1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/tty.h> 19 #include <linux/binfmts.h> 20 #include <linux/security.h> 21 #include <linux/syscalls.h> 22 #include <linux/ptrace.h> 23 #include <linux/signal.h> 24 #include <linux/signalfd.h> 25 #include <linux/capability.h> 26 #include <linux/freezer.h> 27 #include <linux/pid_namespace.h> 28 #include <linux/nsproxy.h> 29 30 #include <asm/param.h> 31 #include <asm/uaccess.h> 32 #include <asm/unistd.h> 33 #include <asm/siginfo.h> 34 #include "audit.h" /* audit_signal_info() */ 35 36 /* 37 * SLAB caches for signal bits. 38 */ 39 40 static struct kmem_cache *sigqueue_cachep; 41 42 43 static int sig_ignored(struct task_struct *t, int sig) 44 { 45 void __user * handler; 46 47 /* 48 * Tracers always want to know about signals.. 49 */ 50 if (t->ptrace & PT_PTRACED) 51 return 0; 52 53 /* 54 * Blocked signals are never ignored, since the 55 * signal handler may change by the time it is 56 * unblocked. 57 */ 58 if (sigismember(&t->blocked, sig)) 59 return 0; 60 61 /* Is it explicitly or implicitly ignored? */ 62 handler = t->sighand->action[sig-1].sa.sa_handler; 63 return handler == SIG_IGN || 64 (handler == SIG_DFL && sig_kernel_ignore(sig)); 65 } 66 67 /* 68 * Re-calculate pending state from the set of locally pending 69 * signals, globally pending signals, and blocked signals. 70 */ 71 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 72 { 73 unsigned long ready; 74 long i; 75 76 switch (_NSIG_WORDS) { 77 default: 78 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 79 ready |= signal->sig[i] &~ blocked->sig[i]; 80 break; 81 82 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 83 ready |= signal->sig[2] &~ blocked->sig[2]; 84 ready |= signal->sig[1] &~ blocked->sig[1]; 85 ready |= signal->sig[0] &~ blocked->sig[0]; 86 break; 87 88 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 89 ready |= signal->sig[0] &~ blocked->sig[0]; 90 break; 91 92 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 93 } 94 return ready != 0; 95 } 96 97 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 98 99 static int recalc_sigpending_tsk(struct task_struct *t) 100 { 101 if (t->signal->group_stop_count > 0 || 102 (freezing(t)) || 103 PENDING(&t->pending, &t->blocked) || 104 PENDING(&t->signal->shared_pending, &t->blocked)) { 105 set_tsk_thread_flag(t, TIF_SIGPENDING); 106 return 1; 107 } 108 /* 109 * We must never clear the flag in another thread, or in current 110 * when it's possible the current syscall is returning -ERESTART*. 111 * So we don't clear it here, and only callers who know they should do. 112 */ 113 return 0; 114 } 115 116 /* 117 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 118 * This is superfluous when called on current, the wakeup is a harmless no-op. 119 */ 120 void recalc_sigpending_and_wake(struct task_struct *t) 121 { 122 if (recalc_sigpending_tsk(t)) 123 signal_wake_up(t, 0); 124 } 125 126 void recalc_sigpending(void) 127 { 128 if (!recalc_sigpending_tsk(current)) 129 clear_thread_flag(TIF_SIGPENDING); 130 131 } 132 133 /* Given the mask, find the first available signal that should be serviced. */ 134 135 int next_signal(struct sigpending *pending, sigset_t *mask) 136 { 137 unsigned long i, *s, *m, x; 138 int sig = 0; 139 140 s = pending->signal.sig; 141 m = mask->sig; 142 switch (_NSIG_WORDS) { 143 default: 144 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m) 145 if ((x = *s &~ *m) != 0) { 146 sig = ffz(~x) + i*_NSIG_BPW + 1; 147 break; 148 } 149 break; 150 151 case 2: if ((x = s[0] &~ m[0]) != 0) 152 sig = 1; 153 else if ((x = s[1] &~ m[1]) != 0) 154 sig = _NSIG_BPW + 1; 155 else 156 break; 157 sig += ffz(~x); 158 break; 159 160 case 1: if ((x = *s &~ *m) != 0) 161 sig = ffz(~x) + 1; 162 break; 163 } 164 165 return sig; 166 } 167 168 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags, 169 int override_rlimit) 170 { 171 struct sigqueue *q = NULL; 172 struct user_struct *user; 173 174 /* 175 * In order to avoid problems with "switch_user()", we want to make 176 * sure that the compiler doesn't re-load "t->user" 177 */ 178 user = t->user; 179 barrier(); 180 atomic_inc(&user->sigpending); 181 if (override_rlimit || 182 atomic_read(&user->sigpending) <= 183 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur) 184 q = kmem_cache_alloc(sigqueue_cachep, flags); 185 if (unlikely(q == NULL)) { 186 atomic_dec(&user->sigpending); 187 } else { 188 INIT_LIST_HEAD(&q->list); 189 q->flags = 0; 190 q->user = get_uid(user); 191 } 192 return(q); 193 } 194 195 static void __sigqueue_free(struct sigqueue *q) 196 { 197 if (q->flags & SIGQUEUE_PREALLOC) 198 return; 199 atomic_dec(&q->user->sigpending); 200 free_uid(q->user); 201 kmem_cache_free(sigqueue_cachep, q); 202 } 203 204 void flush_sigqueue(struct sigpending *queue) 205 { 206 struct sigqueue *q; 207 208 sigemptyset(&queue->signal); 209 while (!list_empty(&queue->list)) { 210 q = list_entry(queue->list.next, struct sigqueue , list); 211 list_del_init(&q->list); 212 __sigqueue_free(q); 213 } 214 } 215 216 /* 217 * Flush all pending signals for a task. 218 */ 219 void flush_signals(struct task_struct *t) 220 { 221 unsigned long flags; 222 223 spin_lock_irqsave(&t->sighand->siglock, flags); 224 clear_tsk_thread_flag(t,TIF_SIGPENDING); 225 flush_sigqueue(&t->pending); 226 flush_sigqueue(&t->signal->shared_pending); 227 spin_unlock_irqrestore(&t->sighand->siglock, flags); 228 } 229 230 void ignore_signals(struct task_struct *t) 231 { 232 int i; 233 234 for (i = 0; i < _NSIG; ++i) 235 t->sighand->action[i].sa.sa_handler = SIG_IGN; 236 237 flush_signals(t); 238 } 239 240 /* 241 * Flush all handlers for a task. 242 */ 243 244 void 245 flush_signal_handlers(struct task_struct *t, int force_default) 246 { 247 int i; 248 struct k_sigaction *ka = &t->sighand->action[0]; 249 for (i = _NSIG ; i != 0 ; i--) { 250 if (force_default || ka->sa.sa_handler != SIG_IGN) 251 ka->sa.sa_handler = SIG_DFL; 252 ka->sa.sa_flags = 0; 253 sigemptyset(&ka->sa.sa_mask); 254 ka++; 255 } 256 } 257 258 259 /* Notify the system that a driver wants to block all signals for this 260 * process, and wants to be notified if any signals at all were to be 261 * sent/acted upon. If the notifier routine returns non-zero, then the 262 * signal will be acted upon after all. If the notifier routine returns 0, 263 * then then signal will be blocked. Only one block per process is 264 * allowed. priv is a pointer to private data that the notifier routine 265 * can use to determine if the signal should be blocked or not. */ 266 267 void 268 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) 269 { 270 unsigned long flags; 271 272 spin_lock_irqsave(¤t->sighand->siglock, flags); 273 current->notifier_mask = mask; 274 current->notifier_data = priv; 275 current->notifier = notifier; 276 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 277 } 278 279 /* Notify the system that blocking has ended. */ 280 281 void 282 unblock_all_signals(void) 283 { 284 unsigned long flags; 285 286 spin_lock_irqsave(¤t->sighand->siglock, flags); 287 current->notifier = NULL; 288 current->notifier_data = NULL; 289 recalc_sigpending(); 290 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 291 } 292 293 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info) 294 { 295 struct sigqueue *q, *first = NULL; 296 int still_pending = 0; 297 298 if (unlikely(!sigismember(&list->signal, sig))) 299 return 0; 300 301 /* 302 * Collect the siginfo appropriate to this signal. Check if 303 * there is another siginfo for the same signal. 304 */ 305 list_for_each_entry(q, &list->list, list) { 306 if (q->info.si_signo == sig) { 307 if (first) { 308 still_pending = 1; 309 break; 310 } 311 first = q; 312 } 313 } 314 if (first) { 315 list_del_init(&first->list); 316 copy_siginfo(info, &first->info); 317 __sigqueue_free(first); 318 if (!still_pending) 319 sigdelset(&list->signal, sig); 320 } else { 321 322 /* Ok, it wasn't in the queue. This must be 323 a fast-pathed signal or we must have been 324 out of queue space. So zero out the info. 325 */ 326 sigdelset(&list->signal, sig); 327 info->si_signo = sig; 328 info->si_errno = 0; 329 info->si_code = 0; 330 info->si_pid = 0; 331 info->si_uid = 0; 332 } 333 return 1; 334 } 335 336 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 337 siginfo_t *info) 338 { 339 int sig = next_signal(pending, mask); 340 341 if (sig) { 342 if (current->notifier) { 343 if (sigismember(current->notifier_mask, sig)) { 344 if (!(current->notifier)(current->notifier_data)) { 345 clear_thread_flag(TIF_SIGPENDING); 346 return 0; 347 } 348 } 349 } 350 351 if (!collect_signal(sig, pending, info)) 352 sig = 0; 353 } 354 355 return sig; 356 } 357 358 /* 359 * Dequeue a signal and return the element to the caller, which is 360 * expected to free it. 361 * 362 * All callers have to hold the siglock. 363 */ 364 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 365 { 366 int signr = __dequeue_signal(&tsk->pending, mask, info); 367 if (!signr) { 368 signr = __dequeue_signal(&tsk->signal->shared_pending, 369 mask, info); 370 /* 371 * itimer signal ? 372 * 373 * itimers are process shared and we restart periodic 374 * itimers in the signal delivery path to prevent DoS 375 * attacks in the high resolution timer case. This is 376 * compliant with the old way of self restarting 377 * itimers, as the SIGALRM is a legacy signal and only 378 * queued once. Changing the restart behaviour to 379 * restart the timer in the signal dequeue path is 380 * reducing the timer noise on heavy loaded !highres 381 * systems too. 382 */ 383 if (unlikely(signr == SIGALRM)) { 384 struct hrtimer *tmr = &tsk->signal->real_timer; 385 386 if (!hrtimer_is_queued(tmr) && 387 tsk->signal->it_real_incr.tv64 != 0) { 388 hrtimer_forward(tmr, tmr->base->get_time(), 389 tsk->signal->it_real_incr); 390 hrtimer_restart(tmr); 391 } 392 } 393 } 394 if (likely(tsk == current)) 395 recalc_sigpending(); 396 if (signr && unlikely(sig_kernel_stop(signr))) { 397 /* 398 * Set a marker that we have dequeued a stop signal. Our 399 * caller might release the siglock and then the pending 400 * stop signal it is about to process is no longer in the 401 * pending bitmasks, but must still be cleared by a SIGCONT 402 * (and overruled by a SIGKILL). So those cases clear this 403 * shared flag after we've set it. Note that this flag may 404 * remain set after the signal we return is ignored or 405 * handled. That doesn't matter because its only purpose 406 * is to alert stop-signal processing code when another 407 * processor has come along and cleared the flag. 408 */ 409 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) 410 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED; 411 } 412 if ( signr && 413 ((info->si_code & __SI_MASK) == __SI_TIMER) && 414 info->si_sys_private){ 415 /* 416 * Release the siglock to ensure proper locking order 417 * of timer locks outside of siglocks. Note, we leave 418 * irqs disabled here, since the posix-timers code is 419 * about to disable them again anyway. 420 */ 421 spin_unlock(&tsk->sighand->siglock); 422 do_schedule_next_timer(info); 423 spin_lock(&tsk->sighand->siglock); 424 } 425 return signr; 426 } 427 428 /* 429 * Tell a process that it has a new active signal.. 430 * 431 * NOTE! we rely on the previous spin_lock to 432 * lock interrupts for us! We can only be called with 433 * "siglock" held, and the local interrupt must 434 * have been disabled when that got acquired! 435 * 436 * No need to set need_resched since signal event passing 437 * goes through ->blocked 438 */ 439 void signal_wake_up(struct task_struct *t, int resume) 440 { 441 unsigned int mask; 442 443 set_tsk_thread_flag(t, TIF_SIGPENDING); 444 445 /* 446 * For SIGKILL, we want to wake it up in the stopped/traced case. 447 * We don't check t->state here because there is a race with it 448 * executing another processor and just now entering stopped state. 449 * By using wake_up_state, we ensure the process will wake up and 450 * handle its death signal. 451 */ 452 mask = TASK_INTERRUPTIBLE; 453 if (resume) 454 mask |= TASK_STOPPED | TASK_TRACED; 455 if (!wake_up_state(t, mask)) 456 kick_process(t); 457 } 458 459 /* 460 * Remove signals in mask from the pending set and queue. 461 * Returns 1 if any signals were found. 462 * 463 * All callers must be holding the siglock. 464 * 465 * This version takes a sigset mask and looks at all signals, 466 * not just those in the first mask word. 467 */ 468 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s) 469 { 470 struct sigqueue *q, *n; 471 sigset_t m; 472 473 sigandsets(&m, mask, &s->signal); 474 if (sigisemptyset(&m)) 475 return 0; 476 477 signandsets(&s->signal, &s->signal, mask); 478 list_for_each_entry_safe(q, n, &s->list, list) { 479 if (sigismember(mask, q->info.si_signo)) { 480 list_del_init(&q->list); 481 __sigqueue_free(q); 482 } 483 } 484 return 1; 485 } 486 /* 487 * Remove signals in mask from the pending set and queue. 488 * Returns 1 if any signals were found. 489 * 490 * All callers must be holding the siglock. 491 */ 492 static int rm_from_queue(unsigned long mask, struct sigpending *s) 493 { 494 struct sigqueue *q, *n; 495 496 if (!sigtestsetmask(&s->signal, mask)) 497 return 0; 498 499 sigdelsetmask(&s->signal, mask); 500 list_for_each_entry_safe(q, n, &s->list, list) { 501 if (q->info.si_signo < SIGRTMIN && 502 (mask & sigmask(q->info.si_signo))) { 503 list_del_init(&q->list); 504 __sigqueue_free(q); 505 } 506 } 507 return 1; 508 } 509 510 /* 511 * Bad permissions for sending the signal 512 */ 513 static int check_kill_permission(int sig, struct siginfo *info, 514 struct task_struct *t) 515 { 516 int error = -EINVAL; 517 if (!valid_signal(sig)) 518 return error; 519 520 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 521 if (error) 522 return error; 523 524 error = -EPERM; 525 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) 526 && ((sig != SIGCONT) || 527 (process_session(current) != process_session(t))) 528 && (current->euid ^ t->suid) && (current->euid ^ t->uid) 529 && (current->uid ^ t->suid) && (current->uid ^ t->uid) 530 && !capable(CAP_KILL)) 531 return error; 532 533 return security_task_kill(t, info, sig, 0); 534 } 535 536 /* forward decl */ 537 static void do_notify_parent_cldstop(struct task_struct *tsk, int why); 538 539 /* 540 * Handle magic process-wide effects of stop/continue signals. 541 * Unlike the signal actions, these happen immediately at signal-generation 542 * time regardless of blocking, ignoring, or handling. This does the 543 * actual continuing for SIGCONT, but not the actual stopping for stop 544 * signals. The process stop is done as a signal action for SIG_DFL. 545 */ 546 static void handle_stop_signal(int sig, struct task_struct *p) 547 { 548 struct task_struct *t; 549 550 if (p->signal->flags & SIGNAL_GROUP_EXIT) 551 /* 552 * The process is in the middle of dying already. 553 */ 554 return; 555 556 if (sig_kernel_stop(sig)) { 557 /* 558 * This is a stop signal. Remove SIGCONT from all queues. 559 */ 560 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending); 561 t = p; 562 do { 563 rm_from_queue(sigmask(SIGCONT), &t->pending); 564 t = next_thread(t); 565 } while (t != p); 566 } else if (sig == SIGCONT) { 567 /* 568 * Remove all stop signals from all queues, 569 * and wake all threads. 570 */ 571 if (unlikely(p->signal->group_stop_count > 0)) { 572 /* 573 * There was a group stop in progress. We'll 574 * pretend it finished before we got here. We are 575 * obliged to report it to the parent: if the 576 * SIGSTOP happened "after" this SIGCONT, then it 577 * would have cleared this pending SIGCONT. If it 578 * happened "before" this SIGCONT, then the parent 579 * got the SIGCHLD about the stop finishing before 580 * the continue happened. We do the notification 581 * now, and it's as if the stop had finished and 582 * the SIGCHLD was pending on entry to this kill. 583 */ 584 p->signal->group_stop_count = 0; 585 p->signal->flags = SIGNAL_STOP_CONTINUED; 586 spin_unlock(&p->sighand->siglock); 587 do_notify_parent_cldstop(p, CLD_STOPPED); 588 spin_lock(&p->sighand->siglock); 589 } 590 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); 591 t = p; 592 do { 593 unsigned int state; 594 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 595 596 /* 597 * If there is a handler for SIGCONT, we must make 598 * sure that no thread returns to user mode before 599 * we post the signal, in case it was the only 600 * thread eligible to run the signal handler--then 601 * it must not do anything between resuming and 602 * running the handler. With the TIF_SIGPENDING 603 * flag set, the thread will pause and acquire the 604 * siglock that we hold now and until we've queued 605 * the pending signal. 606 * 607 * Wake up the stopped thread _after_ setting 608 * TIF_SIGPENDING 609 */ 610 state = TASK_STOPPED; 611 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) { 612 set_tsk_thread_flag(t, TIF_SIGPENDING); 613 state |= TASK_INTERRUPTIBLE; 614 } 615 wake_up_state(t, state); 616 617 t = next_thread(t); 618 } while (t != p); 619 620 if (p->signal->flags & SIGNAL_STOP_STOPPED) { 621 /* 622 * We were in fact stopped, and are now continued. 623 * Notify the parent with CLD_CONTINUED. 624 */ 625 p->signal->flags = SIGNAL_STOP_CONTINUED; 626 p->signal->group_exit_code = 0; 627 spin_unlock(&p->sighand->siglock); 628 do_notify_parent_cldstop(p, CLD_CONTINUED); 629 spin_lock(&p->sighand->siglock); 630 } else { 631 /* 632 * We are not stopped, but there could be a stop 633 * signal in the middle of being processed after 634 * being removed from the queue. Clear that too. 635 */ 636 p->signal->flags = 0; 637 } 638 } else if (sig == SIGKILL) { 639 /* 640 * Make sure that any pending stop signal already dequeued 641 * is undone by the wakeup for SIGKILL. 642 */ 643 p->signal->flags = 0; 644 } 645 } 646 647 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 648 struct sigpending *signals) 649 { 650 struct sigqueue * q = NULL; 651 int ret = 0; 652 653 /* 654 * Deliver the signal to listening signalfds. This must be called 655 * with the sighand lock held. 656 */ 657 signalfd_notify(t, sig); 658 659 /* 660 * fast-pathed signals for kernel-internal things like SIGSTOP 661 * or SIGKILL. 662 */ 663 if (info == SEND_SIG_FORCED) 664 goto out_set; 665 666 /* Real-time signals must be queued if sent by sigqueue, or 667 some other real-time mechanism. It is implementation 668 defined whether kill() does so. We attempt to do so, on 669 the principle of least surprise, but since kill is not 670 allowed to fail with EAGAIN when low on memory we just 671 make sure at least one signal gets delivered and don't 672 pass on the info struct. */ 673 674 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN && 675 (is_si_special(info) || 676 info->si_code >= 0))); 677 if (q) { 678 list_add_tail(&q->list, &signals->list); 679 switch ((unsigned long) info) { 680 case (unsigned long) SEND_SIG_NOINFO: 681 q->info.si_signo = sig; 682 q->info.si_errno = 0; 683 q->info.si_code = SI_USER; 684 q->info.si_pid = current->pid; 685 q->info.si_uid = current->uid; 686 break; 687 case (unsigned long) SEND_SIG_PRIV: 688 q->info.si_signo = sig; 689 q->info.si_errno = 0; 690 q->info.si_code = SI_KERNEL; 691 q->info.si_pid = 0; 692 q->info.si_uid = 0; 693 break; 694 default: 695 copy_siginfo(&q->info, info); 696 break; 697 } 698 } else if (!is_si_special(info)) { 699 if (sig >= SIGRTMIN && info->si_code != SI_USER) 700 /* 701 * Queue overflow, abort. We may abort if the signal was rt 702 * and sent by user using something other than kill(). 703 */ 704 return -EAGAIN; 705 } 706 707 out_set: 708 sigaddset(&signals->signal, sig); 709 return ret; 710 } 711 712 #define LEGACY_QUEUE(sigptr, sig) \ 713 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig))) 714 715 716 static int 717 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 718 { 719 int ret = 0; 720 721 BUG_ON(!irqs_disabled()); 722 assert_spin_locked(&t->sighand->siglock); 723 724 /* Short-circuit ignored signals. */ 725 if (sig_ignored(t, sig)) 726 goto out; 727 728 /* Support queueing exactly one non-rt signal, so that we 729 can get more detailed information about the cause of 730 the signal. */ 731 if (LEGACY_QUEUE(&t->pending, sig)) 732 goto out; 733 734 ret = send_signal(sig, info, t, &t->pending); 735 if (!ret && !sigismember(&t->blocked, sig)) 736 signal_wake_up(t, sig == SIGKILL); 737 out: 738 return ret; 739 } 740 741 /* 742 * Force a signal that the process can't ignore: if necessary 743 * we unblock the signal and change any SIG_IGN to SIG_DFL. 744 * 745 * Note: If we unblock the signal, we always reset it to SIG_DFL, 746 * since we do not want to have a signal handler that was blocked 747 * be invoked when user space had explicitly blocked it. 748 * 749 * We don't want to have recursive SIGSEGV's etc, for example. 750 */ 751 int 752 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 753 { 754 unsigned long int flags; 755 int ret, blocked, ignored; 756 struct k_sigaction *action; 757 758 spin_lock_irqsave(&t->sighand->siglock, flags); 759 action = &t->sighand->action[sig-1]; 760 ignored = action->sa.sa_handler == SIG_IGN; 761 blocked = sigismember(&t->blocked, sig); 762 if (blocked || ignored) { 763 action->sa.sa_handler = SIG_DFL; 764 if (blocked) { 765 sigdelset(&t->blocked, sig); 766 recalc_sigpending_and_wake(t); 767 } 768 } 769 ret = specific_send_sig_info(sig, info, t); 770 spin_unlock_irqrestore(&t->sighand->siglock, flags); 771 772 return ret; 773 } 774 775 void 776 force_sig_specific(int sig, struct task_struct *t) 777 { 778 force_sig_info(sig, SEND_SIG_FORCED, t); 779 } 780 781 /* 782 * Test if P wants to take SIG. After we've checked all threads with this, 783 * it's equivalent to finding no threads not blocking SIG. Any threads not 784 * blocking SIG were ruled out because they are not running and already 785 * have pending signals. Such threads will dequeue from the shared queue 786 * as soon as they're available, so putting the signal on the shared queue 787 * will be equivalent to sending it to one such thread. 788 */ 789 static inline int wants_signal(int sig, struct task_struct *p) 790 { 791 if (sigismember(&p->blocked, sig)) 792 return 0; 793 if (p->flags & PF_EXITING) 794 return 0; 795 if (sig == SIGKILL) 796 return 1; 797 if (p->state & (TASK_STOPPED | TASK_TRACED)) 798 return 0; 799 return task_curr(p) || !signal_pending(p); 800 } 801 802 static void 803 __group_complete_signal(int sig, struct task_struct *p) 804 { 805 struct task_struct *t; 806 807 /* 808 * Now find a thread we can wake up to take the signal off the queue. 809 * 810 * If the main thread wants the signal, it gets first crack. 811 * Probably the least surprising to the average bear. 812 */ 813 if (wants_signal(sig, p)) 814 t = p; 815 else if (thread_group_empty(p)) 816 /* 817 * There is just one thread and it does not need to be woken. 818 * It will dequeue unblocked signals before it runs again. 819 */ 820 return; 821 else { 822 /* 823 * Otherwise try to find a suitable thread. 824 */ 825 t = p->signal->curr_target; 826 if (t == NULL) 827 /* restart balancing at this thread */ 828 t = p->signal->curr_target = p; 829 830 while (!wants_signal(sig, t)) { 831 t = next_thread(t); 832 if (t == p->signal->curr_target) 833 /* 834 * No thread needs to be woken. 835 * Any eligible threads will see 836 * the signal in the queue soon. 837 */ 838 return; 839 } 840 p->signal->curr_target = t; 841 } 842 843 /* 844 * Found a killable thread. If the signal will be fatal, 845 * then start taking the whole group down immediately. 846 */ 847 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) && 848 !sigismember(&t->real_blocked, sig) && 849 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) { 850 /* 851 * This signal will be fatal to the whole group. 852 */ 853 if (!sig_kernel_coredump(sig)) { 854 /* 855 * Start a group exit and wake everybody up. 856 * This way we don't have other threads 857 * running and doing things after a slower 858 * thread has the fatal signal pending. 859 */ 860 p->signal->flags = SIGNAL_GROUP_EXIT; 861 p->signal->group_exit_code = sig; 862 p->signal->group_stop_count = 0; 863 t = p; 864 do { 865 sigaddset(&t->pending.signal, SIGKILL); 866 signal_wake_up(t, 1); 867 t = next_thread(t); 868 } while (t != p); 869 return; 870 } 871 872 /* 873 * There will be a core dump. We make all threads other 874 * than the chosen one go into a group stop so that nothing 875 * happens until it gets scheduled, takes the signal off 876 * the shared queue, and does the core dump. This is a 877 * little more complicated than strictly necessary, but it 878 * keeps the signal state that winds up in the core dump 879 * unchanged from the death state, e.g. which thread had 880 * the core-dump signal unblocked. 881 */ 882 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 883 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); 884 p->signal->group_stop_count = 0; 885 p->signal->group_exit_task = t; 886 t = p; 887 do { 888 p->signal->group_stop_count++; 889 signal_wake_up(t, 0); 890 t = next_thread(t); 891 } while (t != p); 892 wake_up_process(p->signal->group_exit_task); 893 return; 894 } 895 896 /* 897 * The signal is already in the shared-pending queue. 898 * Tell the chosen thread to wake up and dequeue it. 899 */ 900 signal_wake_up(t, sig == SIGKILL); 901 return; 902 } 903 904 int 905 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 906 { 907 int ret = 0; 908 909 assert_spin_locked(&p->sighand->siglock); 910 handle_stop_signal(sig, p); 911 912 /* Short-circuit ignored signals. */ 913 if (sig_ignored(p, sig)) 914 return ret; 915 916 if (LEGACY_QUEUE(&p->signal->shared_pending, sig)) 917 /* This is a non-RT signal and we already have one queued. */ 918 return ret; 919 920 /* 921 * Put this signal on the shared-pending queue, or fail with EAGAIN. 922 * We always use the shared queue for process-wide signals, 923 * to avoid several races. 924 */ 925 ret = send_signal(sig, info, p, &p->signal->shared_pending); 926 if (unlikely(ret)) 927 return ret; 928 929 __group_complete_signal(sig, p); 930 return 0; 931 } 932 933 /* 934 * Nuke all other threads in the group. 935 */ 936 void zap_other_threads(struct task_struct *p) 937 { 938 struct task_struct *t; 939 940 p->signal->flags = SIGNAL_GROUP_EXIT; 941 p->signal->group_stop_count = 0; 942 943 if (thread_group_empty(p)) 944 return; 945 946 for (t = next_thread(p); t != p; t = next_thread(t)) { 947 /* 948 * Don't bother with already dead threads 949 */ 950 if (t->exit_state) 951 continue; 952 953 /* SIGKILL will be handled before any pending SIGSTOP */ 954 sigaddset(&t->pending.signal, SIGKILL); 955 signal_wake_up(t, 1); 956 } 957 } 958 959 /* 960 * Must be called under rcu_read_lock() or with tasklist_lock read-held. 961 */ 962 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags) 963 { 964 struct sighand_struct *sighand; 965 966 for (;;) { 967 sighand = rcu_dereference(tsk->sighand); 968 if (unlikely(sighand == NULL)) 969 break; 970 971 spin_lock_irqsave(&sighand->siglock, *flags); 972 if (likely(sighand == tsk->sighand)) 973 break; 974 spin_unlock_irqrestore(&sighand->siglock, *flags); 975 } 976 977 return sighand; 978 } 979 980 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 981 { 982 unsigned long flags; 983 int ret; 984 985 ret = check_kill_permission(sig, info, p); 986 987 if (!ret && sig) { 988 ret = -ESRCH; 989 if (lock_task_sighand(p, &flags)) { 990 ret = __group_send_sig_info(sig, info, p); 991 unlock_task_sighand(p, &flags); 992 } 993 } 994 995 return ret; 996 } 997 998 /* 999 * kill_pgrp_info() sends a signal to a process group: this is what the tty 1000 * control characters do (^C, ^Z etc) 1001 */ 1002 1003 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1004 { 1005 struct task_struct *p = NULL; 1006 int retval, success; 1007 1008 success = 0; 1009 retval = -ESRCH; 1010 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1011 int err = group_send_sig_info(sig, info, p); 1012 success |= !err; 1013 retval = err; 1014 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1015 return success ? 0 : retval; 1016 } 1017 1018 int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1019 { 1020 int retval; 1021 1022 read_lock(&tasklist_lock); 1023 retval = __kill_pgrp_info(sig, info, pgrp); 1024 read_unlock(&tasklist_lock); 1025 1026 return retval; 1027 } 1028 1029 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) 1030 { 1031 int error; 1032 struct task_struct *p; 1033 1034 rcu_read_lock(); 1035 if (unlikely(sig_needs_tasklist(sig))) 1036 read_lock(&tasklist_lock); 1037 1038 p = pid_task(pid, PIDTYPE_PID); 1039 error = -ESRCH; 1040 if (p) 1041 error = group_send_sig_info(sig, info, p); 1042 1043 if (unlikely(sig_needs_tasklist(sig))) 1044 read_unlock(&tasklist_lock); 1045 rcu_read_unlock(); 1046 return error; 1047 } 1048 1049 int 1050 kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1051 { 1052 int error; 1053 rcu_read_lock(); 1054 error = kill_pid_info(sig, info, find_pid(pid)); 1055 rcu_read_unlock(); 1056 return error; 1057 } 1058 1059 /* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1060 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid, 1061 uid_t uid, uid_t euid, u32 secid) 1062 { 1063 int ret = -EINVAL; 1064 struct task_struct *p; 1065 1066 if (!valid_signal(sig)) 1067 return ret; 1068 1069 read_lock(&tasklist_lock); 1070 p = pid_task(pid, PIDTYPE_PID); 1071 if (!p) { 1072 ret = -ESRCH; 1073 goto out_unlock; 1074 } 1075 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) 1076 && (euid != p->suid) && (euid != p->uid) 1077 && (uid != p->suid) && (uid != p->uid)) { 1078 ret = -EPERM; 1079 goto out_unlock; 1080 } 1081 ret = security_task_kill(p, info, sig, secid); 1082 if (ret) 1083 goto out_unlock; 1084 if (sig && p->sighand) { 1085 unsigned long flags; 1086 spin_lock_irqsave(&p->sighand->siglock, flags); 1087 ret = __group_send_sig_info(sig, info, p); 1088 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1089 } 1090 out_unlock: 1091 read_unlock(&tasklist_lock); 1092 return ret; 1093 } 1094 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid); 1095 1096 /* 1097 * kill_something_info() interprets pid in interesting ways just like kill(2). 1098 * 1099 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1100 * is probably wrong. Should make it like BSD or SYSV. 1101 */ 1102 1103 static int kill_something_info(int sig, struct siginfo *info, int pid) 1104 { 1105 int ret; 1106 rcu_read_lock(); 1107 if (!pid) { 1108 ret = kill_pgrp_info(sig, info, task_pgrp(current)); 1109 } else if (pid == -1) { 1110 int retval = 0, count = 0; 1111 struct task_struct * p; 1112 1113 read_lock(&tasklist_lock); 1114 for_each_process(p) { 1115 if (p->pid > 1 && p->tgid != current->tgid) { 1116 int err = group_send_sig_info(sig, info, p); 1117 ++count; 1118 if (err != -EPERM) 1119 retval = err; 1120 } 1121 } 1122 read_unlock(&tasklist_lock); 1123 ret = count ? retval : -ESRCH; 1124 } else if (pid < 0) { 1125 ret = kill_pgrp_info(sig, info, find_pid(-pid)); 1126 } else { 1127 ret = kill_pid_info(sig, info, find_pid(pid)); 1128 } 1129 rcu_read_unlock(); 1130 return ret; 1131 } 1132 1133 /* 1134 * These are for backward compatibility with the rest of the kernel source. 1135 */ 1136 1137 /* 1138 * These two are the most common entry points. They send a signal 1139 * just to the specific thread. 1140 */ 1141 int 1142 send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1143 { 1144 int ret; 1145 unsigned long flags; 1146 1147 /* 1148 * Make sure legacy kernel users don't send in bad values 1149 * (normal paths check this in check_kill_permission). 1150 */ 1151 if (!valid_signal(sig)) 1152 return -EINVAL; 1153 1154 /* 1155 * We need the tasklist lock even for the specific 1156 * thread case (when we don't need to follow the group 1157 * lists) in order to avoid races with "p->sighand" 1158 * going away or changing from under us. 1159 */ 1160 read_lock(&tasklist_lock); 1161 spin_lock_irqsave(&p->sighand->siglock, flags); 1162 ret = specific_send_sig_info(sig, info, p); 1163 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1164 read_unlock(&tasklist_lock); 1165 return ret; 1166 } 1167 1168 #define __si_special(priv) \ 1169 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1170 1171 int 1172 send_sig(int sig, struct task_struct *p, int priv) 1173 { 1174 return send_sig_info(sig, __si_special(priv), p); 1175 } 1176 1177 /* 1178 * This is the entry point for "process-wide" signals. 1179 * They will go to an appropriate thread in the thread group. 1180 */ 1181 int 1182 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1183 { 1184 int ret; 1185 read_lock(&tasklist_lock); 1186 ret = group_send_sig_info(sig, info, p); 1187 read_unlock(&tasklist_lock); 1188 return ret; 1189 } 1190 1191 void 1192 force_sig(int sig, struct task_struct *p) 1193 { 1194 force_sig_info(sig, SEND_SIG_PRIV, p); 1195 } 1196 1197 /* 1198 * When things go south during signal handling, we 1199 * will force a SIGSEGV. And if the signal that caused 1200 * the problem was already a SIGSEGV, we'll want to 1201 * make sure we don't even try to deliver the signal.. 1202 */ 1203 int 1204 force_sigsegv(int sig, struct task_struct *p) 1205 { 1206 if (sig == SIGSEGV) { 1207 unsigned long flags; 1208 spin_lock_irqsave(&p->sighand->siglock, flags); 1209 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1210 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1211 } 1212 force_sig(SIGSEGV, p); 1213 return 0; 1214 } 1215 1216 int kill_pgrp(struct pid *pid, int sig, int priv) 1217 { 1218 return kill_pgrp_info(sig, __si_special(priv), pid); 1219 } 1220 EXPORT_SYMBOL(kill_pgrp); 1221 1222 int kill_pid(struct pid *pid, int sig, int priv) 1223 { 1224 return kill_pid_info(sig, __si_special(priv), pid); 1225 } 1226 EXPORT_SYMBOL(kill_pid); 1227 1228 int 1229 kill_proc(pid_t pid, int sig, int priv) 1230 { 1231 return kill_proc_info(sig, __si_special(priv), pid); 1232 } 1233 1234 /* 1235 * These functions support sending signals using preallocated sigqueue 1236 * structures. This is needed "because realtime applications cannot 1237 * afford to lose notifications of asynchronous events, like timer 1238 * expirations or I/O completions". In the case of Posix Timers 1239 * we allocate the sigqueue structure from the timer_create. If this 1240 * allocation fails we are able to report the failure to the application 1241 * with an EAGAIN error. 1242 */ 1243 1244 struct sigqueue *sigqueue_alloc(void) 1245 { 1246 struct sigqueue *q; 1247 1248 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0))) 1249 q->flags |= SIGQUEUE_PREALLOC; 1250 return(q); 1251 } 1252 1253 void sigqueue_free(struct sigqueue *q) 1254 { 1255 unsigned long flags; 1256 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1257 /* 1258 * If the signal is still pending remove it from the 1259 * pending queue. 1260 */ 1261 if (unlikely(!list_empty(&q->list))) { 1262 spinlock_t *lock = ¤t->sighand->siglock; 1263 read_lock(&tasklist_lock); 1264 spin_lock_irqsave(lock, flags); 1265 if (!list_empty(&q->list)) 1266 list_del_init(&q->list); 1267 spin_unlock_irqrestore(lock, flags); 1268 read_unlock(&tasklist_lock); 1269 } 1270 q->flags &= ~SIGQUEUE_PREALLOC; 1271 __sigqueue_free(q); 1272 } 1273 1274 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) 1275 { 1276 unsigned long flags; 1277 int ret = 0; 1278 1279 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1280 1281 /* 1282 * The rcu based delayed sighand destroy makes it possible to 1283 * run this without tasklist lock held. The task struct itself 1284 * cannot go away as create_timer did get_task_struct(). 1285 * 1286 * We return -1, when the task is marked exiting, so 1287 * posix_timer_event can redirect it to the group leader 1288 */ 1289 rcu_read_lock(); 1290 1291 if (!likely(lock_task_sighand(p, &flags))) { 1292 ret = -1; 1293 goto out_err; 1294 } 1295 1296 if (unlikely(!list_empty(&q->list))) { 1297 /* 1298 * If an SI_TIMER entry is already queue just increment 1299 * the overrun count. 1300 */ 1301 BUG_ON(q->info.si_code != SI_TIMER); 1302 q->info.si_overrun++; 1303 goto out; 1304 } 1305 /* Short-circuit ignored signals. */ 1306 if (sig_ignored(p, sig)) { 1307 ret = 1; 1308 goto out; 1309 } 1310 /* 1311 * Deliver the signal to listening signalfds. This must be called 1312 * with the sighand lock held. 1313 */ 1314 signalfd_notify(p, sig); 1315 1316 list_add_tail(&q->list, &p->pending.list); 1317 sigaddset(&p->pending.signal, sig); 1318 if (!sigismember(&p->blocked, sig)) 1319 signal_wake_up(p, sig == SIGKILL); 1320 1321 out: 1322 unlock_task_sighand(p, &flags); 1323 out_err: 1324 rcu_read_unlock(); 1325 1326 return ret; 1327 } 1328 1329 int 1330 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) 1331 { 1332 unsigned long flags; 1333 int ret = 0; 1334 1335 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1336 1337 read_lock(&tasklist_lock); 1338 /* Since it_lock is held, p->sighand cannot be NULL. */ 1339 spin_lock_irqsave(&p->sighand->siglock, flags); 1340 handle_stop_signal(sig, p); 1341 1342 /* Short-circuit ignored signals. */ 1343 if (sig_ignored(p, sig)) { 1344 ret = 1; 1345 goto out; 1346 } 1347 1348 if (unlikely(!list_empty(&q->list))) { 1349 /* 1350 * If an SI_TIMER entry is already queue just increment 1351 * the overrun count. Other uses should not try to 1352 * send the signal multiple times. 1353 */ 1354 BUG_ON(q->info.si_code != SI_TIMER); 1355 q->info.si_overrun++; 1356 goto out; 1357 } 1358 /* 1359 * Deliver the signal to listening signalfds. This must be called 1360 * with the sighand lock held. 1361 */ 1362 signalfd_notify(p, sig); 1363 1364 /* 1365 * Put this signal on the shared-pending queue. 1366 * We always use the shared queue for process-wide signals, 1367 * to avoid several races. 1368 */ 1369 list_add_tail(&q->list, &p->signal->shared_pending.list); 1370 sigaddset(&p->signal->shared_pending.signal, sig); 1371 1372 __group_complete_signal(sig, p); 1373 out: 1374 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1375 read_unlock(&tasklist_lock); 1376 return ret; 1377 } 1378 1379 /* 1380 * Wake up any threads in the parent blocked in wait* syscalls. 1381 */ 1382 static inline void __wake_up_parent(struct task_struct *p, 1383 struct task_struct *parent) 1384 { 1385 wake_up_interruptible_sync(&parent->signal->wait_chldexit); 1386 } 1387 1388 /* 1389 * Let a parent know about the death of a child. 1390 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1391 */ 1392 1393 void do_notify_parent(struct task_struct *tsk, int sig) 1394 { 1395 struct siginfo info; 1396 unsigned long flags; 1397 struct sighand_struct *psig; 1398 1399 BUG_ON(sig == -1); 1400 1401 /* do_notify_parent_cldstop should have been called instead. */ 1402 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED)); 1403 1404 BUG_ON(!tsk->ptrace && 1405 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1406 1407 info.si_signo = sig; 1408 info.si_errno = 0; 1409 info.si_pid = tsk->pid; 1410 info.si_uid = tsk->uid; 1411 1412 /* FIXME: find out whether or not this is supposed to be c*time. */ 1413 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime, 1414 tsk->signal->utime)); 1415 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime, 1416 tsk->signal->stime)); 1417 1418 info.si_status = tsk->exit_code & 0x7f; 1419 if (tsk->exit_code & 0x80) 1420 info.si_code = CLD_DUMPED; 1421 else if (tsk->exit_code & 0x7f) 1422 info.si_code = CLD_KILLED; 1423 else { 1424 info.si_code = CLD_EXITED; 1425 info.si_status = tsk->exit_code >> 8; 1426 } 1427 1428 psig = tsk->parent->sighand; 1429 spin_lock_irqsave(&psig->siglock, flags); 1430 if (!tsk->ptrace && sig == SIGCHLD && 1431 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1432 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1433 /* 1434 * We are exiting and our parent doesn't care. POSIX.1 1435 * defines special semantics for setting SIGCHLD to SIG_IGN 1436 * or setting the SA_NOCLDWAIT flag: we should be reaped 1437 * automatically and not left for our parent's wait4 call. 1438 * Rather than having the parent do it as a magic kind of 1439 * signal handler, we just set this to tell do_exit that we 1440 * can be cleaned up without becoming a zombie. Note that 1441 * we still call __wake_up_parent in this case, because a 1442 * blocked sys_wait4 might now return -ECHILD. 1443 * 1444 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1445 * is implementation-defined: we do (if you don't want 1446 * it, just use SIG_IGN instead). 1447 */ 1448 tsk->exit_signal = -1; 1449 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1450 sig = 0; 1451 } 1452 if (valid_signal(sig) && sig > 0) 1453 __group_send_sig_info(sig, &info, tsk->parent); 1454 __wake_up_parent(tsk, tsk->parent); 1455 spin_unlock_irqrestore(&psig->siglock, flags); 1456 } 1457 1458 static void do_notify_parent_cldstop(struct task_struct *tsk, int why) 1459 { 1460 struct siginfo info; 1461 unsigned long flags; 1462 struct task_struct *parent; 1463 struct sighand_struct *sighand; 1464 1465 if (tsk->ptrace & PT_PTRACED) 1466 parent = tsk->parent; 1467 else { 1468 tsk = tsk->group_leader; 1469 parent = tsk->real_parent; 1470 } 1471 1472 info.si_signo = SIGCHLD; 1473 info.si_errno = 0; 1474 info.si_pid = tsk->pid; 1475 info.si_uid = tsk->uid; 1476 1477 /* FIXME: find out whether or not this is supposed to be c*time. */ 1478 info.si_utime = cputime_to_jiffies(tsk->utime); 1479 info.si_stime = cputime_to_jiffies(tsk->stime); 1480 1481 info.si_code = why; 1482 switch (why) { 1483 case CLD_CONTINUED: 1484 info.si_status = SIGCONT; 1485 break; 1486 case CLD_STOPPED: 1487 info.si_status = tsk->signal->group_exit_code & 0x7f; 1488 break; 1489 case CLD_TRAPPED: 1490 info.si_status = tsk->exit_code & 0x7f; 1491 break; 1492 default: 1493 BUG(); 1494 } 1495 1496 sighand = parent->sighand; 1497 spin_lock_irqsave(&sighand->siglock, flags); 1498 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1499 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1500 __group_send_sig_info(SIGCHLD, &info, parent); 1501 /* 1502 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1503 */ 1504 __wake_up_parent(tsk, parent); 1505 spin_unlock_irqrestore(&sighand->siglock, flags); 1506 } 1507 1508 static inline int may_ptrace_stop(void) 1509 { 1510 if (!likely(current->ptrace & PT_PTRACED)) 1511 return 0; 1512 1513 if (unlikely(current->parent == current->real_parent && 1514 (current->ptrace & PT_ATTACHED))) 1515 return 0; 1516 1517 if (unlikely(current->signal == current->parent->signal) && 1518 unlikely(current->signal->flags & SIGNAL_GROUP_EXIT)) 1519 return 0; 1520 1521 /* 1522 * Are we in the middle of do_coredump? 1523 * If so and our tracer is also part of the coredump stopping 1524 * is a deadlock situation, and pointless because our tracer 1525 * is dead so don't allow us to stop. 1526 * If SIGKILL was already sent before the caller unlocked 1527 * ->siglock we must see ->core_waiters != 0. Otherwise it 1528 * is safe to enter schedule(). 1529 */ 1530 if (unlikely(current->mm->core_waiters) && 1531 unlikely(current->mm == current->parent->mm)) 1532 return 0; 1533 1534 return 1; 1535 } 1536 1537 /* 1538 * This must be called with current->sighand->siglock held. 1539 * 1540 * This should be the path for all ptrace stops. 1541 * We always set current->last_siginfo while stopped here. 1542 * That makes it a way to test a stopped process for 1543 * being ptrace-stopped vs being job-control-stopped. 1544 * 1545 * If we actually decide not to stop at all because the tracer is gone, 1546 * we leave nostop_code in current->exit_code. 1547 */ 1548 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info) 1549 { 1550 /* 1551 * If there is a group stop in progress, 1552 * we must participate in the bookkeeping. 1553 */ 1554 if (current->signal->group_stop_count > 0) 1555 --current->signal->group_stop_count; 1556 1557 current->last_siginfo = info; 1558 current->exit_code = exit_code; 1559 1560 /* Let the debugger run. */ 1561 set_current_state(TASK_TRACED); 1562 spin_unlock_irq(¤t->sighand->siglock); 1563 try_to_freeze(); 1564 read_lock(&tasklist_lock); 1565 if (may_ptrace_stop()) { 1566 do_notify_parent_cldstop(current, CLD_TRAPPED); 1567 read_unlock(&tasklist_lock); 1568 schedule(); 1569 } else { 1570 /* 1571 * By the time we got the lock, our tracer went away. 1572 * Don't stop here. 1573 */ 1574 read_unlock(&tasklist_lock); 1575 set_current_state(TASK_RUNNING); 1576 current->exit_code = nostop_code; 1577 } 1578 1579 /* 1580 * We are back. Now reacquire the siglock before touching 1581 * last_siginfo, so that we are sure to have synchronized with 1582 * any signal-sending on another CPU that wants to examine it. 1583 */ 1584 spin_lock_irq(¤t->sighand->siglock); 1585 current->last_siginfo = NULL; 1586 1587 /* 1588 * Queued signals ignored us while we were stopped for tracing. 1589 * So check for any that we should take before resuming user mode. 1590 * This sets TIF_SIGPENDING, but never clears it. 1591 */ 1592 recalc_sigpending_tsk(current); 1593 } 1594 1595 void ptrace_notify(int exit_code) 1596 { 1597 siginfo_t info; 1598 1599 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1600 1601 memset(&info, 0, sizeof info); 1602 info.si_signo = SIGTRAP; 1603 info.si_code = exit_code; 1604 info.si_pid = current->pid; 1605 info.si_uid = current->uid; 1606 1607 /* Let the debugger run. */ 1608 spin_lock_irq(¤t->sighand->siglock); 1609 ptrace_stop(exit_code, 0, &info); 1610 spin_unlock_irq(¤t->sighand->siglock); 1611 } 1612 1613 static void 1614 finish_stop(int stop_count) 1615 { 1616 /* 1617 * If there are no other threads in the group, or if there is 1618 * a group stop in progress and we are the last to stop, 1619 * report to the parent. When ptraced, every thread reports itself. 1620 */ 1621 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) { 1622 read_lock(&tasklist_lock); 1623 do_notify_parent_cldstop(current, CLD_STOPPED); 1624 read_unlock(&tasklist_lock); 1625 } 1626 1627 do { 1628 schedule(); 1629 } while (try_to_freeze()); 1630 /* 1631 * Now we don't run again until continued. 1632 */ 1633 current->exit_code = 0; 1634 } 1635 1636 /* 1637 * This performs the stopping for SIGSTOP and other stop signals. 1638 * We have to stop all threads in the thread group. 1639 * Returns nonzero if we've actually stopped and released the siglock. 1640 * Returns zero if we didn't stop and still hold the siglock. 1641 */ 1642 static int do_signal_stop(int signr) 1643 { 1644 struct signal_struct *sig = current->signal; 1645 int stop_count; 1646 1647 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) 1648 return 0; 1649 1650 if (sig->group_stop_count > 0) { 1651 /* 1652 * There is a group stop in progress. We don't need to 1653 * start another one. 1654 */ 1655 stop_count = --sig->group_stop_count; 1656 } else { 1657 /* 1658 * There is no group stop already in progress. 1659 * We must initiate one now. 1660 */ 1661 struct task_struct *t; 1662 1663 sig->group_exit_code = signr; 1664 1665 stop_count = 0; 1666 for (t = next_thread(current); t != current; t = next_thread(t)) 1667 /* 1668 * Setting state to TASK_STOPPED for a group 1669 * stop is always done with the siglock held, 1670 * so this check has no races. 1671 */ 1672 if (!t->exit_state && 1673 !(t->state & (TASK_STOPPED|TASK_TRACED))) { 1674 stop_count++; 1675 signal_wake_up(t, 0); 1676 } 1677 sig->group_stop_count = stop_count; 1678 } 1679 1680 if (stop_count == 0) 1681 sig->flags = SIGNAL_STOP_STOPPED; 1682 current->exit_code = sig->group_exit_code; 1683 __set_current_state(TASK_STOPPED); 1684 1685 spin_unlock_irq(¤t->sighand->siglock); 1686 finish_stop(stop_count); 1687 return 1; 1688 } 1689 1690 /* 1691 * Do appropriate magic when group_stop_count > 0. 1692 * We return nonzero if we stopped, after releasing the siglock. 1693 * We return zero if we still hold the siglock and should look 1694 * for another signal without checking group_stop_count again. 1695 */ 1696 static int handle_group_stop(void) 1697 { 1698 int stop_count; 1699 1700 if (current->signal->group_exit_task == current) { 1701 /* 1702 * Group stop is so we can do a core dump, 1703 * We are the initiating thread, so get on with it. 1704 */ 1705 current->signal->group_exit_task = NULL; 1706 return 0; 1707 } 1708 1709 if (current->signal->flags & SIGNAL_GROUP_EXIT) 1710 /* 1711 * Group stop is so another thread can do a core dump, 1712 * or else we are racing against a death signal. 1713 * Just punt the stop so we can get the next signal. 1714 */ 1715 return 0; 1716 1717 /* 1718 * There is a group stop in progress. We stop 1719 * without any associated signal being in our queue. 1720 */ 1721 stop_count = --current->signal->group_stop_count; 1722 if (stop_count == 0) 1723 current->signal->flags = SIGNAL_STOP_STOPPED; 1724 current->exit_code = current->signal->group_exit_code; 1725 set_current_state(TASK_STOPPED); 1726 spin_unlock_irq(¤t->sighand->siglock); 1727 finish_stop(stop_count); 1728 return 1; 1729 } 1730 1731 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, 1732 struct pt_regs *regs, void *cookie) 1733 { 1734 sigset_t *mask = ¤t->blocked; 1735 int signr = 0; 1736 1737 try_to_freeze(); 1738 1739 relock: 1740 spin_lock_irq(¤t->sighand->siglock); 1741 for (;;) { 1742 struct k_sigaction *ka; 1743 1744 if (unlikely(current->signal->group_stop_count > 0) && 1745 handle_group_stop()) 1746 goto relock; 1747 1748 signr = dequeue_signal(current, mask, info); 1749 1750 if (!signr) 1751 break; /* will return 0 */ 1752 1753 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) { 1754 ptrace_signal_deliver(regs, cookie); 1755 1756 /* Let the debugger run. */ 1757 ptrace_stop(signr, signr, info); 1758 1759 /* We're back. Did the debugger cancel the sig? */ 1760 signr = current->exit_code; 1761 if (signr == 0) 1762 continue; 1763 1764 current->exit_code = 0; 1765 1766 /* Update the siginfo structure if the signal has 1767 changed. If the debugger wanted something 1768 specific in the siginfo structure then it should 1769 have updated *info via PTRACE_SETSIGINFO. */ 1770 if (signr != info->si_signo) { 1771 info->si_signo = signr; 1772 info->si_errno = 0; 1773 info->si_code = SI_USER; 1774 info->si_pid = current->parent->pid; 1775 info->si_uid = current->parent->uid; 1776 } 1777 1778 /* If the (new) signal is now blocked, requeue it. */ 1779 if (sigismember(¤t->blocked, signr)) { 1780 specific_send_sig_info(signr, info, current); 1781 continue; 1782 } 1783 } 1784 1785 ka = ¤t->sighand->action[signr-1]; 1786 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 1787 continue; 1788 if (ka->sa.sa_handler != SIG_DFL) { 1789 /* Run the handler. */ 1790 *return_ka = *ka; 1791 1792 if (ka->sa.sa_flags & SA_ONESHOT) 1793 ka->sa.sa_handler = SIG_DFL; 1794 1795 break; /* will return non-zero "signr" value */ 1796 } 1797 1798 /* 1799 * Now we are doing the default action for this signal. 1800 */ 1801 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 1802 continue; 1803 1804 /* 1805 * Init of a pid space gets no signals it doesn't want from 1806 * within that pid space. It can of course get signals from 1807 * its parent pid space. 1808 */ 1809 if (current == child_reaper(current)) 1810 continue; 1811 1812 if (sig_kernel_stop(signr)) { 1813 /* 1814 * The default action is to stop all threads in 1815 * the thread group. The job control signals 1816 * do nothing in an orphaned pgrp, but SIGSTOP 1817 * always works. Note that siglock needs to be 1818 * dropped during the call to is_orphaned_pgrp() 1819 * because of lock ordering with tasklist_lock. 1820 * This allows an intervening SIGCONT to be posted. 1821 * We need to check for that and bail out if necessary. 1822 */ 1823 if (signr != SIGSTOP) { 1824 spin_unlock_irq(¤t->sighand->siglock); 1825 1826 /* signals can be posted during this window */ 1827 1828 if (is_current_pgrp_orphaned()) 1829 goto relock; 1830 1831 spin_lock_irq(¤t->sighand->siglock); 1832 } 1833 1834 if (likely(do_signal_stop(signr))) { 1835 /* It released the siglock. */ 1836 goto relock; 1837 } 1838 1839 /* 1840 * We didn't actually stop, due to a race 1841 * with SIGCONT or something like that. 1842 */ 1843 continue; 1844 } 1845 1846 spin_unlock_irq(¤t->sighand->siglock); 1847 1848 /* 1849 * Anything else is fatal, maybe with a core dump. 1850 */ 1851 current->flags |= PF_SIGNALED; 1852 if (sig_kernel_coredump(signr)) { 1853 /* 1854 * If it was able to dump core, this kills all 1855 * other threads in the group and synchronizes with 1856 * their demise. If we lost the race with another 1857 * thread getting here, it set group_exit_code 1858 * first and our do_group_exit call below will use 1859 * that value and ignore the one we pass it. 1860 */ 1861 do_coredump((long)signr, signr, regs); 1862 } 1863 1864 /* 1865 * Death signals, no core dump. 1866 */ 1867 do_group_exit(signr); 1868 /* NOTREACHED */ 1869 } 1870 spin_unlock_irq(¤t->sighand->siglock); 1871 return signr; 1872 } 1873 1874 EXPORT_SYMBOL(recalc_sigpending); 1875 EXPORT_SYMBOL_GPL(dequeue_signal); 1876 EXPORT_SYMBOL(flush_signals); 1877 EXPORT_SYMBOL(force_sig); 1878 EXPORT_SYMBOL(kill_proc); 1879 EXPORT_SYMBOL(ptrace_notify); 1880 EXPORT_SYMBOL(send_sig); 1881 EXPORT_SYMBOL(send_sig_info); 1882 EXPORT_SYMBOL(sigprocmask); 1883 EXPORT_SYMBOL(block_all_signals); 1884 EXPORT_SYMBOL(unblock_all_signals); 1885 1886 1887 /* 1888 * System call entry points. 1889 */ 1890 1891 asmlinkage long sys_restart_syscall(void) 1892 { 1893 struct restart_block *restart = ¤t_thread_info()->restart_block; 1894 return restart->fn(restart); 1895 } 1896 1897 long do_no_restart_syscall(struct restart_block *param) 1898 { 1899 return -EINTR; 1900 } 1901 1902 /* 1903 * We don't need to get the kernel lock - this is all local to this 1904 * particular thread.. (and that's good, because this is _heavily_ 1905 * used by various programs) 1906 */ 1907 1908 /* 1909 * This is also useful for kernel threads that want to temporarily 1910 * (or permanently) block certain signals. 1911 * 1912 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 1913 * interface happily blocks "unblockable" signals like SIGKILL 1914 * and friends. 1915 */ 1916 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 1917 { 1918 int error; 1919 1920 spin_lock_irq(¤t->sighand->siglock); 1921 if (oldset) 1922 *oldset = current->blocked; 1923 1924 error = 0; 1925 switch (how) { 1926 case SIG_BLOCK: 1927 sigorsets(¤t->blocked, ¤t->blocked, set); 1928 break; 1929 case SIG_UNBLOCK: 1930 signandsets(¤t->blocked, ¤t->blocked, set); 1931 break; 1932 case SIG_SETMASK: 1933 current->blocked = *set; 1934 break; 1935 default: 1936 error = -EINVAL; 1937 } 1938 recalc_sigpending(); 1939 spin_unlock_irq(¤t->sighand->siglock); 1940 1941 return error; 1942 } 1943 1944 asmlinkage long 1945 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize) 1946 { 1947 int error = -EINVAL; 1948 sigset_t old_set, new_set; 1949 1950 /* XXX: Don't preclude handling different sized sigset_t's. */ 1951 if (sigsetsize != sizeof(sigset_t)) 1952 goto out; 1953 1954 if (set) { 1955 error = -EFAULT; 1956 if (copy_from_user(&new_set, set, sizeof(*set))) 1957 goto out; 1958 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 1959 1960 error = sigprocmask(how, &new_set, &old_set); 1961 if (error) 1962 goto out; 1963 if (oset) 1964 goto set_old; 1965 } else if (oset) { 1966 spin_lock_irq(¤t->sighand->siglock); 1967 old_set = current->blocked; 1968 spin_unlock_irq(¤t->sighand->siglock); 1969 1970 set_old: 1971 error = -EFAULT; 1972 if (copy_to_user(oset, &old_set, sizeof(*oset))) 1973 goto out; 1974 } 1975 error = 0; 1976 out: 1977 return error; 1978 } 1979 1980 long do_sigpending(void __user *set, unsigned long sigsetsize) 1981 { 1982 long error = -EINVAL; 1983 sigset_t pending; 1984 1985 if (sigsetsize > sizeof(sigset_t)) 1986 goto out; 1987 1988 spin_lock_irq(¤t->sighand->siglock); 1989 sigorsets(&pending, ¤t->pending.signal, 1990 ¤t->signal->shared_pending.signal); 1991 spin_unlock_irq(¤t->sighand->siglock); 1992 1993 /* Outside the lock because only this thread touches it. */ 1994 sigandsets(&pending, ¤t->blocked, &pending); 1995 1996 error = -EFAULT; 1997 if (!copy_to_user(set, &pending, sigsetsize)) 1998 error = 0; 1999 2000 out: 2001 return error; 2002 } 2003 2004 asmlinkage long 2005 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize) 2006 { 2007 return do_sigpending(set, sigsetsize); 2008 } 2009 2010 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2011 2012 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) 2013 { 2014 int err; 2015 2016 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2017 return -EFAULT; 2018 if (from->si_code < 0) 2019 return __copy_to_user(to, from, sizeof(siginfo_t)) 2020 ? -EFAULT : 0; 2021 /* 2022 * If you change siginfo_t structure, please be sure 2023 * this code is fixed accordingly. 2024 * Please remember to update the signalfd_copyinfo() function 2025 * inside fs/signalfd.c too, in case siginfo_t changes. 2026 * It should never copy any pad contained in the structure 2027 * to avoid security leaks, but must copy the generic 2028 * 3 ints plus the relevant union member. 2029 */ 2030 err = __put_user(from->si_signo, &to->si_signo); 2031 err |= __put_user(from->si_errno, &to->si_errno); 2032 err |= __put_user((short)from->si_code, &to->si_code); 2033 switch (from->si_code & __SI_MASK) { 2034 case __SI_KILL: 2035 err |= __put_user(from->si_pid, &to->si_pid); 2036 err |= __put_user(from->si_uid, &to->si_uid); 2037 break; 2038 case __SI_TIMER: 2039 err |= __put_user(from->si_tid, &to->si_tid); 2040 err |= __put_user(from->si_overrun, &to->si_overrun); 2041 err |= __put_user(from->si_ptr, &to->si_ptr); 2042 break; 2043 case __SI_POLL: 2044 err |= __put_user(from->si_band, &to->si_band); 2045 err |= __put_user(from->si_fd, &to->si_fd); 2046 break; 2047 case __SI_FAULT: 2048 err |= __put_user(from->si_addr, &to->si_addr); 2049 #ifdef __ARCH_SI_TRAPNO 2050 err |= __put_user(from->si_trapno, &to->si_trapno); 2051 #endif 2052 break; 2053 case __SI_CHLD: 2054 err |= __put_user(from->si_pid, &to->si_pid); 2055 err |= __put_user(from->si_uid, &to->si_uid); 2056 err |= __put_user(from->si_status, &to->si_status); 2057 err |= __put_user(from->si_utime, &to->si_utime); 2058 err |= __put_user(from->si_stime, &to->si_stime); 2059 break; 2060 case __SI_RT: /* This is not generated by the kernel as of now. */ 2061 case __SI_MESGQ: /* But this is */ 2062 err |= __put_user(from->si_pid, &to->si_pid); 2063 err |= __put_user(from->si_uid, &to->si_uid); 2064 err |= __put_user(from->si_ptr, &to->si_ptr); 2065 break; 2066 default: /* this is just in case for now ... */ 2067 err |= __put_user(from->si_pid, &to->si_pid); 2068 err |= __put_user(from->si_uid, &to->si_uid); 2069 break; 2070 } 2071 return err; 2072 } 2073 2074 #endif 2075 2076 asmlinkage long 2077 sys_rt_sigtimedwait(const sigset_t __user *uthese, 2078 siginfo_t __user *uinfo, 2079 const struct timespec __user *uts, 2080 size_t sigsetsize) 2081 { 2082 int ret, sig; 2083 sigset_t these; 2084 struct timespec ts; 2085 siginfo_t info; 2086 long timeout = 0; 2087 2088 /* XXX: Don't preclude handling different sized sigset_t's. */ 2089 if (sigsetsize != sizeof(sigset_t)) 2090 return -EINVAL; 2091 2092 if (copy_from_user(&these, uthese, sizeof(these))) 2093 return -EFAULT; 2094 2095 /* 2096 * Invert the set of allowed signals to get those we 2097 * want to block. 2098 */ 2099 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2100 signotset(&these); 2101 2102 if (uts) { 2103 if (copy_from_user(&ts, uts, sizeof(ts))) 2104 return -EFAULT; 2105 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0 2106 || ts.tv_sec < 0) 2107 return -EINVAL; 2108 } 2109 2110 spin_lock_irq(¤t->sighand->siglock); 2111 sig = dequeue_signal(current, &these, &info); 2112 if (!sig) { 2113 timeout = MAX_SCHEDULE_TIMEOUT; 2114 if (uts) 2115 timeout = (timespec_to_jiffies(&ts) 2116 + (ts.tv_sec || ts.tv_nsec)); 2117 2118 if (timeout) { 2119 /* None ready -- temporarily unblock those we're 2120 * interested while we are sleeping in so that we'll 2121 * be awakened when they arrive. */ 2122 current->real_blocked = current->blocked; 2123 sigandsets(¤t->blocked, ¤t->blocked, &these); 2124 recalc_sigpending(); 2125 spin_unlock_irq(¤t->sighand->siglock); 2126 2127 timeout = schedule_timeout_interruptible(timeout); 2128 2129 spin_lock_irq(¤t->sighand->siglock); 2130 sig = dequeue_signal(current, &these, &info); 2131 current->blocked = current->real_blocked; 2132 siginitset(¤t->real_blocked, 0); 2133 recalc_sigpending(); 2134 } 2135 } 2136 spin_unlock_irq(¤t->sighand->siglock); 2137 2138 if (sig) { 2139 ret = sig; 2140 if (uinfo) { 2141 if (copy_siginfo_to_user(uinfo, &info)) 2142 ret = -EFAULT; 2143 } 2144 } else { 2145 ret = -EAGAIN; 2146 if (timeout) 2147 ret = -EINTR; 2148 } 2149 2150 return ret; 2151 } 2152 2153 asmlinkage long 2154 sys_kill(int pid, int sig) 2155 { 2156 struct siginfo info; 2157 2158 info.si_signo = sig; 2159 info.si_errno = 0; 2160 info.si_code = SI_USER; 2161 info.si_pid = current->tgid; 2162 info.si_uid = current->uid; 2163 2164 return kill_something_info(sig, &info, pid); 2165 } 2166 2167 static int do_tkill(int tgid, int pid, int sig) 2168 { 2169 int error; 2170 struct siginfo info; 2171 struct task_struct *p; 2172 2173 error = -ESRCH; 2174 info.si_signo = sig; 2175 info.si_errno = 0; 2176 info.si_code = SI_TKILL; 2177 info.si_pid = current->tgid; 2178 info.si_uid = current->uid; 2179 2180 read_lock(&tasklist_lock); 2181 p = find_task_by_pid(pid); 2182 if (p && (tgid <= 0 || p->tgid == tgid)) { 2183 error = check_kill_permission(sig, &info, p); 2184 /* 2185 * The null signal is a permissions and process existence 2186 * probe. No signal is actually delivered. 2187 */ 2188 if (!error && sig && p->sighand) { 2189 spin_lock_irq(&p->sighand->siglock); 2190 handle_stop_signal(sig, p); 2191 error = specific_send_sig_info(sig, &info, p); 2192 spin_unlock_irq(&p->sighand->siglock); 2193 } 2194 } 2195 read_unlock(&tasklist_lock); 2196 2197 return error; 2198 } 2199 2200 /** 2201 * sys_tgkill - send signal to one specific thread 2202 * @tgid: the thread group ID of the thread 2203 * @pid: the PID of the thread 2204 * @sig: signal to be sent 2205 * 2206 * This syscall also checks the @tgid and returns -ESRCH even if the PID 2207 * exists but it's not belonging to the target process anymore. This 2208 * method solves the problem of threads exiting and PIDs getting reused. 2209 */ 2210 asmlinkage long sys_tgkill(int tgid, int pid, int sig) 2211 { 2212 /* This is only valid for single tasks */ 2213 if (pid <= 0 || tgid <= 0) 2214 return -EINVAL; 2215 2216 return do_tkill(tgid, pid, sig); 2217 } 2218 2219 /* 2220 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2221 */ 2222 asmlinkage long 2223 sys_tkill(int pid, int sig) 2224 { 2225 /* This is only valid for single tasks */ 2226 if (pid <= 0) 2227 return -EINVAL; 2228 2229 return do_tkill(0, pid, sig); 2230 } 2231 2232 asmlinkage long 2233 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo) 2234 { 2235 siginfo_t info; 2236 2237 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2238 return -EFAULT; 2239 2240 /* Not even root can pretend to send signals from the kernel. 2241 Nor can they impersonate a kill(), which adds source info. */ 2242 if (info.si_code >= 0) 2243 return -EPERM; 2244 info.si_signo = sig; 2245 2246 /* POSIX.1b doesn't mention process groups. */ 2247 return kill_proc_info(sig, &info, pid); 2248 } 2249 2250 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 2251 { 2252 struct k_sigaction *k; 2253 sigset_t mask; 2254 2255 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 2256 return -EINVAL; 2257 2258 k = ¤t->sighand->action[sig-1]; 2259 2260 spin_lock_irq(¤t->sighand->siglock); 2261 if (signal_pending(current)) { 2262 /* 2263 * If there might be a fatal signal pending on multiple 2264 * threads, make sure we take it before changing the action. 2265 */ 2266 spin_unlock_irq(¤t->sighand->siglock); 2267 return -ERESTARTNOINTR; 2268 } 2269 2270 if (oact) 2271 *oact = *k; 2272 2273 if (act) { 2274 sigdelsetmask(&act->sa.sa_mask, 2275 sigmask(SIGKILL) | sigmask(SIGSTOP)); 2276 *k = *act; 2277 /* 2278 * POSIX 3.3.1.3: 2279 * "Setting a signal action to SIG_IGN for a signal that is 2280 * pending shall cause the pending signal to be discarded, 2281 * whether or not it is blocked." 2282 * 2283 * "Setting a signal action to SIG_DFL for a signal that is 2284 * pending and whose default action is to ignore the signal 2285 * (for example, SIGCHLD), shall cause the pending signal to 2286 * be discarded, whether or not it is blocked" 2287 */ 2288 if (act->sa.sa_handler == SIG_IGN || 2289 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) { 2290 struct task_struct *t = current; 2291 sigemptyset(&mask); 2292 sigaddset(&mask, sig); 2293 rm_from_queue_full(&mask, &t->signal->shared_pending); 2294 do { 2295 rm_from_queue_full(&mask, &t->pending); 2296 recalc_sigpending_and_wake(t); 2297 t = next_thread(t); 2298 } while (t != current); 2299 } 2300 } 2301 2302 spin_unlock_irq(¤t->sighand->siglock); 2303 return 0; 2304 } 2305 2306 int 2307 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 2308 { 2309 stack_t oss; 2310 int error; 2311 2312 if (uoss) { 2313 oss.ss_sp = (void __user *) current->sas_ss_sp; 2314 oss.ss_size = current->sas_ss_size; 2315 oss.ss_flags = sas_ss_flags(sp); 2316 } 2317 2318 if (uss) { 2319 void __user *ss_sp; 2320 size_t ss_size; 2321 int ss_flags; 2322 2323 error = -EFAULT; 2324 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)) 2325 || __get_user(ss_sp, &uss->ss_sp) 2326 || __get_user(ss_flags, &uss->ss_flags) 2327 || __get_user(ss_size, &uss->ss_size)) 2328 goto out; 2329 2330 error = -EPERM; 2331 if (on_sig_stack(sp)) 2332 goto out; 2333 2334 error = -EINVAL; 2335 /* 2336 * 2337 * Note - this code used to test ss_flags incorrectly 2338 * old code may have been written using ss_flags==0 2339 * to mean ss_flags==SS_ONSTACK (as this was the only 2340 * way that worked) - this fix preserves that older 2341 * mechanism 2342 */ 2343 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) 2344 goto out; 2345 2346 if (ss_flags == SS_DISABLE) { 2347 ss_size = 0; 2348 ss_sp = NULL; 2349 } else { 2350 error = -ENOMEM; 2351 if (ss_size < MINSIGSTKSZ) 2352 goto out; 2353 } 2354 2355 current->sas_ss_sp = (unsigned long) ss_sp; 2356 current->sas_ss_size = ss_size; 2357 } 2358 2359 if (uoss) { 2360 error = -EFAULT; 2361 if (copy_to_user(uoss, &oss, sizeof(oss))) 2362 goto out; 2363 } 2364 2365 error = 0; 2366 out: 2367 return error; 2368 } 2369 2370 #ifdef __ARCH_WANT_SYS_SIGPENDING 2371 2372 asmlinkage long 2373 sys_sigpending(old_sigset_t __user *set) 2374 { 2375 return do_sigpending(set, sizeof(*set)); 2376 } 2377 2378 #endif 2379 2380 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 2381 /* Some platforms have their own version with special arguments others 2382 support only sys_rt_sigprocmask. */ 2383 2384 asmlinkage long 2385 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset) 2386 { 2387 int error; 2388 old_sigset_t old_set, new_set; 2389 2390 if (set) { 2391 error = -EFAULT; 2392 if (copy_from_user(&new_set, set, sizeof(*set))) 2393 goto out; 2394 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP)); 2395 2396 spin_lock_irq(¤t->sighand->siglock); 2397 old_set = current->blocked.sig[0]; 2398 2399 error = 0; 2400 switch (how) { 2401 default: 2402 error = -EINVAL; 2403 break; 2404 case SIG_BLOCK: 2405 sigaddsetmask(¤t->blocked, new_set); 2406 break; 2407 case SIG_UNBLOCK: 2408 sigdelsetmask(¤t->blocked, new_set); 2409 break; 2410 case SIG_SETMASK: 2411 current->blocked.sig[0] = new_set; 2412 break; 2413 } 2414 2415 recalc_sigpending(); 2416 spin_unlock_irq(¤t->sighand->siglock); 2417 if (error) 2418 goto out; 2419 if (oset) 2420 goto set_old; 2421 } else if (oset) { 2422 old_set = current->blocked.sig[0]; 2423 set_old: 2424 error = -EFAULT; 2425 if (copy_to_user(oset, &old_set, sizeof(*oset))) 2426 goto out; 2427 } 2428 error = 0; 2429 out: 2430 return error; 2431 } 2432 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 2433 2434 #ifdef __ARCH_WANT_SYS_RT_SIGACTION 2435 asmlinkage long 2436 sys_rt_sigaction(int sig, 2437 const struct sigaction __user *act, 2438 struct sigaction __user *oact, 2439 size_t sigsetsize) 2440 { 2441 struct k_sigaction new_sa, old_sa; 2442 int ret = -EINVAL; 2443 2444 /* XXX: Don't preclude handling different sized sigset_t's. */ 2445 if (sigsetsize != sizeof(sigset_t)) 2446 goto out; 2447 2448 if (act) { 2449 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 2450 return -EFAULT; 2451 } 2452 2453 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 2454 2455 if (!ret && oact) { 2456 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 2457 return -EFAULT; 2458 } 2459 out: 2460 return ret; 2461 } 2462 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */ 2463 2464 #ifdef __ARCH_WANT_SYS_SGETMASK 2465 2466 /* 2467 * For backwards compatibility. Functionality superseded by sigprocmask. 2468 */ 2469 asmlinkage long 2470 sys_sgetmask(void) 2471 { 2472 /* SMP safe */ 2473 return current->blocked.sig[0]; 2474 } 2475 2476 asmlinkage long 2477 sys_ssetmask(int newmask) 2478 { 2479 int old; 2480 2481 spin_lock_irq(¤t->sighand->siglock); 2482 old = current->blocked.sig[0]; 2483 2484 siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)| 2485 sigmask(SIGSTOP))); 2486 recalc_sigpending(); 2487 spin_unlock_irq(¤t->sighand->siglock); 2488 2489 return old; 2490 } 2491 #endif /* __ARCH_WANT_SGETMASK */ 2492 2493 #ifdef __ARCH_WANT_SYS_SIGNAL 2494 /* 2495 * For backwards compatibility. Functionality superseded by sigaction. 2496 */ 2497 asmlinkage unsigned long 2498 sys_signal(int sig, __sighandler_t handler) 2499 { 2500 struct k_sigaction new_sa, old_sa; 2501 int ret; 2502 2503 new_sa.sa.sa_handler = handler; 2504 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 2505 sigemptyset(&new_sa.sa.sa_mask); 2506 2507 ret = do_sigaction(sig, &new_sa, &old_sa); 2508 2509 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 2510 } 2511 #endif /* __ARCH_WANT_SYS_SIGNAL */ 2512 2513 #ifdef __ARCH_WANT_SYS_PAUSE 2514 2515 asmlinkage long 2516 sys_pause(void) 2517 { 2518 current->state = TASK_INTERRUPTIBLE; 2519 schedule(); 2520 return -ERESTARTNOHAND; 2521 } 2522 2523 #endif 2524 2525 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND 2526 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize) 2527 { 2528 sigset_t newset; 2529 2530 /* XXX: Don't preclude handling different sized sigset_t's. */ 2531 if (sigsetsize != sizeof(sigset_t)) 2532 return -EINVAL; 2533 2534 if (copy_from_user(&newset, unewset, sizeof(newset))) 2535 return -EFAULT; 2536 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2537 2538 spin_lock_irq(¤t->sighand->siglock); 2539 current->saved_sigmask = current->blocked; 2540 current->blocked = newset; 2541 recalc_sigpending(); 2542 spin_unlock_irq(¤t->sighand->siglock); 2543 2544 current->state = TASK_INTERRUPTIBLE; 2545 schedule(); 2546 set_thread_flag(TIF_RESTORE_SIGMASK); 2547 return -ERESTARTNOHAND; 2548 } 2549 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */ 2550 2551 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma) 2552 { 2553 return NULL; 2554 } 2555 2556 void __init signals_init(void) 2557 { 2558 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 2559 } 2560