xref: /linux/kernel/signal.c (revision a13f2ef168cb2a033a284eb841bcc481ffbc90cf)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *  linux/kernel/signal.c
4   *
5   *  Copyright (C) 1991, 1992  Linus Torvalds
6   *
7   *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8   *
9   *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10   *		Changes to use preallocated sigqueue structures
11   *		to allow signals to be sent reliably.
12   */
13  
14  #include <linux/slab.h>
15  #include <linux/export.h>
16  #include <linux/init.h>
17  #include <linux/sched/mm.h>
18  #include <linux/sched/user.h>
19  #include <linux/sched/debug.h>
20  #include <linux/sched/task.h>
21  #include <linux/sched/task_stack.h>
22  #include <linux/sched/cputime.h>
23  #include <linux/file.h>
24  #include <linux/fs.h>
25  #include <linux/proc_fs.h>
26  #include <linux/tty.h>
27  #include <linux/binfmts.h>
28  #include <linux/coredump.h>
29  #include <linux/security.h>
30  #include <linux/syscalls.h>
31  #include <linux/ptrace.h>
32  #include <linux/signal.h>
33  #include <linux/signalfd.h>
34  #include <linux/ratelimit.h>
35  #include <linux/tracehook.h>
36  #include <linux/capability.h>
37  #include <linux/freezer.h>
38  #include <linux/pid_namespace.h>
39  #include <linux/nsproxy.h>
40  #include <linux/user_namespace.h>
41  #include <linux/uprobes.h>
42  #include <linux/compat.h>
43  #include <linux/cn_proc.h>
44  #include <linux/compiler.h>
45  #include <linux/posix-timers.h>
46  #include <linux/livepatch.h>
47  #include <linux/cgroup.h>
48  #include <linux/audit.h>
49  
50  #define CREATE_TRACE_POINTS
51  #include <trace/events/signal.h>
52  
53  #include <asm/param.h>
54  #include <linux/uaccess.h>
55  #include <asm/unistd.h>
56  #include <asm/siginfo.h>
57  #include <asm/cacheflush.h>
58  
59  /*
60   * SLAB caches for signal bits.
61   */
62  
63  static struct kmem_cache *sigqueue_cachep;
64  
65  int print_fatal_signals __read_mostly;
66  
67  static void __user *sig_handler(struct task_struct *t, int sig)
68  {
69  	return t->sighand->action[sig - 1].sa.sa_handler;
70  }
71  
72  static inline bool sig_handler_ignored(void __user *handler, int sig)
73  {
74  	/* Is it explicitly or implicitly ignored? */
75  	return handler == SIG_IGN ||
76  	       (handler == SIG_DFL && sig_kernel_ignore(sig));
77  }
78  
79  static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
80  {
81  	void __user *handler;
82  
83  	handler = sig_handler(t, sig);
84  
85  	/* SIGKILL and SIGSTOP may not be sent to the global init */
86  	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
87  		return true;
88  
89  	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90  	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
91  		return true;
92  
93  	/* Only allow kernel generated signals to this kthread */
94  	if (unlikely((t->flags & PF_KTHREAD) &&
95  		     (handler == SIG_KTHREAD_KERNEL) && !force))
96  		return true;
97  
98  	return sig_handler_ignored(handler, sig);
99  }
100  
101  static bool sig_ignored(struct task_struct *t, int sig, bool force)
102  {
103  	/*
104  	 * Blocked signals are never ignored, since the
105  	 * signal handler may change by the time it is
106  	 * unblocked.
107  	 */
108  	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
109  		return false;
110  
111  	/*
112  	 * Tracers may want to know about even ignored signal unless it
113  	 * is SIGKILL which can't be reported anyway but can be ignored
114  	 * by SIGNAL_UNKILLABLE task.
115  	 */
116  	if (t->ptrace && sig != SIGKILL)
117  		return false;
118  
119  	return sig_task_ignored(t, sig, force);
120  }
121  
122  /*
123   * Re-calculate pending state from the set of locally pending
124   * signals, globally pending signals, and blocked signals.
125   */
126  static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
127  {
128  	unsigned long ready;
129  	long i;
130  
131  	switch (_NSIG_WORDS) {
132  	default:
133  		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
134  			ready |= signal->sig[i] &~ blocked->sig[i];
135  		break;
136  
137  	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
138  		ready |= signal->sig[2] &~ blocked->sig[2];
139  		ready |= signal->sig[1] &~ blocked->sig[1];
140  		ready |= signal->sig[0] &~ blocked->sig[0];
141  		break;
142  
143  	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
144  		ready |= signal->sig[0] &~ blocked->sig[0];
145  		break;
146  
147  	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
148  	}
149  	return ready !=	0;
150  }
151  
152  #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
153  
154  static bool recalc_sigpending_tsk(struct task_struct *t)
155  {
156  	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
157  	    PENDING(&t->pending, &t->blocked) ||
158  	    PENDING(&t->signal->shared_pending, &t->blocked) ||
159  	    cgroup_task_frozen(t)) {
160  		set_tsk_thread_flag(t, TIF_SIGPENDING);
161  		return true;
162  	}
163  
164  	/*
165  	 * We must never clear the flag in another thread, or in current
166  	 * when it's possible the current syscall is returning -ERESTART*.
167  	 * So we don't clear it here, and only callers who know they should do.
168  	 */
169  	return false;
170  }
171  
172  /*
173   * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
174   * This is superfluous when called on current, the wakeup is a harmless no-op.
175   */
176  void recalc_sigpending_and_wake(struct task_struct *t)
177  {
178  	if (recalc_sigpending_tsk(t))
179  		signal_wake_up(t, 0);
180  }
181  
182  void recalc_sigpending(void)
183  {
184  	if (!recalc_sigpending_tsk(current) && !freezing(current) &&
185  	    !klp_patch_pending(current))
186  		clear_thread_flag(TIF_SIGPENDING);
187  
188  }
189  EXPORT_SYMBOL(recalc_sigpending);
190  
191  void calculate_sigpending(void)
192  {
193  	/* Have any signals or users of TIF_SIGPENDING been delayed
194  	 * until after fork?
195  	 */
196  	spin_lock_irq(&current->sighand->siglock);
197  	set_tsk_thread_flag(current, TIF_SIGPENDING);
198  	recalc_sigpending();
199  	spin_unlock_irq(&current->sighand->siglock);
200  }
201  
202  /* Given the mask, find the first available signal that should be serviced. */
203  
204  #define SYNCHRONOUS_MASK \
205  	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
206  	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
207  
208  int next_signal(struct sigpending *pending, sigset_t *mask)
209  {
210  	unsigned long i, *s, *m, x;
211  	int sig = 0;
212  
213  	s = pending->signal.sig;
214  	m = mask->sig;
215  
216  	/*
217  	 * Handle the first word specially: it contains the
218  	 * synchronous signals that need to be dequeued first.
219  	 */
220  	x = *s &~ *m;
221  	if (x) {
222  		if (x & SYNCHRONOUS_MASK)
223  			x &= SYNCHRONOUS_MASK;
224  		sig = ffz(~x) + 1;
225  		return sig;
226  	}
227  
228  	switch (_NSIG_WORDS) {
229  	default:
230  		for (i = 1; i < _NSIG_WORDS; ++i) {
231  			x = *++s &~ *++m;
232  			if (!x)
233  				continue;
234  			sig = ffz(~x) + i*_NSIG_BPW + 1;
235  			break;
236  		}
237  		break;
238  
239  	case 2:
240  		x = s[1] &~ m[1];
241  		if (!x)
242  			break;
243  		sig = ffz(~x) + _NSIG_BPW + 1;
244  		break;
245  
246  	case 1:
247  		/* Nothing to do */
248  		break;
249  	}
250  
251  	return sig;
252  }
253  
254  static inline void print_dropped_signal(int sig)
255  {
256  	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
257  
258  	if (!print_fatal_signals)
259  		return;
260  
261  	if (!__ratelimit(&ratelimit_state))
262  		return;
263  
264  	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
265  				current->comm, current->pid, sig);
266  }
267  
268  /**
269   * task_set_jobctl_pending - set jobctl pending bits
270   * @task: target task
271   * @mask: pending bits to set
272   *
273   * Clear @mask from @task->jobctl.  @mask must be subset of
274   * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
275   * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
276   * cleared.  If @task is already being killed or exiting, this function
277   * becomes noop.
278   *
279   * CONTEXT:
280   * Must be called with @task->sighand->siglock held.
281   *
282   * RETURNS:
283   * %true if @mask is set, %false if made noop because @task was dying.
284   */
285  bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
286  {
287  	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
288  			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
289  	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
290  
291  	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
292  		return false;
293  
294  	if (mask & JOBCTL_STOP_SIGMASK)
295  		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
296  
297  	task->jobctl |= mask;
298  	return true;
299  }
300  
301  /**
302   * task_clear_jobctl_trapping - clear jobctl trapping bit
303   * @task: target task
304   *
305   * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
306   * Clear it and wake up the ptracer.  Note that we don't need any further
307   * locking.  @task->siglock guarantees that @task->parent points to the
308   * ptracer.
309   *
310   * CONTEXT:
311   * Must be called with @task->sighand->siglock held.
312   */
313  void task_clear_jobctl_trapping(struct task_struct *task)
314  {
315  	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
316  		task->jobctl &= ~JOBCTL_TRAPPING;
317  		smp_mb();	/* advised by wake_up_bit() */
318  		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
319  	}
320  }
321  
322  /**
323   * task_clear_jobctl_pending - clear jobctl pending bits
324   * @task: target task
325   * @mask: pending bits to clear
326   *
327   * Clear @mask from @task->jobctl.  @mask must be subset of
328   * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
329   * STOP bits are cleared together.
330   *
331   * If clearing of @mask leaves no stop or trap pending, this function calls
332   * task_clear_jobctl_trapping().
333   *
334   * CONTEXT:
335   * Must be called with @task->sighand->siglock held.
336   */
337  void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
338  {
339  	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
340  
341  	if (mask & JOBCTL_STOP_PENDING)
342  		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
343  
344  	task->jobctl &= ~mask;
345  
346  	if (!(task->jobctl & JOBCTL_PENDING_MASK))
347  		task_clear_jobctl_trapping(task);
348  }
349  
350  /**
351   * task_participate_group_stop - participate in a group stop
352   * @task: task participating in a group stop
353   *
354   * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
355   * Group stop states are cleared and the group stop count is consumed if
356   * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
357   * stop, the appropriate `SIGNAL_*` flags are set.
358   *
359   * CONTEXT:
360   * Must be called with @task->sighand->siglock held.
361   *
362   * RETURNS:
363   * %true if group stop completion should be notified to the parent, %false
364   * otherwise.
365   */
366  static bool task_participate_group_stop(struct task_struct *task)
367  {
368  	struct signal_struct *sig = task->signal;
369  	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
370  
371  	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
372  
373  	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
374  
375  	if (!consume)
376  		return false;
377  
378  	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
379  		sig->group_stop_count--;
380  
381  	/*
382  	 * Tell the caller to notify completion iff we are entering into a
383  	 * fresh group stop.  Read comment in do_signal_stop() for details.
384  	 */
385  	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
386  		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
387  		return true;
388  	}
389  	return false;
390  }
391  
392  void task_join_group_stop(struct task_struct *task)
393  {
394  	/* Have the new thread join an on-going signal group stop */
395  	unsigned long jobctl = current->jobctl;
396  	if (jobctl & JOBCTL_STOP_PENDING) {
397  		struct signal_struct *sig = current->signal;
398  		unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK;
399  		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
400  		if (task_set_jobctl_pending(task, signr | gstop)) {
401  			sig->group_stop_count++;
402  		}
403  	}
404  }
405  
406  /*
407   * allocate a new signal queue record
408   * - this may be called without locks if and only if t == current, otherwise an
409   *   appropriate lock must be held to stop the target task from exiting
410   */
411  static struct sigqueue *
412  __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
413  {
414  	struct sigqueue *q = NULL;
415  	struct user_struct *user;
416  	int sigpending;
417  
418  	/*
419  	 * Protect access to @t credentials. This can go away when all
420  	 * callers hold rcu read lock.
421  	 *
422  	 * NOTE! A pending signal will hold on to the user refcount,
423  	 * and we get/put the refcount only when the sigpending count
424  	 * changes from/to zero.
425  	 */
426  	rcu_read_lock();
427  	user = __task_cred(t)->user;
428  	sigpending = atomic_inc_return(&user->sigpending);
429  	if (sigpending == 1)
430  		get_uid(user);
431  	rcu_read_unlock();
432  
433  	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
434  		q = kmem_cache_alloc(sigqueue_cachep, flags);
435  	} else {
436  		print_dropped_signal(sig);
437  	}
438  
439  	if (unlikely(q == NULL)) {
440  		if (atomic_dec_and_test(&user->sigpending))
441  			free_uid(user);
442  	} else {
443  		INIT_LIST_HEAD(&q->list);
444  		q->flags = 0;
445  		q->user = user;
446  	}
447  
448  	return q;
449  }
450  
451  static void __sigqueue_free(struct sigqueue *q)
452  {
453  	if (q->flags & SIGQUEUE_PREALLOC)
454  		return;
455  	if (atomic_dec_and_test(&q->user->sigpending))
456  		free_uid(q->user);
457  	kmem_cache_free(sigqueue_cachep, q);
458  }
459  
460  void flush_sigqueue(struct sigpending *queue)
461  {
462  	struct sigqueue *q;
463  
464  	sigemptyset(&queue->signal);
465  	while (!list_empty(&queue->list)) {
466  		q = list_entry(queue->list.next, struct sigqueue , list);
467  		list_del_init(&q->list);
468  		__sigqueue_free(q);
469  	}
470  }
471  
472  /*
473   * Flush all pending signals for this kthread.
474   */
475  void flush_signals(struct task_struct *t)
476  {
477  	unsigned long flags;
478  
479  	spin_lock_irqsave(&t->sighand->siglock, flags);
480  	clear_tsk_thread_flag(t, TIF_SIGPENDING);
481  	flush_sigqueue(&t->pending);
482  	flush_sigqueue(&t->signal->shared_pending);
483  	spin_unlock_irqrestore(&t->sighand->siglock, flags);
484  }
485  EXPORT_SYMBOL(flush_signals);
486  
487  #ifdef CONFIG_POSIX_TIMERS
488  static void __flush_itimer_signals(struct sigpending *pending)
489  {
490  	sigset_t signal, retain;
491  	struct sigqueue *q, *n;
492  
493  	signal = pending->signal;
494  	sigemptyset(&retain);
495  
496  	list_for_each_entry_safe(q, n, &pending->list, list) {
497  		int sig = q->info.si_signo;
498  
499  		if (likely(q->info.si_code != SI_TIMER)) {
500  			sigaddset(&retain, sig);
501  		} else {
502  			sigdelset(&signal, sig);
503  			list_del_init(&q->list);
504  			__sigqueue_free(q);
505  		}
506  	}
507  
508  	sigorsets(&pending->signal, &signal, &retain);
509  }
510  
511  void flush_itimer_signals(void)
512  {
513  	struct task_struct *tsk = current;
514  	unsigned long flags;
515  
516  	spin_lock_irqsave(&tsk->sighand->siglock, flags);
517  	__flush_itimer_signals(&tsk->pending);
518  	__flush_itimer_signals(&tsk->signal->shared_pending);
519  	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
520  }
521  #endif
522  
523  void ignore_signals(struct task_struct *t)
524  {
525  	int i;
526  
527  	for (i = 0; i < _NSIG; ++i)
528  		t->sighand->action[i].sa.sa_handler = SIG_IGN;
529  
530  	flush_signals(t);
531  }
532  
533  /*
534   * Flush all handlers for a task.
535   */
536  
537  void
538  flush_signal_handlers(struct task_struct *t, int force_default)
539  {
540  	int i;
541  	struct k_sigaction *ka = &t->sighand->action[0];
542  	for (i = _NSIG ; i != 0 ; i--) {
543  		if (force_default || ka->sa.sa_handler != SIG_IGN)
544  			ka->sa.sa_handler = SIG_DFL;
545  		ka->sa.sa_flags = 0;
546  #ifdef __ARCH_HAS_SA_RESTORER
547  		ka->sa.sa_restorer = NULL;
548  #endif
549  		sigemptyset(&ka->sa.sa_mask);
550  		ka++;
551  	}
552  }
553  
554  bool unhandled_signal(struct task_struct *tsk, int sig)
555  {
556  	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
557  	if (is_global_init(tsk))
558  		return true;
559  
560  	if (handler != SIG_IGN && handler != SIG_DFL)
561  		return false;
562  
563  	/* if ptraced, let the tracer determine */
564  	return !tsk->ptrace;
565  }
566  
567  static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
568  			   bool *resched_timer)
569  {
570  	struct sigqueue *q, *first = NULL;
571  
572  	/*
573  	 * Collect the siginfo appropriate to this signal.  Check if
574  	 * there is another siginfo for the same signal.
575  	*/
576  	list_for_each_entry(q, &list->list, list) {
577  		if (q->info.si_signo == sig) {
578  			if (first)
579  				goto still_pending;
580  			first = q;
581  		}
582  	}
583  
584  	sigdelset(&list->signal, sig);
585  
586  	if (first) {
587  still_pending:
588  		list_del_init(&first->list);
589  		copy_siginfo(info, &first->info);
590  
591  		*resched_timer =
592  			(first->flags & SIGQUEUE_PREALLOC) &&
593  			(info->si_code == SI_TIMER) &&
594  			(info->si_sys_private);
595  
596  		__sigqueue_free(first);
597  	} else {
598  		/*
599  		 * Ok, it wasn't in the queue.  This must be
600  		 * a fast-pathed signal or we must have been
601  		 * out of queue space.  So zero out the info.
602  		 */
603  		clear_siginfo(info);
604  		info->si_signo = sig;
605  		info->si_errno = 0;
606  		info->si_code = SI_USER;
607  		info->si_pid = 0;
608  		info->si_uid = 0;
609  	}
610  }
611  
612  static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
613  			kernel_siginfo_t *info, bool *resched_timer)
614  {
615  	int sig = next_signal(pending, mask);
616  
617  	if (sig)
618  		collect_signal(sig, pending, info, resched_timer);
619  	return sig;
620  }
621  
622  /*
623   * Dequeue a signal and return the element to the caller, which is
624   * expected to free it.
625   *
626   * All callers have to hold the siglock.
627   */
628  int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
629  {
630  	bool resched_timer = false;
631  	int signr;
632  
633  	/* We only dequeue private signals from ourselves, we don't let
634  	 * signalfd steal them
635  	 */
636  	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
637  	if (!signr) {
638  		signr = __dequeue_signal(&tsk->signal->shared_pending,
639  					 mask, info, &resched_timer);
640  #ifdef CONFIG_POSIX_TIMERS
641  		/*
642  		 * itimer signal ?
643  		 *
644  		 * itimers are process shared and we restart periodic
645  		 * itimers in the signal delivery path to prevent DoS
646  		 * attacks in the high resolution timer case. This is
647  		 * compliant with the old way of self-restarting
648  		 * itimers, as the SIGALRM is a legacy signal and only
649  		 * queued once. Changing the restart behaviour to
650  		 * restart the timer in the signal dequeue path is
651  		 * reducing the timer noise on heavy loaded !highres
652  		 * systems too.
653  		 */
654  		if (unlikely(signr == SIGALRM)) {
655  			struct hrtimer *tmr = &tsk->signal->real_timer;
656  
657  			if (!hrtimer_is_queued(tmr) &&
658  			    tsk->signal->it_real_incr != 0) {
659  				hrtimer_forward(tmr, tmr->base->get_time(),
660  						tsk->signal->it_real_incr);
661  				hrtimer_restart(tmr);
662  			}
663  		}
664  #endif
665  	}
666  
667  	recalc_sigpending();
668  	if (!signr)
669  		return 0;
670  
671  	if (unlikely(sig_kernel_stop(signr))) {
672  		/*
673  		 * Set a marker that we have dequeued a stop signal.  Our
674  		 * caller might release the siglock and then the pending
675  		 * stop signal it is about to process is no longer in the
676  		 * pending bitmasks, but must still be cleared by a SIGCONT
677  		 * (and overruled by a SIGKILL).  So those cases clear this
678  		 * shared flag after we've set it.  Note that this flag may
679  		 * remain set after the signal we return is ignored or
680  		 * handled.  That doesn't matter because its only purpose
681  		 * is to alert stop-signal processing code when another
682  		 * processor has come along and cleared the flag.
683  		 */
684  		current->jobctl |= JOBCTL_STOP_DEQUEUED;
685  	}
686  #ifdef CONFIG_POSIX_TIMERS
687  	if (resched_timer) {
688  		/*
689  		 * Release the siglock to ensure proper locking order
690  		 * of timer locks outside of siglocks.  Note, we leave
691  		 * irqs disabled here, since the posix-timers code is
692  		 * about to disable them again anyway.
693  		 */
694  		spin_unlock(&tsk->sighand->siglock);
695  		posixtimer_rearm(info);
696  		spin_lock(&tsk->sighand->siglock);
697  
698  		/* Don't expose the si_sys_private value to userspace */
699  		info->si_sys_private = 0;
700  	}
701  #endif
702  	return signr;
703  }
704  EXPORT_SYMBOL_GPL(dequeue_signal);
705  
706  static int dequeue_synchronous_signal(kernel_siginfo_t *info)
707  {
708  	struct task_struct *tsk = current;
709  	struct sigpending *pending = &tsk->pending;
710  	struct sigqueue *q, *sync = NULL;
711  
712  	/*
713  	 * Might a synchronous signal be in the queue?
714  	 */
715  	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
716  		return 0;
717  
718  	/*
719  	 * Return the first synchronous signal in the queue.
720  	 */
721  	list_for_each_entry(q, &pending->list, list) {
722  		/* Synchronous signals have a positive si_code */
723  		if ((q->info.si_code > SI_USER) &&
724  		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
725  			sync = q;
726  			goto next;
727  		}
728  	}
729  	return 0;
730  next:
731  	/*
732  	 * Check if there is another siginfo for the same signal.
733  	 */
734  	list_for_each_entry_continue(q, &pending->list, list) {
735  		if (q->info.si_signo == sync->info.si_signo)
736  			goto still_pending;
737  	}
738  
739  	sigdelset(&pending->signal, sync->info.si_signo);
740  	recalc_sigpending();
741  still_pending:
742  	list_del_init(&sync->list);
743  	copy_siginfo(info, &sync->info);
744  	__sigqueue_free(sync);
745  	return info->si_signo;
746  }
747  
748  /*
749   * Tell a process that it has a new active signal..
750   *
751   * NOTE! we rely on the previous spin_lock to
752   * lock interrupts for us! We can only be called with
753   * "siglock" held, and the local interrupt must
754   * have been disabled when that got acquired!
755   *
756   * No need to set need_resched since signal event passing
757   * goes through ->blocked
758   */
759  void signal_wake_up_state(struct task_struct *t, unsigned int state)
760  {
761  	set_tsk_thread_flag(t, TIF_SIGPENDING);
762  	/*
763  	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
764  	 * case. We don't check t->state here because there is a race with it
765  	 * executing another processor and just now entering stopped state.
766  	 * By using wake_up_state, we ensure the process will wake up and
767  	 * handle its death signal.
768  	 */
769  	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
770  		kick_process(t);
771  }
772  
773  /*
774   * Remove signals in mask from the pending set and queue.
775   * Returns 1 if any signals were found.
776   *
777   * All callers must be holding the siglock.
778   */
779  static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
780  {
781  	struct sigqueue *q, *n;
782  	sigset_t m;
783  
784  	sigandsets(&m, mask, &s->signal);
785  	if (sigisemptyset(&m))
786  		return;
787  
788  	sigandnsets(&s->signal, &s->signal, mask);
789  	list_for_each_entry_safe(q, n, &s->list, list) {
790  		if (sigismember(mask, q->info.si_signo)) {
791  			list_del_init(&q->list);
792  			__sigqueue_free(q);
793  		}
794  	}
795  }
796  
797  static inline int is_si_special(const struct kernel_siginfo *info)
798  {
799  	return info <= SEND_SIG_PRIV;
800  }
801  
802  static inline bool si_fromuser(const struct kernel_siginfo *info)
803  {
804  	return info == SEND_SIG_NOINFO ||
805  		(!is_si_special(info) && SI_FROMUSER(info));
806  }
807  
808  /*
809   * called with RCU read lock from check_kill_permission()
810   */
811  static bool kill_ok_by_cred(struct task_struct *t)
812  {
813  	const struct cred *cred = current_cred();
814  	const struct cred *tcred = __task_cred(t);
815  
816  	return uid_eq(cred->euid, tcred->suid) ||
817  	       uid_eq(cred->euid, tcred->uid) ||
818  	       uid_eq(cred->uid, tcred->suid) ||
819  	       uid_eq(cred->uid, tcred->uid) ||
820  	       ns_capable(tcred->user_ns, CAP_KILL);
821  }
822  
823  /*
824   * Bad permissions for sending the signal
825   * - the caller must hold the RCU read lock
826   */
827  static int check_kill_permission(int sig, struct kernel_siginfo *info,
828  				 struct task_struct *t)
829  {
830  	struct pid *sid;
831  	int error;
832  
833  	if (!valid_signal(sig))
834  		return -EINVAL;
835  
836  	if (!si_fromuser(info))
837  		return 0;
838  
839  	error = audit_signal_info(sig, t); /* Let audit system see the signal */
840  	if (error)
841  		return error;
842  
843  	if (!same_thread_group(current, t) &&
844  	    !kill_ok_by_cred(t)) {
845  		switch (sig) {
846  		case SIGCONT:
847  			sid = task_session(t);
848  			/*
849  			 * We don't return the error if sid == NULL. The
850  			 * task was unhashed, the caller must notice this.
851  			 */
852  			if (!sid || sid == task_session(current))
853  				break;
854  			/* fall through */
855  		default:
856  			return -EPERM;
857  		}
858  	}
859  
860  	return security_task_kill(t, info, sig, NULL);
861  }
862  
863  /**
864   * ptrace_trap_notify - schedule trap to notify ptracer
865   * @t: tracee wanting to notify tracer
866   *
867   * This function schedules sticky ptrace trap which is cleared on the next
868   * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
869   * ptracer.
870   *
871   * If @t is running, STOP trap will be taken.  If trapped for STOP and
872   * ptracer is listening for events, tracee is woken up so that it can
873   * re-trap for the new event.  If trapped otherwise, STOP trap will be
874   * eventually taken without returning to userland after the existing traps
875   * are finished by PTRACE_CONT.
876   *
877   * CONTEXT:
878   * Must be called with @task->sighand->siglock held.
879   */
880  static void ptrace_trap_notify(struct task_struct *t)
881  {
882  	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
883  	assert_spin_locked(&t->sighand->siglock);
884  
885  	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
886  	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
887  }
888  
889  /*
890   * Handle magic process-wide effects of stop/continue signals. Unlike
891   * the signal actions, these happen immediately at signal-generation
892   * time regardless of blocking, ignoring, or handling.  This does the
893   * actual continuing for SIGCONT, but not the actual stopping for stop
894   * signals. The process stop is done as a signal action for SIG_DFL.
895   *
896   * Returns true if the signal should be actually delivered, otherwise
897   * it should be dropped.
898   */
899  static bool prepare_signal(int sig, struct task_struct *p, bool force)
900  {
901  	struct signal_struct *signal = p->signal;
902  	struct task_struct *t;
903  	sigset_t flush;
904  
905  	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
906  		if (!(signal->flags & SIGNAL_GROUP_EXIT))
907  			return sig == SIGKILL;
908  		/*
909  		 * The process is in the middle of dying, nothing to do.
910  		 */
911  	} else if (sig_kernel_stop(sig)) {
912  		/*
913  		 * This is a stop signal.  Remove SIGCONT from all queues.
914  		 */
915  		siginitset(&flush, sigmask(SIGCONT));
916  		flush_sigqueue_mask(&flush, &signal->shared_pending);
917  		for_each_thread(p, t)
918  			flush_sigqueue_mask(&flush, &t->pending);
919  	} else if (sig == SIGCONT) {
920  		unsigned int why;
921  		/*
922  		 * Remove all stop signals from all queues, wake all threads.
923  		 */
924  		siginitset(&flush, SIG_KERNEL_STOP_MASK);
925  		flush_sigqueue_mask(&flush, &signal->shared_pending);
926  		for_each_thread(p, t) {
927  			flush_sigqueue_mask(&flush, &t->pending);
928  			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
929  			if (likely(!(t->ptrace & PT_SEIZED)))
930  				wake_up_state(t, __TASK_STOPPED);
931  			else
932  				ptrace_trap_notify(t);
933  		}
934  
935  		/*
936  		 * Notify the parent with CLD_CONTINUED if we were stopped.
937  		 *
938  		 * If we were in the middle of a group stop, we pretend it
939  		 * was already finished, and then continued. Since SIGCHLD
940  		 * doesn't queue we report only CLD_STOPPED, as if the next
941  		 * CLD_CONTINUED was dropped.
942  		 */
943  		why = 0;
944  		if (signal->flags & SIGNAL_STOP_STOPPED)
945  			why |= SIGNAL_CLD_CONTINUED;
946  		else if (signal->group_stop_count)
947  			why |= SIGNAL_CLD_STOPPED;
948  
949  		if (why) {
950  			/*
951  			 * The first thread which returns from do_signal_stop()
952  			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
953  			 * notify its parent. See get_signal().
954  			 */
955  			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
956  			signal->group_stop_count = 0;
957  			signal->group_exit_code = 0;
958  		}
959  	}
960  
961  	return !sig_ignored(p, sig, force);
962  }
963  
964  /*
965   * Test if P wants to take SIG.  After we've checked all threads with this,
966   * it's equivalent to finding no threads not blocking SIG.  Any threads not
967   * blocking SIG were ruled out because they are not running and already
968   * have pending signals.  Such threads will dequeue from the shared queue
969   * as soon as they're available, so putting the signal on the shared queue
970   * will be equivalent to sending it to one such thread.
971   */
972  static inline bool wants_signal(int sig, struct task_struct *p)
973  {
974  	if (sigismember(&p->blocked, sig))
975  		return false;
976  
977  	if (p->flags & PF_EXITING)
978  		return false;
979  
980  	if (sig == SIGKILL)
981  		return true;
982  
983  	if (task_is_stopped_or_traced(p))
984  		return false;
985  
986  	return task_curr(p) || !signal_pending(p);
987  }
988  
989  static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
990  {
991  	struct signal_struct *signal = p->signal;
992  	struct task_struct *t;
993  
994  	/*
995  	 * Now find a thread we can wake up to take the signal off the queue.
996  	 *
997  	 * If the main thread wants the signal, it gets first crack.
998  	 * Probably the least surprising to the average bear.
999  	 */
1000  	if (wants_signal(sig, p))
1001  		t = p;
1002  	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1003  		/*
1004  		 * There is just one thread and it does not need to be woken.
1005  		 * It will dequeue unblocked signals before it runs again.
1006  		 */
1007  		return;
1008  	else {
1009  		/*
1010  		 * Otherwise try to find a suitable thread.
1011  		 */
1012  		t = signal->curr_target;
1013  		while (!wants_signal(sig, t)) {
1014  			t = next_thread(t);
1015  			if (t == signal->curr_target)
1016  				/*
1017  				 * No thread needs to be woken.
1018  				 * Any eligible threads will see
1019  				 * the signal in the queue soon.
1020  				 */
1021  				return;
1022  		}
1023  		signal->curr_target = t;
1024  	}
1025  
1026  	/*
1027  	 * Found a killable thread.  If the signal will be fatal,
1028  	 * then start taking the whole group down immediately.
1029  	 */
1030  	if (sig_fatal(p, sig) &&
1031  	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1032  	    !sigismember(&t->real_blocked, sig) &&
1033  	    (sig == SIGKILL || !p->ptrace)) {
1034  		/*
1035  		 * This signal will be fatal to the whole group.
1036  		 */
1037  		if (!sig_kernel_coredump(sig)) {
1038  			/*
1039  			 * Start a group exit and wake everybody up.
1040  			 * This way we don't have other threads
1041  			 * running and doing things after a slower
1042  			 * thread has the fatal signal pending.
1043  			 */
1044  			signal->flags = SIGNAL_GROUP_EXIT;
1045  			signal->group_exit_code = sig;
1046  			signal->group_stop_count = 0;
1047  			t = p;
1048  			do {
1049  				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1050  				sigaddset(&t->pending.signal, SIGKILL);
1051  				signal_wake_up(t, 1);
1052  			} while_each_thread(p, t);
1053  			return;
1054  		}
1055  	}
1056  
1057  	/*
1058  	 * The signal is already in the shared-pending queue.
1059  	 * Tell the chosen thread to wake up and dequeue it.
1060  	 */
1061  	signal_wake_up(t, sig == SIGKILL);
1062  	return;
1063  }
1064  
1065  static inline bool legacy_queue(struct sigpending *signals, int sig)
1066  {
1067  	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1068  }
1069  
1070  static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1071  			enum pid_type type, bool force)
1072  {
1073  	struct sigpending *pending;
1074  	struct sigqueue *q;
1075  	int override_rlimit;
1076  	int ret = 0, result;
1077  
1078  	assert_spin_locked(&t->sighand->siglock);
1079  
1080  	result = TRACE_SIGNAL_IGNORED;
1081  	if (!prepare_signal(sig, t, force))
1082  		goto ret;
1083  
1084  	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1085  	/*
1086  	 * Short-circuit ignored signals and support queuing
1087  	 * exactly one non-rt signal, so that we can get more
1088  	 * detailed information about the cause of the signal.
1089  	 */
1090  	result = TRACE_SIGNAL_ALREADY_PENDING;
1091  	if (legacy_queue(pending, sig))
1092  		goto ret;
1093  
1094  	result = TRACE_SIGNAL_DELIVERED;
1095  	/*
1096  	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1097  	 */
1098  	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1099  		goto out_set;
1100  
1101  	/*
1102  	 * Real-time signals must be queued if sent by sigqueue, or
1103  	 * some other real-time mechanism.  It is implementation
1104  	 * defined whether kill() does so.  We attempt to do so, on
1105  	 * the principle of least surprise, but since kill is not
1106  	 * allowed to fail with EAGAIN when low on memory we just
1107  	 * make sure at least one signal gets delivered and don't
1108  	 * pass on the info struct.
1109  	 */
1110  	if (sig < SIGRTMIN)
1111  		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1112  	else
1113  		override_rlimit = 0;
1114  
1115  	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1116  	if (q) {
1117  		list_add_tail(&q->list, &pending->list);
1118  		switch ((unsigned long) info) {
1119  		case (unsigned long) SEND_SIG_NOINFO:
1120  			clear_siginfo(&q->info);
1121  			q->info.si_signo = sig;
1122  			q->info.si_errno = 0;
1123  			q->info.si_code = SI_USER;
1124  			q->info.si_pid = task_tgid_nr_ns(current,
1125  							task_active_pid_ns(t));
1126  			rcu_read_lock();
1127  			q->info.si_uid =
1128  				from_kuid_munged(task_cred_xxx(t, user_ns),
1129  						 current_uid());
1130  			rcu_read_unlock();
1131  			break;
1132  		case (unsigned long) SEND_SIG_PRIV:
1133  			clear_siginfo(&q->info);
1134  			q->info.si_signo = sig;
1135  			q->info.si_errno = 0;
1136  			q->info.si_code = SI_KERNEL;
1137  			q->info.si_pid = 0;
1138  			q->info.si_uid = 0;
1139  			break;
1140  		default:
1141  			copy_siginfo(&q->info, info);
1142  			break;
1143  		}
1144  	} else if (!is_si_special(info) &&
1145  		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1146  		/*
1147  		 * Queue overflow, abort.  We may abort if the
1148  		 * signal was rt and sent by user using something
1149  		 * other than kill().
1150  		 */
1151  		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1152  		ret = -EAGAIN;
1153  		goto ret;
1154  	} else {
1155  		/*
1156  		 * This is a silent loss of information.  We still
1157  		 * send the signal, but the *info bits are lost.
1158  		 */
1159  		result = TRACE_SIGNAL_LOSE_INFO;
1160  	}
1161  
1162  out_set:
1163  	signalfd_notify(t, sig);
1164  	sigaddset(&pending->signal, sig);
1165  
1166  	/* Let multiprocess signals appear after on-going forks */
1167  	if (type > PIDTYPE_TGID) {
1168  		struct multiprocess_signals *delayed;
1169  		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1170  			sigset_t *signal = &delayed->signal;
1171  			/* Can't queue both a stop and a continue signal */
1172  			if (sig == SIGCONT)
1173  				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1174  			else if (sig_kernel_stop(sig))
1175  				sigdelset(signal, SIGCONT);
1176  			sigaddset(signal, sig);
1177  		}
1178  	}
1179  
1180  	complete_signal(sig, t, type);
1181  ret:
1182  	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1183  	return ret;
1184  }
1185  
1186  static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1187  {
1188  	bool ret = false;
1189  	switch (siginfo_layout(info->si_signo, info->si_code)) {
1190  	case SIL_KILL:
1191  	case SIL_CHLD:
1192  	case SIL_RT:
1193  		ret = true;
1194  		break;
1195  	case SIL_TIMER:
1196  	case SIL_POLL:
1197  	case SIL_FAULT:
1198  	case SIL_FAULT_MCEERR:
1199  	case SIL_FAULT_BNDERR:
1200  	case SIL_FAULT_PKUERR:
1201  	case SIL_SYS:
1202  		ret = false;
1203  		break;
1204  	}
1205  	return ret;
1206  }
1207  
1208  static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1209  			enum pid_type type)
1210  {
1211  	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1212  	bool force = false;
1213  
1214  	if (info == SEND_SIG_NOINFO) {
1215  		/* Force if sent from an ancestor pid namespace */
1216  		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1217  	} else if (info == SEND_SIG_PRIV) {
1218  		/* Don't ignore kernel generated signals */
1219  		force = true;
1220  	} else if (has_si_pid_and_uid(info)) {
1221  		/* SIGKILL and SIGSTOP is special or has ids */
1222  		struct user_namespace *t_user_ns;
1223  
1224  		rcu_read_lock();
1225  		t_user_ns = task_cred_xxx(t, user_ns);
1226  		if (current_user_ns() != t_user_ns) {
1227  			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1228  			info->si_uid = from_kuid_munged(t_user_ns, uid);
1229  		}
1230  		rcu_read_unlock();
1231  
1232  		/* A kernel generated signal? */
1233  		force = (info->si_code == SI_KERNEL);
1234  
1235  		/* From an ancestor pid namespace? */
1236  		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1237  			info->si_pid = 0;
1238  			force = true;
1239  		}
1240  	}
1241  	return __send_signal(sig, info, t, type, force);
1242  }
1243  
1244  static void print_fatal_signal(int signr)
1245  {
1246  	struct pt_regs *regs = signal_pt_regs();
1247  	pr_info("potentially unexpected fatal signal %d.\n", signr);
1248  
1249  #if defined(__i386__) && !defined(__arch_um__)
1250  	pr_info("code at %08lx: ", regs->ip);
1251  	{
1252  		int i;
1253  		for (i = 0; i < 16; i++) {
1254  			unsigned char insn;
1255  
1256  			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1257  				break;
1258  			pr_cont("%02x ", insn);
1259  		}
1260  	}
1261  	pr_cont("\n");
1262  #endif
1263  	preempt_disable();
1264  	show_regs(regs);
1265  	preempt_enable();
1266  }
1267  
1268  static int __init setup_print_fatal_signals(char *str)
1269  {
1270  	get_option (&str, &print_fatal_signals);
1271  
1272  	return 1;
1273  }
1274  
1275  __setup("print-fatal-signals=", setup_print_fatal_signals);
1276  
1277  int
1278  __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1279  {
1280  	return send_signal(sig, info, p, PIDTYPE_TGID);
1281  }
1282  
1283  int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1284  			enum pid_type type)
1285  {
1286  	unsigned long flags;
1287  	int ret = -ESRCH;
1288  
1289  	if (lock_task_sighand(p, &flags)) {
1290  		ret = send_signal(sig, info, p, type);
1291  		unlock_task_sighand(p, &flags);
1292  	}
1293  
1294  	return ret;
1295  }
1296  
1297  /*
1298   * Force a signal that the process can't ignore: if necessary
1299   * we unblock the signal and change any SIG_IGN to SIG_DFL.
1300   *
1301   * Note: If we unblock the signal, we always reset it to SIG_DFL,
1302   * since we do not want to have a signal handler that was blocked
1303   * be invoked when user space had explicitly blocked it.
1304   *
1305   * We don't want to have recursive SIGSEGV's etc, for example,
1306   * that is why we also clear SIGNAL_UNKILLABLE.
1307   */
1308  static int
1309  force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
1310  {
1311  	unsigned long int flags;
1312  	int ret, blocked, ignored;
1313  	struct k_sigaction *action;
1314  	int sig = info->si_signo;
1315  
1316  	spin_lock_irqsave(&t->sighand->siglock, flags);
1317  	action = &t->sighand->action[sig-1];
1318  	ignored = action->sa.sa_handler == SIG_IGN;
1319  	blocked = sigismember(&t->blocked, sig);
1320  	if (blocked || ignored) {
1321  		action->sa.sa_handler = SIG_DFL;
1322  		if (blocked) {
1323  			sigdelset(&t->blocked, sig);
1324  			recalc_sigpending_and_wake(t);
1325  		}
1326  	}
1327  	/*
1328  	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1329  	 * debugging to leave init killable.
1330  	 */
1331  	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1332  		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1333  	ret = send_signal(sig, info, t, PIDTYPE_PID);
1334  	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1335  
1336  	return ret;
1337  }
1338  
1339  int force_sig_info(struct kernel_siginfo *info)
1340  {
1341  	return force_sig_info_to_task(info, current);
1342  }
1343  
1344  /*
1345   * Nuke all other threads in the group.
1346   */
1347  int zap_other_threads(struct task_struct *p)
1348  {
1349  	struct task_struct *t = p;
1350  	int count = 0;
1351  
1352  	p->signal->group_stop_count = 0;
1353  
1354  	while_each_thread(p, t) {
1355  		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1356  		count++;
1357  
1358  		/* Don't bother with already dead threads */
1359  		if (t->exit_state)
1360  			continue;
1361  		sigaddset(&t->pending.signal, SIGKILL);
1362  		signal_wake_up(t, 1);
1363  	}
1364  
1365  	return count;
1366  }
1367  
1368  struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1369  					   unsigned long *flags)
1370  {
1371  	struct sighand_struct *sighand;
1372  
1373  	rcu_read_lock();
1374  	for (;;) {
1375  		sighand = rcu_dereference(tsk->sighand);
1376  		if (unlikely(sighand == NULL))
1377  			break;
1378  
1379  		/*
1380  		 * This sighand can be already freed and even reused, but
1381  		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1382  		 * initializes ->siglock: this slab can't go away, it has
1383  		 * the same object type, ->siglock can't be reinitialized.
1384  		 *
1385  		 * We need to ensure that tsk->sighand is still the same
1386  		 * after we take the lock, we can race with de_thread() or
1387  		 * __exit_signal(). In the latter case the next iteration
1388  		 * must see ->sighand == NULL.
1389  		 */
1390  		spin_lock_irqsave(&sighand->siglock, *flags);
1391  		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1392  			break;
1393  		spin_unlock_irqrestore(&sighand->siglock, *flags);
1394  	}
1395  	rcu_read_unlock();
1396  
1397  	return sighand;
1398  }
1399  
1400  /*
1401   * send signal info to all the members of a group
1402   */
1403  int group_send_sig_info(int sig, struct kernel_siginfo *info,
1404  			struct task_struct *p, enum pid_type type)
1405  {
1406  	int ret;
1407  
1408  	rcu_read_lock();
1409  	ret = check_kill_permission(sig, info, p);
1410  	rcu_read_unlock();
1411  
1412  	if (!ret && sig)
1413  		ret = do_send_sig_info(sig, info, p, type);
1414  
1415  	return ret;
1416  }
1417  
1418  /*
1419   * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1420   * control characters do (^C, ^Z etc)
1421   * - the caller must hold at least a readlock on tasklist_lock
1422   */
1423  int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1424  {
1425  	struct task_struct *p = NULL;
1426  	int retval, success;
1427  
1428  	success = 0;
1429  	retval = -ESRCH;
1430  	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1431  		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1432  		success |= !err;
1433  		retval = err;
1434  	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1435  	return success ? 0 : retval;
1436  }
1437  
1438  int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1439  {
1440  	int error = -ESRCH;
1441  	struct task_struct *p;
1442  
1443  	for (;;) {
1444  		rcu_read_lock();
1445  		p = pid_task(pid, PIDTYPE_PID);
1446  		if (p)
1447  			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1448  		rcu_read_unlock();
1449  		if (likely(!p || error != -ESRCH))
1450  			return error;
1451  
1452  		/*
1453  		 * The task was unhashed in between, try again.  If it
1454  		 * is dead, pid_task() will return NULL, if we race with
1455  		 * de_thread() it will find the new leader.
1456  		 */
1457  	}
1458  }
1459  
1460  static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1461  {
1462  	int error;
1463  	rcu_read_lock();
1464  	error = kill_pid_info(sig, info, find_vpid(pid));
1465  	rcu_read_unlock();
1466  	return error;
1467  }
1468  
1469  static inline bool kill_as_cred_perm(const struct cred *cred,
1470  				     struct task_struct *target)
1471  {
1472  	const struct cred *pcred = __task_cred(target);
1473  
1474  	return uid_eq(cred->euid, pcred->suid) ||
1475  	       uid_eq(cred->euid, pcred->uid) ||
1476  	       uid_eq(cred->uid, pcred->suid) ||
1477  	       uid_eq(cred->uid, pcred->uid);
1478  }
1479  
1480  /*
1481   * The usb asyncio usage of siginfo is wrong.  The glibc support
1482   * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1483   * AKA after the generic fields:
1484   *	kernel_pid_t	si_pid;
1485   *	kernel_uid32_t	si_uid;
1486   *	sigval_t	si_value;
1487   *
1488   * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1489   * after the generic fields is:
1490   *	void __user 	*si_addr;
1491   *
1492   * This is a practical problem when there is a 64bit big endian kernel
1493   * and a 32bit userspace.  As the 32bit address will encoded in the low
1494   * 32bits of the pointer.  Those low 32bits will be stored at higher
1495   * address than appear in a 32 bit pointer.  So userspace will not
1496   * see the address it was expecting for it's completions.
1497   *
1498   * There is nothing in the encoding that can allow
1499   * copy_siginfo_to_user32 to detect this confusion of formats, so
1500   * handle this by requiring the caller of kill_pid_usb_asyncio to
1501   * notice when this situration takes place and to store the 32bit
1502   * pointer in sival_int, instead of sival_addr of the sigval_t addr
1503   * parameter.
1504   */
1505  int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1506  			 struct pid *pid, const struct cred *cred)
1507  {
1508  	struct kernel_siginfo info;
1509  	struct task_struct *p;
1510  	unsigned long flags;
1511  	int ret = -EINVAL;
1512  
1513  	if (!valid_signal(sig))
1514  		return ret;
1515  
1516  	clear_siginfo(&info);
1517  	info.si_signo = sig;
1518  	info.si_errno = errno;
1519  	info.si_code = SI_ASYNCIO;
1520  	*((sigval_t *)&info.si_pid) = addr;
1521  
1522  	rcu_read_lock();
1523  	p = pid_task(pid, PIDTYPE_PID);
1524  	if (!p) {
1525  		ret = -ESRCH;
1526  		goto out_unlock;
1527  	}
1528  	if (!kill_as_cred_perm(cred, p)) {
1529  		ret = -EPERM;
1530  		goto out_unlock;
1531  	}
1532  	ret = security_task_kill(p, &info, sig, cred);
1533  	if (ret)
1534  		goto out_unlock;
1535  
1536  	if (sig) {
1537  		if (lock_task_sighand(p, &flags)) {
1538  			ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1539  			unlock_task_sighand(p, &flags);
1540  		} else
1541  			ret = -ESRCH;
1542  	}
1543  out_unlock:
1544  	rcu_read_unlock();
1545  	return ret;
1546  }
1547  EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1548  
1549  /*
1550   * kill_something_info() interprets pid in interesting ways just like kill(2).
1551   *
1552   * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1553   * is probably wrong.  Should make it like BSD or SYSV.
1554   */
1555  
1556  static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1557  {
1558  	int ret;
1559  
1560  	if (pid > 0)
1561  		return kill_proc_info(sig, info, pid);
1562  
1563  	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1564  	if (pid == INT_MIN)
1565  		return -ESRCH;
1566  
1567  	read_lock(&tasklist_lock);
1568  	if (pid != -1) {
1569  		ret = __kill_pgrp_info(sig, info,
1570  				pid ? find_vpid(-pid) : task_pgrp(current));
1571  	} else {
1572  		int retval = 0, count = 0;
1573  		struct task_struct * p;
1574  
1575  		for_each_process(p) {
1576  			if (task_pid_vnr(p) > 1 &&
1577  					!same_thread_group(p, current)) {
1578  				int err = group_send_sig_info(sig, info, p,
1579  							      PIDTYPE_MAX);
1580  				++count;
1581  				if (err != -EPERM)
1582  					retval = err;
1583  			}
1584  		}
1585  		ret = count ? retval : -ESRCH;
1586  	}
1587  	read_unlock(&tasklist_lock);
1588  
1589  	return ret;
1590  }
1591  
1592  /*
1593   * These are for backward compatibility with the rest of the kernel source.
1594   */
1595  
1596  int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1597  {
1598  	/*
1599  	 * Make sure legacy kernel users don't send in bad values
1600  	 * (normal paths check this in check_kill_permission).
1601  	 */
1602  	if (!valid_signal(sig))
1603  		return -EINVAL;
1604  
1605  	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1606  }
1607  EXPORT_SYMBOL(send_sig_info);
1608  
1609  #define __si_special(priv) \
1610  	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1611  
1612  int
1613  send_sig(int sig, struct task_struct *p, int priv)
1614  {
1615  	return send_sig_info(sig, __si_special(priv), p);
1616  }
1617  EXPORT_SYMBOL(send_sig);
1618  
1619  void force_sig(int sig)
1620  {
1621  	struct kernel_siginfo info;
1622  
1623  	clear_siginfo(&info);
1624  	info.si_signo = sig;
1625  	info.si_errno = 0;
1626  	info.si_code = SI_KERNEL;
1627  	info.si_pid = 0;
1628  	info.si_uid = 0;
1629  	force_sig_info(&info);
1630  }
1631  EXPORT_SYMBOL(force_sig);
1632  
1633  /*
1634   * When things go south during signal handling, we
1635   * will force a SIGSEGV. And if the signal that caused
1636   * the problem was already a SIGSEGV, we'll want to
1637   * make sure we don't even try to deliver the signal..
1638   */
1639  void force_sigsegv(int sig)
1640  {
1641  	struct task_struct *p = current;
1642  
1643  	if (sig == SIGSEGV) {
1644  		unsigned long flags;
1645  		spin_lock_irqsave(&p->sighand->siglock, flags);
1646  		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1647  		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1648  	}
1649  	force_sig(SIGSEGV);
1650  }
1651  
1652  int force_sig_fault_to_task(int sig, int code, void __user *addr
1653  	___ARCH_SI_TRAPNO(int trapno)
1654  	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1655  	, struct task_struct *t)
1656  {
1657  	struct kernel_siginfo info;
1658  
1659  	clear_siginfo(&info);
1660  	info.si_signo = sig;
1661  	info.si_errno = 0;
1662  	info.si_code  = code;
1663  	info.si_addr  = addr;
1664  #ifdef __ARCH_SI_TRAPNO
1665  	info.si_trapno = trapno;
1666  #endif
1667  #ifdef __ia64__
1668  	info.si_imm = imm;
1669  	info.si_flags = flags;
1670  	info.si_isr = isr;
1671  #endif
1672  	return force_sig_info_to_task(&info, t);
1673  }
1674  
1675  int force_sig_fault(int sig, int code, void __user *addr
1676  	___ARCH_SI_TRAPNO(int trapno)
1677  	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1678  {
1679  	return force_sig_fault_to_task(sig, code, addr
1680  				       ___ARCH_SI_TRAPNO(trapno)
1681  				       ___ARCH_SI_IA64(imm, flags, isr), current);
1682  }
1683  
1684  int send_sig_fault(int sig, int code, void __user *addr
1685  	___ARCH_SI_TRAPNO(int trapno)
1686  	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1687  	, struct task_struct *t)
1688  {
1689  	struct kernel_siginfo info;
1690  
1691  	clear_siginfo(&info);
1692  	info.si_signo = sig;
1693  	info.si_errno = 0;
1694  	info.si_code  = code;
1695  	info.si_addr  = addr;
1696  #ifdef __ARCH_SI_TRAPNO
1697  	info.si_trapno = trapno;
1698  #endif
1699  #ifdef __ia64__
1700  	info.si_imm = imm;
1701  	info.si_flags = flags;
1702  	info.si_isr = isr;
1703  #endif
1704  	return send_sig_info(info.si_signo, &info, t);
1705  }
1706  
1707  int force_sig_mceerr(int code, void __user *addr, short lsb)
1708  {
1709  	struct kernel_siginfo info;
1710  
1711  	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1712  	clear_siginfo(&info);
1713  	info.si_signo = SIGBUS;
1714  	info.si_errno = 0;
1715  	info.si_code = code;
1716  	info.si_addr = addr;
1717  	info.si_addr_lsb = lsb;
1718  	return force_sig_info(&info);
1719  }
1720  
1721  int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1722  {
1723  	struct kernel_siginfo info;
1724  
1725  	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1726  	clear_siginfo(&info);
1727  	info.si_signo = SIGBUS;
1728  	info.si_errno = 0;
1729  	info.si_code = code;
1730  	info.si_addr = addr;
1731  	info.si_addr_lsb = lsb;
1732  	return send_sig_info(info.si_signo, &info, t);
1733  }
1734  EXPORT_SYMBOL(send_sig_mceerr);
1735  
1736  int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1737  {
1738  	struct kernel_siginfo info;
1739  
1740  	clear_siginfo(&info);
1741  	info.si_signo = SIGSEGV;
1742  	info.si_errno = 0;
1743  	info.si_code  = SEGV_BNDERR;
1744  	info.si_addr  = addr;
1745  	info.si_lower = lower;
1746  	info.si_upper = upper;
1747  	return force_sig_info(&info);
1748  }
1749  
1750  #ifdef SEGV_PKUERR
1751  int force_sig_pkuerr(void __user *addr, u32 pkey)
1752  {
1753  	struct kernel_siginfo info;
1754  
1755  	clear_siginfo(&info);
1756  	info.si_signo = SIGSEGV;
1757  	info.si_errno = 0;
1758  	info.si_code  = SEGV_PKUERR;
1759  	info.si_addr  = addr;
1760  	info.si_pkey  = pkey;
1761  	return force_sig_info(&info);
1762  }
1763  #endif
1764  
1765  /* For the crazy architectures that include trap information in
1766   * the errno field, instead of an actual errno value.
1767   */
1768  int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1769  {
1770  	struct kernel_siginfo info;
1771  
1772  	clear_siginfo(&info);
1773  	info.si_signo = SIGTRAP;
1774  	info.si_errno = errno;
1775  	info.si_code  = TRAP_HWBKPT;
1776  	info.si_addr  = addr;
1777  	return force_sig_info(&info);
1778  }
1779  
1780  int kill_pgrp(struct pid *pid, int sig, int priv)
1781  {
1782  	int ret;
1783  
1784  	read_lock(&tasklist_lock);
1785  	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1786  	read_unlock(&tasklist_lock);
1787  
1788  	return ret;
1789  }
1790  EXPORT_SYMBOL(kill_pgrp);
1791  
1792  int kill_pid(struct pid *pid, int sig, int priv)
1793  {
1794  	return kill_pid_info(sig, __si_special(priv), pid);
1795  }
1796  EXPORT_SYMBOL(kill_pid);
1797  
1798  /*
1799   * These functions support sending signals using preallocated sigqueue
1800   * structures.  This is needed "because realtime applications cannot
1801   * afford to lose notifications of asynchronous events, like timer
1802   * expirations or I/O completions".  In the case of POSIX Timers
1803   * we allocate the sigqueue structure from the timer_create.  If this
1804   * allocation fails we are able to report the failure to the application
1805   * with an EAGAIN error.
1806   */
1807  struct sigqueue *sigqueue_alloc(void)
1808  {
1809  	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1810  
1811  	if (q)
1812  		q->flags |= SIGQUEUE_PREALLOC;
1813  
1814  	return q;
1815  }
1816  
1817  void sigqueue_free(struct sigqueue *q)
1818  {
1819  	unsigned long flags;
1820  	spinlock_t *lock = &current->sighand->siglock;
1821  
1822  	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1823  	/*
1824  	 * We must hold ->siglock while testing q->list
1825  	 * to serialize with collect_signal() or with
1826  	 * __exit_signal()->flush_sigqueue().
1827  	 */
1828  	spin_lock_irqsave(lock, flags);
1829  	q->flags &= ~SIGQUEUE_PREALLOC;
1830  	/*
1831  	 * If it is queued it will be freed when dequeued,
1832  	 * like the "regular" sigqueue.
1833  	 */
1834  	if (!list_empty(&q->list))
1835  		q = NULL;
1836  	spin_unlock_irqrestore(lock, flags);
1837  
1838  	if (q)
1839  		__sigqueue_free(q);
1840  }
1841  
1842  int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1843  {
1844  	int sig = q->info.si_signo;
1845  	struct sigpending *pending;
1846  	struct task_struct *t;
1847  	unsigned long flags;
1848  	int ret, result;
1849  
1850  	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1851  
1852  	ret = -1;
1853  	rcu_read_lock();
1854  	t = pid_task(pid, type);
1855  	if (!t || !likely(lock_task_sighand(t, &flags)))
1856  		goto ret;
1857  
1858  	ret = 1; /* the signal is ignored */
1859  	result = TRACE_SIGNAL_IGNORED;
1860  	if (!prepare_signal(sig, t, false))
1861  		goto out;
1862  
1863  	ret = 0;
1864  	if (unlikely(!list_empty(&q->list))) {
1865  		/*
1866  		 * If an SI_TIMER entry is already queue just increment
1867  		 * the overrun count.
1868  		 */
1869  		BUG_ON(q->info.si_code != SI_TIMER);
1870  		q->info.si_overrun++;
1871  		result = TRACE_SIGNAL_ALREADY_PENDING;
1872  		goto out;
1873  	}
1874  	q->info.si_overrun = 0;
1875  
1876  	signalfd_notify(t, sig);
1877  	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1878  	list_add_tail(&q->list, &pending->list);
1879  	sigaddset(&pending->signal, sig);
1880  	complete_signal(sig, t, type);
1881  	result = TRACE_SIGNAL_DELIVERED;
1882  out:
1883  	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1884  	unlock_task_sighand(t, &flags);
1885  ret:
1886  	rcu_read_unlock();
1887  	return ret;
1888  }
1889  
1890  static void do_notify_pidfd(struct task_struct *task)
1891  {
1892  	struct pid *pid;
1893  
1894  	WARN_ON(task->exit_state == 0);
1895  	pid = task_pid(task);
1896  	wake_up_all(&pid->wait_pidfd);
1897  }
1898  
1899  /*
1900   * Let a parent know about the death of a child.
1901   * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1902   *
1903   * Returns true if our parent ignored us and so we've switched to
1904   * self-reaping.
1905   */
1906  bool do_notify_parent(struct task_struct *tsk, int sig)
1907  {
1908  	struct kernel_siginfo info;
1909  	unsigned long flags;
1910  	struct sighand_struct *psig;
1911  	bool autoreap = false;
1912  	u64 utime, stime;
1913  
1914  	BUG_ON(sig == -1);
1915  
1916   	/* do_notify_parent_cldstop should have been called instead.  */
1917   	BUG_ON(task_is_stopped_or_traced(tsk));
1918  
1919  	BUG_ON(!tsk->ptrace &&
1920  	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1921  
1922  	/* Wake up all pidfd waiters */
1923  	do_notify_pidfd(tsk);
1924  
1925  	if (sig != SIGCHLD) {
1926  		/*
1927  		 * This is only possible if parent == real_parent.
1928  		 * Check if it has changed security domain.
1929  		 */
1930  		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
1931  			sig = SIGCHLD;
1932  	}
1933  
1934  	clear_siginfo(&info);
1935  	info.si_signo = sig;
1936  	info.si_errno = 0;
1937  	/*
1938  	 * We are under tasklist_lock here so our parent is tied to
1939  	 * us and cannot change.
1940  	 *
1941  	 * task_active_pid_ns will always return the same pid namespace
1942  	 * until a task passes through release_task.
1943  	 *
1944  	 * write_lock() currently calls preempt_disable() which is the
1945  	 * same as rcu_read_lock(), but according to Oleg, this is not
1946  	 * correct to rely on this
1947  	 */
1948  	rcu_read_lock();
1949  	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1950  	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1951  				       task_uid(tsk));
1952  	rcu_read_unlock();
1953  
1954  	task_cputime(tsk, &utime, &stime);
1955  	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1956  	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1957  
1958  	info.si_status = tsk->exit_code & 0x7f;
1959  	if (tsk->exit_code & 0x80)
1960  		info.si_code = CLD_DUMPED;
1961  	else if (tsk->exit_code & 0x7f)
1962  		info.si_code = CLD_KILLED;
1963  	else {
1964  		info.si_code = CLD_EXITED;
1965  		info.si_status = tsk->exit_code >> 8;
1966  	}
1967  
1968  	psig = tsk->parent->sighand;
1969  	spin_lock_irqsave(&psig->siglock, flags);
1970  	if (!tsk->ptrace && sig == SIGCHLD &&
1971  	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1972  	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1973  		/*
1974  		 * We are exiting and our parent doesn't care.  POSIX.1
1975  		 * defines special semantics for setting SIGCHLD to SIG_IGN
1976  		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1977  		 * automatically and not left for our parent's wait4 call.
1978  		 * Rather than having the parent do it as a magic kind of
1979  		 * signal handler, we just set this to tell do_exit that we
1980  		 * can be cleaned up without becoming a zombie.  Note that
1981  		 * we still call __wake_up_parent in this case, because a
1982  		 * blocked sys_wait4 might now return -ECHILD.
1983  		 *
1984  		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1985  		 * is implementation-defined: we do (if you don't want
1986  		 * it, just use SIG_IGN instead).
1987  		 */
1988  		autoreap = true;
1989  		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1990  			sig = 0;
1991  	}
1992  	/*
1993  	 * Send with __send_signal as si_pid and si_uid are in the
1994  	 * parent's namespaces.
1995  	 */
1996  	if (valid_signal(sig) && sig)
1997  		__send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
1998  	__wake_up_parent(tsk, tsk->parent);
1999  	spin_unlock_irqrestore(&psig->siglock, flags);
2000  
2001  	return autoreap;
2002  }
2003  
2004  /**
2005   * do_notify_parent_cldstop - notify parent of stopped/continued state change
2006   * @tsk: task reporting the state change
2007   * @for_ptracer: the notification is for ptracer
2008   * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2009   *
2010   * Notify @tsk's parent that the stopped/continued state has changed.  If
2011   * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2012   * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2013   *
2014   * CONTEXT:
2015   * Must be called with tasklist_lock at least read locked.
2016   */
2017  static void do_notify_parent_cldstop(struct task_struct *tsk,
2018  				     bool for_ptracer, int why)
2019  {
2020  	struct kernel_siginfo info;
2021  	unsigned long flags;
2022  	struct task_struct *parent;
2023  	struct sighand_struct *sighand;
2024  	u64 utime, stime;
2025  
2026  	if (for_ptracer) {
2027  		parent = tsk->parent;
2028  	} else {
2029  		tsk = tsk->group_leader;
2030  		parent = tsk->real_parent;
2031  	}
2032  
2033  	clear_siginfo(&info);
2034  	info.si_signo = SIGCHLD;
2035  	info.si_errno = 0;
2036  	/*
2037  	 * see comment in do_notify_parent() about the following 4 lines
2038  	 */
2039  	rcu_read_lock();
2040  	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2041  	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2042  	rcu_read_unlock();
2043  
2044  	task_cputime(tsk, &utime, &stime);
2045  	info.si_utime = nsec_to_clock_t(utime);
2046  	info.si_stime = nsec_to_clock_t(stime);
2047  
2048   	info.si_code = why;
2049   	switch (why) {
2050   	case CLD_CONTINUED:
2051   		info.si_status = SIGCONT;
2052   		break;
2053   	case CLD_STOPPED:
2054   		info.si_status = tsk->signal->group_exit_code & 0x7f;
2055   		break;
2056   	case CLD_TRAPPED:
2057   		info.si_status = tsk->exit_code & 0x7f;
2058   		break;
2059   	default:
2060   		BUG();
2061   	}
2062  
2063  	sighand = parent->sighand;
2064  	spin_lock_irqsave(&sighand->siglock, flags);
2065  	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2066  	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2067  		__group_send_sig_info(SIGCHLD, &info, parent);
2068  	/*
2069  	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2070  	 */
2071  	__wake_up_parent(tsk, parent);
2072  	spin_unlock_irqrestore(&sighand->siglock, flags);
2073  }
2074  
2075  static inline bool may_ptrace_stop(void)
2076  {
2077  	if (!likely(current->ptrace))
2078  		return false;
2079  	/*
2080  	 * Are we in the middle of do_coredump?
2081  	 * If so and our tracer is also part of the coredump stopping
2082  	 * is a deadlock situation, and pointless because our tracer
2083  	 * is dead so don't allow us to stop.
2084  	 * If SIGKILL was already sent before the caller unlocked
2085  	 * ->siglock we must see ->core_state != NULL. Otherwise it
2086  	 * is safe to enter schedule().
2087  	 *
2088  	 * This is almost outdated, a task with the pending SIGKILL can't
2089  	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2090  	 * after SIGKILL was already dequeued.
2091  	 */
2092  	if (unlikely(current->mm->core_state) &&
2093  	    unlikely(current->mm == current->parent->mm))
2094  		return false;
2095  
2096  	return true;
2097  }
2098  
2099  /*
2100   * Return non-zero if there is a SIGKILL that should be waking us up.
2101   * Called with the siglock held.
2102   */
2103  static bool sigkill_pending(struct task_struct *tsk)
2104  {
2105  	return sigismember(&tsk->pending.signal, SIGKILL) ||
2106  	       sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2107  }
2108  
2109  /*
2110   * This must be called with current->sighand->siglock held.
2111   *
2112   * This should be the path for all ptrace stops.
2113   * We always set current->last_siginfo while stopped here.
2114   * That makes it a way to test a stopped process for
2115   * being ptrace-stopped vs being job-control-stopped.
2116   *
2117   * If we actually decide not to stop at all because the tracer
2118   * is gone, we keep current->exit_code unless clear_code.
2119   */
2120  static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2121  	__releases(&current->sighand->siglock)
2122  	__acquires(&current->sighand->siglock)
2123  {
2124  	bool gstop_done = false;
2125  
2126  	if (arch_ptrace_stop_needed(exit_code, info)) {
2127  		/*
2128  		 * The arch code has something special to do before a
2129  		 * ptrace stop.  This is allowed to block, e.g. for faults
2130  		 * on user stack pages.  We can't keep the siglock while
2131  		 * calling arch_ptrace_stop, so we must release it now.
2132  		 * To preserve proper semantics, we must do this before
2133  		 * any signal bookkeeping like checking group_stop_count.
2134  		 * Meanwhile, a SIGKILL could come in before we retake the
2135  		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
2136  		 * So after regaining the lock, we must check for SIGKILL.
2137  		 */
2138  		spin_unlock_irq(&current->sighand->siglock);
2139  		arch_ptrace_stop(exit_code, info);
2140  		spin_lock_irq(&current->sighand->siglock);
2141  		if (sigkill_pending(current))
2142  			return;
2143  	}
2144  
2145  	set_special_state(TASK_TRACED);
2146  
2147  	/*
2148  	 * We're committing to trapping.  TRACED should be visible before
2149  	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2150  	 * Also, transition to TRACED and updates to ->jobctl should be
2151  	 * atomic with respect to siglock and should be done after the arch
2152  	 * hook as siglock is released and regrabbed across it.
2153  	 *
2154  	 *     TRACER				    TRACEE
2155  	 *
2156  	 *     ptrace_attach()
2157  	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2158  	 *     do_wait()
2159  	 *       set_current_state()                smp_wmb();
2160  	 *       ptrace_do_wait()
2161  	 *         wait_task_stopped()
2162  	 *           task_stopped_code()
2163  	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2164  	 */
2165  	smp_wmb();
2166  
2167  	current->last_siginfo = info;
2168  	current->exit_code = exit_code;
2169  
2170  	/*
2171  	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2172  	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2173  	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2174  	 * could be clear now.  We act as if SIGCONT is received after
2175  	 * TASK_TRACED is entered - ignore it.
2176  	 */
2177  	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2178  		gstop_done = task_participate_group_stop(current);
2179  
2180  	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2181  	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2182  	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2183  		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2184  
2185  	/* entering a trap, clear TRAPPING */
2186  	task_clear_jobctl_trapping(current);
2187  
2188  	spin_unlock_irq(&current->sighand->siglock);
2189  	read_lock(&tasklist_lock);
2190  	if (may_ptrace_stop()) {
2191  		/*
2192  		 * Notify parents of the stop.
2193  		 *
2194  		 * While ptraced, there are two parents - the ptracer and
2195  		 * the real_parent of the group_leader.  The ptracer should
2196  		 * know about every stop while the real parent is only
2197  		 * interested in the completion of group stop.  The states
2198  		 * for the two don't interact with each other.  Notify
2199  		 * separately unless they're gonna be duplicates.
2200  		 */
2201  		do_notify_parent_cldstop(current, true, why);
2202  		if (gstop_done && ptrace_reparented(current))
2203  			do_notify_parent_cldstop(current, false, why);
2204  
2205  		/*
2206  		 * Don't want to allow preemption here, because
2207  		 * sys_ptrace() needs this task to be inactive.
2208  		 *
2209  		 * XXX: implement read_unlock_no_resched().
2210  		 */
2211  		preempt_disable();
2212  		read_unlock(&tasklist_lock);
2213  		cgroup_enter_frozen();
2214  		preempt_enable_no_resched();
2215  		freezable_schedule();
2216  		cgroup_leave_frozen(true);
2217  	} else {
2218  		/*
2219  		 * By the time we got the lock, our tracer went away.
2220  		 * Don't drop the lock yet, another tracer may come.
2221  		 *
2222  		 * If @gstop_done, the ptracer went away between group stop
2223  		 * completion and here.  During detach, it would have set
2224  		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2225  		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2226  		 * the real parent of the group stop completion is enough.
2227  		 */
2228  		if (gstop_done)
2229  			do_notify_parent_cldstop(current, false, why);
2230  
2231  		/* tasklist protects us from ptrace_freeze_traced() */
2232  		__set_current_state(TASK_RUNNING);
2233  		if (clear_code)
2234  			current->exit_code = 0;
2235  		read_unlock(&tasklist_lock);
2236  	}
2237  
2238  	/*
2239  	 * We are back.  Now reacquire the siglock before touching
2240  	 * last_siginfo, so that we are sure to have synchronized with
2241  	 * any signal-sending on another CPU that wants to examine it.
2242  	 */
2243  	spin_lock_irq(&current->sighand->siglock);
2244  	current->last_siginfo = NULL;
2245  
2246  	/* LISTENING can be set only during STOP traps, clear it */
2247  	current->jobctl &= ~JOBCTL_LISTENING;
2248  
2249  	/*
2250  	 * Queued signals ignored us while we were stopped for tracing.
2251  	 * So check for any that we should take before resuming user mode.
2252  	 * This sets TIF_SIGPENDING, but never clears it.
2253  	 */
2254  	recalc_sigpending_tsk(current);
2255  }
2256  
2257  static void ptrace_do_notify(int signr, int exit_code, int why)
2258  {
2259  	kernel_siginfo_t info;
2260  
2261  	clear_siginfo(&info);
2262  	info.si_signo = signr;
2263  	info.si_code = exit_code;
2264  	info.si_pid = task_pid_vnr(current);
2265  	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2266  
2267  	/* Let the debugger run.  */
2268  	ptrace_stop(exit_code, why, 1, &info);
2269  }
2270  
2271  void ptrace_notify(int exit_code)
2272  {
2273  	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2274  	if (unlikely(current->task_works))
2275  		task_work_run();
2276  
2277  	spin_lock_irq(&current->sighand->siglock);
2278  	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2279  	spin_unlock_irq(&current->sighand->siglock);
2280  }
2281  
2282  /**
2283   * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2284   * @signr: signr causing group stop if initiating
2285   *
2286   * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2287   * and participate in it.  If already set, participate in the existing
2288   * group stop.  If participated in a group stop (and thus slept), %true is
2289   * returned with siglock released.
2290   *
2291   * If ptraced, this function doesn't handle stop itself.  Instead,
2292   * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2293   * untouched.  The caller must ensure that INTERRUPT trap handling takes
2294   * places afterwards.
2295   *
2296   * CONTEXT:
2297   * Must be called with @current->sighand->siglock held, which is released
2298   * on %true return.
2299   *
2300   * RETURNS:
2301   * %false if group stop is already cancelled or ptrace trap is scheduled.
2302   * %true if participated in group stop.
2303   */
2304  static bool do_signal_stop(int signr)
2305  	__releases(&current->sighand->siglock)
2306  {
2307  	struct signal_struct *sig = current->signal;
2308  
2309  	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2310  		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2311  		struct task_struct *t;
2312  
2313  		/* signr will be recorded in task->jobctl for retries */
2314  		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2315  
2316  		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2317  		    unlikely(signal_group_exit(sig)))
2318  			return false;
2319  		/*
2320  		 * There is no group stop already in progress.  We must
2321  		 * initiate one now.
2322  		 *
2323  		 * While ptraced, a task may be resumed while group stop is
2324  		 * still in effect and then receive a stop signal and
2325  		 * initiate another group stop.  This deviates from the
2326  		 * usual behavior as two consecutive stop signals can't
2327  		 * cause two group stops when !ptraced.  That is why we
2328  		 * also check !task_is_stopped(t) below.
2329  		 *
2330  		 * The condition can be distinguished by testing whether
2331  		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2332  		 * group_exit_code in such case.
2333  		 *
2334  		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2335  		 * an intervening stop signal is required to cause two
2336  		 * continued events regardless of ptrace.
2337  		 */
2338  		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2339  			sig->group_exit_code = signr;
2340  
2341  		sig->group_stop_count = 0;
2342  
2343  		if (task_set_jobctl_pending(current, signr | gstop))
2344  			sig->group_stop_count++;
2345  
2346  		t = current;
2347  		while_each_thread(current, t) {
2348  			/*
2349  			 * Setting state to TASK_STOPPED for a group
2350  			 * stop is always done with the siglock held,
2351  			 * so this check has no races.
2352  			 */
2353  			if (!task_is_stopped(t) &&
2354  			    task_set_jobctl_pending(t, signr | gstop)) {
2355  				sig->group_stop_count++;
2356  				if (likely(!(t->ptrace & PT_SEIZED)))
2357  					signal_wake_up(t, 0);
2358  				else
2359  					ptrace_trap_notify(t);
2360  			}
2361  		}
2362  	}
2363  
2364  	if (likely(!current->ptrace)) {
2365  		int notify = 0;
2366  
2367  		/*
2368  		 * If there are no other threads in the group, or if there
2369  		 * is a group stop in progress and we are the last to stop,
2370  		 * report to the parent.
2371  		 */
2372  		if (task_participate_group_stop(current))
2373  			notify = CLD_STOPPED;
2374  
2375  		set_special_state(TASK_STOPPED);
2376  		spin_unlock_irq(&current->sighand->siglock);
2377  
2378  		/*
2379  		 * Notify the parent of the group stop completion.  Because
2380  		 * we're not holding either the siglock or tasklist_lock
2381  		 * here, ptracer may attach inbetween; however, this is for
2382  		 * group stop and should always be delivered to the real
2383  		 * parent of the group leader.  The new ptracer will get
2384  		 * its notification when this task transitions into
2385  		 * TASK_TRACED.
2386  		 */
2387  		if (notify) {
2388  			read_lock(&tasklist_lock);
2389  			do_notify_parent_cldstop(current, false, notify);
2390  			read_unlock(&tasklist_lock);
2391  		}
2392  
2393  		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2394  		cgroup_enter_frozen();
2395  		freezable_schedule();
2396  		return true;
2397  	} else {
2398  		/*
2399  		 * While ptraced, group stop is handled by STOP trap.
2400  		 * Schedule it and let the caller deal with it.
2401  		 */
2402  		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2403  		return false;
2404  	}
2405  }
2406  
2407  /**
2408   * do_jobctl_trap - take care of ptrace jobctl traps
2409   *
2410   * When PT_SEIZED, it's used for both group stop and explicit
2411   * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2412   * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2413   * the stop signal; otherwise, %SIGTRAP.
2414   *
2415   * When !PT_SEIZED, it's used only for group stop trap with stop signal
2416   * number as exit_code and no siginfo.
2417   *
2418   * CONTEXT:
2419   * Must be called with @current->sighand->siglock held, which may be
2420   * released and re-acquired before returning with intervening sleep.
2421   */
2422  static void do_jobctl_trap(void)
2423  {
2424  	struct signal_struct *signal = current->signal;
2425  	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2426  
2427  	if (current->ptrace & PT_SEIZED) {
2428  		if (!signal->group_stop_count &&
2429  		    !(signal->flags & SIGNAL_STOP_STOPPED))
2430  			signr = SIGTRAP;
2431  		WARN_ON_ONCE(!signr);
2432  		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2433  				 CLD_STOPPED);
2434  	} else {
2435  		WARN_ON_ONCE(!signr);
2436  		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2437  		current->exit_code = 0;
2438  	}
2439  }
2440  
2441  /**
2442   * do_freezer_trap - handle the freezer jobctl trap
2443   *
2444   * Puts the task into frozen state, if only the task is not about to quit.
2445   * In this case it drops JOBCTL_TRAP_FREEZE.
2446   *
2447   * CONTEXT:
2448   * Must be called with @current->sighand->siglock held,
2449   * which is always released before returning.
2450   */
2451  static void do_freezer_trap(void)
2452  	__releases(&current->sighand->siglock)
2453  {
2454  	/*
2455  	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2456  	 * let's make another loop to give it a chance to be handled.
2457  	 * In any case, we'll return back.
2458  	 */
2459  	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2460  	     JOBCTL_TRAP_FREEZE) {
2461  		spin_unlock_irq(&current->sighand->siglock);
2462  		return;
2463  	}
2464  
2465  	/*
2466  	 * Now we're sure that there is no pending fatal signal and no
2467  	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2468  	 * immediately (if there is a non-fatal signal pending), and
2469  	 * put the task into sleep.
2470  	 */
2471  	__set_current_state(TASK_INTERRUPTIBLE);
2472  	clear_thread_flag(TIF_SIGPENDING);
2473  	spin_unlock_irq(&current->sighand->siglock);
2474  	cgroup_enter_frozen();
2475  	freezable_schedule();
2476  }
2477  
2478  static int ptrace_signal(int signr, kernel_siginfo_t *info)
2479  {
2480  	/*
2481  	 * We do not check sig_kernel_stop(signr) but set this marker
2482  	 * unconditionally because we do not know whether debugger will
2483  	 * change signr. This flag has no meaning unless we are going
2484  	 * to stop after return from ptrace_stop(). In this case it will
2485  	 * be checked in do_signal_stop(), we should only stop if it was
2486  	 * not cleared by SIGCONT while we were sleeping. See also the
2487  	 * comment in dequeue_signal().
2488  	 */
2489  	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2490  	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2491  
2492  	/* We're back.  Did the debugger cancel the sig?  */
2493  	signr = current->exit_code;
2494  	if (signr == 0)
2495  		return signr;
2496  
2497  	current->exit_code = 0;
2498  
2499  	/*
2500  	 * Update the siginfo structure if the signal has
2501  	 * changed.  If the debugger wanted something
2502  	 * specific in the siginfo structure then it should
2503  	 * have updated *info via PTRACE_SETSIGINFO.
2504  	 */
2505  	if (signr != info->si_signo) {
2506  		clear_siginfo(info);
2507  		info->si_signo = signr;
2508  		info->si_errno = 0;
2509  		info->si_code = SI_USER;
2510  		rcu_read_lock();
2511  		info->si_pid = task_pid_vnr(current->parent);
2512  		info->si_uid = from_kuid_munged(current_user_ns(),
2513  						task_uid(current->parent));
2514  		rcu_read_unlock();
2515  	}
2516  
2517  	/* If the (new) signal is now blocked, requeue it.  */
2518  	if (sigismember(&current->blocked, signr)) {
2519  		send_signal(signr, info, current, PIDTYPE_PID);
2520  		signr = 0;
2521  	}
2522  
2523  	return signr;
2524  }
2525  
2526  bool get_signal(struct ksignal *ksig)
2527  {
2528  	struct sighand_struct *sighand = current->sighand;
2529  	struct signal_struct *signal = current->signal;
2530  	int signr;
2531  
2532  	if (unlikely(uprobe_deny_signal()))
2533  		return false;
2534  
2535  	/*
2536  	 * Do this once, we can't return to user-mode if freezing() == T.
2537  	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2538  	 * thus do not need another check after return.
2539  	 */
2540  	try_to_freeze();
2541  
2542  relock:
2543  	spin_lock_irq(&sighand->siglock);
2544  	current->jobctl &= ~JOBCTL_TASK_WORK;
2545  	if (unlikely(current->task_works)) {
2546  		spin_unlock_irq(&sighand->siglock);
2547  		task_work_run();
2548  		goto relock;
2549  	}
2550  
2551  	/*
2552  	 * Every stopped thread goes here after wakeup. Check to see if
2553  	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2554  	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2555  	 */
2556  	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2557  		int why;
2558  
2559  		if (signal->flags & SIGNAL_CLD_CONTINUED)
2560  			why = CLD_CONTINUED;
2561  		else
2562  			why = CLD_STOPPED;
2563  
2564  		signal->flags &= ~SIGNAL_CLD_MASK;
2565  
2566  		spin_unlock_irq(&sighand->siglock);
2567  
2568  		/*
2569  		 * Notify the parent that we're continuing.  This event is
2570  		 * always per-process and doesn't make whole lot of sense
2571  		 * for ptracers, who shouldn't consume the state via
2572  		 * wait(2) either, but, for backward compatibility, notify
2573  		 * the ptracer of the group leader too unless it's gonna be
2574  		 * a duplicate.
2575  		 */
2576  		read_lock(&tasklist_lock);
2577  		do_notify_parent_cldstop(current, false, why);
2578  
2579  		if (ptrace_reparented(current->group_leader))
2580  			do_notify_parent_cldstop(current->group_leader,
2581  						true, why);
2582  		read_unlock(&tasklist_lock);
2583  
2584  		goto relock;
2585  	}
2586  
2587  	/* Has this task already been marked for death? */
2588  	if (signal_group_exit(signal)) {
2589  		ksig->info.si_signo = signr = SIGKILL;
2590  		sigdelset(&current->pending.signal, SIGKILL);
2591  		trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2592  				&sighand->action[SIGKILL - 1]);
2593  		recalc_sigpending();
2594  		goto fatal;
2595  	}
2596  
2597  	for (;;) {
2598  		struct k_sigaction *ka;
2599  
2600  		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2601  		    do_signal_stop(0))
2602  			goto relock;
2603  
2604  		if (unlikely(current->jobctl &
2605  			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2606  			if (current->jobctl & JOBCTL_TRAP_MASK) {
2607  				do_jobctl_trap();
2608  				spin_unlock_irq(&sighand->siglock);
2609  			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2610  				do_freezer_trap();
2611  
2612  			goto relock;
2613  		}
2614  
2615  		/*
2616  		 * If the task is leaving the frozen state, let's update
2617  		 * cgroup counters and reset the frozen bit.
2618  		 */
2619  		if (unlikely(cgroup_task_frozen(current))) {
2620  			spin_unlock_irq(&sighand->siglock);
2621  			cgroup_leave_frozen(false);
2622  			goto relock;
2623  		}
2624  
2625  		/*
2626  		 * Signals generated by the execution of an instruction
2627  		 * need to be delivered before any other pending signals
2628  		 * so that the instruction pointer in the signal stack
2629  		 * frame points to the faulting instruction.
2630  		 */
2631  		signr = dequeue_synchronous_signal(&ksig->info);
2632  		if (!signr)
2633  			signr = dequeue_signal(current, &current->blocked, &ksig->info);
2634  
2635  		if (!signr)
2636  			break; /* will return 0 */
2637  
2638  		if (unlikely(current->ptrace) && signr != SIGKILL) {
2639  			signr = ptrace_signal(signr, &ksig->info);
2640  			if (!signr)
2641  				continue;
2642  		}
2643  
2644  		ka = &sighand->action[signr-1];
2645  
2646  		/* Trace actually delivered signals. */
2647  		trace_signal_deliver(signr, &ksig->info, ka);
2648  
2649  		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2650  			continue;
2651  		if (ka->sa.sa_handler != SIG_DFL) {
2652  			/* Run the handler.  */
2653  			ksig->ka = *ka;
2654  
2655  			if (ka->sa.sa_flags & SA_ONESHOT)
2656  				ka->sa.sa_handler = SIG_DFL;
2657  
2658  			break; /* will return non-zero "signr" value */
2659  		}
2660  
2661  		/*
2662  		 * Now we are doing the default action for this signal.
2663  		 */
2664  		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2665  			continue;
2666  
2667  		/*
2668  		 * Global init gets no signals it doesn't want.
2669  		 * Container-init gets no signals it doesn't want from same
2670  		 * container.
2671  		 *
2672  		 * Note that if global/container-init sees a sig_kernel_only()
2673  		 * signal here, the signal must have been generated internally
2674  		 * or must have come from an ancestor namespace. In either
2675  		 * case, the signal cannot be dropped.
2676  		 */
2677  		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2678  				!sig_kernel_only(signr))
2679  			continue;
2680  
2681  		if (sig_kernel_stop(signr)) {
2682  			/*
2683  			 * The default action is to stop all threads in
2684  			 * the thread group.  The job control signals
2685  			 * do nothing in an orphaned pgrp, but SIGSTOP
2686  			 * always works.  Note that siglock needs to be
2687  			 * dropped during the call to is_orphaned_pgrp()
2688  			 * because of lock ordering with tasklist_lock.
2689  			 * This allows an intervening SIGCONT to be posted.
2690  			 * We need to check for that and bail out if necessary.
2691  			 */
2692  			if (signr != SIGSTOP) {
2693  				spin_unlock_irq(&sighand->siglock);
2694  
2695  				/* signals can be posted during this window */
2696  
2697  				if (is_current_pgrp_orphaned())
2698  					goto relock;
2699  
2700  				spin_lock_irq(&sighand->siglock);
2701  			}
2702  
2703  			if (likely(do_signal_stop(ksig->info.si_signo))) {
2704  				/* It released the siglock.  */
2705  				goto relock;
2706  			}
2707  
2708  			/*
2709  			 * We didn't actually stop, due to a race
2710  			 * with SIGCONT or something like that.
2711  			 */
2712  			continue;
2713  		}
2714  
2715  	fatal:
2716  		spin_unlock_irq(&sighand->siglock);
2717  		if (unlikely(cgroup_task_frozen(current)))
2718  			cgroup_leave_frozen(true);
2719  
2720  		/*
2721  		 * Anything else is fatal, maybe with a core dump.
2722  		 */
2723  		current->flags |= PF_SIGNALED;
2724  
2725  		if (sig_kernel_coredump(signr)) {
2726  			if (print_fatal_signals)
2727  				print_fatal_signal(ksig->info.si_signo);
2728  			proc_coredump_connector(current);
2729  			/*
2730  			 * If it was able to dump core, this kills all
2731  			 * other threads in the group and synchronizes with
2732  			 * their demise.  If we lost the race with another
2733  			 * thread getting here, it set group_exit_code
2734  			 * first and our do_group_exit call below will use
2735  			 * that value and ignore the one we pass it.
2736  			 */
2737  			do_coredump(&ksig->info);
2738  		}
2739  
2740  		/*
2741  		 * Death signals, no core dump.
2742  		 */
2743  		do_group_exit(ksig->info.si_signo);
2744  		/* NOTREACHED */
2745  	}
2746  	spin_unlock_irq(&sighand->siglock);
2747  
2748  	ksig->sig = signr;
2749  	return ksig->sig > 0;
2750  }
2751  
2752  /**
2753   * signal_delivered -
2754   * @ksig:		kernel signal struct
2755   * @stepping:		nonzero if debugger single-step or block-step in use
2756   *
2757   * This function should be called when a signal has successfully been
2758   * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2759   * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2760   * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2761   */
2762  static void signal_delivered(struct ksignal *ksig, int stepping)
2763  {
2764  	sigset_t blocked;
2765  
2766  	/* A signal was successfully delivered, and the
2767  	   saved sigmask was stored on the signal frame,
2768  	   and will be restored by sigreturn.  So we can
2769  	   simply clear the restore sigmask flag.  */
2770  	clear_restore_sigmask();
2771  
2772  	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2773  	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2774  		sigaddset(&blocked, ksig->sig);
2775  	set_current_blocked(&blocked);
2776  	tracehook_signal_handler(stepping);
2777  }
2778  
2779  void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2780  {
2781  	if (failed)
2782  		force_sigsegv(ksig->sig);
2783  	else
2784  		signal_delivered(ksig, stepping);
2785  }
2786  
2787  /*
2788   * It could be that complete_signal() picked us to notify about the
2789   * group-wide signal. Other threads should be notified now to take
2790   * the shared signals in @which since we will not.
2791   */
2792  static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2793  {
2794  	sigset_t retarget;
2795  	struct task_struct *t;
2796  
2797  	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2798  	if (sigisemptyset(&retarget))
2799  		return;
2800  
2801  	t = tsk;
2802  	while_each_thread(tsk, t) {
2803  		if (t->flags & PF_EXITING)
2804  			continue;
2805  
2806  		if (!has_pending_signals(&retarget, &t->blocked))
2807  			continue;
2808  		/* Remove the signals this thread can handle. */
2809  		sigandsets(&retarget, &retarget, &t->blocked);
2810  
2811  		if (!signal_pending(t))
2812  			signal_wake_up(t, 0);
2813  
2814  		if (sigisemptyset(&retarget))
2815  			break;
2816  	}
2817  }
2818  
2819  void exit_signals(struct task_struct *tsk)
2820  {
2821  	int group_stop = 0;
2822  	sigset_t unblocked;
2823  
2824  	/*
2825  	 * @tsk is about to have PF_EXITING set - lock out users which
2826  	 * expect stable threadgroup.
2827  	 */
2828  	cgroup_threadgroup_change_begin(tsk);
2829  
2830  	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2831  		tsk->flags |= PF_EXITING;
2832  		cgroup_threadgroup_change_end(tsk);
2833  		return;
2834  	}
2835  
2836  	spin_lock_irq(&tsk->sighand->siglock);
2837  	/*
2838  	 * From now this task is not visible for group-wide signals,
2839  	 * see wants_signal(), do_signal_stop().
2840  	 */
2841  	tsk->flags |= PF_EXITING;
2842  
2843  	cgroup_threadgroup_change_end(tsk);
2844  
2845  	if (!signal_pending(tsk))
2846  		goto out;
2847  
2848  	unblocked = tsk->blocked;
2849  	signotset(&unblocked);
2850  	retarget_shared_pending(tsk, &unblocked);
2851  
2852  	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2853  	    task_participate_group_stop(tsk))
2854  		group_stop = CLD_STOPPED;
2855  out:
2856  	spin_unlock_irq(&tsk->sighand->siglock);
2857  
2858  	/*
2859  	 * If group stop has completed, deliver the notification.  This
2860  	 * should always go to the real parent of the group leader.
2861  	 */
2862  	if (unlikely(group_stop)) {
2863  		read_lock(&tasklist_lock);
2864  		do_notify_parent_cldstop(tsk, false, group_stop);
2865  		read_unlock(&tasklist_lock);
2866  	}
2867  }
2868  
2869  /*
2870   * System call entry points.
2871   */
2872  
2873  /**
2874   *  sys_restart_syscall - restart a system call
2875   */
2876  SYSCALL_DEFINE0(restart_syscall)
2877  {
2878  	struct restart_block *restart = &current->restart_block;
2879  	return restart->fn(restart);
2880  }
2881  
2882  long do_no_restart_syscall(struct restart_block *param)
2883  {
2884  	return -EINTR;
2885  }
2886  
2887  static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2888  {
2889  	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2890  		sigset_t newblocked;
2891  		/* A set of now blocked but previously unblocked signals. */
2892  		sigandnsets(&newblocked, newset, &current->blocked);
2893  		retarget_shared_pending(tsk, &newblocked);
2894  	}
2895  	tsk->blocked = *newset;
2896  	recalc_sigpending();
2897  }
2898  
2899  /**
2900   * set_current_blocked - change current->blocked mask
2901   * @newset: new mask
2902   *
2903   * It is wrong to change ->blocked directly, this helper should be used
2904   * to ensure the process can't miss a shared signal we are going to block.
2905   */
2906  void set_current_blocked(sigset_t *newset)
2907  {
2908  	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2909  	__set_current_blocked(newset);
2910  }
2911  
2912  void __set_current_blocked(const sigset_t *newset)
2913  {
2914  	struct task_struct *tsk = current;
2915  
2916  	/*
2917  	 * In case the signal mask hasn't changed, there is nothing we need
2918  	 * to do. The current->blocked shouldn't be modified by other task.
2919  	 */
2920  	if (sigequalsets(&tsk->blocked, newset))
2921  		return;
2922  
2923  	spin_lock_irq(&tsk->sighand->siglock);
2924  	__set_task_blocked(tsk, newset);
2925  	spin_unlock_irq(&tsk->sighand->siglock);
2926  }
2927  
2928  /*
2929   * This is also useful for kernel threads that want to temporarily
2930   * (or permanently) block certain signals.
2931   *
2932   * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2933   * interface happily blocks "unblockable" signals like SIGKILL
2934   * and friends.
2935   */
2936  int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2937  {
2938  	struct task_struct *tsk = current;
2939  	sigset_t newset;
2940  
2941  	/* Lockless, only current can change ->blocked, never from irq */
2942  	if (oldset)
2943  		*oldset = tsk->blocked;
2944  
2945  	switch (how) {
2946  	case SIG_BLOCK:
2947  		sigorsets(&newset, &tsk->blocked, set);
2948  		break;
2949  	case SIG_UNBLOCK:
2950  		sigandnsets(&newset, &tsk->blocked, set);
2951  		break;
2952  	case SIG_SETMASK:
2953  		newset = *set;
2954  		break;
2955  	default:
2956  		return -EINVAL;
2957  	}
2958  
2959  	__set_current_blocked(&newset);
2960  	return 0;
2961  }
2962  EXPORT_SYMBOL(sigprocmask);
2963  
2964  /*
2965   * The api helps set app-provided sigmasks.
2966   *
2967   * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2968   * epoll_pwait where a new sigmask is passed from userland for the syscalls.
2969   *
2970   * Note that it does set_restore_sigmask() in advance, so it must be always
2971   * paired with restore_saved_sigmask_unless() before return from syscall.
2972   */
2973  int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
2974  {
2975  	sigset_t kmask;
2976  
2977  	if (!umask)
2978  		return 0;
2979  	if (sigsetsize != sizeof(sigset_t))
2980  		return -EINVAL;
2981  	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
2982  		return -EFAULT;
2983  
2984  	set_restore_sigmask();
2985  	current->saved_sigmask = current->blocked;
2986  	set_current_blocked(&kmask);
2987  
2988  	return 0;
2989  }
2990  
2991  #ifdef CONFIG_COMPAT
2992  int set_compat_user_sigmask(const compat_sigset_t __user *umask,
2993  			    size_t sigsetsize)
2994  {
2995  	sigset_t kmask;
2996  
2997  	if (!umask)
2998  		return 0;
2999  	if (sigsetsize != sizeof(compat_sigset_t))
3000  		return -EINVAL;
3001  	if (get_compat_sigset(&kmask, umask))
3002  		return -EFAULT;
3003  
3004  	set_restore_sigmask();
3005  	current->saved_sigmask = current->blocked;
3006  	set_current_blocked(&kmask);
3007  
3008  	return 0;
3009  }
3010  #endif
3011  
3012  /**
3013   *  sys_rt_sigprocmask - change the list of currently blocked signals
3014   *  @how: whether to add, remove, or set signals
3015   *  @nset: stores pending signals
3016   *  @oset: previous value of signal mask if non-null
3017   *  @sigsetsize: size of sigset_t type
3018   */
3019  SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3020  		sigset_t __user *, oset, size_t, sigsetsize)
3021  {
3022  	sigset_t old_set, new_set;
3023  	int error;
3024  
3025  	/* XXX: Don't preclude handling different sized sigset_t's.  */
3026  	if (sigsetsize != sizeof(sigset_t))
3027  		return -EINVAL;
3028  
3029  	old_set = current->blocked;
3030  
3031  	if (nset) {
3032  		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3033  			return -EFAULT;
3034  		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3035  
3036  		error = sigprocmask(how, &new_set, NULL);
3037  		if (error)
3038  			return error;
3039  	}
3040  
3041  	if (oset) {
3042  		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3043  			return -EFAULT;
3044  	}
3045  
3046  	return 0;
3047  }
3048  
3049  #ifdef CONFIG_COMPAT
3050  COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3051  		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3052  {
3053  	sigset_t old_set = current->blocked;
3054  
3055  	/* XXX: Don't preclude handling different sized sigset_t's.  */
3056  	if (sigsetsize != sizeof(sigset_t))
3057  		return -EINVAL;
3058  
3059  	if (nset) {
3060  		sigset_t new_set;
3061  		int error;
3062  		if (get_compat_sigset(&new_set, nset))
3063  			return -EFAULT;
3064  		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3065  
3066  		error = sigprocmask(how, &new_set, NULL);
3067  		if (error)
3068  			return error;
3069  	}
3070  	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3071  }
3072  #endif
3073  
3074  static void do_sigpending(sigset_t *set)
3075  {
3076  	spin_lock_irq(&current->sighand->siglock);
3077  	sigorsets(set, &current->pending.signal,
3078  		  &current->signal->shared_pending.signal);
3079  	spin_unlock_irq(&current->sighand->siglock);
3080  
3081  	/* Outside the lock because only this thread touches it.  */
3082  	sigandsets(set, &current->blocked, set);
3083  }
3084  
3085  /**
3086   *  sys_rt_sigpending - examine a pending signal that has been raised
3087   *			while blocked
3088   *  @uset: stores pending signals
3089   *  @sigsetsize: size of sigset_t type or larger
3090   */
3091  SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3092  {
3093  	sigset_t set;
3094  
3095  	if (sigsetsize > sizeof(*uset))
3096  		return -EINVAL;
3097  
3098  	do_sigpending(&set);
3099  
3100  	if (copy_to_user(uset, &set, sigsetsize))
3101  		return -EFAULT;
3102  
3103  	return 0;
3104  }
3105  
3106  #ifdef CONFIG_COMPAT
3107  COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3108  		compat_size_t, sigsetsize)
3109  {
3110  	sigset_t set;
3111  
3112  	if (sigsetsize > sizeof(*uset))
3113  		return -EINVAL;
3114  
3115  	do_sigpending(&set);
3116  
3117  	return put_compat_sigset(uset, &set, sigsetsize);
3118  }
3119  #endif
3120  
3121  static const struct {
3122  	unsigned char limit, layout;
3123  } sig_sicodes[] = {
3124  	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3125  	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3126  	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3127  	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3128  	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3129  #if defined(SIGEMT)
3130  	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3131  #endif
3132  	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3133  	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3134  	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3135  };
3136  
3137  static bool known_siginfo_layout(unsigned sig, int si_code)
3138  {
3139  	if (si_code == SI_KERNEL)
3140  		return true;
3141  	else if ((si_code > SI_USER)) {
3142  		if (sig_specific_sicodes(sig)) {
3143  			if (si_code <= sig_sicodes[sig].limit)
3144  				return true;
3145  		}
3146  		else if (si_code <= NSIGPOLL)
3147  			return true;
3148  	}
3149  	else if (si_code >= SI_DETHREAD)
3150  		return true;
3151  	else if (si_code == SI_ASYNCNL)
3152  		return true;
3153  	return false;
3154  }
3155  
3156  enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3157  {
3158  	enum siginfo_layout layout = SIL_KILL;
3159  	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3160  		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3161  		    (si_code <= sig_sicodes[sig].limit)) {
3162  			layout = sig_sicodes[sig].layout;
3163  			/* Handle the exceptions */
3164  			if ((sig == SIGBUS) &&
3165  			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3166  				layout = SIL_FAULT_MCEERR;
3167  			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3168  				layout = SIL_FAULT_BNDERR;
3169  #ifdef SEGV_PKUERR
3170  			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3171  				layout = SIL_FAULT_PKUERR;
3172  #endif
3173  		}
3174  		else if (si_code <= NSIGPOLL)
3175  			layout = SIL_POLL;
3176  	} else {
3177  		if (si_code == SI_TIMER)
3178  			layout = SIL_TIMER;
3179  		else if (si_code == SI_SIGIO)
3180  			layout = SIL_POLL;
3181  		else if (si_code < 0)
3182  			layout = SIL_RT;
3183  	}
3184  	return layout;
3185  }
3186  
3187  static inline char __user *si_expansion(const siginfo_t __user *info)
3188  {
3189  	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3190  }
3191  
3192  int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3193  {
3194  	char __user *expansion = si_expansion(to);
3195  	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3196  		return -EFAULT;
3197  	if (clear_user(expansion, SI_EXPANSION_SIZE))
3198  		return -EFAULT;
3199  	return 0;
3200  }
3201  
3202  static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3203  				       const siginfo_t __user *from)
3204  {
3205  	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3206  		char __user *expansion = si_expansion(from);
3207  		char buf[SI_EXPANSION_SIZE];
3208  		int i;
3209  		/*
3210  		 * An unknown si_code might need more than
3211  		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3212  		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3213  		 * will return this data to userspace exactly.
3214  		 */
3215  		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3216  			return -EFAULT;
3217  		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3218  			if (buf[i] != 0)
3219  				return -E2BIG;
3220  		}
3221  	}
3222  	return 0;
3223  }
3224  
3225  static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3226  				    const siginfo_t __user *from)
3227  {
3228  	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3229  		return -EFAULT;
3230  	to->si_signo = signo;
3231  	return post_copy_siginfo_from_user(to, from);
3232  }
3233  
3234  int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3235  {
3236  	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3237  		return -EFAULT;
3238  	return post_copy_siginfo_from_user(to, from);
3239  }
3240  
3241  #ifdef CONFIG_COMPAT
3242  /**
3243   * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3244   * @to: compat siginfo destination
3245   * @from: kernel siginfo source
3246   *
3247   * Note: This function does not work properly for the SIGCHLD on x32, but
3248   * fortunately it doesn't have to.  The only valid callers for this function are
3249   * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3250   * The latter does not care because SIGCHLD will never cause a coredump.
3251   */
3252  void copy_siginfo_to_external32(struct compat_siginfo *to,
3253  		const struct kernel_siginfo *from)
3254  {
3255  	memset(to, 0, sizeof(*to));
3256  
3257  	to->si_signo = from->si_signo;
3258  	to->si_errno = from->si_errno;
3259  	to->si_code  = from->si_code;
3260  	switch(siginfo_layout(from->si_signo, from->si_code)) {
3261  	case SIL_KILL:
3262  		to->si_pid = from->si_pid;
3263  		to->si_uid = from->si_uid;
3264  		break;
3265  	case SIL_TIMER:
3266  		to->si_tid     = from->si_tid;
3267  		to->si_overrun = from->si_overrun;
3268  		to->si_int     = from->si_int;
3269  		break;
3270  	case SIL_POLL:
3271  		to->si_band = from->si_band;
3272  		to->si_fd   = from->si_fd;
3273  		break;
3274  	case SIL_FAULT:
3275  		to->si_addr = ptr_to_compat(from->si_addr);
3276  #ifdef __ARCH_SI_TRAPNO
3277  		to->si_trapno = from->si_trapno;
3278  #endif
3279  		break;
3280  	case SIL_FAULT_MCEERR:
3281  		to->si_addr = ptr_to_compat(from->si_addr);
3282  #ifdef __ARCH_SI_TRAPNO
3283  		to->si_trapno = from->si_trapno;
3284  #endif
3285  		to->si_addr_lsb = from->si_addr_lsb;
3286  		break;
3287  	case SIL_FAULT_BNDERR:
3288  		to->si_addr = ptr_to_compat(from->si_addr);
3289  #ifdef __ARCH_SI_TRAPNO
3290  		to->si_trapno = from->si_trapno;
3291  #endif
3292  		to->si_lower = ptr_to_compat(from->si_lower);
3293  		to->si_upper = ptr_to_compat(from->si_upper);
3294  		break;
3295  	case SIL_FAULT_PKUERR:
3296  		to->si_addr = ptr_to_compat(from->si_addr);
3297  #ifdef __ARCH_SI_TRAPNO
3298  		to->si_trapno = from->si_trapno;
3299  #endif
3300  		to->si_pkey = from->si_pkey;
3301  		break;
3302  	case SIL_CHLD:
3303  		to->si_pid = from->si_pid;
3304  		to->si_uid = from->si_uid;
3305  		to->si_status = from->si_status;
3306  		to->si_utime = from->si_utime;
3307  		to->si_stime = from->si_stime;
3308  		break;
3309  	case SIL_RT:
3310  		to->si_pid = from->si_pid;
3311  		to->si_uid = from->si_uid;
3312  		to->si_int = from->si_int;
3313  		break;
3314  	case SIL_SYS:
3315  		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3316  		to->si_syscall   = from->si_syscall;
3317  		to->si_arch      = from->si_arch;
3318  		break;
3319  	}
3320  }
3321  
3322  int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3323  			   const struct kernel_siginfo *from)
3324  {
3325  	struct compat_siginfo new;
3326  
3327  	copy_siginfo_to_external32(&new, from);
3328  	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3329  		return -EFAULT;
3330  	return 0;
3331  }
3332  
3333  static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3334  					 const struct compat_siginfo *from)
3335  {
3336  	clear_siginfo(to);
3337  	to->si_signo = from->si_signo;
3338  	to->si_errno = from->si_errno;
3339  	to->si_code  = from->si_code;
3340  	switch(siginfo_layout(from->si_signo, from->si_code)) {
3341  	case SIL_KILL:
3342  		to->si_pid = from->si_pid;
3343  		to->si_uid = from->si_uid;
3344  		break;
3345  	case SIL_TIMER:
3346  		to->si_tid     = from->si_tid;
3347  		to->si_overrun = from->si_overrun;
3348  		to->si_int     = from->si_int;
3349  		break;
3350  	case SIL_POLL:
3351  		to->si_band = from->si_band;
3352  		to->si_fd   = from->si_fd;
3353  		break;
3354  	case SIL_FAULT:
3355  		to->si_addr = compat_ptr(from->si_addr);
3356  #ifdef __ARCH_SI_TRAPNO
3357  		to->si_trapno = from->si_trapno;
3358  #endif
3359  		break;
3360  	case SIL_FAULT_MCEERR:
3361  		to->si_addr = compat_ptr(from->si_addr);
3362  #ifdef __ARCH_SI_TRAPNO
3363  		to->si_trapno = from->si_trapno;
3364  #endif
3365  		to->si_addr_lsb = from->si_addr_lsb;
3366  		break;
3367  	case SIL_FAULT_BNDERR:
3368  		to->si_addr = compat_ptr(from->si_addr);
3369  #ifdef __ARCH_SI_TRAPNO
3370  		to->si_trapno = from->si_trapno;
3371  #endif
3372  		to->si_lower = compat_ptr(from->si_lower);
3373  		to->si_upper = compat_ptr(from->si_upper);
3374  		break;
3375  	case SIL_FAULT_PKUERR:
3376  		to->si_addr = compat_ptr(from->si_addr);
3377  #ifdef __ARCH_SI_TRAPNO
3378  		to->si_trapno = from->si_trapno;
3379  #endif
3380  		to->si_pkey = from->si_pkey;
3381  		break;
3382  	case SIL_CHLD:
3383  		to->si_pid    = from->si_pid;
3384  		to->si_uid    = from->si_uid;
3385  		to->si_status = from->si_status;
3386  #ifdef CONFIG_X86_X32_ABI
3387  		if (in_x32_syscall()) {
3388  			to->si_utime = from->_sifields._sigchld_x32._utime;
3389  			to->si_stime = from->_sifields._sigchld_x32._stime;
3390  		} else
3391  #endif
3392  		{
3393  			to->si_utime = from->si_utime;
3394  			to->si_stime = from->si_stime;
3395  		}
3396  		break;
3397  	case SIL_RT:
3398  		to->si_pid = from->si_pid;
3399  		to->si_uid = from->si_uid;
3400  		to->si_int = from->si_int;
3401  		break;
3402  	case SIL_SYS:
3403  		to->si_call_addr = compat_ptr(from->si_call_addr);
3404  		to->si_syscall   = from->si_syscall;
3405  		to->si_arch      = from->si_arch;
3406  		break;
3407  	}
3408  	return 0;
3409  }
3410  
3411  static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3412  				      const struct compat_siginfo __user *ufrom)
3413  {
3414  	struct compat_siginfo from;
3415  
3416  	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3417  		return -EFAULT;
3418  
3419  	from.si_signo = signo;
3420  	return post_copy_siginfo_from_user32(to, &from);
3421  }
3422  
3423  int copy_siginfo_from_user32(struct kernel_siginfo *to,
3424  			     const struct compat_siginfo __user *ufrom)
3425  {
3426  	struct compat_siginfo from;
3427  
3428  	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3429  		return -EFAULT;
3430  
3431  	return post_copy_siginfo_from_user32(to, &from);
3432  }
3433  #endif /* CONFIG_COMPAT */
3434  
3435  /**
3436   *  do_sigtimedwait - wait for queued signals specified in @which
3437   *  @which: queued signals to wait for
3438   *  @info: if non-null, the signal's siginfo is returned here
3439   *  @ts: upper bound on process time suspension
3440   */
3441  static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3442  		    const struct timespec64 *ts)
3443  {
3444  	ktime_t *to = NULL, timeout = KTIME_MAX;
3445  	struct task_struct *tsk = current;
3446  	sigset_t mask = *which;
3447  	int sig, ret = 0;
3448  
3449  	if (ts) {
3450  		if (!timespec64_valid(ts))
3451  			return -EINVAL;
3452  		timeout = timespec64_to_ktime(*ts);
3453  		to = &timeout;
3454  	}
3455  
3456  	/*
3457  	 * Invert the set of allowed signals to get those we want to block.
3458  	 */
3459  	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3460  	signotset(&mask);
3461  
3462  	spin_lock_irq(&tsk->sighand->siglock);
3463  	sig = dequeue_signal(tsk, &mask, info);
3464  	if (!sig && timeout) {
3465  		/*
3466  		 * None ready, temporarily unblock those we're interested
3467  		 * while we are sleeping in so that we'll be awakened when
3468  		 * they arrive. Unblocking is always fine, we can avoid
3469  		 * set_current_blocked().
3470  		 */
3471  		tsk->real_blocked = tsk->blocked;
3472  		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3473  		recalc_sigpending();
3474  		spin_unlock_irq(&tsk->sighand->siglock);
3475  
3476  		__set_current_state(TASK_INTERRUPTIBLE);
3477  		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3478  							 HRTIMER_MODE_REL);
3479  		spin_lock_irq(&tsk->sighand->siglock);
3480  		__set_task_blocked(tsk, &tsk->real_blocked);
3481  		sigemptyset(&tsk->real_blocked);
3482  		sig = dequeue_signal(tsk, &mask, info);
3483  	}
3484  	spin_unlock_irq(&tsk->sighand->siglock);
3485  
3486  	if (sig)
3487  		return sig;
3488  	return ret ? -EINTR : -EAGAIN;
3489  }
3490  
3491  /**
3492   *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3493   *			in @uthese
3494   *  @uthese: queued signals to wait for
3495   *  @uinfo: if non-null, the signal's siginfo is returned here
3496   *  @uts: upper bound on process time suspension
3497   *  @sigsetsize: size of sigset_t type
3498   */
3499  SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3500  		siginfo_t __user *, uinfo,
3501  		const struct __kernel_timespec __user *, uts,
3502  		size_t, sigsetsize)
3503  {
3504  	sigset_t these;
3505  	struct timespec64 ts;
3506  	kernel_siginfo_t info;
3507  	int ret;
3508  
3509  	/* XXX: Don't preclude handling different sized sigset_t's.  */
3510  	if (sigsetsize != sizeof(sigset_t))
3511  		return -EINVAL;
3512  
3513  	if (copy_from_user(&these, uthese, sizeof(these)))
3514  		return -EFAULT;
3515  
3516  	if (uts) {
3517  		if (get_timespec64(&ts, uts))
3518  			return -EFAULT;
3519  	}
3520  
3521  	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3522  
3523  	if (ret > 0 && uinfo) {
3524  		if (copy_siginfo_to_user(uinfo, &info))
3525  			ret = -EFAULT;
3526  	}
3527  
3528  	return ret;
3529  }
3530  
3531  #ifdef CONFIG_COMPAT_32BIT_TIME
3532  SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3533  		siginfo_t __user *, uinfo,
3534  		const struct old_timespec32 __user *, uts,
3535  		size_t, sigsetsize)
3536  {
3537  	sigset_t these;
3538  	struct timespec64 ts;
3539  	kernel_siginfo_t info;
3540  	int ret;
3541  
3542  	if (sigsetsize != sizeof(sigset_t))
3543  		return -EINVAL;
3544  
3545  	if (copy_from_user(&these, uthese, sizeof(these)))
3546  		return -EFAULT;
3547  
3548  	if (uts) {
3549  		if (get_old_timespec32(&ts, uts))
3550  			return -EFAULT;
3551  	}
3552  
3553  	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3554  
3555  	if (ret > 0 && uinfo) {
3556  		if (copy_siginfo_to_user(uinfo, &info))
3557  			ret = -EFAULT;
3558  	}
3559  
3560  	return ret;
3561  }
3562  #endif
3563  
3564  #ifdef CONFIG_COMPAT
3565  COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3566  		struct compat_siginfo __user *, uinfo,
3567  		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3568  {
3569  	sigset_t s;
3570  	struct timespec64 t;
3571  	kernel_siginfo_t info;
3572  	long ret;
3573  
3574  	if (sigsetsize != sizeof(sigset_t))
3575  		return -EINVAL;
3576  
3577  	if (get_compat_sigset(&s, uthese))
3578  		return -EFAULT;
3579  
3580  	if (uts) {
3581  		if (get_timespec64(&t, uts))
3582  			return -EFAULT;
3583  	}
3584  
3585  	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3586  
3587  	if (ret > 0 && uinfo) {
3588  		if (copy_siginfo_to_user32(uinfo, &info))
3589  			ret = -EFAULT;
3590  	}
3591  
3592  	return ret;
3593  }
3594  
3595  #ifdef CONFIG_COMPAT_32BIT_TIME
3596  COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3597  		struct compat_siginfo __user *, uinfo,
3598  		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3599  {
3600  	sigset_t s;
3601  	struct timespec64 t;
3602  	kernel_siginfo_t info;
3603  	long ret;
3604  
3605  	if (sigsetsize != sizeof(sigset_t))
3606  		return -EINVAL;
3607  
3608  	if (get_compat_sigset(&s, uthese))
3609  		return -EFAULT;
3610  
3611  	if (uts) {
3612  		if (get_old_timespec32(&t, uts))
3613  			return -EFAULT;
3614  	}
3615  
3616  	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3617  
3618  	if (ret > 0 && uinfo) {
3619  		if (copy_siginfo_to_user32(uinfo, &info))
3620  			ret = -EFAULT;
3621  	}
3622  
3623  	return ret;
3624  }
3625  #endif
3626  #endif
3627  
3628  static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3629  {
3630  	clear_siginfo(info);
3631  	info->si_signo = sig;
3632  	info->si_errno = 0;
3633  	info->si_code = SI_USER;
3634  	info->si_pid = task_tgid_vnr(current);
3635  	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3636  }
3637  
3638  /**
3639   *  sys_kill - send a signal to a process
3640   *  @pid: the PID of the process
3641   *  @sig: signal to be sent
3642   */
3643  SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3644  {
3645  	struct kernel_siginfo info;
3646  
3647  	prepare_kill_siginfo(sig, &info);
3648  
3649  	return kill_something_info(sig, &info, pid);
3650  }
3651  
3652  /*
3653   * Verify that the signaler and signalee either are in the same pid namespace
3654   * or that the signaler's pid namespace is an ancestor of the signalee's pid
3655   * namespace.
3656   */
3657  static bool access_pidfd_pidns(struct pid *pid)
3658  {
3659  	struct pid_namespace *active = task_active_pid_ns(current);
3660  	struct pid_namespace *p = ns_of_pid(pid);
3661  
3662  	for (;;) {
3663  		if (!p)
3664  			return false;
3665  		if (p == active)
3666  			break;
3667  		p = p->parent;
3668  	}
3669  
3670  	return true;
3671  }
3672  
3673  static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info)
3674  {
3675  #ifdef CONFIG_COMPAT
3676  	/*
3677  	 * Avoid hooking up compat syscalls and instead handle necessary
3678  	 * conversions here. Note, this is a stop-gap measure and should not be
3679  	 * considered a generic solution.
3680  	 */
3681  	if (in_compat_syscall())
3682  		return copy_siginfo_from_user32(
3683  			kinfo, (struct compat_siginfo __user *)info);
3684  #endif
3685  	return copy_siginfo_from_user(kinfo, info);
3686  }
3687  
3688  static struct pid *pidfd_to_pid(const struct file *file)
3689  {
3690  	struct pid *pid;
3691  
3692  	pid = pidfd_pid(file);
3693  	if (!IS_ERR(pid))
3694  		return pid;
3695  
3696  	return tgid_pidfd_to_pid(file);
3697  }
3698  
3699  /**
3700   * sys_pidfd_send_signal - Signal a process through a pidfd
3701   * @pidfd:  file descriptor of the process
3702   * @sig:    signal to send
3703   * @info:   signal info
3704   * @flags:  future flags
3705   *
3706   * The syscall currently only signals via PIDTYPE_PID which covers
3707   * kill(<positive-pid>, <signal>. It does not signal threads or process
3708   * groups.
3709   * In order to extend the syscall to threads and process groups the @flags
3710   * argument should be used. In essence, the @flags argument will determine
3711   * what is signaled and not the file descriptor itself. Put in other words,
3712   * grouping is a property of the flags argument not a property of the file
3713   * descriptor.
3714   *
3715   * Return: 0 on success, negative errno on failure
3716   */
3717  SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3718  		siginfo_t __user *, info, unsigned int, flags)
3719  {
3720  	int ret;
3721  	struct fd f;
3722  	struct pid *pid;
3723  	kernel_siginfo_t kinfo;
3724  
3725  	/* Enforce flags be set to 0 until we add an extension. */
3726  	if (flags)
3727  		return -EINVAL;
3728  
3729  	f = fdget(pidfd);
3730  	if (!f.file)
3731  		return -EBADF;
3732  
3733  	/* Is this a pidfd? */
3734  	pid = pidfd_to_pid(f.file);
3735  	if (IS_ERR(pid)) {
3736  		ret = PTR_ERR(pid);
3737  		goto err;
3738  	}
3739  
3740  	ret = -EINVAL;
3741  	if (!access_pidfd_pidns(pid))
3742  		goto err;
3743  
3744  	if (info) {
3745  		ret = copy_siginfo_from_user_any(&kinfo, info);
3746  		if (unlikely(ret))
3747  			goto err;
3748  
3749  		ret = -EINVAL;
3750  		if (unlikely(sig != kinfo.si_signo))
3751  			goto err;
3752  
3753  		/* Only allow sending arbitrary signals to yourself. */
3754  		ret = -EPERM;
3755  		if ((task_pid(current) != pid) &&
3756  		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3757  			goto err;
3758  	} else {
3759  		prepare_kill_siginfo(sig, &kinfo);
3760  	}
3761  
3762  	ret = kill_pid_info(sig, &kinfo, pid);
3763  
3764  err:
3765  	fdput(f);
3766  	return ret;
3767  }
3768  
3769  static int
3770  do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3771  {
3772  	struct task_struct *p;
3773  	int error = -ESRCH;
3774  
3775  	rcu_read_lock();
3776  	p = find_task_by_vpid(pid);
3777  	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3778  		error = check_kill_permission(sig, info, p);
3779  		/*
3780  		 * The null signal is a permissions and process existence
3781  		 * probe.  No signal is actually delivered.
3782  		 */
3783  		if (!error && sig) {
3784  			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3785  			/*
3786  			 * If lock_task_sighand() failed we pretend the task
3787  			 * dies after receiving the signal. The window is tiny,
3788  			 * and the signal is private anyway.
3789  			 */
3790  			if (unlikely(error == -ESRCH))
3791  				error = 0;
3792  		}
3793  	}
3794  	rcu_read_unlock();
3795  
3796  	return error;
3797  }
3798  
3799  static int do_tkill(pid_t tgid, pid_t pid, int sig)
3800  {
3801  	struct kernel_siginfo info;
3802  
3803  	clear_siginfo(&info);
3804  	info.si_signo = sig;
3805  	info.si_errno = 0;
3806  	info.si_code = SI_TKILL;
3807  	info.si_pid = task_tgid_vnr(current);
3808  	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3809  
3810  	return do_send_specific(tgid, pid, sig, &info);
3811  }
3812  
3813  /**
3814   *  sys_tgkill - send signal to one specific thread
3815   *  @tgid: the thread group ID of the thread
3816   *  @pid: the PID of the thread
3817   *  @sig: signal to be sent
3818   *
3819   *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3820   *  exists but it's not belonging to the target process anymore. This
3821   *  method solves the problem of threads exiting and PIDs getting reused.
3822   */
3823  SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3824  {
3825  	/* This is only valid for single tasks */
3826  	if (pid <= 0 || tgid <= 0)
3827  		return -EINVAL;
3828  
3829  	return do_tkill(tgid, pid, sig);
3830  }
3831  
3832  /**
3833   *  sys_tkill - send signal to one specific task
3834   *  @pid: the PID of the task
3835   *  @sig: signal to be sent
3836   *
3837   *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3838   */
3839  SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3840  {
3841  	/* This is only valid for single tasks */
3842  	if (pid <= 0)
3843  		return -EINVAL;
3844  
3845  	return do_tkill(0, pid, sig);
3846  }
3847  
3848  static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3849  {
3850  	/* Not even root can pretend to send signals from the kernel.
3851  	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3852  	 */
3853  	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3854  	    (task_pid_vnr(current) != pid))
3855  		return -EPERM;
3856  
3857  	/* POSIX.1b doesn't mention process groups.  */
3858  	return kill_proc_info(sig, info, pid);
3859  }
3860  
3861  /**
3862   *  sys_rt_sigqueueinfo - send signal information to a signal
3863   *  @pid: the PID of the thread
3864   *  @sig: signal to be sent
3865   *  @uinfo: signal info to be sent
3866   */
3867  SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3868  		siginfo_t __user *, uinfo)
3869  {
3870  	kernel_siginfo_t info;
3871  	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3872  	if (unlikely(ret))
3873  		return ret;
3874  	return do_rt_sigqueueinfo(pid, sig, &info);
3875  }
3876  
3877  #ifdef CONFIG_COMPAT
3878  COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3879  			compat_pid_t, pid,
3880  			int, sig,
3881  			struct compat_siginfo __user *, uinfo)
3882  {
3883  	kernel_siginfo_t info;
3884  	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3885  	if (unlikely(ret))
3886  		return ret;
3887  	return do_rt_sigqueueinfo(pid, sig, &info);
3888  }
3889  #endif
3890  
3891  static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3892  {
3893  	/* This is only valid for single tasks */
3894  	if (pid <= 0 || tgid <= 0)
3895  		return -EINVAL;
3896  
3897  	/* Not even root can pretend to send signals from the kernel.
3898  	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3899  	 */
3900  	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3901  	    (task_pid_vnr(current) != pid))
3902  		return -EPERM;
3903  
3904  	return do_send_specific(tgid, pid, sig, info);
3905  }
3906  
3907  SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3908  		siginfo_t __user *, uinfo)
3909  {
3910  	kernel_siginfo_t info;
3911  	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3912  	if (unlikely(ret))
3913  		return ret;
3914  	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3915  }
3916  
3917  #ifdef CONFIG_COMPAT
3918  COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3919  			compat_pid_t, tgid,
3920  			compat_pid_t, pid,
3921  			int, sig,
3922  			struct compat_siginfo __user *, uinfo)
3923  {
3924  	kernel_siginfo_t info;
3925  	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3926  	if (unlikely(ret))
3927  		return ret;
3928  	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3929  }
3930  #endif
3931  
3932  /*
3933   * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3934   */
3935  void kernel_sigaction(int sig, __sighandler_t action)
3936  {
3937  	spin_lock_irq(&current->sighand->siglock);
3938  	current->sighand->action[sig - 1].sa.sa_handler = action;
3939  	if (action == SIG_IGN) {
3940  		sigset_t mask;
3941  
3942  		sigemptyset(&mask);
3943  		sigaddset(&mask, sig);
3944  
3945  		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3946  		flush_sigqueue_mask(&mask, &current->pending);
3947  		recalc_sigpending();
3948  	}
3949  	spin_unlock_irq(&current->sighand->siglock);
3950  }
3951  EXPORT_SYMBOL(kernel_sigaction);
3952  
3953  void __weak sigaction_compat_abi(struct k_sigaction *act,
3954  		struct k_sigaction *oact)
3955  {
3956  }
3957  
3958  int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3959  {
3960  	struct task_struct *p = current, *t;
3961  	struct k_sigaction *k;
3962  	sigset_t mask;
3963  
3964  	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3965  		return -EINVAL;
3966  
3967  	k = &p->sighand->action[sig-1];
3968  
3969  	spin_lock_irq(&p->sighand->siglock);
3970  	if (oact)
3971  		*oact = *k;
3972  
3973  	sigaction_compat_abi(act, oact);
3974  
3975  	if (act) {
3976  		sigdelsetmask(&act->sa.sa_mask,
3977  			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3978  		*k = *act;
3979  		/*
3980  		 * POSIX 3.3.1.3:
3981  		 *  "Setting a signal action to SIG_IGN for a signal that is
3982  		 *   pending shall cause the pending signal to be discarded,
3983  		 *   whether or not it is blocked."
3984  		 *
3985  		 *  "Setting a signal action to SIG_DFL for a signal that is
3986  		 *   pending and whose default action is to ignore the signal
3987  		 *   (for example, SIGCHLD), shall cause the pending signal to
3988  		 *   be discarded, whether or not it is blocked"
3989  		 */
3990  		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3991  			sigemptyset(&mask);
3992  			sigaddset(&mask, sig);
3993  			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3994  			for_each_thread(p, t)
3995  				flush_sigqueue_mask(&mask, &t->pending);
3996  		}
3997  	}
3998  
3999  	spin_unlock_irq(&p->sighand->siglock);
4000  	return 0;
4001  }
4002  
4003  static int
4004  do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4005  		size_t min_ss_size)
4006  {
4007  	struct task_struct *t = current;
4008  
4009  	if (oss) {
4010  		memset(oss, 0, sizeof(stack_t));
4011  		oss->ss_sp = (void __user *) t->sas_ss_sp;
4012  		oss->ss_size = t->sas_ss_size;
4013  		oss->ss_flags = sas_ss_flags(sp) |
4014  			(current->sas_ss_flags & SS_FLAG_BITS);
4015  	}
4016  
4017  	if (ss) {
4018  		void __user *ss_sp = ss->ss_sp;
4019  		size_t ss_size = ss->ss_size;
4020  		unsigned ss_flags = ss->ss_flags;
4021  		int ss_mode;
4022  
4023  		if (unlikely(on_sig_stack(sp)))
4024  			return -EPERM;
4025  
4026  		ss_mode = ss_flags & ~SS_FLAG_BITS;
4027  		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4028  				ss_mode != 0))
4029  			return -EINVAL;
4030  
4031  		if (ss_mode == SS_DISABLE) {
4032  			ss_size = 0;
4033  			ss_sp = NULL;
4034  		} else {
4035  			if (unlikely(ss_size < min_ss_size))
4036  				return -ENOMEM;
4037  		}
4038  
4039  		t->sas_ss_sp = (unsigned long) ss_sp;
4040  		t->sas_ss_size = ss_size;
4041  		t->sas_ss_flags = ss_flags;
4042  	}
4043  	return 0;
4044  }
4045  
4046  SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4047  {
4048  	stack_t new, old;
4049  	int err;
4050  	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4051  		return -EFAULT;
4052  	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4053  			      current_user_stack_pointer(),
4054  			      MINSIGSTKSZ);
4055  	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4056  		err = -EFAULT;
4057  	return err;
4058  }
4059  
4060  int restore_altstack(const stack_t __user *uss)
4061  {
4062  	stack_t new;
4063  	if (copy_from_user(&new, uss, sizeof(stack_t)))
4064  		return -EFAULT;
4065  	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4066  			     MINSIGSTKSZ);
4067  	/* squash all but EFAULT for now */
4068  	return 0;
4069  }
4070  
4071  int __save_altstack(stack_t __user *uss, unsigned long sp)
4072  {
4073  	struct task_struct *t = current;
4074  	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4075  		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4076  		__put_user(t->sas_ss_size, &uss->ss_size);
4077  	if (err)
4078  		return err;
4079  	if (t->sas_ss_flags & SS_AUTODISARM)
4080  		sas_ss_reset(t);
4081  	return 0;
4082  }
4083  
4084  #ifdef CONFIG_COMPAT
4085  static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4086  				 compat_stack_t __user *uoss_ptr)
4087  {
4088  	stack_t uss, uoss;
4089  	int ret;
4090  
4091  	if (uss_ptr) {
4092  		compat_stack_t uss32;
4093  		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4094  			return -EFAULT;
4095  		uss.ss_sp = compat_ptr(uss32.ss_sp);
4096  		uss.ss_flags = uss32.ss_flags;
4097  		uss.ss_size = uss32.ss_size;
4098  	}
4099  	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4100  			     compat_user_stack_pointer(),
4101  			     COMPAT_MINSIGSTKSZ);
4102  	if (ret >= 0 && uoss_ptr)  {
4103  		compat_stack_t old;
4104  		memset(&old, 0, sizeof(old));
4105  		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4106  		old.ss_flags = uoss.ss_flags;
4107  		old.ss_size = uoss.ss_size;
4108  		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4109  			ret = -EFAULT;
4110  	}
4111  	return ret;
4112  }
4113  
4114  COMPAT_SYSCALL_DEFINE2(sigaltstack,
4115  			const compat_stack_t __user *, uss_ptr,
4116  			compat_stack_t __user *, uoss_ptr)
4117  {
4118  	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4119  }
4120  
4121  int compat_restore_altstack(const compat_stack_t __user *uss)
4122  {
4123  	int err = do_compat_sigaltstack(uss, NULL);
4124  	/* squash all but -EFAULT for now */
4125  	return err == -EFAULT ? err : 0;
4126  }
4127  
4128  int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4129  {
4130  	int err;
4131  	struct task_struct *t = current;
4132  	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4133  			 &uss->ss_sp) |
4134  		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4135  		__put_user(t->sas_ss_size, &uss->ss_size);
4136  	if (err)
4137  		return err;
4138  	if (t->sas_ss_flags & SS_AUTODISARM)
4139  		sas_ss_reset(t);
4140  	return 0;
4141  }
4142  #endif
4143  
4144  #ifdef __ARCH_WANT_SYS_SIGPENDING
4145  
4146  /**
4147   *  sys_sigpending - examine pending signals
4148   *  @uset: where mask of pending signal is returned
4149   */
4150  SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4151  {
4152  	sigset_t set;
4153  
4154  	if (sizeof(old_sigset_t) > sizeof(*uset))
4155  		return -EINVAL;
4156  
4157  	do_sigpending(&set);
4158  
4159  	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4160  		return -EFAULT;
4161  
4162  	return 0;
4163  }
4164  
4165  #ifdef CONFIG_COMPAT
4166  COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4167  {
4168  	sigset_t set;
4169  
4170  	do_sigpending(&set);
4171  
4172  	return put_user(set.sig[0], set32);
4173  }
4174  #endif
4175  
4176  #endif
4177  
4178  #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4179  /**
4180   *  sys_sigprocmask - examine and change blocked signals
4181   *  @how: whether to add, remove, or set signals
4182   *  @nset: signals to add or remove (if non-null)
4183   *  @oset: previous value of signal mask if non-null
4184   *
4185   * Some platforms have their own version with special arguments;
4186   * others support only sys_rt_sigprocmask.
4187   */
4188  
4189  SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4190  		old_sigset_t __user *, oset)
4191  {
4192  	old_sigset_t old_set, new_set;
4193  	sigset_t new_blocked;
4194  
4195  	old_set = current->blocked.sig[0];
4196  
4197  	if (nset) {
4198  		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4199  			return -EFAULT;
4200  
4201  		new_blocked = current->blocked;
4202  
4203  		switch (how) {
4204  		case SIG_BLOCK:
4205  			sigaddsetmask(&new_blocked, new_set);
4206  			break;
4207  		case SIG_UNBLOCK:
4208  			sigdelsetmask(&new_blocked, new_set);
4209  			break;
4210  		case SIG_SETMASK:
4211  			new_blocked.sig[0] = new_set;
4212  			break;
4213  		default:
4214  			return -EINVAL;
4215  		}
4216  
4217  		set_current_blocked(&new_blocked);
4218  	}
4219  
4220  	if (oset) {
4221  		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4222  			return -EFAULT;
4223  	}
4224  
4225  	return 0;
4226  }
4227  #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4228  
4229  #ifndef CONFIG_ODD_RT_SIGACTION
4230  /**
4231   *  sys_rt_sigaction - alter an action taken by a process
4232   *  @sig: signal to be sent
4233   *  @act: new sigaction
4234   *  @oact: used to save the previous sigaction
4235   *  @sigsetsize: size of sigset_t type
4236   */
4237  SYSCALL_DEFINE4(rt_sigaction, int, sig,
4238  		const struct sigaction __user *, act,
4239  		struct sigaction __user *, oact,
4240  		size_t, sigsetsize)
4241  {
4242  	struct k_sigaction new_sa, old_sa;
4243  	int ret;
4244  
4245  	/* XXX: Don't preclude handling different sized sigset_t's.  */
4246  	if (sigsetsize != sizeof(sigset_t))
4247  		return -EINVAL;
4248  
4249  	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4250  		return -EFAULT;
4251  
4252  	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4253  	if (ret)
4254  		return ret;
4255  
4256  	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4257  		return -EFAULT;
4258  
4259  	return 0;
4260  }
4261  #ifdef CONFIG_COMPAT
4262  COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4263  		const struct compat_sigaction __user *, act,
4264  		struct compat_sigaction __user *, oact,
4265  		compat_size_t, sigsetsize)
4266  {
4267  	struct k_sigaction new_ka, old_ka;
4268  #ifdef __ARCH_HAS_SA_RESTORER
4269  	compat_uptr_t restorer;
4270  #endif
4271  	int ret;
4272  
4273  	/* XXX: Don't preclude handling different sized sigset_t's.  */
4274  	if (sigsetsize != sizeof(compat_sigset_t))
4275  		return -EINVAL;
4276  
4277  	if (act) {
4278  		compat_uptr_t handler;
4279  		ret = get_user(handler, &act->sa_handler);
4280  		new_ka.sa.sa_handler = compat_ptr(handler);
4281  #ifdef __ARCH_HAS_SA_RESTORER
4282  		ret |= get_user(restorer, &act->sa_restorer);
4283  		new_ka.sa.sa_restorer = compat_ptr(restorer);
4284  #endif
4285  		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4286  		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4287  		if (ret)
4288  			return -EFAULT;
4289  	}
4290  
4291  	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4292  	if (!ret && oact) {
4293  		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4294  			       &oact->sa_handler);
4295  		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4296  					 sizeof(oact->sa_mask));
4297  		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4298  #ifdef __ARCH_HAS_SA_RESTORER
4299  		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4300  				&oact->sa_restorer);
4301  #endif
4302  	}
4303  	return ret;
4304  }
4305  #endif
4306  #endif /* !CONFIG_ODD_RT_SIGACTION */
4307  
4308  #ifdef CONFIG_OLD_SIGACTION
4309  SYSCALL_DEFINE3(sigaction, int, sig,
4310  		const struct old_sigaction __user *, act,
4311  	        struct old_sigaction __user *, oact)
4312  {
4313  	struct k_sigaction new_ka, old_ka;
4314  	int ret;
4315  
4316  	if (act) {
4317  		old_sigset_t mask;
4318  		if (!access_ok(act, sizeof(*act)) ||
4319  		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4320  		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4321  		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4322  		    __get_user(mask, &act->sa_mask))
4323  			return -EFAULT;
4324  #ifdef __ARCH_HAS_KA_RESTORER
4325  		new_ka.ka_restorer = NULL;
4326  #endif
4327  		siginitset(&new_ka.sa.sa_mask, mask);
4328  	}
4329  
4330  	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4331  
4332  	if (!ret && oact) {
4333  		if (!access_ok(oact, sizeof(*oact)) ||
4334  		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4335  		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4336  		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4337  		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4338  			return -EFAULT;
4339  	}
4340  
4341  	return ret;
4342  }
4343  #endif
4344  #ifdef CONFIG_COMPAT_OLD_SIGACTION
4345  COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4346  		const struct compat_old_sigaction __user *, act,
4347  	        struct compat_old_sigaction __user *, oact)
4348  {
4349  	struct k_sigaction new_ka, old_ka;
4350  	int ret;
4351  	compat_old_sigset_t mask;
4352  	compat_uptr_t handler, restorer;
4353  
4354  	if (act) {
4355  		if (!access_ok(act, sizeof(*act)) ||
4356  		    __get_user(handler, &act->sa_handler) ||
4357  		    __get_user(restorer, &act->sa_restorer) ||
4358  		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4359  		    __get_user(mask, &act->sa_mask))
4360  			return -EFAULT;
4361  
4362  #ifdef __ARCH_HAS_KA_RESTORER
4363  		new_ka.ka_restorer = NULL;
4364  #endif
4365  		new_ka.sa.sa_handler = compat_ptr(handler);
4366  		new_ka.sa.sa_restorer = compat_ptr(restorer);
4367  		siginitset(&new_ka.sa.sa_mask, mask);
4368  	}
4369  
4370  	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4371  
4372  	if (!ret && oact) {
4373  		if (!access_ok(oact, sizeof(*oact)) ||
4374  		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4375  			       &oact->sa_handler) ||
4376  		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4377  			       &oact->sa_restorer) ||
4378  		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4379  		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4380  			return -EFAULT;
4381  	}
4382  	return ret;
4383  }
4384  #endif
4385  
4386  #ifdef CONFIG_SGETMASK_SYSCALL
4387  
4388  /*
4389   * For backwards compatibility.  Functionality superseded by sigprocmask.
4390   */
4391  SYSCALL_DEFINE0(sgetmask)
4392  {
4393  	/* SMP safe */
4394  	return current->blocked.sig[0];
4395  }
4396  
4397  SYSCALL_DEFINE1(ssetmask, int, newmask)
4398  {
4399  	int old = current->blocked.sig[0];
4400  	sigset_t newset;
4401  
4402  	siginitset(&newset, newmask);
4403  	set_current_blocked(&newset);
4404  
4405  	return old;
4406  }
4407  #endif /* CONFIG_SGETMASK_SYSCALL */
4408  
4409  #ifdef __ARCH_WANT_SYS_SIGNAL
4410  /*
4411   * For backwards compatibility.  Functionality superseded by sigaction.
4412   */
4413  SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4414  {
4415  	struct k_sigaction new_sa, old_sa;
4416  	int ret;
4417  
4418  	new_sa.sa.sa_handler = handler;
4419  	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4420  	sigemptyset(&new_sa.sa.sa_mask);
4421  
4422  	ret = do_sigaction(sig, &new_sa, &old_sa);
4423  
4424  	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4425  }
4426  #endif /* __ARCH_WANT_SYS_SIGNAL */
4427  
4428  #ifdef __ARCH_WANT_SYS_PAUSE
4429  
4430  SYSCALL_DEFINE0(pause)
4431  {
4432  	while (!signal_pending(current)) {
4433  		__set_current_state(TASK_INTERRUPTIBLE);
4434  		schedule();
4435  	}
4436  	return -ERESTARTNOHAND;
4437  }
4438  
4439  #endif
4440  
4441  static int sigsuspend(sigset_t *set)
4442  {
4443  	current->saved_sigmask = current->blocked;
4444  	set_current_blocked(set);
4445  
4446  	while (!signal_pending(current)) {
4447  		__set_current_state(TASK_INTERRUPTIBLE);
4448  		schedule();
4449  	}
4450  	set_restore_sigmask();
4451  	return -ERESTARTNOHAND;
4452  }
4453  
4454  /**
4455   *  sys_rt_sigsuspend - replace the signal mask for a value with the
4456   *	@unewset value until a signal is received
4457   *  @unewset: new signal mask value
4458   *  @sigsetsize: size of sigset_t type
4459   */
4460  SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4461  {
4462  	sigset_t newset;
4463  
4464  	/* XXX: Don't preclude handling different sized sigset_t's.  */
4465  	if (sigsetsize != sizeof(sigset_t))
4466  		return -EINVAL;
4467  
4468  	if (copy_from_user(&newset, unewset, sizeof(newset)))
4469  		return -EFAULT;
4470  	return sigsuspend(&newset);
4471  }
4472  
4473  #ifdef CONFIG_COMPAT
4474  COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4475  {
4476  	sigset_t newset;
4477  
4478  	/* XXX: Don't preclude handling different sized sigset_t's.  */
4479  	if (sigsetsize != sizeof(sigset_t))
4480  		return -EINVAL;
4481  
4482  	if (get_compat_sigset(&newset, unewset))
4483  		return -EFAULT;
4484  	return sigsuspend(&newset);
4485  }
4486  #endif
4487  
4488  #ifdef CONFIG_OLD_SIGSUSPEND
4489  SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4490  {
4491  	sigset_t blocked;
4492  	siginitset(&blocked, mask);
4493  	return sigsuspend(&blocked);
4494  }
4495  #endif
4496  #ifdef CONFIG_OLD_SIGSUSPEND3
4497  SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4498  {
4499  	sigset_t blocked;
4500  	siginitset(&blocked, mask);
4501  	return sigsuspend(&blocked);
4502  }
4503  #endif
4504  
4505  __weak const char *arch_vma_name(struct vm_area_struct *vma)
4506  {
4507  	return NULL;
4508  }
4509  
4510  static inline void siginfo_buildtime_checks(void)
4511  {
4512  	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4513  
4514  	/* Verify the offsets in the two siginfos match */
4515  #define CHECK_OFFSET(field) \
4516  	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4517  
4518  	/* kill */
4519  	CHECK_OFFSET(si_pid);
4520  	CHECK_OFFSET(si_uid);
4521  
4522  	/* timer */
4523  	CHECK_OFFSET(si_tid);
4524  	CHECK_OFFSET(si_overrun);
4525  	CHECK_OFFSET(si_value);
4526  
4527  	/* rt */
4528  	CHECK_OFFSET(si_pid);
4529  	CHECK_OFFSET(si_uid);
4530  	CHECK_OFFSET(si_value);
4531  
4532  	/* sigchld */
4533  	CHECK_OFFSET(si_pid);
4534  	CHECK_OFFSET(si_uid);
4535  	CHECK_OFFSET(si_status);
4536  	CHECK_OFFSET(si_utime);
4537  	CHECK_OFFSET(si_stime);
4538  
4539  	/* sigfault */
4540  	CHECK_OFFSET(si_addr);
4541  	CHECK_OFFSET(si_addr_lsb);
4542  	CHECK_OFFSET(si_lower);
4543  	CHECK_OFFSET(si_upper);
4544  	CHECK_OFFSET(si_pkey);
4545  
4546  	/* sigpoll */
4547  	CHECK_OFFSET(si_band);
4548  	CHECK_OFFSET(si_fd);
4549  
4550  	/* sigsys */
4551  	CHECK_OFFSET(si_call_addr);
4552  	CHECK_OFFSET(si_syscall);
4553  	CHECK_OFFSET(si_arch);
4554  #undef CHECK_OFFSET
4555  
4556  	/* usb asyncio */
4557  	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4558  		     offsetof(struct siginfo, si_addr));
4559  	if (sizeof(int) == sizeof(void __user *)) {
4560  		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4561  			     sizeof(void __user *));
4562  	} else {
4563  		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4564  			      sizeof_field(struct siginfo, si_uid)) !=
4565  			     sizeof(void __user *));
4566  		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4567  			     offsetof(struct siginfo, si_uid));
4568  	}
4569  #ifdef CONFIG_COMPAT
4570  	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4571  		     offsetof(struct compat_siginfo, si_addr));
4572  	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4573  		     sizeof(compat_uptr_t));
4574  	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4575  		     sizeof_field(struct siginfo, si_pid));
4576  #endif
4577  }
4578  
4579  void __init signals_init(void)
4580  {
4581  	siginfo_buildtime_checks();
4582  
4583  	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4584  }
4585  
4586  #ifdef CONFIG_KGDB_KDB
4587  #include <linux/kdb.h>
4588  /*
4589   * kdb_send_sig - Allows kdb to send signals without exposing
4590   * signal internals.  This function checks if the required locks are
4591   * available before calling the main signal code, to avoid kdb
4592   * deadlocks.
4593   */
4594  void kdb_send_sig(struct task_struct *t, int sig)
4595  {
4596  	static struct task_struct *kdb_prev_t;
4597  	int new_t, ret;
4598  	if (!spin_trylock(&t->sighand->siglock)) {
4599  		kdb_printf("Can't do kill command now.\n"
4600  			   "The sigmask lock is held somewhere else in "
4601  			   "kernel, try again later\n");
4602  		return;
4603  	}
4604  	new_t = kdb_prev_t != t;
4605  	kdb_prev_t = t;
4606  	if (t->state != TASK_RUNNING && new_t) {
4607  		spin_unlock(&t->sighand->siglock);
4608  		kdb_printf("Process is not RUNNING, sending a signal from "
4609  			   "kdb risks deadlock\n"
4610  			   "on the run queue locks. "
4611  			   "The signal has _not_ been sent.\n"
4612  			   "Reissue the kill command if you want to risk "
4613  			   "the deadlock.\n");
4614  		return;
4615  	}
4616  	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4617  	spin_unlock(&t->sighand->siglock);
4618  	if (ret)
4619  		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4620  			   sig, t->pid);
4621  	else
4622  		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4623  }
4624  #endif	/* CONFIG_KGDB_KDB */
4625