1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/signal.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 8 * 9 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 10 * Changes to use preallocated sigqueue structures 11 * to allow signals to be sent reliably. 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/user.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/sched/cputime.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/mm.h> 26 #include <linux/proc_fs.h> 27 #include <linux/tty.h> 28 #include <linux/binfmts.h> 29 #include <linux/coredump.h> 30 #include <linux/security.h> 31 #include <linux/syscalls.h> 32 #include <linux/ptrace.h> 33 #include <linux/signal.h> 34 #include <linux/signalfd.h> 35 #include <linux/ratelimit.h> 36 #include <linux/task_work.h> 37 #include <linux/capability.h> 38 #include <linux/freezer.h> 39 #include <linux/pid_namespace.h> 40 #include <linux/nsproxy.h> 41 #include <linux/user_namespace.h> 42 #include <linux/uprobes.h> 43 #include <linux/compat.h> 44 #include <linux/cn_proc.h> 45 #include <linux/compiler.h> 46 #include <linux/posix-timers.h> 47 #include <linux/cgroup.h> 48 #include <linux/audit.h> 49 #include <linux/sysctl.h> 50 51 #define CREATE_TRACE_POINTS 52 #include <trace/events/signal.h> 53 54 #include <asm/param.h> 55 #include <linux/uaccess.h> 56 #include <asm/unistd.h> 57 #include <asm/siginfo.h> 58 #include <asm/cacheflush.h> 59 #include <asm/syscall.h> /* for syscall_get_* */ 60 61 /* 62 * SLAB caches for signal bits. 63 */ 64 65 static struct kmem_cache *sigqueue_cachep; 66 67 int print_fatal_signals __read_mostly; 68 69 static void __user *sig_handler(struct task_struct *t, int sig) 70 { 71 return t->sighand->action[sig - 1].sa.sa_handler; 72 } 73 74 static inline bool sig_handler_ignored(void __user *handler, int sig) 75 { 76 /* Is it explicitly or implicitly ignored? */ 77 return handler == SIG_IGN || 78 (handler == SIG_DFL && sig_kernel_ignore(sig)); 79 } 80 81 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 82 { 83 void __user *handler; 84 85 handler = sig_handler(t, sig); 86 87 /* SIGKILL and SIGSTOP may not be sent to the global init */ 88 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 89 return true; 90 91 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 92 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 93 return true; 94 95 /* Only allow kernel generated signals to this kthread */ 96 if (unlikely((t->flags & PF_KTHREAD) && 97 (handler == SIG_KTHREAD_KERNEL) && !force)) 98 return true; 99 100 return sig_handler_ignored(handler, sig); 101 } 102 103 static bool sig_ignored(struct task_struct *t, int sig, bool force) 104 { 105 /* 106 * Blocked signals are never ignored, since the 107 * signal handler may change by the time it is 108 * unblocked. 109 */ 110 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 111 return false; 112 113 /* 114 * Tracers may want to know about even ignored signal unless it 115 * is SIGKILL which can't be reported anyway but can be ignored 116 * by SIGNAL_UNKILLABLE task. 117 */ 118 if (t->ptrace && sig != SIGKILL) 119 return false; 120 121 return sig_task_ignored(t, sig, force); 122 } 123 124 /* 125 * Re-calculate pending state from the set of locally pending 126 * signals, globally pending signals, and blocked signals. 127 */ 128 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 129 { 130 unsigned long ready; 131 long i; 132 133 switch (_NSIG_WORDS) { 134 default: 135 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 136 ready |= signal->sig[i] &~ blocked->sig[i]; 137 break; 138 139 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 140 ready |= signal->sig[2] &~ blocked->sig[2]; 141 ready |= signal->sig[1] &~ blocked->sig[1]; 142 ready |= signal->sig[0] &~ blocked->sig[0]; 143 break; 144 145 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 146 ready |= signal->sig[0] &~ blocked->sig[0]; 147 break; 148 149 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 150 } 151 return ready != 0; 152 } 153 154 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 155 156 static bool recalc_sigpending_tsk(struct task_struct *t) 157 { 158 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || 159 PENDING(&t->pending, &t->blocked) || 160 PENDING(&t->signal->shared_pending, &t->blocked) || 161 cgroup_task_frozen(t)) { 162 set_tsk_thread_flag(t, TIF_SIGPENDING); 163 return true; 164 } 165 166 /* 167 * We must never clear the flag in another thread, or in current 168 * when it's possible the current syscall is returning -ERESTART*. 169 * So we don't clear it here, and only callers who know they should do. 170 */ 171 return false; 172 } 173 174 void recalc_sigpending(void) 175 { 176 if (!recalc_sigpending_tsk(current) && !freezing(current)) 177 clear_thread_flag(TIF_SIGPENDING); 178 179 } 180 EXPORT_SYMBOL(recalc_sigpending); 181 182 void calculate_sigpending(void) 183 { 184 /* Have any signals or users of TIF_SIGPENDING been delayed 185 * until after fork? 186 */ 187 spin_lock_irq(¤t->sighand->siglock); 188 set_tsk_thread_flag(current, TIF_SIGPENDING); 189 recalc_sigpending(); 190 spin_unlock_irq(¤t->sighand->siglock); 191 } 192 193 /* Given the mask, find the first available signal that should be serviced. */ 194 195 #define SYNCHRONOUS_MASK \ 196 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 197 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 198 199 int next_signal(struct sigpending *pending, sigset_t *mask) 200 { 201 unsigned long i, *s, *m, x; 202 int sig = 0; 203 204 s = pending->signal.sig; 205 m = mask->sig; 206 207 /* 208 * Handle the first word specially: it contains the 209 * synchronous signals that need to be dequeued first. 210 */ 211 x = *s &~ *m; 212 if (x) { 213 if (x & SYNCHRONOUS_MASK) 214 x &= SYNCHRONOUS_MASK; 215 sig = ffz(~x) + 1; 216 return sig; 217 } 218 219 switch (_NSIG_WORDS) { 220 default: 221 for (i = 1; i < _NSIG_WORDS; ++i) { 222 x = *++s &~ *++m; 223 if (!x) 224 continue; 225 sig = ffz(~x) + i*_NSIG_BPW + 1; 226 break; 227 } 228 break; 229 230 case 2: 231 x = s[1] &~ m[1]; 232 if (!x) 233 break; 234 sig = ffz(~x) + _NSIG_BPW + 1; 235 break; 236 237 case 1: 238 /* Nothing to do */ 239 break; 240 } 241 242 return sig; 243 } 244 245 static inline void print_dropped_signal(int sig) 246 { 247 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 248 249 if (!print_fatal_signals) 250 return; 251 252 if (!__ratelimit(&ratelimit_state)) 253 return; 254 255 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 256 current->comm, current->pid, sig); 257 } 258 259 /** 260 * task_set_jobctl_pending - set jobctl pending bits 261 * @task: target task 262 * @mask: pending bits to set 263 * 264 * Clear @mask from @task->jobctl. @mask must be subset of 265 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 266 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 267 * cleared. If @task is already being killed or exiting, this function 268 * becomes noop. 269 * 270 * CONTEXT: 271 * Must be called with @task->sighand->siglock held. 272 * 273 * RETURNS: 274 * %true if @mask is set, %false if made noop because @task was dying. 275 */ 276 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 277 { 278 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 279 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 280 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 281 282 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 283 return false; 284 285 if (mask & JOBCTL_STOP_SIGMASK) 286 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 287 288 task->jobctl |= mask; 289 return true; 290 } 291 292 /** 293 * task_clear_jobctl_trapping - clear jobctl trapping bit 294 * @task: target task 295 * 296 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 297 * Clear it and wake up the ptracer. Note that we don't need any further 298 * locking. @task->siglock guarantees that @task->parent points to the 299 * ptracer. 300 * 301 * CONTEXT: 302 * Must be called with @task->sighand->siglock held. 303 */ 304 void task_clear_jobctl_trapping(struct task_struct *task) 305 { 306 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 307 task->jobctl &= ~JOBCTL_TRAPPING; 308 smp_mb(); /* advised by wake_up_bit() */ 309 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 310 } 311 } 312 313 /** 314 * task_clear_jobctl_pending - clear jobctl pending bits 315 * @task: target task 316 * @mask: pending bits to clear 317 * 318 * Clear @mask from @task->jobctl. @mask must be subset of 319 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 320 * STOP bits are cleared together. 321 * 322 * If clearing of @mask leaves no stop or trap pending, this function calls 323 * task_clear_jobctl_trapping(). 324 * 325 * CONTEXT: 326 * Must be called with @task->sighand->siglock held. 327 */ 328 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 329 { 330 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 331 332 if (mask & JOBCTL_STOP_PENDING) 333 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 334 335 task->jobctl &= ~mask; 336 337 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 338 task_clear_jobctl_trapping(task); 339 } 340 341 /** 342 * task_participate_group_stop - participate in a group stop 343 * @task: task participating in a group stop 344 * 345 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 346 * Group stop states are cleared and the group stop count is consumed if 347 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 348 * stop, the appropriate `SIGNAL_*` flags are set. 349 * 350 * CONTEXT: 351 * Must be called with @task->sighand->siglock held. 352 * 353 * RETURNS: 354 * %true if group stop completion should be notified to the parent, %false 355 * otherwise. 356 */ 357 static bool task_participate_group_stop(struct task_struct *task) 358 { 359 struct signal_struct *sig = task->signal; 360 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 361 362 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 363 364 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 365 366 if (!consume) 367 return false; 368 369 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 370 sig->group_stop_count--; 371 372 /* 373 * Tell the caller to notify completion iff we are entering into a 374 * fresh group stop. Read comment in do_signal_stop() for details. 375 */ 376 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 377 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 378 return true; 379 } 380 return false; 381 } 382 383 void task_join_group_stop(struct task_struct *task) 384 { 385 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK; 386 struct signal_struct *sig = current->signal; 387 388 if (sig->group_stop_count) { 389 sig->group_stop_count++; 390 mask |= JOBCTL_STOP_CONSUME; 391 } else if (!(sig->flags & SIGNAL_STOP_STOPPED)) 392 return; 393 394 /* Have the new thread join an on-going signal group stop */ 395 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING); 396 } 397 398 /* 399 * allocate a new signal queue record 400 * - this may be called without locks if and only if t == current, otherwise an 401 * appropriate lock must be held to stop the target task from exiting 402 */ 403 static struct sigqueue * 404 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags, 405 int override_rlimit, const unsigned int sigqueue_flags) 406 { 407 struct sigqueue *q = NULL; 408 struct ucounts *ucounts; 409 long sigpending; 410 411 /* 412 * Protect access to @t credentials. This can go away when all 413 * callers hold rcu read lock. 414 * 415 * NOTE! A pending signal will hold on to the user refcount, 416 * and we get/put the refcount only when the sigpending count 417 * changes from/to zero. 418 */ 419 rcu_read_lock(); 420 ucounts = task_ucounts(t); 421 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 422 rcu_read_unlock(); 423 if (!sigpending) 424 return NULL; 425 426 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) { 427 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags); 428 } else { 429 print_dropped_signal(sig); 430 } 431 432 if (unlikely(q == NULL)) { 433 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 434 } else { 435 INIT_LIST_HEAD(&q->list); 436 q->flags = sigqueue_flags; 437 q->ucounts = ucounts; 438 } 439 return q; 440 } 441 442 static void __sigqueue_free(struct sigqueue *q) 443 { 444 if (q->flags & SIGQUEUE_PREALLOC) 445 return; 446 if (q->ucounts) { 447 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING); 448 q->ucounts = NULL; 449 } 450 kmem_cache_free(sigqueue_cachep, q); 451 } 452 453 void flush_sigqueue(struct sigpending *queue) 454 { 455 struct sigqueue *q; 456 457 sigemptyset(&queue->signal); 458 while (!list_empty(&queue->list)) { 459 q = list_entry(queue->list.next, struct sigqueue , list); 460 list_del_init(&q->list); 461 __sigqueue_free(q); 462 } 463 } 464 465 /* 466 * Flush all pending signals for this kthread. 467 */ 468 void flush_signals(struct task_struct *t) 469 { 470 unsigned long flags; 471 472 spin_lock_irqsave(&t->sighand->siglock, flags); 473 clear_tsk_thread_flag(t, TIF_SIGPENDING); 474 flush_sigqueue(&t->pending); 475 flush_sigqueue(&t->signal->shared_pending); 476 spin_unlock_irqrestore(&t->sighand->siglock, flags); 477 } 478 EXPORT_SYMBOL(flush_signals); 479 480 #ifdef CONFIG_POSIX_TIMERS 481 static void __flush_itimer_signals(struct sigpending *pending) 482 { 483 sigset_t signal, retain; 484 struct sigqueue *q, *n; 485 486 signal = pending->signal; 487 sigemptyset(&retain); 488 489 list_for_each_entry_safe(q, n, &pending->list, list) { 490 int sig = q->info.si_signo; 491 492 if (likely(q->info.si_code != SI_TIMER)) { 493 sigaddset(&retain, sig); 494 } else { 495 sigdelset(&signal, sig); 496 list_del_init(&q->list); 497 __sigqueue_free(q); 498 } 499 } 500 501 sigorsets(&pending->signal, &signal, &retain); 502 } 503 504 void flush_itimer_signals(void) 505 { 506 struct task_struct *tsk = current; 507 unsigned long flags; 508 509 spin_lock_irqsave(&tsk->sighand->siglock, flags); 510 __flush_itimer_signals(&tsk->pending); 511 __flush_itimer_signals(&tsk->signal->shared_pending); 512 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 513 } 514 #endif 515 516 void ignore_signals(struct task_struct *t) 517 { 518 int i; 519 520 for (i = 0; i < _NSIG; ++i) 521 t->sighand->action[i].sa.sa_handler = SIG_IGN; 522 523 flush_signals(t); 524 } 525 526 /* 527 * Flush all handlers for a task. 528 */ 529 530 void 531 flush_signal_handlers(struct task_struct *t, int force_default) 532 { 533 int i; 534 struct k_sigaction *ka = &t->sighand->action[0]; 535 for (i = _NSIG ; i != 0 ; i--) { 536 if (force_default || ka->sa.sa_handler != SIG_IGN) 537 ka->sa.sa_handler = SIG_DFL; 538 ka->sa.sa_flags = 0; 539 #ifdef __ARCH_HAS_SA_RESTORER 540 ka->sa.sa_restorer = NULL; 541 #endif 542 sigemptyset(&ka->sa.sa_mask); 543 ka++; 544 } 545 } 546 547 bool unhandled_signal(struct task_struct *tsk, int sig) 548 { 549 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 550 if (is_global_init(tsk)) 551 return true; 552 553 if (handler != SIG_IGN && handler != SIG_DFL) 554 return false; 555 556 /* If dying, we handle all new signals by ignoring them */ 557 if (fatal_signal_pending(tsk)) 558 return false; 559 560 /* if ptraced, let the tracer determine */ 561 return !tsk->ptrace; 562 } 563 564 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 565 bool *resched_timer) 566 { 567 struct sigqueue *q, *first = NULL; 568 569 /* 570 * Collect the siginfo appropriate to this signal. Check if 571 * there is another siginfo for the same signal. 572 */ 573 list_for_each_entry(q, &list->list, list) { 574 if (q->info.si_signo == sig) { 575 if (first) 576 goto still_pending; 577 first = q; 578 } 579 } 580 581 sigdelset(&list->signal, sig); 582 583 if (first) { 584 still_pending: 585 list_del_init(&first->list); 586 copy_siginfo(info, &first->info); 587 588 *resched_timer = 589 (first->flags & SIGQUEUE_PREALLOC) && 590 (info->si_code == SI_TIMER) && 591 (info->si_sys_private); 592 593 __sigqueue_free(first); 594 } else { 595 /* 596 * Ok, it wasn't in the queue. This must be 597 * a fast-pathed signal or we must have been 598 * out of queue space. So zero out the info. 599 */ 600 clear_siginfo(info); 601 info->si_signo = sig; 602 info->si_errno = 0; 603 info->si_code = SI_USER; 604 info->si_pid = 0; 605 info->si_uid = 0; 606 } 607 } 608 609 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 610 kernel_siginfo_t *info, bool *resched_timer) 611 { 612 int sig = next_signal(pending, mask); 613 614 if (sig) 615 collect_signal(sig, pending, info, resched_timer); 616 return sig; 617 } 618 619 /* 620 * Dequeue a signal and return the element to the caller, which is 621 * expected to free it. 622 * 623 * All callers have to hold the siglock. 624 */ 625 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, 626 kernel_siginfo_t *info, enum pid_type *type) 627 { 628 bool resched_timer = false; 629 int signr; 630 631 /* We only dequeue private signals from ourselves, we don't let 632 * signalfd steal them 633 */ 634 *type = PIDTYPE_PID; 635 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 636 if (!signr) { 637 *type = PIDTYPE_TGID; 638 signr = __dequeue_signal(&tsk->signal->shared_pending, 639 mask, info, &resched_timer); 640 #ifdef CONFIG_POSIX_TIMERS 641 /* 642 * itimer signal ? 643 * 644 * itimers are process shared and we restart periodic 645 * itimers in the signal delivery path to prevent DoS 646 * attacks in the high resolution timer case. This is 647 * compliant with the old way of self-restarting 648 * itimers, as the SIGALRM is a legacy signal and only 649 * queued once. Changing the restart behaviour to 650 * restart the timer in the signal dequeue path is 651 * reducing the timer noise on heavy loaded !highres 652 * systems too. 653 */ 654 if (unlikely(signr == SIGALRM)) { 655 struct hrtimer *tmr = &tsk->signal->real_timer; 656 657 if (!hrtimer_is_queued(tmr) && 658 tsk->signal->it_real_incr != 0) { 659 hrtimer_forward(tmr, tmr->base->get_time(), 660 tsk->signal->it_real_incr); 661 hrtimer_restart(tmr); 662 } 663 } 664 #endif 665 } 666 667 recalc_sigpending(); 668 if (!signr) 669 return 0; 670 671 if (unlikely(sig_kernel_stop(signr))) { 672 /* 673 * Set a marker that we have dequeued a stop signal. Our 674 * caller might release the siglock and then the pending 675 * stop signal it is about to process is no longer in the 676 * pending bitmasks, but must still be cleared by a SIGCONT 677 * (and overruled by a SIGKILL). So those cases clear this 678 * shared flag after we've set it. Note that this flag may 679 * remain set after the signal we return is ignored or 680 * handled. That doesn't matter because its only purpose 681 * is to alert stop-signal processing code when another 682 * processor has come along and cleared the flag. 683 */ 684 current->jobctl |= JOBCTL_STOP_DEQUEUED; 685 } 686 #ifdef CONFIG_POSIX_TIMERS 687 if (resched_timer) { 688 /* 689 * Release the siglock to ensure proper locking order 690 * of timer locks outside of siglocks. Note, we leave 691 * irqs disabled here, since the posix-timers code is 692 * about to disable them again anyway. 693 */ 694 spin_unlock(&tsk->sighand->siglock); 695 posixtimer_rearm(info); 696 spin_lock(&tsk->sighand->siglock); 697 698 /* Don't expose the si_sys_private value to userspace */ 699 info->si_sys_private = 0; 700 } 701 #endif 702 return signr; 703 } 704 EXPORT_SYMBOL_GPL(dequeue_signal); 705 706 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 707 { 708 struct task_struct *tsk = current; 709 struct sigpending *pending = &tsk->pending; 710 struct sigqueue *q, *sync = NULL; 711 712 /* 713 * Might a synchronous signal be in the queue? 714 */ 715 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 716 return 0; 717 718 /* 719 * Return the first synchronous signal in the queue. 720 */ 721 list_for_each_entry(q, &pending->list, list) { 722 /* Synchronous signals have a positive si_code */ 723 if ((q->info.si_code > SI_USER) && 724 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 725 sync = q; 726 goto next; 727 } 728 } 729 return 0; 730 next: 731 /* 732 * Check if there is another siginfo for the same signal. 733 */ 734 list_for_each_entry_continue(q, &pending->list, list) { 735 if (q->info.si_signo == sync->info.si_signo) 736 goto still_pending; 737 } 738 739 sigdelset(&pending->signal, sync->info.si_signo); 740 recalc_sigpending(); 741 still_pending: 742 list_del_init(&sync->list); 743 copy_siginfo(info, &sync->info); 744 __sigqueue_free(sync); 745 return info->si_signo; 746 } 747 748 /* 749 * Tell a process that it has a new active signal.. 750 * 751 * NOTE! we rely on the previous spin_lock to 752 * lock interrupts for us! We can only be called with 753 * "siglock" held, and the local interrupt must 754 * have been disabled when that got acquired! 755 * 756 * No need to set need_resched since signal event passing 757 * goes through ->blocked 758 */ 759 void signal_wake_up_state(struct task_struct *t, unsigned int state) 760 { 761 lockdep_assert_held(&t->sighand->siglock); 762 763 set_tsk_thread_flag(t, TIF_SIGPENDING); 764 765 /* 766 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 767 * case. We don't check t->state here because there is a race with it 768 * executing another processor and just now entering stopped state. 769 * By using wake_up_state, we ensure the process will wake up and 770 * handle its death signal. 771 */ 772 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 773 kick_process(t); 774 } 775 776 /* 777 * Remove signals in mask from the pending set and queue. 778 * Returns 1 if any signals were found. 779 * 780 * All callers must be holding the siglock. 781 */ 782 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 783 { 784 struct sigqueue *q, *n; 785 sigset_t m; 786 787 sigandsets(&m, mask, &s->signal); 788 if (sigisemptyset(&m)) 789 return; 790 791 sigandnsets(&s->signal, &s->signal, mask); 792 list_for_each_entry_safe(q, n, &s->list, list) { 793 if (sigismember(mask, q->info.si_signo)) { 794 list_del_init(&q->list); 795 __sigqueue_free(q); 796 } 797 } 798 } 799 800 static inline int is_si_special(const struct kernel_siginfo *info) 801 { 802 return info <= SEND_SIG_PRIV; 803 } 804 805 static inline bool si_fromuser(const struct kernel_siginfo *info) 806 { 807 return info == SEND_SIG_NOINFO || 808 (!is_si_special(info) && SI_FROMUSER(info)); 809 } 810 811 /* 812 * called with RCU read lock from check_kill_permission() 813 */ 814 static bool kill_ok_by_cred(struct task_struct *t) 815 { 816 const struct cred *cred = current_cred(); 817 const struct cred *tcred = __task_cred(t); 818 819 return uid_eq(cred->euid, tcred->suid) || 820 uid_eq(cred->euid, tcred->uid) || 821 uid_eq(cred->uid, tcred->suid) || 822 uid_eq(cred->uid, tcred->uid) || 823 ns_capable(tcred->user_ns, CAP_KILL); 824 } 825 826 /* 827 * Bad permissions for sending the signal 828 * - the caller must hold the RCU read lock 829 */ 830 static int check_kill_permission(int sig, struct kernel_siginfo *info, 831 struct task_struct *t) 832 { 833 struct pid *sid; 834 int error; 835 836 if (!valid_signal(sig)) 837 return -EINVAL; 838 839 if (!si_fromuser(info)) 840 return 0; 841 842 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 843 if (error) 844 return error; 845 846 if (!same_thread_group(current, t) && 847 !kill_ok_by_cred(t)) { 848 switch (sig) { 849 case SIGCONT: 850 sid = task_session(t); 851 /* 852 * We don't return the error if sid == NULL. The 853 * task was unhashed, the caller must notice this. 854 */ 855 if (!sid || sid == task_session(current)) 856 break; 857 fallthrough; 858 default: 859 return -EPERM; 860 } 861 } 862 863 return security_task_kill(t, info, sig, NULL); 864 } 865 866 /** 867 * ptrace_trap_notify - schedule trap to notify ptracer 868 * @t: tracee wanting to notify tracer 869 * 870 * This function schedules sticky ptrace trap which is cleared on the next 871 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 872 * ptracer. 873 * 874 * If @t is running, STOP trap will be taken. If trapped for STOP and 875 * ptracer is listening for events, tracee is woken up so that it can 876 * re-trap for the new event. If trapped otherwise, STOP trap will be 877 * eventually taken without returning to userland after the existing traps 878 * are finished by PTRACE_CONT. 879 * 880 * CONTEXT: 881 * Must be called with @task->sighand->siglock held. 882 */ 883 static void ptrace_trap_notify(struct task_struct *t) 884 { 885 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 886 lockdep_assert_held(&t->sighand->siglock); 887 888 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 889 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 890 } 891 892 /* 893 * Handle magic process-wide effects of stop/continue signals. Unlike 894 * the signal actions, these happen immediately at signal-generation 895 * time regardless of blocking, ignoring, or handling. This does the 896 * actual continuing for SIGCONT, but not the actual stopping for stop 897 * signals. The process stop is done as a signal action for SIG_DFL. 898 * 899 * Returns true if the signal should be actually delivered, otherwise 900 * it should be dropped. 901 */ 902 static bool prepare_signal(int sig, struct task_struct *p, bool force) 903 { 904 struct signal_struct *signal = p->signal; 905 struct task_struct *t; 906 sigset_t flush; 907 908 if (signal->flags & SIGNAL_GROUP_EXIT) { 909 if (signal->core_state) 910 return sig == SIGKILL; 911 /* 912 * The process is in the middle of dying, drop the signal. 913 */ 914 return false; 915 } else if (sig_kernel_stop(sig)) { 916 /* 917 * This is a stop signal. Remove SIGCONT from all queues. 918 */ 919 siginitset(&flush, sigmask(SIGCONT)); 920 flush_sigqueue_mask(&flush, &signal->shared_pending); 921 for_each_thread(p, t) 922 flush_sigqueue_mask(&flush, &t->pending); 923 } else if (sig == SIGCONT) { 924 unsigned int why; 925 /* 926 * Remove all stop signals from all queues, wake all threads. 927 */ 928 siginitset(&flush, SIG_KERNEL_STOP_MASK); 929 flush_sigqueue_mask(&flush, &signal->shared_pending); 930 for_each_thread(p, t) { 931 flush_sigqueue_mask(&flush, &t->pending); 932 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 933 if (likely(!(t->ptrace & PT_SEIZED))) { 934 t->jobctl &= ~JOBCTL_STOPPED; 935 wake_up_state(t, __TASK_STOPPED); 936 } else 937 ptrace_trap_notify(t); 938 } 939 940 /* 941 * Notify the parent with CLD_CONTINUED if we were stopped. 942 * 943 * If we were in the middle of a group stop, we pretend it 944 * was already finished, and then continued. Since SIGCHLD 945 * doesn't queue we report only CLD_STOPPED, as if the next 946 * CLD_CONTINUED was dropped. 947 */ 948 why = 0; 949 if (signal->flags & SIGNAL_STOP_STOPPED) 950 why |= SIGNAL_CLD_CONTINUED; 951 else if (signal->group_stop_count) 952 why |= SIGNAL_CLD_STOPPED; 953 954 if (why) { 955 /* 956 * The first thread which returns from do_signal_stop() 957 * will take ->siglock, notice SIGNAL_CLD_MASK, and 958 * notify its parent. See get_signal(). 959 */ 960 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 961 signal->group_stop_count = 0; 962 signal->group_exit_code = 0; 963 } 964 } 965 966 return !sig_ignored(p, sig, force); 967 } 968 969 /* 970 * Test if P wants to take SIG. After we've checked all threads with this, 971 * it's equivalent to finding no threads not blocking SIG. Any threads not 972 * blocking SIG were ruled out because they are not running and already 973 * have pending signals. Such threads will dequeue from the shared queue 974 * as soon as they're available, so putting the signal on the shared queue 975 * will be equivalent to sending it to one such thread. 976 */ 977 static inline bool wants_signal(int sig, struct task_struct *p) 978 { 979 if (sigismember(&p->blocked, sig)) 980 return false; 981 982 if (p->flags & PF_EXITING) 983 return false; 984 985 if (sig == SIGKILL) 986 return true; 987 988 if (task_is_stopped_or_traced(p)) 989 return false; 990 991 return task_curr(p) || !task_sigpending(p); 992 } 993 994 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 995 { 996 struct signal_struct *signal = p->signal; 997 struct task_struct *t; 998 999 /* 1000 * Now find a thread we can wake up to take the signal off the queue. 1001 * 1002 * Try the suggested task first (may or may not be the main thread). 1003 */ 1004 if (wants_signal(sig, p)) 1005 t = p; 1006 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 1007 /* 1008 * There is just one thread and it does not need to be woken. 1009 * It will dequeue unblocked signals before it runs again. 1010 */ 1011 return; 1012 else { 1013 /* 1014 * Otherwise try to find a suitable thread. 1015 */ 1016 t = signal->curr_target; 1017 while (!wants_signal(sig, t)) { 1018 t = next_thread(t); 1019 if (t == signal->curr_target) 1020 /* 1021 * No thread needs to be woken. 1022 * Any eligible threads will see 1023 * the signal in the queue soon. 1024 */ 1025 return; 1026 } 1027 signal->curr_target = t; 1028 } 1029 1030 /* 1031 * Found a killable thread. If the signal will be fatal, 1032 * then start taking the whole group down immediately. 1033 */ 1034 if (sig_fatal(p, sig) && 1035 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) && 1036 !sigismember(&t->real_blocked, sig) && 1037 (sig == SIGKILL || !p->ptrace)) { 1038 /* 1039 * This signal will be fatal to the whole group. 1040 */ 1041 if (!sig_kernel_coredump(sig)) { 1042 /* 1043 * Start a group exit and wake everybody up. 1044 * This way we don't have other threads 1045 * running and doing things after a slower 1046 * thread has the fatal signal pending. 1047 */ 1048 signal->flags = SIGNAL_GROUP_EXIT; 1049 signal->group_exit_code = sig; 1050 signal->group_stop_count = 0; 1051 __for_each_thread(signal, t) { 1052 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1053 sigaddset(&t->pending.signal, SIGKILL); 1054 signal_wake_up(t, 1); 1055 } 1056 return; 1057 } 1058 } 1059 1060 /* 1061 * The signal is already in the shared-pending queue. 1062 * Tell the chosen thread to wake up and dequeue it. 1063 */ 1064 signal_wake_up(t, sig == SIGKILL); 1065 return; 1066 } 1067 1068 static inline bool legacy_queue(struct sigpending *signals, int sig) 1069 { 1070 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1071 } 1072 1073 static int __send_signal_locked(int sig, struct kernel_siginfo *info, 1074 struct task_struct *t, enum pid_type type, bool force) 1075 { 1076 struct sigpending *pending; 1077 struct sigqueue *q; 1078 int override_rlimit; 1079 int ret = 0, result; 1080 1081 lockdep_assert_held(&t->sighand->siglock); 1082 1083 result = TRACE_SIGNAL_IGNORED; 1084 if (!prepare_signal(sig, t, force)) 1085 goto ret; 1086 1087 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1088 /* 1089 * Short-circuit ignored signals and support queuing 1090 * exactly one non-rt signal, so that we can get more 1091 * detailed information about the cause of the signal. 1092 */ 1093 result = TRACE_SIGNAL_ALREADY_PENDING; 1094 if (legacy_queue(pending, sig)) 1095 goto ret; 1096 1097 result = TRACE_SIGNAL_DELIVERED; 1098 /* 1099 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1100 */ 1101 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1102 goto out_set; 1103 1104 /* 1105 * Real-time signals must be queued if sent by sigqueue, or 1106 * some other real-time mechanism. It is implementation 1107 * defined whether kill() does so. We attempt to do so, on 1108 * the principle of least surprise, but since kill is not 1109 * allowed to fail with EAGAIN when low on memory we just 1110 * make sure at least one signal gets delivered and don't 1111 * pass on the info struct. 1112 */ 1113 if (sig < SIGRTMIN) 1114 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1115 else 1116 override_rlimit = 0; 1117 1118 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0); 1119 1120 if (q) { 1121 list_add_tail(&q->list, &pending->list); 1122 switch ((unsigned long) info) { 1123 case (unsigned long) SEND_SIG_NOINFO: 1124 clear_siginfo(&q->info); 1125 q->info.si_signo = sig; 1126 q->info.si_errno = 0; 1127 q->info.si_code = SI_USER; 1128 q->info.si_pid = task_tgid_nr_ns(current, 1129 task_active_pid_ns(t)); 1130 rcu_read_lock(); 1131 q->info.si_uid = 1132 from_kuid_munged(task_cred_xxx(t, user_ns), 1133 current_uid()); 1134 rcu_read_unlock(); 1135 break; 1136 case (unsigned long) SEND_SIG_PRIV: 1137 clear_siginfo(&q->info); 1138 q->info.si_signo = sig; 1139 q->info.si_errno = 0; 1140 q->info.si_code = SI_KERNEL; 1141 q->info.si_pid = 0; 1142 q->info.si_uid = 0; 1143 break; 1144 default: 1145 copy_siginfo(&q->info, info); 1146 break; 1147 } 1148 } else if (!is_si_special(info) && 1149 sig >= SIGRTMIN && info->si_code != SI_USER) { 1150 /* 1151 * Queue overflow, abort. We may abort if the 1152 * signal was rt and sent by user using something 1153 * other than kill(). 1154 */ 1155 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1156 ret = -EAGAIN; 1157 goto ret; 1158 } else { 1159 /* 1160 * This is a silent loss of information. We still 1161 * send the signal, but the *info bits are lost. 1162 */ 1163 result = TRACE_SIGNAL_LOSE_INFO; 1164 } 1165 1166 out_set: 1167 signalfd_notify(t, sig); 1168 sigaddset(&pending->signal, sig); 1169 1170 /* Let multiprocess signals appear after on-going forks */ 1171 if (type > PIDTYPE_TGID) { 1172 struct multiprocess_signals *delayed; 1173 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1174 sigset_t *signal = &delayed->signal; 1175 /* Can't queue both a stop and a continue signal */ 1176 if (sig == SIGCONT) 1177 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1178 else if (sig_kernel_stop(sig)) 1179 sigdelset(signal, SIGCONT); 1180 sigaddset(signal, sig); 1181 } 1182 } 1183 1184 complete_signal(sig, t, type); 1185 ret: 1186 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1187 return ret; 1188 } 1189 1190 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) 1191 { 1192 bool ret = false; 1193 switch (siginfo_layout(info->si_signo, info->si_code)) { 1194 case SIL_KILL: 1195 case SIL_CHLD: 1196 case SIL_RT: 1197 ret = true; 1198 break; 1199 case SIL_TIMER: 1200 case SIL_POLL: 1201 case SIL_FAULT: 1202 case SIL_FAULT_TRAPNO: 1203 case SIL_FAULT_MCEERR: 1204 case SIL_FAULT_BNDERR: 1205 case SIL_FAULT_PKUERR: 1206 case SIL_FAULT_PERF_EVENT: 1207 case SIL_SYS: 1208 ret = false; 1209 break; 1210 } 1211 return ret; 1212 } 1213 1214 int send_signal_locked(int sig, struct kernel_siginfo *info, 1215 struct task_struct *t, enum pid_type type) 1216 { 1217 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ 1218 bool force = false; 1219 1220 if (info == SEND_SIG_NOINFO) { 1221 /* Force if sent from an ancestor pid namespace */ 1222 force = !task_pid_nr_ns(current, task_active_pid_ns(t)); 1223 } else if (info == SEND_SIG_PRIV) { 1224 /* Don't ignore kernel generated signals */ 1225 force = true; 1226 } else if (has_si_pid_and_uid(info)) { 1227 /* SIGKILL and SIGSTOP is special or has ids */ 1228 struct user_namespace *t_user_ns; 1229 1230 rcu_read_lock(); 1231 t_user_ns = task_cred_xxx(t, user_ns); 1232 if (current_user_ns() != t_user_ns) { 1233 kuid_t uid = make_kuid(current_user_ns(), info->si_uid); 1234 info->si_uid = from_kuid_munged(t_user_ns, uid); 1235 } 1236 rcu_read_unlock(); 1237 1238 /* A kernel generated signal? */ 1239 force = (info->si_code == SI_KERNEL); 1240 1241 /* From an ancestor pid namespace? */ 1242 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { 1243 info->si_pid = 0; 1244 force = true; 1245 } 1246 } 1247 return __send_signal_locked(sig, info, t, type, force); 1248 } 1249 1250 static void print_fatal_signal(int signr) 1251 { 1252 struct pt_regs *regs = task_pt_regs(current); 1253 struct file *exe_file; 1254 1255 exe_file = get_task_exe_file(current); 1256 if (exe_file) { 1257 pr_info("%pD: %s: potentially unexpected fatal signal %d.\n", 1258 exe_file, current->comm, signr); 1259 fput(exe_file); 1260 } else { 1261 pr_info("%s: potentially unexpected fatal signal %d.\n", 1262 current->comm, signr); 1263 } 1264 1265 #if defined(__i386__) && !defined(__arch_um__) 1266 pr_info("code at %08lx: ", regs->ip); 1267 { 1268 int i; 1269 for (i = 0; i < 16; i++) { 1270 unsigned char insn; 1271 1272 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1273 break; 1274 pr_cont("%02x ", insn); 1275 } 1276 } 1277 pr_cont("\n"); 1278 #endif 1279 preempt_disable(); 1280 show_regs(regs); 1281 preempt_enable(); 1282 } 1283 1284 static int __init setup_print_fatal_signals(char *str) 1285 { 1286 get_option (&str, &print_fatal_signals); 1287 1288 return 1; 1289 } 1290 1291 __setup("print-fatal-signals=", setup_print_fatal_signals); 1292 1293 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1294 enum pid_type type) 1295 { 1296 unsigned long flags; 1297 int ret = -ESRCH; 1298 1299 if (lock_task_sighand(p, &flags)) { 1300 ret = send_signal_locked(sig, info, p, type); 1301 unlock_task_sighand(p, &flags); 1302 } 1303 1304 return ret; 1305 } 1306 1307 enum sig_handler { 1308 HANDLER_CURRENT, /* If reachable use the current handler */ 1309 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */ 1310 HANDLER_EXIT, /* Only visible as the process exit code */ 1311 }; 1312 1313 /* 1314 * Force a signal that the process can't ignore: if necessary 1315 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1316 * 1317 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1318 * since we do not want to have a signal handler that was blocked 1319 * be invoked when user space had explicitly blocked it. 1320 * 1321 * We don't want to have recursive SIGSEGV's etc, for example, 1322 * that is why we also clear SIGNAL_UNKILLABLE. 1323 */ 1324 static int 1325 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t, 1326 enum sig_handler handler) 1327 { 1328 unsigned long int flags; 1329 int ret, blocked, ignored; 1330 struct k_sigaction *action; 1331 int sig = info->si_signo; 1332 1333 spin_lock_irqsave(&t->sighand->siglock, flags); 1334 action = &t->sighand->action[sig-1]; 1335 ignored = action->sa.sa_handler == SIG_IGN; 1336 blocked = sigismember(&t->blocked, sig); 1337 if (blocked || ignored || (handler != HANDLER_CURRENT)) { 1338 action->sa.sa_handler = SIG_DFL; 1339 if (handler == HANDLER_EXIT) 1340 action->sa.sa_flags |= SA_IMMUTABLE; 1341 if (blocked) 1342 sigdelset(&t->blocked, sig); 1343 } 1344 /* 1345 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1346 * debugging to leave init killable. But HANDLER_EXIT is always fatal. 1347 */ 1348 if (action->sa.sa_handler == SIG_DFL && 1349 (!t->ptrace || (handler == HANDLER_EXIT))) 1350 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1351 ret = send_signal_locked(sig, info, t, PIDTYPE_PID); 1352 /* This can happen if the signal was already pending and blocked */ 1353 if (!task_sigpending(t)) 1354 signal_wake_up(t, 0); 1355 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1356 1357 return ret; 1358 } 1359 1360 int force_sig_info(struct kernel_siginfo *info) 1361 { 1362 return force_sig_info_to_task(info, current, HANDLER_CURRENT); 1363 } 1364 1365 /* 1366 * Nuke all other threads in the group. 1367 */ 1368 int zap_other_threads(struct task_struct *p) 1369 { 1370 struct task_struct *t; 1371 int count = 0; 1372 1373 p->signal->group_stop_count = 0; 1374 1375 for_other_threads(p, t) { 1376 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1377 /* Don't require de_thread to wait for the vhost_worker */ 1378 if ((t->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER) 1379 count++; 1380 1381 /* Don't bother with already dead threads */ 1382 if (t->exit_state) 1383 continue; 1384 sigaddset(&t->pending.signal, SIGKILL); 1385 signal_wake_up(t, 1); 1386 } 1387 1388 return count; 1389 } 1390 1391 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1392 unsigned long *flags) 1393 { 1394 struct sighand_struct *sighand; 1395 1396 rcu_read_lock(); 1397 for (;;) { 1398 sighand = rcu_dereference(tsk->sighand); 1399 if (unlikely(sighand == NULL)) 1400 break; 1401 1402 /* 1403 * This sighand can be already freed and even reused, but 1404 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1405 * initializes ->siglock: this slab can't go away, it has 1406 * the same object type, ->siglock can't be reinitialized. 1407 * 1408 * We need to ensure that tsk->sighand is still the same 1409 * after we take the lock, we can race with de_thread() or 1410 * __exit_signal(). In the latter case the next iteration 1411 * must see ->sighand == NULL. 1412 */ 1413 spin_lock_irqsave(&sighand->siglock, *flags); 1414 if (likely(sighand == rcu_access_pointer(tsk->sighand))) 1415 break; 1416 spin_unlock_irqrestore(&sighand->siglock, *flags); 1417 } 1418 rcu_read_unlock(); 1419 1420 return sighand; 1421 } 1422 1423 #ifdef CONFIG_LOCKDEP 1424 void lockdep_assert_task_sighand_held(struct task_struct *task) 1425 { 1426 struct sighand_struct *sighand; 1427 1428 rcu_read_lock(); 1429 sighand = rcu_dereference(task->sighand); 1430 if (sighand) 1431 lockdep_assert_held(&sighand->siglock); 1432 else 1433 WARN_ON_ONCE(1); 1434 rcu_read_unlock(); 1435 } 1436 #endif 1437 1438 /* 1439 * send signal info to all the members of a group 1440 */ 1441 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1442 struct task_struct *p, enum pid_type type) 1443 { 1444 int ret; 1445 1446 rcu_read_lock(); 1447 ret = check_kill_permission(sig, info, p); 1448 rcu_read_unlock(); 1449 1450 if (!ret && sig) 1451 ret = do_send_sig_info(sig, info, p, type); 1452 1453 return ret; 1454 } 1455 1456 /* 1457 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1458 * control characters do (^C, ^Z etc) 1459 * - the caller must hold at least a readlock on tasklist_lock 1460 */ 1461 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1462 { 1463 struct task_struct *p = NULL; 1464 int ret = -ESRCH; 1465 1466 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1467 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1468 /* 1469 * If group_send_sig_info() succeeds at least once ret 1470 * becomes 0 and after that the code below has no effect. 1471 * Otherwise we return the last err or -ESRCH if this 1472 * process group is empty. 1473 */ 1474 if (ret) 1475 ret = err; 1476 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1477 1478 return ret; 1479 } 1480 1481 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1482 { 1483 int error = -ESRCH; 1484 struct task_struct *p; 1485 1486 for (;;) { 1487 rcu_read_lock(); 1488 p = pid_task(pid, PIDTYPE_PID); 1489 if (p) 1490 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID); 1491 rcu_read_unlock(); 1492 if (likely(!p || error != -ESRCH)) 1493 return error; 1494 1495 /* 1496 * The task was unhashed in between, try again. If it 1497 * is dead, pid_task() will return NULL, if we race with 1498 * de_thread() it will find the new leader. 1499 */ 1500 } 1501 } 1502 1503 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1504 { 1505 int error; 1506 rcu_read_lock(); 1507 error = kill_pid_info(sig, info, find_vpid(pid)); 1508 rcu_read_unlock(); 1509 return error; 1510 } 1511 1512 static inline bool kill_as_cred_perm(const struct cred *cred, 1513 struct task_struct *target) 1514 { 1515 const struct cred *pcred = __task_cred(target); 1516 1517 return uid_eq(cred->euid, pcred->suid) || 1518 uid_eq(cred->euid, pcred->uid) || 1519 uid_eq(cred->uid, pcred->suid) || 1520 uid_eq(cred->uid, pcred->uid); 1521 } 1522 1523 /* 1524 * The usb asyncio usage of siginfo is wrong. The glibc support 1525 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. 1526 * AKA after the generic fields: 1527 * kernel_pid_t si_pid; 1528 * kernel_uid32_t si_uid; 1529 * sigval_t si_value; 1530 * 1531 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout 1532 * after the generic fields is: 1533 * void __user *si_addr; 1534 * 1535 * This is a practical problem when there is a 64bit big endian kernel 1536 * and a 32bit userspace. As the 32bit address will encoded in the low 1537 * 32bits of the pointer. Those low 32bits will be stored at higher 1538 * address than appear in a 32 bit pointer. So userspace will not 1539 * see the address it was expecting for it's completions. 1540 * 1541 * There is nothing in the encoding that can allow 1542 * copy_siginfo_to_user32 to detect this confusion of formats, so 1543 * handle this by requiring the caller of kill_pid_usb_asyncio to 1544 * notice when this situration takes place and to store the 32bit 1545 * pointer in sival_int, instead of sival_addr of the sigval_t addr 1546 * parameter. 1547 */ 1548 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, 1549 struct pid *pid, const struct cred *cred) 1550 { 1551 struct kernel_siginfo info; 1552 struct task_struct *p; 1553 unsigned long flags; 1554 int ret = -EINVAL; 1555 1556 if (!valid_signal(sig)) 1557 return ret; 1558 1559 clear_siginfo(&info); 1560 info.si_signo = sig; 1561 info.si_errno = errno; 1562 info.si_code = SI_ASYNCIO; 1563 *((sigval_t *)&info.si_pid) = addr; 1564 1565 rcu_read_lock(); 1566 p = pid_task(pid, PIDTYPE_PID); 1567 if (!p) { 1568 ret = -ESRCH; 1569 goto out_unlock; 1570 } 1571 if (!kill_as_cred_perm(cred, p)) { 1572 ret = -EPERM; 1573 goto out_unlock; 1574 } 1575 ret = security_task_kill(p, &info, sig, cred); 1576 if (ret) 1577 goto out_unlock; 1578 1579 if (sig) { 1580 if (lock_task_sighand(p, &flags)) { 1581 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false); 1582 unlock_task_sighand(p, &flags); 1583 } else 1584 ret = -ESRCH; 1585 } 1586 out_unlock: 1587 rcu_read_unlock(); 1588 return ret; 1589 } 1590 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); 1591 1592 /* 1593 * kill_something_info() interprets pid in interesting ways just like kill(2). 1594 * 1595 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1596 * is probably wrong. Should make it like BSD or SYSV. 1597 */ 1598 1599 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1600 { 1601 int ret; 1602 1603 if (pid > 0) 1604 return kill_proc_info(sig, info, pid); 1605 1606 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1607 if (pid == INT_MIN) 1608 return -ESRCH; 1609 1610 read_lock(&tasklist_lock); 1611 if (pid != -1) { 1612 ret = __kill_pgrp_info(sig, info, 1613 pid ? find_vpid(-pid) : task_pgrp(current)); 1614 } else { 1615 int retval = 0, count = 0; 1616 struct task_struct * p; 1617 1618 for_each_process(p) { 1619 if (task_pid_vnr(p) > 1 && 1620 !same_thread_group(p, current)) { 1621 int err = group_send_sig_info(sig, info, p, 1622 PIDTYPE_MAX); 1623 ++count; 1624 if (err != -EPERM) 1625 retval = err; 1626 } 1627 } 1628 ret = count ? retval : -ESRCH; 1629 } 1630 read_unlock(&tasklist_lock); 1631 1632 return ret; 1633 } 1634 1635 /* 1636 * These are for backward compatibility with the rest of the kernel source. 1637 */ 1638 1639 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1640 { 1641 /* 1642 * Make sure legacy kernel users don't send in bad values 1643 * (normal paths check this in check_kill_permission). 1644 */ 1645 if (!valid_signal(sig)) 1646 return -EINVAL; 1647 1648 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1649 } 1650 EXPORT_SYMBOL(send_sig_info); 1651 1652 #define __si_special(priv) \ 1653 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1654 1655 int 1656 send_sig(int sig, struct task_struct *p, int priv) 1657 { 1658 return send_sig_info(sig, __si_special(priv), p); 1659 } 1660 EXPORT_SYMBOL(send_sig); 1661 1662 void force_sig(int sig) 1663 { 1664 struct kernel_siginfo info; 1665 1666 clear_siginfo(&info); 1667 info.si_signo = sig; 1668 info.si_errno = 0; 1669 info.si_code = SI_KERNEL; 1670 info.si_pid = 0; 1671 info.si_uid = 0; 1672 force_sig_info(&info); 1673 } 1674 EXPORT_SYMBOL(force_sig); 1675 1676 void force_fatal_sig(int sig) 1677 { 1678 struct kernel_siginfo info; 1679 1680 clear_siginfo(&info); 1681 info.si_signo = sig; 1682 info.si_errno = 0; 1683 info.si_code = SI_KERNEL; 1684 info.si_pid = 0; 1685 info.si_uid = 0; 1686 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL); 1687 } 1688 1689 void force_exit_sig(int sig) 1690 { 1691 struct kernel_siginfo info; 1692 1693 clear_siginfo(&info); 1694 info.si_signo = sig; 1695 info.si_errno = 0; 1696 info.si_code = SI_KERNEL; 1697 info.si_pid = 0; 1698 info.si_uid = 0; 1699 force_sig_info_to_task(&info, current, HANDLER_EXIT); 1700 } 1701 1702 /* 1703 * When things go south during signal handling, we 1704 * will force a SIGSEGV. And if the signal that caused 1705 * the problem was already a SIGSEGV, we'll want to 1706 * make sure we don't even try to deliver the signal.. 1707 */ 1708 void force_sigsegv(int sig) 1709 { 1710 if (sig == SIGSEGV) 1711 force_fatal_sig(SIGSEGV); 1712 else 1713 force_sig(SIGSEGV); 1714 } 1715 1716 int force_sig_fault_to_task(int sig, int code, void __user *addr, 1717 struct task_struct *t) 1718 { 1719 struct kernel_siginfo info; 1720 1721 clear_siginfo(&info); 1722 info.si_signo = sig; 1723 info.si_errno = 0; 1724 info.si_code = code; 1725 info.si_addr = addr; 1726 return force_sig_info_to_task(&info, t, HANDLER_CURRENT); 1727 } 1728 1729 int force_sig_fault(int sig, int code, void __user *addr) 1730 { 1731 return force_sig_fault_to_task(sig, code, addr, current); 1732 } 1733 1734 int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t) 1735 { 1736 struct kernel_siginfo info; 1737 1738 clear_siginfo(&info); 1739 info.si_signo = sig; 1740 info.si_errno = 0; 1741 info.si_code = code; 1742 info.si_addr = addr; 1743 return send_sig_info(info.si_signo, &info, t); 1744 } 1745 1746 int force_sig_mceerr(int code, void __user *addr, short lsb) 1747 { 1748 struct kernel_siginfo info; 1749 1750 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1751 clear_siginfo(&info); 1752 info.si_signo = SIGBUS; 1753 info.si_errno = 0; 1754 info.si_code = code; 1755 info.si_addr = addr; 1756 info.si_addr_lsb = lsb; 1757 return force_sig_info(&info); 1758 } 1759 1760 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1761 { 1762 struct kernel_siginfo info; 1763 1764 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1765 clear_siginfo(&info); 1766 info.si_signo = SIGBUS; 1767 info.si_errno = 0; 1768 info.si_code = code; 1769 info.si_addr = addr; 1770 info.si_addr_lsb = lsb; 1771 return send_sig_info(info.si_signo, &info, t); 1772 } 1773 EXPORT_SYMBOL(send_sig_mceerr); 1774 1775 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1776 { 1777 struct kernel_siginfo info; 1778 1779 clear_siginfo(&info); 1780 info.si_signo = SIGSEGV; 1781 info.si_errno = 0; 1782 info.si_code = SEGV_BNDERR; 1783 info.si_addr = addr; 1784 info.si_lower = lower; 1785 info.si_upper = upper; 1786 return force_sig_info(&info); 1787 } 1788 1789 #ifdef SEGV_PKUERR 1790 int force_sig_pkuerr(void __user *addr, u32 pkey) 1791 { 1792 struct kernel_siginfo info; 1793 1794 clear_siginfo(&info); 1795 info.si_signo = SIGSEGV; 1796 info.si_errno = 0; 1797 info.si_code = SEGV_PKUERR; 1798 info.si_addr = addr; 1799 info.si_pkey = pkey; 1800 return force_sig_info(&info); 1801 } 1802 #endif 1803 1804 int send_sig_perf(void __user *addr, u32 type, u64 sig_data) 1805 { 1806 struct kernel_siginfo info; 1807 1808 clear_siginfo(&info); 1809 info.si_signo = SIGTRAP; 1810 info.si_errno = 0; 1811 info.si_code = TRAP_PERF; 1812 info.si_addr = addr; 1813 info.si_perf_data = sig_data; 1814 info.si_perf_type = type; 1815 1816 /* 1817 * Signals generated by perf events should not terminate the whole 1818 * process if SIGTRAP is blocked, however, delivering the signal 1819 * asynchronously is better than not delivering at all. But tell user 1820 * space if the signal was asynchronous, so it can clearly be 1821 * distinguished from normal synchronous ones. 1822 */ 1823 info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ? 1824 TRAP_PERF_FLAG_ASYNC : 1825 0; 1826 1827 return send_sig_info(info.si_signo, &info, current); 1828 } 1829 1830 /** 1831 * force_sig_seccomp - signals the task to allow in-process syscall emulation 1832 * @syscall: syscall number to send to userland 1833 * @reason: filter-supplied reason code to send to userland (via si_errno) 1834 * @force_coredump: true to trigger a coredump 1835 * 1836 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. 1837 */ 1838 int force_sig_seccomp(int syscall, int reason, bool force_coredump) 1839 { 1840 struct kernel_siginfo info; 1841 1842 clear_siginfo(&info); 1843 info.si_signo = SIGSYS; 1844 info.si_code = SYS_SECCOMP; 1845 info.si_call_addr = (void __user *)KSTK_EIP(current); 1846 info.si_errno = reason; 1847 info.si_arch = syscall_get_arch(current); 1848 info.si_syscall = syscall; 1849 return force_sig_info_to_task(&info, current, 1850 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT); 1851 } 1852 1853 /* For the crazy architectures that include trap information in 1854 * the errno field, instead of an actual errno value. 1855 */ 1856 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1857 { 1858 struct kernel_siginfo info; 1859 1860 clear_siginfo(&info); 1861 info.si_signo = SIGTRAP; 1862 info.si_errno = errno; 1863 info.si_code = TRAP_HWBKPT; 1864 info.si_addr = addr; 1865 return force_sig_info(&info); 1866 } 1867 1868 /* For the rare architectures that include trap information using 1869 * si_trapno. 1870 */ 1871 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno) 1872 { 1873 struct kernel_siginfo info; 1874 1875 clear_siginfo(&info); 1876 info.si_signo = sig; 1877 info.si_errno = 0; 1878 info.si_code = code; 1879 info.si_addr = addr; 1880 info.si_trapno = trapno; 1881 return force_sig_info(&info); 1882 } 1883 1884 /* For the rare architectures that include trap information using 1885 * si_trapno. 1886 */ 1887 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, 1888 struct task_struct *t) 1889 { 1890 struct kernel_siginfo info; 1891 1892 clear_siginfo(&info); 1893 info.si_signo = sig; 1894 info.si_errno = 0; 1895 info.si_code = code; 1896 info.si_addr = addr; 1897 info.si_trapno = trapno; 1898 return send_sig_info(info.si_signo, &info, t); 1899 } 1900 1901 int kill_pgrp(struct pid *pid, int sig, int priv) 1902 { 1903 int ret; 1904 1905 read_lock(&tasklist_lock); 1906 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1907 read_unlock(&tasklist_lock); 1908 1909 return ret; 1910 } 1911 EXPORT_SYMBOL(kill_pgrp); 1912 1913 int kill_pid(struct pid *pid, int sig, int priv) 1914 { 1915 return kill_pid_info(sig, __si_special(priv), pid); 1916 } 1917 EXPORT_SYMBOL(kill_pid); 1918 1919 /* 1920 * These functions support sending signals using preallocated sigqueue 1921 * structures. This is needed "because realtime applications cannot 1922 * afford to lose notifications of asynchronous events, like timer 1923 * expirations or I/O completions". In the case of POSIX Timers 1924 * we allocate the sigqueue structure from the timer_create. If this 1925 * allocation fails we are able to report the failure to the application 1926 * with an EAGAIN error. 1927 */ 1928 struct sigqueue *sigqueue_alloc(void) 1929 { 1930 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC); 1931 } 1932 1933 void sigqueue_free(struct sigqueue *q) 1934 { 1935 unsigned long flags; 1936 spinlock_t *lock = ¤t->sighand->siglock; 1937 1938 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1939 /* 1940 * We must hold ->siglock while testing q->list 1941 * to serialize with collect_signal() or with 1942 * __exit_signal()->flush_sigqueue(). 1943 */ 1944 spin_lock_irqsave(lock, flags); 1945 q->flags &= ~SIGQUEUE_PREALLOC; 1946 /* 1947 * If it is queued it will be freed when dequeued, 1948 * like the "regular" sigqueue. 1949 */ 1950 if (!list_empty(&q->list)) 1951 q = NULL; 1952 spin_unlock_irqrestore(lock, flags); 1953 1954 if (q) 1955 __sigqueue_free(q); 1956 } 1957 1958 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) 1959 { 1960 int sig = q->info.si_signo; 1961 struct sigpending *pending; 1962 struct task_struct *t; 1963 unsigned long flags; 1964 int ret, result; 1965 1966 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1967 1968 ret = -1; 1969 rcu_read_lock(); 1970 1971 /* 1972 * This function is used by POSIX timers to deliver a timer signal. 1973 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID 1974 * set), the signal must be delivered to the specific thread (queues 1975 * into t->pending). 1976 * 1977 * Where type is not PIDTYPE_PID, signals must be delivered to the 1978 * process. In this case, prefer to deliver to current if it is in 1979 * the same thread group as the target process, which avoids 1980 * unnecessarily waking up a potentially idle task. 1981 */ 1982 t = pid_task(pid, type); 1983 if (!t) 1984 goto ret; 1985 if (type != PIDTYPE_PID && same_thread_group(t, current)) 1986 t = current; 1987 if (!likely(lock_task_sighand(t, &flags))) 1988 goto ret; 1989 1990 ret = 1; /* the signal is ignored */ 1991 result = TRACE_SIGNAL_IGNORED; 1992 if (!prepare_signal(sig, t, false)) 1993 goto out; 1994 1995 ret = 0; 1996 if (unlikely(!list_empty(&q->list))) { 1997 /* 1998 * If an SI_TIMER entry is already queue just increment 1999 * the overrun count. 2000 */ 2001 BUG_ON(q->info.si_code != SI_TIMER); 2002 q->info.si_overrun++; 2003 result = TRACE_SIGNAL_ALREADY_PENDING; 2004 goto out; 2005 } 2006 q->info.si_overrun = 0; 2007 2008 signalfd_notify(t, sig); 2009 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 2010 list_add_tail(&q->list, &pending->list); 2011 sigaddset(&pending->signal, sig); 2012 complete_signal(sig, t, type); 2013 result = TRACE_SIGNAL_DELIVERED; 2014 out: 2015 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result); 2016 unlock_task_sighand(t, &flags); 2017 ret: 2018 rcu_read_unlock(); 2019 return ret; 2020 } 2021 2022 static void do_notify_pidfd(struct task_struct *task) 2023 { 2024 struct pid *pid; 2025 2026 WARN_ON(task->exit_state == 0); 2027 pid = task_pid(task); 2028 wake_up_all(&pid->wait_pidfd); 2029 } 2030 2031 /* 2032 * Let a parent know about the death of a child. 2033 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 2034 * 2035 * Returns true if our parent ignored us and so we've switched to 2036 * self-reaping. 2037 */ 2038 bool do_notify_parent(struct task_struct *tsk, int sig) 2039 { 2040 struct kernel_siginfo info; 2041 unsigned long flags; 2042 struct sighand_struct *psig; 2043 bool autoreap = false; 2044 u64 utime, stime; 2045 2046 WARN_ON_ONCE(sig == -1); 2047 2048 /* do_notify_parent_cldstop should have been called instead. */ 2049 WARN_ON_ONCE(task_is_stopped_or_traced(tsk)); 2050 2051 WARN_ON_ONCE(!tsk->ptrace && 2052 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 2053 2054 /* Wake up all pidfd waiters */ 2055 do_notify_pidfd(tsk); 2056 2057 if (sig != SIGCHLD) { 2058 /* 2059 * This is only possible if parent == real_parent. 2060 * Check if it has changed security domain. 2061 */ 2062 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) 2063 sig = SIGCHLD; 2064 } 2065 2066 clear_siginfo(&info); 2067 info.si_signo = sig; 2068 info.si_errno = 0; 2069 /* 2070 * We are under tasklist_lock here so our parent is tied to 2071 * us and cannot change. 2072 * 2073 * task_active_pid_ns will always return the same pid namespace 2074 * until a task passes through release_task. 2075 * 2076 * write_lock() currently calls preempt_disable() which is the 2077 * same as rcu_read_lock(), but according to Oleg, this is not 2078 * correct to rely on this 2079 */ 2080 rcu_read_lock(); 2081 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 2082 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 2083 task_uid(tsk)); 2084 rcu_read_unlock(); 2085 2086 task_cputime(tsk, &utime, &stime); 2087 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 2088 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 2089 2090 info.si_status = tsk->exit_code & 0x7f; 2091 if (tsk->exit_code & 0x80) 2092 info.si_code = CLD_DUMPED; 2093 else if (tsk->exit_code & 0x7f) 2094 info.si_code = CLD_KILLED; 2095 else { 2096 info.si_code = CLD_EXITED; 2097 info.si_status = tsk->exit_code >> 8; 2098 } 2099 2100 psig = tsk->parent->sighand; 2101 spin_lock_irqsave(&psig->siglock, flags); 2102 if (!tsk->ptrace && sig == SIGCHLD && 2103 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 2104 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 2105 /* 2106 * We are exiting and our parent doesn't care. POSIX.1 2107 * defines special semantics for setting SIGCHLD to SIG_IGN 2108 * or setting the SA_NOCLDWAIT flag: we should be reaped 2109 * automatically and not left for our parent's wait4 call. 2110 * Rather than having the parent do it as a magic kind of 2111 * signal handler, we just set this to tell do_exit that we 2112 * can be cleaned up without becoming a zombie. Note that 2113 * we still call __wake_up_parent in this case, because a 2114 * blocked sys_wait4 might now return -ECHILD. 2115 * 2116 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 2117 * is implementation-defined: we do (if you don't want 2118 * it, just use SIG_IGN instead). 2119 */ 2120 autoreap = true; 2121 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 2122 sig = 0; 2123 } 2124 /* 2125 * Send with __send_signal as si_pid and si_uid are in the 2126 * parent's namespaces. 2127 */ 2128 if (valid_signal(sig) && sig) 2129 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false); 2130 __wake_up_parent(tsk, tsk->parent); 2131 spin_unlock_irqrestore(&psig->siglock, flags); 2132 2133 return autoreap; 2134 } 2135 2136 /** 2137 * do_notify_parent_cldstop - notify parent of stopped/continued state change 2138 * @tsk: task reporting the state change 2139 * @for_ptracer: the notification is for ptracer 2140 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 2141 * 2142 * Notify @tsk's parent that the stopped/continued state has changed. If 2143 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 2144 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 2145 * 2146 * CONTEXT: 2147 * Must be called with tasklist_lock at least read locked. 2148 */ 2149 static void do_notify_parent_cldstop(struct task_struct *tsk, 2150 bool for_ptracer, int why) 2151 { 2152 struct kernel_siginfo info; 2153 unsigned long flags; 2154 struct task_struct *parent; 2155 struct sighand_struct *sighand; 2156 u64 utime, stime; 2157 2158 if (for_ptracer) { 2159 parent = tsk->parent; 2160 } else { 2161 tsk = tsk->group_leader; 2162 parent = tsk->real_parent; 2163 } 2164 2165 clear_siginfo(&info); 2166 info.si_signo = SIGCHLD; 2167 info.si_errno = 0; 2168 /* 2169 * see comment in do_notify_parent() about the following 4 lines 2170 */ 2171 rcu_read_lock(); 2172 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 2173 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 2174 rcu_read_unlock(); 2175 2176 task_cputime(tsk, &utime, &stime); 2177 info.si_utime = nsec_to_clock_t(utime); 2178 info.si_stime = nsec_to_clock_t(stime); 2179 2180 info.si_code = why; 2181 switch (why) { 2182 case CLD_CONTINUED: 2183 info.si_status = SIGCONT; 2184 break; 2185 case CLD_STOPPED: 2186 info.si_status = tsk->signal->group_exit_code & 0x7f; 2187 break; 2188 case CLD_TRAPPED: 2189 info.si_status = tsk->exit_code & 0x7f; 2190 break; 2191 default: 2192 BUG(); 2193 } 2194 2195 sighand = parent->sighand; 2196 spin_lock_irqsave(&sighand->siglock, flags); 2197 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 2198 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 2199 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID); 2200 /* 2201 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 2202 */ 2203 __wake_up_parent(tsk, parent); 2204 spin_unlock_irqrestore(&sighand->siglock, flags); 2205 } 2206 2207 /* 2208 * This must be called with current->sighand->siglock held. 2209 * 2210 * This should be the path for all ptrace stops. 2211 * We always set current->last_siginfo while stopped here. 2212 * That makes it a way to test a stopped process for 2213 * being ptrace-stopped vs being job-control-stopped. 2214 * 2215 * Returns the signal the ptracer requested the code resume 2216 * with. If the code did not stop because the tracer is gone, 2217 * the stop signal remains unchanged unless clear_code. 2218 */ 2219 static int ptrace_stop(int exit_code, int why, unsigned long message, 2220 kernel_siginfo_t *info) 2221 __releases(¤t->sighand->siglock) 2222 __acquires(¤t->sighand->siglock) 2223 { 2224 bool gstop_done = false; 2225 2226 if (arch_ptrace_stop_needed()) { 2227 /* 2228 * The arch code has something special to do before a 2229 * ptrace stop. This is allowed to block, e.g. for faults 2230 * on user stack pages. We can't keep the siglock while 2231 * calling arch_ptrace_stop, so we must release it now. 2232 * To preserve proper semantics, we must do this before 2233 * any signal bookkeeping like checking group_stop_count. 2234 */ 2235 spin_unlock_irq(¤t->sighand->siglock); 2236 arch_ptrace_stop(); 2237 spin_lock_irq(¤t->sighand->siglock); 2238 } 2239 2240 /* 2241 * After this point ptrace_signal_wake_up or signal_wake_up 2242 * will clear TASK_TRACED if ptrace_unlink happens or a fatal 2243 * signal comes in. Handle previous ptrace_unlinks and fatal 2244 * signals here to prevent ptrace_stop sleeping in schedule. 2245 */ 2246 if (!current->ptrace || __fatal_signal_pending(current)) 2247 return exit_code; 2248 2249 set_special_state(TASK_TRACED); 2250 current->jobctl |= JOBCTL_TRACED; 2251 2252 /* 2253 * We're committing to trapping. TRACED should be visible before 2254 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2255 * Also, transition to TRACED and updates to ->jobctl should be 2256 * atomic with respect to siglock and should be done after the arch 2257 * hook as siglock is released and regrabbed across it. 2258 * 2259 * TRACER TRACEE 2260 * 2261 * ptrace_attach() 2262 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2263 * do_wait() 2264 * set_current_state() smp_wmb(); 2265 * ptrace_do_wait() 2266 * wait_task_stopped() 2267 * task_stopped_code() 2268 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2269 */ 2270 smp_wmb(); 2271 2272 current->ptrace_message = message; 2273 current->last_siginfo = info; 2274 current->exit_code = exit_code; 2275 2276 /* 2277 * If @why is CLD_STOPPED, we're trapping to participate in a group 2278 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2279 * across siglock relocks since INTERRUPT was scheduled, PENDING 2280 * could be clear now. We act as if SIGCONT is received after 2281 * TASK_TRACED is entered - ignore it. 2282 */ 2283 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2284 gstop_done = task_participate_group_stop(current); 2285 2286 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2287 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2288 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2289 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2290 2291 /* entering a trap, clear TRAPPING */ 2292 task_clear_jobctl_trapping(current); 2293 2294 spin_unlock_irq(¤t->sighand->siglock); 2295 read_lock(&tasklist_lock); 2296 /* 2297 * Notify parents of the stop. 2298 * 2299 * While ptraced, there are two parents - the ptracer and 2300 * the real_parent of the group_leader. The ptracer should 2301 * know about every stop while the real parent is only 2302 * interested in the completion of group stop. The states 2303 * for the two don't interact with each other. Notify 2304 * separately unless they're gonna be duplicates. 2305 */ 2306 if (current->ptrace) 2307 do_notify_parent_cldstop(current, true, why); 2308 if (gstop_done && (!current->ptrace || ptrace_reparented(current))) 2309 do_notify_parent_cldstop(current, false, why); 2310 2311 /* 2312 * The previous do_notify_parent_cldstop() invocation woke ptracer. 2313 * One a PREEMPTION kernel this can result in preemption requirement 2314 * which will be fulfilled after read_unlock() and the ptracer will be 2315 * put on the CPU. 2316 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for 2317 * this task wait in schedule(). If this task gets preempted then it 2318 * remains enqueued on the runqueue. The ptracer will observe this and 2319 * then sleep for a delay of one HZ tick. In the meantime this task 2320 * gets scheduled, enters schedule() and will wait for the ptracer. 2321 * 2322 * This preemption point is not bad from a correctness point of 2323 * view but extends the runtime by one HZ tick time due to the 2324 * ptracer's sleep. The preempt-disable section ensures that there 2325 * will be no preemption between unlock and schedule() and so 2326 * improving the performance since the ptracer will observe that 2327 * the tracee is scheduled out once it gets on the CPU. 2328 * 2329 * On PREEMPT_RT locking tasklist_lock does not disable preemption. 2330 * Therefore the task can be preempted after do_notify_parent_cldstop() 2331 * before unlocking tasklist_lock so there is no benefit in doing this. 2332 * 2333 * In fact disabling preemption is harmful on PREEMPT_RT because 2334 * the spinlock_t in cgroup_enter_frozen() must not be acquired 2335 * with preemption disabled due to the 'sleeping' spinlock 2336 * substitution of RT. 2337 */ 2338 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 2339 preempt_disable(); 2340 read_unlock(&tasklist_lock); 2341 cgroup_enter_frozen(); 2342 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 2343 preempt_enable_no_resched(); 2344 schedule(); 2345 cgroup_leave_frozen(true); 2346 2347 /* 2348 * We are back. Now reacquire the siglock before touching 2349 * last_siginfo, so that we are sure to have synchronized with 2350 * any signal-sending on another CPU that wants to examine it. 2351 */ 2352 spin_lock_irq(¤t->sighand->siglock); 2353 exit_code = current->exit_code; 2354 current->last_siginfo = NULL; 2355 current->ptrace_message = 0; 2356 current->exit_code = 0; 2357 2358 /* LISTENING can be set only during STOP traps, clear it */ 2359 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN); 2360 2361 /* 2362 * Queued signals ignored us while we were stopped for tracing. 2363 * So check for any that we should take before resuming user mode. 2364 * This sets TIF_SIGPENDING, but never clears it. 2365 */ 2366 recalc_sigpending_tsk(current); 2367 return exit_code; 2368 } 2369 2370 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message) 2371 { 2372 kernel_siginfo_t info; 2373 2374 clear_siginfo(&info); 2375 info.si_signo = signr; 2376 info.si_code = exit_code; 2377 info.si_pid = task_pid_vnr(current); 2378 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2379 2380 /* Let the debugger run. */ 2381 return ptrace_stop(exit_code, why, message, &info); 2382 } 2383 2384 int ptrace_notify(int exit_code, unsigned long message) 2385 { 2386 int signr; 2387 2388 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2389 if (unlikely(task_work_pending(current))) 2390 task_work_run(); 2391 2392 spin_lock_irq(¤t->sighand->siglock); 2393 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message); 2394 spin_unlock_irq(¤t->sighand->siglock); 2395 return signr; 2396 } 2397 2398 /** 2399 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2400 * @signr: signr causing group stop if initiating 2401 * 2402 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2403 * and participate in it. If already set, participate in the existing 2404 * group stop. If participated in a group stop (and thus slept), %true is 2405 * returned with siglock released. 2406 * 2407 * If ptraced, this function doesn't handle stop itself. Instead, 2408 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2409 * untouched. The caller must ensure that INTERRUPT trap handling takes 2410 * places afterwards. 2411 * 2412 * CONTEXT: 2413 * Must be called with @current->sighand->siglock held, which is released 2414 * on %true return. 2415 * 2416 * RETURNS: 2417 * %false if group stop is already cancelled or ptrace trap is scheduled. 2418 * %true if participated in group stop. 2419 */ 2420 static bool do_signal_stop(int signr) 2421 __releases(¤t->sighand->siglock) 2422 { 2423 struct signal_struct *sig = current->signal; 2424 2425 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2426 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2427 struct task_struct *t; 2428 2429 /* signr will be recorded in task->jobctl for retries */ 2430 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2431 2432 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2433 unlikely(sig->flags & SIGNAL_GROUP_EXIT) || 2434 unlikely(sig->group_exec_task)) 2435 return false; 2436 /* 2437 * There is no group stop already in progress. We must 2438 * initiate one now. 2439 * 2440 * While ptraced, a task may be resumed while group stop is 2441 * still in effect and then receive a stop signal and 2442 * initiate another group stop. This deviates from the 2443 * usual behavior as two consecutive stop signals can't 2444 * cause two group stops when !ptraced. That is why we 2445 * also check !task_is_stopped(t) below. 2446 * 2447 * The condition can be distinguished by testing whether 2448 * SIGNAL_STOP_STOPPED is already set. Don't generate 2449 * group_exit_code in such case. 2450 * 2451 * This is not necessary for SIGNAL_STOP_CONTINUED because 2452 * an intervening stop signal is required to cause two 2453 * continued events regardless of ptrace. 2454 */ 2455 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2456 sig->group_exit_code = signr; 2457 2458 sig->group_stop_count = 0; 2459 if (task_set_jobctl_pending(current, signr | gstop)) 2460 sig->group_stop_count++; 2461 2462 for_other_threads(current, t) { 2463 /* 2464 * Setting state to TASK_STOPPED for a group 2465 * stop is always done with the siglock held, 2466 * so this check has no races. 2467 */ 2468 if (!task_is_stopped(t) && 2469 task_set_jobctl_pending(t, signr | gstop)) { 2470 sig->group_stop_count++; 2471 if (likely(!(t->ptrace & PT_SEIZED))) 2472 signal_wake_up(t, 0); 2473 else 2474 ptrace_trap_notify(t); 2475 } 2476 } 2477 } 2478 2479 if (likely(!current->ptrace)) { 2480 int notify = 0; 2481 2482 /* 2483 * If there are no other threads in the group, or if there 2484 * is a group stop in progress and we are the last to stop, 2485 * report to the parent. 2486 */ 2487 if (task_participate_group_stop(current)) 2488 notify = CLD_STOPPED; 2489 2490 current->jobctl |= JOBCTL_STOPPED; 2491 set_special_state(TASK_STOPPED); 2492 spin_unlock_irq(¤t->sighand->siglock); 2493 2494 /* 2495 * Notify the parent of the group stop completion. Because 2496 * we're not holding either the siglock or tasklist_lock 2497 * here, ptracer may attach inbetween; however, this is for 2498 * group stop and should always be delivered to the real 2499 * parent of the group leader. The new ptracer will get 2500 * its notification when this task transitions into 2501 * TASK_TRACED. 2502 */ 2503 if (notify) { 2504 read_lock(&tasklist_lock); 2505 do_notify_parent_cldstop(current, false, notify); 2506 read_unlock(&tasklist_lock); 2507 } 2508 2509 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2510 cgroup_enter_frozen(); 2511 schedule(); 2512 return true; 2513 } else { 2514 /* 2515 * While ptraced, group stop is handled by STOP trap. 2516 * Schedule it and let the caller deal with it. 2517 */ 2518 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2519 return false; 2520 } 2521 } 2522 2523 /** 2524 * do_jobctl_trap - take care of ptrace jobctl traps 2525 * 2526 * When PT_SEIZED, it's used for both group stop and explicit 2527 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2528 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2529 * the stop signal; otherwise, %SIGTRAP. 2530 * 2531 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2532 * number as exit_code and no siginfo. 2533 * 2534 * CONTEXT: 2535 * Must be called with @current->sighand->siglock held, which may be 2536 * released and re-acquired before returning with intervening sleep. 2537 */ 2538 static void do_jobctl_trap(void) 2539 { 2540 struct signal_struct *signal = current->signal; 2541 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2542 2543 if (current->ptrace & PT_SEIZED) { 2544 if (!signal->group_stop_count && 2545 !(signal->flags & SIGNAL_STOP_STOPPED)) 2546 signr = SIGTRAP; 2547 WARN_ON_ONCE(!signr); 2548 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2549 CLD_STOPPED, 0); 2550 } else { 2551 WARN_ON_ONCE(!signr); 2552 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2553 } 2554 } 2555 2556 /** 2557 * do_freezer_trap - handle the freezer jobctl trap 2558 * 2559 * Puts the task into frozen state, if only the task is not about to quit. 2560 * In this case it drops JOBCTL_TRAP_FREEZE. 2561 * 2562 * CONTEXT: 2563 * Must be called with @current->sighand->siglock held, 2564 * which is always released before returning. 2565 */ 2566 static void do_freezer_trap(void) 2567 __releases(¤t->sighand->siglock) 2568 { 2569 /* 2570 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, 2571 * let's make another loop to give it a chance to be handled. 2572 * In any case, we'll return back. 2573 */ 2574 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != 2575 JOBCTL_TRAP_FREEZE) { 2576 spin_unlock_irq(¤t->sighand->siglock); 2577 return; 2578 } 2579 2580 /* 2581 * Now we're sure that there is no pending fatal signal and no 2582 * pending traps. Clear TIF_SIGPENDING to not get out of schedule() 2583 * immediately (if there is a non-fatal signal pending), and 2584 * put the task into sleep. 2585 */ 2586 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 2587 clear_thread_flag(TIF_SIGPENDING); 2588 spin_unlock_irq(¤t->sighand->siglock); 2589 cgroup_enter_frozen(); 2590 schedule(); 2591 } 2592 2593 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type) 2594 { 2595 /* 2596 * We do not check sig_kernel_stop(signr) but set this marker 2597 * unconditionally because we do not know whether debugger will 2598 * change signr. This flag has no meaning unless we are going 2599 * to stop after return from ptrace_stop(). In this case it will 2600 * be checked in do_signal_stop(), we should only stop if it was 2601 * not cleared by SIGCONT while we were sleeping. See also the 2602 * comment in dequeue_signal(). 2603 */ 2604 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2605 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info); 2606 2607 /* We're back. Did the debugger cancel the sig? */ 2608 if (signr == 0) 2609 return signr; 2610 2611 /* 2612 * Update the siginfo structure if the signal has 2613 * changed. If the debugger wanted something 2614 * specific in the siginfo structure then it should 2615 * have updated *info via PTRACE_SETSIGINFO. 2616 */ 2617 if (signr != info->si_signo) { 2618 clear_siginfo(info); 2619 info->si_signo = signr; 2620 info->si_errno = 0; 2621 info->si_code = SI_USER; 2622 rcu_read_lock(); 2623 info->si_pid = task_pid_vnr(current->parent); 2624 info->si_uid = from_kuid_munged(current_user_ns(), 2625 task_uid(current->parent)); 2626 rcu_read_unlock(); 2627 } 2628 2629 /* If the (new) signal is now blocked, requeue it. */ 2630 if (sigismember(¤t->blocked, signr) || 2631 fatal_signal_pending(current)) { 2632 send_signal_locked(signr, info, current, type); 2633 signr = 0; 2634 } 2635 2636 return signr; 2637 } 2638 2639 static void hide_si_addr_tag_bits(struct ksignal *ksig) 2640 { 2641 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) { 2642 case SIL_FAULT: 2643 case SIL_FAULT_TRAPNO: 2644 case SIL_FAULT_MCEERR: 2645 case SIL_FAULT_BNDERR: 2646 case SIL_FAULT_PKUERR: 2647 case SIL_FAULT_PERF_EVENT: 2648 ksig->info.si_addr = arch_untagged_si_addr( 2649 ksig->info.si_addr, ksig->sig, ksig->info.si_code); 2650 break; 2651 case SIL_KILL: 2652 case SIL_TIMER: 2653 case SIL_POLL: 2654 case SIL_CHLD: 2655 case SIL_RT: 2656 case SIL_SYS: 2657 break; 2658 } 2659 } 2660 2661 bool get_signal(struct ksignal *ksig) 2662 { 2663 struct sighand_struct *sighand = current->sighand; 2664 struct signal_struct *signal = current->signal; 2665 int signr; 2666 2667 clear_notify_signal(); 2668 if (unlikely(task_work_pending(current))) 2669 task_work_run(); 2670 2671 if (!task_sigpending(current)) 2672 return false; 2673 2674 if (unlikely(uprobe_deny_signal())) 2675 return false; 2676 2677 /* 2678 * Do this once, we can't return to user-mode if freezing() == T. 2679 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2680 * thus do not need another check after return. 2681 */ 2682 try_to_freeze(); 2683 2684 relock: 2685 spin_lock_irq(&sighand->siglock); 2686 2687 /* 2688 * Every stopped thread goes here after wakeup. Check to see if 2689 * we should notify the parent, prepare_signal(SIGCONT) encodes 2690 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2691 */ 2692 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2693 int why; 2694 2695 if (signal->flags & SIGNAL_CLD_CONTINUED) 2696 why = CLD_CONTINUED; 2697 else 2698 why = CLD_STOPPED; 2699 2700 signal->flags &= ~SIGNAL_CLD_MASK; 2701 2702 spin_unlock_irq(&sighand->siglock); 2703 2704 /* 2705 * Notify the parent that we're continuing. This event is 2706 * always per-process and doesn't make whole lot of sense 2707 * for ptracers, who shouldn't consume the state via 2708 * wait(2) either, but, for backward compatibility, notify 2709 * the ptracer of the group leader too unless it's gonna be 2710 * a duplicate. 2711 */ 2712 read_lock(&tasklist_lock); 2713 do_notify_parent_cldstop(current, false, why); 2714 2715 if (ptrace_reparented(current->group_leader)) 2716 do_notify_parent_cldstop(current->group_leader, 2717 true, why); 2718 read_unlock(&tasklist_lock); 2719 2720 goto relock; 2721 } 2722 2723 for (;;) { 2724 struct k_sigaction *ka; 2725 enum pid_type type; 2726 2727 /* Has this task already been marked for death? */ 2728 if ((signal->flags & SIGNAL_GROUP_EXIT) || 2729 signal->group_exec_task) { 2730 clear_siginfo(&ksig->info); 2731 ksig->info.si_signo = signr = SIGKILL; 2732 sigdelset(¤t->pending.signal, SIGKILL); 2733 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, 2734 &sighand->action[SIGKILL - 1]); 2735 recalc_sigpending(); 2736 goto fatal; 2737 } 2738 2739 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2740 do_signal_stop(0)) 2741 goto relock; 2742 2743 if (unlikely(current->jobctl & 2744 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { 2745 if (current->jobctl & JOBCTL_TRAP_MASK) { 2746 do_jobctl_trap(); 2747 spin_unlock_irq(&sighand->siglock); 2748 } else if (current->jobctl & JOBCTL_TRAP_FREEZE) 2749 do_freezer_trap(); 2750 2751 goto relock; 2752 } 2753 2754 /* 2755 * If the task is leaving the frozen state, let's update 2756 * cgroup counters and reset the frozen bit. 2757 */ 2758 if (unlikely(cgroup_task_frozen(current))) { 2759 spin_unlock_irq(&sighand->siglock); 2760 cgroup_leave_frozen(false); 2761 goto relock; 2762 } 2763 2764 /* 2765 * Signals generated by the execution of an instruction 2766 * need to be delivered before any other pending signals 2767 * so that the instruction pointer in the signal stack 2768 * frame points to the faulting instruction. 2769 */ 2770 type = PIDTYPE_PID; 2771 signr = dequeue_synchronous_signal(&ksig->info); 2772 if (!signr) 2773 signr = dequeue_signal(current, ¤t->blocked, 2774 &ksig->info, &type); 2775 2776 if (!signr) 2777 break; /* will return 0 */ 2778 2779 if (unlikely(current->ptrace) && (signr != SIGKILL) && 2780 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) { 2781 signr = ptrace_signal(signr, &ksig->info, type); 2782 if (!signr) 2783 continue; 2784 } 2785 2786 ka = &sighand->action[signr-1]; 2787 2788 /* Trace actually delivered signals. */ 2789 trace_signal_deliver(signr, &ksig->info, ka); 2790 2791 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2792 continue; 2793 if (ka->sa.sa_handler != SIG_DFL) { 2794 /* Run the handler. */ 2795 ksig->ka = *ka; 2796 2797 if (ka->sa.sa_flags & SA_ONESHOT) 2798 ka->sa.sa_handler = SIG_DFL; 2799 2800 break; /* will return non-zero "signr" value */ 2801 } 2802 2803 /* 2804 * Now we are doing the default action for this signal. 2805 */ 2806 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2807 continue; 2808 2809 /* 2810 * Global init gets no signals it doesn't want. 2811 * Container-init gets no signals it doesn't want from same 2812 * container. 2813 * 2814 * Note that if global/container-init sees a sig_kernel_only() 2815 * signal here, the signal must have been generated internally 2816 * or must have come from an ancestor namespace. In either 2817 * case, the signal cannot be dropped. 2818 */ 2819 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2820 !sig_kernel_only(signr)) 2821 continue; 2822 2823 if (sig_kernel_stop(signr)) { 2824 /* 2825 * The default action is to stop all threads in 2826 * the thread group. The job control signals 2827 * do nothing in an orphaned pgrp, but SIGSTOP 2828 * always works. Note that siglock needs to be 2829 * dropped during the call to is_orphaned_pgrp() 2830 * because of lock ordering with tasklist_lock. 2831 * This allows an intervening SIGCONT to be posted. 2832 * We need to check for that and bail out if necessary. 2833 */ 2834 if (signr != SIGSTOP) { 2835 spin_unlock_irq(&sighand->siglock); 2836 2837 /* signals can be posted during this window */ 2838 2839 if (is_current_pgrp_orphaned()) 2840 goto relock; 2841 2842 spin_lock_irq(&sighand->siglock); 2843 } 2844 2845 if (likely(do_signal_stop(ksig->info.si_signo))) { 2846 /* It released the siglock. */ 2847 goto relock; 2848 } 2849 2850 /* 2851 * We didn't actually stop, due to a race 2852 * with SIGCONT or something like that. 2853 */ 2854 continue; 2855 } 2856 2857 fatal: 2858 spin_unlock_irq(&sighand->siglock); 2859 if (unlikely(cgroup_task_frozen(current))) 2860 cgroup_leave_frozen(true); 2861 2862 /* 2863 * Anything else is fatal, maybe with a core dump. 2864 */ 2865 current->flags |= PF_SIGNALED; 2866 2867 if (sig_kernel_coredump(signr)) { 2868 if (print_fatal_signals) 2869 print_fatal_signal(ksig->info.si_signo); 2870 proc_coredump_connector(current); 2871 /* 2872 * If it was able to dump core, this kills all 2873 * other threads in the group and synchronizes with 2874 * their demise. If we lost the race with another 2875 * thread getting here, it set group_exit_code 2876 * first and our do_group_exit call below will use 2877 * that value and ignore the one we pass it. 2878 */ 2879 do_coredump(&ksig->info); 2880 } 2881 2882 /* 2883 * PF_USER_WORKER threads will catch and exit on fatal signals 2884 * themselves. They have cleanup that must be performed, so 2885 * we cannot call do_exit() on their behalf. 2886 */ 2887 if (current->flags & PF_USER_WORKER) 2888 goto out; 2889 2890 /* 2891 * Death signals, no core dump. 2892 */ 2893 do_group_exit(ksig->info.si_signo); 2894 /* NOTREACHED */ 2895 } 2896 spin_unlock_irq(&sighand->siglock); 2897 out: 2898 ksig->sig = signr; 2899 2900 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS)) 2901 hide_si_addr_tag_bits(ksig); 2902 2903 return ksig->sig > 0; 2904 } 2905 2906 /** 2907 * signal_delivered - called after signal delivery to update blocked signals 2908 * @ksig: kernel signal struct 2909 * @stepping: nonzero if debugger single-step or block-step in use 2910 * 2911 * This function should be called when a signal has successfully been 2912 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2913 * is always blocked), and the signal itself is blocked unless %SA_NODEFER 2914 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2915 */ 2916 static void signal_delivered(struct ksignal *ksig, int stepping) 2917 { 2918 sigset_t blocked; 2919 2920 /* A signal was successfully delivered, and the 2921 saved sigmask was stored on the signal frame, 2922 and will be restored by sigreturn. So we can 2923 simply clear the restore sigmask flag. */ 2924 clear_restore_sigmask(); 2925 2926 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2927 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2928 sigaddset(&blocked, ksig->sig); 2929 set_current_blocked(&blocked); 2930 if (current->sas_ss_flags & SS_AUTODISARM) 2931 sas_ss_reset(current); 2932 if (stepping) 2933 ptrace_notify(SIGTRAP, 0); 2934 } 2935 2936 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2937 { 2938 if (failed) 2939 force_sigsegv(ksig->sig); 2940 else 2941 signal_delivered(ksig, stepping); 2942 } 2943 2944 /* 2945 * It could be that complete_signal() picked us to notify about the 2946 * group-wide signal. Other threads should be notified now to take 2947 * the shared signals in @which since we will not. 2948 */ 2949 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2950 { 2951 sigset_t retarget; 2952 struct task_struct *t; 2953 2954 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2955 if (sigisemptyset(&retarget)) 2956 return; 2957 2958 for_other_threads(tsk, t) { 2959 if (t->flags & PF_EXITING) 2960 continue; 2961 2962 if (!has_pending_signals(&retarget, &t->blocked)) 2963 continue; 2964 /* Remove the signals this thread can handle. */ 2965 sigandsets(&retarget, &retarget, &t->blocked); 2966 2967 if (!task_sigpending(t)) 2968 signal_wake_up(t, 0); 2969 2970 if (sigisemptyset(&retarget)) 2971 break; 2972 } 2973 } 2974 2975 void exit_signals(struct task_struct *tsk) 2976 { 2977 int group_stop = 0; 2978 sigset_t unblocked; 2979 2980 /* 2981 * @tsk is about to have PF_EXITING set - lock out users which 2982 * expect stable threadgroup. 2983 */ 2984 cgroup_threadgroup_change_begin(tsk); 2985 2986 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) { 2987 sched_mm_cid_exit_signals(tsk); 2988 tsk->flags |= PF_EXITING; 2989 cgroup_threadgroup_change_end(tsk); 2990 return; 2991 } 2992 2993 spin_lock_irq(&tsk->sighand->siglock); 2994 /* 2995 * From now this task is not visible for group-wide signals, 2996 * see wants_signal(), do_signal_stop(). 2997 */ 2998 sched_mm_cid_exit_signals(tsk); 2999 tsk->flags |= PF_EXITING; 3000 3001 cgroup_threadgroup_change_end(tsk); 3002 3003 if (!task_sigpending(tsk)) 3004 goto out; 3005 3006 unblocked = tsk->blocked; 3007 signotset(&unblocked); 3008 retarget_shared_pending(tsk, &unblocked); 3009 3010 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 3011 task_participate_group_stop(tsk)) 3012 group_stop = CLD_STOPPED; 3013 out: 3014 spin_unlock_irq(&tsk->sighand->siglock); 3015 3016 /* 3017 * If group stop has completed, deliver the notification. This 3018 * should always go to the real parent of the group leader. 3019 */ 3020 if (unlikely(group_stop)) { 3021 read_lock(&tasklist_lock); 3022 do_notify_parent_cldstop(tsk, false, group_stop); 3023 read_unlock(&tasklist_lock); 3024 } 3025 } 3026 3027 /* 3028 * System call entry points. 3029 */ 3030 3031 /** 3032 * sys_restart_syscall - restart a system call 3033 */ 3034 SYSCALL_DEFINE0(restart_syscall) 3035 { 3036 struct restart_block *restart = ¤t->restart_block; 3037 return restart->fn(restart); 3038 } 3039 3040 long do_no_restart_syscall(struct restart_block *param) 3041 { 3042 return -EINTR; 3043 } 3044 3045 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 3046 { 3047 if (task_sigpending(tsk) && !thread_group_empty(tsk)) { 3048 sigset_t newblocked; 3049 /* A set of now blocked but previously unblocked signals. */ 3050 sigandnsets(&newblocked, newset, ¤t->blocked); 3051 retarget_shared_pending(tsk, &newblocked); 3052 } 3053 tsk->blocked = *newset; 3054 recalc_sigpending(); 3055 } 3056 3057 /** 3058 * set_current_blocked - change current->blocked mask 3059 * @newset: new mask 3060 * 3061 * It is wrong to change ->blocked directly, this helper should be used 3062 * to ensure the process can't miss a shared signal we are going to block. 3063 */ 3064 void set_current_blocked(sigset_t *newset) 3065 { 3066 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3067 __set_current_blocked(newset); 3068 } 3069 3070 void __set_current_blocked(const sigset_t *newset) 3071 { 3072 struct task_struct *tsk = current; 3073 3074 /* 3075 * In case the signal mask hasn't changed, there is nothing we need 3076 * to do. The current->blocked shouldn't be modified by other task. 3077 */ 3078 if (sigequalsets(&tsk->blocked, newset)) 3079 return; 3080 3081 spin_lock_irq(&tsk->sighand->siglock); 3082 __set_task_blocked(tsk, newset); 3083 spin_unlock_irq(&tsk->sighand->siglock); 3084 } 3085 3086 /* 3087 * This is also useful for kernel threads that want to temporarily 3088 * (or permanently) block certain signals. 3089 * 3090 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 3091 * interface happily blocks "unblockable" signals like SIGKILL 3092 * and friends. 3093 */ 3094 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 3095 { 3096 struct task_struct *tsk = current; 3097 sigset_t newset; 3098 3099 /* Lockless, only current can change ->blocked, never from irq */ 3100 if (oldset) 3101 *oldset = tsk->blocked; 3102 3103 switch (how) { 3104 case SIG_BLOCK: 3105 sigorsets(&newset, &tsk->blocked, set); 3106 break; 3107 case SIG_UNBLOCK: 3108 sigandnsets(&newset, &tsk->blocked, set); 3109 break; 3110 case SIG_SETMASK: 3111 newset = *set; 3112 break; 3113 default: 3114 return -EINVAL; 3115 } 3116 3117 __set_current_blocked(&newset); 3118 return 0; 3119 } 3120 EXPORT_SYMBOL(sigprocmask); 3121 3122 /* 3123 * The api helps set app-provided sigmasks. 3124 * 3125 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 3126 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 3127 * 3128 * Note that it does set_restore_sigmask() in advance, so it must be always 3129 * paired with restore_saved_sigmask_unless() before return from syscall. 3130 */ 3131 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) 3132 { 3133 sigset_t kmask; 3134 3135 if (!umask) 3136 return 0; 3137 if (sigsetsize != sizeof(sigset_t)) 3138 return -EINVAL; 3139 if (copy_from_user(&kmask, umask, sizeof(sigset_t))) 3140 return -EFAULT; 3141 3142 set_restore_sigmask(); 3143 current->saved_sigmask = current->blocked; 3144 set_current_blocked(&kmask); 3145 3146 return 0; 3147 } 3148 3149 #ifdef CONFIG_COMPAT 3150 int set_compat_user_sigmask(const compat_sigset_t __user *umask, 3151 size_t sigsetsize) 3152 { 3153 sigset_t kmask; 3154 3155 if (!umask) 3156 return 0; 3157 if (sigsetsize != sizeof(compat_sigset_t)) 3158 return -EINVAL; 3159 if (get_compat_sigset(&kmask, umask)) 3160 return -EFAULT; 3161 3162 set_restore_sigmask(); 3163 current->saved_sigmask = current->blocked; 3164 set_current_blocked(&kmask); 3165 3166 return 0; 3167 } 3168 #endif 3169 3170 /** 3171 * sys_rt_sigprocmask - change the list of currently blocked signals 3172 * @how: whether to add, remove, or set signals 3173 * @nset: stores pending signals 3174 * @oset: previous value of signal mask if non-null 3175 * @sigsetsize: size of sigset_t type 3176 */ 3177 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 3178 sigset_t __user *, oset, size_t, sigsetsize) 3179 { 3180 sigset_t old_set, new_set; 3181 int error; 3182 3183 /* XXX: Don't preclude handling different sized sigset_t's. */ 3184 if (sigsetsize != sizeof(sigset_t)) 3185 return -EINVAL; 3186 3187 old_set = current->blocked; 3188 3189 if (nset) { 3190 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 3191 return -EFAULT; 3192 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3193 3194 error = sigprocmask(how, &new_set, NULL); 3195 if (error) 3196 return error; 3197 } 3198 3199 if (oset) { 3200 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 3201 return -EFAULT; 3202 } 3203 3204 return 0; 3205 } 3206 3207 #ifdef CONFIG_COMPAT 3208 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 3209 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 3210 { 3211 sigset_t old_set = current->blocked; 3212 3213 /* XXX: Don't preclude handling different sized sigset_t's. */ 3214 if (sigsetsize != sizeof(sigset_t)) 3215 return -EINVAL; 3216 3217 if (nset) { 3218 sigset_t new_set; 3219 int error; 3220 if (get_compat_sigset(&new_set, nset)) 3221 return -EFAULT; 3222 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3223 3224 error = sigprocmask(how, &new_set, NULL); 3225 if (error) 3226 return error; 3227 } 3228 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 3229 } 3230 #endif 3231 3232 static void do_sigpending(sigset_t *set) 3233 { 3234 spin_lock_irq(¤t->sighand->siglock); 3235 sigorsets(set, ¤t->pending.signal, 3236 ¤t->signal->shared_pending.signal); 3237 spin_unlock_irq(¤t->sighand->siglock); 3238 3239 /* Outside the lock because only this thread touches it. */ 3240 sigandsets(set, ¤t->blocked, set); 3241 } 3242 3243 /** 3244 * sys_rt_sigpending - examine a pending signal that has been raised 3245 * while blocked 3246 * @uset: stores pending signals 3247 * @sigsetsize: size of sigset_t type or larger 3248 */ 3249 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 3250 { 3251 sigset_t set; 3252 3253 if (sigsetsize > sizeof(*uset)) 3254 return -EINVAL; 3255 3256 do_sigpending(&set); 3257 3258 if (copy_to_user(uset, &set, sigsetsize)) 3259 return -EFAULT; 3260 3261 return 0; 3262 } 3263 3264 #ifdef CONFIG_COMPAT 3265 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 3266 compat_size_t, sigsetsize) 3267 { 3268 sigset_t set; 3269 3270 if (sigsetsize > sizeof(*uset)) 3271 return -EINVAL; 3272 3273 do_sigpending(&set); 3274 3275 return put_compat_sigset(uset, &set, sigsetsize); 3276 } 3277 #endif 3278 3279 static const struct { 3280 unsigned char limit, layout; 3281 } sig_sicodes[] = { 3282 [SIGILL] = { NSIGILL, SIL_FAULT }, 3283 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 3284 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 3285 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 3286 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 3287 #if defined(SIGEMT) 3288 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 3289 #endif 3290 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 3291 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 3292 [SIGSYS] = { NSIGSYS, SIL_SYS }, 3293 }; 3294 3295 static bool known_siginfo_layout(unsigned sig, int si_code) 3296 { 3297 if (si_code == SI_KERNEL) 3298 return true; 3299 else if ((si_code > SI_USER)) { 3300 if (sig_specific_sicodes(sig)) { 3301 if (si_code <= sig_sicodes[sig].limit) 3302 return true; 3303 } 3304 else if (si_code <= NSIGPOLL) 3305 return true; 3306 } 3307 else if (si_code >= SI_DETHREAD) 3308 return true; 3309 else if (si_code == SI_ASYNCNL) 3310 return true; 3311 return false; 3312 } 3313 3314 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3315 { 3316 enum siginfo_layout layout = SIL_KILL; 3317 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3318 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3319 (si_code <= sig_sicodes[sig].limit)) { 3320 layout = sig_sicodes[sig].layout; 3321 /* Handle the exceptions */ 3322 if ((sig == SIGBUS) && 3323 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3324 layout = SIL_FAULT_MCEERR; 3325 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3326 layout = SIL_FAULT_BNDERR; 3327 #ifdef SEGV_PKUERR 3328 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3329 layout = SIL_FAULT_PKUERR; 3330 #endif 3331 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF)) 3332 layout = SIL_FAULT_PERF_EVENT; 3333 else if (IS_ENABLED(CONFIG_SPARC) && 3334 (sig == SIGILL) && (si_code == ILL_ILLTRP)) 3335 layout = SIL_FAULT_TRAPNO; 3336 else if (IS_ENABLED(CONFIG_ALPHA) && 3337 ((sig == SIGFPE) || 3338 ((sig == SIGTRAP) && (si_code == TRAP_UNK)))) 3339 layout = SIL_FAULT_TRAPNO; 3340 } 3341 else if (si_code <= NSIGPOLL) 3342 layout = SIL_POLL; 3343 } else { 3344 if (si_code == SI_TIMER) 3345 layout = SIL_TIMER; 3346 else if (si_code == SI_SIGIO) 3347 layout = SIL_POLL; 3348 else if (si_code < 0) 3349 layout = SIL_RT; 3350 } 3351 return layout; 3352 } 3353 3354 static inline char __user *si_expansion(const siginfo_t __user *info) 3355 { 3356 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3357 } 3358 3359 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3360 { 3361 char __user *expansion = si_expansion(to); 3362 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3363 return -EFAULT; 3364 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3365 return -EFAULT; 3366 return 0; 3367 } 3368 3369 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3370 const siginfo_t __user *from) 3371 { 3372 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3373 char __user *expansion = si_expansion(from); 3374 char buf[SI_EXPANSION_SIZE]; 3375 int i; 3376 /* 3377 * An unknown si_code might need more than 3378 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3379 * extra bytes are 0. This guarantees copy_siginfo_to_user 3380 * will return this data to userspace exactly. 3381 */ 3382 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3383 return -EFAULT; 3384 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3385 if (buf[i] != 0) 3386 return -E2BIG; 3387 } 3388 } 3389 return 0; 3390 } 3391 3392 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3393 const siginfo_t __user *from) 3394 { 3395 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3396 return -EFAULT; 3397 to->si_signo = signo; 3398 return post_copy_siginfo_from_user(to, from); 3399 } 3400 3401 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3402 { 3403 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3404 return -EFAULT; 3405 return post_copy_siginfo_from_user(to, from); 3406 } 3407 3408 #ifdef CONFIG_COMPAT 3409 /** 3410 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo 3411 * @to: compat siginfo destination 3412 * @from: kernel siginfo source 3413 * 3414 * Note: This function does not work properly for the SIGCHLD on x32, but 3415 * fortunately it doesn't have to. The only valid callers for this function are 3416 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. 3417 * The latter does not care because SIGCHLD will never cause a coredump. 3418 */ 3419 void copy_siginfo_to_external32(struct compat_siginfo *to, 3420 const struct kernel_siginfo *from) 3421 { 3422 memset(to, 0, sizeof(*to)); 3423 3424 to->si_signo = from->si_signo; 3425 to->si_errno = from->si_errno; 3426 to->si_code = from->si_code; 3427 switch(siginfo_layout(from->si_signo, from->si_code)) { 3428 case SIL_KILL: 3429 to->si_pid = from->si_pid; 3430 to->si_uid = from->si_uid; 3431 break; 3432 case SIL_TIMER: 3433 to->si_tid = from->si_tid; 3434 to->si_overrun = from->si_overrun; 3435 to->si_int = from->si_int; 3436 break; 3437 case SIL_POLL: 3438 to->si_band = from->si_band; 3439 to->si_fd = from->si_fd; 3440 break; 3441 case SIL_FAULT: 3442 to->si_addr = ptr_to_compat(from->si_addr); 3443 break; 3444 case SIL_FAULT_TRAPNO: 3445 to->si_addr = ptr_to_compat(from->si_addr); 3446 to->si_trapno = from->si_trapno; 3447 break; 3448 case SIL_FAULT_MCEERR: 3449 to->si_addr = ptr_to_compat(from->si_addr); 3450 to->si_addr_lsb = from->si_addr_lsb; 3451 break; 3452 case SIL_FAULT_BNDERR: 3453 to->si_addr = ptr_to_compat(from->si_addr); 3454 to->si_lower = ptr_to_compat(from->si_lower); 3455 to->si_upper = ptr_to_compat(from->si_upper); 3456 break; 3457 case SIL_FAULT_PKUERR: 3458 to->si_addr = ptr_to_compat(from->si_addr); 3459 to->si_pkey = from->si_pkey; 3460 break; 3461 case SIL_FAULT_PERF_EVENT: 3462 to->si_addr = ptr_to_compat(from->si_addr); 3463 to->si_perf_data = from->si_perf_data; 3464 to->si_perf_type = from->si_perf_type; 3465 to->si_perf_flags = from->si_perf_flags; 3466 break; 3467 case SIL_CHLD: 3468 to->si_pid = from->si_pid; 3469 to->si_uid = from->si_uid; 3470 to->si_status = from->si_status; 3471 to->si_utime = from->si_utime; 3472 to->si_stime = from->si_stime; 3473 break; 3474 case SIL_RT: 3475 to->si_pid = from->si_pid; 3476 to->si_uid = from->si_uid; 3477 to->si_int = from->si_int; 3478 break; 3479 case SIL_SYS: 3480 to->si_call_addr = ptr_to_compat(from->si_call_addr); 3481 to->si_syscall = from->si_syscall; 3482 to->si_arch = from->si_arch; 3483 break; 3484 } 3485 } 3486 3487 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3488 const struct kernel_siginfo *from) 3489 { 3490 struct compat_siginfo new; 3491 3492 copy_siginfo_to_external32(&new, from); 3493 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3494 return -EFAULT; 3495 return 0; 3496 } 3497 3498 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3499 const struct compat_siginfo *from) 3500 { 3501 clear_siginfo(to); 3502 to->si_signo = from->si_signo; 3503 to->si_errno = from->si_errno; 3504 to->si_code = from->si_code; 3505 switch(siginfo_layout(from->si_signo, from->si_code)) { 3506 case SIL_KILL: 3507 to->si_pid = from->si_pid; 3508 to->si_uid = from->si_uid; 3509 break; 3510 case SIL_TIMER: 3511 to->si_tid = from->si_tid; 3512 to->si_overrun = from->si_overrun; 3513 to->si_int = from->si_int; 3514 break; 3515 case SIL_POLL: 3516 to->si_band = from->si_band; 3517 to->si_fd = from->si_fd; 3518 break; 3519 case SIL_FAULT: 3520 to->si_addr = compat_ptr(from->si_addr); 3521 break; 3522 case SIL_FAULT_TRAPNO: 3523 to->si_addr = compat_ptr(from->si_addr); 3524 to->si_trapno = from->si_trapno; 3525 break; 3526 case SIL_FAULT_MCEERR: 3527 to->si_addr = compat_ptr(from->si_addr); 3528 to->si_addr_lsb = from->si_addr_lsb; 3529 break; 3530 case SIL_FAULT_BNDERR: 3531 to->si_addr = compat_ptr(from->si_addr); 3532 to->si_lower = compat_ptr(from->si_lower); 3533 to->si_upper = compat_ptr(from->si_upper); 3534 break; 3535 case SIL_FAULT_PKUERR: 3536 to->si_addr = compat_ptr(from->si_addr); 3537 to->si_pkey = from->si_pkey; 3538 break; 3539 case SIL_FAULT_PERF_EVENT: 3540 to->si_addr = compat_ptr(from->si_addr); 3541 to->si_perf_data = from->si_perf_data; 3542 to->si_perf_type = from->si_perf_type; 3543 to->si_perf_flags = from->si_perf_flags; 3544 break; 3545 case SIL_CHLD: 3546 to->si_pid = from->si_pid; 3547 to->si_uid = from->si_uid; 3548 to->si_status = from->si_status; 3549 #ifdef CONFIG_X86_X32_ABI 3550 if (in_x32_syscall()) { 3551 to->si_utime = from->_sifields._sigchld_x32._utime; 3552 to->si_stime = from->_sifields._sigchld_x32._stime; 3553 } else 3554 #endif 3555 { 3556 to->si_utime = from->si_utime; 3557 to->si_stime = from->si_stime; 3558 } 3559 break; 3560 case SIL_RT: 3561 to->si_pid = from->si_pid; 3562 to->si_uid = from->si_uid; 3563 to->si_int = from->si_int; 3564 break; 3565 case SIL_SYS: 3566 to->si_call_addr = compat_ptr(from->si_call_addr); 3567 to->si_syscall = from->si_syscall; 3568 to->si_arch = from->si_arch; 3569 break; 3570 } 3571 return 0; 3572 } 3573 3574 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3575 const struct compat_siginfo __user *ufrom) 3576 { 3577 struct compat_siginfo from; 3578 3579 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3580 return -EFAULT; 3581 3582 from.si_signo = signo; 3583 return post_copy_siginfo_from_user32(to, &from); 3584 } 3585 3586 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3587 const struct compat_siginfo __user *ufrom) 3588 { 3589 struct compat_siginfo from; 3590 3591 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3592 return -EFAULT; 3593 3594 return post_copy_siginfo_from_user32(to, &from); 3595 } 3596 #endif /* CONFIG_COMPAT */ 3597 3598 /** 3599 * do_sigtimedwait - wait for queued signals specified in @which 3600 * @which: queued signals to wait for 3601 * @info: if non-null, the signal's siginfo is returned here 3602 * @ts: upper bound on process time suspension 3603 */ 3604 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3605 const struct timespec64 *ts) 3606 { 3607 ktime_t *to = NULL, timeout = KTIME_MAX; 3608 struct task_struct *tsk = current; 3609 sigset_t mask = *which; 3610 enum pid_type type; 3611 int sig, ret = 0; 3612 3613 if (ts) { 3614 if (!timespec64_valid(ts)) 3615 return -EINVAL; 3616 timeout = timespec64_to_ktime(*ts); 3617 to = &timeout; 3618 } 3619 3620 /* 3621 * Invert the set of allowed signals to get those we want to block. 3622 */ 3623 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3624 signotset(&mask); 3625 3626 spin_lock_irq(&tsk->sighand->siglock); 3627 sig = dequeue_signal(tsk, &mask, info, &type); 3628 if (!sig && timeout) { 3629 /* 3630 * None ready, temporarily unblock those we're interested 3631 * while we are sleeping in so that we'll be awakened when 3632 * they arrive. Unblocking is always fine, we can avoid 3633 * set_current_blocked(). 3634 */ 3635 tsk->real_blocked = tsk->blocked; 3636 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3637 recalc_sigpending(); 3638 spin_unlock_irq(&tsk->sighand->siglock); 3639 3640 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 3641 ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3642 HRTIMER_MODE_REL); 3643 spin_lock_irq(&tsk->sighand->siglock); 3644 __set_task_blocked(tsk, &tsk->real_blocked); 3645 sigemptyset(&tsk->real_blocked); 3646 sig = dequeue_signal(tsk, &mask, info, &type); 3647 } 3648 spin_unlock_irq(&tsk->sighand->siglock); 3649 3650 if (sig) 3651 return sig; 3652 return ret ? -EINTR : -EAGAIN; 3653 } 3654 3655 /** 3656 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3657 * in @uthese 3658 * @uthese: queued signals to wait for 3659 * @uinfo: if non-null, the signal's siginfo is returned here 3660 * @uts: upper bound on process time suspension 3661 * @sigsetsize: size of sigset_t type 3662 */ 3663 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3664 siginfo_t __user *, uinfo, 3665 const struct __kernel_timespec __user *, uts, 3666 size_t, sigsetsize) 3667 { 3668 sigset_t these; 3669 struct timespec64 ts; 3670 kernel_siginfo_t info; 3671 int ret; 3672 3673 /* XXX: Don't preclude handling different sized sigset_t's. */ 3674 if (sigsetsize != sizeof(sigset_t)) 3675 return -EINVAL; 3676 3677 if (copy_from_user(&these, uthese, sizeof(these))) 3678 return -EFAULT; 3679 3680 if (uts) { 3681 if (get_timespec64(&ts, uts)) 3682 return -EFAULT; 3683 } 3684 3685 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3686 3687 if (ret > 0 && uinfo) { 3688 if (copy_siginfo_to_user(uinfo, &info)) 3689 ret = -EFAULT; 3690 } 3691 3692 return ret; 3693 } 3694 3695 #ifdef CONFIG_COMPAT_32BIT_TIME 3696 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3697 siginfo_t __user *, uinfo, 3698 const struct old_timespec32 __user *, uts, 3699 size_t, sigsetsize) 3700 { 3701 sigset_t these; 3702 struct timespec64 ts; 3703 kernel_siginfo_t info; 3704 int ret; 3705 3706 if (sigsetsize != sizeof(sigset_t)) 3707 return -EINVAL; 3708 3709 if (copy_from_user(&these, uthese, sizeof(these))) 3710 return -EFAULT; 3711 3712 if (uts) { 3713 if (get_old_timespec32(&ts, uts)) 3714 return -EFAULT; 3715 } 3716 3717 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3718 3719 if (ret > 0 && uinfo) { 3720 if (copy_siginfo_to_user(uinfo, &info)) 3721 ret = -EFAULT; 3722 } 3723 3724 return ret; 3725 } 3726 #endif 3727 3728 #ifdef CONFIG_COMPAT 3729 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3730 struct compat_siginfo __user *, uinfo, 3731 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3732 { 3733 sigset_t s; 3734 struct timespec64 t; 3735 kernel_siginfo_t info; 3736 long ret; 3737 3738 if (sigsetsize != sizeof(sigset_t)) 3739 return -EINVAL; 3740 3741 if (get_compat_sigset(&s, uthese)) 3742 return -EFAULT; 3743 3744 if (uts) { 3745 if (get_timespec64(&t, uts)) 3746 return -EFAULT; 3747 } 3748 3749 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3750 3751 if (ret > 0 && uinfo) { 3752 if (copy_siginfo_to_user32(uinfo, &info)) 3753 ret = -EFAULT; 3754 } 3755 3756 return ret; 3757 } 3758 3759 #ifdef CONFIG_COMPAT_32BIT_TIME 3760 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3761 struct compat_siginfo __user *, uinfo, 3762 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3763 { 3764 sigset_t s; 3765 struct timespec64 t; 3766 kernel_siginfo_t info; 3767 long ret; 3768 3769 if (sigsetsize != sizeof(sigset_t)) 3770 return -EINVAL; 3771 3772 if (get_compat_sigset(&s, uthese)) 3773 return -EFAULT; 3774 3775 if (uts) { 3776 if (get_old_timespec32(&t, uts)) 3777 return -EFAULT; 3778 } 3779 3780 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3781 3782 if (ret > 0 && uinfo) { 3783 if (copy_siginfo_to_user32(uinfo, &info)) 3784 ret = -EFAULT; 3785 } 3786 3787 return ret; 3788 } 3789 #endif 3790 #endif 3791 3792 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info) 3793 { 3794 clear_siginfo(info); 3795 info->si_signo = sig; 3796 info->si_errno = 0; 3797 info->si_code = SI_USER; 3798 info->si_pid = task_tgid_vnr(current); 3799 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3800 } 3801 3802 /** 3803 * sys_kill - send a signal to a process 3804 * @pid: the PID of the process 3805 * @sig: signal to be sent 3806 */ 3807 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3808 { 3809 struct kernel_siginfo info; 3810 3811 prepare_kill_siginfo(sig, &info); 3812 3813 return kill_something_info(sig, &info, pid); 3814 } 3815 3816 /* 3817 * Verify that the signaler and signalee either are in the same pid namespace 3818 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3819 * namespace. 3820 */ 3821 static bool access_pidfd_pidns(struct pid *pid) 3822 { 3823 struct pid_namespace *active = task_active_pid_ns(current); 3824 struct pid_namespace *p = ns_of_pid(pid); 3825 3826 for (;;) { 3827 if (!p) 3828 return false; 3829 if (p == active) 3830 break; 3831 p = p->parent; 3832 } 3833 3834 return true; 3835 } 3836 3837 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, 3838 siginfo_t __user *info) 3839 { 3840 #ifdef CONFIG_COMPAT 3841 /* 3842 * Avoid hooking up compat syscalls and instead handle necessary 3843 * conversions here. Note, this is a stop-gap measure and should not be 3844 * considered a generic solution. 3845 */ 3846 if (in_compat_syscall()) 3847 return copy_siginfo_from_user32( 3848 kinfo, (struct compat_siginfo __user *)info); 3849 #endif 3850 return copy_siginfo_from_user(kinfo, info); 3851 } 3852 3853 static struct pid *pidfd_to_pid(const struct file *file) 3854 { 3855 struct pid *pid; 3856 3857 pid = pidfd_pid(file); 3858 if (!IS_ERR(pid)) 3859 return pid; 3860 3861 return tgid_pidfd_to_pid(file); 3862 } 3863 3864 /** 3865 * sys_pidfd_send_signal - Signal a process through a pidfd 3866 * @pidfd: file descriptor of the process 3867 * @sig: signal to send 3868 * @info: signal info 3869 * @flags: future flags 3870 * 3871 * The syscall currently only signals via PIDTYPE_PID which covers 3872 * kill(<positive-pid>, <signal>. It does not signal threads or process 3873 * groups. 3874 * In order to extend the syscall to threads and process groups the @flags 3875 * argument should be used. In essence, the @flags argument will determine 3876 * what is signaled and not the file descriptor itself. Put in other words, 3877 * grouping is a property of the flags argument not a property of the file 3878 * descriptor. 3879 * 3880 * Return: 0 on success, negative errno on failure 3881 */ 3882 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 3883 siginfo_t __user *, info, unsigned int, flags) 3884 { 3885 int ret; 3886 struct fd f; 3887 struct pid *pid; 3888 kernel_siginfo_t kinfo; 3889 3890 /* Enforce flags be set to 0 until we add an extension. */ 3891 if (flags) 3892 return -EINVAL; 3893 3894 f = fdget(pidfd); 3895 if (!f.file) 3896 return -EBADF; 3897 3898 /* Is this a pidfd? */ 3899 pid = pidfd_to_pid(f.file); 3900 if (IS_ERR(pid)) { 3901 ret = PTR_ERR(pid); 3902 goto err; 3903 } 3904 3905 ret = -EINVAL; 3906 if (!access_pidfd_pidns(pid)) 3907 goto err; 3908 3909 if (info) { 3910 ret = copy_siginfo_from_user_any(&kinfo, info); 3911 if (unlikely(ret)) 3912 goto err; 3913 3914 ret = -EINVAL; 3915 if (unlikely(sig != kinfo.si_signo)) 3916 goto err; 3917 3918 /* Only allow sending arbitrary signals to yourself. */ 3919 ret = -EPERM; 3920 if ((task_pid(current) != pid) && 3921 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) 3922 goto err; 3923 } else { 3924 prepare_kill_siginfo(sig, &kinfo); 3925 } 3926 3927 ret = kill_pid_info(sig, &kinfo, pid); 3928 3929 err: 3930 fdput(f); 3931 return ret; 3932 } 3933 3934 static int 3935 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 3936 { 3937 struct task_struct *p; 3938 int error = -ESRCH; 3939 3940 rcu_read_lock(); 3941 p = find_task_by_vpid(pid); 3942 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 3943 error = check_kill_permission(sig, info, p); 3944 /* 3945 * The null signal is a permissions and process existence 3946 * probe. No signal is actually delivered. 3947 */ 3948 if (!error && sig) { 3949 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 3950 /* 3951 * If lock_task_sighand() failed we pretend the task 3952 * dies after receiving the signal. The window is tiny, 3953 * and the signal is private anyway. 3954 */ 3955 if (unlikely(error == -ESRCH)) 3956 error = 0; 3957 } 3958 } 3959 rcu_read_unlock(); 3960 3961 return error; 3962 } 3963 3964 static int do_tkill(pid_t tgid, pid_t pid, int sig) 3965 { 3966 struct kernel_siginfo info; 3967 3968 clear_siginfo(&info); 3969 info.si_signo = sig; 3970 info.si_errno = 0; 3971 info.si_code = SI_TKILL; 3972 info.si_pid = task_tgid_vnr(current); 3973 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3974 3975 return do_send_specific(tgid, pid, sig, &info); 3976 } 3977 3978 /** 3979 * sys_tgkill - send signal to one specific thread 3980 * @tgid: the thread group ID of the thread 3981 * @pid: the PID of the thread 3982 * @sig: signal to be sent 3983 * 3984 * This syscall also checks the @tgid and returns -ESRCH even if the PID 3985 * exists but it's not belonging to the target process anymore. This 3986 * method solves the problem of threads exiting and PIDs getting reused. 3987 */ 3988 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 3989 { 3990 /* This is only valid for single tasks */ 3991 if (pid <= 0 || tgid <= 0) 3992 return -EINVAL; 3993 3994 return do_tkill(tgid, pid, sig); 3995 } 3996 3997 /** 3998 * sys_tkill - send signal to one specific task 3999 * @pid: the PID of the task 4000 * @sig: signal to be sent 4001 * 4002 * Send a signal to only one task, even if it's a CLONE_THREAD task. 4003 */ 4004 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 4005 { 4006 /* This is only valid for single tasks */ 4007 if (pid <= 0) 4008 return -EINVAL; 4009 4010 return do_tkill(0, pid, sig); 4011 } 4012 4013 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 4014 { 4015 /* Not even root can pretend to send signals from the kernel. 4016 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4017 */ 4018 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4019 (task_pid_vnr(current) != pid)) 4020 return -EPERM; 4021 4022 /* POSIX.1b doesn't mention process groups. */ 4023 return kill_proc_info(sig, info, pid); 4024 } 4025 4026 /** 4027 * sys_rt_sigqueueinfo - send signal information to a signal 4028 * @pid: the PID of the thread 4029 * @sig: signal to be sent 4030 * @uinfo: signal info to be sent 4031 */ 4032 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 4033 siginfo_t __user *, uinfo) 4034 { 4035 kernel_siginfo_t info; 4036 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4037 if (unlikely(ret)) 4038 return ret; 4039 return do_rt_sigqueueinfo(pid, sig, &info); 4040 } 4041 4042 #ifdef CONFIG_COMPAT 4043 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 4044 compat_pid_t, pid, 4045 int, sig, 4046 struct compat_siginfo __user *, uinfo) 4047 { 4048 kernel_siginfo_t info; 4049 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4050 if (unlikely(ret)) 4051 return ret; 4052 return do_rt_sigqueueinfo(pid, sig, &info); 4053 } 4054 #endif 4055 4056 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 4057 { 4058 /* This is only valid for single tasks */ 4059 if (pid <= 0 || tgid <= 0) 4060 return -EINVAL; 4061 4062 /* Not even root can pretend to send signals from the kernel. 4063 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4064 */ 4065 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4066 (task_pid_vnr(current) != pid)) 4067 return -EPERM; 4068 4069 return do_send_specific(tgid, pid, sig, info); 4070 } 4071 4072 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 4073 siginfo_t __user *, uinfo) 4074 { 4075 kernel_siginfo_t info; 4076 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4077 if (unlikely(ret)) 4078 return ret; 4079 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4080 } 4081 4082 #ifdef CONFIG_COMPAT 4083 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 4084 compat_pid_t, tgid, 4085 compat_pid_t, pid, 4086 int, sig, 4087 struct compat_siginfo __user *, uinfo) 4088 { 4089 kernel_siginfo_t info; 4090 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4091 if (unlikely(ret)) 4092 return ret; 4093 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4094 } 4095 #endif 4096 4097 /* 4098 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 4099 */ 4100 void kernel_sigaction(int sig, __sighandler_t action) 4101 { 4102 spin_lock_irq(¤t->sighand->siglock); 4103 current->sighand->action[sig - 1].sa.sa_handler = action; 4104 if (action == SIG_IGN) { 4105 sigset_t mask; 4106 4107 sigemptyset(&mask); 4108 sigaddset(&mask, sig); 4109 4110 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 4111 flush_sigqueue_mask(&mask, ¤t->pending); 4112 recalc_sigpending(); 4113 } 4114 spin_unlock_irq(¤t->sighand->siglock); 4115 } 4116 EXPORT_SYMBOL(kernel_sigaction); 4117 4118 void __weak sigaction_compat_abi(struct k_sigaction *act, 4119 struct k_sigaction *oact) 4120 { 4121 } 4122 4123 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 4124 { 4125 struct task_struct *p = current, *t; 4126 struct k_sigaction *k; 4127 sigset_t mask; 4128 4129 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 4130 return -EINVAL; 4131 4132 k = &p->sighand->action[sig-1]; 4133 4134 spin_lock_irq(&p->sighand->siglock); 4135 if (k->sa.sa_flags & SA_IMMUTABLE) { 4136 spin_unlock_irq(&p->sighand->siglock); 4137 return -EINVAL; 4138 } 4139 if (oact) 4140 *oact = *k; 4141 4142 /* 4143 * Make sure that we never accidentally claim to support SA_UNSUPPORTED, 4144 * e.g. by having an architecture use the bit in their uapi. 4145 */ 4146 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED); 4147 4148 /* 4149 * Clear unknown flag bits in order to allow userspace to detect missing 4150 * support for flag bits and to allow the kernel to use non-uapi bits 4151 * internally. 4152 */ 4153 if (act) 4154 act->sa.sa_flags &= UAPI_SA_FLAGS; 4155 if (oact) 4156 oact->sa.sa_flags &= UAPI_SA_FLAGS; 4157 4158 sigaction_compat_abi(act, oact); 4159 4160 if (act) { 4161 sigdelsetmask(&act->sa.sa_mask, 4162 sigmask(SIGKILL) | sigmask(SIGSTOP)); 4163 *k = *act; 4164 /* 4165 * POSIX 3.3.1.3: 4166 * "Setting a signal action to SIG_IGN for a signal that is 4167 * pending shall cause the pending signal to be discarded, 4168 * whether or not it is blocked." 4169 * 4170 * "Setting a signal action to SIG_DFL for a signal that is 4171 * pending and whose default action is to ignore the signal 4172 * (for example, SIGCHLD), shall cause the pending signal to 4173 * be discarded, whether or not it is blocked" 4174 */ 4175 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 4176 sigemptyset(&mask); 4177 sigaddset(&mask, sig); 4178 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 4179 for_each_thread(p, t) 4180 flush_sigqueue_mask(&mask, &t->pending); 4181 } 4182 } 4183 4184 spin_unlock_irq(&p->sighand->siglock); 4185 return 0; 4186 } 4187 4188 #ifdef CONFIG_DYNAMIC_SIGFRAME 4189 static inline void sigaltstack_lock(void) 4190 __acquires(¤t->sighand->siglock) 4191 { 4192 spin_lock_irq(¤t->sighand->siglock); 4193 } 4194 4195 static inline void sigaltstack_unlock(void) 4196 __releases(¤t->sighand->siglock) 4197 { 4198 spin_unlock_irq(¤t->sighand->siglock); 4199 } 4200 #else 4201 static inline void sigaltstack_lock(void) { } 4202 static inline void sigaltstack_unlock(void) { } 4203 #endif 4204 4205 static int 4206 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 4207 size_t min_ss_size) 4208 { 4209 struct task_struct *t = current; 4210 int ret = 0; 4211 4212 if (oss) { 4213 memset(oss, 0, sizeof(stack_t)); 4214 oss->ss_sp = (void __user *) t->sas_ss_sp; 4215 oss->ss_size = t->sas_ss_size; 4216 oss->ss_flags = sas_ss_flags(sp) | 4217 (current->sas_ss_flags & SS_FLAG_BITS); 4218 } 4219 4220 if (ss) { 4221 void __user *ss_sp = ss->ss_sp; 4222 size_t ss_size = ss->ss_size; 4223 unsigned ss_flags = ss->ss_flags; 4224 int ss_mode; 4225 4226 if (unlikely(on_sig_stack(sp))) 4227 return -EPERM; 4228 4229 ss_mode = ss_flags & ~SS_FLAG_BITS; 4230 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 4231 ss_mode != 0)) 4232 return -EINVAL; 4233 4234 /* 4235 * Return before taking any locks if no actual 4236 * sigaltstack changes were requested. 4237 */ 4238 if (t->sas_ss_sp == (unsigned long)ss_sp && 4239 t->sas_ss_size == ss_size && 4240 t->sas_ss_flags == ss_flags) 4241 return 0; 4242 4243 sigaltstack_lock(); 4244 if (ss_mode == SS_DISABLE) { 4245 ss_size = 0; 4246 ss_sp = NULL; 4247 } else { 4248 if (unlikely(ss_size < min_ss_size)) 4249 ret = -ENOMEM; 4250 if (!sigaltstack_size_valid(ss_size)) 4251 ret = -ENOMEM; 4252 } 4253 if (!ret) { 4254 t->sas_ss_sp = (unsigned long) ss_sp; 4255 t->sas_ss_size = ss_size; 4256 t->sas_ss_flags = ss_flags; 4257 } 4258 sigaltstack_unlock(); 4259 } 4260 return ret; 4261 } 4262 4263 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 4264 { 4265 stack_t new, old; 4266 int err; 4267 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 4268 return -EFAULT; 4269 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 4270 current_user_stack_pointer(), 4271 MINSIGSTKSZ); 4272 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 4273 err = -EFAULT; 4274 return err; 4275 } 4276 4277 int restore_altstack(const stack_t __user *uss) 4278 { 4279 stack_t new; 4280 if (copy_from_user(&new, uss, sizeof(stack_t))) 4281 return -EFAULT; 4282 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 4283 MINSIGSTKSZ); 4284 /* squash all but EFAULT for now */ 4285 return 0; 4286 } 4287 4288 int __save_altstack(stack_t __user *uss, unsigned long sp) 4289 { 4290 struct task_struct *t = current; 4291 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 4292 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4293 __put_user(t->sas_ss_size, &uss->ss_size); 4294 return err; 4295 } 4296 4297 #ifdef CONFIG_COMPAT 4298 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 4299 compat_stack_t __user *uoss_ptr) 4300 { 4301 stack_t uss, uoss; 4302 int ret; 4303 4304 if (uss_ptr) { 4305 compat_stack_t uss32; 4306 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 4307 return -EFAULT; 4308 uss.ss_sp = compat_ptr(uss32.ss_sp); 4309 uss.ss_flags = uss32.ss_flags; 4310 uss.ss_size = uss32.ss_size; 4311 } 4312 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 4313 compat_user_stack_pointer(), 4314 COMPAT_MINSIGSTKSZ); 4315 if (ret >= 0 && uoss_ptr) { 4316 compat_stack_t old; 4317 memset(&old, 0, sizeof(old)); 4318 old.ss_sp = ptr_to_compat(uoss.ss_sp); 4319 old.ss_flags = uoss.ss_flags; 4320 old.ss_size = uoss.ss_size; 4321 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 4322 ret = -EFAULT; 4323 } 4324 return ret; 4325 } 4326 4327 COMPAT_SYSCALL_DEFINE2(sigaltstack, 4328 const compat_stack_t __user *, uss_ptr, 4329 compat_stack_t __user *, uoss_ptr) 4330 { 4331 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 4332 } 4333 4334 int compat_restore_altstack(const compat_stack_t __user *uss) 4335 { 4336 int err = do_compat_sigaltstack(uss, NULL); 4337 /* squash all but -EFAULT for now */ 4338 return err == -EFAULT ? err : 0; 4339 } 4340 4341 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 4342 { 4343 int err; 4344 struct task_struct *t = current; 4345 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 4346 &uss->ss_sp) | 4347 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4348 __put_user(t->sas_ss_size, &uss->ss_size); 4349 return err; 4350 } 4351 #endif 4352 4353 #ifdef __ARCH_WANT_SYS_SIGPENDING 4354 4355 /** 4356 * sys_sigpending - examine pending signals 4357 * @uset: where mask of pending signal is returned 4358 */ 4359 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4360 { 4361 sigset_t set; 4362 4363 if (sizeof(old_sigset_t) > sizeof(*uset)) 4364 return -EINVAL; 4365 4366 do_sigpending(&set); 4367 4368 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4369 return -EFAULT; 4370 4371 return 0; 4372 } 4373 4374 #ifdef CONFIG_COMPAT 4375 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4376 { 4377 sigset_t set; 4378 4379 do_sigpending(&set); 4380 4381 return put_user(set.sig[0], set32); 4382 } 4383 #endif 4384 4385 #endif 4386 4387 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 4388 /** 4389 * sys_sigprocmask - examine and change blocked signals 4390 * @how: whether to add, remove, or set signals 4391 * @nset: signals to add or remove (if non-null) 4392 * @oset: previous value of signal mask if non-null 4393 * 4394 * Some platforms have their own version with special arguments; 4395 * others support only sys_rt_sigprocmask. 4396 */ 4397 4398 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4399 old_sigset_t __user *, oset) 4400 { 4401 old_sigset_t old_set, new_set; 4402 sigset_t new_blocked; 4403 4404 old_set = current->blocked.sig[0]; 4405 4406 if (nset) { 4407 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4408 return -EFAULT; 4409 4410 new_blocked = current->blocked; 4411 4412 switch (how) { 4413 case SIG_BLOCK: 4414 sigaddsetmask(&new_blocked, new_set); 4415 break; 4416 case SIG_UNBLOCK: 4417 sigdelsetmask(&new_blocked, new_set); 4418 break; 4419 case SIG_SETMASK: 4420 new_blocked.sig[0] = new_set; 4421 break; 4422 default: 4423 return -EINVAL; 4424 } 4425 4426 set_current_blocked(&new_blocked); 4427 } 4428 4429 if (oset) { 4430 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4431 return -EFAULT; 4432 } 4433 4434 return 0; 4435 } 4436 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4437 4438 #ifndef CONFIG_ODD_RT_SIGACTION 4439 /** 4440 * sys_rt_sigaction - alter an action taken by a process 4441 * @sig: signal to be sent 4442 * @act: new sigaction 4443 * @oact: used to save the previous sigaction 4444 * @sigsetsize: size of sigset_t type 4445 */ 4446 SYSCALL_DEFINE4(rt_sigaction, int, sig, 4447 const struct sigaction __user *, act, 4448 struct sigaction __user *, oact, 4449 size_t, sigsetsize) 4450 { 4451 struct k_sigaction new_sa, old_sa; 4452 int ret; 4453 4454 /* XXX: Don't preclude handling different sized sigset_t's. */ 4455 if (sigsetsize != sizeof(sigset_t)) 4456 return -EINVAL; 4457 4458 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4459 return -EFAULT; 4460 4461 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4462 if (ret) 4463 return ret; 4464 4465 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4466 return -EFAULT; 4467 4468 return 0; 4469 } 4470 #ifdef CONFIG_COMPAT 4471 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4472 const struct compat_sigaction __user *, act, 4473 struct compat_sigaction __user *, oact, 4474 compat_size_t, sigsetsize) 4475 { 4476 struct k_sigaction new_ka, old_ka; 4477 #ifdef __ARCH_HAS_SA_RESTORER 4478 compat_uptr_t restorer; 4479 #endif 4480 int ret; 4481 4482 /* XXX: Don't preclude handling different sized sigset_t's. */ 4483 if (sigsetsize != sizeof(compat_sigset_t)) 4484 return -EINVAL; 4485 4486 if (act) { 4487 compat_uptr_t handler; 4488 ret = get_user(handler, &act->sa_handler); 4489 new_ka.sa.sa_handler = compat_ptr(handler); 4490 #ifdef __ARCH_HAS_SA_RESTORER 4491 ret |= get_user(restorer, &act->sa_restorer); 4492 new_ka.sa.sa_restorer = compat_ptr(restorer); 4493 #endif 4494 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4495 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4496 if (ret) 4497 return -EFAULT; 4498 } 4499 4500 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4501 if (!ret && oact) { 4502 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4503 &oact->sa_handler); 4504 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4505 sizeof(oact->sa_mask)); 4506 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4507 #ifdef __ARCH_HAS_SA_RESTORER 4508 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4509 &oact->sa_restorer); 4510 #endif 4511 } 4512 return ret; 4513 } 4514 #endif 4515 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4516 4517 #ifdef CONFIG_OLD_SIGACTION 4518 SYSCALL_DEFINE3(sigaction, int, sig, 4519 const struct old_sigaction __user *, act, 4520 struct old_sigaction __user *, oact) 4521 { 4522 struct k_sigaction new_ka, old_ka; 4523 int ret; 4524 4525 if (act) { 4526 old_sigset_t mask; 4527 if (!access_ok(act, sizeof(*act)) || 4528 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4529 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4530 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4531 __get_user(mask, &act->sa_mask)) 4532 return -EFAULT; 4533 #ifdef __ARCH_HAS_KA_RESTORER 4534 new_ka.ka_restorer = NULL; 4535 #endif 4536 siginitset(&new_ka.sa.sa_mask, mask); 4537 } 4538 4539 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4540 4541 if (!ret && oact) { 4542 if (!access_ok(oact, sizeof(*oact)) || 4543 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4544 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4545 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4546 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4547 return -EFAULT; 4548 } 4549 4550 return ret; 4551 } 4552 #endif 4553 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4554 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4555 const struct compat_old_sigaction __user *, act, 4556 struct compat_old_sigaction __user *, oact) 4557 { 4558 struct k_sigaction new_ka, old_ka; 4559 int ret; 4560 compat_old_sigset_t mask; 4561 compat_uptr_t handler, restorer; 4562 4563 if (act) { 4564 if (!access_ok(act, sizeof(*act)) || 4565 __get_user(handler, &act->sa_handler) || 4566 __get_user(restorer, &act->sa_restorer) || 4567 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4568 __get_user(mask, &act->sa_mask)) 4569 return -EFAULT; 4570 4571 #ifdef __ARCH_HAS_KA_RESTORER 4572 new_ka.ka_restorer = NULL; 4573 #endif 4574 new_ka.sa.sa_handler = compat_ptr(handler); 4575 new_ka.sa.sa_restorer = compat_ptr(restorer); 4576 siginitset(&new_ka.sa.sa_mask, mask); 4577 } 4578 4579 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4580 4581 if (!ret && oact) { 4582 if (!access_ok(oact, sizeof(*oact)) || 4583 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4584 &oact->sa_handler) || 4585 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4586 &oact->sa_restorer) || 4587 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4588 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4589 return -EFAULT; 4590 } 4591 return ret; 4592 } 4593 #endif 4594 4595 #ifdef CONFIG_SGETMASK_SYSCALL 4596 4597 /* 4598 * For backwards compatibility. Functionality superseded by sigprocmask. 4599 */ 4600 SYSCALL_DEFINE0(sgetmask) 4601 { 4602 /* SMP safe */ 4603 return current->blocked.sig[0]; 4604 } 4605 4606 SYSCALL_DEFINE1(ssetmask, int, newmask) 4607 { 4608 int old = current->blocked.sig[0]; 4609 sigset_t newset; 4610 4611 siginitset(&newset, newmask); 4612 set_current_blocked(&newset); 4613 4614 return old; 4615 } 4616 #endif /* CONFIG_SGETMASK_SYSCALL */ 4617 4618 #ifdef __ARCH_WANT_SYS_SIGNAL 4619 /* 4620 * For backwards compatibility. Functionality superseded by sigaction. 4621 */ 4622 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4623 { 4624 struct k_sigaction new_sa, old_sa; 4625 int ret; 4626 4627 new_sa.sa.sa_handler = handler; 4628 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4629 sigemptyset(&new_sa.sa.sa_mask); 4630 4631 ret = do_sigaction(sig, &new_sa, &old_sa); 4632 4633 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4634 } 4635 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4636 4637 #ifdef __ARCH_WANT_SYS_PAUSE 4638 4639 SYSCALL_DEFINE0(pause) 4640 { 4641 while (!signal_pending(current)) { 4642 __set_current_state(TASK_INTERRUPTIBLE); 4643 schedule(); 4644 } 4645 return -ERESTARTNOHAND; 4646 } 4647 4648 #endif 4649 4650 static int sigsuspend(sigset_t *set) 4651 { 4652 current->saved_sigmask = current->blocked; 4653 set_current_blocked(set); 4654 4655 while (!signal_pending(current)) { 4656 __set_current_state(TASK_INTERRUPTIBLE); 4657 schedule(); 4658 } 4659 set_restore_sigmask(); 4660 return -ERESTARTNOHAND; 4661 } 4662 4663 /** 4664 * sys_rt_sigsuspend - replace the signal mask for a value with the 4665 * @unewset value until a signal is received 4666 * @unewset: new signal mask value 4667 * @sigsetsize: size of sigset_t type 4668 */ 4669 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4670 { 4671 sigset_t newset; 4672 4673 /* XXX: Don't preclude handling different sized sigset_t's. */ 4674 if (sigsetsize != sizeof(sigset_t)) 4675 return -EINVAL; 4676 4677 if (copy_from_user(&newset, unewset, sizeof(newset))) 4678 return -EFAULT; 4679 return sigsuspend(&newset); 4680 } 4681 4682 #ifdef CONFIG_COMPAT 4683 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4684 { 4685 sigset_t newset; 4686 4687 /* XXX: Don't preclude handling different sized sigset_t's. */ 4688 if (sigsetsize != sizeof(sigset_t)) 4689 return -EINVAL; 4690 4691 if (get_compat_sigset(&newset, unewset)) 4692 return -EFAULT; 4693 return sigsuspend(&newset); 4694 } 4695 #endif 4696 4697 #ifdef CONFIG_OLD_SIGSUSPEND 4698 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4699 { 4700 sigset_t blocked; 4701 siginitset(&blocked, mask); 4702 return sigsuspend(&blocked); 4703 } 4704 #endif 4705 #ifdef CONFIG_OLD_SIGSUSPEND3 4706 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4707 { 4708 sigset_t blocked; 4709 siginitset(&blocked, mask); 4710 return sigsuspend(&blocked); 4711 } 4712 #endif 4713 4714 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4715 { 4716 return NULL; 4717 } 4718 4719 static inline void siginfo_buildtime_checks(void) 4720 { 4721 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4722 4723 /* Verify the offsets in the two siginfos match */ 4724 #define CHECK_OFFSET(field) \ 4725 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4726 4727 /* kill */ 4728 CHECK_OFFSET(si_pid); 4729 CHECK_OFFSET(si_uid); 4730 4731 /* timer */ 4732 CHECK_OFFSET(si_tid); 4733 CHECK_OFFSET(si_overrun); 4734 CHECK_OFFSET(si_value); 4735 4736 /* rt */ 4737 CHECK_OFFSET(si_pid); 4738 CHECK_OFFSET(si_uid); 4739 CHECK_OFFSET(si_value); 4740 4741 /* sigchld */ 4742 CHECK_OFFSET(si_pid); 4743 CHECK_OFFSET(si_uid); 4744 CHECK_OFFSET(si_status); 4745 CHECK_OFFSET(si_utime); 4746 CHECK_OFFSET(si_stime); 4747 4748 /* sigfault */ 4749 CHECK_OFFSET(si_addr); 4750 CHECK_OFFSET(si_trapno); 4751 CHECK_OFFSET(si_addr_lsb); 4752 CHECK_OFFSET(si_lower); 4753 CHECK_OFFSET(si_upper); 4754 CHECK_OFFSET(si_pkey); 4755 CHECK_OFFSET(si_perf_data); 4756 CHECK_OFFSET(si_perf_type); 4757 CHECK_OFFSET(si_perf_flags); 4758 4759 /* sigpoll */ 4760 CHECK_OFFSET(si_band); 4761 CHECK_OFFSET(si_fd); 4762 4763 /* sigsys */ 4764 CHECK_OFFSET(si_call_addr); 4765 CHECK_OFFSET(si_syscall); 4766 CHECK_OFFSET(si_arch); 4767 #undef CHECK_OFFSET 4768 4769 /* usb asyncio */ 4770 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != 4771 offsetof(struct siginfo, si_addr)); 4772 if (sizeof(int) == sizeof(void __user *)) { 4773 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != 4774 sizeof(void __user *)); 4775 } else { 4776 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + 4777 sizeof_field(struct siginfo, si_uid)) != 4778 sizeof(void __user *)); 4779 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != 4780 offsetof(struct siginfo, si_uid)); 4781 } 4782 #ifdef CONFIG_COMPAT 4783 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != 4784 offsetof(struct compat_siginfo, si_addr)); 4785 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4786 sizeof(compat_uptr_t)); 4787 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4788 sizeof_field(struct siginfo, si_pid)); 4789 #endif 4790 } 4791 4792 #if defined(CONFIG_SYSCTL) 4793 static struct ctl_table signal_debug_table[] = { 4794 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE 4795 { 4796 .procname = "exception-trace", 4797 .data = &show_unhandled_signals, 4798 .maxlen = sizeof(int), 4799 .mode = 0644, 4800 .proc_handler = proc_dointvec 4801 }, 4802 #endif 4803 { } 4804 }; 4805 4806 static int __init init_signal_sysctls(void) 4807 { 4808 register_sysctl_init("debug", signal_debug_table); 4809 return 0; 4810 } 4811 early_initcall(init_signal_sysctls); 4812 #endif /* CONFIG_SYSCTL */ 4813 4814 void __init signals_init(void) 4815 { 4816 siginfo_buildtime_checks(); 4817 4818 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT); 4819 } 4820 4821 #ifdef CONFIG_KGDB_KDB 4822 #include <linux/kdb.h> 4823 /* 4824 * kdb_send_sig - Allows kdb to send signals without exposing 4825 * signal internals. This function checks if the required locks are 4826 * available before calling the main signal code, to avoid kdb 4827 * deadlocks. 4828 */ 4829 void kdb_send_sig(struct task_struct *t, int sig) 4830 { 4831 static struct task_struct *kdb_prev_t; 4832 int new_t, ret; 4833 if (!spin_trylock(&t->sighand->siglock)) { 4834 kdb_printf("Can't do kill command now.\n" 4835 "The sigmask lock is held somewhere else in " 4836 "kernel, try again later\n"); 4837 return; 4838 } 4839 new_t = kdb_prev_t != t; 4840 kdb_prev_t = t; 4841 if (!task_is_running(t) && new_t) { 4842 spin_unlock(&t->sighand->siglock); 4843 kdb_printf("Process is not RUNNING, sending a signal from " 4844 "kdb risks deadlock\n" 4845 "on the run queue locks. " 4846 "The signal has _not_ been sent.\n" 4847 "Reissue the kill command if you want to risk " 4848 "the deadlock.\n"); 4849 return; 4850 } 4851 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 4852 spin_unlock(&t->sighand->siglock); 4853 if (ret) 4854 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4855 sig, t->pid); 4856 else 4857 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4858 } 4859 #endif /* CONFIG_KGDB_KDB */ 4860