_IMMUTABLE;
1341 		if (blocked)
1342 			sigdelset(&t->blocked, sig);
1343 	}
1344 	/*
1345 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1346 	 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1347 	 */
1348 	if (action->sa.sa_handler == SIG_DFL &&
1349 	    (!t->ptrace || (handler == HANDLER_EXIT)))
1350 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1351 	ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1352 	/* This can happen if the signal was already pending and blocked */
1353 	if (!task_sigpending(t))
1354 		signal_wake_up(t, 0);
1355 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1356 
1357 	return ret;
1358 }
1359 
1360 int force_sig_info(struct kernel_siginfo *info)
1361 {
1362 	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1363 }
1364 
1365 /*
1366  * Nuke all other threads in the group.
1367  */
1368 int zap_other_threads(struct task_struct *p)
1369 {
1370 	struct task_struct *t;
1371 	int count = 0;
1372 
1373 	p->signal->group_stop_count = 0;
1374 
1375 	for_other_threads(p, t) {
1376 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1377 		/* Don't require de_thread to wait for the vhost_worker */
1378 		if ((t->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)
1379 			count++;
1380 
1381 		/* Don't bother with already dead threads */
1382 		if (t->exit_state)
1383 			continue;
1384 		sigaddset(&t->pending.signal, SIGKILL);
1385 		signal_wake_up(t, 1);
1386 	}
1387 
1388 	return count;
1389 }
1390 
1391 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1392 					   unsigned long *flags)
1393 {
1394 	struct sighand_struct *sighand;
1395 
1396 	rcu_read_lock();
1397 	for (;;) {
1398 		sighand = rcu_dereference(tsk->sighand);
1399 		if (unlikely(sighand == NULL))
1400 			break;
1401 
1402 		/*
1403 		 * This sighand can be already freed and even reused, but
1404 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1405 		 * initializes ->siglock: this slab can't go away, it has
1406 		 * the same object type, ->siglock can't be reinitialized.
1407 		 *
1408 		 * We need to ensure that tsk->sighand is still the same
1409 		 * after we take the lock, we can race with de_thread() or
1410 		 * __exit_signal(). In the latter case the next iteration
1411 		 * must see ->sighand == NULL.
1412 		 */
1413 		spin_lock_irqsave(&sighand->siglock, *flags);
1414 		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1415 			break;
1416 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1417 	}
1418 	rcu_read_unlock();
1419 
1420 	return sighand;
1421 }
1422 
1423 #ifdef CONFIG_LOCKDEP
1424 void lockdep_assert_task_sighand_held(struct task_struct *task)
1425 {
1426 	struct sighand_struct *sighand;
1427 
1428 	rcu_read_lock();
1429 	sighand = rcu_dereference(task->sighand);
1430 	if (sighand)
1431 		lockdep_assert_held(&sighand->siglock);
1432 	else
1433 		WARN_ON_ONCE(1);
1434 	rcu_read_unlock();
1435 }
1436 #endif
1437 
1438 /*
1439  * send signal info to all the members of a group
1440  */
1441 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1442 			struct task_struct *p, enum pid_type type)
1443 {
1444 	int ret;
1445 
1446 	rcu_read_lock();
1447 	ret = check_kill_permission(sig, info, p);
1448 	rcu_read_unlock();
1449 
1450 	if (!ret && sig)
1451 		ret = do_send_sig_info(sig, info, p, type);
1452 
1453 	return ret;
1454 }
1455 
1456 /*
1457  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1458  * control characters do (^C, ^Z etc)
1459  * - the caller must hold at least a readlock on tasklist_lock
1460  */
1461 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1462 {
1463 	struct task_struct *p = NULL;
1464 	int ret = -ESRCH;
1465 
1466 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1467 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1468 		/*
1469 		 * If group_send_sig_info() succeeds at least once ret
1470 		 * becomes 0 and after that the code below has no effect.
1471 		 * Otherwise we return the last err or -ESRCH if this
1472 		 * process group is empty.
1473 		 */
1474 		if (ret)
1475 			ret = err;
1476 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1477 
1478 	return ret;
1479 }
1480 
1481 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1482 {
1483 	int error = -ESRCH;
1484 	struct task_struct *p;
1485 
1486 	for (;;) {
1487 		rcu_read_lock();
1488 		p = pid_task(pid, PIDTYPE_PID);
1489 		if (p)
1490 			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1491 		rcu_read_unlock();
1492 		if (likely(!p || error != -ESRCH))
1493 			return error;
1494 
1495 		/*
1496 		 * The task was unhashed in between, try again.  If it
1497 		 * is dead, pid_task() will return NULL, if we race with
1498 		 * de_thread() it will find the new leader.
1499 		 */
1500 	}
1501 }
1502 
1503 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1504 {
1505 	int error;
1506 	rcu_read_lock();
1507 	error = kill_pid_info(sig, info, find_vpid(pid));
1508 	rcu_read_unlock();
1509 	return error;
1510 }
1511 
1512 static inline bool kill_as_cred_perm(const struct cred *cred,
1513 				     struct task_struct *target)
1514 {
1515 	const struct cred *pcred = __task_cred(target);
1516 
1517 	return uid_eq(cred->euid, pcred->suid) ||
1518 	       uid_eq(cred->euid, pcred->uid) ||
1519 	       uid_eq(cred->uid, pcred->suid) ||
1520 	       uid_eq(cred->uid, pcred->uid);
1521 }
1522 
1523 /*
1524  * The usb asyncio usage of siginfo is wrong.  The glibc support
1525  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1526  * AKA after the generic fields:
1527  *	kernel_pid_t	si_pid;
1528  *	kernel_uid32_t	si_uid;
1529  *	sigval_t	si_value;
1530  *
1531  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1532  * after the generic fields is:
1533  *	void __user 	*si_addr;
1534  *
1535  * This is a practical problem when there is a 64bit big endian kernel
1536  * and a 32bit userspace.  As the 32bit address will encoded in the low
1537  * 32bits of the pointer.  Those low 32bits will be stored at higher
1538  * address than appear in a 32 bit pointer.  So userspace will not
1539  * see the address it was expecting for it's completions.
1540  *
1541  * There is nothing in the encoding that can allow
1542  * copy_siginfo_to_user32 to detect this confusion of formats, so
1543  * handle this by requiring the caller of kill_pid_usb_asyncio to
1544  * notice when this situration takes place and to store the 32bit
1545  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1546  * parameter.
1547  */
1548 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1549 			 struct pid *pid, const struct cred *cred)
1550 {
1551 	struct kernel_siginfo info;
1552 	struct task_struct *p;
1553 	unsigned long flags;
1554 	int ret = -EINVAL;
1555 
1556 	if (!valid_signal(sig))
1557 		return ret;
1558 
1559 	clear_siginfo(&info);
1560 	info.si_signo = sig;
1561 	info.si_errno = errno;
1562 	info.si_code = SI_ASYNCIO;
1563 	*((sigval_t *)&info.si_pid) = addr;
1564 
1565 	rcu_read_lock();
1566 	p = pid_task(pid, PIDTYPE_PID);
1567 	if (!p) {
1568 		ret = -ESRCH;
1569 		goto out_unlock;
1570 	}
1571 	if (!kill_as_cred_perm(cred, p)) {
1572 		ret = -EPERM;
1573 		goto out_unlock;
1574 	}
1575 	ret = security_task_kill(p, &info, sig, cred);
1576 	if (ret)
1577 		goto out_unlock;
1578 
1579 	if (sig) {
1580 		if (lock_task_sighand(p, &flags)) {
1581 			ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1582 			unlock_task_sighand(p, &flags);
1583 		} else
1584 			ret = -ESRCH;
1585 	}
1586 out_unlock:
1587 	rcu_read_unlock();
1588 	return ret;
1589 }
1590 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1591 
1592 /*
1593  * kill_something_info() interprets pid in interesting ways just like kill(2).
1594  *
1595  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1596  * is probably wrong.  Should make it like BSD or SYSV.
1597  */
1598 
1599 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1600 {
1601 	int ret;
1602 
1603 	if (pid > 0)
1604 		return kill_proc_info(sig, info, pid);
1605 
1606 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1607 	if (pid == INT_MIN)
1608 		return -ESRCH;
1609 
1610 	read_lock(&tasklist_lock);
1611 	if (pid != -1) {
1612 		ret = __kill_pgrp_info(sig, info,
1613 				pid ? find_vpid(-pid) : task_pgrp(current));
1614 	} else {
1615 		int retval = 0, count = 0;
1616 		struct task_struct * p;
1617 
1618 		for_each_process(p) {
1619 			if (task_pid_vnr(p) > 1 &&
1620 					!same_thread_group(p, current)) {
1621 				int err = group_send_sig_info(sig, info, p,
1622 							      PIDTYPE_MAX);
1623 				++count;
1624 				if (err != -EPERM)
1625 					retval = err;
1626 			}
1627 		}
1628 		ret = count ? retval : -ESRCH;
1629 	}
1630 	read_unlock(&tasklist_lock);
1631 
1632 	return ret;
1633 }
1634 
1635 /*
1636  * These are for backward compatibility with the rest of the kernel source.
1637  */
1638 
1639 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1640 {
1641 	/*
1642 	 * Make sure legacy kernel users don't send in bad values
1643 	 * (normal paths check this in check_kill_permission).
1644 	 */
1645 	if (!valid_signal(sig))
1646 		return -EINVAL;
1647 
1648 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1649 }
1650 EXPORT_SYMBOL(send_sig_info);
1651 
1652 #define __si_special(priv) \
1653 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1654 
1655 int
1656 send_sig(int sig, struct task_struct *p, int priv)
1657 {
1658 	return send_sig_info(sig, __si_special(priv), p);
1659 }
1660 EXPORT_SYMBOL(send_sig);
1661 
1662 void force_sig(int sig)
1663 {
1664 	struct kernel_siginfo info;
1665 
1666 	clear_siginfo(&info);
1667 	info.si_signo = sig;
1668 	info.si_errno = 0;
1669 	info.si_code = SI_KERNEL;
1670 	info.si_pid = 0;
1671 	info.si_uid = 0;
1672 	force_sig_info(&info);
1673 }
1674 EXPORT_SYMBOL(force_sig);
1675 
1676 void force_fatal_sig(int sig)
1677 {
1678 	struct kernel_siginfo info;
1679 
1680 	clear_siginfo(&info);
1681 	info.si_signo = sig;
1682 	info.si_errno = 0;
1683 	info.si_code = SI_KERNEL;
1684 	info.si_pid = 0;
1685 	info.si_uid = 0;
1686 	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1687 }
1688 
1689 void force_exit_sig(int sig)
1690 {
1691 	struct kernel_siginfo info;
1692 
1693 	clear_siginfo(&info);
1694 	info.si_signo = sig;
1695 	info.si_errno = 0;
1696 	info.si_code = SI_KERNEL;
1697 	info.si_pid = 0;
1698 	info.si_uid = 0;
1699 	force_sig_info_to_task(&info, current, HANDLER_EXIT);
1700 }
1701 
1702 /*
1703  * When things go south during signal handling, we
1704  * will force a SIGSEGV. And if the signal that caused
1705  * the problem was already a SIGSEGV, we'll want to
1706  * make sure we don't even try to deliver the signal..
1707  */
1708 void force_sigsegv(int sig)
1709 {
1710 	if (sig == SIGSEGV)
1711 		force_fatal_sig(SIGSEGV);
1712 	else
1713 		force_sig(SIGSEGV);
1714 }
1715 
1716 int force_sig_fault_to_task(int sig, int code, void __user *addr,
1717 			    struct task_struct *t)
1718 {
1719 	struct kernel_siginfo info;
1720 
1721 	clear_siginfo(&info);
1722 	info.si_signo = sig;
1723 	info.si_errno = 0;
1724 	info.si_code  = code;
1725 	info.si_addr  = addr;
1726 	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1727 }
1728 
1729 int force_sig_fault(int sig, int code, void __user *addr)
1730 {
1731 	return force_sig_fault_to_task(sig, code, addr, current);
1732 }
1733 
1734 int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t)
1735 {
1736 	struct kernel_siginfo info;
1737 
1738 	clear_siginfo(&info);
1739 	info.si_signo = sig;
1740 	info.si_errno = 0;
1741 	info.si_code  = code;
1742 	info.si_addr  = addr;
1743 	return send_sig_info(info.si_signo, &info, t);
1744 }
1745 
1746 int force_sig_mceerr(int code, void __user *addr, short lsb)
1747 {
1748 	struct kernel_siginfo info;
1749 
1750 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1751 	clear_siginfo(&info);
1752 	info.si_signo = SIGBUS;
1753 	info.si_errno = 0;
1754 	info.si_code = code;
1755 	info.si_addr = addr;
1756 	info.si_addr_lsb = lsb;
1757 	return force_sig_info(&info);
1758 }
1759 
1760 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1761 {
1762 	struct kernel_siginfo info;
1763 
1764 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1765 	clear_siginfo(&info);
1766 	info.si_signo = SIGBUS;
1767 	info.si_errno = 0;
1768 	info.si_code = code;
1769 	info.si_addr = addr;
1770 	info.si_addr_lsb = lsb;
1771 	return send_sig_info(info.si_signo, &info, t);
1772 }
1773 EXPORT_SYMBOL(send_sig_mceerr);
1774 
1775 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1776 {
1777 	struct kernel_siginfo info;
1778 
1779 	clear_siginfo(&info);
1780 	info.si_signo = SIGSEGV;
1781 	info.si_errno = 0;
1782 	info.si_code  = SEGV_BNDERR;
1783 	info.si_addr  = addr;
1784 	info.si_lower = lower;
1785 	info.si_upper = upper;
1786 	return force_sig_info(&info);
1787 }
1788 
1789 #ifdef SEGV_PKUERR
1790 int force_sig_pkuerr(void __user *addr, u32 pkey)
1791 {
1792 	struct kernel_siginfo info;
1793 
1794 	clear_siginfo(&info);
1795 	info.si_signo = SIGSEGV;
1796 	info.si_errno = 0;
1797 	info.si_code  = SEGV_PKUERR;
1798 	info.si_addr  = addr;
1799 	info.si_pkey  = pkey;
1800 	return force_sig_info(&info);
1801 }
1802 #endif
1803 
1804 int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1805 {
1806 	struct kernel_siginfo info;
1807 
1808 	clear_siginfo(&info);
1809 	info.si_signo     = SIGTRAP;
1810 	info.si_errno     = 0;
1811 	info.si_code      = TRAP_PERF;
1812 	info.si_addr      = addr;
1813 	info.si_perf_data = sig_data;
1814 	info.si_perf_type = type;
1815 
1816 	/*
1817 	 * Signals generated by perf events should not terminate the whole
1818 	 * process if SIGTRAP is blocked, however, delivering the signal
1819 	 * asynchronously is better than not delivering at all. But tell user
1820 	 * space if the signal was asynchronous, so it can clearly be
1821 	 * distinguished from normal synchronous ones.
1822 	 */
1823 	info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
1824 				     TRAP_PERF_FLAG_ASYNC :
1825 				     0;
1826 
1827 	return send_sig_info(info.si_signo, &info, current);
1828 }
1829 
1830 /**
1831  * force_sig_seccomp - signals the task to allow in-process syscall emulation
1832  * @syscall: syscall number to send to userland
1833  * @reason: filter-supplied reason code to send to userland (via si_errno)
1834  * @force_coredump: true to trigger a coredump
1835  *
1836  * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1837  */
1838 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1839 {
1840 	struct kernel_siginfo info;
1841 
1842 	clear_siginfo(&info);
1843 	info.si_signo = SIGSYS;
1844 	info.si_code = SYS_SECCOMP;
1845 	info.si_call_addr = (void __user *)KSTK_EIP(current);
1846 	info.si_errno = reason;
1847 	info.si_arch = syscall_get_arch(current);
1848 	info.si_syscall = syscall;
1849 	return force_sig_info_to_task(&info, current,
1850 		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1851 }
1852 
1853 /* For the crazy architectures that include trap information in
1854  * the errno field, instead of an actual errno value.
1855  */
1856 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1857 {
1858 	struct kernel_siginfo info;
1859 
1860 	clear_siginfo(&info);
1861 	info.si_signo = SIGTRAP;
1862 	info.si_errno = errno;
1863 	info.si_code  = TRAP_HWBKPT;
1864 	info.si_addr  = addr;
1865 	return force_sig_info(&info);
1866 }
1867 
1868 /* For the rare architectures that include trap information using
1869  * si_trapno.
1870  */
1871 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1872 {
1873 	struct kernel_siginfo info;
1874 
1875 	clear_siginfo(&info);
1876 	info.si_signo = sig;
1877 	info.si_errno = 0;
1878 	info.si_code  = code;
1879 	info.si_addr  = addr;
1880 	info.si_trapno = trapno;
1881 	return force_sig_info(&info);
1882 }
1883 
1884 /* For the rare architectures that include trap information using
1885  * si_trapno.
1886  */
1887 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1888 			  struct task_struct *t)
1889 {
1890 	struct kernel_siginfo info;
1891 
1892 	clear_siginfo(&info);
1893 	info.si_signo = sig;
1894 	info.si_errno = 0;
1895 	info.si_code  = code;
1896 	info.si_addr  = addr;
1897 	info.si_trapno = trapno;
1898 	return send_sig_info(info.si_signo, &info, t);
1899 }
1900 
1901 int kill_pgrp(struct pid *pid, int sig, int priv)
1902 {
1903 	int ret;
1904 
1905 	read_lock(&tasklist_lock);
1906 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1907 	read_unlock(&tasklist_lock);
1908 
1909 	return ret;
1910 }
1911 EXPORT_SYMBOL(kill_pgrp);
1912 
1913 int kill_pid(struct pid *pid, int sig, int priv)
1914 {
1915 	return kill_pid_info(sig, __si_special(priv), pid);
1916 }
1917 EXPORT_SYMBOL(kill_pid);
1918 
1919 /*
1920  * These functions support sending signals using preallocated sigqueue
1921  * structures.  This is needed "because realtime applications cannot
1922  * afford to lose notifications of asynchronous events, like timer
1923  * expirations or I/O completions".  In the case of POSIX Timers
1924  * we allocate the sigqueue structure from the timer_create.  If this
1925  * allocation fails we are able to report the failure to the application
1926  * with an EAGAIN error.
1927  */
1928 struct sigqueue *sigqueue_alloc(void)
1929 {
1930 	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1931 }
1932 
1933 void sigqueue_free(struct sigqueue *q)
1934 {
1935 	unsigned long flags;
1936 	spinlock_t *lock = &current->sighand->siglock;
1937 
1938 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1939 	/*
1940 	 * We must hold ->siglock while testing q->list
1941 	 * to serialize with collect_signal() or with
1942 	 * __exit_signal()->flush_sigqueue().
1943 	 */
1944 	spin_lock_irqsave(lock, flags);
1945 	q->flags &= ~SIGQUEUE_PREALLOC;
1946 	/*
1947 	 * If it is queued it will be freed when dequeued,
1948 	 * like the "regular" sigqueue.
1949 	 */
1950 	if (!list_empty(&q->list))
1951 		q = NULL;
1952 	spin_unlock_irqrestore(lock, flags);
1953 
1954 	if (q)
1955 		__sigqueue_free(q);
1956 }
1957 
1958 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1959 {
1960 	int sig = q->info.si_signo;
1961 	struct sigpending *pending;
1962 	struct task_struct *t;
1963 	unsigned long flags;
1964 	int ret, result;
1965 
1966 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1967 
1968 	ret = -1;
1969 	rcu_read_lock();
1970 
1971 	/*
1972 	 * This function is used by POSIX timers to deliver a timer signal.
1973 	 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1974 	 * set), the signal must be delivered to the specific thread (queues
1975 	 * into t->pending).
1976 	 *
1977 	 * Where type is not PIDTYPE_PID, signals must be delivered to the
1978 	 * process. In this case, prefer to deliver to current if it is in
1979 	 * the same thread group as the target process, which avoids
1980 	 * unnecessarily waking up a potentially idle task.
1981 	 */
1982 	t = pid_task(pid, type);
1983 	if (!t)
1984 		goto ret;
1985 	if (type != PIDTYPE_PID && same_thread_group(t, current))
1986 		t = current;
1987 	if (!likely(lock_task_sighand(t, &flags)))
1988 		goto ret;
1989 
1990 	ret = 1; /* the signal is ignored */
1991 	result = TRACE_SIGNAL_IGNORED;
1992 	if (!prepare_signal(sig, t, false))
1993 		goto out;
1994 
1995 	ret = 0;
1996 	if (unlikely(!list_empty(&q->list))) {
1997 		/*
1998 		 * If an SI_TIMER entry is already queue just increment
1999 		 * the overrun count.
2000 		 */
2001 		BUG_ON(q->info.si_code != SI_TIMER);
2002 		q->info.si_overrun++;
2003 		result = TRACE_SIGNAL_ALREADY_PENDING;
2004 		goto out;
2005 	}
2006 	q->info.si_overrun = 0;
2007 
2008 	signalfd_notify(t, sig);
2009 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
2010 	list_add_tail(&q->list, &pending->list);
2011 	sigaddset(&pending->signal, sig);
2012 	complete_signal(sig, t, type);
2013 	result = TRACE_SIGNAL_DELIVERED;
2014 out:
2015 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2016 	unlock_task_sighand(t, &flags);
2017 ret:
2018 	rcu_read_unlock();
2019 	return ret;
2020 }
2021 
2022 static void do_notify_pidfd(struct task_struct *task)
2023 {
2024 	struct pid *pid;
2025 
2026 	WARN_ON(task->exit_state == 0);
2027 	pid = task_pid(task);
2028 	wake_up_all(&pid->wait_pidfd);
2029 }
2030 
2031 /*
2032  * Let a parent know about the death of a child.
2033  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2034  *
2035  * Returns true if our parent ignored us and so we've switched to
2036  * self-reaping.
2037  */
2038 bool do_notify_parent(struct task_struct *tsk, int sig)
2039 {
2040 	struct kernel_siginfo info;
2041 	unsigned long flags;
2042 	struct sighand_struct *psig;
2043 	bool autoreap = false;
2044 	u64 utime, stime;
2045 
2046 	WARN_ON_ONCE(sig == -1);
2047 
2048 	/* do_notify_parent_cldstop should have been called instead.  */
2049 	WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2050 
2051 	WARN_ON_ONCE(!tsk->ptrace &&
2052 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2053 
2054 	/* Wake up all pidfd waiters */
2055 	do_notify_pidfd(tsk);
2056 
2057 	if (sig != SIGCHLD) {
2058 		/*
2059 		 * This is only possible if parent == real_parent.
2060 		 * Check if it has changed security domain.
2061 		 */
2062 		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2063 			sig = SIGCHLD;
2064 	}
2065 
2066 	clear_siginfo(&info);
2067 	info.si_signo = sig;
2068 	info.si_errno = 0;
2069 	/*
2070 	 * We are under tasklist_lock here so our parent is tied to
2071 	 * us and cannot change.
2072 	 *
2073 	 * task_active_pid_ns will always return the same pid namespace
2074 	 * until a task passes through release_task.
2075 	 *
2076 	 * write_lock() currently calls preempt_disable() which is the
2077 	 * same as rcu_read_lock(), but according to Oleg, this is not
2078 	 * correct to rely on this
2079 	 */
2080 	rcu_read_lock();
2081 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2082 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2083 				       task_uid(tsk));
2084 	rcu_read_unlock();
2085 
2086 	task_cputime(tsk, &utime, &stime);
2087 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2088 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2089 
2090 	info.si_status = tsk->exit_code & 0x7f;
2091 	if (tsk->exit_code & 0x80)
2092 		info.si_code = CLD_DUMPED;
2093 	else if (tsk->exit_code & 0x7f)
2094 		info.si_code = CLD_KILLED;
2095 	else {
2096 		info.si_code = CLD_EXITED;
2097 		info.si_status = tsk->exit_code >> 8;
2098 	}
2099 
2100 	psig = tsk->parent->sighand;
2101 	spin_lock_irqsave(&psig->siglock, flags);
2102 	if (!tsk->ptrace && sig == SIGCHLD &&
2103 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2104 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2105 		/*
2106 		 * We are exiting and our parent doesn't care.  POSIX.1
2107 		 * defines special semantics for setting SIGCHLD to SIG_IGN
2108 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2109 		 * automatically and not left for our parent's wait4 call.
2110 		 * Rather than having the parent do it as a magic kind of
2111 		 * signal handler, we just set this to tell do_exit that we
2112 		 * can be cleaned up without becoming a zombie.  Note that
2113 		 * we still call __wake_up_parent in this case, because a
2114 		 * blocked sys_wait4 might now return -ECHILD.
2115 		 *
2116 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2117 		 * is implementation-defined: we do (if you don't want
2118 		 * it, just use SIG_IGN instead).
2119 		 */
2120 		autoreap = true;
2121 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2122 			sig = 0;
2123 	}
2124 	/*
2125 	 * Send with __send_signal as si_pid and si_uid are in the
2126 	 * parent's namespaces.
2127 	 */
2128 	if (valid_signal(sig) && sig)
2129 		__send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2130 	__wake_up_parent(tsk, tsk->parent);
2131 	spin_unlock_irqrestore(&psig->siglock, flags);
2132 
2133 	return autoreap;
2134 }
2135 
2136 /**
2137  * do_notify_parent_cldstop - notify parent of stopped/continued state change
2138  * @tsk: task reporting the state change
2139  * @for_ptracer: the notification is for ptracer
2140  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2141  *
2142  * Notify @tsk's parent that the stopped/continued state has changed.  If
2143  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2144  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2145  *
2146  * CONTEXT:
2147  * Must be called with tasklist_lock at least read locked.
2148  */
2149 static void do_notify_parent_cldstop(struct task_struct *tsk,
2150 				     bool for_ptracer, int why)
2151 {
2152 	struct kernel_siginfo info;
2153 	unsigned long flags;
2154 	struct task_struct *parent;
2155 	struct sighand_struct *sighand;
2156 	u64 utime, stime;
2157 
2158 	if (for_ptracer) {
2159 		parent = tsk->parent;
2160 	} else {
2161 		tsk = tsk->group_leader;
2162 		parent = tsk->real_parent;
2163 	}
2164 
2165 	clear_siginfo(&info);
2166 	info.si_signo = SIGCHLD;
2167 	info.si_errno = 0;
2168 	/*
2169 	 * see comment in do_notify_parent() about the following 4 lines
2170 	 */
2171 	rcu_read_lock();
2172 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2173 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2174 	rcu_read_unlock();
2175 
2176 	task_cputime(tsk, &utime, &stime);
2177 	info.si_utime = nsec_to_clock_t(utime);
2178 	info.si_stime = nsec_to_clock_t(stime);
2179 
2180  	info.si_code = why;
2181  	switch (why) {
2182  	case CLD_CONTINUED:
2183  		info.si_status = SIGCONT;
2184  		break;
2185  	case CLD_STOPPED:
2186  		info.si_status = tsk->signal->group_exit_code & 0x7f;
2187  		break;
2188  	case CLD_TRAPPED:
2189  		info.si_status = tsk->exit_code & 0x7f;
2190  		break;
2191  	default:
2192  		BUG();
2193  	}
2194 
2195 	sighand = parent->sighand;
2196 	spin_lock_irqsave(&sighand->siglock, flags);
2197 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2198 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2199 		send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2200 	/*
2201 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2202 	 */
2203 	__wake_up_parent(tsk, parent);
2204 	spin_unlock_irqrestore(&sighand->siglock, flags);
2205 }
2206 
2207 /*
2208  * This must be called with current->sighand->siglock held.
2209  *
2210  * This should be the path for all ptrace stops.
2211  * We always set current->last_siginfo while stopped here.
2212  * That makes it a way to test a stopped process for
2213  * being ptrace-stopped vs being job-control-stopped.
2214  *
2215  * Returns the signal the ptracer requested the code resume
2216  * with.  If the code did not stop because the tracer is gone,
2217  * the stop signal remains unchanged unless clear_code.
2218  */
2219 static int ptrace_stop(int exit_code, int why, unsigned long message,
2220 		       kernel_siginfo_t *info)
2221 	__releases(&current->sighand->siglock)
2222 	__acquires(&current->sighand->siglock)
2223 {
2224 	bool gstop_done = false;
2225 
2226 	if (arch_ptrace_stop_needed()) {
2227 		/*
2228 		 * The arch code has something special to do before a
2229 		 * ptrace stop.  This is allowed to block, e.g. for faults
2230 		 * on user stack pages.  We can't keep the siglock while
2231 		 * calling arch_ptrace_stop, so we must release it now.
2232 		 * To preserve proper semantics, we must do this before
2233 		 * any signal bookkeeping like checking group_stop_count.
2234 		 */
2235 		spin_unlock_irq(&current->sighand->siglock);
2236 		arch_ptrace_stop();
2237 		spin_lock_irq(&current->sighand->siglock);
2238 	}
2239 
2240 	/*
2241 	 * After this point ptrace_signal_wake_up or signal_wake_up
2242 	 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2243 	 * signal comes in.  Handle previous ptrace_unlinks and fatal
2244 	 * signals here to prevent ptrace_stop sleeping in schedule.
2245 	 */
2246 	if (!current->ptrace || __fatal_signal_pending(current))
2247 		return exit_code;
2248 
2249 	set_special_state(TASK_TRACED);
2250 	current->jobctl |= JOBCTL_TRACED;
2251 
2252 	/*
2253 	 * We're committing to trapping.  TRACED should be visible before
2254 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2255 	 * Also, transition to TRACED and updates to ->jobctl should be
2256 	 * atomic with respect to siglock and should be done after the arch
2257 	 * hook as siglock is released and regrabbed across it.
2258 	 *
2259 	 *     TRACER				    TRACEE
2260 	 *
2261 	 *     ptrace_attach()
2262 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2263 	 *     do_wait()
2264 	 *       set_current_state()                smp_wmb();
2265 	 *       ptrace_do_wait()
2266 	 *         wait_task_stopped()
2267 	 *           task_stopped_code()
2268 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2269 	 */
2270 	smp_wmb();
2271 
2272 	current->ptrace_message = message;
2273 	current->last_siginfo = info;
2274 	current->exit_code = exit_code;
2275 
2276 	/*
2277 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2278 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2279 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2280 	 * could be clear now.  We act as if SIGCONT is received after
2281 	 * TASK_TRACED is entered - ignore it.
2282 	 */
2283 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2284 		gstop_done = task_participate_group_stop(current);
2285 
2286 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2287 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2288 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2289 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2290 
2291 	/* entering a trap, clear TRAPPING */
2292 	task_clear_jobctl_trapping(current);
2293 
2294 	spin_unlock_irq(&current->sighand->siglock);
2295 	read_lock(&tasklist_lock);
2296 	/*
2297 	 * Notify parents of the stop.
2298 	 *
2299 	 * While ptraced, there are two parents - the ptracer and
2300 	 * the real_parent of the group_leader.  The ptracer should
2301 	 * know about every stop while the real parent is only
2302 	 * interested in the completion of group stop.  The states
2303 	 * for the two don't interact with each other.  Notify
2304 	 * separately unless they're gonna be duplicates.
2305 	 */
2306 	if (current->ptrace)
2307 		do_notify_parent_cldstop(current, true, why);
2308 	if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2309 		do_notify_parent_cldstop(current, false, why);
2310 
2311 	/*
2312 	 * The previous do_notify_parent_cldstop() invocation woke ptracer.
2313 	 * One a PREEMPTION kernel this can result in preemption requirement
2314 	 * which will be fulfilled after read_unlock() and the ptracer will be
2315 	 * put on the CPU.
2316 	 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for
2317 	 * this task wait in schedule(). If this task gets preempted then it
2318 	 * remains enqueued on the runqueue. The ptracer will observe this and
2319 	 * then sleep for a delay of one HZ tick. In the meantime this task
2320 	 * gets scheduled, enters schedule() and will wait for the ptracer.
2321 	 *
2322 	 * This preemption point is not bad from a correctness point of
2323 	 * view but extends the runtime by one HZ tick time due to the
2324 	 * ptracer's sleep.  The preempt-disable section ensures that there
2325 	 * will be no preemption between unlock and schedule() and so
2326 	 * improving the performance since the ptracer will observe that
2327 	 * the tracee is scheduled out once it gets on the CPU.
2328 	 *
2329 	 * On PREEMPT_RT locking tasklist_lock does not disable preemption.
2330 	 * Therefore the task can be preempted after do_notify_parent_cldstop()
2331 	 * before unlocking tasklist_lock so there is no benefit in doing this.
2332 	 *
2333 	 * In fact disabling preemption is harmful on PREEMPT_RT because
2334 	 * the spinlock_t in cgroup_enter_frozen() must not be acquired
2335 	 * with preemption disabled due to the 'sleeping' spinlock
2336 	 * substitution of RT.
2337 	 */
2338 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2339 		preempt_disable();
2340 	read_unlock(&tasklist_lock);
2341 	cgroup_enter_frozen();
2342 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2343 		preempt_enable_no_resched();
2344 	schedule();
2345 	cgroup_leave_frozen(true);
2346 
2347 	/*
2348 	 * We are back.  Now reacquire the siglock before touching
2349 	 * last_siginfo, so that we are sure to have synchronized with
2350 	 * any signal-sending on another CPU that wants to examine it.
2351 	 */
2352 	spin_lock_irq(&current->sighand->siglock);
2353 	exit_code = current->exit_code;
2354 	current->last_siginfo = NULL;
2355 	current->ptrace_message = 0;
2356 	current->exit_code = 0;
2357 
2358 	/* LISTENING can be set only during STOP traps, clear it */
2359 	current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2360 
2361 	/*
2362 	 * Queued signals ignored us while we were stopped for tracing.
2363 	 * So check for any that we should take before resuming user mode.
2364 	 * This sets TIF_SIGPENDING, but never clears it.
2365 	 */
2366 	recalc_sigpending_tsk(current);
2367 	return exit_code;
2368 }
2369 
2370 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2371 {
2372 	kernel_siginfo_t info;
2373 
2374 	clear_siginfo(&info);
2375 	info.si_signo = signr;
2376 	info.si_code = exit_code;
2377 	info.si_pid = task_pid_vnr(current);
2378 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2379 
2380 	/* Let the debugger run.  */
2381 	return ptrace_stop(exit_code, why, message, &info);
2382 }
2383 
2384 int ptrace_notify(int exit_code, unsigned long message)
2385 {
2386 	int signr;
2387 
2388 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2389 	if (unlikely(task_work_pending(current)))
2390 		task_work_run();
2391 
2392 	spin_lock_irq(&current->sighand->siglock);
2393 	signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2394 	spin_unlock_irq(&current->sighand->siglock);
2395 	return signr;
2396 }
2397 
2398 /**
2399  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2400  * @signr: signr causing group stop if initiating
2401  *
2402  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2403  * and participate in it.  If already set, participate in the existing
2404  * group stop.  If participated in a group stop (and thus slept), %true is
2405  * returned with siglock released.
2406  *
2407  * If ptraced, this function doesn't handle stop itself.  Instead,
2408  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2409  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2410  * places afterwards.
2411  *
2412  * CONTEXT:
2413  * Must be called with @current->sighand->siglock held, which is released
2414  * on %true return.
2415  *
2416  * RETURNS:
2417  * %false if group stop is already cancelled or ptrace trap is scheduled.
2418  * %true if participated in group stop.
2419  */
2420 static bool do_signal_stop(int signr)
2421 	__releases(&current->sighand->siglock)
2422 {
2423 	struct signal_struct *sig = current->signal;
2424 
2425 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2426 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2427 		struct task_struct *t;
2428 
2429 		/* signr will be recorded in task->jobctl for retries */
2430 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2431 
2432 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2433 		    unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2434 		    unlikely(sig->group_exec_task))
2435 			return false;
2436 		/*
2437 		 * There is no group stop already in progress.  We must
2438 		 * initiate one now.
2439 		 *
2440 		 * While ptraced, a task may be resumed while group stop is
2441 		 * still in effect and then receive a stop signal and
2442 		 * initiate another group stop.  This deviates from the
2443 		 * usual behavior as two consecutive stop signals can't
2444 		 * cause two group stops when !ptraced.  That is why we
2445 		 * also check !task_is_stopped(t) below.
2446 		 *
2447 		 * The condition can be distinguished by testing whether
2448 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2449 		 * group_exit_code in such case.
2450 		 *
2451 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2452 		 * an intervening stop signal is required to cause two
2453 		 * continued events regardless of ptrace.
2454 		 */
2455 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2456 			sig->group_exit_code = signr;
2457 
2458 		sig->group_stop_count = 0;
2459 		if (task_set_jobctl_pending(current, signr | gstop))
2460 			sig->group_stop_count++;
2461 
2462 		for_other_threads(current, t) {
2463 			/*
2464 			 * Setting state to TASK_STOPPED for a group
2465 			 * stop is always done with the siglock held,
2466 			 * so this check has no races.
2467 			 */
2468 			if (!task_is_stopped(t) &&
2469 			    task_set_jobctl_pending(t, signr | gstop)) {
2470 				sig->group_stop_count++;
2471 				if (likely(!(t->ptrace & PT_SEIZED)))
2472 					signal_wake_up(t, 0);
2473 				else
2474 					ptrace_trap_notify(t);
2475 			}
2476 		}
2477 	}
2478 
2479 	if (likely(!current->ptrace)) {
2480 		int notify = 0;
2481 
2482 		/*
2483 		 * If there are no other threads in the group, or if there
2484 		 * is a group stop in progress and we are the last to stop,
2485 		 * report to the parent.
2486 		 */
2487 		if (task_participate_group_stop(current))
2488 			notify = CLD_STOPPED;
2489 
2490 		current->jobctl |= JOBCTL_STOPPED;
2491 		set_special_state(TASK_STOPPED);
2492 		spin_unlock_irq(&current->sighand->siglock);
2493 
2494 		/*
2495 		 * Notify the parent of the group stop completion.  Because
2496 		 * we're not holding either the siglock or tasklist_lock
2497 		 * here, ptracer may attach inbetween; however, this is for
2498 		 * group stop and should always be delivered to the real
2499 		 * parent of the group leader.  The new ptracer will get
2500 		 * its notification when this task transitions into
2501 		 * TASK_TRACED.
2502 		 */
2503 		if (notify) {
2504 			read_lock(&tasklist_lock);
2505 			do_notify_parent_cldstop(current, false, notify);
2506 			read_unlock(&tasklist_lock);
2507 		}
2508 
2509 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2510 		cgroup_enter_frozen();
2511 		schedule();
2512 		return true;
2513 	} else {
2514 		/*
2515 		 * While ptraced, group stop is handled by STOP trap.
2516 		 * Schedule it and let the caller deal with it.
2517 		 */
2518 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2519 		return false;
2520 	}
2521 }
2522 
2523 /**
2524  * do_jobctl_trap - take care of ptrace jobctl traps
2525  *
2526  * When PT_SEIZED, it's used for both group stop and explicit
2527  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2528  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2529  * the stop signal; otherwise, %SIGTRAP.
2530  *
2531  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2532  * number as exit_code and no siginfo.
2533  *
2534  * CONTEXT:
2535  * Must be called with @current->sighand->siglock held, which may be
2536  * released and re-acquired before returning with intervening sleep.
2537  */
2538 static void do_jobctl_trap(void)
2539 {
2540 	struct signal_struct *signal = current->signal;
2541 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2542 
2543 	if (current->ptrace & PT_SEIZED) {
2544 		if (!signal->group_stop_count &&
2545 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2546 			signr = SIGTRAP;
2547 		WARN_ON_ONCE(!signr);
2548 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2549 				 CLD_STOPPED, 0);
2550 	} else {
2551 		WARN_ON_ONCE(!signr);
2552 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2553 	}
2554 }
2555 
2556 /**
2557  * do_freezer_trap - handle the freezer jobctl trap
2558  *
2559  * Puts the task into frozen state, if only the task is not about to quit.
2560  * In this case it drops JOBCTL_TRAP_FREEZE.
2561  *
2562  * CONTEXT:
2563  * Must be called with @current->sighand->siglock held,
2564  * which is always released before returning.
2565  */
2566 static void do_freezer_trap(void)
2567 	__releases(&current->sighand->siglock)
2568 {
2569 	/*
2570 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2571 	 * let's make another loop to give it a chance to be handled.
2572 	 * In any case, we'll return back.
2573 	 */
2574 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2575 	     JOBCTL_TRAP_FREEZE) {
2576 		spin_unlock_irq(&current->sighand->siglock);
2577 		return;
2578 	}
2579 
2580 	/*
2581 	 * Now we're sure that there is no pending fatal signal and no
2582 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2583 	 * immediately (if there is a non-fatal signal pending), and
2584 	 * put the task into sleep.
2585 	 */
2586 	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2587 	clear_thread_flag(TIF_SIGPENDING);
2588 	spin_unlock_irq(&current->sighand->siglock);
2589 	cgroup_enter_frozen();
2590 	schedule();
2591 }
2592 
2593 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2594 {
2595 	/*
2596 	 * We do not check sig_kernel_stop(signr) but set this marker
2597 	 * unconditionally because we do not know whether debugger will
2598 	 * change signr. This flag has no meaning unless we are going
2599 	 * to stop after return from ptrace_stop(). In this case it will
2600 	 * be checked in do_signal_stop(), we should only stop if it was
2601 	 * not cleared by SIGCONT while we were sleeping. See also the
2602 	 * comment in dequeue_signal().
2603 	 */
2604 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2605 	signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2606 
2607 	/* We're back.  Did the debugger cancel the sig?  */
2608 	if (signr == 0)
2609 		return signr;
2610 
2611 	/*
2612 	 * Update the siginfo structure if the signal has
2613 	 * changed.  If the debugger wanted something
2614 	 * specific in the siginfo structure then it should
2615 	 * have updated *info via PTRACE_SETSIGINFO.
2616 	 */
2617 	if (signr != info->si_signo) {
2618 		clear_siginfo(info);
2619 		info->si_signo = signr;
2620 		info->si_errno = 0;
2621 		info->si_code = SI_USER;
2622 		rcu_read_lock();
2623 		info->si_pid = task_pid_vnr(current->parent);
2624 		info->si_uid = from_kuid_munged(current_user_ns(),
2625 						task_uid(current->parent));
2626 		rcu_read_unlock();
2627 	}
2628 
2629 	/* If the (new) signal is now blocked, requeue it.  */
2630 	if (sigismember(&current->blocked, signr) ||
2631 	    fatal_signal_pending(current)) {
2632 		send_signal_locked(signr, info, current, type);
2633 		signr = 0;
2634 	}
2635 
2636 	return signr;
2637 }
2638 
2639 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2640 {
2641 	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2642 	case SIL_FAULT:
2643 	case SIL_FAULT_TRAPNO:
2644 	case SIL_FAULT_MCEERR:
2645 	case SIL_FAULT_BNDERR:
2646 	case SIL_FAULT_PKUERR:
2647 	case SIL_FAULT_PERF_EVENT:
2648 		ksig->info.si_addr = arch_untagged_si_addr(
2649 			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2650 		break;
2651 	case SIL_KILL:
2652 	case SIL_TIMER:
2653 	case SIL_POLL:
2654 	case SIL_CHLD:
2655 	case SIL_RT:
2656 	case SIL_SYS:
2657 		break;
2658 	}
2659 }
2660 
2661 bool get_signal(struct ksignal *ksig)
2662 {
2663 	struct sighand_struct *sighand = current->sighand;
2664 	struct signal_struct *signal = current->signal;
2665 	int signr;
2666 
2667 	clear_notify_signal();
2668 	if (unlikely(task_work_pending(current)))
2669 		task_work_run();
2670 
2671 	if (!task_sigpending(current))
2672 		return false;
2673 
2674 	if (unlikely(uprobe_deny_signal()))
2675 		return false;
2676 
2677 	/*
2678 	 * Do this once, we can't return to user-mode if freezing() == T.
2679 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2680 	 * thus do not need another check after return.
2681 	 */
2682 	try_to_freeze();
2683 
2684 relock:
2685 	spin_lock_irq(&sighand->siglock);
2686 
2687 	/*
2688 	 * Every stopped thread goes here after wakeup. Check to see if
2689 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2690 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2691 	 */
2692 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2693 		int why;
2694 
2695 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2696 			why = CLD_CONTINUED;
2697 		else
2698 			why = CLD_STOPPED;
2699 
2700 		signal->flags &= ~SIGNAL_CLD_MASK;
2701 
2702 		spin_unlock_irq(&sighand->siglock);
2703 
2704 		/*
2705 		 * Notify the parent that we're continuing.  This event is
2706 		 * always per-process and doesn't make whole lot of sense
2707 		 * for ptracers, who shouldn't consume the state via
2708 		 * wait(2) either, but, for backward compatibility, notify
2709 		 * the ptracer of the group leader too unless it's gonna be
2710 		 * a duplicate.
2711 		 */
2712 		read_lock(&tasklist_lock);
2713 		do_notify_parent_cldstop(current, false, why);
2714 
2715 		if (ptrace_reparented(current->group_leader))
2716 			do_notify_parent_cldstop(current->group_leader,
2717 						true, why);
2718 		read_unlock(&tasklist_lock);
2719 
2720 		goto relock;
2721 	}
2722 
2723 	for (;;) {
2724 		struct k_sigaction *ka;
2725 		enum pid_type type;
2726 
2727 		/* Has this task already been marked for death? */
2728 		if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2729 		     signal->group_exec_task) {
2730 			clear_siginfo(&ksig->info);
2731 			ksig->info.si_signo = signr = SIGKILL;
2732 			sigdelset(&current->pending.signal, SIGKILL);
2733 			trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2734 				&sighand->action[SIGKILL - 1]);
2735 			recalc_sigpending();
2736 			goto fatal;
2737 		}
2738 
2739 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2740 		    do_signal_stop(0))
2741 			goto relock;
2742 
2743 		if (unlikely(current->jobctl &
2744 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2745 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2746 				do_jobctl_trap();
2747 				spin_unlock_irq(&sighand->siglock);
2748 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2749 				do_freezer_trap();
2750 
2751 			goto relock;
2752 		}
2753 
2754 		/*
2755 		 * If the task is leaving the frozen state, let's update
2756 		 * cgroup counters and reset the frozen bit.
2757 		 */
2758 		if (unlikely(cgroup_task_frozen(current))) {
2759 			spin_unlock_irq(&sighand->siglock);
2760 			cgroup_leave_frozen(false);
2761 			goto relock;
2762 		}
2763 
2764 		/*
2765 		 * Signals generated by the execution of an instruction
2766 		 * need to be delivered before any other pending signals
2767 		 * so that the instruction pointer in the signal stack
2768 		 * frame points to the faulting instruction.
2769 		 */
2770 		type = PIDTYPE_PID;
2771 		signr = dequeue_synchronous_signal(&ksig->info);
2772 		if (!signr)
2773 			signr = dequeue_signal(current, &current->blocked,
2774 					       &ksig->info, &type);
2775 
2776 		if (!signr)
2777 			break; /* will return 0 */
2778 
2779 		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2780 		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2781 			signr = ptrace_signal(signr, &ksig->info, type);
2782 			if (!signr)
2783 				continue;
2784 		}
2785 
2786 		ka = &sighand->action[signr-1];
2787 
2788 		/* Trace actually delivered signals. */
2789 		trace_signal_deliver(signr, &ksig->info, ka);
2790 
2791 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2792 			continue;
2793 		if (ka->sa.sa_handler != SIG_DFL) {
2794 			/* Run the handler.  */
2795 			ksig->ka = *ka;
2796 
2797 			if (ka->sa.sa_flags & SA_ONESHOT)
2798 				ka->sa.sa_handler = SIG_DFL;
2799 
2800 			break; /* will return non-zero "signr" value */
2801 		}
2802 
2803 		/*
2804 		 * Now we are doing the default action for this signal.
2805 		 */
2806 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2807 			continue;
2808 
2809 		/*
2810 		 * Global init gets no signals it doesn't want.
2811 		 * Container-init gets no signals it doesn't want from same
2812 		 * container.
2813 		 *
2814 		 * Note that if global/container-init sees a sig_kernel_only()
2815 		 * signal here, the signal must have been generated internally
2816 		 * or must have come from an ancestor namespace. In either
2817 		 * case, the signal cannot be dropped.
2818 		 */
2819 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2820 				!sig_kernel_only(signr))
2821 			continue;
2822 
2823 		if (sig_kernel_stop(signr)) {
2824 			/*
2825 			 * The default action is to stop all threads in
2826 			 * the thread group.  The job control signals
2827 			 * do nothing in an orphaned pgrp, but SIGSTOP
2828 			 * always works.  Note that siglock needs to be
2829 			 * dropped during the call to is_orphaned_pgrp()
2830 			 * because of lock ordering with tasklist_lock.
2831 			 * This allows an intervening SIGCONT to be posted.
2832 			 * We need to check for that and bail out if necessary.
2833 			 */
2834 			if (signr != SIGSTOP) {
2835 				spin_unlock_irq(&sighand->siglock);
2836 
2837 				/* signals can be posted during this window */
2838 
2839 				if (is_current_pgrp_orphaned())
2840 					goto relock;
2841 
2842 				spin_lock_irq(&sighand->siglock);
2843 			}
2844 
2845 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2846 				/* It released the siglock.  */
2847 				goto relock;
2848 			}
2849 
2850 			/*
2851 			 * We didn't actually stop, due to a race
2852 			 * with SIGCONT or something like that.
2853 			 */
2854 			continue;
2855 		}
2856 
2857 	fatal:
2858 		spin_unlock_irq(&sighand->siglock);
2859 		if (unlikely(cgroup_task_frozen(current)))
2860 			cgroup_leave_frozen(true);
2861 
2862 		/*
2863 		 * Anything else is fatal, maybe with a core dump.
2864 		 */
2865 		current->flags |= PF_SIGNALED;
2866 
2867 		if (sig_kernel_coredump(signr)) {
2868 			if (print_fatal_signals)
2869 				print_fatal_signal(ksig->info.si_signo);
2870 			proc_coredump_connector(current);
2871 			/*
2872 			 * If it was able to dump core, this kills all
2873 			 * other threads in the group and synchronizes with
2874 			 * their demise.  If we lost the race with another
2875 			 * thread getting here, it set group_exit_code
2876 			 * first and our do_group_exit call below will use
2877 			 * that value and ignore the one we pass it.
2878 			 */
2879 			do_coredump(&ksig->info);
2880 		}
2881 
2882 		/*
2883 		 * PF_USER_WORKER threads will catch and exit on fatal signals
2884 		 * themselves. They have cleanup that must be performed, so
2885 		 * we cannot call do_exit() on their behalf.
2886 		 */
2887 		if (current->flags & PF_USER_WORKER)
2888 			goto out;
2889 
2890 		/*
2891 		 * Death signals, no core dump.
2892 		 */
2893 		do_group_exit(ksig->info.si_signo);
2894 		/* NOTREACHED */
2895 	}
2896 	spin_unlock_irq(&sighand->siglock);
2897 out:
2898 	ksig->sig = signr;
2899 
2900 	if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2901 		hide_si_addr_tag_bits(ksig);
2902 
2903 	return ksig->sig > 0;
2904 }
2905 
2906 /**
2907  * signal_delivered - called after signal delivery to update blocked signals
2908  * @ksig:		kernel signal struct
2909  * @stepping:		nonzero if debugger single-step or block-step in use
2910  *
2911  * This function should be called when a signal has successfully been
2912  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2913  * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2914  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2915  */
2916 static void signal_delivered(struct ksignal *ksig, int stepping)
2917 {
2918 	sigset_t blocked;
2919 
2920 	/* A signal was successfully delivered, and the
2921 	   saved sigmask was stored on the signal frame,
2922 	   and will be restored by sigreturn.  So we can
2923 	   simply clear the restore sigmask flag.  */
2924 	clear_restore_sigmask();
2925 
2926 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2927 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2928 		sigaddset(&blocked, ksig->sig);
2929 	set_current_blocked(&blocked);
2930 	if (current->sas_ss_flags & SS_AUTODISARM)
2931 		sas_ss_reset(current);
2932 	if (stepping)
2933 		ptrace_notify(SIGTRAP, 0);
2934 }
2935 
2936 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2937 {
2938 	if (failed)
2939 		force_sigsegv(ksig->sig);
2940 	else
2941 		signal_delivered(ksig, stepping);
2942 }
2943 
2944 /*
2945  * It could be that complete_signal() picked us to notify about the
2946  * group-wide signal. Other threads should be notified now to take
2947  * the shared signals in @which since we will not.
2948  */
2949 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2950 {
2951 	sigset_t retarget;
2952 	struct task_struct *t;
2953 
2954 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2955 	if (sigisemptyset(&retarget))
2956 		return;
2957 
2958 	for_other_threads(tsk, t) {
2959 		if (t->flags & PF_EXITING)
2960 			continue;
2961 
2962 		if (!has_pending_signals(&retarget, &t->blocked))
2963 			continue;
2964 		/* Remove the signals this thread can handle. */
2965 		sigandsets(&retarget, &retarget, &t->blocked);
2966 
2967 		if (!task_sigpending(t))
2968 			signal_wake_up(t, 0);
2969 
2970 		if (sigisemptyset(&retarget))
2971 			break;
2972 	}
2973 }
2974 
2975 void exit_signals(struct task_struct *tsk)
2976 {
2977 	int group_stop = 0;
2978 	sigset_t unblocked;
2979 
2980 	/*
2981 	 * @tsk is about to have PF_EXITING set - lock out users which
2982 	 * expect stable threadgroup.
2983 	 */
2984 	cgroup_threadgroup_change_begin(tsk);
2985 
2986 	if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
2987 		sched_mm_cid_exit_signals(tsk);
2988 		tsk->flags |= PF_EXITING;
2989 		cgroup_threadgroup_change_end(tsk);
2990 		return;
2991 	}
2992 
2993 	spin_lock_irq(&tsk->sighand->siglock);
2994 	/*
2995 	 * From now this task is not visible for group-wide signals,
2996 	 * see wants_signal(), do_signal_stop().
2997 	 */
2998 	sched_mm_cid_exit_signals(tsk);
2999 	tsk->flags |= PF_EXITING;
3000 
3001 	cgroup_threadgroup_change_end(tsk);
3002 
3003 	if (!task_sigpending(tsk))
3004 		goto out;
3005 
3006 	unblocked = tsk->blocked;
3007 	signotset(&unblocked);
3008 	retarget_shared_pending(tsk, &unblocked);
3009 
3010 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3011 	    task_participate_group_stop(tsk))
3012 		group_stop = CLD_STOPPED;
3013 out:
3014 	spin_unlock_irq(&tsk->sighand->siglock);
3015 
3016 	/*
3017 	 * If group stop has completed, deliver the notification.  This
3018 	 * should always go to the real parent of the group leader.
3019 	 */
3020 	if (unlikely(group_stop)) {
3021 		read_lock(&tasklist_lock);
3022 		do_notify_parent_cldstop(tsk, false, group_stop);
3023 		read_unlock(&tasklist_lock);
3024 	}
3025 }
3026 
3027 /*
3028  * System call entry points.
3029  */
3030 
3031 /**
3032  *  sys_restart_syscall - restart a system call
3033  */
3034 SYSCALL_DEFINE0(restart_syscall)
3035 {
3036 	struct restart_block *restart = &current->restart_block;
3037 	return restart->fn(restart);
3038 }
3039 
3040 long do_no_restart_syscall(struct restart_block *param)
3041 {
3042 	return -EINTR;
3043 }
3044 
3045 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3046 {
3047 	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3048 		sigset_t newblocked;
3049 		/* A set of now blocked but previously unblocked signals. */
3050 		sigandnsets(&newblocked, newset, &current->blocked);
3051 		retarget_shared_pending(tsk, &newblocked);
3052 	}
3053 	tsk->blocked = *newset;
3054 	recalc_sigpending();
3055 }
3056 
3057 /**
3058  * set_current_blocked - change current->blocked mask
3059  * @newset: new mask
3060  *
3061  * It is wrong to change ->blocked directly, this helper should be used
3062  * to ensure the process can't miss a shared signal we are going to block.
3063  */
3064 void set_current_blocked(sigset_t *newset)
3065 {
3066 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3067 	__set_current_blocked(newset);
3068 }
3069 
3070 void __set_current_blocked(const sigset_t *newset)
3071 {
3072 	struct task_struct *tsk = current;
3073 
3074 	/*
3075 	 * In case the signal mask hasn't changed, there is nothing we need
3076 	 * to do. The current->blocked shouldn't be modified by other task.
3077 	 */
3078 	if (sigequalsets(&tsk->blocked, newset))
3079 		return;
3080 
3081 	spin_lock_irq(&tsk->sighand->siglock);
3082 	__set_task_blocked(tsk, newset);
3083 	spin_unlock_irq(&tsk->sighand->siglock);
3084 }
3085 
3086 /*
3087  * This is also useful for kernel threads that want to temporarily
3088  * (or permanently) block certain signals.
3089  *
3090  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3091  * interface happily blocks "unblockable" signals like SIGKILL
3092  * and friends.
3093  */
3094 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3095 {
3096 	struct task_struct *tsk = current;
3097 	sigset_t newset;
3098 
3099 	/* Lockless, only current can change ->blocked, never from irq */
3100 	if (oldset)
3101 		*oldset = tsk->blocked;
3102 
3103 	switch (how) {
3104 	case SIG_BLOCK:
3105 		sigorsets(&newset, &tsk->blocked, set);
3106 		break;
3107 	case SIG_UNBLOCK:
3108 		sigandnsets(&newset, &tsk->blocked, set);
3109 		break;
3110 	case SIG_SETMASK:
3111 		newset = *set;
3112 		break;
3113 	default:
3114 		return -EINVAL;
3115 	}
3116 
3117 	__set_current_blocked(&newset);
3118 	return 0;
3119 }
3120 EXPORT_SYMBOL(sigprocmask);
3121 
3122 /*
3123  * The api helps set app-provided sigmasks.
3124  *
3125  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3126  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3127  *
3128  * Note that it does set_restore_sigmask() in advance, so it must be always
3129  * paired with restore_saved_sigmask_unless() before return from syscall.
3130  */
3131 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3132 {
3133 	sigset_t kmask;
3134 
3135 	if (!umask)
3136 		return 0;
3137 	if (sigsetsize != sizeof(sigset_t))
3138 		return -EINVAL;
3139 	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3140 		return -EFAULT;
3141 
3142 	set_restore_sigmask();
3143 	current->saved_sigmask = current->blocked;
3144 	set_current_blocked(&kmask);
3145 
3146 	return 0;
3147 }
3148 
3149 #ifdef CONFIG_COMPAT
3150 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3151 			    size_t sigsetsize)
3152 {
3153 	sigset_t kmask;
3154 
3155 	if (!umask)
3156 		return 0;
3157 	if (sigsetsize != sizeof(compat_sigset_t))
3158 		return -EINVAL;
3159 	if (get_compat_sigset(&kmask, umask))
3160 		return -EFAULT;
3161 
3162 	set_restore_sigmask();
3163 	current->saved_sigmask = current->blocked;
3164 	set_current_blocked(&kmask);
3165 
3166 	return 0;
3167 }
3168 #endif
3169 
3170 /**
3171  *  sys_rt_sigprocmask - change the list of currently blocked signals
3172  *  @how: whether to add, remove, or set signals
3173  *  @nset: stores pending signals
3174  *  @oset: previous value of signal mask if non-null
3175  *  @sigsetsize: size of sigset_t type
3176  */
3177 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3178 		sigset_t __user *, oset, size_t, sigsetsize)
3179 {
3180 	sigset_t old_set, new_set;
3181 	int error;
3182 
3183 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3184 	if (sigsetsize != sizeof(sigset_t))
3185 		return -EINVAL;
3186 
3187 	old_set = current->blocked;
3188 
3189 	if (nset) {
3190 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3191 			return -EFAULT;
3192 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3193 
3194 		error = sigprocmask(how, &new_set, NULL);
3195 		if (error)
3196 			return error;
3197 	}
3198 
3199 	if (oset) {
3200 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3201 			return -EFAULT;
3202 	}
3203 
3204 	return 0;
3205 }
3206 
3207 #ifdef CONFIG_COMPAT
3208 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3209 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3210 {
3211 	sigset_t old_set = current->blocked;
3212 
3213 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3214 	if (sigsetsize != sizeof(sigset_t))
3215 		return -EINVAL;
3216 
3217 	if (nset) {
3218 		sigset_t new_set;
3219 		int error;
3220 		if (get_compat_sigset(&new_set, nset))
3221 			return -EFAULT;
3222 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3223 
3224 		error = sigprocmask(how, &new_set, NULL);
3225 		if (error)
3226 			return error;
3227 	}
3228 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3229 }
3230 #endif
3231 
3232 static void do_sigpending(sigset_t *set)
3233 {
3234 	spin_lock_irq(&current->sighand->siglock);
3235 	sigorsets(set, &current->pending.signal,
3236 		  &current->signal->shared_pending.signal);
3237 	spin_unlock_irq(&current->sighand->siglock);
3238 
3239 	/* Outside the lock because only this thread touches it.  */
3240 	sigandsets(set, &current->blocked, set);
3241 }
3242 
3243 /**
3244  *  sys_rt_sigpending - examine a pending signal that has been raised
3245  *			while blocked
3246  *  @uset: stores pending signals
3247  *  @sigsetsize: size of sigset_t type or larger
3248  */
3249 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3250 {
3251 	sigset_t set;
3252 
3253 	if (sigsetsize > sizeof(*uset))
3254 		return -EINVAL;
3255 
3256 	do_sigpending(&set);
3257 
3258 	if (copy_to_user(uset, &set, sigsetsize))
3259 		return -EFAULT;
3260 
3261 	return 0;
3262 }
3263 
3264 #ifdef CONFIG_COMPAT
3265 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3266 		compat_size_t, sigsetsize)
3267 {
3268 	sigset_t set;
3269 
3270 	if (sigsetsize > sizeof(*uset))
3271 		return -EINVAL;
3272 
3273 	do_sigpending(&set);
3274 
3275 	return put_compat_sigset(uset, &set, sigsetsize);
3276 }
3277 #endif
3278 
3279 static const struct {
3280 	unsigned char limit, layout;
3281 } sig_sicodes[] = {
3282 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3283 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3284 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3285 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3286 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3287 #if defined(SIGEMT)
3288 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3289 #endif
3290 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3291 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3292 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3293 };
3294 
3295 static bool known_siginfo_layout(unsigned sig, int si_code)
3296 {
3297 	if (si_code == SI_KERNEL)
3298 		return true;
3299 	else if ((si_code > SI_USER)) {
3300 		if (sig_specific_sicodes(sig)) {
3301 			if (si_code <= sig_sicodes[sig].limit)
3302 				return true;
3303 		}
3304 		else if (si_code <= NSIGPOLL)
3305 			return true;
3306 	}
3307 	else if (si_code >= SI_DETHREAD)
3308 		return true;
3309 	else if (si_code == SI_ASYNCNL)
3310 		return true;
3311 	return false;
3312 }
3313 
3314 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3315 {
3316 	enum siginfo_layout layout = SIL_KILL;
3317 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3318 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3319 		    (si_code <= sig_sicodes[sig].limit)) {
3320 			layout = sig_sicodes[sig].layout;
3321 			/* Handle the exceptions */
3322 			if ((sig == SIGBUS) &&
3323 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3324 				layout = SIL_FAULT_MCEERR;
3325 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3326 				layout = SIL_FAULT_BNDERR;
3327 #ifdef SEGV_PKUERR
3328 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3329 				layout = SIL_FAULT_PKUERR;
3330 #endif
3331 			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3332 				layout = SIL_FAULT_PERF_EVENT;
3333 			else if (IS_ENABLED(CONFIG_SPARC) &&
3334 				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3335 				layout = SIL_FAULT_TRAPNO;
3336 			else if (IS_ENABLED(CONFIG_ALPHA) &&
3337 				 ((sig == SIGFPE) ||
3338 				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3339 				layout = SIL_FAULT_TRAPNO;
3340 		}
3341 		else if (si_code <= NSIGPOLL)
3342 			layout = SIL_POLL;
3343 	} else {
3344 		if (si_code == SI_TIMER)
3345 			layout = SIL_TIMER;
3346 		else if (si_code == SI_SIGIO)
3347 			layout = SIL_POLL;
3348 		else if (si_code < 0)
3349 			layout = SIL_RT;
3350 	}
3351 	return layout;
3352 }
3353 
3354 static inline char __user *si_expansion(const siginfo_t __user *info)
3355 {
3356 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3357 }
3358 
3359 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3360 {
3361 	char __user *expansion = si_expansion(to);
3362 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3363 		return -EFAULT;
3364 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3365 		return -EFAULT;
3366 	return 0;
3367 }
3368 
3369 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3370 				       const siginfo_t __user *from)
3371 {
3372 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3373 		char __user *expansion = si_expansion(from);
3374 		char buf[SI_EXPANSION_SIZE];
3375 		int i;
3376 		/*
3377 		 * An unknown si_code might need more than
3378 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3379 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3380 		 * will return this data to userspace exactly.
3381 		 */
3382 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3383 			return -EFAULT;
3384 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3385 			if (buf[i] != 0)
3386 				return -E2BIG;
3387 		}
3388 	}
3389 	return 0;
3390 }
3391 
3392 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3393 				    const siginfo_t __user *from)
3394 {
3395 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3396 		return -EFAULT;
3397 	to->si_signo = signo;
3398 	return post_copy_siginfo_from_user(to, from);
3399 }
3400 
3401 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3402 {
3403 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3404 		return -EFAULT;
3405 	return post_copy_siginfo_from_user(to, from);
3406 }
3407 
3408 #ifdef CONFIG_COMPAT
3409 /**
3410  * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3411  * @to: compat siginfo destination
3412  * @from: kernel siginfo source
3413  *
3414  * Note: This function does not work properly for the SIGCHLD on x32, but
3415  * fortunately it doesn't have to.  The only valid callers for this function are
3416  * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3417  * The latter does not care because SIGCHLD will never cause a coredump.
3418  */
3419 void copy_siginfo_to_external32(struct compat_siginfo *to,
3420 		const struct kernel_siginfo *from)
3421 {
3422 	memset(to, 0, sizeof(*to));
3423 
3424 	to->si_signo = from->si_signo;
3425 	to->si_errno = from->si_errno;
3426 	to->si_code  = from->si_code;
3427 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3428 	case SIL_KILL:
3429 		to->si_pid = from->si_pid;
3430 		to->si_uid = from->si_uid;
3431 		break;
3432 	case SIL_TIMER:
3433 		to->si_tid     = from->si_tid;
3434 		to->si_overrun = from->si_overrun;
3435 		to->si_int     = from->si_int;
3436 		break;
3437 	case SIL_POLL:
3438 		to->si_band = from->si_band;
3439 		to->si_fd   = from->si_fd;
3440 		break;
3441 	case SIL_FAULT:
3442 		to->si_addr = ptr_to_compat(from->si_addr);
3443 		break;
3444 	case SIL_FAULT_TRAPNO:
3445 		to->si_addr = ptr_to_compat(from->si_addr);
3446 		to->si_trapno = from->si_trapno;
3447 		break;
3448 	case SIL_FAULT_MCEERR:
3449 		to->si_addr = ptr_to_compat(from->si_addr);
3450 		to->si_addr_lsb = from->si_addr_lsb;
3451 		break;
3452 	case SIL_FAULT_BNDERR:
3453 		to->si_addr = ptr_to_compat(from->si_addr);
3454 		to->si_lower = ptr_to_compat(from->si_lower);
3455 		to->si_upper = ptr_to_compat(from->si_upper);
3456 		break;
3457 	case SIL_FAULT_PKUERR:
3458 		to->si_addr = ptr_to_compat(from->si_addr);
3459 		to->si_pkey = from->si_pkey;
3460 		break;
3461 	case SIL_FAULT_PERF_EVENT:
3462 		to->si_addr = ptr_to_compat(from->si_addr);
3463 		to->si_perf_data = from->si_perf_data;
3464 		to->si_perf_type = from->si_perf_type;
3465 		to->si_perf_flags = from->si_perf_flags;
3466 		break;
3467 	case SIL_CHLD:
3468 		to->si_pid = from->si_pid;
3469 		to->si_uid = from->si_uid;
3470 		to->si_status = from->si_status;
3471 		to->si_utime = from->si_utime;
3472 		to->si_stime = from->si_stime;
3473 		break;
3474 	case SIL_RT:
3475 		to->si_pid = from->si_pid;
3476 		to->si_uid = from->si_uid;
3477 		to->si_int = from->si_int;
3478 		break;
3479 	case SIL_SYS:
3480 		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3481 		to->si_syscall   = from->si_syscall;
3482 		to->si_arch      = from->si_arch;
3483 		break;
3484 	}
3485 }
3486 
3487 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3488 			   const struct kernel_siginfo *from)
3489 {
3490 	struct compat_siginfo new;
3491 
3492 	copy_siginfo_to_external32(&new, from);
3493 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3494 		return -EFAULT;
3495 	return 0;
3496 }
3497 
3498 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3499 					 const struct compat_siginfo *from)
3500 {
3501 	clear_siginfo(to);
3502 	to->si_signo = from->si_signo;
3503 	to->si_errno = from->si_errno;
3504 	to->si_code  = from->si_code;
3505 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3506 	case SIL_KILL:
3507 		to->si_pid = from->si_pid;
3508 		to->si_uid = from->si_uid;
3509 		break;
3510 	case SIL_TIMER:
3511 		to->si_tid     = from->si_tid;
3512 		to->si_overrun = from->si_overrun;
3513 		to->si_int     = from->si_int;
3514 		break;
3515 	case SIL_POLL:
3516 		to->si_band = from->si_band;
3517 		to->si_fd   = from->si_fd;
3518 		break;
3519 	case SIL_FAULT:
3520 		to->si_addr = compat_ptr(from->si_addr);
3521 		break;
3522 	case SIL_FAULT_TRAPNO:
3523 		to->si_addr = compat_ptr(from->si_addr);
3524 		to->si_trapno = from->si_trapno;
3525 		break;
3526 	case SIL_FAULT_MCEERR:
3527 		to->si_addr = compat_ptr(from->si_addr);
3528 		to->si_addr_lsb = from->si_addr_lsb;
3529 		break;
3530 	case SIL_FAULT_BNDERR:
3531 		to->si_addr = compat_ptr(from->si_addr);
3532 		to->si_lower = compat_ptr(from->si_lower);
3533 		to->si_upper = compat_ptr(from->si_upper);
3534 		break;
3535 	case SIL_FAULT_PKUERR:
3536 		to->si_addr = compat_ptr(from->si_addr);
3537 		to->si_pkey = from->si_pkey;
3538 		break;
3539 	case SIL_FAULT_PERF_EVENT:
3540 		to->si_addr = compat_ptr(from->si_addr);
3541 		to->si_perf_data = from->si_perf_data;
3542 		to->si_perf_type = from->si_perf_type;
3543 		to->si_perf_flags = from->si_perf_flags;
3544 		break;
3545 	case SIL_CHLD:
3546 		to->si_pid    = from->si_pid;
3547 		to->si_uid    = from->si_uid;
3548 		to->si_status = from->si_status;
3549 #ifdef CONFIG_X86_X32_ABI
3550 		if (in_x32_syscall()) {
3551 			to->si_utime = from->_sifields._sigchld_x32._utime;
3552 			to->si_stime = from->_sifields._sigchld_x32._stime;
3553 		} else
3554 #endif
3555 		{
3556 			to->si_utime = from->si_utime;
3557 			to->si_stime = from->si_stime;
3558 		}
3559 		break;
3560 	case SIL_RT:
3561 		to->si_pid = from->si_pid;
3562 		to->si_uid = from->si_uid;
3563 		to->si_int = from->si_int;
3564 		break;
3565 	case SIL_SYS:
3566 		to->si_call_addr = compat_ptr(from->si_call_addr);
3567 		to->si_syscall   = from->si_syscall;
3568 		to->si_arch      = from->si_arch;
3569 		break;
3570 	}
3571 	return 0;
3572 }
3573 
3574 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3575 				      const struct compat_siginfo __user *ufrom)
3576 {
3577 	struct compat_siginfo from;
3578 
3579 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3580 		return -EFAULT;
3581 
3582 	from.si_signo = signo;
3583 	return post_copy_siginfo_from_user32(to, &from);
3584 }
3585 
3586 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3587 			     const struct compat_siginfo __user *ufrom)
3588 {
3589 	struct compat_siginfo from;
3590 
3591 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3592 		return -EFAULT;
3593 
3594 	return post_copy_siginfo_from_user32(to, &from);
3595 }
3596 #endif /* CONFIG_COMPAT */
3597 
3598 /**
3599  *  do_sigtimedwait - wait for queued signals specified in @which
3600  *  @which: queued signals to wait for
3601  *  @info: if non-null, the signal's siginfo is returned here
3602  *  @ts: upper bound on process time suspension
3603  */
3604 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3605 		    const struct timespec64 *ts)
3606 {
3607 	ktime_t *to = NULL, timeout = KTIME_MAX;
3608 	struct task_struct *tsk = current;
3609 	sigset_t mask = *which;
3610 	enum pid_type type;
3611 	int sig, ret = 0;
3612 
3613 	if (ts) {
3614 		if (!timespec64_valid(ts))
3615 			return -EINVAL;
3616 		timeout = timespec64_to_ktime(*ts);
3617 		to = &timeout;
3618 	}
3619 
3620 	/*
3621 	 * Invert the set of allowed signals to get those we want to block.
3622 	 */
3623 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3624 	signotset(&mask);
3625 
3626 	spin_lock_irq(&tsk->sighand->siglock);
3627 	sig = dequeue_signal(tsk, &mask, info, &type);
3628 	if (!sig && timeout) {
3629 		/*
3630 		 * None ready, temporarily unblock those we're interested
3631 		 * while we are sleeping in so that we'll be awakened when
3632 		 * they arrive. Unblocking is always fine, we can avoid
3633 		 * set_current_blocked().
3634 		 */
3635 		tsk->real_blocked = tsk->blocked;
3636 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3637 		recalc_sigpending();
3638 		spin_unlock_irq(&tsk->sighand->siglock);
3639 
3640 		__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3641 		ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3642 					       HRTIMER_MODE_REL);
3643 		spin_lock_irq(&tsk->sighand->siglock);
3644 		__set_task_blocked(tsk, &tsk->real_blocked);
3645 		sigemptyset(&tsk->real_blocked);
3646 		sig = dequeue_signal(tsk, &mask, info, &type);
3647 	}
3648 	spin_unlock_irq(&tsk->sighand->siglock);
3649 
3650 	if (sig)
3651 		return sig;
3652 	return ret ? -EINTR : -EAGAIN;
3653 }
3654 
3655 /**
3656  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3657  *			in @uthese
3658  *  @uthese: queued signals to wait for
3659  *  @uinfo: if non-null, the signal's siginfo is returned here
3660  *  @uts: upper bound on process time suspension
3661  *  @sigsetsize: size of sigset_t type
3662  */
3663 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3664 		siginfo_t __user *, uinfo,
3665 		const struct __kernel_timespec __user *, uts,
3666 		size_t, sigsetsize)
3667 {
3668 	sigset_t these;
3669 	struct timespec64 ts;
3670 	kernel_siginfo_t info;
3671 	int ret;
3672 
3673 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3674 	if (sigsetsize != sizeof(sigset_t))
3675 		return -EINVAL;
3676 
3677 	if (copy_from_user(&these, uthese, sizeof(these)))
3678 		return -EFAULT;
3679 
3680 	if (uts) {
3681 		if (get_timespec64(&ts, uts))
3682 			return -EFAULT;
3683 	}
3684 
3685 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3686 
3687 	if (ret > 0 && uinfo) {
3688 		if (copy_siginfo_to_user(uinfo, &info))
3689 			ret = -EFAULT;
3690 	}
3691 
3692 	return ret;
3693 }
3694 
3695 #ifdef CONFIG_COMPAT_32BIT_TIME
3696 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3697 		siginfo_t __user *, uinfo,
3698 		const struct old_timespec32 __user *, uts,
3699 		size_t, sigsetsize)
3700 {
3701 	sigset_t these;
3702 	struct timespec64 ts;
3703 	kernel_siginfo_t info;
3704 	int ret;
3705 
3706 	if (sigsetsize != sizeof(sigset_t))
3707 		return -EINVAL;
3708 
3709 	if (copy_from_user(&these, uthese, sizeof(these)))
3710 		return -EFAULT;
3711 
3712 	if (uts) {
3713 		if (get_old_timespec32(&ts, uts))
3714 			return -EFAULT;
3715 	}
3716 
3717 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3718 
3719 	if (ret > 0 && uinfo) {
3720 		if (copy_siginfo_to_user(uinfo, &info))
3721 			ret = -EFAULT;
3722 	}
3723 
3724 	return ret;
3725 }
3726 #endif
3727 
3728 #ifdef CONFIG_COMPAT
3729 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3730 		struct compat_siginfo __user *, uinfo,
3731 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3732 {
3733 	sigset_t s;
3734 	struct timespec64 t;
3735 	kernel_siginfo_t info;
3736 	long ret;
3737 
3738 	if (sigsetsize != sizeof(sigset_t))
3739 		return -EINVAL;
3740 
3741 	if (get_compat_sigset(&s, uthese))
3742 		return -EFAULT;
3743 
3744 	if (uts) {
3745 		if (get_timespec64(&t, uts))
3746 			return -EFAULT;
3747 	}
3748 
3749 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3750 
3751 	if (ret > 0 && uinfo) {
3752 		if (copy_siginfo_to_user32(uinfo, &info))
3753 			ret = -EFAULT;
3754 	}
3755 
3756 	return ret;
3757 }
3758 
3759 #ifdef CONFIG_COMPAT_32BIT_TIME
3760 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3761 		struct compat_siginfo __user *, uinfo,
3762 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3763 {
3764 	sigset_t s;
3765 	struct timespec64 t;
3766 	kernel_siginfo_t info;
3767 	long ret;
3768 
3769 	if (sigsetsize != sizeof(sigset_t))
3770 		return -EINVAL;
3771 
3772 	if (get_compat_sigset(&s, uthese))
3773 		return -EFAULT;
3774 
3775 	if (uts) {
3776 		if (get_old_timespec32(&t, uts))
3777 			return -EFAULT;
3778 	}
3779 
3780 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3781 
3782 	if (ret > 0 && uinfo) {
3783 		if (copy_siginfo_to_user32(uinfo, &info))
3784 			ret = -EFAULT;
3785 	}
3786 
3787 	return ret;
3788 }
3789 #endif
3790 #endif
3791 
3792 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3793 {
3794 	clear_siginfo(info);
3795 	info->si_signo = sig;
3796 	info->si_errno = 0;
3797 	info->si_code = SI_USER;
3798 	info->si_pid = task_tgid_vnr(current);
3799 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3800 }
3801 
3802 /**
3803  *  sys_kill - send a signal to a process
3804  *  @pid: the PID of the process
3805  *  @sig: signal to be sent
3806  */
3807 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3808 {
3809 	struct kernel_siginfo info;
3810 
3811 	prepare_kill_siginfo(sig, &info);
3812 
3813 	return kill_something_info(sig, &info, pid);
3814 }
3815 
3816 /*
3817  * Verify that the signaler and signalee either are in the same pid namespace
3818  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3819  * namespace.
3820  */
3821 static bool access_pidfd_pidns(struct pid *pid)
3822 {
3823 	struct pid_namespace *active = task_active_pid_ns(current);
3824 	struct pid_namespace *p = ns_of_pid(pid);
3825 
3826 	for (;;) {
3827 		if (!p)
3828 			return false;
3829 		if (p == active)
3830 			break;
3831 		p = p->parent;
3832 	}
3833 
3834 	return true;
3835 }
3836 
3837 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3838 		siginfo_t __user *info)
3839 {
3840 #ifdef CONFIG_COMPAT
3841 	/*
3842 	 * Avoid hooking up compat syscalls and instead handle necessary
3843 	 * conversions here. Note, this is a stop-gap measure and should not be
3844 	 * considered a generic solution.
3845 	 */
3846 	if (in_compat_syscall())
3847 		return copy_siginfo_from_user32(
3848 			kinfo, (struct compat_siginfo __user *)info);
3849 #endif
3850 	return copy_siginfo_from_user(kinfo, info);
3851 }
3852 
3853 static struct pid *pidfd_to_pid(const struct file *file)
3854 {
3855 	struct pid *pid;
3856 
3857 	pid = pidfd_pid(file);
3858 	if (!IS_ERR(pid))
3859 		return pid;
3860 
3861 	return tgid_pidfd_to_pid(file);
3862 }
3863 
3864 /**
3865  * sys_pidfd_send_signal - Signal a process through a pidfd
3866  * @pidfd:  file descriptor of the process
3867  * @sig:    signal to send
3868  * @info:   signal info
3869  * @flags:  future flags
3870  *
3871  * The syscall currently only signals via PIDTYPE_PID which covers
3872  * kill(<positive-pid>, <signal>. It does not signal threads or process
3873  * groups.
3874  * In order to extend the syscall to threads and process groups the @flags
3875  * argument should be used. In essence, the @flags argument will determine
3876  * what is signaled and not the file descriptor itself. Put in other words,
3877  * grouping is a property of the flags argument not a property of the file
3878  * descriptor.
3879  *
3880  * Return: 0 on success, negative errno on failure
3881  */
3882 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3883 		siginfo_t __user *, info, unsigned int, flags)
3884 {
3885 	int ret;
3886 	struct fd f;
3887 	struct pid *pid;
3888 	kernel_siginfo_t kinfo;
3889 
3890 	/* Enforce flags be set to 0 until we add an extension. */
3891 	if (flags)
3892 		return -EINVAL;
3893 
3894 	f = fdget(pidfd);
3895 	if (!f.file)
3896 		return -EBADF;
3897 
3898 	/* Is this a pidfd? */
3899 	pid = pidfd_to_pid(f.file);
3900 	if (IS_ERR(pid)) {
3901 		ret = PTR_ERR(pid);
3902 		goto err;
3903 	}
3904 
3905 	ret = -EINVAL;
3906 	if (!access_pidfd_pidns(pid))
3907 		goto err;
3908 
3909 	if (info) {
3910 		ret = copy_siginfo_from_user_any(&kinfo, info);
3911 		if (unlikely(ret))
3912 			goto err;
3913 
3914 		ret = -EINVAL;
3915 		if (unlikely(sig != kinfo.si_signo))
3916 			goto err;
3917 
3918 		/* Only allow sending arbitrary signals to yourself. */
3919 		ret = -EPERM;
3920 		if ((task_pid(current) != pid) &&
3921 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3922 			goto err;
3923 	} else {
3924 		prepare_kill_siginfo(sig, &kinfo);
3925 	}
3926 
3927 	ret = kill_pid_info(sig, &kinfo, pid);
3928 
3929 err:
3930 	fdput(f);
3931 	return ret;
3932 }
3933 
3934 static int
3935 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3936 {
3937 	struct task_struct *p;
3938 	int error = -ESRCH;
3939 
3940 	rcu_read_lock();
3941 	p = find_task_by_vpid(pid);
3942 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3943 		error = check_kill_permission(sig, info, p);
3944 		/*
3945 		 * The null signal is a permissions and process existence
3946 		 * probe.  No signal is actually delivered.
3947 		 */
3948 		if (!error && sig) {
3949 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3950 			/*
3951 			 * If lock_task_sighand() failed we pretend the task
3952 			 * dies after receiving the signal. The window is tiny,
3953 			 * and the signal is private anyway.
3954 			 */
3955 			if (unlikely(error == -ESRCH))
3956 				error = 0;
3957 		}
3958 	}
3959 	rcu_read_unlock();
3960 
3961 	return error;
3962 }
3963 
3964 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3965 {
3966 	struct kernel_siginfo info;
3967 
3968 	clear_siginfo(&info);
3969 	info.si_signo = sig;
3970 	info.si_errno = 0;
3971 	info.si_code = SI_TKILL;
3972 	info.si_pid = task_tgid_vnr(current);
3973 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3974 
3975 	return do_send_specific(tgid, pid, sig, &info);
3976 }
3977 
3978 /**
3979  *  sys_tgkill - send signal to one specific thread
3980  *  @tgid: the thread group ID of the thread
3981  *  @pid: the PID of the thread
3982  *  @sig: signal to be sent
3983  *
3984  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3985  *  exists but it's not belonging to the target process anymore. This
3986  *  method solves the problem of threads exiting and PIDs getting reused.
3987  */
3988 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3989 {
3990 	/* This is only valid for single tasks */
3991 	if (pid <= 0 || tgid <= 0)
3992 		return -EINVAL;
3993 
3994 	return do_tkill(tgid, pid, sig);
3995 }
3996 
3997 /**
3998  *  sys_tkill - send signal to one specific task
3999  *  @pid: the PID of the task
4000  *  @sig: signal to be sent
4001  *
4002  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
4003  */
4004 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4005 {
4006 	/* This is only valid for single tasks */
4007 	if (pid <= 0)
4008 		return -EINVAL;
4009 
4010 	return do_tkill(0, pid, sig);
4011 }
4012 
4013 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4014 {
4015 	/* Not even root can pretend to send signals from the kernel.
4016 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4017 	 */
4018 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4019 	    (task_pid_vnr(current) != pid))
4020 		return -EPERM;
4021 
4022 	/* POSIX.1b doesn't mention process groups.  */
4023 	return kill_proc_info(sig, info, pid);
4024 }
4025 
4026 /**
4027  *  sys_rt_sigqueueinfo - send signal information to a signal
4028  *  @pid: the PID of the thread
4029  *  @sig: signal to be sent
4030  *  @uinfo: signal info to be sent
4031  */
4032 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4033 		siginfo_t __user *, uinfo)
4034 {
4035 	kernel_siginfo_t info;
4036 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4037 	if (unlikely(ret))
4038 		return ret;
4039 	return do_rt_sigqueueinfo(pid, sig, &info);
4040 }
4041 
4042 #ifdef CONFIG_COMPAT
4043 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4044 			compat_pid_t, pid,
4045 			int, sig,
4046 			struct compat_siginfo __user *, uinfo)
4047 {
4048 	kernel_siginfo_t info;
4049 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4050 	if (unlikely(ret))
4051 		return ret;
4052 	return do_rt_sigqueueinfo(pid, sig, &info);
4053 }
4054 #endif
4055 
4056 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4057 {
4058 	/* This is only valid for single tasks */
4059 	if (pid <= 0 || tgid <= 0)
4060 		return -EINVAL;
4061 
4062 	/* Not even root can pretend to send signals from the kernel.
4063 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4064 	 */
4065 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4066 	    (task_pid_vnr(current) != pid))
4067 		return -EPERM;
4068 
4069 	return do_send_specific(tgid, pid, sig, info);
4070 }
4071 
4072 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4073 		siginfo_t __user *, uinfo)
4074 {
4075 	kernel_siginfo_t info;
4076 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4077 	if (unlikely(ret))
4078 		return ret;
4079 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4080 }
4081 
4082 #ifdef CONFIG_COMPAT
4083 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4084 			compat_pid_t, tgid,
4085 			compat_pid_t, pid,
4086 			int, sig,
4087 			struct compat_siginfo __user *, uinfo)
4088 {
4089 	kernel_siginfo_t info;
4090 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4091 	if (unlikely(ret))
4092 		return ret;
4093 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4094 }
4095 #endif
4096 
4097 /*
4098  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4099  */
4100 void kernel_sigaction(int sig, __sighandler_t action)
4101 {
4102 	spin_lock_irq(&current->sighand->siglock);
4103 	current->sighand->action[sig - 1].sa.sa_handler = action;
4104 	if (action == SIG_IGN) {
4105 		sigset_t mask;
4106 
4107 		sigemptyset(&mask);
4108 		sigaddset(&mask, sig);
4109 
4110 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4111 		flush_sigqueue_mask(&mask, &current->pending);
4112 		recalc_sigpending();
4113 	}
4114 	spin_unlock_irq(&current->sighand->siglock);
4115 }
4116 EXPORT_SYMBOL(kernel_sigaction);
4117 
4118 void __weak sigaction_compat_abi(struct k_sigaction *act,
4119 		struct k_sigaction *oact)
4120 {
4121 }
4122 
4123 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4124 {
4125 	struct task_struct *p = current, *t;
4126 	struct k_sigaction *k;
4127 	sigset_t mask;
4128 
4129 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4130 		return -EINVAL;
4131 
4132 	k = &p->sighand->action[sig-1];
4133 
4134 	spin_lock_irq(&p->sighand->siglock);
4135 	if (k->sa.sa_flags & SA_IMMUTABLE) {
4136 		spin_unlock_irq(&p->sighand->siglock);
4137 		return -EINVAL;
4138 	}
4139 	if (oact)
4140 		*oact = *k;
4141 
4142 	/*
4143 	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4144 	 * e.g. by having an architecture use the bit in their uapi.
4145 	 */
4146 	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4147 
4148 	/*
4149 	 * Clear unknown flag bits in order to allow userspace to detect missing
4150 	 * support for flag bits and to allow the kernel to use non-uapi bits
4151 	 * internally.
4152 	 */
4153 	if (act)
4154 		act->sa.sa_flags &= UAPI_SA_FLAGS;
4155 	if (oact)
4156 		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4157 
4158 	sigaction_compat_abi(act, oact);
4159 
4160 	if (act) {
4161 		sigdelsetmask(&act->sa.sa_mask,
4162 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4163 		*k = *act;
4164 		/*
4165 		 * POSIX 3.3.1.3:
4166 		 *  "Setting a signal action to SIG_IGN for a signal that is
4167 		 *   pending shall cause the pending signal to be discarded,
4168 		 *   whether or not it is blocked."
4169 		 *
4170 		 *  "Setting a signal action to SIG_DFL for a signal that is
4171 		 *   pending and whose default action is to ignore the signal
4172 		 *   (for example, SIGCHLD), shall cause the pending signal to
4173 		 *   be discarded, whether or not it is blocked"
4174 		 */
4175 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4176 			sigemptyset(&mask);
4177 			sigaddset(&mask, sig);
4178 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4179 			for_each_thread(p, t)
4180 				flush_sigqueue_mask(&mask, &t->pending);
4181 		}
4182 	}
4183 
4184 	spin_unlock_irq(&p->sighand->siglock);
4185 	return 0;
4186 }
4187 
4188 #ifdef CONFIG_DYNAMIC_SIGFRAME
4189 static inline void sigaltstack_lock(void)
4190 	__acquires(&current->sighand->siglock)
4191 {
4192 	spin_lock_irq(&current->sighand->siglock);
4193 }
4194 
4195 static inline void sigaltstack_unlock(void)
4196 	__releases(&current->sighand->siglock)
4197 {
4198 	spin_unlock_irq(&current->sighand->siglock);
4199 }
4200 #else
4201 static inline void sigaltstack_lock(void) { }
4202 static inline void sigaltstack_unlock(void) { }
4203 #endif
4204 
4205 static int
4206 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4207 		size_t min_ss_size)
4208 {
4209 	struct task_struct *t = current;
4210 	int ret = 0;
4211 
4212 	if (oss) {
4213 		memset(oss, 0, sizeof(stack_t));
4214 		oss->ss_sp = (void __user *) t->sas_ss_sp;
4215 		oss->ss_size = t->sas_ss_size;
4216 		oss->ss_flags = sas_ss_flags(sp) |
4217 			(current->sas_ss_flags & SS_FLAG_BITS);
4218 	}
4219 
4220 	if (ss) {
4221 		void __user *ss_sp = ss->ss_sp;
4222 		size_t ss_size = ss->ss_size;
4223 		unsigned ss_flags = ss->ss_flags;
4224 		int ss_mode;
4225 
4226 		if (unlikely(on_sig_stack(sp)))
4227 			return -EPERM;
4228 
4229 		ss_mode = ss_flags & ~SS_FLAG_BITS;
4230 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4231 				ss_mode != 0))
4232 			return -EINVAL;
4233 
4234 		/*
4235 		 * Return before taking any locks if no actual
4236 		 * sigaltstack changes were requested.
4237 		 */
4238 		if (t->sas_ss_sp == (unsigned long)ss_sp &&
4239 		    t->sas_ss_size == ss_size &&
4240 		    t->sas_ss_flags == ss_flags)
4241 			return 0;
4242 
4243 		sigaltstack_lock();
4244 		if (ss_mode == SS_DISABLE) {
4245 			ss_size = 0;
4246 			ss_sp = NULL;
4247 		} else {
4248 			if (unlikely(ss_size < min_ss_size))
4249 				ret = -ENOMEM;
4250 			if (!sigaltstack_size_valid(ss_size))
4251 				ret = -ENOMEM;
4252 		}
4253 		if (!ret) {
4254 			t->sas_ss_sp = (unsigned long) ss_sp;
4255 			t->sas_ss_size = ss_size;
4256 			t->sas_ss_flags = ss_flags;
4257 		}
4258 		sigaltstack_unlock();
4259 	}
4260 	return ret;
4261 }
4262 
4263 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4264 {
4265 	stack_t new, old;
4266 	int err;
4267 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4268 		return -EFAULT;
4269 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4270 			      current_user_stack_pointer(),
4271 			      MINSIGSTKSZ);
4272 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4273 		err = -EFAULT;
4274 	return err;
4275 }
4276 
4277 int restore_altstack(const stack_t __user *uss)
4278 {
4279 	stack_t new;
4280 	if (copy_from_user(&new, uss, sizeof(stack_t)))
4281 		return -EFAULT;
4282 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4283 			     MINSIGSTKSZ);
4284 	/* squash all but EFAULT for now */
4285 	return 0;
4286 }
4287 
4288 int __save_altstack(stack_t __user *uss, unsigned long sp)
4289 {
4290 	struct task_struct *t = current;
4291 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4292 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4293 		__put_user(t->sas_ss_size, &uss->ss_size);
4294 	return err;
4295 }
4296 
4297 #ifdef CONFIG_COMPAT
4298 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4299 				 compat_stack_t __user *uoss_ptr)
4300 {
4301 	stack_t uss, uoss;
4302 	int ret;
4303 
4304 	if (uss_ptr) {
4305 		compat_stack_t uss32;
4306 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4307 			return -EFAULT;
4308 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4309 		uss.ss_flags = uss32.ss_flags;
4310 		uss.ss_size = uss32.ss_size;
4311 	}
4312 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4313 			     compat_user_stack_pointer(),
4314 			     COMPAT_MINSIGSTKSZ);
4315 	if (ret >= 0 && uoss_ptr)  {
4316 		compat_stack_t old;
4317 		memset(&old, 0, sizeof(old));
4318 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4319 		old.ss_flags = uoss.ss_flags;
4320 		old.ss_size = uoss.ss_size;
4321 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4322 			ret = -EFAULT;
4323 	}
4324 	return ret;
4325 }
4326 
4327 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4328 			const compat_stack_t __user *, uss_ptr,
4329 			compat_stack_t __user *, uoss_ptr)
4330 {
4331 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4332 }
4333 
4334 int compat_restore_altstack(const compat_stack_t __user *uss)
4335 {
4336 	int err = do_compat_sigaltstack(uss, NULL);
4337 	/* squash all but -EFAULT for now */
4338 	return err == -EFAULT ? err : 0;
4339 }
4340 
4341 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4342 {
4343 	int err;
4344 	struct task_struct *t = current;
4345 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4346 			 &uss->ss_sp) |
4347 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4348 		__put_user(t->sas_ss_size, &uss->ss_size);
4349 	return err;
4350 }
4351 #endif
4352 
4353 #ifdef __ARCH_WANT_SYS_SIGPENDING
4354 
4355 /**
4356  *  sys_sigpending - examine pending signals
4357  *  @uset: where mask of pending signal is returned
4358  */
4359 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4360 {
4361 	sigset_t set;
4362 
4363 	if (sizeof(old_sigset_t) > sizeof(*uset))
4364 		return -EINVAL;
4365 
4366 	do_sigpending(&set);
4367 
4368 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4369 		return -EFAULT;
4370 
4371 	return 0;
4372 }
4373 
4374 #ifdef CONFIG_COMPAT
4375 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4376 {
4377 	sigset_t set;
4378 
4379 	do_sigpending(&set);
4380 
4381 	return put_user(set.sig[0], set32);
4382 }
4383 #endif
4384 
4385 #endif
4386 
4387 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4388 /**
4389  *  sys_sigprocmask - examine and change blocked signals
4390  *  @how: whether to add, remove, or set signals
4391  *  @nset: signals to add or remove (if non-null)
4392  *  @oset: previous value of signal mask if non-null
4393  *
4394  * Some platforms have their own version with special arguments;
4395  * others support only sys_rt_sigprocmask.
4396  */
4397 
4398 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4399 		old_sigset_t __user *, oset)
4400 {
4401 	old_sigset_t old_set, new_set;
4402 	sigset_t new_blocked;
4403 
4404 	old_set = current->blocked.sig[0];
4405 
4406 	if (nset) {
4407 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4408 			return -EFAULT;
4409 
4410 		new_blocked = current->blocked;
4411 
4412 		switch (how) {
4413 		case SIG_BLOCK:
4414 			sigaddsetmask(&new_blocked, new_set);
4415 			break;
4416 		case SIG_UNBLOCK:
4417 			sigdelsetmask(&new_blocked, new_set);
4418 			break;
4419 		case SIG_SETMASK:
4420 			new_blocked.sig[0] = new_set;
4421 			break;
4422 		default:
4423 			return -EINVAL;
4424 		}
4425 
4426 		set_current_blocked(&new_blocked);
4427 	}
4428 
4429 	if (oset) {
4430 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4431 			return -EFAULT;
4432 	}
4433 
4434 	return 0;
4435 }
4436 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4437 
4438 #ifndef CONFIG_ODD_RT_SIGACTION
4439 /**
4440  *  sys_rt_sigaction - alter an action taken by a process
4441  *  @sig: signal to be sent
4442  *  @act: new sigaction
4443  *  @oact: used to save the previous sigaction
4444  *  @sigsetsize: size of sigset_t type
4445  */
4446 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4447 		const struct sigaction __user *, act,
4448 		struct sigaction __user *, oact,
4449 		size_t, sigsetsize)
4450 {
4451 	struct k_sigaction new_sa, old_sa;
4452 	int ret;
4453 
4454 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4455 	if (sigsetsize != sizeof(sigset_t))
4456 		return -EINVAL;
4457 
4458 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4459 		return -EFAULT;
4460 
4461 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4462 	if (ret)
4463 		return ret;
4464 
4465 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4466 		return -EFAULT;
4467 
4468 	return 0;
4469 }
4470 #ifdef CONFIG_COMPAT
4471 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4472 		const struct compat_sigaction __user *, act,
4473 		struct compat_sigaction __user *, oact,
4474 		compat_size_t, sigsetsize)
4475 {
4476 	struct k_sigaction new_ka, old_ka;
4477 #ifdef __ARCH_HAS_SA_RESTORER
4478 	compat_uptr_t restorer;
4479 #endif
4480 	int ret;
4481 
4482 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4483 	if (sigsetsize != sizeof(compat_sigset_t))
4484 		return -EINVAL;
4485 
4486 	if (act) {
4487 		compat_uptr_t handler;
4488 		ret = get_user(handler, &act->sa_handler);
4489 		new_ka.sa.sa_handler = compat_ptr(handler);
4490 #ifdef __ARCH_HAS_SA_RESTORER
4491 		ret |= get_user(restorer, &act->sa_restorer);
4492 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4493 #endif
4494 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4495 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4496 		if (ret)
4497 			return -EFAULT;
4498 	}
4499 
4500 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4501 	if (!ret && oact) {
4502 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4503 			       &oact->sa_handler);
4504 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4505 					 sizeof(oact->sa_mask));
4506 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4507 #ifdef __ARCH_HAS_SA_RESTORER
4508 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4509 				&oact->sa_restorer);
4510 #endif
4511 	}
4512 	return ret;
4513 }
4514 #endif
4515 #endif /* !CONFIG_ODD_RT_SIGACTION */
4516 
4517 #ifdef CONFIG_OLD_SIGACTION
4518 SYSCALL_DEFINE3(sigaction, int, sig,
4519 		const struct old_sigaction __user *, act,
4520 	        struct old_sigaction __user *, oact)
4521 {
4522 	struct k_sigaction new_ka, old_ka;
4523 	int ret;
4524 
4525 	if (act) {
4526 		old_sigset_t mask;
4527 		if (!access_ok(act, sizeof(*act)) ||
4528 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4529 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4530 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4531 		    __get_user(mask, &act->sa_mask))
4532 			return -EFAULT;
4533 #ifdef __ARCH_HAS_KA_RESTORER
4534 		new_ka.ka_restorer = NULL;
4535 #endif
4536 		siginitset(&new_ka.sa.sa_mask, mask);
4537 	}
4538 
4539 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4540 
4541 	if (!ret && oact) {
4542 		if (!access_ok(oact, sizeof(*oact)) ||
4543 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4544 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4545 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4546 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4547 			return -EFAULT;
4548 	}
4549 
4550 	return ret;
4551 }
4552 #endif
4553 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4554 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4555 		const struct compat_old_sigaction __user *, act,
4556 	        struct compat_old_sigaction __user *, oact)
4557 {
4558 	struct k_sigaction new_ka, old_ka;
4559 	int ret;
4560 	compat_old_sigset_t mask;
4561 	compat_uptr_t handler, restorer;
4562 
4563 	if (act) {
4564 		if (!access_ok(act, sizeof(*act)) ||
4565 		    __get_user(handler, &act->sa_handler) ||
4566 		    __get_user(restorer, &act->sa_restorer) ||
4567 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4568 		    __get_user(mask, &act->sa_mask))
4569 			return -EFAULT;
4570 
4571 #ifdef __ARCH_HAS_KA_RESTORER
4572 		new_ka.ka_restorer = NULL;
4573 #endif
4574 		new_ka.sa.sa_handler = compat_ptr(handler);
4575 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4576 		siginitset(&new_ka.sa.sa_mask, mask);
4577 	}
4578 
4579 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4580 
4581 	if (!ret && oact) {
4582 		if (!access_ok(oact, sizeof(*oact)) ||
4583 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4584 			       &oact->sa_handler) ||
4585 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4586 			       &oact->sa_restorer) ||
4587 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4588 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4589 			return -EFAULT;
4590 	}
4591 	return ret;
4592 }
4593 #endif
4594 
4595 #ifdef CONFIG_SGETMASK_SYSCALL
4596 
4597 /*
4598  * For backwards compatibility.  Functionality superseded by sigprocmask.
4599  */
4600 SYSCALL_DEFINE0(sgetmask)
4601 {
4602 	/* SMP safe */
4603 	return current->blocked.sig[0];
4604 }
4605 
4606 SYSCALL_DEFINE1(ssetmask, int, newmask)
4607 {
4608 	int old = current->blocked.sig[0];
4609 	sigset_t newset;
4610 
4611 	siginitset(&newset, newmask);
4612 	set_current_blocked(&newset);
4613 
4614 	return old;
4615 }
4616 #endif /* CONFIG_SGETMASK_SYSCALL */
4617 
4618 #ifdef __ARCH_WANT_SYS_SIGNAL
4619 /*
4620  * For backwards compatibility.  Functionality superseded by sigaction.
4621  */
4622 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4623 {
4624 	struct k_sigaction new_sa, old_sa;
4625 	int ret;
4626 
4627 	new_sa.sa.sa_handler = handler;
4628 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4629 	sigemptyset(&new_sa.sa.sa_mask);
4630 
4631 	ret = do_sigaction(sig, &new_sa, &old_sa);
4632 
4633 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4634 }
4635 #endif /* __ARCH_WANT_SYS_SIGNAL */
4636 
4637 #ifdef __ARCH_WANT_SYS_PAUSE
4638 
4639 SYSCALL_DEFINE0(pause)
4640 {
4641 	while (!signal_pending(current)) {
4642 		__set_current_state(TASK_INTERRUPTIBLE);
4643 		schedule();
4644 	}
4645 	return -ERESTARTNOHAND;
4646 }
4647 
4648 #endif
4649 
4650 static int sigsuspend(sigset_t *set)
4651 {
4652 	current->saved_sigmask = current->blocked;
4653 	set_current_blocked(set);
4654 
4655 	while (!signal_pending(current)) {
4656 		__set_current_state(TASK_INTERRUPTIBLE);
4657 		schedule();
4658 	}
4659 	set_restore_sigmask();
4660 	return -ERESTARTNOHAND;
4661 }
4662 
4663 /**
4664  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4665  *	@unewset value until a signal is received
4666  *  @unewset: new signal mask value
4667  *  @sigsetsize: size of sigset_t type
4668  */
4669 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4670 {
4671 	sigset_t newset;
4672 
4673 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4674 	if (sigsetsize != sizeof(sigset_t))
4675 		return -EINVAL;
4676 
4677 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4678 		return -EFAULT;
4679 	return sigsuspend(&newset);
4680 }
4681 
4682 #ifdef CONFIG_COMPAT
4683 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4684 {
4685 	sigset_t newset;
4686 
4687 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4688 	if (sigsetsize != sizeof(sigset_t))
4689 		return -EINVAL;
4690 
4691 	if (get_compat_sigset(&newset, unewset))
4692 		return -EFAULT;
4693 	return sigsuspend(&newset);
4694 }
4695 #endif
4696 
4697 #ifdef CONFIG_OLD_SIGSUSPEND
4698 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4699 {
4700 	sigset_t blocked;
4701 	siginitset(&blocked, mask);
4702 	return sigsuspend(&blocked);
4703 }
4704 #endif
4705 #ifdef CONFIG_OLD_SIGSUSPEND3
4706 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4707 {
4708 	sigset_t blocked;
4709 	siginitset(&blocked, mask);
4710 	return sigsuspend(&blocked);
4711 }
4712 #endif
4713 
4714 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4715 {
4716 	return NULL;
4717 }
4718 
4719 static inline void siginfo_buildtime_checks(void)
4720 {
4721 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4722 
4723 	/* Verify the offsets in the two siginfos match */
4724 #define CHECK_OFFSET(field) \
4725 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4726 
4727 	/* kill */
4728 	CHECK_OFFSET(si_pid);
4729 	CHECK_OFFSET(si_uid);
4730 
4731 	/* timer */
4732 	CHECK_OFFSET(si_tid);
4733 	CHECK_OFFSET(si_overrun);
4734 	CHECK_OFFSET(si_value);
4735 
4736 	/* rt */
4737 	CHECK_OFFSET(si_pid);
4738 	CHECK_OFFSET(si_uid);
4739 	CHECK_OFFSET(si_value);
4740 
4741 	/* sigchld */
4742 	CHECK_OFFSET(si_pid);
4743 	CHECK_OFFSET(si_uid);
4744 	CHECK_OFFSET(si_status);
4745 	CHECK_OFFSET(si_utime);
4746 	CHECK_OFFSET(si_stime);
4747 
4748 	/* sigfault */
4749 	CHECK_OFFSET(si_addr);
4750 	CHECK_OFFSET(si_trapno);
4751 	CHECK_OFFSET(si_addr_lsb);
4752 	CHECK_OFFSET(si_lower);
4753 	CHECK_OFFSET(si_upper);
4754 	CHECK_OFFSET(si_pkey);
4755 	CHECK_OFFSET(si_perf_data);
4756 	CHECK_OFFSET(si_perf_type);
4757 	CHECK_OFFSET(si_perf_flags);
4758 
4759 	/* sigpoll */
4760 	CHECK_OFFSET(si_band);
4761 	CHECK_OFFSET(si_fd);
4762 
4763 	/* sigsys */
4764 	CHECK_OFFSET(si_call_addr);
4765 	CHECK_OFFSET(si_syscall);
4766 	CHECK_OFFSET(si_arch);
4767 #undef CHECK_OFFSET
4768 
4769 	/* usb asyncio */
4770 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4771 		     offsetof(struct siginfo, si_addr));
4772 	if (sizeof(int) == sizeof(void __user *)) {
4773 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4774 			     sizeof(void __user *));
4775 	} else {
4776 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4777 			      sizeof_field(struct siginfo, si_uid)) !=
4778 			     sizeof(void __user *));
4779 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4780 			     offsetof(struct siginfo, si_uid));
4781 	}
4782 #ifdef CONFIG_COMPAT
4783 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4784 		     offsetof(struct compat_siginfo, si_addr));
4785 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4786 		     sizeof(compat_uptr_t));
4787 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4788 		     sizeof_field(struct siginfo, si_pid));
4789 #endif
4790 }
4791 
4792 #if defined(CONFIG_SYSCTL)
4793 static struct ctl_table signal_debug_table[] = {
4794 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4795 	{
4796 		.procname	= "exception-trace",
4797 		.data		= &show_unhandled_signals,
4798 		.maxlen		= sizeof(int),
4799 		.mode		= 0644,
4800 		.proc_handler	= proc_dointvec
4801 	},
4802 #endif
4803 	{ }
4804 };
4805 
4806 static int __init init_signal_sysctls(void)
4807 {
4808 	register_sysctl_init("debug", signal_debug_table);
4809 	return 0;
4810 }
4811 early_initcall(init_signal_sysctls);
4812 #endif /* CONFIG_SYSCTL */
4813 
4814 void __init signals_init(void)
4815 {
4816 	siginfo_buildtime_checks();
4817 
4818 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4819 }
4820 
4821 #ifdef CONFIG_KGDB_KDB
4822 #include <linux/kdb.h>
4823 /*
4824  * kdb_send_sig - Allows kdb to send signals without exposing
4825  * signal internals.  This function checks if the required locks are
4826  * available before calling the main signal code, to avoid kdb
4827  * deadlocks.
4828  */
4829 void kdb_send_sig(struct task_struct *t, int sig)
4830 {
4831 	static struct task_struct *kdb_prev_t;
4832 	int new_t, ret;
4833 	if (!spin_trylock(&t->sighand->siglock)) {
4834 		kdb_printf("Can't do kill command now.\n"
4835 			   "The sigmask lock is held somewhere else in "
4836 			   "kernel, try again later\n");
4837 		return;
4838 	}
4839 	new_t = kdb_prev_t != t;
4840 	kdb_prev_t = t;
4841 	if (!task_is_running(t) && new_t) {
4842 		spin_unlock(&t->sighand->siglock);
4843 		kdb_printf("Process is not RUNNING, sending a signal from "
4844 			   "kdb risks deadlock\n"
4845 			   "on the run queue locks. "
4846 			   "The signal has _not_ been sent.\n"
4847 			   "Reissue the kill command if you want to risk "
4848 			   "the deadlock.\n");
4849 		return;
4850 	}
4851 	ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4852 	spin_unlock(&t->sighand->siglock);
4853 	if (ret)
4854 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4855 			   sig, t->pid);
4856 	else
4857 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4858 }
4859 #endif	/* CONFIG_KGDB_KDB */
4860