1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/tty.h> 19 #include <linux/binfmts.h> 20 #include <linux/security.h> 21 #include <linux/syscalls.h> 22 #include <linux/ptrace.h> 23 #include <linux/signal.h> 24 #include <linux/signalfd.h> 25 #include <linux/capability.h> 26 #include <linux/freezer.h> 27 #include <linux/pid_namespace.h> 28 #include <linux/nsproxy.h> 29 30 #include <asm/param.h> 31 #include <asm/uaccess.h> 32 #include <asm/unistd.h> 33 #include <asm/siginfo.h> 34 #include "audit.h" /* audit_signal_info() */ 35 36 /* 37 * SLAB caches for signal bits. 38 */ 39 40 static struct kmem_cache *sigqueue_cachep; 41 42 43 static int sig_ignored(struct task_struct *t, int sig) 44 { 45 void __user * handler; 46 47 /* 48 * Tracers always want to know about signals.. 49 */ 50 if (t->ptrace & PT_PTRACED) 51 return 0; 52 53 /* 54 * Blocked signals are never ignored, since the 55 * signal handler may change by the time it is 56 * unblocked. 57 */ 58 if (sigismember(&t->blocked, sig)) 59 return 0; 60 61 /* Is it explicitly or implicitly ignored? */ 62 handler = t->sighand->action[sig-1].sa.sa_handler; 63 return handler == SIG_IGN || 64 (handler == SIG_DFL && sig_kernel_ignore(sig)); 65 } 66 67 /* 68 * Re-calculate pending state from the set of locally pending 69 * signals, globally pending signals, and blocked signals. 70 */ 71 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 72 { 73 unsigned long ready; 74 long i; 75 76 switch (_NSIG_WORDS) { 77 default: 78 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 79 ready |= signal->sig[i] &~ blocked->sig[i]; 80 break; 81 82 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 83 ready |= signal->sig[2] &~ blocked->sig[2]; 84 ready |= signal->sig[1] &~ blocked->sig[1]; 85 ready |= signal->sig[0] &~ blocked->sig[0]; 86 break; 87 88 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 89 ready |= signal->sig[0] &~ blocked->sig[0]; 90 break; 91 92 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 93 } 94 return ready != 0; 95 } 96 97 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 98 99 static int recalc_sigpending_tsk(struct task_struct *t) 100 { 101 if (t->signal->group_stop_count > 0 || 102 (freezing(t)) || 103 PENDING(&t->pending, &t->blocked) || 104 PENDING(&t->signal->shared_pending, &t->blocked)) { 105 set_tsk_thread_flag(t, TIF_SIGPENDING); 106 return 1; 107 } 108 /* 109 * We must never clear the flag in another thread, or in current 110 * when it's possible the current syscall is returning -ERESTART*. 111 * So we don't clear it here, and only callers who know they should do. 112 */ 113 return 0; 114 } 115 116 /* 117 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 118 * This is superfluous when called on current, the wakeup is a harmless no-op. 119 */ 120 void recalc_sigpending_and_wake(struct task_struct *t) 121 { 122 if (recalc_sigpending_tsk(t)) 123 signal_wake_up(t, 0); 124 } 125 126 void recalc_sigpending(void) 127 { 128 if (!recalc_sigpending_tsk(current)) 129 clear_thread_flag(TIF_SIGPENDING); 130 131 } 132 133 /* Given the mask, find the first available signal that should be serviced. */ 134 135 int next_signal(struct sigpending *pending, sigset_t *mask) 136 { 137 unsigned long i, *s, *m, x; 138 int sig = 0; 139 140 s = pending->signal.sig; 141 m = mask->sig; 142 switch (_NSIG_WORDS) { 143 default: 144 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m) 145 if ((x = *s &~ *m) != 0) { 146 sig = ffz(~x) + i*_NSIG_BPW + 1; 147 break; 148 } 149 break; 150 151 case 2: if ((x = s[0] &~ m[0]) != 0) 152 sig = 1; 153 else if ((x = s[1] &~ m[1]) != 0) 154 sig = _NSIG_BPW + 1; 155 else 156 break; 157 sig += ffz(~x); 158 break; 159 160 case 1: if ((x = *s &~ *m) != 0) 161 sig = ffz(~x) + 1; 162 break; 163 } 164 165 return sig; 166 } 167 168 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags, 169 int override_rlimit) 170 { 171 struct sigqueue *q = NULL; 172 struct user_struct *user; 173 174 /* 175 * In order to avoid problems with "switch_user()", we want to make 176 * sure that the compiler doesn't re-load "t->user" 177 */ 178 user = t->user; 179 barrier(); 180 atomic_inc(&user->sigpending); 181 if (override_rlimit || 182 atomic_read(&user->sigpending) <= 183 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur) 184 q = kmem_cache_alloc(sigqueue_cachep, flags); 185 if (unlikely(q == NULL)) { 186 atomic_dec(&user->sigpending); 187 } else { 188 INIT_LIST_HEAD(&q->list); 189 q->flags = 0; 190 q->user = get_uid(user); 191 } 192 return(q); 193 } 194 195 static void __sigqueue_free(struct sigqueue *q) 196 { 197 if (q->flags & SIGQUEUE_PREALLOC) 198 return; 199 atomic_dec(&q->user->sigpending); 200 free_uid(q->user); 201 kmem_cache_free(sigqueue_cachep, q); 202 } 203 204 void flush_sigqueue(struct sigpending *queue) 205 { 206 struct sigqueue *q; 207 208 sigemptyset(&queue->signal); 209 while (!list_empty(&queue->list)) { 210 q = list_entry(queue->list.next, struct sigqueue , list); 211 list_del_init(&q->list); 212 __sigqueue_free(q); 213 } 214 } 215 216 /* 217 * Flush all pending signals for a task. 218 */ 219 void flush_signals(struct task_struct *t) 220 { 221 unsigned long flags; 222 223 spin_lock_irqsave(&t->sighand->siglock, flags); 224 clear_tsk_thread_flag(t,TIF_SIGPENDING); 225 flush_sigqueue(&t->pending); 226 flush_sigqueue(&t->signal->shared_pending); 227 spin_unlock_irqrestore(&t->sighand->siglock, flags); 228 } 229 230 void ignore_signals(struct task_struct *t) 231 { 232 int i; 233 234 for (i = 0; i < _NSIG; ++i) 235 t->sighand->action[i].sa.sa_handler = SIG_IGN; 236 237 flush_signals(t); 238 } 239 240 /* 241 * Flush all handlers for a task. 242 */ 243 244 void 245 flush_signal_handlers(struct task_struct *t, int force_default) 246 { 247 int i; 248 struct k_sigaction *ka = &t->sighand->action[0]; 249 for (i = _NSIG ; i != 0 ; i--) { 250 if (force_default || ka->sa.sa_handler != SIG_IGN) 251 ka->sa.sa_handler = SIG_DFL; 252 ka->sa.sa_flags = 0; 253 sigemptyset(&ka->sa.sa_mask); 254 ka++; 255 } 256 } 257 258 int unhandled_signal(struct task_struct *tsk, int sig) 259 { 260 if (is_init(tsk)) 261 return 1; 262 if (tsk->ptrace & PT_PTRACED) 263 return 0; 264 return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) || 265 (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL); 266 } 267 268 269 /* Notify the system that a driver wants to block all signals for this 270 * process, and wants to be notified if any signals at all were to be 271 * sent/acted upon. If the notifier routine returns non-zero, then the 272 * signal will be acted upon after all. If the notifier routine returns 0, 273 * then then signal will be blocked. Only one block per process is 274 * allowed. priv is a pointer to private data that the notifier routine 275 * can use to determine if the signal should be blocked or not. */ 276 277 void 278 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) 279 { 280 unsigned long flags; 281 282 spin_lock_irqsave(¤t->sighand->siglock, flags); 283 current->notifier_mask = mask; 284 current->notifier_data = priv; 285 current->notifier = notifier; 286 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 287 } 288 289 /* Notify the system that blocking has ended. */ 290 291 void 292 unblock_all_signals(void) 293 { 294 unsigned long flags; 295 296 spin_lock_irqsave(¤t->sighand->siglock, flags); 297 current->notifier = NULL; 298 current->notifier_data = NULL; 299 recalc_sigpending(); 300 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 301 } 302 303 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info) 304 { 305 struct sigqueue *q, *first = NULL; 306 int still_pending = 0; 307 308 if (unlikely(!sigismember(&list->signal, sig))) 309 return 0; 310 311 /* 312 * Collect the siginfo appropriate to this signal. Check if 313 * there is another siginfo for the same signal. 314 */ 315 list_for_each_entry(q, &list->list, list) { 316 if (q->info.si_signo == sig) { 317 if (first) { 318 still_pending = 1; 319 break; 320 } 321 first = q; 322 } 323 } 324 if (first) { 325 list_del_init(&first->list); 326 copy_siginfo(info, &first->info); 327 __sigqueue_free(first); 328 if (!still_pending) 329 sigdelset(&list->signal, sig); 330 } else { 331 332 /* Ok, it wasn't in the queue. This must be 333 a fast-pathed signal or we must have been 334 out of queue space. So zero out the info. 335 */ 336 sigdelset(&list->signal, sig); 337 info->si_signo = sig; 338 info->si_errno = 0; 339 info->si_code = 0; 340 info->si_pid = 0; 341 info->si_uid = 0; 342 } 343 return 1; 344 } 345 346 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 347 siginfo_t *info) 348 { 349 int sig = next_signal(pending, mask); 350 351 if (sig) { 352 if (current->notifier) { 353 if (sigismember(current->notifier_mask, sig)) { 354 if (!(current->notifier)(current->notifier_data)) { 355 clear_thread_flag(TIF_SIGPENDING); 356 return 0; 357 } 358 } 359 } 360 361 if (!collect_signal(sig, pending, info)) 362 sig = 0; 363 } 364 365 return sig; 366 } 367 368 /* 369 * Dequeue a signal and return the element to the caller, which is 370 * expected to free it. 371 * 372 * All callers have to hold the siglock. 373 */ 374 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 375 { 376 int signr = 0; 377 378 /* We only dequeue private signals from ourselves, we don't let 379 * signalfd steal them 380 */ 381 if (tsk == current) 382 signr = __dequeue_signal(&tsk->pending, mask, info); 383 if (!signr) { 384 signr = __dequeue_signal(&tsk->signal->shared_pending, 385 mask, info); 386 /* 387 * itimer signal ? 388 * 389 * itimers are process shared and we restart periodic 390 * itimers in the signal delivery path to prevent DoS 391 * attacks in the high resolution timer case. This is 392 * compliant with the old way of self restarting 393 * itimers, as the SIGALRM is a legacy signal and only 394 * queued once. Changing the restart behaviour to 395 * restart the timer in the signal dequeue path is 396 * reducing the timer noise on heavy loaded !highres 397 * systems too. 398 */ 399 if (unlikely(signr == SIGALRM)) { 400 struct hrtimer *tmr = &tsk->signal->real_timer; 401 402 if (!hrtimer_is_queued(tmr) && 403 tsk->signal->it_real_incr.tv64 != 0) { 404 hrtimer_forward(tmr, tmr->base->get_time(), 405 tsk->signal->it_real_incr); 406 hrtimer_restart(tmr); 407 } 408 } 409 } 410 if (likely(tsk == current)) 411 recalc_sigpending(); 412 if (signr && unlikely(sig_kernel_stop(signr))) { 413 /* 414 * Set a marker that we have dequeued a stop signal. Our 415 * caller might release the siglock and then the pending 416 * stop signal it is about to process is no longer in the 417 * pending bitmasks, but must still be cleared by a SIGCONT 418 * (and overruled by a SIGKILL). So those cases clear this 419 * shared flag after we've set it. Note that this flag may 420 * remain set after the signal we return is ignored or 421 * handled. That doesn't matter because its only purpose 422 * is to alert stop-signal processing code when another 423 * processor has come along and cleared the flag. 424 */ 425 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) 426 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED; 427 } 428 if ( signr && 429 ((info->si_code & __SI_MASK) == __SI_TIMER) && 430 info->si_sys_private){ 431 /* 432 * Release the siglock to ensure proper locking order 433 * of timer locks outside of siglocks. Note, we leave 434 * irqs disabled here, since the posix-timers code is 435 * about to disable them again anyway. 436 */ 437 spin_unlock(&tsk->sighand->siglock); 438 do_schedule_next_timer(info); 439 spin_lock(&tsk->sighand->siglock); 440 } 441 return signr; 442 } 443 444 /* 445 * Tell a process that it has a new active signal.. 446 * 447 * NOTE! we rely on the previous spin_lock to 448 * lock interrupts for us! We can only be called with 449 * "siglock" held, and the local interrupt must 450 * have been disabled when that got acquired! 451 * 452 * No need to set need_resched since signal event passing 453 * goes through ->blocked 454 */ 455 void signal_wake_up(struct task_struct *t, int resume) 456 { 457 unsigned int mask; 458 459 set_tsk_thread_flag(t, TIF_SIGPENDING); 460 461 /* 462 * For SIGKILL, we want to wake it up in the stopped/traced case. 463 * We don't check t->state here because there is a race with it 464 * executing another processor and just now entering stopped state. 465 * By using wake_up_state, we ensure the process will wake up and 466 * handle its death signal. 467 */ 468 mask = TASK_INTERRUPTIBLE; 469 if (resume) 470 mask |= TASK_STOPPED | TASK_TRACED; 471 if (!wake_up_state(t, mask)) 472 kick_process(t); 473 } 474 475 /* 476 * Remove signals in mask from the pending set and queue. 477 * Returns 1 if any signals were found. 478 * 479 * All callers must be holding the siglock. 480 * 481 * This version takes a sigset mask and looks at all signals, 482 * not just those in the first mask word. 483 */ 484 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s) 485 { 486 struct sigqueue *q, *n; 487 sigset_t m; 488 489 sigandsets(&m, mask, &s->signal); 490 if (sigisemptyset(&m)) 491 return 0; 492 493 signandsets(&s->signal, &s->signal, mask); 494 list_for_each_entry_safe(q, n, &s->list, list) { 495 if (sigismember(mask, q->info.si_signo)) { 496 list_del_init(&q->list); 497 __sigqueue_free(q); 498 } 499 } 500 return 1; 501 } 502 /* 503 * Remove signals in mask from the pending set and queue. 504 * Returns 1 if any signals were found. 505 * 506 * All callers must be holding the siglock. 507 */ 508 static int rm_from_queue(unsigned long mask, struct sigpending *s) 509 { 510 struct sigqueue *q, *n; 511 512 if (!sigtestsetmask(&s->signal, mask)) 513 return 0; 514 515 sigdelsetmask(&s->signal, mask); 516 list_for_each_entry_safe(q, n, &s->list, list) { 517 if (q->info.si_signo < SIGRTMIN && 518 (mask & sigmask(q->info.si_signo))) { 519 list_del_init(&q->list); 520 __sigqueue_free(q); 521 } 522 } 523 return 1; 524 } 525 526 /* 527 * Bad permissions for sending the signal 528 */ 529 static int check_kill_permission(int sig, struct siginfo *info, 530 struct task_struct *t) 531 { 532 int error = -EINVAL; 533 if (!valid_signal(sig)) 534 return error; 535 536 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 537 if (error) 538 return error; 539 540 error = -EPERM; 541 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) 542 && ((sig != SIGCONT) || 543 (process_session(current) != process_session(t))) 544 && (current->euid ^ t->suid) && (current->euid ^ t->uid) 545 && (current->uid ^ t->suid) && (current->uid ^ t->uid) 546 && !capable(CAP_KILL)) 547 return error; 548 549 return security_task_kill(t, info, sig, 0); 550 } 551 552 /* forward decl */ 553 static void do_notify_parent_cldstop(struct task_struct *tsk, int why); 554 555 /* 556 * Handle magic process-wide effects of stop/continue signals. 557 * Unlike the signal actions, these happen immediately at signal-generation 558 * time regardless of blocking, ignoring, or handling. This does the 559 * actual continuing for SIGCONT, but not the actual stopping for stop 560 * signals. The process stop is done as a signal action for SIG_DFL. 561 */ 562 static void handle_stop_signal(int sig, struct task_struct *p) 563 { 564 struct task_struct *t; 565 566 if (p->signal->flags & SIGNAL_GROUP_EXIT) 567 /* 568 * The process is in the middle of dying already. 569 */ 570 return; 571 572 if (sig_kernel_stop(sig)) { 573 /* 574 * This is a stop signal. Remove SIGCONT from all queues. 575 */ 576 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending); 577 t = p; 578 do { 579 rm_from_queue(sigmask(SIGCONT), &t->pending); 580 t = next_thread(t); 581 } while (t != p); 582 } else if (sig == SIGCONT) { 583 /* 584 * Remove all stop signals from all queues, 585 * and wake all threads. 586 */ 587 if (unlikely(p->signal->group_stop_count > 0)) { 588 /* 589 * There was a group stop in progress. We'll 590 * pretend it finished before we got here. We are 591 * obliged to report it to the parent: if the 592 * SIGSTOP happened "after" this SIGCONT, then it 593 * would have cleared this pending SIGCONT. If it 594 * happened "before" this SIGCONT, then the parent 595 * got the SIGCHLD about the stop finishing before 596 * the continue happened. We do the notification 597 * now, and it's as if the stop had finished and 598 * the SIGCHLD was pending on entry to this kill. 599 */ 600 p->signal->group_stop_count = 0; 601 p->signal->flags = SIGNAL_STOP_CONTINUED; 602 spin_unlock(&p->sighand->siglock); 603 do_notify_parent_cldstop(p, CLD_STOPPED); 604 spin_lock(&p->sighand->siglock); 605 } 606 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); 607 t = p; 608 do { 609 unsigned int state; 610 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 611 612 /* 613 * If there is a handler for SIGCONT, we must make 614 * sure that no thread returns to user mode before 615 * we post the signal, in case it was the only 616 * thread eligible to run the signal handler--then 617 * it must not do anything between resuming and 618 * running the handler. With the TIF_SIGPENDING 619 * flag set, the thread will pause and acquire the 620 * siglock that we hold now and until we've queued 621 * the pending signal. 622 * 623 * Wake up the stopped thread _after_ setting 624 * TIF_SIGPENDING 625 */ 626 state = TASK_STOPPED; 627 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) { 628 set_tsk_thread_flag(t, TIF_SIGPENDING); 629 state |= TASK_INTERRUPTIBLE; 630 } 631 wake_up_state(t, state); 632 633 t = next_thread(t); 634 } while (t != p); 635 636 if (p->signal->flags & SIGNAL_STOP_STOPPED) { 637 /* 638 * We were in fact stopped, and are now continued. 639 * Notify the parent with CLD_CONTINUED. 640 */ 641 p->signal->flags = SIGNAL_STOP_CONTINUED; 642 p->signal->group_exit_code = 0; 643 spin_unlock(&p->sighand->siglock); 644 do_notify_parent_cldstop(p, CLD_CONTINUED); 645 spin_lock(&p->sighand->siglock); 646 } else { 647 /* 648 * We are not stopped, but there could be a stop 649 * signal in the middle of being processed after 650 * being removed from the queue. Clear that too. 651 */ 652 p->signal->flags = 0; 653 } 654 } else if (sig == SIGKILL) { 655 /* 656 * Make sure that any pending stop signal already dequeued 657 * is undone by the wakeup for SIGKILL. 658 */ 659 p->signal->flags = 0; 660 } 661 } 662 663 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 664 struct sigpending *signals) 665 { 666 struct sigqueue * q = NULL; 667 int ret = 0; 668 669 /* 670 * Deliver the signal to listening signalfds. This must be called 671 * with the sighand lock held. 672 */ 673 signalfd_notify(t, sig); 674 675 /* 676 * fast-pathed signals for kernel-internal things like SIGSTOP 677 * or SIGKILL. 678 */ 679 if (info == SEND_SIG_FORCED) 680 goto out_set; 681 682 /* Real-time signals must be queued if sent by sigqueue, or 683 some other real-time mechanism. It is implementation 684 defined whether kill() does so. We attempt to do so, on 685 the principle of least surprise, but since kill is not 686 allowed to fail with EAGAIN when low on memory we just 687 make sure at least one signal gets delivered and don't 688 pass on the info struct. */ 689 690 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN && 691 (is_si_special(info) || 692 info->si_code >= 0))); 693 if (q) { 694 list_add_tail(&q->list, &signals->list); 695 switch ((unsigned long) info) { 696 case (unsigned long) SEND_SIG_NOINFO: 697 q->info.si_signo = sig; 698 q->info.si_errno = 0; 699 q->info.si_code = SI_USER; 700 q->info.si_pid = current->pid; 701 q->info.si_uid = current->uid; 702 break; 703 case (unsigned long) SEND_SIG_PRIV: 704 q->info.si_signo = sig; 705 q->info.si_errno = 0; 706 q->info.si_code = SI_KERNEL; 707 q->info.si_pid = 0; 708 q->info.si_uid = 0; 709 break; 710 default: 711 copy_siginfo(&q->info, info); 712 break; 713 } 714 } else if (!is_si_special(info)) { 715 if (sig >= SIGRTMIN && info->si_code != SI_USER) 716 /* 717 * Queue overflow, abort. We may abort if the signal was rt 718 * and sent by user using something other than kill(). 719 */ 720 return -EAGAIN; 721 } 722 723 out_set: 724 sigaddset(&signals->signal, sig); 725 return ret; 726 } 727 728 #define LEGACY_QUEUE(sigptr, sig) \ 729 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig))) 730 731 int print_fatal_signals; 732 733 static void print_fatal_signal(struct pt_regs *regs, int signr) 734 { 735 printk("%s/%d: potentially unexpected fatal signal %d.\n", 736 current->comm, current->pid, signr); 737 738 #ifdef __i386__ 739 printk("code at %08lx: ", regs->eip); 740 { 741 int i; 742 for (i = 0; i < 16; i++) { 743 unsigned char insn; 744 745 __get_user(insn, (unsigned char *)(regs->eip + i)); 746 printk("%02x ", insn); 747 } 748 } 749 #endif 750 printk("\n"); 751 show_regs(regs); 752 } 753 754 static int __init setup_print_fatal_signals(char *str) 755 { 756 get_option (&str, &print_fatal_signals); 757 758 return 1; 759 } 760 761 __setup("print-fatal-signals=", setup_print_fatal_signals); 762 763 static int 764 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 765 { 766 int ret = 0; 767 768 BUG_ON(!irqs_disabled()); 769 assert_spin_locked(&t->sighand->siglock); 770 771 /* Short-circuit ignored signals. */ 772 if (sig_ignored(t, sig)) 773 goto out; 774 775 /* Support queueing exactly one non-rt signal, so that we 776 can get more detailed information about the cause of 777 the signal. */ 778 if (LEGACY_QUEUE(&t->pending, sig)) 779 goto out; 780 781 ret = send_signal(sig, info, t, &t->pending); 782 if (!ret && !sigismember(&t->blocked, sig)) 783 signal_wake_up(t, sig == SIGKILL); 784 out: 785 return ret; 786 } 787 788 /* 789 * Force a signal that the process can't ignore: if necessary 790 * we unblock the signal and change any SIG_IGN to SIG_DFL. 791 * 792 * Note: If we unblock the signal, we always reset it to SIG_DFL, 793 * since we do not want to have a signal handler that was blocked 794 * be invoked when user space had explicitly blocked it. 795 * 796 * We don't want to have recursive SIGSEGV's etc, for example. 797 */ 798 int 799 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 800 { 801 unsigned long int flags; 802 int ret, blocked, ignored; 803 struct k_sigaction *action; 804 805 spin_lock_irqsave(&t->sighand->siglock, flags); 806 action = &t->sighand->action[sig-1]; 807 ignored = action->sa.sa_handler == SIG_IGN; 808 blocked = sigismember(&t->blocked, sig); 809 if (blocked || ignored) { 810 action->sa.sa_handler = SIG_DFL; 811 if (blocked) { 812 sigdelset(&t->blocked, sig); 813 recalc_sigpending_and_wake(t); 814 } 815 } 816 ret = specific_send_sig_info(sig, info, t); 817 spin_unlock_irqrestore(&t->sighand->siglock, flags); 818 819 return ret; 820 } 821 822 void 823 force_sig_specific(int sig, struct task_struct *t) 824 { 825 force_sig_info(sig, SEND_SIG_FORCED, t); 826 } 827 828 /* 829 * Test if P wants to take SIG. After we've checked all threads with this, 830 * it's equivalent to finding no threads not blocking SIG. Any threads not 831 * blocking SIG were ruled out because they are not running and already 832 * have pending signals. Such threads will dequeue from the shared queue 833 * as soon as they're available, so putting the signal on the shared queue 834 * will be equivalent to sending it to one such thread. 835 */ 836 static inline int wants_signal(int sig, struct task_struct *p) 837 { 838 if (sigismember(&p->blocked, sig)) 839 return 0; 840 if (p->flags & PF_EXITING) 841 return 0; 842 if (sig == SIGKILL) 843 return 1; 844 if (p->state & (TASK_STOPPED | TASK_TRACED)) 845 return 0; 846 return task_curr(p) || !signal_pending(p); 847 } 848 849 static void 850 __group_complete_signal(int sig, struct task_struct *p) 851 { 852 struct task_struct *t; 853 854 /* 855 * Now find a thread we can wake up to take the signal off the queue. 856 * 857 * If the main thread wants the signal, it gets first crack. 858 * Probably the least surprising to the average bear. 859 */ 860 if (wants_signal(sig, p)) 861 t = p; 862 else if (thread_group_empty(p)) 863 /* 864 * There is just one thread and it does not need to be woken. 865 * It will dequeue unblocked signals before it runs again. 866 */ 867 return; 868 else { 869 /* 870 * Otherwise try to find a suitable thread. 871 */ 872 t = p->signal->curr_target; 873 if (t == NULL) 874 /* restart balancing at this thread */ 875 t = p->signal->curr_target = p; 876 877 while (!wants_signal(sig, t)) { 878 t = next_thread(t); 879 if (t == p->signal->curr_target) 880 /* 881 * No thread needs to be woken. 882 * Any eligible threads will see 883 * the signal in the queue soon. 884 */ 885 return; 886 } 887 p->signal->curr_target = t; 888 } 889 890 /* 891 * Found a killable thread. If the signal will be fatal, 892 * then start taking the whole group down immediately. 893 */ 894 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) && 895 !sigismember(&t->real_blocked, sig) && 896 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) { 897 /* 898 * This signal will be fatal to the whole group. 899 */ 900 if (!sig_kernel_coredump(sig)) { 901 /* 902 * Start a group exit and wake everybody up. 903 * This way we don't have other threads 904 * running and doing things after a slower 905 * thread has the fatal signal pending. 906 */ 907 p->signal->flags = SIGNAL_GROUP_EXIT; 908 p->signal->group_exit_code = sig; 909 p->signal->group_stop_count = 0; 910 t = p; 911 do { 912 sigaddset(&t->pending.signal, SIGKILL); 913 signal_wake_up(t, 1); 914 t = next_thread(t); 915 } while (t != p); 916 return; 917 } 918 919 /* 920 * There will be a core dump. We make all threads other 921 * than the chosen one go into a group stop so that nothing 922 * happens until it gets scheduled, takes the signal off 923 * the shared queue, and does the core dump. This is a 924 * little more complicated than strictly necessary, but it 925 * keeps the signal state that winds up in the core dump 926 * unchanged from the death state, e.g. which thread had 927 * the core-dump signal unblocked. 928 */ 929 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 930 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); 931 p->signal->group_stop_count = 0; 932 p->signal->group_exit_task = t; 933 t = p; 934 do { 935 p->signal->group_stop_count++; 936 signal_wake_up(t, 0); 937 t = next_thread(t); 938 } while (t != p); 939 wake_up_process(p->signal->group_exit_task); 940 return; 941 } 942 943 /* 944 * The signal is already in the shared-pending queue. 945 * Tell the chosen thread to wake up and dequeue it. 946 */ 947 signal_wake_up(t, sig == SIGKILL); 948 return; 949 } 950 951 int 952 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 953 { 954 int ret = 0; 955 956 assert_spin_locked(&p->sighand->siglock); 957 handle_stop_signal(sig, p); 958 959 /* Short-circuit ignored signals. */ 960 if (sig_ignored(p, sig)) 961 return ret; 962 963 if (LEGACY_QUEUE(&p->signal->shared_pending, sig)) 964 /* This is a non-RT signal and we already have one queued. */ 965 return ret; 966 967 /* 968 * Put this signal on the shared-pending queue, or fail with EAGAIN. 969 * We always use the shared queue for process-wide signals, 970 * to avoid several races. 971 */ 972 ret = send_signal(sig, info, p, &p->signal->shared_pending); 973 if (unlikely(ret)) 974 return ret; 975 976 __group_complete_signal(sig, p); 977 return 0; 978 } 979 980 /* 981 * Nuke all other threads in the group. 982 */ 983 void zap_other_threads(struct task_struct *p) 984 { 985 struct task_struct *t; 986 987 p->signal->flags = SIGNAL_GROUP_EXIT; 988 p->signal->group_stop_count = 0; 989 990 if (thread_group_empty(p)) 991 return; 992 993 for (t = next_thread(p); t != p; t = next_thread(t)) { 994 /* 995 * Don't bother with already dead threads 996 */ 997 if (t->exit_state) 998 continue; 999 1000 /* SIGKILL will be handled before any pending SIGSTOP */ 1001 sigaddset(&t->pending.signal, SIGKILL); 1002 signal_wake_up(t, 1); 1003 } 1004 } 1005 1006 /* 1007 * Must be called under rcu_read_lock() or with tasklist_lock read-held. 1008 */ 1009 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags) 1010 { 1011 struct sighand_struct *sighand; 1012 1013 for (;;) { 1014 sighand = rcu_dereference(tsk->sighand); 1015 if (unlikely(sighand == NULL)) 1016 break; 1017 1018 spin_lock_irqsave(&sighand->siglock, *flags); 1019 if (likely(sighand == tsk->sighand)) 1020 break; 1021 spin_unlock_irqrestore(&sighand->siglock, *flags); 1022 } 1023 1024 return sighand; 1025 } 1026 1027 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1028 { 1029 unsigned long flags; 1030 int ret; 1031 1032 ret = check_kill_permission(sig, info, p); 1033 1034 if (!ret && sig) { 1035 ret = -ESRCH; 1036 if (lock_task_sighand(p, &flags)) { 1037 ret = __group_send_sig_info(sig, info, p); 1038 unlock_task_sighand(p, &flags); 1039 } 1040 } 1041 1042 return ret; 1043 } 1044 1045 /* 1046 * kill_pgrp_info() sends a signal to a process group: this is what the tty 1047 * control characters do (^C, ^Z etc) 1048 */ 1049 1050 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1051 { 1052 struct task_struct *p = NULL; 1053 int retval, success; 1054 1055 success = 0; 1056 retval = -ESRCH; 1057 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1058 int err = group_send_sig_info(sig, info, p); 1059 success |= !err; 1060 retval = err; 1061 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1062 return success ? 0 : retval; 1063 } 1064 1065 int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1066 { 1067 int retval; 1068 1069 read_lock(&tasklist_lock); 1070 retval = __kill_pgrp_info(sig, info, pgrp); 1071 read_unlock(&tasklist_lock); 1072 1073 return retval; 1074 } 1075 1076 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) 1077 { 1078 int error; 1079 struct task_struct *p; 1080 1081 rcu_read_lock(); 1082 if (unlikely(sig_needs_tasklist(sig))) 1083 read_lock(&tasklist_lock); 1084 1085 p = pid_task(pid, PIDTYPE_PID); 1086 error = -ESRCH; 1087 if (p) 1088 error = group_send_sig_info(sig, info, p); 1089 1090 if (unlikely(sig_needs_tasklist(sig))) 1091 read_unlock(&tasklist_lock); 1092 rcu_read_unlock(); 1093 return error; 1094 } 1095 1096 int 1097 kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1098 { 1099 int error; 1100 rcu_read_lock(); 1101 error = kill_pid_info(sig, info, find_pid(pid)); 1102 rcu_read_unlock(); 1103 return error; 1104 } 1105 1106 /* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1107 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid, 1108 uid_t uid, uid_t euid, u32 secid) 1109 { 1110 int ret = -EINVAL; 1111 struct task_struct *p; 1112 1113 if (!valid_signal(sig)) 1114 return ret; 1115 1116 read_lock(&tasklist_lock); 1117 p = pid_task(pid, PIDTYPE_PID); 1118 if (!p) { 1119 ret = -ESRCH; 1120 goto out_unlock; 1121 } 1122 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) 1123 && (euid != p->suid) && (euid != p->uid) 1124 && (uid != p->suid) && (uid != p->uid)) { 1125 ret = -EPERM; 1126 goto out_unlock; 1127 } 1128 ret = security_task_kill(p, info, sig, secid); 1129 if (ret) 1130 goto out_unlock; 1131 if (sig && p->sighand) { 1132 unsigned long flags; 1133 spin_lock_irqsave(&p->sighand->siglock, flags); 1134 ret = __group_send_sig_info(sig, info, p); 1135 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1136 } 1137 out_unlock: 1138 read_unlock(&tasklist_lock); 1139 return ret; 1140 } 1141 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid); 1142 1143 /* 1144 * kill_something_info() interprets pid in interesting ways just like kill(2). 1145 * 1146 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1147 * is probably wrong. Should make it like BSD or SYSV. 1148 */ 1149 1150 static int kill_something_info(int sig, struct siginfo *info, int pid) 1151 { 1152 int ret; 1153 rcu_read_lock(); 1154 if (!pid) { 1155 ret = kill_pgrp_info(sig, info, task_pgrp(current)); 1156 } else if (pid == -1) { 1157 int retval = 0, count = 0; 1158 struct task_struct * p; 1159 1160 read_lock(&tasklist_lock); 1161 for_each_process(p) { 1162 if (p->pid > 1 && p->tgid != current->tgid) { 1163 int err = group_send_sig_info(sig, info, p); 1164 ++count; 1165 if (err != -EPERM) 1166 retval = err; 1167 } 1168 } 1169 read_unlock(&tasklist_lock); 1170 ret = count ? retval : -ESRCH; 1171 } else if (pid < 0) { 1172 ret = kill_pgrp_info(sig, info, find_pid(-pid)); 1173 } else { 1174 ret = kill_pid_info(sig, info, find_pid(pid)); 1175 } 1176 rcu_read_unlock(); 1177 return ret; 1178 } 1179 1180 /* 1181 * These are for backward compatibility with the rest of the kernel source. 1182 */ 1183 1184 /* 1185 * These two are the most common entry points. They send a signal 1186 * just to the specific thread. 1187 */ 1188 int 1189 send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1190 { 1191 int ret; 1192 unsigned long flags; 1193 1194 /* 1195 * Make sure legacy kernel users don't send in bad values 1196 * (normal paths check this in check_kill_permission). 1197 */ 1198 if (!valid_signal(sig)) 1199 return -EINVAL; 1200 1201 /* 1202 * We need the tasklist lock even for the specific 1203 * thread case (when we don't need to follow the group 1204 * lists) in order to avoid races with "p->sighand" 1205 * going away or changing from under us. 1206 */ 1207 read_lock(&tasklist_lock); 1208 spin_lock_irqsave(&p->sighand->siglock, flags); 1209 ret = specific_send_sig_info(sig, info, p); 1210 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1211 read_unlock(&tasklist_lock); 1212 return ret; 1213 } 1214 1215 #define __si_special(priv) \ 1216 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1217 1218 int 1219 send_sig(int sig, struct task_struct *p, int priv) 1220 { 1221 return send_sig_info(sig, __si_special(priv), p); 1222 } 1223 1224 /* 1225 * This is the entry point for "process-wide" signals. 1226 * They will go to an appropriate thread in the thread group. 1227 */ 1228 int 1229 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1230 { 1231 int ret; 1232 read_lock(&tasklist_lock); 1233 ret = group_send_sig_info(sig, info, p); 1234 read_unlock(&tasklist_lock); 1235 return ret; 1236 } 1237 1238 void 1239 force_sig(int sig, struct task_struct *p) 1240 { 1241 force_sig_info(sig, SEND_SIG_PRIV, p); 1242 } 1243 1244 /* 1245 * When things go south during signal handling, we 1246 * will force a SIGSEGV. And if the signal that caused 1247 * the problem was already a SIGSEGV, we'll want to 1248 * make sure we don't even try to deliver the signal.. 1249 */ 1250 int 1251 force_sigsegv(int sig, struct task_struct *p) 1252 { 1253 if (sig == SIGSEGV) { 1254 unsigned long flags; 1255 spin_lock_irqsave(&p->sighand->siglock, flags); 1256 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1257 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1258 } 1259 force_sig(SIGSEGV, p); 1260 return 0; 1261 } 1262 1263 int kill_pgrp(struct pid *pid, int sig, int priv) 1264 { 1265 return kill_pgrp_info(sig, __si_special(priv), pid); 1266 } 1267 EXPORT_SYMBOL(kill_pgrp); 1268 1269 int kill_pid(struct pid *pid, int sig, int priv) 1270 { 1271 return kill_pid_info(sig, __si_special(priv), pid); 1272 } 1273 EXPORT_SYMBOL(kill_pid); 1274 1275 int 1276 kill_proc(pid_t pid, int sig, int priv) 1277 { 1278 return kill_proc_info(sig, __si_special(priv), pid); 1279 } 1280 1281 /* 1282 * These functions support sending signals using preallocated sigqueue 1283 * structures. This is needed "because realtime applications cannot 1284 * afford to lose notifications of asynchronous events, like timer 1285 * expirations or I/O completions". In the case of Posix Timers 1286 * we allocate the sigqueue structure from the timer_create. If this 1287 * allocation fails we are able to report the failure to the application 1288 * with an EAGAIN error. 1289 */ 1290 1291 struct sigqueue *sigqueue_alloc(void) 1292 { 1293 struct sigqueue *q; 1294 1295 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0))) 1296 q->flags |= SIGQUEUE_PREALLOC; 1297 return(q); 1298 } 1299 1300 void sigqueue_free(struct sigqueue *q) 1301 { 1302 unsigned long flags; 1303 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1304 /* 1305 * If the signal is still pending remove it from the 1306 * pending queue. 1307 */ 1308 if (unlikely(!list_empty(&q->list))) { 1309 spinlock_t *lock = ¤t->sighand->siglock; 1310 read_lock(&tasklist_lock); 1311 spin_lock_irqsave(lock, flags); 1312 if (!list_empty(&q->list)) 1313 list_del_init(&q->list); 1314 spin_unlock_irqrestore(lock, flags); 1315 read_unlock(&tasklist_lock); 1316 } 1317 q->flags &= ~SIGQUEUE_PREALLOC; 1318 __sigqueue_free(q); 1319 } 1320 1321 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) 1322 { 1323 unsigned long flags; 1324 int ret = 0; 1325 1326 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1327 1328 /* 1329 * The rcu based delayed sighand destroy makes it possible to 1330 * run this without tasklist lock held. The task struct itself 1331 * cannot go away as create_timer did get_task_struct(). 1332 * 1333 * We return -1, when the task is marked exiting, so 1334 * posix_timer_event can redirect it to the group leader 1335 */ 1336 rcu_read_lock(); 1337 1338 if (!likely(lock_task_sighand(p, &flags))) { 1339 ret = -1; 1340 goto out_err; 1341 } 1342 1343 if (unlikely(!list_empty(&q->list))) { 1344 /* 1345 * If an SI_TIMER entry is already queue just increment 1346 * the overrun count. 1347 */ 1348 BUG_ON(q->info.si_code != SI_TIMER); 1349 q->info.si_overrun++; 1350 goto out; 1351 } 1352 /* Short-circuit ignored signals. */ 1353 if (sig_ignored(p, sig)) { 1354 ret = 1; 1355 goto out; 1356 } 1357 /* 1358 * Deliver the signal to listening signalfds. This must be called 1359 * with the sighand lock held. 1360 */ 1361 signalfd_notify(p, sig); 1362 1363 list_add_tail(&q->list, &p->pending.list); 1364 sigaddset(&p->pending.signal, sig); 1365 if (!sigismember(&p->blocked, sig)) 1366 signal_wake_up(p, sig == SIGKILL); 1367 1368 out: 1369 unlock_task_sighand(p, &flags); 1370 out_err: 1371 rcu_read_unlock(); 1372 1373 return ret; 1374 } 1375 1376 int 1377 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) 1378 { 1379 unsigned long flags; 1380 int ret = 0; 1381 1382 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1383 1384 read_lock(&tasklist_lock); 1385 /* Since it_lock is held, p->sighand cannot be NULL. */ 1386 spin_lock_irqsave(&p->sighand->siglock, flags); 1387 handle_stop_signal(sig, p); 1388 1389 /* Short-circuit ignored signals. */ 1390 if (sig_ignored(p, sig)) { 1391 ret = 1; 1392 goto out; 1393 } 1394 1395 if (unlikely(!list_empty(&q->list))) { 1396 /* 1397 * If an SI_TIMER entry is already queue just increment 1398 * the overrun count. Other uses should not try to 1399 * send the signal multiple times. 1400 */ 1401 BUG_ON(q->info.si_code != SI_TIMER); 1402 q->info.si_overrun++; 1403 goto out; 1404 } 1405 /* 1406 * Deliver the signal to listening signalfds. This must be called 1407 * with the sighand lock held. 1408 */ 1409 signalfd_notify(p, sig); 1410 1411 /* 1412 * Put this signal on the shared-pending queue. 1413 * We always use the shared queue for process-wide signals, 1414 * to avoid several races. 1415 */ 1416 list_add_tail(&q->list, &p->signal->shared_pending.list); 1417 sigaddset(&p->signal->shared_pending.signal, sig); 1418 1419 __group_complete_signal(sig, p); 1420 out: 1421 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1422 read_unlock(&tasklist_lock); 1423 return ret; 1424 } 1425 1426 /* 1427 * Wake up any threads in the parent blocked in wait* syscalls. 1428 */ 1429 static inline void __wake_up_parent(struct task_struct *p, 1430 struct task_struct *parent) 1431 { 1432 wake_up_interruptible_sync(&parent->signal->wait_chldexit); 1433 } 1434 1435 /* 1436 * Let a parent know about the death of a child. 1437 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1438 */ 1439 1440 void do_notify_parent(struct task_struct *tsk, int sig) 1441 { 1442 struct siginfo info; 1443 unsigned long flags; 1444 struct sighand_struct *psig; 1445 1446 BUG_ON(sig == -1); 1447 1448 /* do_notify_parent_cldstop should have been called instead. */ 1449 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED)); 1450 1451 BUG_ON(!tsk->ptrace && 1452 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1453 1454 info.si_signo = sig; 1455 info.si_errno = 0; 1456 info.si_pid = tsk->pid; 1457 info.si_uid = tsk->uid; 1458 1459 /* FIXME: find out whether or not this is supposed to be c*time. */ 1460 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime, 1461 tsk->signal->utime)); 1462 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime, 1463 tsk->signal->stime)); 1464 1465 info.si_status = tsk->exit_code & 0x7f; 1466 if (tsk->exit_code & 0x80) 1467 info.si_code = CLD_DUMPED; 1468 else if (tsk->exit_code & 0x7f) 1469 info.si_code = CLD_KILLED; 1470 else { 1471 info.si_code = CLD_EXITED; 1472 info.si_status = tsk->exit_code >> 8; 1473 } 1474 1475 psig = tsk->parent->sighand; 1476 spin_lock_irqsave(&psig->siglock, flags); 1477 if (!tsk->ptrace && sig == SIGCHLD && 1478 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1479 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1480 /* 1481 * We are exiting and our parent doesn't care. POSIX.1 1482 * defines special semantics for setting SIGCHLD to SIG_IGN 1483 * or setting the SA_NOCLDWAIT flag: we should be reaped 1484 * automatically and not left for our parent's wait4 call. 1485 * Rather than having the parent do it as a magic kind of 1486 * signal handler, we just set this to tell do_exit that we 1487 * can be cleaned up without becoming a zombie. Note that 1488 * we still call __wake_up_parent in this case, because a 1489 * blocked sys_wait4 might now return -ECHILD. 1490 * 1491 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1492 * is implementation-defined: we do (if you don't want 1493 * it, just use SIG_IGN instead). 1494 */ 1495 tsk->exit_signal = -1; 1496 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1497 sig = 0; 1498 } 1499 if (valid_signal(sig) && sig > 0) 1500 __group_send_sig_info(sig, &info, tsk->parent); 1501 __wake_up_parent(tsk, tsk->parent); 1502 spin_unlock_irqrestore(&psig->siglock, flags); 1503 } 1504 1505 static void do_notify_parent_cldstop(struct task_struct *tsk, int why) 1506 { 1507 struct siginfo info; 1508 unsigned long flags; 1509 struct task_struct *parent; 1510 struct sighand_struct *sighand; 1511 1512 if (tsk->ptrace & PT_PTRACED) 1513 parent = tsk->parent; 1514 else { 1515 tsk = tsk->group_leader; 1516 parent = tsk->real_parent; 1517 } 1518 1519 info.si_signo = SIGCHLD; 1520 info.si_errno = 0; 1521 info.si_pid = tsk->pid; 1522 info.si_uid = tsk->uid; 1523 1524 /* FIXME: find out whether or not this is supposed to be c*time. */ 1525 info.si_utime = cputime_to_jiffies(tsk->utime); 1526 info.si_stime = cputime_to_jiffies(tsk->stime); 1527 1528 info.si_code = why; 1529 switch (why) { 1530 case CLD_CONTINUED: 1531 info.si_status = SIGCONT; 1532 break; 1533 case CLD_STOPPED: 1534 info.si_status = tsk->signal->group_exit_code & 0x7f; 1535 break; 1536 case CLD_TRAPPED: 1537 info.si_status = tsk->exit_code & 0x7f; 1538 break; 1539 default: 1540 BUG(); 1541 } 1542 1543 sighand = parent->sighand; 1544 spin_lock_irqsave(&sighand->siglock, flags); 1545 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1546 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1547 __group_send_sig_info(SIGCHLD, &info, parent); 1548 /* 1549 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1550 */ 1551 __wake_up_parent(tsk, parent); 1552 spin_unlock_irqrestore(&sighand->siglock, flags); 1553 } 1554 1555 static inline int may_ptrace_stop(void) 1556 { 1557 if (!likely(current->ptrace & PT_PTRACED)) 1558 return 0; 1559 1560 if (unlikely(current->parent == current->real_parent && 1561 (current->ptrace & PT_ATTACHED))) 1562 return 0; 1563 1564 if (unlikely(current->signal == current->parent->signal) && 1565 unlikely(current->signal->flags & SIGNAL_GROUP_EXIT)) 1566 return 0; 1567 1568 /* 1569 * Are we in the middle of do_coredump? 1570 * If so and our tracer is also part of the coredump stopping 1571 * is a deadlock situation, and pointless because our tracer 1572 * is dead so don't allow us to stop. 1573 * If SIGKILL was already sent before the caller unlocked 1574 * ->siglock we must see ->core_waiters != 0. Otherwise it 1575 * is safe to enter schedule(). 1576 */ 1577 if (unlikely(current->mm->core_waiters) && 1578 unlikely(current->mm == current->parent->mm)) 1579 return 0; 1580 1581 return 1; 1582 } 1583 1584 /* 1585 * This must be called with current->sighand->siglock held. 1586 * 1587 * This should be the path for all ptrace stops. 1588 * We always set current->last_siginfo while stopped here. 1589 * That makes it a way to test a stopped process for 1590 * being ptrace-stopped vs being job-control-stopped. 1591 * 1592 * If we actually decide not to stop at all because the tracer is gone, 1593 * we leave nostop_code in current->exit_code. 1594 */ 1595 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info) 1596 { 1597 /* 1598 * If there is a group stop in progress, 1599 * we must participate in the bookkeeping. 1600 */ 1601 if (current->signal->group_stop_count > 0) 1602 --current->signal->group_stop_count; 1603 1604 current->last_siginfo = info; 1605 current->exit_code = exit_code; 1606 1607 /* Let the debugger run. */ 1608 set_current_state(TASK_TRACED); 1609 spin_unlock_irq(¤t->sighand->siglock); 1610 try_to_freeze(); 1611 read_lock(&tasklist_lock); 1612 if (may_ptrace_stop()) { 1613 do_notify_parent_cldstop(current, CLD_TRAPPED); 1614 read_unlock(&tasklist_lock); 1615 schedule(); 1616 } else { 1617 /* 1618 * By the time we got the lock, our tracer went away. 1619 * Don't stop here. 1620 */ 1621 read_unlock(&tasklist_lock); 1622 set_current_state(TASK_RUNNING); 1623 current->exit_code = nostop_code; 1624 } 1625 1626 /* 1627 * We are back. Now reacquire the siglock before touching 1628 * last_siginfo, so that we are sure to have synchronized with 1629 * any signal-sending on another CPU that wants to examine it. 1630 */ 1631 spin_lock_irq(¤t->sighand->siglock); 1632 current->last_siginfo = NULL; 1633 1634 /* 1635 * Queued signals ignored us while we were stopped for tracing. 1636 * So check for any that we should take before resuming user mode. 1637 * This sets TIF_SIGPENDING, but never clears it. 1638 */ 1639 recalc_sigpending_tsk(current); 1640 } 1641 1642 void ptrace_notify(int exit_code) 1643 { 1644 siginfo_t info; 1645 1646 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1647 1648 memset(&info, 0, sizeof info); 1649 info.si_signo = SIGTRAP; 1650 info.si_code = exit_code; 1651 info.si_pid = current->pid; 1652 info.si_uid = current->uid; 1653 1654 /* Let the debugger run. */ 1655 spin_lock_irq(¤t->sighand->siglock); 1656 ptrace_stop(exit_code, 0, &info); 1657 spin_unlock_irq(¤t->sighand->siglock); 1658 } 1659 1660 static void 1661 finish_stop(int stop_count) 1662 { 1663 /* 1664 * If there are no other threads in the group, or if there is 1665 * a group stop in progress and we are the last to stop, 1666 * report to the parent. When ptraced, every thread reports itself. 1667 */ 1668 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) { 1669 read_lock(&tasklist_lock); 1670 do_notify_parent_cldstop(current, CLD_STOPPED); 1671 read_unlock(&tasklist_lock); 1672 } 1673 1674 do { 1675 schedule(); 1676 } while (try_to_freeze()); 1677 /* 1678 * Now we don't run again until continued. 1679 */ 1680 current->exit_code = 0; 1681 } 1682 1683 /* 1684 * This performs the stopping for SIGSTOP and other stop signals. 1685 * We have to stop all threads in the thread group. 1686 * Returns nonzero if we've actually stopped and released the siglock. 1687 * Returns zero if we didn't stop and still hold the siglock. 1688 */ 1689 static int do_signal_stop(int signr) 1690 { 1691 struct signal_struct *sig = current->signal; 1692 int stop_count; 1693 1694 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) 1695 return 0; 1696 1697 if (sig->group_stop_count > 0) { 1698 /* 1699 * There is a group stop in progress. We don't need to 1700 * start another one. 1701 */ 1702 stop_count = --sig->group_stop_count; 1703 } else { 1704 /* 1705 * There is no group stop already in progress. 1706 * We must initiate one now. 1707 */ 1708 struct task_struct *t; 1709 1710 sig->group_exit_code = signr; 1711 1712 stop_count = 0; 1713 for (t = next_thread(current); t != current; t = next_thread(t)) 1714 /* 1715 * Setting state to TASK_STOPPED for a group 1716 * stop is always done with the siglock held, 1717 * so this check has no races. 1718 */ 1719 if (!t->exit_state && 1720 !(t->state & (TASK_STOPPED|TASK_TRACED))) { 1721 stop_count++; 1722 signal_wake_up(t, 0); 1723 } 1724 sig->group_stop_count = stop_count; 1725 } 1726 1727 if (stop_count == 0) 1728 sig->flags = SIGNAL_STOP_STOPPED; 1729 current->exit_code = sig->group_exit_code; 1730 __set_current_state(TASK_STOPPED); 1731 1732 spin_unlock_irq(¤t->sighand->siglock); 1733 finish_stop(stop_count); 1734 return 1; 1735 } 1736 1737 /* 1738 * Do appropriate magic when group_stop_count > 0. 1739 * We return nonzero if we stopped, after releasing the siglock. 1740 * We return zero if we still hold the siglock and should look 1741 * for another signal without checking group_stop_count again. 1742 */ 1743 static int handle_group_stop(void) 1744 { 1745 int stop_count; 1746 1747 if (current->signal->group_exit_task == current) { 1748 /* 1749 * Group stop is so we can do a core dump, 1750 * We are the initiating thread, so get on with it. 1751 */ 1752 current->signal->group_exit_task = NULL; 1753 return 0; 1754 } 1755 1756 if (current->signal->flags & SIGNAL_GROUP_EXIT) 1757 /* 1758 * Group stop is so another thread can do a core dump, 1759 * or else we are racing against a death signal. 1760 * Just punt the stop so we can get the next signal. 1761 */ 1762 return 0; 1763 1764 /* 1765 * There is a group stop in progress. We stop 1766 * without any associated signal being in our queue. 1767 */ 1768 stop_count = --current->signal->group_stop_count; 1769 if (stop_count == 0) 1770 current->signal->flags = SIGNAL_STOP_STOPPED; 1771 current->exit_code = current->signal->group_exit_code; 1772 set_current_state(TASK_STOPPED); 1773 spin_unlock_irq(¤t->sighand->siglock); 1774 finish_stop(stop_count); 1775 return 1; 1776 } 1777 1778 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, 1779 struct pt_regs *regs, void *cookie) 1780 { 1781 sigset_t *mask = ¤t->blocked; 1782 int signr = 0; 1783 1784 try_to_freeze(); 1785 1786 relock: 1787 spin_lock_irq(¤t->sighand->siglock); 1788 for (;;) { 1789 struct k_sigaction *ka; 1790 1791 if (unlikely(current->signal->group_stop_count > 0) && 1792 handle_group_stop()) 1793 goto relock; 1794 1795 signr = dequeue_signal(current, mask, info); 1796 1797 if (!signr) 1798 break; /* will return 0 */ 1799 1800 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) { 1801 ptrace_signal_deliver(regs, cookie); 1802 1803 /* Let the debugger run. */ 1804 ptrace_stop(signr, signr, info); 1805 1806 /* We're back. Did the debugger cancel the sig? */ 1807 signr = current->exit_code; 1808 if (signr == 0) 1809 continue; 1810 1811 current->exit_code = 0; 1812 1813 /* Update the siginfo structure if the signal has 1814 changed. If the debugger wanted something 1815 specific in the siginfo structure then it should 1816 have updated *info via PTRACE_SETSIGINFO. */ 1817 if (signr != info->si_signo) { 1818 info->si_signo = signr; 1819 info->si_errno = 0; 1820 info->si_code = SI_USER; 1821 info->si_pid = current->parent->pid; 1822 info->si_uid = current->parent->uid; 1823 } 1824 1825 /* If the (new) signal is now blocked, requeue it. */ 1826 if (sigismember(¤t->blocked, signr)) { 1827 specific_send_sig_info(signr, info, current); 1828 continue; 1829 } 1830 } 1831 1832 ka = ¤t->sighand->action[signr-1]; 1833 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 1834 continue; 1835 if (ka->sa.sa_handler != SIG_DFL) { 1836 /* Run the handler. */ 1837 *return_ka = *ka; 1838 1839 if (ka->sa.sa_flags & SA_ONESHOT) 1840 ka->sa.sa_handler = SIG_DFL; 1841 1842 break; /* will return non-zero "signr" value */ 1843 } 1844 1845 /* 1846 * Now we are doing the default action for this signal. 1847 */ 1848 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 1849 continue; 1850 1851 /* 1852 * Init of a pid space gets no signals it doesn't want from 1853 * within that pid space. It can of course get signals from 1854 * its parent pid space. 1855 */ 1856 if (current == child_reaper(current)) 1857 continue; 1858 1859 if (sig_kernel_stop(signr)) { 1860 /* 1861 * The default action is to stop all threads in 1862 * the thread group. The job control signals 1863 * do nothing in an orphaned pgrp, but SIGSTOP 1864 * always works. Note that siglock needs to be 1865 * dropped during the call to is_orphaned_pgrp() 1866 * because of lock ordering with tasklist_lock. 1867 * This allows an intervening SIGCONT to be posted. 1868 * We need to check for that and bail out if necessary. 1869 */ 1870 if (signr != SIGSTOP) { 1871 spin_unlock_irq(¤t->sighand->siglock); 1872 1873 /* signals can be posted during this window */ 1874 1875 if (is_current_pgrp_orphaned()) 1876 goto relock; 1877 1878 spin_lock_irq(¤t->sighand->siglock); 1879 } 1880 1881 if (likely(do_signal_stop(signr))) { 1882 /* It released the siglock. */ 1883 goto relock; 1884 } 1885 1886 /* 1887 * We didn't actually stop, due to a race 1888 * with SIGCONT or something like that. 1889 */ 1890 continue; 1891 } 1892 1893 spin_unlock_irq(¤t->sighand->siglock); 1894 1895 /* 1896 * Anything else is fatal, maybe with a core dump. 1897 */ 1898 current->flags |= PF_SIGNALED; 1899 if ((signr != SIGKILL) && print_fatal_signals) 1900 print_fatal_signal(regs, signr); 1901 if (sig_kernel_coredump(signr)) { 1902 /* 1903 * If it was able to dump core, this kills all 1904 * other threads in the group and synchronizes with 1905 * their demise. If we lost the race with another 1906 * thread getting here, it set group_exit_code 1907 * first and our do_group_exit call below will use 1908 * that value and ignore the one we pass it. 1909 */ 1910 do_coredump((long)signr, signr, regs); 1911 } 1912 1913 /* 1914 * Death signals, no core dump. 1915 */ 1916 do_group_exit(signr); 1917 /* NOTREACHED */ 1918 } 1919 spin_unlock_irq(¤t->sighand->siglock); 1920 return signr; 1921 } 1922 1923 EXPORT_SYMBOL(recalc_sigpending); 1924 EXPORT_SYMBOL_GPL(dequeue_signal); 1925 EXPORT_SYMBOL(flush_signals); 1926 EXPORT_SYMBOL(force_sig); 1927 EXPORT_SYMBOL(kill_proc); 1928 EXPORT_SYMBOL(ptrace_notify); 1929 EXPORT_SYMBOL(send_sig); 1930 EXPORT_SYMBOL(send_sig_info); 1931 EXPORT_SYMBOL(sigprocmask); 1932 EXPORT_SYMBOL(block_all_signals); 1933 EXPORT_SYMBOL(unblock_all_signals); 1934 1935 1936 /* 1937 * System call entry points. 1938 */ 1939 1940 asmlinkage long sys_restart_syscall(void) 1941 { 1942 struct restart_block *restart = ¤t_thread_info()->restart_block; 1943 return restart->fn(restart); 1944 } 1945 1946 long do_no_restart_syscall(struct restart_block *param) 1947 { 1948 return -EINTR; 1949 } 1950 1951 /* 1952 * We don't need to get the kernel lock - this is all local to this 1953 * particular thread.. (and that's good, because this is _heavily_ 1954 * used by various programs) 1955 */ 1956 1957 /* 1958 * This is also useful for kernel threads that want to temporarily 1959 * (or permanently) block certain signals. 1960 * 1961 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 1962 * interface happily blocks "unblockable" signals like SIGKILL 1963 * and friends. 1964 */ 1965 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 1966 { 1967 int error; 1968 1969 spin_lock_irq(¤t->sighand->siglock); 1970 if (oldset) 1971 *oldset = current->blocked; 1972 1973 error = 0; 1974 switch (how) { 1975 case SIG_BLOCK: 1976 sigorsets(¤t->blocked, ¤t->blocked, set); 1977 break; 1978 case SIG_UNBLOCK: 1979 signandsets(¤t->blocked, ¤t->blocked, set); 1980 break; 1981 case SIG_SETMASK: 1982 current->blocked = *set; 1983 break; 1984 default: 1985 error = -EINVAL; 1986 } 1987 recalc_sigpending(); 1988 spin_unlock_irq(¤t->sighand->siglock); 1989 1990 return error; 1991 } 1992 1993 asmlinkage long 1994 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize) 1995 { 1996 int error = -EINVAL; 1997 sigset_t old_set, new_set; 1998 1999 /* XXX: Don't preclude handling different sized sigset_t's. */ 2000 if (sigsetsize != sizeof(sigset_t)) 2001 goto out; 2002 2003 if (set) { 2004 error = -EFAULT; 2005 if (copy_from_user(&new_set, set, sizeof(*set))) 2006 goto out; 2007 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2008 2009 error = sigprocmask(how, &new_set, &old_set); 2010 if (error) 2011 goto out; 2012 if (oset) 2013 goto set_old; 2014 } else if (oset) { 2015 spin_lock_irq(¤t->sighand->siglock); 2016 old_set = current->blocked; 2017 spin_unlock_irq(¤t->sighand->siglock); 2018 2019 set_old: 2020 error = -EFAULT; 2021 if (copy_to_user(oset, &old_set, sizeof(*oset))) 2022 goto out; 2023 } 2024 error = 0; 2025 out: 2026 return error; 2027 } 2028 2029 long do_sigpending(void __user *set, unsigned long sigsetsize) 2030 { 2031 long error = -EINVAL; 2032 sigset_t pending; 2033 2034 if (sigsetsize > sizeof(sigset_t)) 2035 goto out; 2036 2037 spin_lock_irq(¤t->sighand->siglock); 2038 sigorsets(&pending, ¤t->pending.signal, 2039 ¤t->signal->shared_pending.signal); 2040 spin_unlock_irq(¤t->sighand->siglock); 2041 2042 /* Outside the lock because only this thread touches it. */ 2043 sigandsets(&pending, ¤t->blocked, &pending); 2044 2045 error = -EFAULT; 2046 if (!copy_to_user(set, &pending, sigsetsize)) 2047 error = 0; 2048 2049 out: 2050 return error; 2051 } 2052 2053 asmlinkage long 2054 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize) 2055 { 2056 return do_sigpending(set, sigsetsize); 2057 } 2058 2059 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2060 2061 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) 2062 { 2063 int err; 2064 2065 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2066 return -EFAULT; 2067 if (from->si_code < 0) 2068 return __copy_to_user(to, from, sizeof(siginfo_t)) 2069 ? -EFAULT : 0; 2070 /* 2071 * If you change siginfo_t structure, please be sure 2072 * this code is fixed accordingly. 2073 * Please remember to update the signalfd_copyinfo() function 2074 * inside fs/signalfd.c too, in case siginfo_t changes. 2075 * It should never copy any pad contained in the structure 2076 * to avoid security leaks, but must copy the generic 2077 * 3 ints plus the relevant union member. 2078 */ 2079 err = __put_user(from->si_signo, &to->si_signo); 2080 err |= __put_user(from->si_errno, &to->si_errno); 2081 err |= __put_user((short)from->si_code, &to->si_code); 2082 switch (from->si_code & __SI_MASK) { 2083 case __SI_KILL: 2084 err |= __put_user(from->si_pid, &to->si_pid); 2085 err |= __put_user(from->si_uid, &to->si_uid); 2086 break; 2087 case __SI_TIMER: 2088 err |= __put_user(from->si_tid, &to->si_tid); 2089 err |= __put_user(from->si_overrun, &to->si_overrun); 2090 err |= __put_user(from->si_ptr, &to->si_ptr); 2091 break; 2092 case __SI_POLL: 2093 err |= __put_user(from->si_band, &to->si_band); 2094 err |= __put_user(from->si_fd, &to->si_fd); 2095 break; 2096 case __SI_FAULT: 2097 err |= __put_user(from->si_addr, &to->si_addr); 2098 #ifdef __ARCH_SI_TRAPNO 2099 err |= __put_user(from->si_trapno, &to->si_trapno); 2100 #endif 2101 break; 2102 case __SI_CHLD: 2103 err |= __put_user(from->si_pid, &to->si_pid); 2104 err |= __put_user(from->si_uid, &to->si_uid); 2105 err |= __put_user(from->si_status, &to->si_status); 2106 err |= __put_user(from->si_utime, &to->si_utime); 2107 err |= __put_user(from->si_stime, &to->si_stime); 2108 break; 2109 case __SI_RT: /* This is not generated by the kernel as of now. */ 2110 case __SI_MESGQ: /* But this is */ 2111 err |= __put_user(from->si_pid, &to->si_pid); 2112 err |= __put_user(from->si_uid, &to->si_uid); 2113 err |= __put_user(from->si_ptr, &to->si_ptr); 2114 break; 2115 default: /* this is just in case for now ... */ 2116 err |= __put_user(from->si_pid, &to->si_pid); 2117 err |= __put_user(from->si_uid, &to->si_uid); 2118 break; 2119 } 2120 return err; 2121 } 2122 2123 #endif 2124 2125 asmlinkage long 2126 sys_rt_sigtimedwait(const sigset_t __user *uthese, 2127 siginfo_t __user *uinfo, 2128 const struct timespec __user *uts, 2129 size_t sigsetsize) 2130 { 2131 int ret, sig; 2132 sigset_t these; 2133 struct timespec ts; 2134 siginfo_t info; 2135 long timeout = 0; 2136 2137 /* XXX: Don't preclude handling different sized sigset_t's. */ 2138 if (sigsetsize != sizeof(sigset_t)) 2139 return -EINVAL; 2140 2141 if (copy_from_user(&these, uthese, sizeof(these))) 2142 return -EFAULT; 2143 2144 /* 2145 * Invert the set of allowed signals to get those we 2146 * want to block. 2147 */ 2148 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2149 signotset(&these); 2150 2151 if (uts) { 2152 if (copy_from_user(&ts, uts, sizeof(ts))) 2153 return -EFAULT; 2154 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0 2155 || ts.tv_sec < 0) 2156 return -EINVAL; 2157 } 2158 2159 spin_lock_irq(¤t->sighand->siglock); 2160 sig = dequeue_signal(current, &these, &info); 2161 if (!sig) { 2162 timeout = MAX_SCHEDULE_TIMEOUT; 2163 if (uts) 2164 timeout = (timespec_to_jiffies(&ts) 2165 + (ts.tv_sec || ts.tv_nsec)); 2166 2167 if (timeout) { 2168 /* None ready -- temporarily unblock those we're 2169 * interested while we are sleeping in so that we'll 2170 * be awakened when they arrive. */ 2171 current->real_blocked = current->blocked; 2172 sigandsets(¤t->blocked, ¤t->blocked, &these); 2173 recalc_sigpending(); 2174 spin_unlock_irq(¤t->sighand->siglock); 2175 2176 timeout = schedule_timeout_interruptible(timeout); 2177 2178 spin_lock_irq(¤t->sighand->siglock); 2179 sig = dequeue_signal(current, &these, &info); 2180 current->blocked = current->real_blocked; 2181 siginitset(¤t->real_blocked, 0); 2182 recalc_sigpending(); 2183 } 2184 } 2185 spin_unlock_irq(¤t->sighand->siglock); 2186 2187 if (sig) { 2188 ret = sig; 2189 if (uinfo) { 2190 if (copy_siginfo_to_user(uinfo, &info)) 2191 ret = -EFAULT; 2192 } 2193 } else { 2194 ret = -EAGAIN; 2195 if (timeout) 2196 ret = -EINTR; 2197 } 2198 2199 return ret; 2200 } 2201 2202 asmlinkage long 2203 sys_kill(int pid, int sig) 2204 { 2205 struct siginfo info; 2206 2207 info.si_signo = sig; 2208 info.si_errno = 0; 2209 info.si_code = SI_USER; 2210 info.si_pid = current->tgid; 2211 info.si_uid = current->uid; 2212 2213 return kill_something_info(sig, &info, pid); 2214 } 2215 2216 static int do_tkill(int tgid, int pid, int sig) 2217 { 2218 int error; 2219 struct siginfo info; 2220 struct task_struct *p; 2221 2222 error = -ESRCH; 2223 info.si_signo = sig; 2224 info.si_errno = 0; 2225 info.si_code = SI_TKILL; 2226 info.si_pid = current->tgid; 2227 info.si_uid = current->uid; 2228 2229 read_lock(&tasklist_lock); 2230 p = find_task_by_pid(pid); 2231 if (p && (tgid <= 0 || p->tgid == tgid)) { 2232 error = check_kill_permission(sig, &info, p); 2233 /* 2234 * The null signal is a permissions and process existence 2235 * probe. No signal is actually delivered. 2236 */ 2237 if (!error && sig && p->sighand) { 2238 spin_lock_irq(&p->sighand->siglock); 2239 handle_stop_signal(sig, p); 2240 error = specific_send_sig_info(sig, &info, p); 2241 spin_unlock_irq(&p->sighand->siglock); 2242 } 2243 } 2244 read_unlock(&tasklist_lock); 2245 2246 return error; 2247 } 2248 2249 /** 2250 * sys_tgkill - send signal to one specific thread 2251 * @tgid: the thread group ID of the thread 2252 * @pid: the PID of the thread 2253 * @sig: signal to be sent 2254 * 2255 * This syscall also checks the @tgid and returns -ESRCH even if the PID 2256 * exists but it's not belonging to the target process anymore. This 2257 * method solves the problem of threads exiting and PIDs getting reused. 2258 */ 2259 asmlinkage long sys_tgkill(int tgid, int pid, int sig) 2260 { 2261 /* This is only valid for single tasks */ 2262 if (pid <= 0 || tgid <= 0) 2263 return -EINVAL; 2264 2265 return do_tkill(tgid, pid, sig); 2266 } 2267 2268 /* 2269 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2270 */ 2271 asmlinkage long 2272 sys_tkill(int pid, int sig) 2273 { 2274 /* This is only valid for single tasks */ 2275 if (pid <= 0) 2276 return -EINVAL; 2277 2278 return do_tkill(0, pid, sig); 2279 } 2280 2281 asmlinkage long 2282 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo) 2283 { 2284 siginfo_t info; 2285 2286 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2287 return -EFAULT; 2288 2289 /* Not even root can pretend to send signals from the kernel. 2290 Nor can they impersonate a kill(), which adds source info. */ 2291 if (info.si_code >= 0) 2292 return -EPERM; 2293 info.si_signo = sig; 2294 2295 /* POSIX.1b doesn't mention process groups. */ 2296 return kill_proc_info(sig, &info, pid); 2297 } 2298 2299 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 2300 { 2301 struct k_sigaction *k; 2302 sigset_t mask; 2303 2304 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 2305 return -EINVAL; 2306 2307 k = ¤t->sighand->action[sig-1]; 2308 2309 spin_lock_irq(¤t->sighand->siglock); 2310 if (signal_pending(current)) { 2311 /* 2312 * If there might be a fatal signal pending on multiple 2313 * threads, make sure we take it before changing the action. 2314 */ 2315 spin_unlock_irq(¤t->sighand->siglock); 2316 return -ERESTARTNOINTR; 2317 } 2318 2319 if (oact) 2320 *oact = *k; 2321 2322 if (act) { 2323 sigdelsetmask(&act->sa.sa_mask, 2324 sigmask(SIGKILL) | sigmask(SIGSTOP)); 2325 *k = *act; 2326 /* 2327 * POSIX 3.3.1.3: 2328 * "Setting a signal action to SIG_IGN for a signal that is 2329 * pending shall cause the pending signal to be discarded, 2330 * whether or not it is blocked." 2331 * 2332 * "Setting a signal action to SIG_DFL for a signal that is 2333 * pending and whose default action is to ignore the signal 2334 * (for example, SIGCHLD), shall cause the pending signal to 2335 * be discarded, whether or not it is blocked" 2336 */ 2337 if (act->sa.sa_handler == SIG_IGN || 2338 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) { 2339 struct task_struct *t = current; 2340 sigemptyset(&mask); 2341 sigaddset(&mask, sig); 2342 rm_from_queue_full(&mask, &t->signal->shared_pending); 2343 do { 2344 rm_from_queue_full(&mask, &t->pending); 2345 recalc_sigpending_and_wake(t); 2346 t = next_thread(t); 2347 } while (t != current); 2348 } 2349 } 2350 2351 spin_unlock_irq(¤t->sighand->siglock); 2352 return 0; 2353 } 2354 2355 int 2356 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 2357 { 2358 stack_t oss; 2359 int error; 2360 2361 if (uoss) { 2362 oss.ss_sp = (void __user *) current->sas_ss_sp; 2363 oss.ss_size = current->sas_ss_size; 2364 oss.ss_flags = sas_ss_flags(sp); 2365 } 2366 2367 if (uss) { 2368 void __user *ss_sp; 2369 size_t ss_size; 2370 int ss_flags; 2371 2372 error = -EFAULT; 2373 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)) 2374 || __get_user(ss_sp, &uss->ss_sp) 2375 || __get_user(ss_flags, &uss->ss_flags) 2376 || __get_user(ss_size, &uss->ss_size)) 2377 goto out; 2378 2379 error = -EPERM; 2380 if (on_sig_stack(sp)) 2381 goto out; 2382 2383 error = -EINVAL; 2384 /* 2385 * 2386 * Note - this code used to test ss_flags incorrectly 2387 * old code may have been written using ss_flags==0 2388 * to mean ss_flags==SS_ONSTACK (as this was the only 2389 * way that worked) - this fix preserves that older 2390 * mechanism 2391 */ 2392 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) 2393 goto out; 2394 2395 if (ss_flags == SS_DISABLE) { 2396 ss_size = 0; 2397 ss_sp = NULL; 2398 } else { 2399 error = -ENOMEM; 2400 if (ss_size < MINSIGSTKSZ) 2401 goto out; 2402 } 2403 2404 current->sas_ss_sp = (unsigned long) ss_sp; 2405 current->sas_ss_size = ss_size; 2406 } 2407 2408 if (uoss) { 2409 error = -EFAULT; 2410 if (copy_to_user(uoss, &oss, sizeof(oss))) 2411 goto out; 2412 } 2413 2414 error = 0; 2415 out: 2416 return error; 2417 } 2418 2419 #ifdef __ARCH_WANT_SYS_SIGPENDING 2420 2421 asmlinkage long 2422 sys_sigpending(old_sigset_t __user *set) 2423 { 2424 return do_sigpending(set, sizeof(*set)); 2425 } 2426 2427 #endif 2428 2429 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 2430 /* Some platforms have their own version with special arguments others 2431 support only sys_rt_sigprocmask. */ 2432 2433 asmlinkage long 2434 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset) 2435 { 2436 int error; 2437 old_sigset_t old_set, new_set; 2438 2439 if (set) { 2440 error = -EFAULT; 2441 if (copy_from_user(&new_set, set, sizeof(*set))) 2442 goto out; 2443 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP)); 2444 2445 spin_lock_irq(¤t->sighand->siglock); 2446 old_set = current->blocked.sig[0]; 2447 2448 error = 0; 2449 switch (how) { 2450 default: 2451 error = -EINVAL; 2452 break; 2453 case SIG_BLOCK: 2454 sigaddsetmask(¤t->blocked, new_set); 2455 break; 2456 case SIG_UNBLOCK: 2457 sigdelsetmask(¤t->blocked, new_set); 2458 break; 2459 case SIG_SETMASK: 2460 current->blocked.sig[0] = new_set; 2461 break; 2462 } 2463 2464 recalc_sigpending(); 2465 spin_unlock_irq(¤t->sighand->siglock); 2466 if (error) 2467 goto out; 2468 if (oset) 2469 goto set_old; 2470 } else if (oset) { 2471 old_set = current->blocked.sig[0]; 2472 set_old: 2473 error = -EFAULT; 2474 if (copy_to_user(oset, &old_set, sizeof(*oset))) 2475 goto out; 2476 } 2477 error = 0; 2478 out: 2479 return error; 2480 } 2481 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 2482 2483 #ifdef __ARCH_WANT_SYS_RT_SIGACTION 2484 asmlinkage long 2485 sys_rt_sigaction(int sig, 2486 const struct sigaction __user *act, 2487 struct sigaction __user *oact, 2488 size_t sigsetsize) 2489 { 2490 struct k_sigaction new_sa, old_sa; 2491 int ret = -EINVAL; 2492 2493 /* XXX: Don't preclude handling different sized sigset_t's. */ 2494 if (sigsetsize != sizeof(sigset_t)) 2495 goto out; 2496 2497 if (act) { 2498 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 2499 return -EFAULT; 2500 } 2501 2502 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 2503 2504 if (!ret && oact) { 2505 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 2506 return -EFAULT; 2507 } 2508 out: 2509 return ret; 2510 } 2511 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */ 2512 2513 #ifdef __ARCH_WANT_SYS_SGETMASK 2514 2515 /* 2516 * For backwards compatibility. Functionality superseded by sigprocmask. 2517 */ 2518 asmlinkage long 2519 sys_sgetmask(void) 2520 { 2521 /* SMP safe */ 2522 return current->blocked.sig[0]; 2523 } 2524 2525 asmlinkage long 2526 sys_ssetmask(int newmask) 2527 { 2528 int old; 2529 2530 spin_lock_irq(¤t->sighand->siglock); 2531 old = current->blocked.sig[0]; 2532 2533 siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)| 2534 sigmask(SIGSTOP))); 2535 recalc_sigpending(); 2536 spin_unlock_irq(¤t->sighand->siglock); 2537 2538 return old; 2539 } 2540 #endif /* __ARCH_WANT_SGETMASK */ 2541 2542 #ifdef __ARCH_WANT_SYS_SIGNAL 2543 /* 2544 * For backwards compatibility. Functionality superseded by sigaction. 2545 */ 2546 asmlinkage unsigned long 2547 sys_signal(int sig, __sighandler_t handler) 2548 { 2549 struct k_sigaction new_sa, old_sa; 2550 int ret; 2551 2552 new_sa.sa.sa_handler = handler; 2553 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 2554 sigemptyset(&new_sa.sa.sa_mask); 2555 2556 ret = do_sigaction(sig, &new_sa, &old_sa); 2557 2558 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 2559 } 2560 #endif /* __ARCH_WANT_SYS_SIGNAL */ 2561 2562 #ifdef __ARCH_WANT_SYS_PAUSE 2563 2564 asmlinkage long 2565 sys_pause(void) 2566 { 2567 current->state = TASK_INTERRUPTIBLE; 2568 schedule(); 2569 return -ERESTARTNOHAND; 2570 } 2571 2572 #endif 2573 2574 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND 2575 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize) 2576 { 2577 sigset_t newset; 2578 2579 /* XXX: Don't preclude handling different sized sigset_t's. */ 2580 if (sigsetsize != sizeof(sigset_t)) 2581 return -EINVAL; 2582 2583 if (copy_from_user(&newset, unewset, sizeof(newset))) 2584 return -EFAULT; 2585 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2586 2587 spin_lock_irq(¤t->sighand->siglock); 2588 current->saved_sigmask = current->blocked; 2589 current->blocked = newset; 2590 recalc_sigpending(); 2591 spin_unlock_irq(¤t->sighand->siglock); 2592 2593 current->state = TASK_INTERRUPTIBLE; 2594 schedule(); 2595 set_thread_flag(TIF_RESTORE_SIGMASK); 2596 return -ERESTARTNOHAND; 2597 } 2598 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */ 2599 2600 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma) 2601 { 2602 return NULL; 2603 } 2604 2605 void __init signals_init(void) 2606 { 2607 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 2608 } 2609