xref: /linux/kernel/signal.c (revision ab52c59103002b49f2455371e4b9c56ba3ef1781)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/mm.h>
26 #include <linux/proc_fs.h>
27 #include <linux/tty.h>
28 #include <linux/binfmts.h>
29 #include <linux/coredump.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/ptrace.h>
33 #include <linux/signal.h>
34 #include <linux/signalfd.h>
35 #include <linux/ratelimit.h>
36 #include <linux/task_work.h>
37 #include <linux/capability.h>
38 #include <linux/freezer.h>
39 #include <linux/pid_namespace.h>
40 #include <linux/nsproxy.h>
41 #include <linux/user_namespace.h>
42 #include <linux/uprobes.h>
43 #include <linux/compat.h>
44 #include <linux/cn_proc.h>
45 #include <linux/compiler.h>
46 #include <linux/posix-timers.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49 #include <linux/sysctl.h>
50 #include <uapi/linux/pidfd.h>
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/signal.h>
54 
55 #include <asm/param.h>
56 #include <linux/uaccess.h>
57 #include <asm/unistd.h>
58 #include <asm/siginfo.h>
59 #include <asm/cacheflush.h>
60 #include <asm/syscall.h>	/* for syscall_get_* */
61 
62 /*
63  * SLAB caches for signal bits.
64  */
65 
66 static struct kmem_cache *sigqueue_cachep;
67 
68 int print_fatal_signals __read_mostly;
69 
70 static void __user *sig_handler(struct task_struct *t, int sig)
71 {
72 	return t->sighand->action[sig - 1].sa.sa_handler;
73 }
74 
75 static inline bool sig_handler_ignored(void __user *handler, int sig)
76 {
77 	/* Is it explicitly or implicitly ignored? */
78 	return handler == SIG_IGN ||
79 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
80 }
81 
82 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
83 {
84 	void __user *handler;
85 
86 	handler = sig_handler(t, sig);
87 
88 	/* SIGKILL and SIGSTOP may not be sent to the global init */
89 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
90 		return true;
91 
92 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
93 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
94 		return true;
95 
96 	/* Only allow kernel generated signals to this kthread */
97 	if (unlikely((t->flags & PF_KTHREAD) &&
98 		     (handler == SIG_KTHREAD_KERNEL) && !force))
99 		return true;
100 
101 	return sig_handler_ignored(handler, sig);
102 }
103 
104 static bool sig_ignored(struct task_struct *t, int sig, bool force)
105 {
106 	/*
107 	 * Blocked signals are never ignored, since the
108 	 * signal handler may change by the time it is
109 	 * unblocked.
110 	 */
111 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
112 		return false;
113 
114 	/*
115 	 * Tracers may want to know about even ignored signal unless it
116 	 * is SIGKILL which can't be reported anyway but can be ignored
117 	 * by SIGNAL_UNKILLABLE task.
118 	 */
119 	if (t->ptrace && sig != SIGKILL)
120 		return false;
121 
122 	return sig_task_ignored(t, sig, force);
123 }
124 
125 /*
126  * Re-calculate pending state from the set of locally pending
127  * signals, globally pending signals, and blocked signals.
128  */
129 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
130 {
131 	unsigned long ready;
132 	long i;
133 
134 	switch (_NSIG_WORDS) {
135 	default:
136 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
137 			ready |= signal->sig[i] &~ blocked->sig[i];
138 		break;
139 
140 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
141 		ready |= signal->sig[2] &~ blocked->sig[2];
142 		ready |= signal->sig[1] &~ blocked->sig[1];
143 		ready |= signal->sig[0] &~ blocked->sig[0];
144 		break;
145 
146 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
147 		ready |= signal->sig[0] &~ blocked->sig[0];
148 		break;
149 
150 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
151 	}
152 	return ready !=	0;
153 }
154 
155 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
156 
157 static bool recalc_sigpending_tsk(struct task_struct *t)
158 {
159 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
160 	    PENDING(&t->pending, &t->blocked) ||
161 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
162 	    cgroup_task_frozen(t)) {
163 		set_tsk_thread_flag(t, TIF_SIGPENDING);
164 		return true;
165 	}
166 
167 	/*
168 	 * We must never clear the flag in another thread, or in current
169 	 * when it's possible the current syscall is returning -ERESTART*.
170 	 * So we don't clear it here, and only callers who know they should do.
171 	 */
172 	return false;
173 }
174 
175 void recalc_sigpending(void)
176 {
177 	if (!recalc_sigpending_tsk(current) && !freezing(current))
178 		clear_thread_flag(TIF_SIGPENDING);
179 
180 }
181 EXPORT_SYMBOL(recalc_sigpending);
182 
183 void calculate_sigpending(void)
184 {
185 	/* Have any signals or users of TIF_SIGPENDING been delayed
186 	 * until after fork?
187 	 */
188 	spin_lock_irq(&current->sighand->siglock);
189 	set_tsk_thread_flag(current, TIF_SIGPENDING);
190 	recalc_sigpending();
191 	spin_unlock_irq(&current->sighand->siglock);
192 }
193 
194 /* Given the mask, find the first available signal that should be serviced. */
195 
196 #define SYNCHRONOUS_MASK \
197 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
198 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
199 
200 int next_signal(struct sigpending *pending, sigset_t *mask)
201 {
202 	unsigned long i, *s, *m, x;
203 	int sig = 0;
204 
205 	s = pending->signal.sig;
206 	m = mask->sig;
207 
208 	/*
209 	 * Handle the first word specially: it contains the
210 	 * synchronous signals that need to be dequeued first.
211 	 */
212 	x = *s &~ *m;
213 	if (x) {
214 		if (x & SYNCHRONOUS_MASK)
215 			x &= SYNCHRONOUS_MASK;
216 		sig = ffz(~x) + 1;
217 		return sig;
218 	}
219 
220 	switch (_NSIG_WORDS) {
221 	default:
222 		for (i = 1; i < _NSIG_WORDS; ++i) {
223 			x = *++s &~ *++m;
224 			if (!x)
225 				continue;
226 			sig = ffz(~x) + i*_NSIG_BPW + 1;
227 			break;
228 		}
229 		break;
230 
231 	case 2:
232 		x = s[1] &~ m[1];
233 		if (!x)
234 			break;
235 		sig = ffz(~x) + _NSIG_BPW + 1;
236 		break;
237 
238 	case 1:
239 		/* Nothing to do */
240 		break;
241 	}
242 
243 	return sig;
244 }
245 
246 static inline void print_dropped_signal(int sig)
247 {
248 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
249 
250 	if (!print_fatal_signals)
251 		return;
252 
253 	if (!__ratelimit(&ratelimit_state))
254 		return;
255 
256 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
257 				current->comm, current->pid, sig);
258 }
259 
260 /**
261  * task_set_jobctl_pending - set jobctl pending bits
262  * @task: target task
263  * @mask: pending bits to set
264  *
265  * Clear @mask from @task->jobctl.  @mask must be subset of
266  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
267  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
268  * cleared.  If @task is already being killed or exiting, this function
269  * becomes noop.
270  *
271  * CONTEXT:
272  * Must be called with @task->sighand->siglock held.
273  *
274  * RETURNS:
275  * %true if @mask is set, %false if made noop because @task was dying.
276  */
277 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
278 {
279 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
280 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
281 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
282 
283 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
284 		return false;
285 
286 	if (mask & JOBCTL_STOP_SIGMASK)
287 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
288 
289 	task->jobctl |= mask;
290 	return true;
291 }
292 
293 /**
294  * task_clear_jobctl_trapping - clear jobctl trapping bit
295  * @task: target task
296  *
297  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
298  * Clear it and wake up the ptracer.  Note that we don't need any further
299  * locking.  @task->siglock guarantees that @task->parent points to the
300  * ptracer.
301  *
302  * CONTEXT:
303  * Must be called with @task->sighand->siglock held.
304  */
305 void task_clear_jobctl_trapping(struct task_struct *task)
306 {
307 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
308 		task->jobctl &= ~JOBCTL_TRAPPING;
309 		smp_mb();	/* advised by wake_up_bit() */
310 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
311 	}
312 }
313 
314 /**
315  * task_clear_jobctl_pending - clear jobctl pending bits
316  * @task: target task
317  * @mask: pending bits to clear
318  *
319  * Clear @mask from @task->jobctl.  @mask must be subset of
320  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
321  * STOP bits are cleared together.
322  *
323  * If clearing of @mask leaves no stop or trap pending, this function calls
324  * task_clear_jobctl_trapping().
325  *
326  * CONTEXT:
327  * Must be called with @task->sighand->siglock held.
328  */
329 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
330 {
331 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
332 
333 	if (mask & JOBCTL_STOP_PENDING)
334 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
335 
336 	task->jobctl &= ~mask;
337 
338 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
339 		task_clear_jobctl_trapping(task);
340 }
341 
342 /**
343  * task_participate_group_stop - participate in a group stop
344  * @task: task participating in a group stop
345  *
346  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
347  * Group stop states are cleared and the group stop count is consumed if
348  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
349  * stop, the appropriate `SIGNAL_*` flags are set.
350  *
351  * CONTEXT:
352  * Must be called with @task->sighand->siglock held.
353  *
354  * RETURNS:
355  * %true if group stop completion should be notified to the parent, %false
356  * otherwise.
357  */
358 static bool task_participate_group_stop(struct task_struct *task)
359 {
360 	struct signal_struct *sig = task->signal;
361 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
362 
363 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
364 
365 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
366 
367 	if (!consume)
368 		return false;
369 
370 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
371 		sig->group_stop_count--;
372 
373 	/*
374 	 * Tell the caller to notify completion iff we are entering into a
375 	 * fresh group stop.  Read comment in do_signal_stop() for details.
376 	 */
377 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
378 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
379 		return true;
380 	}
381 	return false;
382 }
383 
384 void task_join_group_stop(struct task_struct *task)
385 {
386 	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
387 	struct signal_struct *sig = current->signal;
388 
389 	if (sig->group_stop_count) {
390 		sig->group_stop_count++;
391 		mask |= JOBCTL_STOP_CONSUME;
392 	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
393 		return;
394 
395 	/* Have the new thread join an on-going signal group stop */
396 	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
397 }
398 
399 /*
400  * allocate a new signal queue record
401  * - this may be called without locks if and only if t == current, otherwise an
402  *   appropriate lock must be held to stop the target task from exiting
403  */
404 static struct sigqueue *
405 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
406 		 int override_rlimit, const unsigned int sigqueue_flags)
407 {
408 	struct sigqueue *q = NULL;
409 	struct ucounts *ucounts;
410 	long sigpending;
411 
412 	/*
413 	 * Protect access to @t credentials. This can go away when all
414 	 * callers hold rcu read lock.
415 	 *
416 	 * NOTE! A pending signal will hold on to the user refcount,
417 	 * and we get/put the refcount only when the sigpending count
418 	 * changes from/to zero.
419 	 */
420 	rcu_read_lock();
421 	ucounts = task_ucounts(t);
422 	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
423 	rcu_read_unlock();
424 	if (!sigpending)
425 		return NULL;
426 
427 	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
428 		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
429 	} else {
430 		print_dropped_signal(sig);
431 	}
432 
433 	if (unlikely(q == NULL)) {
434 		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
435 	} else {
436 		INIT_LIST_HEAD(&q->list);
437 		q->flags = sigqueue_flags;
438 		q->ucounts = ucounts;
439 	}
440 	return q;
441 }
442 
443 static void __sigqueue_free(struct sigqueue *q)
444 {
445 	if (q->flags & SIGQUEUE_PREALLOC)
446 		return;
447 	if (q->ucounts) {
448 		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
449 		q->ucounts = NULL;
450 	}
451 	kmem_cache_free(sigqueue_cachep, q);
452 }
453 
454 void flush_sigqueue(struct sigpending *queue)
455 {
456 	struct sigqueue *q;
457 
458 	sigemptyset(&queue->signal);
459 	while (!list_empty(&queue->list)) {
460 		q = list_entry(queue->list.next, struct sigqueue , list);
461 		list_del_init(&q->list);
462 		__sigqueue_free(q);
463 	}
464 }
465 
466 /*
467  * Flush all pending signals for this kthread.
468  */
469 void flush_signals(struct task_struct *t)
470 {
471 	unsigned long flags;
472 
473 	spin_lock_irqsave(&t->sighand->siglock, flags);
474 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
475 	flush_sigqueue(&t->pending);
476 	flush_sigqueue(&t->signal->shared_pending);
477 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
478 }
479 EXPORT_SYMBOL(flush_signals);
480 
481 #ifdef CONFIG_POSIX_TIMERS
482 static void __flush_itimer_signals(struct sigpending *pending)
483 {
484 	sigset_t signal, retain;
485 	struct sigqueue *q, *n;
486 
487 	signal = pending->signal;
488 	sigemptyset(&retain);
489 
490 	list_for_each_entry_safe(q, n, &pending->list, list) {
491 		int sig = q->info.si_signo;
492 
493 		if (likely(q->info.si_code != SI_TIMER)) {
494 			sigaddset(&retain, sig);
495 		} else {
496 			sigdelset(&signal, sig);
497 			list_del_init(&q->list);
498 			__sigqueue_free(q);
499 		}
500 	}
501 
502 	sigorsets(&pending->signal, &signal, &retain);
503 }
504 
505 void flush_itimer_signals(void)
506 {
507 	struct task_struct *tsk = current;
508 	unsigned long flags;
509 
510 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
511 	__flush_itimer_signals(&tsk->pending);
512 	__flush_itimer_signals(&tsk->signal->shared_pending);
513 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
514 }
515 #endif
516 
517 void ignore_signals(struct task_struct *t)
518 {
519 	int i;
520 
521 	for (i = 0; i < _NSIG; ++i)
522 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
523 
524 	flush_signals(t);
525 }
526 
527 /*
528  * Flush all handlers for a task.
529  */
530 
531 void
532 flush_signal_handlers(struct task_struct *t, int force_default)
533 {
534 	int i;
535 	struct k_sigaction *ka = &t->sighand->action[0];
536 	for (i = _NSIG ; i != 0 ; i--) {
537 		if (force_default || ka->sa.sa_handler != SIG_IGN)
538 			ka->sa.sa_handler = SIG_DFL;
539 		ka->sa.sa_flags = 0;
540 #ifdef __ARCH_HAS_SA_RESTORER
541 		ka->sa.sa_restorer = NULL;
542 #endif
543 		sigemptyset(&ka->sa.sa_mask);
544 		ka++;
545 	}
546 }
547 
548 bool unhandled_signal(struct task_struct *tsk, int sig)
549 {
550 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
551 	if (is_global_init(tsk))
552 		return true;
553 
554 	if (handler != SIG_IGN && handler != SIG_DFL)
555 		return false;
556 
557 	/* If dying, we handle all new signals by ignoring them */
558 	if (fatal_signal_pending(tsk))
559 		return false;
560 
561 	/* if ptraced, let the tracer determine */
562 	return !tsk->ptrace;
563 }
564 
565 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
566 			   bool *resched_timer)
567 {
568 	struct sigqueue *q, *first = NULL;
569 
570 	/*
571 	 * Collect the siginfo appropriate to this signal.  Check if
572 	 * there is another siginfo for the same signal.
573 	*/
574 	list_for_each_entry(q, &list->list, list) {
575 		if (q->info.si_signo == sig) {
576 			if (first)
577 				goto still_pending;
578 			first = q;
579 		}
580 	}
581 
582 	sigdelset(&list->signal, sig);
583 
584 	if (first) {
585 still_pending:
586 		list_del_init(&first->list);
587 		copy_siginfo(info, &first->info);
588 
589 		*resched_timer =
590 			(first->flags & SIGQUEUE_PREALLOC) &&
591 			(info->si_code == SI_TIMER) &&
592 			(info->si_sys_private);
593 
594 		__sigqueue_free(first);
595 	} else {
596 		/*
597 		 * Ok, it wasn't in the queue.  This must be
598 		 * a fast-pathed signal or we must have been
599 		 * out of queue space.  So zero out the info.
600 		 */
601 		clear_siginfo(info);
602 		info->si_signo = sig;
603 		info->si_errno = 0;
604 		info->si_code = SI_USER;
605 		info->si_pid = 0;
606 		info->si_uid = 0;
607 	}
608 }
609 
610 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
611 			kernel_siginfo_t *info, bool *resched_timer)
612 {
613 	int sig = next_signal(pending, mask);
614 
615 	if (sig)
616 		collect_signal(sig, pending, info, resched_timer);
617 	return sig;
618 }
619 
620 /*
621  * Dequeue a signal and return the element to the caller, which is
622  * expected to free it.
623  *
624  * All callers have to hold the siglock.
625  */
626 int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
627 		   kernel_siginfo_t *info, enum pid_type *type)
628 {
629 	bool resched_timer = false;
630 	int signr;
631 
632 	/* We only dequeue private signals from ourselves, we don't let
633 	 * signalfd steal them
634 	 */
635 	*type = PIDTYPE_PID;
636 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
637 	if (!signr) {
638 		*type = PIDTYPE_TGID;
639 		signr = __dequeue_signal(&tsk->signal->shared_pending,
640 					 mask, info, &resched_timer);
641 #ifdef CONFIG_POSIX_TIMERS
642 		/*
643 		 * itimer signal ?
644 		 *
645 		 * itimers are process shared and we restart periodic
646 		 * itimers in the signal delivery path to prevent DoS
647 		 * attacks in the high resolution timer case. This is
648 		 * compliant with the old way of self-restarting
649 		 * itimers, as the SIGALRM is a legacy signal and only
650 		 * queued once. Changing the restart behaviour to
651 		 * restart the timer in the signal dequeue path is
652 		 * reducing the timer noise on heavy loaded !highres
653 		 * systems too.
654 		 */
655 		if (unlikely(signr == SIGALRM)) {
656 			struct hrtimer *tmr = &tsk->signal->real_timer;
657 
658 			if (!hrtimer_is_queued(tmr) &&
659 			    tsk->signal->it_real_incr != 0) {
660 				hrtimer_forward(tmr, tmr->base->get_time(),
661 						tsk->signal->it_real_incr);
662 				hrtimer_restart(tmr);
663 			}
664 		}
665 #endif
666 	}
667 
668 	recalc_sigpending();
669 	if (!signr)
670 		return 0;
671 
672 	if (unlikely(sig_kernel_stop(signr))) {
673 		/*
674 		 * Set a marker that we have dequeued a stop signal.  Our
675 		 * caller might release the siglock and then the pending
676 		 * stop signal it is about to process is no longer in the
677 		 * pending bitmasks, but must still be cleared by a SIGCONT
678 		 * (and overruled by a SIGKILL).  So those cases clear this
679 		 * shared flag after we've set it.  Note that this flag may
680 		 * remain set after the signal we return is ignored or
681 		 * handled.  That doesn't matter because its only purpose
682 		 * is to alert stop-signal processing code when another
683 		 * processor has come along and cleared the flag.
684 		 */
685 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
686 	}
687 #ifdef CONFIG_POSIX_TIMERS
688 	if (resched_timer) {
689 		/*
690 		 * Release the siglock to ensure proper locking order
691 		 * of timer locks outside of siglocks.  Note, we leave
692 		 * irqs disabled here, since the posix-timers code is
693 		 * about to disable them again anyway.
694 		 */
695 		spin_unlock(&tsk->sighand->siglock);
696 		posixtimer_rearm(info);
697 		spin_lock(&tsk->sighand->siglock);
698 
699 		/* Don't expose the si_sys_private value to userspace */
700 		info->si_sys_private = 0;
701 	}
702 #endif
703 	return signr;
704 }
705 EXPORT_SYMBOL_GPL(dequeue_signal);
706 
707 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
708 {
709 	struct task_struct *tsk = current;
710 	struct sigpending *pending = &tsk->pending;
711 	struct sigqueue *q, *sync = NULL;
712 
713 	/*
714 	 * Might a synchronous signal be in the queue?
715 	 */
716 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
717 		return 0;
718 
719 	/*
720 	 * Return the first synchronous signal in the queue.
721 	 */
722 	list_for_each_entry(q, &pending->list, list) {
723 		/* Synchronous signals have a positive si_code */
724 		if ((q->info.si_code > SI_USER) &&
725 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
726 			sync = q;
727 			goto next;
728 		}
729 	}
730 	return 0;
731 next:
732 	/*
733 	 * Check if there is another siginfo for the same signal.
734 	 */
735 	list_for_each_entry_continue(q, &pending->list, list) {
736 		if (q->info.si_signo == sync->info.si_signo)
737 			goto still_pending;
738 	}
739 
740 	sigdelset(&pending->signal, sync->info.si_signo);
741 	recalc_sigpending();
742 still_pending:
743 	list_del_init(&sync->list);
744 	copy_siginfo(info, &sync->info);
745 	__sigqueue_free(sync);
746 	return info->si_signo;
747 }
748 
749 /*
750  * Tell a process that it has a new active signal..
751  *
752  * NOTE! we rely on the previous spin_lock to
753  * lock interrupts for us! We can only be called with
754  * "siglock" held, and the local interrupt must
755  * have been disabled when that got acquired!
756  *
757  * No need to set need_resched since signal event passing
758  * goes through ->blocked
759  */
760 void signal_wake_up_state(struct task_struct *t, unsigned int state)
761 {
762 	lockdep_assert_held(&t->sighand->siglock);
763 
764 	set_tsk_thread_flag(t, TIF_SIGPENDING);
765 
766 	/*
767 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
768 	 * case. We don't check t->state here because there is a race with it
769 	 * executing another processor and just now entering stopped state.
770 	 * By using wake_up_state, we ensure the process will wake up and
771 	 * handle its death signal.
772 	 */
773 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
774 		kick_process(t);
775 }
776 
777 /*
778  * Remove signals in mask from the pending set and queue.
779  * Returns 1 if any signals were found.
780  *
781  * All callers must be holding the siglock.
782  */
783 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
784 {
785 	struct sigqueue *q, *n;
786 	sigset_t m;
787 
788 	sigandsets(&m, mask, &s->signal);
789 	if (sigisemptyset(&m))
790 		return;
791 
792 	sigandnsets(&s->signal, &s->signal, mask);
793 	list_for_each_entry_safe(q, n, &s->list, list) {
794 		if (sigismember(mask, q->info.si_signo)) {
795 			list_del_init(&q->list);
796 			__sigqueue_free(q);
797 		}
798 	}
799 }
800 
801 static inline int is_si_special(const struct kernel_siginfo *info)
802 {
803 	return info <= SEND_SIG_PRIV;
804 }
805 
806 static inline bool si_fromuser(const struct kernel_siginfo *info)
807 {
808 	return info == SEND_SIG_NOINFO ||
809 		(!is_si_special(info) && SI_FROMUSER(info));
810 }
811 
812 /*
813  * called with RCU read lock from check_kill_permission()
814  */
815 static bool kill_ok_by_cred(struct task_struct *t)
816 {
817 	const struct cred *cred = current_cred();
818 	const struct cred *tcred = __task_cred(t);
819 
820 	return uid_eq(cred->euid, tcred->suid) ||
821 	       uid_eq(cred->euid, tcred->uid) ||
822 	       uid_eq(cred->uid, tcred->suid) ||
823 	       uid_eq(cred->uid, tcred->uid) ||
824 	       ns_capable(tcred->user_ns, CAP_KILL);
825 }
826 
827 /*
828  * Bad permissions for sending the signal
829  * - the caller must hold the RCU read lock
830  */
831 static int check_kill_permission(int sig, struct kernel_siginfo *info,
832 				 struct task_struct *t)
833 {
834 	struct pid *sid;
835 	int error;
836 
837 	if (!valid_signal(sig))
838 		return -EINVAL;
839 
840 	if (!si_fromuser(info))
841 		return 0;
842 
843 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
844 	if (error)
845 		return error;
846 
847 	if (!same_thread_group(current, t) &&
848 	    !kill_ok_by_cred(t)) {
849 		switch (sig) {
850 		case SIGCONT:
851 			sid = task_session(t);
852 			/*
853 			 * We don't return the error if sid == NULL. The
854 			 * task was unhashed, the caller must notice this.
855 			 */
856 			if (!sid || sid == task_session(current))
857 				break;
858 			fallthrough;
859 		default:
860 			return -EPERM;
861 		}
862 	}
863 
864 	return security_task_kill(t, info, sig, NULL);
865 }
866 
867 /**
868  * ptrace_trap_notify - schedule trap to notify ptracer
869  * @t: tracee wanting to notify tracer
870  *
871  * This function schedules sticky ptrace trap which is cleared on the next
872  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
873  * ptracer.
874  *
875  * If @t is running, STOP trap will be taken.  If trapped for STOP and
876  * ptracer is listening for events, tracee is woken up so that it can
877  * re-trap for the new event.  If trapped otherwise, STOP trap will be
878  * eventually taken without returning to userland after the existing traps
879  * are finished by PTRACE_CONT.
880  *
881  * CONTEXT:
882  * Must be called with @task->sighand->siglock held.
883  */
884 static void ptrace_trap_notify(struct task_struct *t)
885 {
886 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
887 	lockdep_assert_held(&t->sighand->siglock);
888 
889 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
890 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
891 }
892 
893 /*
894  * Handle magic process-wide effects of stop/continue signals. Unlike
895  * the signal actions, these happen immediately at signal-generation
896  * time regardless of blocking, ignoring, or handling.  This does the
897  * actual continuing for SIGCONT, but not the actual stopping for stop
898  * signals. The process stop is done as a signal action for SIG_DFL.
899  *
900  * Returns true if the signal should be actually delivered, otherwise
901  * it should be dropped.
902  */
903 static bool prepare_signal(int sig, struct task_struct *p, bool force)
904 {
905 	struct signal_struct *signal = p->signal;
906 	struct task_struct *t;
907 	sigset_t flush;
908 
909 	if (signal->flags & SIGNAL_GROUP_EXIT) {
910 		if (signal->core_state)
911 			return sig == SIGKILL;
912 		/*
913 		 * The process is in the middle of dying, drop the signal.
914 		 */
915 		return false;
916 	} else if (sig_kernel_stop(sig)) {
917 		/*
918 		 * This is a stop signal.  Remove SIGCONT from all queues.
919 		 */
920 		siginitset(&flush, sigmask(SIGCONT));
921 		flush_sigqueue_mask(&flush, &signal->shared_pending);
922 		for_each_thread(p, t)
923 			flush_sigqueue_mask(&flush, &t->pending);
924 	} else if (sig == SIGCONT) {
925 		unsigned int why;
926 		/*
927 		 * Remove all stop signals from all queues, wake all threads.
928 		 */
929 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
930 		flush_sigqueue_mask(&flush, &signal->shared_pending);
931 		for_each_thread(p, t) {
932 			flush_sigqueue_mask(&flush, &t->pending);
933 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
934 			if (likely(!(t->ptrace & PT_SEIZED))) {
935 				t->jobctl &= ~JOBCTL_STOPPED;
936 				wake_up_state(t, __TASK_STOPPED);
937 			} else
938 				ptrace_trap_notify(t);
939 		}
940 
941 		/*
942 		 * Notify the parent with CLD_CONTINUED if we were stopped.
943 		 *
944 		 * If we were in the middle of a group stop, we pretend it
945 		 * was already finished, and then continued. Since SIGCHLD
946 		 * doesn't queue we report only CLD_STOPPED, as if the next
947 		 * CLD_CONTINUED was dropped.
948 		 */
949 		why = 0;
950 		if (signal->flags & SIGNAL_STOP_STOPPED)
951 			why |= SIGNAL_CLD_CONTINUED;
952 		else if (signal->group_stop_count)
953 			why |= SIGNAL_CLD_STOPPED;
954 
955 		if (why) {
956 			/*
957 			 * The first thread which returns from do_signal_stop()
958 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
959 			 * notify its parent. See get_signal().
960 			 */
961 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
962 			signal->group_stop_count = 0;
963 			signal->group_exit_code = 0;
964 		}
965 	}
966 
967 	return !sig_ignored(p, sig, force);
968 }
969 
970 /*
971  * Test if P wants to take SIG.  After we've checked all threads with this,
972  * it's equivalent to finding no threads not blocking SIG.  Any threads not
973  * blocking SIG were ruled out because they are not running and already
974  * have pending signals.  Such threads will dequeue from the shared queue
975  * as soon as they're available, so putting the signal on the shared queue
976  * will be equivalent to sending it to one such thread.
977  */
978 static inline bool wants_signal(int sig, struct task_struct *p)
979 {
980 	if (sigismember(&p->blocked, sig))
981 		return false;
982 
983 	if (p->flags & PF_EXITING)
984 		return false;
985 
986 	if (sig == SIGKILL)
987 		return true;
988 
989 	if (task_is_stopped_or_traced(p))
990 		return false;
991 
992 	return task_curr(p) || !task_sigpending(p);
993 }
994 
995 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
996 {
997 	struct signal_struct *signal = p->signal;
998 	struct task_struct *t;
999 
1000 	/*
1001 	 * Now find a thread we can wake up to take the signal off the queue.
1002 	 *
1003 	 * Try the suggested task first (may or may not be the main thread).
1004 	 */
1005 	if (wants_signal(sig, p))
1006 		t = p;
1007 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1008 		/*
1009 		 * There is just one thread and it does not need to be woken.
1010 		 * It will dequeue unblocked signals before it runs again.
1011 		 */
1012 		return;
1013 	else {
1014 		/*
1015 		 * Otherwise try to find a suitable thread.
1016 		 */
1017 		t = signal->curr_target;
1018 		while (!wants_signal(sig, t)) {
1019 			t = next_thread(t);
1020 			if (t == signal->curr_target)
1021 				/*
1022 				 * No thread needs to be woken.
1023 				 * Any eligible threads will see
1024 				 * the signal in the queue soon.
1025 				 */
1026 				return;
1027 		}
1028 		signal->curr_target = t;
1029 	}
1030 
1031 	/*
1032 	 * Found a killable thread.  If the signal will be fatal,
1033 	 * then start taking the whole group down immediately.
1034 	 */
1035 	if (sig_fatal(p, sig) &&
1036 	    (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1037 	    !sigismember(&t->real_blocked, sig) &&
1038 	    (sig == SIGKILL || !p->ptrace)) {
1039 		/*
1040 		 * This signal will be fatal to the whole group.
1041 		 */
1042 		if (!sig_kernel_coredump(sig)) {
1043 			/*
1044 			 * Start a group exit and wake everybody up.
1045 			 * This way we don't have other threads
1046 			 * running and doing things after a slower
1047 			 * thread has the fatal signal pending.
1048 			 */
1049 			signal->flags = SIGNAL_GROUP_EXIT;
1050 			signal->group_exit_code = sig;
1051 			signal->group_stop_count = 0;
1052 			__for_each_thread(signal, t) {
1053 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1054 				sigaddset(&t->pending.signal, SIGKILL);
1055 				signal_wake_up(t, 1);
1056 			}
1057 			return;
1058 		}
1059 	}
1060 
1061 	/*
1062 	 * The signal is already in the shared-pending queue.
1063 	 * Tell the chosen thread to wake up and dequeue it.
1064 	 */
1065 	signal_wake_up(t, sig == SIGKILL);
1066 	return;
1067 }
1068 
1069 static inline bool legacy_queue(struct sigpending *signals, int sig)
1070 {
1071 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1072 }
1073 
1074 static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1075 				struct task_struct *t, enum pid_type type, bool force)
1076 {
1077 	struct sigpending *pending;
1078 	struct sigqueue *q;
1079 	int override_rlimit;
1080 	int ret = 0, result;
1081 
1082 	lockdep_assert_held(&t->sighand->siglock);
1083 
1084 	result = TRACE_SIGNAL_IGNORED;
1085 	if (!prepare_signal(sig, t, force))
1086 		goto ret;
1087 
1088 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1089 	/*
1090 	 * Short-circuit ignored signals and support queuing
1091 	 * exactly one non-rt signal, so that we can get more
1092 	 * detailed information about the cause of the signal.
1093 	 */
1094 	result = TRACE_SIGNAL_ALREADY_PENDING;
1095 	if (legacy_queue(pending, sig))
1096 		goto ret;
1097 
1098 	result = TRACE_SIGNAL_DELIVERED;
1099 	/*
1100 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1101 	 */
1102 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1103 		goto out_set;
1104 
1105 	/*
1106 	 * Real-time signals must be queued if sent by sigqueue, or
1107 	 * some other real-time mechanism.  It is implementation
1108 	 * defined whether kill() does so.  We attempt to do so, on
1109 	 * the principle of least surprise, but since kill is not
1110 	 * allowed to fail with EAGAIN when low on memory we just
1111 	 * make sure at least one signal gets delivered and don't
1112 	 * pass on the info struct.
1113 	 */
1114 	if (sig < SIGRTMIN)
1115 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1116 	else
1117 		override_rlimit = 0;
1118 
1119 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1120 
1121 	if (q) {
1122 		list_add_tail(&q->list, &pending->list);
1123 		switch ((unsigned long) info) {
1124 		case (unsigned long) SEND_SIG_NOINFO:
1125 			clear_siginfo(&q->info);
1126 			q->info.si_signo = sig;
1127 			q->info.si_errno = 0;
1128 			q->info.si_code = SI_USER;
1129 			q->info.si_pid = task_tgid_nr_ns(current,
1130 							task_active_pid_ns(t));
1131 			rcu_read_lock();
1132 			q->info.si_uid =
1133 				from_kuid_munged(task_cred_xxx(t, user_ns),
1134 						 current_uid());
1135 			rcu_read_unlock();
1136 			break;
1137 		case (unsigned long) SEND_SIG_PRIV:
1138 			clear_siginfo(&q->info);
1139 			q->info.si_signo = sig;
1140 			q->info.si_errno = 0;
1141 			q->info.si_code = SI_KERNEL;
1142 			q->info.si_pid = 0;
1143 			q->info.si_uid = 0;
1144 			break;
1145 		default:
1146 			copy_siginfo(&q->info, info);
1147 			break;
1148 		}
1149 	} else if (!is_si_special(info) &&
1150 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1151 		/*
1152 		 * Queue overflow, abort.  We may abort if the
1153 		 * signal was rt and sent by user using something
1154 		 * other than kill().
1155 		 */
1156 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1157 		ret = -EAGAIN;
1158 		goto ret;
1159 	} else {
1160 		/*
1161 		 * This is a silent loss of information.  We still
1162 		 * send the signal, but the *info bits are lost.
1163 		 */
1164 		result = TRACE_SIGNAL_LOSE_INFO;
1165 	}
1166 
1167 out_set:
1168 	signalfd_notify(t, sig);
1169 	sigaddset(&pending->signal, sig);
1170 
1171 	/* Let multiprocess signals appear after on-going forks */
1172 	if (type > PIDTYPE_TGID) {
1173 		struct multiprocess_signals *delayed;
1174 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1175 			sigset_t *signal = &delayed->signal;
1176 			/* Can't queue both a stop and a continue signal */
1177 			if (sig == SIGCONT)
1178 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1179 			else if (sig_kernel_stop(sig))
1180 				sigdelset(signal, SIGCONT);
1181 			sigaddset(signal, sig);
1182 		}
1183 	}
1184 
1185 	complete_signal(sig, t, type);
1186 ret:
1187 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1188 	return ret;
1189 }
1190 
1191 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1192 {
1193 	bool ret = false;
1194 	switch (siginfo_layout(info->si_signo, info->si_code)) {
1195 	case SIL_KILL:
1196 	case SIL_CHLD:
1197 	case SIL_RT:
1198 		ret = true;
1199 		break;
1200 	case SIL_TIMER:
1201 	case SIL_POLL:
1202 	case SIL_FAULT:
1203 	case SIL_FAULT_TRAPNO:
1204 	case SIL_FAULT_MCEERR:
1205 	case SIL_FAULT_BNDERR:
1206 	case SIL_FAULT_PKUERR:
1207 	case SIL_FAULT_PERF_EVENT:
1208 	case SIL_SYS:
1209 		ret = false;
1210 		break;
1211 	}
1212 	return ret;
1213 }
1214 
1215 int send_signal_locked(int sig, struct kernel_siginfo *info,
1216 		       struct task_struct *t, enum pid_type type)
1217 {
1218 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1219 	bool force = false;
1220 
1221 	if (info == SEND_SIG_NOINFO) {
1222 		/* Force if sent from an ancestor pid namespace */
1223 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1224 	} else if (info == SEND_SIG_PRIV) {
1225 		/* Don't ignore kernel generated signals */
1226 		force = true;
1227 	} else if (has_si_pid_and_uid(info)) {
1228 		/* SIGKILL and SIGSTOP is special or has ids */
1229 		struct user_namespace *t_user_ns;
1230 
1231 		rcu_read_lock();
1232 		t_user_ns = task_cred_xxx(t, user_ns);
1233 		if (current_user_ns() != t_user_ns) {
1234 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1235 			info->si_uid = from_kuid_munged(t_user_ns, uid);
1236 		}
1237 		rcu_read_unlock();
1238 
1239 		/* A kernel generated signal? */
1240 		force = (info->si_code == SI_KERNEL);
1241 
1242 		/* From an ancestor pid namespace? */
1243 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1244 			info->si_pid = 0;
1245 			force = true;
1246 		}
1247 	}
1248 	return __send_signal_locked(sig, info, t, type, force);
1249 }
1250 
1251 static void print_fatal_signal(int signr)
1252 {
1253 	struct pt_regs *regs = task_pt_regs(current);
1254 	struct file *exe_file;
1255 
1256 	exe_file = get_task_exe_file(current);
1257 	if (exe_file) {
1258 		pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
1259 			exe_file, current->comm, signr);
1260 		fput(exe_file);
1261 	} else {
1262 		pr_info("%s: potentially unexpected fatal signal %d.\n",
1263 			current->comm, signr);
1264 	}
1265 
1266 #if defined(__i386__) && !defined(__arch_um__)
1267 	pr_info("code at %08lx: ", regs->ip);
1268 	{
1269 		int i;
1270 		for (i = 0; i < 16; i++) {
1271 			unsigned char insn;
1272 
1273 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1274 				break;
1275 			pr_cont("%02x ", insn);
1276 		}
1277 	}
1278 	pr_cont("\n");
1279 #endif
1280 	preempt_disable();
1281 	show_regs(regs);
1282 	preempt_enable();
1283 }
1284 
1285 static int __init setup_print_fatal_signals(char *str)
1286 {
1287 	get_option (&str, &print_fatal_signals);
1288 
1289 	return 1;
1290 }
1291 
1292 __setup("print-fatal-signals=", setup_print_fatal_signals);
1293 
1294 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1295 			enum pid_type type)
1296 {
1297 	unsigned long flags;
1298 	int ret = -ESRCH;
1299 
1300 	if (lock_task_sighand(p, &flags)) {
1301 		ret = send_signal_locked(sig, info, p, type);
1302 		unlock_task_sighand(p, &flags);
1303 	}
1304 
1305 	return ret;
1306 }
1307 
1308 enum sig_handler {
1309 	HANDLER_CURRENT, /* If reachable use the current handler */
1310 	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1311 	HANDLER_EXIT,	 /* Only visible as the process exit code */
1312 };
1313 
1314 /*
1315  * Force a signal that the process can't ignore: if necessary
1316  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1317  *
1318  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1319  * since we do not want to have a signal handler that was blocked
1320  * be invoked when user space had explicitly blocked it.
1321  *
1322  * We don't want to have recursive SIGSEGV's etc, for example,
1323  * that is why we also clear SIGNAL_UNKILLABLE.
1324  */
1325 static int
1326 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1327 	enum sig_handler handler)
1328 {
1329 	unsigned long int flags;
1330 	int ret, blocked, ignored;
1331 	struct k_sigaction *action;
1332 	int sig = info->si_signo;
1333 
1334 	spin_lock_irqsave(&t->sighand->siglock, flags);
1335 	action = &t->sighand->action[sig-1];
1336 	ignored = action->sa.sa_handler == SIG_IGN;
1337 	blocked = sigismember(&t->blocked, sig);
1338 	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1339 		action->sa.sa_handler = SIG_DFL;
1340 		if (handler == HANDLER_EXIT)
1341 			action->sa.sa_flags |= SA_IMMUTABLE;
1342 		if (blocked)
1343 			sigdelset(&t->blocked, sig);
1344 	}
1345 	/*
1346 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1347 	 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1348 	 */
1349 	if (action->sa.sa_handler == SIG_DFL &&
1350 	    (!t->ptrace || (handler == HANDLER_EXIT)))
1351 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1352 	ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1353 	/* This can happen if the signal was already pending and blocked */
1354 	if (!task_sigpending(t))
1355 		signal_wake_up(t, 0);
1356 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1357 
1358 	return ret;
1359 }
1360 
1361 int force_sig_info(struct kernel_siginfo *info)
1362 {
1363 	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1364 }
1365 
1366 /*
1367  * Nuke all other threads in the group.
1368  */
1369 int zap_other_threads(struct task_struct *p)
1370 {
1371 	struct task_struct *t;
1372 	int count = 0;
1373 
1374 	p->signal->group_stop_count = 0;
1375 
1376 	for_other_threads(p, t) {
1377 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1378 		count++;
1379 
1380 		/* Don't bother with already dead threads */
1381 		if (t->exit_state)
1382 			continue;
1383 		sigaddset(&t->pending.signal, SIGKILL);
1384 		signal_wake_up(t, 1);
1385 	}
1386 
1387 	return count;
1388 }
1389 
1390 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1391 					   unsigned long *flags)
1392 {
1393 	struct sighand_struct *sighand;
1394 
1395 	rcu_read_lock();
1396 	for (;;) {
1397 		sighand = rcu_dereference(tsk->sighand);
1398 		if (unlikely(sighand == NULL))
1399 			break;
1400 
1401 		/*
1402 		 * This sighand can be already freed and even reused, but
1403 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1404 		 * initializes ->siglock: this slab can't go away, it has
1405 		 * the same object type, ->siglock can't be reinitialized.
1406 		 *
1407 		 * We need to ensure that tsk->sighand is still the same
1408 		 * after we take the lock, we can race with de_thread() or
1409 		 * __exit_signal(). In the latter case the next iteration
1410 		 * must see ->sighand == NULL.
1411 		 */
1412 		spin_lock_irqsave(&sighand->siglock, *flags);
1413 		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1414 			break;
1415 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1416 	}
1417 	rcu_read_unlock();
1418 
1419 	return sighand;
1420 }
1421 
1422 #ifdef CONFIG_LOCKDEP
1423 void lockdep_assert_task_sighand_held(struct task_struct *task)
1424 {
1425 	struct sighand_struct *sighand;
1426 
1427 	rcu_read_lock();
1428 	sighand = rcu_dereference(task->sighand);
1429 	if (sighand)
1430 		lockdep_assert_held(&sighand->siglock);
1431 	else
1432 		WARN_ON_ONCE(1);
1433 	rcu_read_unlock();
1434 }
1435 #endif
1436 
1437 /*
1438  * send signal info to all the members of a thread group or to the
1439  * individual thread if type == PIDTYPE_PID.
1440  */
1441 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1442 			struct task_struct *p, enum pid_type type)
1443 {
1444 	int ret;
1445 
1446 	rcu_read_lock();
1447 	ret = check_kill_permission(sig, info, p);
1448 	rcu_read_unlock();
1449 
1450 	if (!ret && sig)
1451 		ret = do_send_sig_info(sig, info, p, type);
1452 
1453 	return ret;
1454 }
1455 
1456 /*
1457  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1458  * control characters do (^C, ^Z etc)
1459  * - the caller must hold at least a readlock on tasklist_lock
1460  */
1461 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1462 {
1463 	struct task_struct *p = NULL;
1464 	int ret = -ESRCH;
1465 
1466 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1467 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1468 		/*
1469 		 * If group_send_sig_info() succeeds at least once ret
1470 		 * becomes 0 and after that the code below has no effect.
1471 		 * Otherwise we return the last err or -ESRCH if this
1472 		 * process group is empty.
1473 		 */
1474 		if (ret)
1475 			ret = err;
1476 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1477 
1478 	return ret;
1479 }
1480 
1481 static int kill_pid_info_type(int sig, struct kernel_siginfo *info,
1482 				struct pid *pid, enum pid_type type)
1483 {
1484 	int error = -ESRCH;
1485 	struct task_struct *p;
1486 
1487 	for (;;) {
1488 		rcu_read_lock();
1489 		p = pid_task(pid, PIDTYPE_PID);
1490 		if (p)
1491 			error = group_send_sig_info(sig, info, p, type);
1492 		rcu_read_unlock();
1493 		if (likely(!p || error != -ESRCH))
1494 			return error;
1495 		/*
1496 		 * The task was unhashed in between, try again.  If it
1497 		 * is dead, pid_task() will return NULL, if we race with
1498 		 * de_thread() it will find the new leader.
1499 		 */
1500 	}
1501 }
1502 
1503 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1504 {
1505 	return kill_pid_info_type(sig, info, pid, PIDTYPE_TGID);
1506 }
1507 
1508 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1509 {
1510 	int error;
1511 	rcu_read_lock();
1512 	error = kill_pid_info(sig, info, find_vpid(pid));
1513 	rcu_read_unlock();
1514 	return error;
1515 }
1516 
1517 static inline bool kill_as_cred_perm(const struct cred *cred,
1518 				     struct task_struct *target)
1519 {
1520 	const struct cred *pcred = __task_cred(target);
1521 
1522 	return uid_eq(cred->euid, pcred->suid) ||
1523 	       uid_eq(cred->euid, pcred->uid) ||
1524 	       uid_eq(cred->uid, pcred->suid) ||
1525 	       uid_eq(cred->uid, pcred->uid);
1526 }
1527 
1528 /*
1529  * The usb asyncio usage of siginfo is wrong.  The glibc support
1530  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1531  * AKA after the generic fields:
1532  *	kernel_pid_t	si_pid;
1533  *	kernel_uid32_t	si_uid;
1534  *	sigval_t	si_value;
1535  *
1536  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1537  * after the generic fields is:
1538  *	void __user 	*si_addr;
1539  *
1540  * This is a practical problem when there is a 64bit big endian kernel
1541  * and a 32bit userspace.  As the 32bit address will encoded in the low
1542  * 32bits of the pointer.  Those low 32bits will be stored at higher
1543  * address than appear in a 32 bit pointer.  So userspace will not
1544  * see the address it was expecting for it's completions.
1545  *
1546  * There is nothing in the encoding that can allow
1547  * copy_siginfo_to_user32 to detect this confusion of formats, so
1548  * handle this by requiring the caller of kill_pid_usb_asyncio to
1549  * notice when this situration takes place and to store the 32bit
1550  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1551  * parameter.
1552  */
1553 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1554 			 struct pid *pid, const struct cred *cred)
1555 {
1556 	struct kernel_siginfo info;
1557 	struct task_struct *p;
1558 	unsigned long flags;
1559 	int ret = -EINVAL;
1560 
1561 	if (!valid_signal(sig))
1562 		return ret;
1563 
1564 	clear_siginfo(&info);
1565 	info.si_signo = sig;
1566 	info.si_errno = errno;
1567 	info.si_code = SI_ASYNCIO;
1568 	*((sigval_t *)&info.si_pid) = addr;
1569 
1570 	rcu_read_lock();
1571 	p = pid_task(pid, PIDTYPE_PID);
1572 	if (!p) {
1573 		ret = -ESRCH;
1574 		goto out_unlock;
1575 	}
1576 	if (!kill_as_cred_perm(cred, p)) {
1577 		ret = -EPERM;
1578 		goto out_unlock;
1579 	}
1580 	ret = security_task_kill(p, &info, sig, cred);
1581 	if (ret)
1582 		goto out_unlock;
1583 
1584 	if (sig) {
1585 		if (lock_task_sighand(p, &flags)) {
1586 			ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1587 			unlock_task_sighand(p, &flags);
1588 		} else
1589 			ret = -ESRCH;
1590 	}
1591 out_unlock:
1592 	rcu_read_unlock();
1593 	return ret;
1594 }
1595 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1596 
1597 /*
1598  * kill_something_info() interprets pid in interesting ways just like kill(2).
1599  *
1600  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1601  * is probably wrong.  Should make it like BSD or SYSV.
1602  */
1603 
1604 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1605 {
1606 	int ret;
1607 
1608 	if (pid > 0)
1609 		return kill_proc_info(sig, info, pid);
1610 
1611 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1612 	if (pid == INT_MIN)
1613 		return -ESRCH;
1614 
1615 	read_lock(&tasklist_lock);
1616 	if (pid != -1) {
1617 		ret = __kill_pgrp_info(sig, info,
1618 				pid ? find_vpid(-pid) : task_pgrp(current));
1619 	} else {
1620 		int retval = 0, count = 0;
1621 		struct task_struct * p;
1622 
1623 		for_each_process(p) {
1624 			if (task_pid_vnr(p) > 1 &&
1625 					!same_thread_group(p, current)) {
1626 				int err = group_send_sig_info(sig, info, p,
1627 							      PIDTYPE_MAX);
1628 				++count;
1629 				if (err != -EPERM)
1630 					retval = err;
1631 			}
1632 		}
1633 		ret = count ? retval : -ESRCH;
1634 	}
1635 	read_unlock(&tasklist_lock);
1636 
1637 	return ret;
1638 }
1639 
1640 /*
1641  * These are for backward compatibility with the rest of the kernel source.
1642  */
1643 
1644 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1645 {
1646 	/*
1647 	 * Make sure legacy kernel users don't send in bad values
1648 	 * (normal paths check this in check_kill_permission).
1649 	 */
1650 	if (!valid_signal(sig))
1651 		return -EINVAL;
1652 
1653 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1654 }
1655 EXPORT_SYMBOL(send_sig_info);
1656 
1657 #define __si_special(priv) \
1658 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1659 
1660 int
1661 send_sig(int sig, struct task_struct *p, int priv)
1662 {
1663 	return send_sig_info(sig, __si_special(priv), p);
1664 }
1665 EXPORT_SYMBOL(send_sig);
1666 
1667 void force_sig(int sig)
1668 {
1669 	struct kernel_siginfo info;
1670 
1671 	clear_siginfo(&info);
1672 	info.si_signo = sig;
1673 	info.si_errno = 0;
1674 	info.si_code = SI_KERNEL;
1675 	info.si_pid = 0;
1676 	info.si_uid = 0;
1677 	force_sig_info(&info);
1678 }
1679 EXPORT_SYMBOL(force_sig);
1680 
1681 void force_fatal_sig(int sig)
1682 {
1683 	struct kernel_siginfo info;
1684 
1685 	clear_siginfo(&info);
1686 	info.si_signo = sig;
1687 	info.si_errno = 0;
1688 	info.si_code = SI_KERNEL;
1689 	info.si_pid = 0;
1690 	info.si_uid = 0;
1691 	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1692 }
1693 
1694 void force_exit_sig(int sig)
1695 {
1696 	struct kernel_siginfo info;
1697 
1698 	clear_siginfo(&info);
1699 	info.si_signo = sig;
1700 	info.si_errno = 0;
1701 	info.si_code = SI_KERNEL;
1702 	info.si_pid = 0;
1703 	info.si_uid = 0;
1704 	force_sig_info_to_task(&info, current, HANDLER_EXIT);
1705 }
1706 
1707 /*
1708  * When things go south during signal handling, we
1709  * will force a SIGSEGV. And if the signal that caused
1710  * the problem was already a SIGSEGV, we'll want to
1711  * make sure we don't even try to deliver the signal..
1712  */
1713 void force_sigsegv(int sig)
1714 {
1715 	if (sig == SIGSEGV)
1716 		force_fatal_sig(SIGSEGV);
1717 	else
1718 		force_sig(SIGSEGV);
1719 }
1720 
1721 int force_sig_fault_to_task(int sig, int code, void __user *addr,
1722 			    struct task_struct *t)
1723 {
1724 	struct kernel_siginfo info;
1725 
1726 	clear_siginfo(&info);
1727 	info.si_signo = sig;
1728 	info.si_errno = 0;
1729 	info.si_code  = code;
1730 	info.si_addr  = addr;
1731 	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1732 }
1733 
1734 int force_sig_fault(int sig, int code, void __user *addr)
1735 {
1736 	return force_sig_fault_to_task(sig, code, addr, current);
1737 }
1738 
1739 int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t)
1740 {
1741 	struct kernel_siginfo info;
1742 
1743 	clear_siginfo(&info);
1744 	info.si_signo = sig;
1745 	info.si_errno = 0;
1746 	info.si_code  = code;
1747 	info.si_addr  = addr;
1748 	return send_sig_info(info.si_signo, &info, t);
1749 }
1750 
1751 int force_sig_mceerr(int code, void __user *addr, short lsb)
1752 {
1753 	struct kernel_siginfo info;
1754 
1755 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1756 	clear_siginfo(&info);
1757 	info.si_signo = SIGBUS;
1758 	info.si_errno = 0;
1759 	info.si_code = code;
1760 	info.si_addr = addr;
1761 	info.si_addr_lsb = lsb;
1762 	return force_sig_info(&info);
1763 }
1764 
1765 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1766 {
1767 	struct kernel_siginfo info;
1768 
1769 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1770 	clear_siginfo(&info);
1771 	info.si_signo = SIGBUS;
1772 	info.si_errno = 0;
1773 	info.si_code = code;
1774 	info.si_addr = addr;
1775 	info.si_addr_lsb = lsb;
1776 	return send_sig_info(info.si_signo, &info, t);
1777 }
1778 EXPORT_SYMBOL(send_sig_mceerr);
1779 
1780 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1781 {
1782 	struct kernel_siginfo info;
1783 
1784 	clear_siginfo(&info);
1785 	info.si_signo = SIGSEGV;
1786 	info.si_errno = 0;
1787 	info.si_code  = SEGV_BNDERR;
1788 	info.si_addr  = addr;
1789 	info.si_lower = lower;
1790 	info.si_upper = upper;
1791 	return force_sig_info(&info);
1792 }
1793 
1794 #ifdef SEGV_PKUERR
1795 int force_sig_pkuerr(void __user *addr, u32 pkey)
1796 {
1797 	struct kernel_siginfo info;
1798 
1799 	clear_siginfo(&info);
1800 	info.si_signo = SIGSEGV;
1801 	info.si_errno = 0;
1802 	info.si_code  = SEGV_PKUERR;
1803 	info.si_addr  = addr;
1804 	info.si_pkey  = pkey;
1805 	return force_sig_info(&info);
1806 }
1807 #endif
1808 
1809 int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1810 {
1811 	struct kernel_siginfo info;
1812 
1813 	clear_siginfo(&info);
1814 	info.si_signo     = SIGTRAP;
1815 	info.si_errno     = 0;
1816 	info.si_code      = TRAP_PERF;
1817 	info.si_addr      = addr;
1818 	info.si_perf_data = sig_data;
1819 	info.si_perf_type = type;
1820 
1821 	/*
1822 	 * Signals generated by perf events should not terminate the whole
1823 	 * process if SIGTRAP is blocked, however, delivering the signal
1824 	 * asynchronously is better than not delivering at all. But tell user
1825 	 * space if the signal was asynchronous, so it can clearly be
1826 	 * distinguished from normal synchronous ones.
1827 	 */
1828 	info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
1829 				     TRAP_PERF_FLAG_ASYNC :
1830 				     0;
1831 
1832 	return send_sig_info(info.si_signo, &info, current);
1833 }
1834 
1835 /**
1836  * force_sig_seccomp - signals the task to allow in-process syscall emulation
1837  * @syscall: syscall number to send to userland
1838  * @reason: filter-supplied reason code to send to userland (via si_errno)
1839  * @force_coredump: true to trigger a coredump
1840  *
1841  * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1842  */
1843 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1844 {
1845 	struct kernel_siginfo info;
1846 
1847 	clear_siginfo(&info);
1848 	info.si_signo = SIGSYS;
1849 	info.si_code = SYS_SECCOMP;
1850 	info.si_call_addr = (void __user *)KSTK_EIP(current);
1851 	info.si_errno = reason;
1852 	info.si_arch = syscall_get_arch(current);
1853 	info.si_syscall = syscall;
1854 	return force_sig_info_to_task(&info, current,
1855 		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1856 }
1857 
1858 /* For the crazy architectures that include trap information in
1859  * the errno field, instead of an actual errno value.
1860  */
1861 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1862 {
1863 	struct kernel_siginfo info;
1864 
1865 	clear_siginfo(&info);
1866 	info.si_signo = SIGTRAP;
1867 	info.si_errno = errno;
1868 	info.si_code  = TRAP_HWBKPT;
1869 	info.si_addr  = addr;
1870 	return force_sig_info(&info);
1871 }
1872 
1873 /* For the rare architectures that include trap information using
1874  * si_trapno.
1875  */
1876 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1877 {
1878 	struct kernel_siginfo info;
1879 
1880 	clear_siginfo(&info);
1881 	info.si_signo = sig;
1882 	info.si_errno = 0;
1883 	info.si_code  = code;
1884 	info.si_addr  = addr;
1885 	info.si_trapno = trapno;
1886 	return force_sig_info(&info);
1887 }
1888 
1889 /* For the rare architectures that include trap information using
1890  * si_trapno.
1891  */
1892 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1893 			  struct task_struct *t)
1894 {
1895 	struct kernel_siginfo info;
1896 
1897 	clear_siginfo(&info);
1898 	info.si_signo = sig;
1899 	info.si_errno = 0;
1900 	info.si_code  = code;
1901 	info.si_addr  = addr;
1902 	info.si_trapno = trapno;
1903 	return send_sig_info(info.si_signo, &info, t);
1904 }
1905 
1906 static int kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1907 {
1908 	int ret;
1909 	read_lock(&tasklist_lock);
1910 	ret = __kill_pgrp_info(sig, info, pgrp);
1911 	read_unlock(&tasklist_lock);
1912 	return ret;
1913 }
1914 
1915 int kill_pgrp(struct pid *pid, int sig, int priv)
1916 {
1917 	return kill_pgrp_info(sig, __si_special(priv), pid);
1918 }
1919 EXPORT_SYMBOL(kill_pgrp);
1920 
1921 int kill_pid(struct pid *pid, int sig, int priv)
1922 {
1923 	return kill_pid_info(sig, __si_special(priv), pid);
1924 }
1925 EXPORT_SYMBOL(kill_pid);
1926 
1927 /*
1928  * These functions support sending signals using preallocated sigqueue
1929  * structures.  This is needed "because realtime applications cannot
1930  * afford to lose notifications of asynchronous events, like timer
1931  * expirations or I/O completions".  In the case of POSIX Timers
1932  * we allocate the sigqueue structure from the timer_create.  If this
1933  * allocation fails we are able to report the failure to the application
1934  * with an EAGAIN error.
1935  */
1936 struct sigqueue *sigqueue_alloc(void)
1937 {
1938 	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1939 }
1940 
1941 void sigqueue_free(struct sigqueue *q)
1942 {
1943 	unsigned long flags;
1944 	spinlock_t *lock = &current->sighand->siglock;
1945 
1946 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1947 	/*
1948 	 * We must hold ->siglock while testing q->list
1949 	 * to serialize with collect_signal() or with
1950 	 * __exit_signal()->flush_sigqueue().
1951 	 */
1952 	spin_lock_irqsave(lock, flags);
1953 	q->flags &= ~SIGQUEUE_PREALLOC;
1954 	/*
1955 	 * If it is queued it will be freed when dequeued,
1956 	 * like the "regular" sigqueue.
1957 	 */
1958 	if (!list_empty(&q->list))
1959 		q = NULL;
1960 	spin_unlock_irqrestore(lock, flags);
1961 
1962 	if (q)
1963 		__sigqueue_free(q);
1964 }
1965 
1966 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1967 {
1968 	int sig = q->info.si_signo;
1969 	struct sigpending *pending;
1970 	struct task_struct *t;
1971 	unsigned long flags;
1972 	int ret, result;
1973 
1974 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1975 
1976 	ret = -1;
1977 	rcu_read_lock();
1978 
1979 	/*
1980 	 * This function is used by POSIX timers to deliver a timer signal.
1981 	 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1982 	 * set), the signal must be delivered to the specific thread (queues
1983 	 * into t->pending).
1984 	 *
1985 	 * Where type is not PIDTYPE_PID, signals must be delivered to the
1986 	 * process. In this case, prefer to deliver to current if it is in
1987 	 * the same thread group as the target process, which avoids
1988 	 * unnecessarily waking up a potentially idle task.
1989 	 */
1990 	t = pid_task(pid, type);
1991 	if (!t)
1992 		goto ret;
1993 	if (type != PIDTYPE_PID && same_thread_group(t, current))
1994 		t = current;
1995 	if (!likely(lock_task_sighand(t, &flags)))
1996 		goto ret;
1997 
1998 	ret = 1; /* the signal is ignored */
1999 	result = TRACE_SIGNAL_IGNORED;
2000 	if (!prepare_signal(sig, t, false))
2001 		goto out;
2002 
2003 	ret = 0;
2004 	if (unlikely(!list_empty(&q->list))) {
2005 		/*
2006 		 * If an SI_TIMER entry is already queue just increment
2007 		 * the overrun count.
2008 		 */
2009 		BUG_ON(q->info.si_code != SI_TIMER);
2010 		q->info.si_overrun++;
2011 		result = TRACE_SIGNAL_ALREADY_PENDING;
2012 		goto out;
2013 	}
2014 	q->info.si_overrun = 0;
2015 
2016 	signalfd_notify(t, sig);
2017 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
2018 	list_add_tail(&q->list, &pending->list);
2019 	sigaddset(&pending->signal, sig);
2020 	complete_signal(sig, t, type);
2021 	result = TRACE_SIGNAL_DELIVERED;
2022 out:
2023 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2024 	unlock_task_sighand(t, &flags);
2025 ret:
2026 	rcu_read_unlock();
2027 	return ret;
2028 }
2029 
2030 void do_notify_pidfd(struct task_struct *task)
2031 {
2032 	struct pid *pid = task_pid(task);
2033 
2034 	WARN_ON(task->exit_state == 0);
2035 
2036 	__wake_up(&pid->wait_pidfd, TASK_NORMAL, 0,
2037 			poll_to_key(EPOLLIN | EPOLLRDNORM));
2038 }
2039 
2040 /*
2041  * Let a parent know about the death of a child.
2042  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2043  *
2044  * Returns true if our parent ignored us and so we've switched to
2045  * self-reaping.
2046  */
2047 bool do_notify_parent(struct task_struct *tsk, int sig)
2048 {
2049 	struct kernel_siginfo info;
2050 	unsigned long flags;
2051 	struct sighand_struct *psig;
2052 	bool autoreap = false;
2053 	u64 utime, stime;
2054 
2055 	WARN_ON_ONCE(sig == -1);
2056 
2057 	/* do_notify_parent_cldstop should have been called instead.  */
2058 	WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2059 
2060 	WARN_ON_ONCE(!tsk->ptrace &&
2061 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2062 	/*
2063 	 * tsk is a group leader and has no threads, wake up the
2064 	 * non-PIDFD_THREAD waiters.
2065 	 */
2066 	if (thread_group_empty(tsk))
2067 		do_notify_pidfd(tsk);
2068 
2069 	if (sig != SIGCHLD) {
2070 		/*
2071 		 * This is only possible if parent == real_parent.
2072 		 * Check if it has changed security domain.
2073 		 */
2074 		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2075 			sig = SIGCHLD;
2076 	}
2077 
2078 	clear_siginfo(&info);
2079 	info.si_signo = sig;
2080 	info.si_errno = 0;
2081 	/*
2082 	 * We are under tasklist_lock here so our parent is tied to
2083 	 * us and cannot change.
2084 	 *
2085 	 * task_active_pid_ns will always return the same pid namespace
2086 	 * until a task passes through release_task.
2087 	 *
2088 	 * write_lock() currently calls preempt_disable() which is the
2089 	 * same as rcu_read_lock(), but according to Oleg, this is not
2090 	 * correct to rely on this
2091 	 */
2092 	rcu_read_lock();
2093 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2094 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2095 				       task_uid(tsk));
2096 	rcu_read_unlock();
2097 
2098 	task_cputime(tsk, &utime, &stime);
2099 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2100 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2101 
2102 	info.si_status = tsk->exit_code & 0x7f;
2103 	if (tsk->exit_code & 0x80)
2104 		info.si_code = CLD_DUMPED;
2105 	else if (tsk->exit_code & 0x7f)
2106 		info.si_code = CLD_KILLED;
2107 	else {
2108 		info.si_code = CLD_EXITED;
2109 		info.si_status = tsk->exit_code >> 8;
2110 	}
2111 
2112 	psig = tsk->parent->sighand;
2113 	spin_lock_irqsave(&psig->siglock, flags);
2114 	if (!tsk->ptrace && sig == SIGCHLD &&
2115 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2116 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2117 		/*
2118 		 * We are exiting and our parent doesn't care.  POSIX.1
2119 		 * defines special semantics for setting SIGCHLD to SIG_IGN
2120 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2121 		 * automatically and not left for our parent's wait4 call.
2122 		 * Rather than having the parent do it as a magic kind of
2123 		 * signal handler, we just set this to tell do_exit that we
2124 		 * can be cleaned up without becoming a zombie.  Note that
2125 		 * we still call __wake_up_parent in this case, because a
2126 		 * blocked sys_wait4 might now return -ECHILD.
2127 		 *
2128 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2129 		 * is implementation-defined: we do (if you don't want
2130 		 * it, just use SIG_IGN instead).
2131 		 */
2132 		autoreap = true;
2133 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2134 			sig = 0;
2135 	}
2136 	/*
2137 	 * Send with __send_signal as si_pid and si_uid are in the
2138 	 * parent's namespaces.
2139 	 */
2140 	if (valid_signal(sig) && sig)
2141 		__send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2142 	__wake_up_parent(tsk, tsk->parent);
2143 	spin_unlock_irqrestore(&psig->siglock, flags);
2144 
2145 	return autoreap;
2146 }
2147 
2148 /**
2149  * do_notify_parent_cldstop - notify parent of stopped/continued state change
2150  * @tsk: task reporting the state change
2151  * @for_ptracer: the notification is for ptracer
2152  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2153  *
2154  * Notify @tsk's parent that the stopped/continued state has changed.  If
2155  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2156  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2157  *
2158  * CONTEXT:
2159  * Must be called with tasklist_lock at least read locked.
2160  */
2161 static void do_notify_parent_cldstop(struct task_struct *tsk,
2162 				     bool for_ptracer, int why)
2163 {
2164 	struct kernel_siginfo info;
2165 	unsigned long flags;
2166 	struct task_struct *parent;
2167 	struct sighand_struct *sighand;
2168 	u64 utime, stime;
2169 
2170 	if (for_ptracer) {
2171 		parent = tsk->parent;
2172 	} else {
2173 		tsk = tsk->group_leader;
2174 		parent = tsk->real_parent;
2175 	}
2176 
2177 	clear_siginfo(&info);
2178 	info.si_signo = SIGCHLD;
2179 	info.si_errno = 0;
2180 	/*
2181 	 * see comment in do_notify_parent() about the following 4 lines
2182 	 */
2183 	rcu_read_lock();
2184 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2185 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2186 	rcu_read_unlock();
2187 
2188 	task_cputime(tsk, &utime, &stime);
2189 	info.si_utime = nsec_to_clock_t(utime);
2190 	info.si_stime = nsec_to_clock_t(stime);
2191 
2192  	info.si_code = why;
2193  	switch (why) {
2194  	case CLD_CONTINUED:
2195  		info.si_status = SIGCONT;
2196  		break;
2197  	case CLD_STOPPED:
2198  		info.si_status = tsk->signal->group_exit_code & 0x7f;
2199  		break;
2200  	case CLD_TRAPPED:
2201  		info.si_status = tsk->exit_code & 0x7f;
2202  		break;
2203  	default:
2204  		BUG();
2205  	}
2206 
2207 	sighand = parent->sighand;
2208 	spin_lock_irqsave(&sighand->siglock, flags);
2209 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2210 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2211 		send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2212 	/*
2213 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2214 	 */
2215 	__wake_up_parent(tsk, parent);
2216 	spin_unlock_irqrestore(&sighand->siglock, flags);
2217 }
2218 
2219 /*
2220  * This must be called with current->sighand->siglock held.
2221  *
2222  * This should be the path for all ptrace stops.
2223  * We always set current->last_siginfo while stopped here.
2224  * That makes it a way to test a stopped process for
2225  * being ptrace-stopped vs being job-control-stopped.
2226  *
2227  * Returns the signal the ptracer requested the code resume
2228  * with.  If the code did not stop because the tracer is gone,
2229  * the stop signal remains unchanged unless clear_code.
2230  */
2231 static int ptrace_stop(int exit_code, int why, unsigned long message,
2232 		       kernel_siginfo_t *info)
2233 	__releases(&current->sighand->siglock)
2234 	__acquires(&current->sighand->siglock)
2235 {
2236 	bool gstop_done = false;
2237 
2238 	if (arch_ptrace_stop_needed()) {
2239 		/*
2240 		 * The arch code has something special to do before a
2241 		 * ptrace stop.  This is allowed to block, e.g. for faults
2242 		 * on user stack pages.  We can't keep the siglock while
2243 		 * calling arch_ptrace_stop, so we must release it now.
2244 		 * To preserve proper semantics, we must do this before
2245 		 * any signal bookkeeping like checking group_stop_count.
2246 		 */
2247 		spin_unlock_irq(&current->sighand->siglock);
2248 		arch_ptrace_stop();
2249 		spin_lock_irq(&current->sighand->siglock);
2250 	}
2251 
2252 	/*
2253 	 * After this point ptrace_signal_wake_up or signal_wake_up
2254 	 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2255 	 * signal comes in.  Handle previous ptrace_unlinks and fatal
2256 	 * signals here to prevent ptrace_stop sleeping in schedule.
2257 	 */
2258 	if (!current->ptrace || __fatal_signal_pending(current))
2259 		return exit_code;
2260 
2261 	set_special_state(TASK_TRACED);
2262 	current->jobctl |= JOBCTL_TRACED;
2263 
2264 	/*
2265 	 * We're committing to trapping.  TRACED should be visible before
2266 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2267 	 * Also, transition to TRACED and updates to ->jobctl should be
2268 	 * atomic with respect to siglock and should be done after the arch
2269 	 * hook as siglock is released and regrabbed across it.
2270 	 *
2271 	 *     TRACER				    TRACEE
2272 	 *
2273 	 *     ptrace_attach()
2274 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2275 	 *     do_wait()
2276 	 *       set_current_state()                smp_wmb();
2277 	 *       ptrace_do_wait()
2278 	 *         wait_task_stopped()
2279 	 *           task_stopped_code()
2280 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2281 	 */
2282 	smp_wmb();
2283 
2284 	current->ptrace_message = message;
2285 	current->last_siginfo = info;
2286 	current->exit_code = exit_code;
2287 
2288 	/*
2289 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2290 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2291 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2292 	 * could be clear now.  We act as if SIGCONT is received after
2293 	 * TASK_TRACED is entered - ignore it.
2294 	 */
2295 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2296 		gstop_done = task_participate_group_stop(current);
2297 
2298 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2299 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2300 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2301 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2302 
2303 	/* entering a trap, clear TRAPPING */
2304 	task_clear_jobctl_trapping(current);
2305 
2306 	spin_unlock_irq(&current->sighand->siglock);
2307 	read_lock(&tasklist_lock);
2308 	/*
2309 	 * Notify parents of the stop.
2310 	 *
2311 	 * While ptraced, there are two parents - the ptracer and
2312 	 * the real_parent of the group_leader.  The ptracer should
2313 	 * know about every stop while the real parent is only
2314 	 * interested in the completion of group stop.  The states
2315 	 * for the two don't interact with each other.  Notify
2316 	 * separately unless they're gonna be duplicates.
2317 	 */
2318 	if (current->ptrace)
2319 		do_notify_parent_cldstop(current, true, why);
2320 	if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2321 		do_notify_parent_cldstop(current, false, why);
2322 
2323 	/*
2324 	 * The previous do_notify_parent_cldstop() invocation woke ptracer.
2325 	 * One a PREEMPTION kernel this can result in preemption requirement
2326 	 * which will be fulfilled after read_unlock() and the ptracer will be
2327 	 * put on the CPU.
2328 	 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for
2329 	 * this task wait in schedule(). If this task gets preempted then it
2330 	 * remains enqueued on the runqueue. The ptracer will observe this and
2331 	 * then sleep for a delay of one HZ tick. In the meantime this task
2332 	 * gets scheduled, enters schedule() and will wait for the ptracer.
2333 	 *
2334 	 * This preemption point is not bad from a correctness point of
2335 	 * view but extends the runtime by one HZ tick time due to the
2336 	 * ptracer's sleep.  The preempt-disable section ensures that there
2337 	 * will be no preemption between unlock and schedule() and so
2338 	 * improving the performance since the ptracer will observe that
2339 	 * the tracee is scheduled out once it gets on the CPU.
2340 	 *
2341 	 * On PREEMPT_RT locking tasklist_lock does not disable preemption.
2342 	 * Therefore the task can be preempted after do_notify_parent_cldstop()
2343 	 * before unlocking tasklist_lock so there is no benefit in doing this.
2344 	 *
2345 	 * In fact disabling preemption is harmful on PREEMPT_RT because
2346 	 * the spinlock_t in cgroup_enter_frozen() must not be acquired
2347 	 * with preemption disabled due to the 'sleeping' spinlock
2348 	 * substitution of RT.
2349 	 */
2350 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2351 		preempt_disable();
2352 	read_unlock(&tasklist_lock);
2353 	cgroup_enter_frozen();
2354 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2355 		preempt_enable_no_resched();
2356 	schedule();
2357 	cgroup_leave_frozen(true);
2358 
2359 	/*
2360 	 * We are back.  Now reacquire the siglock before touching
2361 	 * last_siginfo, so that we are sure to have synchronized with
2362 	 * any signal-sending on another CPU that wants to examine it.
2363 	 */
2364 	spin_lock_irq(&current->sighand->siglock);
2365 	exit_code = current->exit_code;
2366 	current->last_siginfo = NULL;
2367 	current->ptrace_message = 0;
2368 	current->exit_code = 0;
2369 
2370 	/* LISTENING can be set only during STOP traps, clear it */
2371 	current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2372 
2373 	/*
2374 	 * Queued signals ignored us while we were stopped for tracing.
2375 	 * So check for any that we should take before resuming user mode.
2376 	 * This sets TIF_SIGPENDING, but never clears it.
2377 	 */
2378 	recalc_sigpending_tsk(current);
2379 	return exit_code;
2380 }
2381 
2382 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2383 {
2384 	kernel_siginfo_t info;
2385 
2386 	clear_siginfo(&info);
2387 	info.si_signo = signr;
2388 	info.si_code = exit_code;
2389 	info.si_pid = task_pid_vnr(current);
2390 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2391 
2392 	/* Let the debugger run.  */
2393 	return ptrace_stop(exit_code, why, message, &info);
2394 }
2395 
2396 int ptrace_notify(int exit_code, unsigned long message)
2397 {
2398 	int signr;
2399 
2400 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2401 	if (unlikely(task_work_pending(current)))
2402 		task_work_run();
2403 
2404 	spin_lock_irq(&current->sighand->siglock);
2405 	signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2406 	spin_unlock_irq(&current->sighand->siglock);
2407 	return signr;
2408 }
2409 
2410 /**
2411  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2412  * @signr: signr causing group stop if initiating
2413  *
2414  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2415  * and participate in it.  If already set, participate in the existing
2416  * group stop.  If participated in a group stop (and thus slept), %true is
2417  * returned with siglock released.
2418  *
2419  * If ptraced, this function doesn't handle stop itself.  Instead,
2420  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2421  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2422  * places afterwards.
2423  *
2424  * CONTEXT:
2425  * Must be called with @current->sighand->siglock held, which is released
2426  * on %true return.
2427  *
2428  * RETURNS:
2429  * %false if group stop is already cancelled or ptrace trap is scheduled.
2430  * %true if participated in group stop.
2431  */
2432 static bool do_signal_stop(int signr)
2433 	__releases(&current->sighand->siglock)
2434 {
2435 	struct signal_struct *sig = current->signal;
2436 
2437 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2438 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2439 		struct task_struct *t;
2440 
2441 		/* signr will be recorded in task->jobctl for retries */
2442 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2443 
2444 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2445 		    unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2446 		    unlikely(sig->group_exec_task))
2447 			return false;
2448 		/*
2449 		 * There is no group stop already in progress.  We must
2450 		 * initiate one now.
2451 		 *
2452 		 * While ptraced, a task may be resumed while group stop is
2453 		 * still in effect and then receive a stop signal and
2454 		 * initiate another group stop.  This deviates from the
2455 		 * usual behavior as two consecutive stop signals can't
2456 		 * cause two group stops when !ptraced.  That is why we
2457 		 * also check !task_is_stopped(t) below.
2458 		 *
2459 		 * The condition can be distinguished by testing whether
2460 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2461 		 * group_exit_code in such case.
2462 		 *
2463 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2464 		 * an intervening stop signal is required to cause two
2465 		 * continued events regardless of ptrace.
2466 		 */
2467 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2468 			sig->group_exit_code = signr;
2469 
2470 		sig->group_stop_count = 0;
2471 		if (task_set_jobctl_pending(current, signr | gstop))
2472 			sig->group_stop_count++;
2473 
2474 		for_other_threads(current, t) {
2475 			/*
2476 			 * Setting state to TASK_STOPPED for a group
2477 			 * stop is always done with the siglock held,
2478 			 * so this check has no races.
2479 			 */
2480 			if (!task_is_stopped(t) &&
2481 			    task_set_jobctl_pending(t, signr | gstop)) {
2482 				sig->group_stop_count++;
2483 				if (likely(!(t->ptrace & PT_SEIZED)))
2484 					signal_wake_up(t, 0);
2485 				else
2486 					ptrace_trap_notify(t);
2487 			}
2488 		}
2489 	}
2490 
2491 	if (likely(!current->ptrace)) {
2492 		int notify = 0;
2493 
2494 		/*
2495 		 * If there are no other threads in the group, or if there
2496 		 * is a group stop in progress and we are the last to stop,
2497 		 * report to the parent.
2498 		 */
2499 		if (task_participate_group_stop(current))
2500 			notify = CLD_STOPPED;
2501 
2502 		current->jobctl |= JOBCTL_STOPPED;
2503 		set_special_state(TASK_STOPPED);
2504 		spin_unlock_irq(&current->sighand->siglock);
2505 
2506 		/*
2507 		 * Notify the parent of the group stop completion.  Because
2508 		 * we're not holding either the siglock or tasklist_lock
2509 		 * here, ptracer may attach inbetween; however, this is for
2510 		 * group stop and should always be delivered to the real
2511 		 * parent of the group leader.  The new ptracer will get
2512 		 * its notification when this task transitions into
2513 		 * TASK_TRACED.
2514 		 */
2515 		if (notify) {
2516 			read_lock(&tasklist_lock);
2517 			do_notify_parent_cldstop(current, false, notify);
2518 			read_unlock(&tasklist_lock);
2519 		}
2520 
2521 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2522 		cgroup_enter_frozen();
2523 		schedule();
2524 		return true;
2525 	} else {
2526 		/*
2527 		 * While ptraced, group stop is handled by STOP trap.
2528 		 * Schedule it and let the caller deal with it.
2529 		 */
2530 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2531 		return false;
2532 	}
2533 }
2534 
2535 /**
2536  * do_jobctl_trap - take care of ptrace jobctl traps
2537  *
2538  * When PT_SEIZED, it's used for both group stop and explicit
2539  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2540  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2541  * the stop signal; otherwise, %SIGTRAP.
2542  *
2543  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2544  * number as exit_code and no siginfo.
2545  *
2546  * CONTEXT:
2547  * Must be called with @current->sighand->siglock held, which may be
2548  * released and re-acquired before returning with intervening sleep.
2549  */
2550 static void do_jobctl_trap(void)
2551 {
2552 	struct signal_struct *signal = current->signal;
2553 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2554 
2555 	if (current->ptrace & PT_SEIZED) {
2556 		if (!signal->group_stop_count &&
2557 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2558 			signr = SIGTRAP;
2559 		WARN_ON_ONCE(!signr);
2560 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2561 				 CLD_STOPPED, 0);
2562 	} else {
2563 		WARN_ON_ONCE(!signr);
2564 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2565 	}
2566 }
2567 
2568 /**
2569  * do_freezer_trap - handle the freezer jobctl trap
2570  *
2571  * Puts the task into frozen state, if only the task is not about to quit.
2572  * In this case it drops JOBCTL_TRAP_FREEZE.
2573  *
2574  * CONTEXT:
2575  * Must be called with @current->sighand->siglock held,
2576  * which is always released before returning.
2577  */
2578 static void do_freezer_trap(void)
2579 	__releases(&current->sighand->siglock)
2580 {
2581 	/*
2582 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2583 	 * let's make another loop to give it a chance to be handled.
2584 	 * In any case, we'll return back.
2585 	 */
2586 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2587 	     JOBCTL_TRAP_FREEZE) {
2588 		spin_unlock_irq(&current->sighand->siglock);
2589 		return;
2590 	}
2591 
2592 	/*
2593 	 * Now we're sure that there is no pending fatal signal and no
2594 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2595 	 * immediately (if there is a non-fatal signal pending), and
2596 	 * put the task into sleep.
2597 	 */
2598 	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2599 	clear_thread_flag(TIF_SIGPENDING);
2600 	spin_unlock_irq(&current->sighand->siglock);
2601 	cgroup_enter_frozen();
2602 	schedule();
2603 }
2604 
2605 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2606 {
2607 	/*
2608 	 * We do not check sig_kernel_stop(signr) but set this marker
2609 	 * unconditionally because we do not know whether debugger will
2610 	 * change signr. This flag has no meaning unless we are going
2611 	 * to stop after return from ptrace_stop(). In this case it will
2612 	 * be checked in do_signal_stop(), we should only stop if it was
2613 	 * not cleared by SIGCONT while we were sleeping. See also the
2614 	 * comment in dequeue_signal().
2615 	 */
2616 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2617 	signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2618 
2619 	/* We're back.  Did the debugger cancel the sig?  */
2620 	if (signr == 0)
2621 		return signr;
2622 
2623 	/*
2624 	 * Update the siginfo structure if the signal has
2625 	 * changed.  If the debugger wanted something
2626 	 * specific in the siginfo structure then it should
2627 	 * have updated *info via PTRACE_SETSIGINFO.
2628 	 */
2629 	if (signr != info->si_signo) {
2630 		clear_siginfo(info);
2631 		info->si_signo = signr;
2632 		info->si_errno = 0;
2633 		info->si_code = SI_USER;
2634 		rcu_read_lock();
2635 		info->si_pid = task_pid_vnr(current->parent);
2636 		info->si_uid = from_kuid_munged(current_user_ns(),
2637 						task_uid(current->parent));
2638 		rcu_read_unlock();
2639 	}
2640 
2641 	/* If the (new) signal is now blocked, requeue it.  */
2642 	if (sigismember(&current->blocked, signr) ||
2643 	    fatal_signal_pending(current)) {
2644 		send_signal_locked(signr, info, current, type);
2645 		signr = 0;
2646 	}
2647 
2648 	return signr;
2649 }
2650 
2651 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2652 {
2653 	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2654 	case SIL_FAULT:
2655 	case SIL_FAULT_TRAPNO:
2656 	case SIL_FAULT_MCEERR:
2657 	case SIL_FAULT_BNDERR:
2658 	case SIL_FAULT_PKUERR:
2659 	case SIL_FAULT_PERF_EVENT:
2660 		ksig->info.si_addr = arch_untagged_si_addr(
2661 			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2662 		break;
2663 	case SIL_KILL:
2664 	case SIL_TIMER:
2665 	case SIL_POLL:
2666 	case SIL_CHLD:
2667 	case SIL_RT:
2668 	case SIL_SYS:
2669 		break;
2670 	}
2671 }
2672 
2673 bool get_signal(struct ksignal *ksig)
2674 {
2675 	struct sighand_struct *sighand = current->sighand;
2676 	struct signal_struct *signal = current->signal;
2677 	int signr;
2678 
2679 	clear_notify_signal();
2680 	if (unlikely(task_work_pending(current)))
2681 		task_work_run();
2682 
2683 	if (!task_sigpending(current))
2684 		return false;
2685 
2686 	if (unlikely(uprobe_deny_signal()))
2687 		return false;
2688 
2689 	/*
2690 	 * Do this once, we can't return to user-mode if freezing() == T.
2691 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2692 	 * thus do not need another check after return.
2693 	 */
2694 	try_to_freeze();
2695 
2696 relock:
2697 	spin_lock_irq(&sighand->siglock);
2698 
2699 	/*
2700 	 * Every stopped thread goes here after wakeup. Check to see if
2701 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2702 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2703 	 */
2704 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2705 		int why;
2706 
2707 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2708 			why = CLD_CONTINUED;
2709 		else
2710 			why = CLD_STOPPED;
2711 
2712 		signal->flags &= ~SIGNAL_CLD_MASK;
2713 
2714 		spin_unlock_irq(&sighand->siglock);
2715 
2716 		/*
2717 		 * Notify the parent that we're continuing.  This event is
2718 		 * always per-process and doesn't make whole lot of sense
2719 		 * for ptracers, who shouldn't consume the state via
2720 		 * wait(2) either, but, for backward compatibility, notify
2721 		 * the ptracer of the group leader too unless it's gonna be
2722 		 * a duplicate.
2723 		 */
2724 		read_lock(&tasklist_lock);
2725 		do_notify_parent_cldstop(current, false, why);
2726 
2727 		if (ptrace_reparented(current->group_leader))
2728 			do_notify_parent_cldstop(current->group_leader,
2729 						true, why);
2730 		read_unlock(&tasklist_lock);
2731 
2732 		goto relock;
2733 	}
2734 
2735 	for (;;) {
2736 		struct k_sigaction *ka;
2737 		enum pid_type type;
2738 
2739 		/* Has this task already been marked for death? */
2740 		if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2741 		     signal->group_exec_task) {
2742 			signr = SIGKILL;
2743 			sigdelset(&current->pending.signal, SIGKILL);
2744 			trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2745 					     &sighand->action[SIGKILL-1]);
2746 			recalc_sigpending();
2747 			/*
2748 			 * implies do_group_exit() or return to PF_USER_WORKER,
2749 			 * no need to initialize ksig->info/etc.
2750 			 */
2751 			goto fatal;
2752 		}
2753 
2754 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2755 		    do_signal_stop(0))
2756 			goto relock;
2757 
2758 		if (unlikely(current->jobctl &
2759 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2760 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2761 				do_jobctl_trap();
2762 				spin_unlock_irq(&sighand->siglock);
2763 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2764 				do_freezer_trap();
2765 
2766 			goto relock;
2767 		}
2768 
2769 		/*
2770 		 * If the task is leaving the frozen state, let's update
2771 		 * cgroup counters and reset the frozen bit.
2772 		 */
2773 		if (unlikely(cgroup_task_frozen(current))) {
2774 			spin_unlock_irq(&sighand->siglock);
2775 			cgroup_leave_frozen(false);
2776 			goto relock;
2777 		}
2778 
2779 		/*
2780 		 * Signals generated by the execution of an instruction
2781 		 * need to be delivered before any other pending signals
2782 		 * so that the instruction pointer in the signal stack
2783 		 * frame points to the faulting instruction.
2784 		 */
2785 		type = PIDTYPE_PID;
2786 		signr = dequeue_synchronous_signal(&ksig->info);
2787 		if (!signr)
2788 			signr = dequeue_signal(current, &current->blocked,
2789 					       &ksig->info, &type);
2790 
2791 		if (!signr)
2792 			break; /* will return 0 */
2793 
2794 		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2795 		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2796 			signr = ptrace_signal(signr, &ksig->info, type);
2797 			if (!signr)
2798 				continue;
2799 		}
2800 
2801 		ka = &sighand->action[signr-1];
2802 
2803 		/* Trace actually delivered signals. */
2804 		trace_signal_deliver(signr, &ksig->info, ka);
2805 
2806 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2807 			continue;
2808 		if (ka->sa.sa_handler != SIG_DFL) {
2809 			/* Run the handler.  */
2810 			ksig->ka = *ka;
2811 
2812 			if (ka->sa.sa_flags & SA_ONESHOT)
2813 				ka->sa.sa_handler = SIG_DFL;
2814 
2815 			break; /* will return non-zero "signr" value */
2816 		}
2817 
2818 		/*
2819 		 * Now we are doing the default action for this signal.
2820 		 */
2821 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2822 			continue;
2823 
2824 		/*
2825 		 * Global init gets no signals it doesn't want.
2826 		 * Container-init gets no signals it doesn't want from same
2827 		 * container.
2828 		 *
2829 		 * Note that if global/container-init sees a sig_kernel_only()
2830 		 * signal here, the signal must have been generated internally
2831 		 * or must have come from an ancestor namespace. In either
2832 		 * case, the signal cannot be dropped.
2833 		 */
2834 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2835 				!sig_kernel_only(signr))
2836 			continue;
2837 
2838 		if (sig_kernel_stop(signr)) {
2839 			/*
2840 			 * The default action is to stop all threads in
2841 			 * the thread group.  The job control signals
2842 			 * do nothing in an orphaned pgrp, but SIGSTOP
2843 			 * always works.  Note that siglock needs to be
2844 			 * dropped during the call to is_orphaned_pgrp()
2845 			 * because of lock ordering with tasklist_lock.
2846 			 * This allows an intervening SIGCONT to be posted.
2847 			 * We need to check for that and bail out if necessary.
2848 			 */
2849 			if (signr != SIGSTOP) {
2850 				spin_unlock_irq(&sighand->siglock);
2851 
2852 				/* signals can be posted during this window */
2853 
2854 				if (is_current_pgrp_orphaned())
2855 					goto relock;
2856 
2857 				spin_lock_irq(&sighand->siglock);
2858 			}
2859 
2860 			if (likely(do_signal_stop(signr))) {
2861 				/* It released the siglock.  */
2862 				goto relock;
2863 			}
2864 
2865 			/*
2866 			 * We didn't actually stop, due to a race
2867 			 * with SIGCONT or something like that.
2868 			 */
2869 			continue;
2870 		}
2871 
2872 	fatal:
2873 		spin_unlock_irq(&sighand->siglock);
2874 		if (unlikely(cgroup_task_frozen(current)))
2875 			cgroup_leave_frozen(true);
2876 
2877 		/*
2878 		 * Anything else is fatal, maybe with a core dump.
2879 		 */
2880 		current->flags |= PF_SIGNALED;
2881 
2882 		if (sig_kernel_coredump(signr)) {
2883 			if (print_fatal_signals)
2884 				print_fatal_signal(signr);
2885 			proc_coredump_connector(current);
2886 			/*
2887 			 * If it was able to dump core, this kills all
2888 			 * other threads in the group and synchronizes with
2889 			 * their demise.  If we lost the race with another
2890 			 * thread getting here, it set group_exit_code
2891 			 * first and our do_group_exit call below will use
2892 			 * that value and ignore the one we pass it.
2893 			 */
2894 			do_coredump(&ksig->info);
2895 		}
2896 
2897 		/*
2898 		 * PF_USER_WORKER threads will catch and exit on fatal signals
2899 		 * themselves. They have cleanup that must be performed, so we
2900 		 * cannot call do_exit() on their behalf. Note that ksig won't
2901 		 * be properly initialized, PF_USER_WORKER's shouldn't use it.
2902 		 */
2903 		if (current->flags & PF_USER_WORKER)
2904 			goto out;
2905 
2906 		/*
2907 		 * Death signals, no core dump.
2908 		 */
2909 		do_group_exit(signr);
2910 		/* NOTREACHED */
2911 	}
2912 	spin_unlock_irq(&sighand->siglock);
2913 
2914 	ksig->sig = signr;
2915 
2916 	if (signr && !(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2917 		hide_si_addr_tag_bits(ksig);
2918 out:
2919 	return signr > 0;
2920 }
2921 
2922 /**
2923  * signal_delivered - called after signal delivery to update blocked signals
2924  * @ksig:		kernel signal struct
2925  * @stepping:		nonzero if debugger single-step or block-step in use
2926  *
2927  * This function should be called when a signal has successfully been
2928  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2929  * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2930  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2931  */
2932 static void signal_delivered(struct ksignal *ksig, int stepping)
2933 {
2934 	sigset_t blocked;
2935 
2936 	/* A signal was successfully delivered, and the
2937 	   saved sigmask was stored on the signal frame,
2938 	   and will be restored by sigreturn.  So we can
2939 	   simply clear the restore sigmask flag.  */
2940 	clear_restore_sigmask();
2941 
2942 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2943 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2944 		sigaddset(&blocked, ksig->sig);
2945 	set_current_blocked(&blocked);
2946 	if (current->sas_ss_flags & SS_AUTODISARM)
2947 		sas_ss_reset(current);
2948 	if (stepping)
2949 		ptrace_notify(SIGTRAP, 0);
2950 }
2951 
2952 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2953 {
2954 	if (failed)
2955 		force_sigsegv(ksig->sig);
2956 	else
2957 		signal_delivered(ksig, stepping);
2958 }
2959 
2960 /*
2961  * It could be that complete_signal() picked us to notify about the
2962  * group-wide signal. Other threads should be notified now to take
2963  * the shared signals in @which since we will not.
2964  */
2965 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2966 {
2967 	sigset_t retarget;
2968 	struct task_struct *t;
2969 
2970 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2971 	if (sigisemptyset(&retarget))
2972 		return;
2973 
2974 	for_other_threads(tsk, t) {
2975 		if (t->flags & PF_EXITING)
2976 			continue;
2977 
2978 		if (!has_pending_signals(&retarget, &t->blocked))
2979 			continue;
2980 		/* Remove the signals this thread can handle. */
2981 		sigandsets(&retarget, &retarget, &t->blocked);
2982 
2983 		if (!task_sigpending(t))
2984 			signal_wake_up(t, 0);
2985 
2986 		if (sigisemptyset(&retarget))
2987 			break;
2988 	}
2989 }
2990 
2991 void exit_signals(struct task_struct *tsk)
2992 {
2993 	int group_stop = 0;
2994 	sigset_t unblocked;
2995 
2996 	/*
2997 	 * @tsk is about to have PF_EXITING set - lock out users which
2998 	 * expect stable threadgroup.
2999 	 */
3000 	cgroup_threadgroup_change_begin(tsk);
3001 
3002 	if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
3003 		sched_mm_cid_exit_signals(tsk);
3004 		tsk->flags |= PF_EXITING;
3005 		cgroup_threadgroup_change_end(tsk);
3006 		return;
3007 	}
3008 
3009 	spin_lock_irq(&tsk->sighand->siglock);
3010 	/*
3011 	 * From now this task is not visible for group-wide signals,
3012 	 * see wants_signal(), do_signal_stop().
3013 	 */
3014 	sched_mm_cid_exit_signals(tsk);
3015 	tsk->flags |= PF_EXITING;
3016 
3017 	cgroup_threadgroup_change_end(tsk);
3018 
3019 	if (!task_sigpending(tsk))
3020 		goto out;
3021 
3022 	unblocked = tsk->blocked;
3023 	signotset(&unblocked);
3024 	retarget_shared_pending(tsk, &unblocked);
3025 
3026 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3027 	    task_participate_group_stop(tsk))
3028 		group_stop = CLD_STOPPED;
3029 out:
3030 	spin_unlock_irq(&tsk->sighand->siglock);
3031 
3032 	/*
3033 	 * If group stop has completed, deliver the notification.  This
3034 	 * should always go to the real parent of the group leader.
3035 	 */
3036 	if (unlikely(group_stop)) {
3037 		read_lock(&tasklist_lock);
3038 		do_notify_parent_cldstop(tsk, false, group_stop);
3039 		read_unlock(&tasklist_lock);
3040 	}
3041 }
3042 
3043 /*
3044  * System call entry points.
3045  */
3046 
3047 /**
3048  *  sys_restart_syscall - restart a system call
3049  */
3050 SYSCALL_DEFINE0(restart_syscall)
3051 {
3052 	struct restart_block *restart = &current->restart_block;
3053 	return restart->fn(restart);
3054 }
3055 
3056 long do_no_restart_syscall(struct restart_block *param)
3057 {
3058 	return -EINTR;
3059 }
3060 
3061 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3062 {
3063 	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3064 		sigset_t newblocked;
3065 		/* A set of now blocked but previously unblocked signals. */
3066 		sigandnsets(&newblocked, newset, &current->blocked);
3067 		retarget_shared_pending(tsk, &newblocked);
3068 	}
3069 	tsk->blocked = *newset;
3070 	recalc_sigpending();
3071 }
3072 
3073 /**
3074  * set_current_blocked - change current->blocked mask
3075  * @newset: new mask
3076  *
3077  * It is wrong to change ->blocked directly, this helper should be used
3078  * to ensure the process can't miss a shared signal we are going to block.
3079  */
3080 void set_current_blocked(sigset_t *newset)
3081 {
3082 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3083 	__set_current_blocked(newset);
3084 }
3085 
3086 void __set_current_blocked(const sigset_t *newset)
3087 {
3088 	struct task_struct *tsk = current;
3089 
3090 	/*
3091 	 * In case the signal mask hasn't changed, there is nothing we need
3092 	 * to do. The current->blocked shouldn't be modified by other task.
3093 	 */
3094 	if (sigequalsets(&tsk->blocked, newset))
3095 		return;
3096 
3097 	spin_lock_irq(&tsk->sighand->siglock);
3098 	__set_task_blocked(tsk, newset);
3099 	spin_unlock_irq(&tsk->sighand->siglock);
3100 }
3101 
3102 /*
3103  * This is also useful for kernel threads that want to temporarily
3104  * (or permanently) block certain signals.
3105  *
3106  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3107  * interface happily blocks "unblockable" signals like SIGKILL
3108  * and friends.
3109  */
3110 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3111 {
3112 	struct task_struct *tsk = current;
3113 	sigset_t newset;
3114 
3115 	/* Lockless, only current can change ->blocked, never from irq */
3116 	if (oldset)
3117 		*oldset = tsk->blocked;
3118 
3119 	switch (how) {
3120 	case SIG_BLOCK:
3121 		sigorsets(&newset, &tsk->blocked, set);
3122 		break;
3123 	case SIG_UNBLOCK:
3124 		sigandnsets(&newset, &tsk->blocked, set);
3125 		break;
3126 	case SIG_SETMASK:
3127 		newset = *set;
3128 		break;
3129 	default:
3130 		return -EINVAL;
3131 	}
3132 
3133 	__set_current_blocked(&newset);
3134 	return 0;
3135 }
3136 EXPORT_SYMBOL(sigprocmask);
3137 
3138 /*
3139  * The api helps set app-provided sigmasks.
3140  *
3141  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3142  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3143  *
3144  * Note that it does set_restore_sigmask() in advance, so it must be always
3145  * paired with restore_saved_sigmask_unless() before return from syscall.
3146  */
3147 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3148 {
3149 	sigset_t kmask;
3150 
3151 	if (!umask)
3152 		return 0;
3153 	if (sigsetsize != sizeof(sigset_t))
3154 		return -EINVAL;
3155 	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3156 		return -EFAULT;
3157 
3158 	set_restore_sigmask();
3159 	current->saved_sigmask = current->blocked;
3160 	set_current_blocked(&kmask);
3161 
3162 	return 0;
3163 }
3164 
3165 #ifdef CONFIG_COMPAT
3166 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3167 			    size_t sigsetsize)
3168 {
3169 	sigset_t kmask;
3170 
3171 	if (!umask)
3172 		return 0;
3173 	if (sigsetsize != sizeof(compat_sigset_t))
3174 		return -EINVAL;
3175 	if (get_compat_sigset(&kmask, umask))
3176 		return -EFAULT;
3177 
3178 	set_restore_sigmask();
3179 	current->saved_sigmask = current->blocked;
3180 	set_current_blocked(&kmask);
3181 
3182 	return 0;
3183 }
3184 #endif
3185 
3186 /**
3187  *  sys_rt_sigprocmask - change the list of currently blocked signals
3188  *  @how: whether to add, remove, or set signals
3189  *  @nset: stores pending signals
3190  *  @oset: previous value of signal mask if non-null
3191  *  @sigsetsize: size of sigset_t type
3192  */
3193 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3194 		sigset_t __user *, oset, size_t, sigsetsize)
3195 {
3196 	sigset_t old_set, new_set;
3197 	int error;
3198 
3199 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3200 	if (sigsetsize != sizeof(sigset_t))
3201 		return -EINVAL;
3202 
3203 	old_set = current->blocked;
3204 
3205 	if (nset) {
3206 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3207 			return -EFAULT;
3208 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3209 
3210 		error = sigprocmask(how, &new_set, NULL);
3211 		if (error)
3212 			return error;
3213 	}
3214 
3215 	if (oset) {
3216 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3217 			return -EFAULT;
3218 	}
3219 
3220 	return 0;
3221 }
3222 
3223 #ifdef CONFIG_COMPAT
3224 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3225 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3226 {
3227 	sigset_t old_set = current->blocked;
3228 
3229 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3230 	if (sigsetsize != sizeof(sigset_t))
3231 		return -EINVAL;
3232 
3233 	if (nset) {
3234 		sigset_t new_set;
3235 		int error;
3236 		if (get_compat_sigset(&new_set, nset))
3237 			return -EFAULT;
3238 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3239 
3240 		error = sigprocmask(how, &new_set, NULL);
3241 		if (error)
3242 			return error;
3243 	}
3244 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3245 }
3246 #endif
3247 
3248 static void do_sigpending(sigset_t *set)
3249 {
3250 	spin_lock_irq(&current->sighand->siglock);
3251 	sigorsets(set, &current->pending.signal,
3252 		  &current->signal->shared_pending.signal);
3253 	spin_unlock_irq(&current->sighand->siglock);
3254 
3255 	/* Outside the lock because only this thread touches it.  */
3256 	sigandsets(set, &current->blocked, set);
3257 }
3258 
3259 /**
3260  *  sys_rt_sigpending - examine a pending signal that has been raised
3261  *			while blocked
3262  *  @uset: stores pending signals
3263  *  @sigsetsize: size of sigset_t type or larger
3264  */
3265 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3266 {
3267 	sigset_t set;
3268 
3269 	if (sigsetsize > sizeof(*uset))
3270 		return -EINVAL;
3271 
3272 	do_sigpending(&set);
3273 
3274 	if (copy_to_user(uset, &set, sigsetsize))
3275 		return -EFAULT;
3276 
3277 	return 0;
3278 }
3279 
3280 #ifdef CONFIG_COMPAT
3281 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3282 		compat_size_t, sigsetsize)
3283 {
3284 	sigset_t set;
3285 
3286 	if (sigsetsize > sizeof(*uset))
3287 		return -EINVAL;
3288 
3289 	do_sigpending(&set);
3290 
3291 	return put_compat_sigset(uset, &set, sigsetsize);
3292 }
3293 #endif
3294 
3295 static const struct {
3296 	unsigned char limit, layout;
3297 } sig_sicodes[] = {
3298 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3299 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3300 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3301 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3302 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3303 #if defined(SIGEMT)
3304 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3305 #endif
3306 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3307 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3308 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3309 };
3310 
3311 static bool known_siginfo_layout(unsigned sig, int si_code)
3312 {
3313 	if (si_code == SI_KERNEL)
3314 		return true;
3315 	else if ((si_code > SI_USER)) {
3316 		if (sig_specific_sicodes(sig)) {
3317 			if (si_code <= sig_sicodes[sig].limit)
3318 				return true;
3319 		}
3320 		else if (si_code <= NSIGPOLL)
3321 			return true;
3322 	}
3323 	else if (si_code >= SI_DETHREAD)
3324 		return true;
3325 	else if (si_code == SI_ASYNCNL)
3326 		return true;
3327 	return false;
3328 }
3329 
3330 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3331 {
3332 	enum siginfo_layout layout = SIL_KILL;
3333 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3334 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3335 		    (si_code <= sig_sicodes[sig].limit)) {
3336 			layout = sig_sicodes[sig].layout;
3337 			/* Handle the exceptions */
3338 			if ((sig == SIGBUS) &&
3339 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3340 				layout = SIL_FAULT_MCEERR;
3341 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3342 				layout = SIL_FAULT_BNDERR;
3343 #ifdef SEGV_PKUERR
3344 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3345 				layout = SIL_FAULT_PKUERR;
3346 #endif
3347 			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3348 				layout = SIL_FAULT_PERF_EVENT;
3349 			else if (IS_ENABLED(CONFIG_SPARC) &&
3350 				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3351 				layout = SIL_FAULT_TRAPNO;
3352 			else if (IS_ENABLED(CONFIG_ALPHA) &&
3353 				 ((sig == SIGFPE) ||
3354 				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3355 				layout = SIL_FAULT_TRAPNO;
3356 		}
3357 		else if (si_code <= NSIGPOLL)
3358 			layout = SIL_POLL;
3359 	} else {
3360 		if (si_code == SI_TIMER)
3361 			layout = SIL_TIMER;
3362 		else if (si_code == SI_SIGIO)
3363 			layout = SIL_POLL;
3364 		else if (si_code < 0)
3365 			layout = SIL_RT;
3366 	}
3367 	return layout;
3368 }
3369 
3370 static inline char __user *si_expansion(const siginfo_t __user *info)
3371 {
3372 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3373 }
3374 
3375 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3376 {
3377 	char __user *expansion = si_expansion(to);
3378 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3379 		return -EFAULT;
3380 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3381 		return -EFAULT;
3382 	return 0;
3383 }
3384 
3385 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3386 				       const siginfo_t __user *from)
3387 {
3388 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3389 		char __user *expansion = si_expansion(from);
3390 		char buf[SI_EXPANSION_SIZE];
3391 		int i;
3392 		/*
3393 		 * An unknown si_code might need more than
3394 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3395 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3396 		 * will return this data to userspace exactly.
3397 		 */
3398 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3399 			return -EFAULT;
3400 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3401 			if (buf[i] != 0)
3402 				return -E2BIG;
3403 		}
3404 	}
3405 	return 0;
3406 }
3407 
3408 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3409 				    const siginfo_t __user *from)
3410 {
3411 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3412 		return -EFAULT;
3413 	to->si_signo = signo;
3414 	return post_copy_siginfo_from_user(to, from);
3415 }
3416 
3417 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3418 {
3419 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3420 		return -EFAULT;
3421 	return post_copy_siginfo_from_user(to, from);
3422 }
3423 
3424 #ifdef CONFIG_COMPAT
3425 /**
3426  * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3427  * @to: compat siginfo destination
3428  * @from: kernel siginfo source
3429  *
3430  * Note: This function does not work properly for the SIGCHLD on x32, but
3431  * fortunately it doesn't have to.  The only valid callers for this function are
3432  * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3433  * The latter does not care because SIGCHLD will never cause a coredump.
3434  */
3435 void copy_siginfo_to_external32(struct compat_siginfo *to,
3436 		const struct kernel_siginfo *from)
3437 {
3438 	memset(to, 0, sizeof(*to));
3439 
3440 	to->si_signo = from->si_signo;
3441 	to->si_errno = from->si_errno;
3442 	to->si_code  = from->si_code;
3443 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3444 	case SIL_KILL:
3445 		to->si_pid = from->si_pid;
3446 		to->si_uid = from->si_uid;
3447 		break;
3448 	case SIL_TIMER:
3449 		to->si_tid     = from->si_tid;
3450 		to->si_overrun = from->si_overrun;
3451 		to->si_int     = from->si_int;
3452 		break;
3453 	case SIL_POLL:
3454 		to->si_band = from->si_band;
3455 		to->si_fd   = from->si_fd;
3456 		break;
3457 	case SIL_FAULT:
3458 		to->si_addr = ptr_to_compat(from->si_addr);
3459 		break;
3460 	case SIL_FAULT_TRAPNO:
3461 		to->si_addr = ptr_to_compat(from->si_addr);
3462 		to->si_trapno = from->si_trapno;
3463 		break;
3464 	case SIL_FAULT_MCEERR:
3465 		to->si_addr = ptr_to_compat(from->si_addr);
3466 		to->si_addr_lsb = from->si_addr_lsb;
3467 		break;
3468 	case SIL_FAULT_BNDERR:
3469 		to->si_addr = ptr_to_compat(from->si_addr);
3470 		to->si_lower = ptr_to_compat(from->si_lower);
3471 		to->si_upper = ptr_to_compat(from->si_upper);
3472 		break;
3473 	case SIL_FAULT_PKUERR:
3474 		to->si_addr = ptr_to_compat(from->si_addr);
3475 		to->si_pkey = from->si_pkey;
3476 		break;
3477 	case SIL_FAULT_PERF_EVENT:
3478 		to->si_addr = ptr_to_compat(from->si_addr);
3479 		to->si_perf_data = from->si_perf_data;
3480 		to->si_perf_type = from->si_perf_type;
3481 		to->si_perf_flags = from->si_perf_flags;
3482 		break;
3483 	case SIL_CHLD:
3484 		to->si_pid = from->si_pid;
3485 		to->si_uid = from->si_uid;
3486 		to->si_status = from->si_status;
3487 		to->si_utime = from->si_utime;
3488 		to->si_stime = from->si_stime;
3489 		break;
3490 	case SIL_RT:
3491 		to->si_pid = from->si_pid;
3492 		to->si_uid = from->si_uid;
3493 		to->si_int = from->si_int;
3494 		break;
3495 	case SIL_SYS:
3496 		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3497 		to->si_syscall   = from->si_syscall;
3498 		to->si_arch      = from->si_arch;
3499 		break;
3500 	}
3501 }
3502 
3503 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3504 			   const struct kernel_siginfo *from)
3505 {
3506 	struct compat_siginfo new;
3507 
3508 	copy_siginfo_to_external32(&new, from);
3509 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3510 		return -EFAULT;
3511 	return 0;
3512 }
3513 
3514 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3515 					 const struct compat_siginfo *from)
3516 {
3517 	clear_siginfo(to);
3518 	to->si_signo = from->si_signo;
3519 	to->si_errno = from->si_errno;
3520 	to->si_code  = from->si_code;
3521 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3522 	case SIL_KILL:
3523 		to->si_pid = from->si_pid;
3524 		to->si_uid = from->si_uid;
3525 		break;
3526 	case SIL_TIMER:
3527 		to->si_tid     = from->si_tid;
3528 		to->si_overrun = from->si_overrun;
3529 		to->si_int     = from->si_int;
3530 		break;
3531 	case SIL_POLL:
3532 		to->si_band = from->si_band;
3533 		to->si_fd   = from->si_fd;
3534 		break;
3535 	case SIL_FAULT:
3536 		to->si_addr = compat_ptr(from->si_addr);
3537 		break;
3538 	case SIL_FAULT_TRAPNO:
3539 		to->si_addr = compat_ptr(from->si_addr);
3540 		to->si_trapno = from->si_trapno;
3541 		break;
3542 	case SIL_FAULT_MCEERR:
3543 		to->si_addr = compat_ptr(from->si_addr);
3544 		to->si_addr_lsb = from->si_addr_lsb;
3545 		break;
3546 	case SIL_FAULT_BNDERR:
3547 		to->si_addr = compat_ptr(from->si_addr);
3548 		to->si_lower = compat_ptr(from->si_lower);
3549 		to->si_upper = compat_ptr(from->si_upper);
3550 		break;
3551 	case SIL_FAULT_PKUERR:
3552 		to->si_addr = compat_ptr(from->si_addr);
3553 		to->si_pkey = from->si_pkey;
3554 		break;
3555 	case SIL_FAULT_PERF_EVENT:
3556 		to->si_addr = compat_ptr(from->si_addr);
3557 		to->si_perf_data = from->si_perf_data;
3558 		to->si_perf_type = from->si_perf_type;
3559 		to->si_perf_flags = from->si_perf_flags;
3560 		break;
3561 	case SIL_CHLD:
3562 		to->si_pid    = from->si_pid;
3563 		to->si_uid    = from->si_uid;
3564 		to->si_status = from->si_status;
3565 #ifdef CONFIG_X86_X32_ABI
3566 		if (in_x32_syscall()) {
3567 			to->si_utime = from->_sifields._sigchld_x32._utime;
3568 			to->si_stime = from->_sifields._sigchld_x32._stime;
3569 		} else
3570 #endif
3571 		{
3572 			to->si_utime = from->si_utime;
3573 			to->si_stime = from->si_stime;
3574 		}
3575 		break;
3576 	case SIL_RT:
3577 		to->si_pid = from->si_pid;
3578 		to->si_uid = from->si_uid;
3579 		to->si_int = from->si_int;
3580 		break;
3581 	case SIL_SYS:
3582 		to->si_call_addr = compat_ptr(from->si_call_addr);
3583 		to->si_syscall   = from->si_syscall;
3584 		to->si_arch      = from->si_arch;
3585 		break;
3586 	}
3587 	return 0;
3588 }
3589 
3590 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3591 				      const struct compat_siginfo __user *ufrom)
3592 {
3593 	struct compat_siginfo from;
3594 
3595 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3596 		return -EFAULT;
3597 
3598 	from.si_signo = signo;
3599 	return post_copy_siginfo_from_user32(to, &from);
3600 }
3601 
3602 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3603 			     const struct compat_siginfo __user *ufrom)
3604 {
3605 	struct compat_siginfo from;
3606 
3607 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3608 		return -EFAULT;
3609 
3610 	return post_copy_siginfo_from_user32(to, &from);
3611 }
3612 #endif /* CONFIG_COMPAT */
3613 
3614 /**
3615  *  do_sigtimedwait - wait for queued signals specified in @which
3616  *  @which: queued signals to wait for
3617  *  @info: if non-null, the signal's siginfo is returned here
3618  *  @ts: upper bound on process time suspension
3619  */
3620 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3621 		    const struct timespec64 *ts)
3622 {
3623 	ktime_t *to = NULL, timeout = KTIME_MAX;
3624 	struct task_struct *tsk = current;
3625 	sigset_t mask = *which;
3626 	enum pid_type type;
3627 	int sig, ret = 0;
3628 
3629 	if (ts) {
3630 		if (!timespec64_valid(ts))
3631 			return -EINVAL;
3632 		timeout = timespec64_to_ktime(*ts);
3633 		to = &timeout;
3634 	}
3635 
3636 	/*
3637 	 * Invert the set of allowed signals to get those we want to block.
3638 	 */
3639 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3640 	signotset(&mask);
3641 
3642 	spin_lock_irq(&tsk->sighand->siglock);
3643 	sig = dequeue_signal(tsk, &mask, info, &type);
3644 	if (!sig && timeout) {
3645 		/*
3646 		 * None ready, temporarily unblock those we're interested
3647 		 * while we are sleeping in so that we'll be awakened when
3648 		 * they arrive. Unblocking is always fine, we can avoid
3649 		 * set_current_blocked().
3650 		 */
3651 		tsk->real_blocked = tsk->blocked;
3652 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3653 		recalc_sigpending();
3654 		spin_unlock_irq(&tsk->sighand->siglock);
3655 
3656 		__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3657 		ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3658 					       HRTIMER_MODE_REL);
3659 		spin_lock_irq(&tsk->sighand->siglock);
3660 		__set_task_blocked(tsk, &tsk->real_blocked);
3661 		sigemptyset(&tsk->real_blocked);
3662 		sig = dequeue_signal(tsk, &mask, info, &type);
3663 	}
3664 	spin_unlock_irq(&tsk->sighand->siglock);
3665 
3666 	if (sig)
3667 		return sig;
3668 	return ret ? -EINTR : -EAGAIN;
3669 }
3670 
3671 /**
3672  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3673  *			in @uthese
3674  *  @uthese: queued signals to wait for
3675  *  @uinfo: if non-null, the signal's siginfo is returned here
3676  *  @uts: upper bound on process time suspension
3677  *  @sigsetsize: size of sigset_t type
3678  */
3679 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3680 		siginfo_t __user *, uinfo,
3681 		const struct __kernel_timespec __user *, uts,
3682 		size_t, sigsetsize)
3683 {
3684 	sigset_t these;
3685 	struct timespec64 ts;
3686 	kernel_siginfo_t info;
3687 	int ret;
3688 
3689 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3690 	if (sigsetsize != sizeof(sigset_t))
3691 		return -EINVAL;
3692 
3693 	if (copy_from_user(&these, uthese, sizeof(these)))
3694 		return -EFAULT;
3695 
3696 	if (uts) {
3697 		if (get_timespec64(&ts, uts))
3698 			return -EFAULT;
3699 	}
3700 
3701 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3702 
3703 	if (ret > 0 && uinfo) {
3704 		if (copy_siginfo_to_user(uinfo, &info))
3705 			ret = -EFAULT;
3706 	}
3707 
3708 	return ret;
3709 }
3710 
3711 #ifdef CONFIG_COMPAT_32BIT_TIME
3712 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3713 		siginfo_t __user *, uinfo,
3714 		const struct old_timespec32 __user *, uts,
3715 		size_t, sigsetsize)
3716 {
3717 	sigset_t these;
3718 	struct timespec64 ts;
3719 	kernel_siginfo_t info;
3720 	int ret;
3721 
3722 	if (sigsetsize != sizeof(sigset_t))
3723 		return -EINVAL;
3724 
3725 	if (copy_from_user(&these, uthese, sizeof(these)))
3726 		return -EFAULT;
3727 
3728 	if (uts) {
3729 		if (get_old_timespec32(&ts, uts))
3730 			return -EFAULT;
3731 	}
3732 
3733 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3734 
3735 	if (ret > 0 && uinfo) {
3736 		if (copy_siginfo_to_user(uinfo, &info))
3737 			ret = -EFAULT;
3738 	}
3739 
3740 	return ret;
3741 }
3742 #endif
3743 
3744 #ifdef CONFIG_COMPAT
3745 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3746 		struct compat_siginfo __user *, uinfo,
3747 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3748 {
3749 	sigset_t s;
3750 	struct timespec64 t;
3751 	kernel_siginfo_t info;
3752 	long ret;
3753 
3754 	if (sigsetsize != sizeof(sigset_t))
3755 		return -EINVAL;
3756 
3757 	if (get_compat_sigset(&s, uthese))
3758 		return -EFAULT;
3759 
3760 	if (uts) {
3761 		if (get_timespec64(&t, uts))
3762 			return -EFAULT;
3763 	}
3764 
3765 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3766 
3767 	if (ret > 0 && uinfo) {
3768 		if (copy_siginfo_to_user32(uinfo, &info))
3769 			ret = -EFAULT;
3770 	}
3771 
3772 	return ret;
3773 }
3774 
3775 #ifdef CONFIG_COMPAT_32BIT_TIME
3776 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3777 		struct compat_siginfo __user *, uinfo,
3778 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3779 {
3780 	sigset_t s;
3781 	struct timespec64 t;
3782 	kernel_siginfo_t info;
3783 	long ret;
3784 
3785 	if (sigsetsize != sizeof(sigset_t))
3786 		return -EINVAL;
3787 
3788 	if (get_compat_sigset(&s, uthese))
3789 		return -EFAULT;
3790 
3791 	if (uts) {
3792 		if (get_old_timespec32(&t, uts))
3793 			return -EFAULT;
3794 	}
3795 
3796 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3797 
3798 	if (ret > 0 && uinfo) {
3799 		if (copy_siginfo_to_user32(uinfo, &info))
3800 			ret = -EFAULT;
3801 	}
3802 
3803 	return ret;
3804 }
3805 #endif
3806 #endif
3807 
3808 static void prepare_kill_siginfo(int sig, struct kernel_siginfo *info,
3809 				 enum pid_type type)
3810 {
3811 	clear_siginfo(info);
3812 	info->si_signo = sig;
3813 	info->si_errno = 0;
3814 	info->si_code = (type == PIDTYPE_PID) ? SI_TKILL : SI_USER;
3815 	info->si_pid = task_tgid_vnr(current);
3816 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3817 }
3818 
3819 /**
3820  *  sys_kill - send a signal to a process
3821  *  @pid: the PID of the process
3822  *  @sig: signal to be sent
3823  */
3824 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3825 {
3826 	struct kernel_siginfo info;
3827 
3828 	prepare_kill_siginfo(sig, &info, PIDTYPE_TGID);
3829 
3830 	return kill_something_info(sig, &info, pid);
3831 }
3832 
3833 /*
3834  * Verify that the signaler and signalee either are in the same pid namespace
3835  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3836  * namespace.
3837  */
3838 static bool access_pidfd_pidns(struct pid *pid)
3839 {
3840 	struct pid_namespace *active = task_active_pid_ns(current);
3841 	struct pid_namespace *p = ns_of_pid(pid);
3842 
3843 	for (;;) {
3844 		if (!p)
3845 			return false;
3846 		if (p == active)
3847 			break;
3848 		p = p->parent;
3849 	}
3850 
3851 	return true;
3852 }
3853 
3854 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3855 		siginfo_t __user *info)
3856 {
3857 #ifdef CONFIG_COMPAT
3858 	/*
3859 	 * Avoid hooking up compat syscalls and instead handle necessary
3860 	 * conversions here. Note, this is a stop-gap measure and should not be
3861 	 * considered a generic solution.
3862 	 */
3863 	if (in_compat_syscall())
3864 		return copy_siginfo_from_user32(
3865 			kinfo, (struct compat_siginfo __user *)info);
3866 #endif
3867 	return copy_siginfo_from_user(kinfo, info);
3868 }
3869 
3870 static struct pid *pidfd_to_pid(const struct file *file)
3871 {
3872 	struct pid *pid;
3873 
3874 	pid = pidfd_pid(file);
3875 	if (!IS_ERR(pid))
3876 		return pid;
3877 
3878 	return tgid_pidfd_to_pid(file);
3879 }
3880 
3881 #define PIDFD_SEND_SIGNAL_FLAGS                            \
3882 	(PIDFD_SIGNAL_THREAD | PIDFD_SIGNAL_THREAD_GROUP | \
3883 	 PIDFD_SIGNAL_PROCESS_GROUP)
3884 
3885 /**
3886  * sys_pidfd_send_signal - Signal a process through a pidfd
3887  * @pidfd:  file descriptor of the process
3888  * @sig:    signal to send
3889  * @info:   signal info
3890  * @flags:  future flags
3891  *
3892  * Send the signal to the thread group or to the individual thread depending
3893  * on PIDFD_THREAD.
3894  * In the future extension to @flags may be used to override the default scope
3895  * of @pidfd.
3896  *
3897  * Return: 0 on success, negative errno on failure
3898  */
3899 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3900 		siginfo_t __user *, info, unsigned int, flags)
3901 {
3902 	int ret;
3903 	struct fd f;
3904 	struct pid *pid;
3905 	kernel_siginfo_t kinfo;
3906 	enum pid_type type;
3907 
3908 	/* Enforce flags be set to 0 until we add an extension. */
3909 	if (flags & ~PIDFD_SEND_SIGNAL_FLAGS)
3910 		return -EINVAL;
3911 
3912 	/* Ensure that only a single signal scope determining flag is set. */
3913 	if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1)
3914 		return -EINVAL;
3915 
3916 	f = fdget(pidfd);
3917 	if (!f.file)
3918 		return -EBADF;
3919 
3920 	/* Is this a pidfd? */
3921 	pid = pidfd_to_pid(f.file);
3922 	if (IS_ERR(pid)) {
3923 		ret = PTR_ERR(pid);
3924 		goto err;
3925 	}
3926 
3927 	ret = -EINVAL;
3928 	if (!access_pidfd_pidns(pid))
3929 		goto err;
3930 
3931 	switch (flags) {
3932 	case 0:
3933 		/* Infer scope from the type of pidfd. */
3934 		if (f.file->f_flags & PIDFD_THREAD)
3935 			type = PIDTYPE_PID;
3936 		else
3937 			type = PIDTYPE_TGID;
3938 		break;
3939 	case PIDFD_SIGNAL_THREAD:
3940 		type = PIDTYPE_PID;
3941 		break;
3942 	case PIDFD_SIGNAL_THREAD_GROUP:
3943 		type = PIDTYPE_TGID;
3944 		break;
3945 	case PIDFD_SIGNAL_PROCESS_GROUP:
3946 		type = PIDTYPE_PGID;
3947 		break;
3948 	}
3949 
3950 	if (info) {
3951 		ret = copy_siginfo_from_user_any(&kinfo, info);
3952 		if (unlikely(ret))
3953 			goto err;
3954 
3955 		ret = -EINVAL;
3956 		if (unlikely(sig != kinfo.si_signo))
3957 			goto err;
3958 
3959 		/* Only allow sending arbitrary signals to yourself. */
3960 		ret = -EPERM;
3961 		if ((task_pid(current) != pid || type > PIDTYPE_TGID) &&
3962 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3963 			goto err;
3964 	} else {
3965 		prepare_kill_siginfo(sig, &kinfo, type);
3966 	}
3967 
3968 	if (type == PIDTYPE_PGID)
3969 		ret = kill_pgrp_info(sig, &kinfo, pid);
3970 	else
3971 		ret = kill_pid_info_type(sig, &kinfo, pid, type);
3972 err:
3973 	fdput(f);
3974 	return ret;
3975 }
3976 
3977 static int
3978 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3979 {
3980 	struct task_struct *p;
3981 	int error = -ESRCH;
3982 
3983 	rcu_read_lock();
3984 	p = find_task_by_vpid(pid);
3985 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3986 		error = check_kill_permission(sig, info, p);
3987 		/*
3988 		 * The null signal is a permissions and process existence
3989 		 * probe.  No signal is actually delivered.
3990 		 */
3991 		if (!error && sig) {
3992 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3993 			/*
3994 			 * If lock_task_sighand() failed we pretend the task
3995 			 * dies after receiving the signal. The window is tiny,
3996 			 * and the signal is private anyway.
3997 			 */
3998 			if (unlikely(error == -ESRCH))
3999 				error = 0;
4000 		}
4001 	}
4002 	rcu_read_unlock();
4003 
4004 	return error;
4005 }
4006 
4007 static int do_tkill(pid_t tgid, pid_t pid, int sig)
4008 {
4009 	struct kernel_siginfo info;
4010 
4011 	prepare_kill_siginfo(sig, &info, PIDTYPE_PID);
4012 
4013 	return do_send_specific(tgid, pid, sig, &info);
4014 }
4015 
4016 /**
4017  *  sys_tgkill - send signal to one specific thread
4018  *  @tgid: the thread group ID of the thread
4019  *  @pid: the PID of the thread
4020  *  @sig: signal to be sent
4021  *
4022  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
4023  *  exists but it's not belonging to the target process anymore. This
4024  *  method solves the problem of threads exiting and PIDs getting reused.
4025  */
4026 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
4027 {
4028 	/* This is only valid for single tasks */
4029 	if (pid <= 0 || tgid <= 0)
4030 		return -EINVAL;
4031 
4032 	return do_tkill(tgid, pid, sig);
4033 }
4034 
4035 /**
4036  *  sys_tkill - send signal to one specific task
4037  *  @pid: the PID of the task
4038  *  @sig: signal to be sent
4039  *
4040  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
4041  */
4042 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4043 {
4044 	/* This is only valid for single tasks */
4045 	if (pid <= 0)
4046 		return -EINVAL;
4047 
4048 	return do_tkill(0, pid, sig);
4049 }
4050 
4051 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4052 {
4053 	/* Not even root can pretend to send signals from the kernel.
4054 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4055 	 */
4056 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4057 	    (task_pid_vnr(current) != pid))
4058 		return -EPERM;
4059 
4060 	/* POSIX.1b doesn't mention process groups.  */
4061 	return kill_proc_info(sig, info, pid);
4062 }
4063 
4064 /**
4065  *  sys_rt_sigqueueinfo - send signal information to a signal
4066  *  @pid: the PID of the thread
4067  *  @sig: signal to be sent
4068  *  @uinfo: signal info to be sent
4069  */
4070 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4071 		siginfo_t __user *, uinfo)
4072 {
4073 	kernel_siginfo_t info;
4074 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4075 	if (unlikely(ret))
4076 		return ret;
4077 	return do_rt_sigqueueinfo(pid, sig, &info);
4078 }
4079 
4080 #ifdef CONFIG_COMPAT
4081 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4082 			compat_pid_t, pid,
4083 			int, sig,
4084 			struct compat_siginfo __user *, uinfo)
4085 {
4086 	kernel_siginfo_t info;
4087 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4088 	if (unlikely(ret))
4089 		return ret;
4090 	return do_rt_sigqueueinfo(pid, sig, &info);
4091 }
4092 #endif
4093 
4094 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4095 {
4096 	/* This is only valid for single tasks */
4097 	if (pid <= 0 || tgid <= 0)
4098 		return -EINVAL;
4099 
4100 	/* Not even root can pretend to send signals from the kernel.
4101 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4102 	 */
4103 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4104 	    (task_pid_vnr(current) != pid))
4105 		return -EPERM;
4106 
4107 	return do_send_specific(tgid, pid, sig, info);
4108 }
4109 
4110 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4111 		siginfo_t __user *, uinfo)
4112 {
4113 	kernel_siginfo_t info;
4114 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4115 	if (unlikely(ret))
4116 		return ret;
4117 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4118 }
4119 
4120 #ifdef CONFIG_COMPAT
4121 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4122 			compat_pid_t, tgid,
4123 			compat_pid_t, pid,
4124 			int, sig,
4125 			struct compat_siginfo __user *, uinfo)
4126 {
4127 	kernel_siginfo_t info;
4128 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4129 	if (unlikely(ret))
4130 		return ret;
4131 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4132 }
4133 #endif
4134 
4135 /*
4136  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4137  */
4138 void kernel_sigaction(int sig, __sighandler_t action)
4139 {
4140 	spin_lock_irq(&current->sighand->siglock);
4141 	current->sighand->action[sig - 1].sa.sa_handler = action;
4142 	if (action == SIG_IGN) {
4143 		sigset_t mask;
4144 
4145 		sigemptyset(&mask);
4146 		sigaddset(&mask, sig);
4147 
4148 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4149 		flush_sigqueue_mask(&mask, &current->pending);
4150 		recalc_sigpending();
4151 	}
4152 	spin_unlock_irq(&current->sighand->siglock);
4153 }
4154 EXPORT_SYMBOL(kernel_sigaction);
4155 
4156 void __weak sigaction_compat_abi(struct k_sigaction *act,
4157 		struct k_sigaction *oact)
4158 {
4159 }
4160 
4161 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4162 {
4163 	struct task_struct *p = current, *t;
4164 	struct k_sigaction *k;
4165 	sigset_t mask;
4166 
4167 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4168 		return -EINVAL;
4169 
4170 	k = &p->sighand->action[sig-1];
4171 
4172 	spin_lock_irq(&p->sighand->siglock);
4173 	if (k->sa.sa_flags & SA_IMMUTABLE) {
4174 		spin_unlock_irq(&p->sighand->siglock);
4175 		return -EINVAL;
4176 	}
4177 	if (oact)
4178 		*oact = *k;
4179 
4180 	/*
4181 	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4182 	 * e.g. by having an architecture use the bit in their uapi.
4183 	 */
4184 	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4185 
4186 	/*
4187 	 * Clear unknown flag bits in order to allow userspace to detect missing
4188 	 * support for flag bits and to allow the kernel to use non-uapi bits
4189 	 * internally.
4190 	 */
4191 	if (act)
4192 		act->sa.sa_flags &= UAPI_SA_FLAGS;
4193 	if (oact)
4194 		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4195 
4196 	sigaction_compat_abi(act, oact);
4197 
4198 	if (act) {
4199 		sigdelsetmask(&act->sa.sa_mask,
4200 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4201 		*k = *act;
4202 		/*
4203 		 * POSIX 3.3.1.3:
4204 		 *  "Setting a signal action to SIG_IGN for a signal that is
4205 		 *   pending shall cause the pending signal to be discarded,
4206 		 *   whether or not it is blocked."
4207 		 *
4208 		 *  "Setting a signal action to SIG_DFL for a signal that is
4209 		 *   pending and whose default action is to ignore the signal
4210 		 *   (for example, SIGCHLD), shall cause the pending signal to
4211 		 *   be discarded, whether or not it is blocked"
4212 		 */
4213 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4214 			sigemptyset(&mask);
4215 			sigaddset(&mask, sig);
4216 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4217 			for_each_thread(p, t)
4218 				flush_sigqueue_mask(&mask, &t->pending);
4219 		}
4220 	}
4221 
4222 	spin_unlock_irq(&p->sighand->siglock);
4223 	return 0;
4224 }
4225 
4226 #ifdef CONFIG_DYNAMIC_SIGFRAME
4227 static inline void sigaltstack_lock(void)
4228 	__acquires(&current->sighand->siglock)
4229 {
4230 	spin_lock_irq(&current->sighand->siglock);
4231 }
4232 
4233 static inline void sigaltstack_unlock(void)
4234 	__releases(&current->sighand->siglock)
4235 {
4236 	spin_unlock_irq(&current->sighand->siglock);
4237 }
4238 #else
4239 static inline void sigaltstack_lock(void) { }
4240 static inline void sigaltstack_unlock(void) { }
4241 #endif
4242 
4243 static int
4244 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4245 		size_t min_ss_size)
4246 {
4247 	struct task_struct *t = current;
4248 	int ret = 0;
4249 
4250 	if (oss) {
4251 		memset(oss, 0, sizeof(stack_t));
4252 		oss->ss_sp = (void __user *) t->sas_ss_sp;
4253 		oss->ss_size = t->sas_ss_size;
4254 		oss->ss_flags = sas_ss_flags(sp) |
4255 			(current->sas_ss_flags & SS_FLAG_BITS);
4256 	}
4257 
4258 	if (ss) {
4259 		void __user *ss_sp = ss->ss_sp;
4260 		size_t ss_size = ss->ss_size;
4261 		unsigned ss_flags = ss->ss_flags;
4262 		int ss_mode;
4263 
4264 		if (unlikely(on_sig_stack(sp)))
4265 			return -EPERM;
4266 
4267 		ss_mode = ss_flags & ~SS_FLAG_BITS;
4268 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4269 				ss_mode != 0))
4270 			return -EINVAL;
4271 
4272 		/*
4273 		 * Return before taking any locks if no actual
4274 		 * sigaltstack changes were requested.
4275 		 */
4276 		if (t->sas_ss_sp == (unsigned long)ss_sp &&
4277 		    t->sas_ss_size == ss_size &&
4278 		    t->sas_ss_flags == ss_flags)
4279 			return 0;
4280 
4281 		sigaltstack_lock();
4282 		if (ss_mode == SS_DISABLE) {
4283 			ss_size = 0;
4284 			ss_sp = NULL;
4285 		} else {
4286 			if (unlikely(ss_size < min_ss_size))
4287 				ret = -ENOMEM;
4288 			if (!sigaltstack_size_valid(ss_size))
4289 				ret = -ENOMEM;
4290 		}
4291 		if (!ret) {
4292 			t->sas_ss_sp = (unsigned long) ss_sp;
4293 			t->sas_ss_size = ss_size;
4294 			t->sas_ss_flags = ss_flags;
4295 		}
4296 		sigaltstack_unlock();
4297 	}
4298 	return ret;
4299 }
4300 
4301 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4302 {
4303 	stack_t new, old;
4304 	int err;
4305 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4306 		return -EFAULT;
4307 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4308 			      current_user_stack_pointer(),
4309 			      MINSIGSTKSZ);
4310 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4311 		err = -EFAULT;
4312 	return err;
4313 }
4314 
4315 int restore_altstack(const stack_t __user *uss)
4316 {
4317 	stack_t new;
4318 	if (copy_from_user(&new, uss, sizeof(stack_t)))
4319 		return -EFAULT;
4320 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4321 			     MINSIGSTKSZ);
4322 	/* squash all but EFAULT for now */
4323 	return 0;
4324 }
4325 
4326 int __save_altstack(stack_t __user *uss, unsigned long sp)
4327 {
4328 	struct task_struct *t = current;
4329 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4330 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4331 		__put_user(t->sas_ss_size, &uss->ss_size);
4332 	return err;
4333 }
4334 
4335 #ifdef CONFIG_COMPAT
4336 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4337 				 compat_stack_t __user *uoss_ptr)
4338 {
4339 	stack_t uss, uoss;
4340 	int ret;
4341 
4342 	if (uss_ptr) {
4343 		compat_stack_t uss32;
4344 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4345 			return -EFAULT;
4346 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4347 		uss.ss_flags = uss32.ss_flags;
4348 		uss.ss_size = uss32.ss_size;
4349 	}
4350 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4351 			     compat_user_stack_pointer(),
4352 			     COMPAT_MINSIGSTKSZ);
4353 	if (ret >= 0 && uoss_ptr)  {
4354 		compat_stack_t old;
4355 		memset(&old, 0, sizeof(old));
4356 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4357 		old.ss_flags = uoss.ss_flags;
4358 		old.ss_size = uoss.ss_size;
4359 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4360 			ret = -EFAULT;
4361 	}
4362 	return ret;
4363 }
4364 
4365 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4366 			const compat_stack_t __user *, uss_ptr,
4367 			compat_stack_t __user *, uoss_ptr)
4368 {
4369 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4370 }
4371 
4372 int compat_restore_altstack(const compat_stack_t __user *uss)
4373 {
4374 	int err = do_compat_sigaltstack(uss, NULL);
4375 	/* squash all but -EFAULT for now */
4376 	return err == -EFAULT ? err : 0;
4377 }
4378 
4379 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4380 {
4381 	int err;
4382 	struct task_struct *t = current;
4383 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4384 			 &uss->ss_sp) |
4385 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4386 		__put_user(t->sas_ss_size, &uss->ss_size);
4387 	return err;
4388 }
4389 #endif
4390 
4391 #ifdef __ARCH_WANT_SYS_SIGPENDING
4392 
4393 /**
4394  *  sys_sigpending - examine pending signals
4395  *  @uset: where mask of pending signal is returned
4396  */
4397 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4398 {
4399 	sigset_t set;
4400 
4401 	if (sizeof(old_sigset_t) > sizeof(*uset))
4402 		return -EINVAL;
4403 
4404 	do_sigpending(&set);
4405 
4406 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4407 		return -EFAULT;
4408 
4409 	return 0;
4410 }
4411 
4412 #ifdef CONFIG_COMPAT
4413 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4414 {
4415 	sigset_t set;
4416 
4417 	do_sigpending(&set);
4418 
4419 	return put_user(set.sig[0], set32);
4420 }
4421 #endif
4422 
4423 #endif
4424 
4425 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4426 /**
4427  *  sys_sigprocmask - examine and change blocked signals
4428  *  @how: whether to add, remove, or set signals
4429  *  @nset: signals to add or remove (if non-null)
4430  *  @oset: previous value of signal mask if non-null
4431  *
4432  * Some platforms have their own version with special arguments;
4433  * others support only sys_rt_sigprocmask.
4434  */
4435 
4436 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4437 		old_sigset_t __user *, oset)
4438 {
4439 	old_sigset_t old_set, new_set;
4440 	sigset_t new_blocked;
4441 
4442 	old_set = current->blocked.sig[0];
4443 
4444 	if (nset) {
4445 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4446 			return -EFAULT;
4447 
4448 		new_blocked = current->blocked;
4449 
4450 		switch (how) {
4451 		case SIG_BLOCK:
4452 			sigaddsetmask(&new_blocked, new_set);
4453 			break;
4454 		case SIG_UNBLOCK:
4455 			sigdelsetmask(&new_blocked, new_set);
4456 			break;
4457 		case SIG_SETMASK:
4458 			new_blocked.sig[0] = new_set;
4459 			break;
4460 		default:
4461 			return -EINVAL;
4462 		}
4463 
4464 		set_current_blocked(&new_blocked);
4465 	}
4466 
4467 	if (oset) {
4468 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4469 			return -EFAULT;
4470 	}
4471 
4472 	return 0;
4473 }
4474 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4475 
4476 #ifndef CONFIG_ODD_RT_SIGACTION
4477 /**
4478  *  sys_rt_sigaction - alter an action taken by a process
4479  *  @sig: signal to be sent
4480  *  @act: new sigaction
4481  *  @oact: used to save the previous sigaction
4482  *  @sigsetsize: size of sigset_t type
4483  */
4484 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4485 		const struct sigaction __user *, act,
4486 		struct sigaction __user *, oact,
4487 		size_t, sigsetsize)
4488 {
4489 	struct k_sigaction new_sa, old_sa;
4490 	int ret;
4491 
4492 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4493 	if (sigsetsize != sizeof(sigset_t))
4494 		return -EINVAL;
4495 
4496 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4497 		return -EFAULT;
4498 
4499 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4500 	if (ret)
4501 		return ret;
4502 
4503 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4504 		return -EFAULT;
4505 
4506 	return 0;
4507 }
4508 #ifdef CONFIG_COMPAT
4509 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4510 		const struct compat_sigaction __user *, act,
4511 		struct compat_sigaction __user *, oact,
4512 		compat_size_t, sigsetsize)
4513 {
4514 	struct k_sigaction new_ka, old_ka;
4515 #ifdef __ARCH_HAS_SA_RESTORER
4516 	compat_uptr_t restorer;
4517 #endif
4518 	int ret;
4519 
4520 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4521 	if (sigsetsize != sizeof(compat_sigset_t))
4522 		return -EINVAL;
4523 
4524 	if (act) {
4525 		compat_uptr_t handler;
4526 		ret = get_user(handler, &act->sa_handler);
4527 		new_ka.sa.sa_handler = compat_ptr(handler);
4528 #ifdef __ARCH_HAS_SA_RESTORER
4529 		ret |= get_user(restorer, &act->sa_restorer);
4530 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4531 #endif
4532 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4533 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4534 		if (ret)
4535 			return -EFAULT;
4536 	}
4537 
4538 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4539 	if (!ret && oact) {
4540 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4541 			       &oact->sa_handler);
4542 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4543 					 sizeof(oact->sa_mask));
4544 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4545 #ifdef __ARCH_HAS_SA_RESTORER
4546 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4547 				&oact->sa_restorer);
4548 #endif
4549 	}
4550 	return ret;
4551 }
4552 #endif
4553 #endif /* !CONFIG_ODD_RT_SIGACTION */
4554 
4555 #ifdef CONFIG_OLD_SIGACTION
4556 SYSCALL_DEFINE3(sigaction, int, sig,
4557 		const struct old_sigaction __user *, act,
4558 	        struct old_sigaction __user *, oact)
4559 {
4560 	struct k_sigaction new_ka, old_ka;
4561 	int ret;
4562 
4563 	if (act) {
4564 		old_sigset_t mask;
4565 		if (!access_ok(act, sizeof(*act)) ||
4566 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4567 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4568 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4569 		    __get_user(mask, &act->sa_mask))
4570 			return -EFAULT;
4571 #ifdef __ARCH_HAS_KA_RESTORER
4572 		new_ka.ka_restorer = NULL;
4573 #endif
4574 		siginitset(&new_ka.sa.sa_mask, mask);
4575 	}
4576 
4577 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4578 
4579 	if (!ret && oact) {
4580 		if (!access_ok(oact, sizeof(*oact)) ||
4581 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4582 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4583 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4584 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4585 			return -EFAULT;
4586 	}
4587 
4588 	return ret;
4589 }
4590 #endif
4591 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4592 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4593 		const struct compat_old_sigaction __user *, act,
4594 	        struct compat_old_sigaction __user *, oact)
4595 {
4596 	struct k_sigaction new_ka, old_ka;
4597 	int ret;
4598 	compat_old_sigset_t mask;
4599 	compat_uptr_t handler, restorer;
4600 
4601 	if (act) {
4602 		if (!access_ok(act, sizeof(*act)) ||
4603 		    __get_user(handler, &act->sa_handler) ||
4604 		    __get_user(restorer, &act->sa_restorer) ||
4605 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4606 		    __get_user(mask, &act->sa_mask))
4607 			return -EFAULT;
4608 
4609 #ifdef __ARCH_HAS_KA_RESTORER
4610 		new_ka.ka_restorer = NULL;
4611 #endif
4612 		new_ka.sa.sa_handler = compat_ptr(handler);
4613 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4614 		siginitset(&new_ka.sa.sa_mask, mask);
4615 	}
4616 
4617 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4618 
4619 	if (!ret && oact) {
4620 		if (!access_ok(oact, sizeof(*oact)) ||
4621 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4622 			       &oact->sa_handler) ||
4623 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4624 			       &oact->sa_restorer) ||
4625 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4626 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4627 			return -EFAULT;
4628 	}
4629 	return ret;
4630 }
4631 #endif
4632 
4633 #ifdef CONFIG_SGETMASK_SYSCALL
4634 
4635 /*
4636  * For backwards compatibility.  Functionality superseded by sigprocmask.
4637  */
4638 SYSCALL_DEFINE0(sgetmask)
4639 {
4640 	/* SMP safe */
4641 	return current->blocked.sig[0];
4642 }
4643 
4644 SYSCALL_DEFINE1(ssetmask, int, newmask)
4645 {
4646 	int old = current->blocked.sig[0];
4647 	sigset_t newset;
4648 
4649 	siginitset(&newset, newmask);
4650 	set_current_blocked(&newset);
4651 
4652 	return old;
4653 }
4654 #endif /* CONFIG_SGETMASK_SYSCALL */
4655 
4656 #ifdef __ARCH_WANT_SYS_SIGNAL
4657 /*
4658  * For backwards compatibility.  Functionality superseded by sigaction.
4659  */
4660 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4661 {
4662 	struct k_sigaction new_sa, old_sa;
4663 	int ret;
4664 
4665 	new_sa.sa.sa_handler = handler;
4666 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4667 	sigemptyset(&new_sa.sa.sa_mask);
4668 
4669 	ret = do_sigaction(sig, &new_sa, &old_sa);
4670 
4671 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4672 }
4673 #endif /* __ARCH_WANT_SYS_SIGNAL */
4674 
4675 #ifdef __ARCH_WANT_SYS_PAUSE
4676 
4677 SYSCALL_DEFINE0(pause)
4678 {
4679 	while (!signal_pending(current)) {
4680 		__set_current_state(TASK_INTERRUPTIBLE);
4681 		schedule();
4682 	}
4683 	return -ERESTARTNOHAND;
4684 }
4685 
4686 #endif
4687 
4688 static int sigsuspend(sigset_t *set)
4689 {
4690 	current->saved_sigmask = current->blocked;
4691 	set_current_blocked(set);
4692 
4693 	while (!signal_pending(current)) {
4694 		__set_current_state(TASK_INTERRUPTIBLE);
4695 		schedule();
4696 	}
4697 	set_restore_sigmask();
4698 	return -ERESTARTNOHAND;
4699 }
4700 
4701 /**
4702  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4703  *	@unewset value until a signal is received
4704  *  @unewset: new signal mask value
4705  *  @sigsetsize: size of sigset_t type
4706  */
4707 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4708 {
4709 	sigset_t newset;
4710 
4711 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4712 	if (sigsetsize != sizeof(sigset_t))
4713 		return -EINVAL;
4714 
4715 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4716 		return -EFAULT;
4717 	return sigsuspend(&newset);
4718 }
4719 
4720 #ifdef CONFIG_COMPAT
4721 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4722 {
4723 	sigset_t newset;
4724 
4725 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4726 	if (sigsetsize != sizeof(sigset_t))
4727 		return -EINVAL;
4728 
4729 	if (get_compat_sigset(&newset, unewset))
4730 		return -EFAULT;
4731 	return sigsuspend(&newset);
4732 }
4733 #endif
4734 
4735 #ifdef CONFIG_OLD_SIGSUSPEND
4736 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4737 {
4738 	sigset_t blocked;
4739 	siginitset(&blocked, mask);
4740 	return sigsuspend(&blocked);
4741 }
4742 #endif
4743 #ifdef CONFIG_OLD_SIGSUSPEND3
4744 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4745 {
4746 	sigset_t blocked;
4747 	siginitset(&blocked, mask);
4748 	return sigsuspend(&blocked);
4749 }
4750 #endif
4751 
4752 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4753 {
4754 	return NULL;
4755 }
4756 
4757 static inline void siginfo_buildtime_checks(void)
4758 {
4759 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4760 
4761 	/* Verify the offsets in the two siginfos match */
4762 #define CHECK_OFFSET(field) \
4763 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4764 
4765 	/* kill */
4766 	CHECK_OFFSET(si_pid);
4767 	CHECK_OFFSET(si_uid);
4768 
4769 	/* timer */
4770 	CHECK_OFFSET(si_tid);
4771 	CHECK_OFFSET(si_overrun);
4772 	CHECK_OFFSET(si_value);
4773 
4774 	/* rt */
4775 	CHECK_OFFSET(si_pid);
4776 	CHECK_OFFSET(si_uid);
4777 	CHECK_OFFSET(si_value);
4778 
4779 	/* sigchld */
4780 	CHECK_OFFSET(si_pid);
4781 	CHECK_OFFSET(si_uid);
4782 	CHECK_OFFSET(si_status);
4783 	CHECK_OFFSET(si_utime);
4784 	CHECK_OFFSET(si_stime);
4785 
4786 	/* sigfault */
4787 	CHECK_OFFSET(si_addr);
4788 	CHECK_OFFSET(si_trapno);
4789 	CHECK_OFFSET(si_addr_lsb);
4790 	CHECK_OFFSET(si_lower);
4791 	CHECK_OFFSET(si_upper);
4792 	CHECK_OFFSET(si_pkey);
4793 	CHECK_OFFSET(si_perf_data);
4794 	CHECK_OFFSET(si_perf_type);
4795 	CHECK_OFFSET(si_perf_flags);
4796 
4797 	/* sigpoll */
4798 	CHECK_OFFSET(si_band);
4799 	CHECK_OFFSET(si_fd);
4800 
4801 	/* sigsys */
4802 	CHECK_OFFSET(si_call_addr);
4803 	CHECK_OFFSET(si_syscall);
4804 	CHECK_OFFSET(si_arch);
4805 #undef CHECK_OFFSET
4806 
4807 	/* usb asyncio */
4808 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4809 		     offsetof(struct siginfo, si_addr));
4810 	if (sizeof(int) == sizeof(void __user *)) {
4811 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4812 			     sizeof(void __user *));
4813 	} else {
4814 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4815 			      sizeof_field(struct siginfo, si_uid)) !=
4816 			     sizeof(void __user *));
4817 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4818 			     offsetof(struct siginfo, si_uid));
4819 	}
4820 #ifdef CONFIG_COMPAT
4821 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4822 		     offsetof(struct compat_siginfo, si_addr));
4823 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4824 		     sizeof(compat_uptr_t));
4825 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4826 		     sizeof_field(struct siginfo, si_pid));
4827 #endif
4828 }
4829 
4830 #if defined(CONFIG_SYSCTL)
4831 static struct ctl_table signal_debug_table[] = {
4832 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4833 	{
4834 		.procname	= "exception-trace",
4835 		.data		= &show_unhandled_signals,
4836 		.maxlen		= sizeof(int),
4837 		.mode		= 0644,
4838 		.proc_handler	= proc_dointvec
4839 	},
4840 #endif
4841 };
4842 
4843 static int __init init_signal_sysctls(void)
4844 {
4845 	register_sysctl_init("debug", signal_debug_table);
4846 	return 0;
4847 }
4848 early_initcall(init_signal_sysctls);
4849 #endif /* CONFIG_SYSCTL */
4850 
4851 void __init signals_init(void)
4852 {
4853 	siginfo_buildtime_checks();
4854 
4855 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4856 }
4857 
4858 #ifdef CONFIG_KGDB_KDB
4859 #include <linux/kdb.h>
4860 /*
4861  * kdb_send_sig - Allows kdb to send signals without exposing
4862  * signal internals.  This function checks if the required locks are
4863  * available before calling the main signal code, to avoid kdb
4864  * deadlocks.
4865  */
4866 void kdb_send_sig(struct task_struct *t, int sig)
4867 {
4868 	static struct task_struct *kdb_prev_t;
4869 	int new_t, ret;
4870 	if (!spin_trylock(&t->sighand->siglock)) {
4871 		kdb_printf("Can't do kill command now.\n"
4872 			   "The sigmask lock is held somewhere else in "
4873 			   "kernel, try again later\n");
4874 		return;
4875 	}
4876 	new_t = kdb_prev_t != t;
4877 	kdb_prev_t = t;
4878 	if (!task_is_running(t) && new_t) {
4879 		spin_unlock(&t->sighand->siglock);
4880 		kdb_printf("Process is not RUNNING, sending a signal from "
4881 			   "kdb risks deadlock\n"
4882 			   "on the run queue locks. "
4883 			   "The signal has _not_ been sent.\n"
4884 			   "Reissue the kill command if you want to risk "
4885 			   "the deadlock.\n");
4886 		return;
4887 	}
4888 	ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4889 	spin_unlock(&t->sighand->siglock);
4890 	if (ret)
4891 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4892 			   sig, t->pid);
4893 	else
4894 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4895 }
4896 #endif	/* CONFIG_KGDB_KDB */
4897