1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/export.h> 15 #include <linux/init.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/tty.h> 19 #include <linux/binfmts.h> 20 #include <linux/coredump.h> 21 #include <linux/security.h> 22 #include <linux/syscalls.h> 23 #include <linux/ptrace.h> 24 #include <linux/signal.h> 25 #include <linux/signalfd.h> 26 #include <linux/ratelimit.h> 27 #include <linux/tracehook.h> 28 #include <linux/capability.h> 29 #include <linux/freezer.h> 30 #include <linux/pid_namespace.h> 31 #include <linux/nsproxy.h> 32 #include <linux/user_namespace.h> 33 #include <linux/uprobes.h> 34 #include <linux/compat.h> 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/signal.h> 37 38 #include <asm/param.h> 39 #include <asm/uaccess.h> 40 #include <asm/unistd.h> 41 #include <asm/siginfo.h> 42 #include <asm/cacheflush.h> 43 #include "audit.h" /* audit_signal_info() */ 44 45 /* 46 * SLAB caches for signal bits. 47 */ 48 49 static struct kmem_cache *sigqueue_cachep; 50 51 int print_fatal_signals __read_mostly; 52 53 static void __user *sig_handler(struct task_struct *t, int sig) 54 { 55 return t->sighand->action[sig - 1].sa.sa_handler; 56 } 57 58 static int sig_handler_ignored(void __user *handler, int sig) 59 { 60 /* Is it explicitly or implicitly ignored? */ 61 return handler == SIG_IGN || 62 (handler == SIG_DFL && sig_kernel_ignore(sig)); 63 } 64 65 static int sig_task_ignored(struct task_struct *t, int sig, bool force) 66 { 67 void __user *handler; 68 69 handler = sig_handler(t, sig); 70 71 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 72 handler == SIG_DFL && !force) 73 return 1; 74 75 return sig_handler_ignored(handler, sig); 76 } 77 78 static int sig_ignored(struct task_struct *t, int sig, bool force) 79 { 80 /* 81 * Blocked signals are never ignored, since the 82 * signal handler may change by the time it is 83 * unblocked. 84 */ 85 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 86 return 0; 87 88 if (!sig_task_ignored(t, sig, force)) 89 return 0; 90 91 /* 92 * Tracers may want to know about even ignored signals. 93 */ 94 return !t->ptrace; 95 } 96 97 /* 98 * Re-calculate pending state from the set of locally pending 99 * signals, globally pending signals, and blocked signals. 100 */ 101 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 102 { 103 unsigned long ready; 104 long i; 105 106 switch (_NSIG_WORDS) { 107 default: 108 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 109 ready |= signal->sig[i] &~ blocked->sig[i]; 110 break; 111 112 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 113 ready |= signal->sig[2] &~ blocked->sig[2]; 114 ready |= signal->sig[1] &~ blocked->sig[1]; 115 ready |= signal->sig[0] &~ blocked->sig[0]; 116 break; 117 118 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 119 ready |= signal->sig[0] &~ blocked->sig[0]; 120 break; 121 122 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 123 } 124 return ready != 0; 125 } 126 127 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 128 129 static int recalc_sigpending_tsk(struct task_struct *t) 130 { 131 if ((t->jobctl & JOBCTL_PENDING_MASK) || 132 PENDING(&t->pending, &t->blocked) || 133 PENDING(&t->signal->shared_pending, &t->blocked)) { 134 set_tsk_thread_flag(t, TIF_SIGPENDING); 135 return 1; 136 } 137 /* 138 * We must never clear the flag in another thread, or in current 139 * when it's possible the current syscall is returning -ERESTART*. 140 * So we don't clear it here, and only callers who know they should do. 141 */ 142 return 0; 143 } 144 145 /* 146 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 147 * This is superfluous when called on current, the wakeup is a harmless no-op. 148 */ 149 void recalc_sigpending_and_wake(struct task_struct *t) 150 { 151 if (recalc_sigpending_tsk(t)) 152 signal_wake_up(t, 0); 153 } 154 155 void recalc_sigpending(void) 156 { 157 if (!recalc_sigpending_tsk(current) && !freezing(current)) 158 clear_thread_flag(TIF_SIGPENDING); 159 160 } 161 162 /* Given the mask, find the first available signal that should be serviced. */ 163 164 #define SYNCHRONOUS_MASK \ 165 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 166 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 167 168 int next_signal(struct sigpending *pending, sigset_t *mask) 169 { 170 unsigned long i, *s, *m, x; 171 int sig = 0; 172 173 s = pending->signal.sig; 174 m = mask->sig; 175 176 /* 177 * Handle the first word specially: it contains the 178 * synchronous signals that need to be dequeued first. 179 */ 180 x = *s &~ *m; 181 if (x) { 182 if (x & SYNCHRONOUS_MASK) 183 x &= SYNCHRONOUS_MASK; 184 sig = ffz(~x) + 1; 185 return sig; 186 } 187 188 switch (_NSIG_WORDS) { 189 default: 190 for (i = 1; i < _NSIG_WORDS; ++i) { 191 x = *++s &~ *++m; 192 if (!x) 193 continue; 194 sig = ffz(~x) + i*_NSIG_BPW + 1; 195 break; 196 } 197 break; 198 199 case 2: 200 x = s[1] &~ m[1]; 201 if (!x) 202 break; 203 sig = ffz(~x) + _NSIG_BPW + 1; 204 break; 205 206 case 1: 207 /* Nothing to do */ 208 break; 209 } 210 211 return sig; 212 } 213 214 static inline void print_dropped_signal(int sig) 215 { 216 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 217 218 if (!print_fatal_signals) 219 return; 220 221 if (!__ratelimit(&ratelimit_state)) 222 return; 223 224 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 225 current->comm, current->pid, sig); 226 } 227 228 /** 229 * task_set_jobctl_pending - set jobctl pending bits 230 * @task: target task 231 * @mask: pending bits to set 232 * 233 * Clear @mask from @task->jobctl. @mask must be subset of 234 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 235 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 236 * cleared. If @task is already being killed or exiting, this function 237 * becomes noop. 238 * 239 * CONTEXT: 240 * Must be called with @task->sighand->siglock held. 241 * 242 * RETURNS: 243 * %true if @mask is set, %false if made noop because @task was dying. 244 */ 245 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask) 246 { 247 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 248 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 249 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 250 251 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 252 return false; 253 254 if (mask & JOBCTL_STOP_SIGMASK) 255 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 256 257 task->jobctl |= mask; 258 return true; 259 } 260 261 /** 262 * task_clear_jobctl_trapping - clear jobctl trapping bit 263 * @task: target task 264 * 265 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 266 * Clear it and wake up the ptracer. Note that we don't need any further 267 * locking. @task->siglock guarantees that @task->parent points to the 268 * ptracer. 269 * 270 * CONTEXT: 271 * Must be called with @task->sighand->siglock held. 272 */ 273 void task_clear_jobctl_trapping(struct task_struct *task) 274 { 275 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 276 task->jobctl &= ~JOBCTL_TRAPPING; 277 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 278 } 279 } 280 281 /** 282 * task_clear_jobctl_pending - clear jobctl pending bits 283 * @task: target task 284 * @mask: pending bits to clear 285 * 286 * Clear @mask from @task->jobctl. @mask must be subset of 287 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 288 * STOP bits are cleared together. 289 * 290 * If clearing of @mask leaves no stop or trap pending, this function calls 291 * task_clear_jobctl_trapping(). 292 * 293 * CONTEXT: 294 * Must be called with @task->sighand->siglock held. 295 */ 296 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask) 297 { 298 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 299 300 if (mask & JOBCTL_STOP_PENDING) 301 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 302 303 task->jobctl &= ~mask; 304 305 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 306 task_clear_jobctl_trapping(task); 307 } 308 309 /** 310 * task_participate_group_stop - participate in a group stop 311 * @task: task participating in a group stop 312 * 313 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 314 * Group stop states are cleared and the group stop count is consumed if 315 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 316 * stop, the appropriate %SIGNAL_* flags are set. 317 * 318 * CONTEXT: 319 * Must be called with @task->sighand->siglock held. 320 * 321 * RETURNS: 322 * %true if group stop completion should be notified to the parent, %false 323 * otherwise. 324 */ 325 static bool task_participate_group_stop(struct task_struct *task) 326 { 327 struct signal_struct *sig = task->signal; 328 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 329 330 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 331 332 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 333 334 if (!consume) 335 return false; 336 337 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 338 sig->group_stop_count--; 339 340 /* 341 * Tell the caller to notify completion iff we are entering into a 342 * fresh group stop. Read comment in do_signal_stop() for details. 343 */ 344 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 345 sig->flags = SIGNAL_STOP_STOPPED; 346 return true; 347 } 348 return false; 349 } 350 351 /* 352 * allocate a new signal queue record 353 * - this may be called without locks if and only if t == current, otherwise an 354 * appropriate lock must be held to stop the target task from exiting 355 */ 356 static struct sigqueue * 357 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) 358 { 359 struct sigqueue *q = NULL; 360 struct user_struct *user; 361 362 /* 363 * Protect access to @t credentials. This can go away when all 364 * callers hold rcu read lock. 365 */ 366 rcu_read_lock(); 367 user = get_uid(__task_cred(t)->user); 368 atomic_inc(&user->sigpending); 369 rcu_read_unlock(); 370 371 if (override_rlimit || 372 atomic_read(&user->sigpending) <= 373 task_rlimit(t, RLIMIT_SIGPENDING)) { 374 q = kmem_cache_alloc(sigqueue_cachep, flags); 375 } else { 376 print_dropped_signal(sig); 377 } 378 379 if (unlikely(q == NULL)) { 380 atomic_dec(&user->sigpending); 381 free_uid(user); 382 } else { 383 INIT_LIST_HEAD(&q->list); 384 q->flags = 0; 385 q->user = user; 386 } 387 388 return q; 389 } 390 391 static void __sigqueue_free(struct sigqueue *q) 392 { 393 if (q->flags & SIGQUEUE_PREALLOC) 394 return; 395 atomic_dec(&q->user->sigpending); 396 free_uid(q->user); 397 kmem_cache_free(sigqueue_cachep, q); 398 } 399 400 void flush_sigqueue(struct sigpending *queue) 401 { 402 struct sigqueue *q; 403 404 sigemptyset(&queue->signal); 405 while (!list_empty(&queue->list)) { 406 q = list_entry(queue->list.next, struct sigqueue , list); 407 list_del_init(&q->list); 408 __sigqueue_free(q); 409 } 410 } 411 412 /* 413 * Flush all pending signals for a task. 414 */ 415 void __flush_signals(struct task_struct *t) 416 { 417 clear_tsk_thread_flag(t, TIF_SIGPENDING); 418 flush_sigqueue(&t->pending); 419 flush_sigqueue(&t->signal->shared_pending); 420 } 421 422 void flush_signals(struct task_struct *t) 423 { 424 unsigned long flags; 425 426 spin_lock_irqsave(&t->sighand->siglock, flags); 427 __flush_signals(t); 428 spin_unlock_irqrestore(&t->sighand->siglock, flags); 429 } 430 431 static void __flush_itimer_signals(struct sigpending *pending) 432 { 433 sigset_t signal, retain; 434 struct sigqueue *q, *n; 435 436 signal = pending->signal; 437 sigemptyset(&retain); 438 439 list_for_each_entry_safe(q, n, &pending->list, list) { 440 int sig = q->info.si_signo; 441 442 if (likely(q->info.si_code != SI_TIMER)) { 443 sigaddset(&retain, sig); 444 } else { 445 sigdelset(&signal, sig); 446 list_del_init(&q->list); 447 __sigqueue_free(q); 448 } 449 } 450 451 sigorsets(&pending->signal, &signal, &retain); 452 } 453 454 void flush_itimer_signals(void) 455 { 456 struct task_struct *tsk = current; 457 unsigned long flags; 458 459 spin_lock_irqsave(&tsk->sighand->siglock, flags); 460 __flush_itimer_signals(&tsk->pending); 461 __flush_itimer_signals(&tsk->signal->shared_pending); 462 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 463 } 464 465 void ignore_signals(struct task_struct *t) 466 { 467 int i; 468 469 for (i = 0; i < _NSIG; ++i) 470 t->sighand->action[i].sa.sa_handler = SIG_IGN; 471 472 flush_signals(t); 473 } 474 475 /* 476 * Flush all handlers for a task. 477 */ 478 479 void 480 flush_signal_handlers(struct task_struct *t, int force_default) 481 { 482 int i; 483 struct k_sigaction *ka = &t->sighand->action[0]; 484 for (i = _NSIG ; i != 0 ; i--) { 485 if (force_default || ka->sa.sa_handler != SIG_IGN) 486 ka->sa.sa_handler = SIG_DFL; 487 ka->sa.sa_flags = 0; 488 #ifdef __ARCH_HAS_SA_RESTORER 489 ka->sa.sa_restorer = NULL; 490 #endif 491 sigemptyset(&ka->sa.sa_mask); 492 ka++; 493 } 494 } 495 496 int unhandled_signal(struct task_struct *tsk, int sig) 497 { 498 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 499 if (is_global_init(tsk)) 500 return 1; 501 if (handler != SIG_IGN && handler != SIG_DFL) 502 return 0; 503 /* if ptraced, let the tracer determine */ 504 return !tsk->ptrace; 505 } 506 507 /* 508 * Notify the system that a driver wants to block all signals for this 509 * process, and wants to be notified if any signals at all were to be 510 * sent/acted upon. If the notifier routine returns non-zero, then the 511 * signal will be acted upon after all. If the notifier routine returns 0, 512 * then then signal will be blocked. Only one block per process is 513 * allowed. priv is a pointer to private data that the notifier routine 514 * can use to determine if the signal should be blocked or not. 515 */ 516 void 517 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) 518 { 519 unsigned long flags; 520 521 spin_lock_irqsave(¤t->sighand->siglock, flags); 522 current->notifier_mask = mask; 523 current->notifier_data = priv; 524 current->notifier = notifier; 525 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 526 } 527 528 /* Notify the system that blocking has ended. */ 529 530 void 531 unblock_all_signals(void) 532 { 533 unsigned long flags; 534 535 spin_lock_irqsave(¤t->sighand->siglock, flags); 536 current->notifier = NULL; 537 current->notifier_data = NULL; 538 recalc_sigpending(); 539 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 540 } 541 542 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info) 543 { 544 struct sigqueue *q, *first = NULL; 545 546 /* 547 * Collect the siginfo appropriate to this signal. Check if 548 * there is another siginfo for the same signal. 549 */ 550 list_for_each_entry(q, &list->list, list) { 551 if (q->info.si_signo == sig) { 552 if (first) 553 goto still_pending; 554 first = q; 555 } 556 } 557 558 sigdelset(&list->signal, sig); 559 560 if (first) { 561 still_pending: 562 list_del_init(&first->list); 563 copy_siginfo(info, &first->info); 564 __sigqueue_free(first); 565 } else { 566 /* 567 * Ok, it wasn't in the queue. This must be 568 * a fast-pathed signal or we must have been 569 * out of queue space. So zero out the info. 570 */ 571 info->si_signo = sig; 572 info->si_errno = 0; 573 info->si_code = SI_USER; 574 info->si_pid = 0; 575 info->si_uid = 0; 576 } 577 } 578 579 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 580 siginfo_t *info) 581 { 582 int sig = next_signal(pending, mask); 583 584 if (sig) { 585 if (current->notifier) { 586 if (sigismember(current->notifier_mask, sig)) { 587 if (!(current->notifier)(current->notifier_data)) { 588 clear_thread_flag(TIF_SIGPENDING); 589 return 0; 590 } 591 } 592 } 593 594 collect_signal(sig, pending, info); 595 } 596 597 return sig; 598 } 599 600 /* 601 * Dequeue a signal and return the element to the caller, which is 602 * expected to free it. 603 * 604 * All callers have to hold the siglock. 605 */ 606 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 607 { 608 int signr; 609 610 /* We only dequeue private signals from ourselves, we don't let 611 * signalfd steal them 612 */ 613 signr = __dequeue_signal(&tsk->pending, mask, info); 614 if (!signr) { 615 signr = __dequeue_signal(&tsk->signal->shared_pending, 616 mask, info); 617 /* 618 * itimer signal ? 619 * 620 * itimers are process shared and we restart periodic 621 * itimers in the signal delivery path to prevent DoS 622 * attacks in the high resolution timer case. This is 623 * compliant with the old way of self-restarting 624 * itimers, as the SIGALRM is a legacy signal and only 625 * queued once. Changing the restart behaviour to 626 * restart the timer in the signal dequeue path is 627 * reducing the timer noise on heavy loaded !highres 628 * systems too. 629 */ 630 if (unlikely(signr == SIGALRM)) { 631 struct hrtimer *tmr = &tsk->signal->real_timer; 632 633 if (!hrtimer_is_queued(tmr) && 634 tsk->signal->it_real_incr.tv64 != 0) { 635 hrtimer_forward(tmr, tmr->base->get_time(), 636 tsk->signal->it_real_incr); 637 hrtimer_restart(tmr); 638 } 639 } 640 } 641 642 recalc_sigpending(); 643 if (!signr) 644 return 0; 645 646 if (unlikely(sig_kernel_stop(signr))) { 647 /* 648 * Set a marker that we have dequeued a stop signal. Our 649 * caller might release the siglock and then the pending 650 * stop signal it is about to process is no longer in the 651 * pending bitmasks, but must still be cleared by a SIGCONT 652 * (and overruled by a SIGKILL). So those cases clear this 653 * shared flag after we've set it. Note that this flag may 654 * remain set after the signal we return is ignored or 655 * handled. That doesn't matter because its only purpose 656 * is to alert stop-signal processing code when another 657 * processor has come along and cleared the flag. 658 */ 659 current->jobctl |= JOBCTL_STOP_DEQUEUED; 660 } 661 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) { 662 /* 663 * Release the siglock to ensure proper locking order 664 * of timer locks outside of siglocks. Note, we leave 665 * irqs disabled here, since the posix-timers code is 666 * about to disable them again anyway. 667 */ 668 spin_unlock(&tsk->sighand->siglock); 669 do_schedule_next_timer(info); 670 spin_lock(&tsk->sighand->siglock); 671 } 672 return signr; 673 } 674 675 /* 676 * Tell a process that it has a new active signal.. 677 * 678 * NOTE! we rely on the previous spin_lock to 679 * lock interrupts for us! We can only be called with 680 * "siglock" held, and the local interrupt must 681 * have been disabled when that got acquired! 682 * 683 * No need to set need_resched since signal event passing 684 * goes through ->blocked 685 */ 686 void signal_wake_up_state(struct task_struct *t, unsigned int state) 687 { 688 set_tsk_thread_flag(t, TIF_SIGPENDING); 689 /* 690 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 691 * case. We don't check t->state here because there is a race with it 692 * executing another processor and just now entering stopped state. 693 * By using wake_up_state, we ensure the process will wake up and 694 * handle its death signal. 695 */ 696 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 697 kick_process(t); 698 } 699 700 /* 701 * Remove signals in mask from the pending set and queue. 702 * Returns 1 if any signals were found. 703 * 704 * All callers must be holding the siglock. 705 * 706 * This version takes a sigset mask and looks at all signals, 707 * not just those in the first mask word. 708 */ 709 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s) 710 { 711 struct sigqueue *q, *n; 712 sigset_t m; 713 714 sigandsets(&m, mask, &s->signal); 715 if (sigisemptyset(&m)) 716 return 0; 717 718 sigandnsets(&s->signal, &s->signal, mask); 719 list_for_each_entry_safe(q, n, &s->list, list) { 720 if (sigismember(mask, q->info.si_signo)) { 721 list_del_init(&q->list); 722 __sigqueue_free(q); 723 } 724 } 725 return 1; 726 } 727 /* 728 * Remove signals in mask from the pending set and queue. 729 * Returns 1 if any signals were found. 730 * 731 * All callers must be holding the siglock. 732 */ 733 static int rm_from_queue(unsigned long mask, struct sigpending *s) 734 { 735 struct sigqueue *q, *n; 736 737 if (!sigtestsetmask(&s->signal, mask)) 738 return 0; 739 740 sigdelsetmask(&s->signal, mask); 741 list_for_each_entry_safe(q, n, &s->list, list) { 742 if (q->info.si_signo < SIGRTMIN && 743 (mask & sigmask(q->info.si_signo))) { 744 list_del_init(&q->list); 745 __sigqueue_free(q); 746 } 747 } 748 return 1; 749 } 750 751 static inline int is_si_special(const struct siginfo *info) 752 { 753 return info <= SEND_SIG_FORCED; 754 } 755 756 static inline bool si_fromuser(const struct siginfo *info) 757 { 758 return info == SEND_SIG_NOINFO || 759 (!is_si_special(info) && SI_FROMUSER(info)); 760 } 761 762 /* 763 * called with RCU read lock from check_kill_permission() 764 */ 765 static int kill_ok_by_cred(struct task_struct *t) 766 { 767 const struct cred *cred = current_cred(); 768 const struct cred *tcred = __task_cred(t); 769 770 if (uid_eq(cred->euid, tcred->suid) || 771 uid_eq(cred->euid, tcred->uid) || 772 uid_eq(cred->uid, tcred->suid) || 773 uid_eq(cred->uid, tcred->uid)) 774 return 1; 775 776 if (ns_capable(tcred->user_ns, CAP_KILL)) 777 return 1; 778 779 return 0; 780 } 781 782 /* 783 * Bad permissions for sending the signal 784 * - the caller must hold the RCU read lock 785 */ 786 static int check_kill_permission(int sig, struct siginfo *info, 787 struct task_struct *t) 788 { 789 struct pid *sid; 790 int error; 791 792 if (!valid_signal(sig)) 793 return -EINVAL; 794 795 if (!si_fromuser(info)) 796 return 0; 797 798 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 799 if (error) 800 return error; 801 802 if (!same_thread_group(current, t) && 803 !kill_ok_by_cred(t)) { 804 switch (sig) { 805 case SIGCONT: 806 sid = task_session(t); 807 /* 808 * We don't return the error if sid == NULL. The 809 * task was unhashed, the caller must notice this. 810 */ 811 if (!sid || sid == task_session(current)) 812 break; 813 default: 814 return -EPERM; 815 } 816 } 817 818 return security_task_kill(t, info, sig, 0); 819 } 820 821 /** 822 * ptrace_trap_notify - schedule trap to notify ptracer 823 * @t: tracee wanting to notify tracer 824 * 825 * This function schedules sticky ptrace trap which is cleared on the next 826 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 827 * ptracer. 828 * 829 * If @t is running, STOP trap will be taken. If trapped for STOP and 830 * ptracer is listening for events, tracee is woken up so that it can 831 * re-trap for the new event. If trapped otherwise, STOP trap will be 832 * eventually taken without returning to userland after the existing traps 833 * are finished by PTRACE_CONT. 834 * 835 * CONTEXT: 836 * Must be called with @task->sighand->siglock held. 837 */ 838 static void ptrace_trap_notify(struct task_struct *t) 839 { 840 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 841 assert_spin_locked(&t->sighand->siglock); 842 843 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 844 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 845 } 846 847 /* 848 * Handle magic process-wide effects of stop/continue signals. Unlike 849 * the signal actions, these happen immediately at signal-generation 850 * time regardless of blocking, ignoring, or handling. This does the 851 * actual continuing for SIGCONT, but not the actual stopping for stop 852 * signals. The process stop is done as a signal action for SIG_DFL. 853 * 854 * Returns true if the signal should be actually delivered, otherwise 855 * it should be dropped. 856 */ 857 static int prepare_signal(int sig, struct task_struct *p, bool force) 858 { 859 struct signal_struct *signal = p->signal; 860 struct task_struct *t; 861 862 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) { 863 /* 864 * The process is in the middle of dying, nothing to do. 865 */ 866 } else if (sig_kernel_stop(sig)) { 867 /* 868 * This is a stop signal. Remove SIGCONT from all queues. 869 */ 870 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending); 871 t = p; 872 do { 873 rm_from_queue(sigmask(SIGCONT), &t->pending); 874 } while_each_thread(p, t); 875 } else if (sig == SIGCONT) { 876 unsigned int why; 877 /* 878 * Remove all stop signals from all queues, wake all threads. 879 */ 880 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending); 881 t = p; 882 do { 883 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 884 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 885 if (likely(!(t->ptrace & PT_SEIZED))) 886 wake_up_state(t, __TASK_STOPPED); 887 else 888 ptrace_trap_notify(t); 889 } while_each_thread(p, t); 890 891 /* 892 * Notify the parent with CLD_CONTINUED if we were stopped. 893 * 894 * If we were in the middle of a group stop, we pretend it 895 * was already finished, and then continued. Since SIGCHLD 896 * doesn't queue we report only CLD_STOPPED, as if the next 897 * CLD_CONTINUED was dropped. 898 */ 899 why = 0; 900 if (signal->flags & SIGNAL_STOP_STOPPED) 901 why |= SIGNAL_CLD_CONTINUED; 902 else if (signal->group_stop_count) 903 why |= SIGNAL_CLD_STOPPED; 904 905 if (why) { 906 /* 907 * The first thread which returns from do_signal_stop() 908 * will take ->siglock, notice SIGNAL_CLD_MASK, and 909 * notify its parent. See get_signal_to_deliver(). 910 */ 911 signal->flags = why | SIGNAL_STOP_CONTINUED; 912 signal->group_stop_count = 0; 913 signal->group_exit_code = 0; 914 } 915 } 916 917 return !sig_ignored(p, sig, force); 918 } 919 920 /* 921 * Test if P wants to take SIG. After we've checked all threads with this, 922 * it's equivalent to finding no threads not blocking SIG. Any threads not 923 * blocking SIG were ruled out because they are not running and already 924 * have pending signals. Such threads will dequeue from the shared queue 925 * as soon as they're available, so putting the signal on the shared queue 926 * will be equivalent to sending it to one such thread. 927 */ 928 static inline int wants_signal(int sig, struct task_struct *p) 929 { 930 if (sigismember(&p->blocked, sig)) 931 return 0; 932 if (p->flags & PF_EXITING) 933 return 0; 934 if (sig == SIGKILL) 935 return 1; 936 if (task_is_stopped_or_traced(p)) 937 return 0; 938 return task_curr(p) || !signal_pending(p); 939 } 940 941 static void complete_signal(int sig, struct task_struct *p, int group) 942 { 943 struct signal_struct *signal = p->signal; 944 struct task_struct *t; 945 946 /* 947 * Now find a thread we can wake up to take the signal off the queue. 948 * 949 * If the main thread wants the signal, it gets first crack. 950 * Probably the least surprising to the average bear. 951 */ 952 if (wants_signal(sig, p)) 953 t = p; 954 else if (!group || thread_group_empty(p)) 955 /* 956 * There is just one thread and it does not need to be woken. 957 * It will dequeue unblocked signals before it runs again. 958 */ 959 return; 960 else { 961 /* 962 * Otherwise try to find a suitable thread. 963 */ 964 t = signal->curr_target; 965 while (!wants_signal(sig, t)) { 966 t = next_thread(t); 967 if (t == signal->curr_target) 968 /* 969 * No thread needs to be woken. 970 * Any eligible threads will see 971 * the signal in the queue soon. 972 */ 973 return; 974 } 975 signal->curr_target = t; 976 } 977 978 /* 979 * Found a killable thread. If the signal will be fatal, 980 * then start taking the whole group down immediately. 981 */ 982 if (sig_fatal(p, sig) && 983 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) && 984 !sigismember(&t->real_blocked, sig) && 985 (sig == SIGKILL || !t->ptrace)) { 986 /* 987 * This signal will be fatal to the whole group. 988 */ 989 if (!sig_kernel_coredump(sig)) { 990 /* 991 * Start a group exit and wake everybody up. 992 * This way we don't have other threads 993 * running and doing things after a slower 994 * thread has the fatal signal pending. 995 */ 996 signal->flags = SIGNAL_GROUP_EXIT; 997 signal->group_exit_code = sig; 998 signal->group_stop_count = 0; 999 t = p; 1000 do { 1001 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1002 sigaddset(&t->pending.signal, SIGKILL); 1003 signal_wake_up(t, 1); 1004 } while_each_thread(p, t); 1005 return; 1006 } 1007 } 1008 1009 /* 1010 * The signal is already in the shared-pending queue. 1011 * Tell the chosen thread to wake up and dequeue it. 1012 */ 1013 signal_wake_up(t, sig == SIGKILL); 1014 return; 1015 } 1016 1017 static inline int legacy_queue(struct sigpending *signals, int sig) 1018 { 1019 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1020 } 1021 1022 #ifdef CONFIG_USER_NS 1023 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 1024 { 1025 if (current_user_ns() == task_cred_xxx(t, user_ns)) 1026 return; 1027 1028 if (SI_FROMKERNEL(info)) 1029 return; 1030 1031 rcu_read_lock(); 1032 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns), 1033 make_kuid(current_user_ns(), info->si_uid)); 1034 rcu_read_unlock(); 1035 } 1036 #else 1037 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 1038 { 1039 return; 1040 } 1041 #endif 1042 1043 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t, 1044 int group, int from_ancestor_ns) 1045 { 1046 struct sigpending *pending; 1047 struct sigqueue *q; 1048 int override_rlimit; 1049 int ret = 0, result; 1050 1051 assert_spin_locked(&t->sighand->siglock); 1052 1053 result = TRACE_SIGNAL_IGNORED; 1054 if (!prepare_signal(sig, t, 1055 from_ancestor_ns || (info == SEND_SIG_FORCED))) 1056 goto ret; 1057 1058 pending = group ? &t->signal->shared_pending : &t->pending; 1059 /* 1060 * Short-circuit ignored signals and support queuing 1061 * exactly one non-rt signal, so that we can get more 1062 * detailed information about the cause of the signal. 1063 */ 1064 result = TRACE_SIGNAL_ALREADY_PENDING; 1065 if (legacy_queue(pending, sig)) 1066 goto ret; 1067 1068 result = TRACE_SIGNAL_DELIVERED; 1069 /* 1070 * fast-pathed signals for kernel-internal things like SIGSTOP 1071 * or SIGKILL. 1072 */ 1073 if (info == SEND_SIG_FORCED) 1074 goto out_set; 1075 1076 /* 1077 * Real-time signals must be queued if sent by sigqueue, or 1078 * some other real-time mechanism. It is implementation 1079 * defined whether kill() does so. We attempt to do so, on 1080 * the principle of least surprise, but since kill is not 1081 * allowed to fail with EAGAIN when low on memory we just 1082 * make sure at least one signal gets delivered and don't 1083 * pass on the info struct. 1084 */ 1085 if (sig < SIGRTMIN) 1086 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1087 else 1088 override_rlimit = 0; 1089 1090 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE, 1091 override_rlimit); 1092 if (q) { 1093 list_add_tail(&q->list, &pending->list); 1094 switch ((unsigned long) info) { 1095 case (unsigned long) SEND_SIG_NOINFO: 1096 q->info.si_signo = sig; 1097 q->info.si_errno = 0; 1098 q->info.si_code = SI_USER; 1099 q->info.si_pid = task_tgid_nr_ns(current, 1100 task_active_pid_ns(t)); 1101 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1102 break; 1103 case (unsigned long) SEND_SIG_PRIV: 1104 q->info.si_signo = sig; 1105 q->info.si_errno = 0; 1106 q->info.si_code = SI_KERNEL; 1107 q->info.si_pid = 0; 1108 q->info.si_uid = 0; 1109 break; 1110 default: 1111 copy_siginfo(&q->info, info); 1112 if (from_ancestor_ns) 1113 q->info.si_pid = 0; 1114 break; 1115 } 1116 1117 userns_fixup_signal_uid(&q->info, t); 1118 1119 } else if (!is_si_special(info)) { 1120 if (sig >= SIGRTMIN && info->si_code != SI_USER) { 1121 /* 1122 * Queue overflow, abort. We may abort if the 1123 * signal was rt and sent by user using something 1124 * other than kill(). 1125 */ 1126 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1127 ret = -EAGAIN; 1128 goto ret; 1129 } else { 1130 /* 1131 * This is a silent loss of information. We still 1132 * send the signal, but the *info bits are lost. 1133 */ 1134 result = TRACE_SIGNAL_LOSE_INFO; 1135 } 1136 } 1137 1138 out_set: 1139 signalfd_notify(t, sig); 1140 sigaddset(&pending->signal, sig); 1141 complete_signal(sig, t, group); 1142 ret: 1143 trace_signal_generate(sig, info, t, group, result); 1144 return ret; 1145 } 1146 1147 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 1148 int group) 1149 { 1150 int from_ancestor_ns = 0; 1151 1152 #ifdef CONFIG_PID_NS 1153 from_ancestor_ns = si_fromuser(info) && 1154 !task_pid_nr_ns(current, task_active_pid_ns(t)); 1155 #endif 1156 1157 return __send_signal(sig, info, t, group, from_ancestor_ns); 1158 } 1159 1160 static void print_fatal_signal(int signr) 1161 { 1162 struct pt_regs *regs = signal_pt_regs(); 1163 printk(KERN_INFO "%s/%d: potentially unexpected fatal signal %d.\n", 1164 current->comm, task_pid_nr(current), signr); 1165 1166 #if defined(__i386__) && !defined(__arch_um__) 1167 printk(KERN_INFO "code at %08lx: ", regs->ip); 1168 { 1169 int i; 1170 for (i = 0; i < 16; i++) { 1171 unsigned char insn; 1172 1173 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1174 break; 1175 printk(KERN_CONT "%02x ", insn); 1176 } 1177 } 1178 printk(KERN_CONT "\n"); 1179 #endif 1180 preempt_disable(); 1181 show_regs(regs); 1182 preempt_enable(); 1183 } 1184 1185 static int __init setup_print_fatal_signals(char *str) 1186 { 1187 get_option (&str, &print_fatal_signals); 1188 1189 return 1; 1190 } 1191 1192 __setup("print-fatal-signals=", setup_print_fatal_signals); 1193 1194 int 1195 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1196 { 1197 return send_signal(sig, info, p, 1); 1198 } 1199 1200 static int 1201 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1202 { 1203 return send_signal(sig, info, t, 0); 1204 } 1205 1206 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p, 1207 bool group) 1208 { 1209 unsigned long flags; 1210 int ret = -ESRCH; 1211 1212 if (lock_task_sighand(p, &flags)) { 1213 ret = send_signal(sig, info, p, group); 1214 unlock_task_sighand(p, &flags); 1215 } 1216 1217 return ret; 1218 } 1219 1220 /* 1221 * Force a signal that the process can't ignore: if necessary 1222 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1223 * 1224 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1225 * since we do not want to have a signal handler that was blocked 1226 * be invoked when user space had explicitly blocked it. 1227 * 1228 * We don't want to have recursive SIGSEGV's etc, for example, 1229 * that is why we also clear SIGNAL_UNKILLABLE. 1230 */ 1231 int 1232 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1233 { 1234 unsigned long int flags; 1235 int ret, blocked, ignored; 1236 struct k_sigaction *action; 1237 1238 spin_lock_irqsave(&t->sighand->siglock, flags); 1239 action = &t->sighand->action[sig-1]; 1240 ignored = action->sa.sa_handler == SIG_IGN; 1241 blocked = sigismember(&t->blocked, sig); 1242 if (blocked || ignored) { 1243 action->sa.sa_handler = SIG_DFL; 1244 if (blocked) { 1245 sigdelset(&t->blocked, sig); 1246 recalc_sigpending_and_wake(t); 1247 } 1248 } 1249 if (action->sa.sa_handler == SIG_DFL) 1250 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1251 ret = specific_send_sig_info(sig, info, t); 1252 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1253 1254 return ret; 1255 } 1256 1257 /* 1258 * Nuke all other threads in the group. 1259 */ 1260 int zap_other_threads(struct task_struct *p) 1261 { 1262 struct task_struct *t = p; 1263 int count = 0; 1264 1265 p->signal->group_stop_count = 0; 1266 1267 while_each_thread(p, t) { 1268 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1269 count++; 1270 1271 /* Don't bother with already dead threads */ 1272 if (t->exit_state) 1273 continue; 1274 sigaddset(&t->pending.signal, SIGKILL); 1275 signal_wake_up(t, 1); 1276 } 1277 1278 return count; 1279 } 1280 1281 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1282 unsigned long *flags) 1283 { 1284 struct sighand_struct *sighand; 1285 1286 for (;;) { 1287 local_irq_save(*flags); 1288 rcu_read_lock(); 1289 sighand = rcu_dereference(tsk->sighand); 1290 if (unlikely(sighand == NULL)) { 1291 rcu_read_unlock(); 1292 local_irq_restore(*flags); 1293 break; 1294 } 1295 1296 spin_lock(&sighand->siglock); 1297 if (likely(sighand == tsk->sighand)) { 1298 rcu_read_unlock(); 1299 break; 1300 } 1301 spin_unlock(&sighand->siglock); 1302 rcu_read_unlock(); 1303 local_irq_restore(*flags); 1304 } 1305 1306 return sighand; 1307 } 1308 1309 /* 1310 * send signal info to all the members of a group 1311 */ 1312 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1313 { 1314 int ret; 1315 1316 rcu_read_lock(); 1317 ret = check_kill_permission(sig, info, p); 1318 rcu_read_unlock(); 1319 1320 if (!ret && sig) 1321 ret = do_send_sig_info(sig, info, p, true); 1322 1323 return ret; 1324 } 1325 1326 /* 1327 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1328 * control characters do (^C, ^Z etc) 1329 * - the caller must hold at least a readlock on tasklist_lock 1330 */ 1331 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1332 { 1333 struct task_struct *p = NULL; 1334 int retval, success; 1335 1336 success = 0; 1337 retval = -ESRCH; 1338 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1339 int err = group_send_sig_info(sig, info, p); 1340 success |= !err; 1341 retval = err; 1342 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1343 return success ? 0 : retval; 1344 } 1345 1346 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) 1347 { 1348 int error = -ESRCH; 1349 struct task_struct *p; 1350 1351 rcu_read_lock(); 1352 retry: 1353 p = pid_task(pid, PIDTYPE_PID); 1354 if (p) { 1355 error = group_send_sig_info(sig, info, p); 1356 if (unlikely(error == -ESRCH)) 1357 /* 1358 * The task was unhashed in between, try again. 1359 * If it is dead, pid_task() will return NULL, 1360 * if we race with de_thread() it will find the 1361 * new leader. 1362 */ 1363 goto retry; 1364 } 1365 rcu_read_unlock(); 1366 1367 return error; 1368 } 1369 1370 int kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1371 { 1372 int error; 1373 rcu_read_lock(); 1374 error = kill_pid_info(sig, info, find_vpid(pid)); 1375 rcu_read_unlock(); 1376 return error; 1377 } 1378 1379 static int kill_as_cred_perm(const struct cred *cred, 1380 struct task_struct *target) 1381 { 1382 const struct cred *pcred = __task_cred(target); 1383 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) && 1384 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid)) 1385 return 0; 1386 return 1; 1387 } 1388 1389 /* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1390 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid, 1391 const struct cred *cred, u32 secid) 1392 { 1393 int ret = -EINVAL; 1394 struct task_struct *p; 1395 unsigned long flags; 1396 1397 if (!valid_signal(sig)) 1398 return ret; 1399 1400 rcu_read_lock(); 1401 p = pid_task(pid, PIDTYPE_PID); 1402 if (!p) { 1403 ret = -ESRCH; 1404 goto out_unlock; 1405 } 1406 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) { 1407 ret = -EPERM; 1408 goto out_unlock; 1409 } 1410 ret = security_task_kill(p, info, sig, secid); 1411 if (ret) 1412 goto out_unlock; 1413 1414 if (sig) { 1415 if (lock_task_sighand(p, &flags)) { 1416 ret = __send_signal(sig, info, p, 1, 0); 1417 unlock_task_sighand(p, &flags); 1418 } else 1419 ret = -ESRCH; 1420 } 1421 out_unlock: 1422 rcu_read_unlock(); 1423 return ret; 1424 } 1425 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred); 1426 1427 /* 1428 * kill_something_info() interprets pid in interesting ways just like kill(2). 1429 * 1430 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1431 * is probably wrong. Should make it like BSD or SYSV. 1432 */ 1433 1434 static int kill_something_info(int sig, struct siginfo *info, pid_t pid) 1435 { 1436 int ret; 1437 1438 if (pid > 0) { 1439 rcu_read_lock(); 1440 ret = kill_pid_info(sig, info, find_vpid(pid)); 1441 rcu_read_unlock(); 1442 return ret; 1443 } 1444 1445 read_lock(&tasklist_lock); 1446 if (pid != -1) { 1447 ret = __kill_pgrp_info(sig, info, 1448 pid ? find_vpid(-pid) : task_pgrp(current)); 1449 } else { 1450 int retval = 0, count = 0; 1451 struct task_struct * p; 1452 1453 for_each_process(p) { 1454 if (task_pid_vnr(p) > 1 && 1455 !same_thread_group(p, current)) { 1456 int err = group_send_sig_info(sig, info, p); 1457 ++count; 1458 if (err != -EPERM) 1459 retval = err; 1460 } 1461 } 1462 ret = count ? retval : -ESRCH; 1463 } 1464 read_unlock(&tasklist_lock); 1465 1466 return ret; 1467 } 1468 1469 /* 1470 * These are for backward compatibility with the rest of the kernel source. 1471 */ 1472 1473 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1474 { 1475 /* 1476 * Make sure legacy kernel users don't send in bad values 1477 * (normal paths check this in check_kill_permission). 1478 */ 1479 if (!valid_signal(sig)) 1480 return -EINVAL; 1481 1482 return do_send_sig_info(sig, info, p, false); 1483 } 1484 1485 #define __si_special(priv) \ 1486 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1487 1488 int 1489 send_sig(int sig, struct task_struct *p, int priv) 1490 { 1491 return send_sig_info(sig, __si_special(priv), p); 1492 } 1493 1494 void 1495 force_sig(int sig, struct task_struct *p) 1496 { 1497 force_sig_info(sig, SEND_SIG_PRIV, p); 1498 } 1499 1500 /* 1501 * When things go south during signal handling, we 1502 * will force a SIGSEGV. And if the signal that caused 1503 * the problem was already a SIGSEGV, we'll want to 1504 * make sure we don't even try to deliver the signal.. 1505 */ 1506 int 1507 force_sigsegv(int sig, struct task_struct *p) 1508 { 1509 if (sig == SIGSEGV) { 1510 unsigned long flags; 1511 spin_lock_irqsave(&p->sighand->siglock, flags); 1512 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1513 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1514 } 1515 force_sig(SIGSEGV, p); 1516 return 0; 1517 } 1518 1519 int kill_pgrp(struct pid *pid, int sig, int priv) 1520 { 1521 int ret; 1522 1523 read_lock(&tasklist_lock); 1524 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1525 read_unlock(&tasklist_lock); 1526 1527 return ret; 1528 } 1529 EXPORT_SYMBOL(kill_pgrp); 1530 1531 int kill_pid(struct pid *pid, int sig, int priv) 1532 { 1533 return kill_pid_info(sig, __si_special(priv), pid); 1534 } 1535 EXPORT_SYMBOL(kill_pid); 1536 1537 /* 1538 * These functions support sending signals using preallocated sigqueue 1539 * structures. This is needed "because realtime applications cannot 1540 * afford to lose notifications of asynchronous events, like timer 1541 * expirations or I/O completions". In the case of POSIX Timers 1542 * we allocate the sigqueue structure from the timer_create. If this 1543 * allocation fails we are able to report the failure to the application 1544 * with an EAGAIN error. 1545 */ 1546 struct sigqueue *sigqueue_alloc(void) 1547 { 1548 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); 1549 1550 if (q) 1551 q->flags |= SIGQUEUE_PREALLOC; 1552 1553 return q; 1554 } 1555 1556 void sigqueue_free(struct sigqueue *q) 1557 { 1558 unsigned long flags; 1559 spinlock_t *lock = ¤t->sighand->siglock; 1560 1561 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1562 /* 1563 * We must hold ->siglock while testing q->list 1564 * to serialize with collect_signal() or with 1565 * __exit_signal()->flush_sigqueue(). 1566 */ 1567 spin_lock_irqsave(lock, flags); 1568 q->flags &= ~SIGQUEUE_PREALLOC; 1569 /* 1570 * If it is queued it will be freed when dequeued, 1571 * like the "regular" sigqueue. 1572 */ 1573 if (!list_empty(&q->list)) 1574 q = NULL; 1575 spin_unlock_irqrestore(lock, flags); 1576 1577 if (q) 1578 __sigqueue_free(q); 1579 } 1580 1581 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) 1582 { 1583 int sig = q->info.si_signo; 1584 struct sigpending *pending; 1585 unsigned long flags; 1586 int ret, result; 1587 1588 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1589 1590 ret = -1; 1591 if (!likely(lock_task_sighand(t, &flags))) 1592 goto ret; 1593 1594 ret = 1; /* the signal is ignored */ 1595 result = TRACE_SIGNAL_IGNORED; 1596 if (!prepare_signal(sig, t, false)) 1597 goto out; 1598 1599 ret = 0; 1600 if (unlikely(!list_empty(&q->list))) { 1601 /* 1602 * If an SI_TIMER entry is already queue just increment 1603 * the overrun count. 1604 */ 1605 BUG_ON(q->info.si_code != SI_TIMER); 1606 q->info.si_overrun++; 1607 result = TRACE_SIGNAL_ALREADY_PENDING; 1608 goto out; 1609 } 1610 q->info.si_overrun = 0; 1611 1612 signalfd_notify(t, sig); 1613 pending = group ? &t->signal->shared_pending : &t->pending; 1614 list_add_tail(&q->list, &pending->list); 1615 sigaddset(&pending->signal, sig); 1616 complete_signal(sig, t, group); 1617 result = TRACE_SIGNAL_DELIVERED; 1618 out: 1619 trace_signal_generate(sig, &q->info, t, group, result); 1620 unlock_task_sighand(t, &flags); 1621 ret: 1622 return ret; 1623 } 1624 1625 /* 1626 * Let a parent know about the death of a child. 1627 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1628 * 1629 * Returns true if our parent ignored us and so we've switched to 1630 * self-reaping. 1631 */ 1632 bool do_notify_parent(struct task_struct *tsk, int sig) 1633 { 1634 struct siginfo info; 1635 unsigned long flags; 1636 struct sighand_struct *psig; 1637 bool autoreap = false; 1638 cputime_t utime, stime; 1639 1640 BUG_ON(sig == -1); 1641 1642 /* do_notify_parent_cldstop should have been called instead. */ 1643 BUG_ON(task_is_stopped_or_traced(tsk)); 1644 1645 BUG_ON(!tsk->ptrace && 1646 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1647 1648 if (sig != SIGCHLD) { 1649 /* 1650 * This is only possible if parent == real_parent. 1651 * Check if it has changed security domain. 1652 */ 1653 if (tsk->parent_exec_id != tsk->parent->self_exec_id) 1654 sig = SIGCHLD; 1655 } 1656 1657 info.si_signo = sig; 1658 info.si_errno = 0; 1659 /* 1660 * We are under tasklist_lock here so our parent is tied to 1661 * us and cannot change. 1662 * 1663 * task_active_pid_ns will always return the same pid namespace 1664 * until a task passes through release_task. 1665 * 1666 * write_lock() currently calls preempt_disable() which is the 1667 * same as rcu_read_lock(), but according to Oleg, this is not 1668 * correct to rely on this 1669 */ 1670 rcu_read_lock(); 1671 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 1672 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 1673 task_uid(tsk)); 1674 rcu_read_unlock(); 1675 1676 task_cputime(tsk, &utime, &stime); 1677 info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime); 1678 info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime); 1679 1680 info.si_status = tsk->exit_code & 0x7f; 1681 if (tsk->exit_code & 0x80) 1682 info.si_code = CLD_DUMPED; 1683 else if (tsk->exit_code & 0x7f) 1684 info.si_code = CLD_KILLED; 1685 else { 1686 info.si_code = CLD_EXITED; 1687 info.si_status = tsk->exit_code >> 8; 1688 } 1689 1690 psig = tsk->parent->sighand; 1691 spin_lock_irqsave(&psig->siglock, flags); 1692 if (!tsk->ptrace && sig == SIGCHLD && 1693 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1694 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1695 /* 1696 * We are exiting and our parent doesn't care. POSIX.1 1697 * defines special semantics for setting SIGCHLD to SIG_IGN 1698 * or setting the SA_NOCLDWAIT flag: we should be reaped 1699 * automatically and not left for our parent's wait4 call. 1700 * Rather than having the parent do it as a magic kind of 1701 * signal handler, we just set this to tell do_exit that we 1702 * can be cleaned up without becoming a zombie. Note that 1703 * we still call __wake_up_parent in this case, because a 1704 * blocked sys_wait4 might now return -ECHILD. 1705 * 1706 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1707 * is implementation-defined: we do (if you don't want 1708 * it, just use SIG_IGN instead). 1709 */ 1710 autoreap = true; 1711 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1712 sig = 0; 1713 } 1714 if (valid_signal(sig) && sig) 1715 __group_send_sig_info(sig, &info, tsk->parent); 1716 __wake_up_parent(tsk, tsk->parent); 1717 spin_unlock_irqrestore(&psig->siglock, flags); 1718 1719 return autoreap; 1720 } 1721 1722 /** 1723 * do_notify_parent_cldstop - notify parent of stopped/continued state change 1724 * @tsk: task reporting the state change 1725 * @for_ptracer: the notification is for ptracer 1726 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 1727 * 1728 * Notify @tsk's parent that the stopped/continued state has changed. If 1729 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 1730 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 1731 * 1732 * CONTEXT: 1733 * Must be called with tasklist_lock at least read locked. 1734 */ 1735 static void do_notify_parent_cldstop(struct task_struct *tsk, 1736 bool for_ptracer, int why) 1737 { 1738 struct siginfo info; 1739 unsigned long flags; 1740 struct task_struct *parent; 1741 struct sighand_struct *sighand; 1742 cputime_t utime, stime; 1743 1744 if (for_ptracer) { 1745 parent = tsk->parent; 1746 } else { 1747 tsk = tsk->group_leader; 1748 parent = tsk->real_parent; 1749 } 1750 1751 info.si_signo = SIGCHLD; 1752 info.si_errno = 0; 1753 /* 1754 * see comment in do_notify_parent() about the following 4 lines 1755 */ 1756 rcu_read_lock(); 1757 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 1758 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 1759 rcu_read_unlock(); 1760 1761 task_cputime(tsk, &utime, &stime); 1762 info.si_utime = cputime_to_clock_t(utime); 1763 info.si_stime = cputime_to_clock_t(stime); 1764 1765 info.si_code = why; 1766 switch (why) { 1767 case CLD_CONTINUED: 1768 info.si_status = SIGCONT; 1769 break; 1770 case CLD_STOPPED: 1771 info.si_status = tsk->signal->group_exit_code & 0x7f; 1772 break; 1773 case CLD_TRAPPED: 1774 info.si_status = tsk->exit_code & 0x7f; 1775 break; 1776 default: 1777 BUG(); 1778 } 1779 1780 sighand = parent->sighand; 1781 spin_lock_irqsave(&sighand->siglock, flags); 1782 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1783 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1784 __group_send_sig_info(SIGCHLD, &info, parent); 1785 /* 1786 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1787 */ 1788 __wake_up_parent(tsk, parent); 1789 spin_unlock_irqrestore(&sighand->siglock, flags); 1790 } 1791 1792 static inline int may_ptrace_stop(void) 1793 { 1794 if (!likely(current->ptrace)) 1795 return 0; 1796 /* 1797 * Are we in the middle of do_coredump? 1798 * If so and our tracer is also part of the coredump stopping 1799 * is a deadlock situation, and pointless because our tracer 1800 * is dead so don't allow us to stop. 1801 * If SIGKILL was already sent before the caller unlocked 1802 * ->siglock we must see ->core_state != NULL. Otherwise it 1803 * is safe to enter schedule(). 1804 * 1805 * This is almost outdated, a task with the pending SIGKILL can't 1806 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported 1807 * after SIGKILL was already dequeued. 1808 */ 1809 if (unlikely(current->mm->core_state) && 1810 unlikely(current->mm == current->parent->mm)) 1811 return 0; 1812 1813 return 1; 1814 } 1815 1816 /* 1817 * Return non-zero if there is a SIGKILL that should be waking us up. 1818 * Called with the siglock held. 1819 */ 1820 static int sigkill_pending(struct task_struct *tsk) 1821 { 1822 return sigismember(&tsk->pending.signal, SIGKILL) || 1823 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 1824 } 1825 1826 /* 1827 * This must be called with current->sighand->siglock held. 1828 * 1829 * This should be the path for all ptrace stops. 1830 * We always set current->last_siginfo while stopped here. 1831 * That makes it a way to test a stopped process for 1832 * being ptrace-stopped vs being job-control-stopped. 1833 * 1834 * If we actually decide not to stop at all because the tracer 1835 * is gone, we keep current->exit_code unless clear_code. 1836 */ 1837 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info) 1838 __releases(¤t->sighand->siglock) 1839 __acquires(¤t->sighand->siglock) 1840 { 1841 bool gstop_done = false; 1842 1843 if (arch_ptrace_stop_needed(exit_code, info)) { 1844 /* 1845 * The arch code has something special to do before a 1846 * ptrace stop. This is allowed to block, e.g. for faults 1847 * on user stack pages. We can't keep the siglock while 1848 * calling arch_ptrace_stop, so we must release it now. 1849 * To preserve proper semantics, we must do this before 1850 * any signal bookkeeping like checking group_stop_count. 1851 * Meanwhile, a SIGKILL could come in before we retake the 1852 * siglock. That must prevent us from sleeping in TASK_TRACED. 1853 * So after regaining the lock, we must check for SIGKILL. 1854 */ 1855 spin_unlock_irq(¤t->sighand->siglock); 1856 arch_ptrace_stop(exit_code, info); 1857 spin_lock_irq(¤t->sighand->siglock); 1858 if (sigkill_pending(current)) 1859 return; 1860 } 1861 1862 /* 1863 * We're committing to trapping. TRACED should be visible before 1864 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 1865 * Also, transition to TRACED and updates to ->jobctl should be 1866 * atomic with respect to siglock and should be done after the arch 1867 * hook as siglock is released and regrabbed across it. 1868 */ 1869 set_current_state(TASK_TRACED); 1870 1871 current->last_siginfo = info; 1872 current->exit_code = exit_code; 1873 1874 /* 1875 * If @why is CLD_STOPPED, we're trapping to participate in a group 1876 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 1877 * across siglock relocks since INTERRUPT was scheduled, PENDING 1878 * could be clear now. We act as if SIGCONT is received after 1879 * TASK_TRACED is entered - ignore it. 1880 */ 1881 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 1882 gstop_done = task_participate_group_stop(current); 1883 1884 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 1885 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 1886 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 1887 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 1888 1889 /* entering a trap, clear TRAPPING */ 1890 task_clear_jobctl_trapping(current); 1891 1892 spin_unlock_irq(¤t->sighand->siglock); 1893 read_lock(&tasklist_lock); 1894 if (may_ptrace_stop()) { 1895 /* 1896 * Notify parents of the stop. 1897 * 1898 * While ptraced, there are two parents - the ptracer and 1899 * the real_parent of the group_leader. The ptracer should 1900 * know about every stop while the real parent is only 1901 * interested in the completion of group stop. The states 1902 * for the two don't interact with each other. Notify 1903 * separately unless they're gonna be duplicates. 1904 */ 1905 do_notify_parent_cldstop(current, true, why); 1906 if (gstop_done && ptrace_reparented(current)) 1907 do_notify_parent_cldstop(current, false, why); 1908 1909 /* 1910 * Don't want to allow preemption here, because 1911 * sys_ptrace() needs this task to be inactive. 1912 * 1913 * XXX: implement read_unlock_no_resched(). 1914 */ 1915 preempt_disable(); 1916 read_unlock(&tasklist_lock); 1917 preempt_enable_no_resched(); 1918 freezable_schedule(); 1919 } else { 1920 /* 1921 * By the time we got the lock, our tracer went away. 1922 * Don't drop the lock yet, another tracer may come. 1923 * 1924 * If @gstop_done, the ptracer went away between group stop 1925 * completion and here. During detach, it would have set 1926 * JOBCTL_STOP_PENDING on us and we'll re-enter 1927 * TASK_STOPPED in do_signal_stop() on return, so notifying 1928 * the real parent of the group stop completion is enough. 1929 */ 1930 if (gstop_done) 1931 do_notify_parent_cldstop(current, false, why); 1932 1933 /* tasklist protects us from ptrace_freeze_traced() */ 1934 __set_current_state(TASK_RUNNING); 1935 if (clear_code) 1936 current->exit_code = 0; 1937 read_unlock(&tasklist_lock); 1938 } 1939 1940 /* 1941 * We are back. Now reacquire the siglock before touching 1942 * last_siginfo, so that we are sure to have synchronized with 1943 * any signal-sending on another CPU that wants to examine it. 1944 */ 1945 spin_lock_irq(¤t->sighand->siglock); 1946 current->last_siginfo = NULL; 1947 1948 /* LISTENING can be set only during STOP traps, clear it */ 1949 current->jobctl &= ~JOBCTL_LISTENING; 1950 1951 /* 1952 * Queued signals ignored us while we were stopped for tracing. 1953 * So check for any that we should take before resuming user mode. 1954 * This sets TIF_SIGPENDING, but never clears it. 1955 */ 1956 recalc_sigpending_tsk(current); 1957 } 1958 1959 static void ptrace_do_notify(int signr, int exit_code, int why) 1960 { 1961 siginfo_t info; 1962 1963 memset(&info, 0, sizeof info); 1964 info.si_signo = signr; 1965 info.si_code = exit_code; 1966 info.si_pid = task_pid_vnr(current); 1967 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1968 1969 /* Let the debugger run. */ 1970 ptrace_stop(exit_code, why, 1, &info); 1971 } 1972 1973 void ptrace_notify(int exit_code) 1974 { 1975 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1976 if (unlikely(current->task_works)) 1977 task_work_run(); 1978 1979 spin_lock_irq(¤t->sighand->siglock); 1980 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 1981 spin_unlock_irq(¤t->sighand->siglock); 1982 } 1983 1984 /** 1985 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 1986 * @signr: signr causing group stop if initiating 1987 * 1988 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 1989 * and participate in it. If already set, participate in the existing 1990 * group stop. If participated in a group stop (and thus slept), %true is 1991 * returned with siglock released. 1992 * 1993 * If ptraced, this function doesn't handle stop itself. Instead, 1994 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 1995 * untouched. The caller must ensure that INTERRUPT trap handling takes 1996 * places afterwards. 1997 * 1998 * CONTEXT: 1999 * Must be called with @current->sighand->siglock held, which is released 2000 * on %true return. 2001 * 2002 * RETURNS: 2003 * %false if group stop is already cancelled or ptrace trap is scheduled. 2004 * %true if participated in group stop. 2005 */ 2006 static bool do_signal_stop(int signr) 2007 __releases(¤t->sighand->siglock) 2008 { 2009 struct signal_struct *sig = current->signal; 2010 2011 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2012 unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2013 struct task_struct *t; 2014 2015 /* signr will be recorded in task->jobctl for retries */ 2016 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2017 2018 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2019 unlikely(signal_group_exit(sig))) 2020 return false; 2021 /* 2022 * There is no group stop already in progress. We must 2023 * initiate one now. 2024 * 2025 * While ptraced, a task may be resumed while group stop is 2026 * still in effect and then receive a stop signal and 2027 * initiate another group stop. This deviates from the 2028 * usual behavior as two consecutive stop signals can't 2029 * cause two group stops when !ptraced. That is why we 2030 * also check !task_is_stopped(t) below. 2031 * 2032 * The condition can be distinguished by testing whether 2033 * SIGNAL_STOP_STOPPED is already set. Don't generate 2034 * group_exit_code in such case. 2035 * 2036 * This is not necessary for SIGNAL_STOP_CONTINUED because 2037 * an intervening stop signal is required to cause two 2038 * continued events regardless of ptrace. 2039 */ 2040 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2041 sig->group_exit_code = signr; 2042 2043 sig->group_stop_count = 0; 2044 2045 if (task_set_jobctl_pending(current, signr | gstop)) 2046 sig->group_stop_count++; 2047 2048 for (t = next_thread(current); t != current; 2049 t = next_thread(t)) { 2050 /* 2051 * Setting state to TASK_STOPPED for a group 2052 * stop is always done with the siglock held, 2053 * so this check has no races. 2054 */ 2055 if (!task_is_stopped(t) && 2056 task_set_jobctl_pending(t, signr | gstop)) { 2057 sig->group_stop_count++; 2058 if (likely(!(t->ptrace & PT_SEIZED))) 2059 signal_wake_up(t, 0); 2060 else 2061 ptrace_trap_notify(t); 2062 } 2063 } 2064 } 2065 2066 if (likely(!current->ptrace)) { 2067 int notify = 0; 2068 2069 /* 2070 * If there are no other threads in the group, or if there 2071 * is a group stop in progress and we are the last to stop, 2072 * report to the parent. 2073 */ 2074 if (task_participate_group_stop(current)) 2075 notify = CLD_STOPPED; 2076 2077 __set_current_state(TASK_STOPPED); 2078 spin_unlock_irq(¤t->sighand->siglock); 2079 2080 /* 2081 * Notify the parent of the group stop completion. Because 2082 * we're not holding either the siglock or tasklist_lock 2083 * here, ptracer may attach inbetween; however, this is for 2084 * group stop and should always be delivered to the real 2085 * parent of the group leader. The new ptracer will get 2086 * its notification when this task transitions into 2087 * TASK_TRACED. 2088 */ 2089 if (notify) { 2090 read_lock(&tasklist_lock); 2091 do_notify_parent_cldstop(current, false, notify); 2092 read_unlock(&tasklist_lock); 2093 } 2094 2095 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2096 freezable_schedule(); 2097 return true; 2098 } else { 2099 /* 2100 * While ptraced, group stop is handled by STOP trap. 2101 * Schedule it and let the caller deal with it. 2102 */ 2103 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2104 return false; 2105 } 2106 } 2107 2108 /** 2109 * do_jobctl_trap - take care of ptrace jobctl traps 2110 * 2111 * When PT_SEIZED, it's used for both group stop and explicit 2112 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2113 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2114 * the stop signal; otherwise, %SIGTRAP. 2115 * 2116 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2117 * number as exit_code and no siginfo. 2118 * 2119 * CONTEXT: 2120 * Must be called with @current->sighand->siglock held, which may be 2121 * released and re-acquired before returning with intervening sleep. 2122 */ 2123 static void do_jobctl_trap(void) 2124 { 2125 struct signal_struct *signal = current->signal; 2126 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2127 2128 if (current->ptrace & PT_SEIZED) { 2129 if (!signal->group_stop_count && 2130 !(signal->flags & SIGNAL_STOP_STOPPED)) 2131 signr = SIGTRAP; 2132 WARN_ON_ONCE(!signr); 2133 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2134 CLD_STOPPED); 2135 } else { 2136 WARN_ON_ONCE(!signr); 2137 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2138 current->exit_code = 0; 2139 } 2140 } 2141 2142 static int ptrace_signal(int signr, siginfo_t *info) 2143 { 2144 ptrace_signal_deliver(); 2145 /* 2146 * We do not check sig_kernel_stop(signr) but set this marker 2147 * unconditionally because we do not know whether debugger will 2148 * change signr. This flag has no meaning unless we are going 2149 * to stop after return from ptrace_stop(). In this case it will 2150 * be checked in do_signal_stop(), we should only stop if it was 2151 * not cleared by SIGCONT while we were sleeping. See also the 2152 * comment in dequeue_signal(). 2153 */ 2154 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2155 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2156 2157 /* We're back. Did the debugger cancel the sig? */ 2158 signr = current->exit_code; 2159 if (signr == 0) 2160 return signr; 2161 2162 current->exit_code = 0; 2163 2164 /* 2165 * Update the siginfo structure if the signal has 2166 * changed. If the debugger wanted something 2167 * specific in the siginfo structure then it should 2168 * have updated *info via PTRACE_SETSIGINFO. 2169 */ 2170 if (signr != info->si_signo) { 2171 info->si_signo = signr; 2172 info->si_errno = 0; 2173 info->si_code = SI_USER; 2174 rcu_read_lock(); 2175 info->si_pid = task_pid_vnr(current->parent); 2176 info->si_uid = from_kuid_munged(current_user_ns(), 2177 task_uid(current->parent)); 2178 rcu_read_unlock(); 2179 } 2180 2181 /* If the (new) signal is now blocked, requeue it. */ 2182 if (sigismember(¤t->blocked, signr)) { 2183 specific_send_sig_info(signr, info, current); 2184 signr = 0; 2185 } 2186 2187 return signr; 2188 } 2189 2190 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, 2191 struct pt_regs *regs, void *cookie) 2192 { 2193 struct sighand_struct *sighand = current->sighand; 2194 struct signal_struct *signal = current->signal; 2195 int signr; 2196 2197 if (unlikely(current->task_works)) 2198 task_work_run(); 2199 2200 if (unlikely(uprobe_deny_signal())) 2201 return 0; 2202 2203 /* 2204 * Do this once, we can't return to user-mode if freezing() == T. 2205 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2206 * thus do not need another check after return. 2207 */ 2208 try_to_freeze(); 2209 2210 relock: 2211 spin_lock_irq(&sighand->siglock); 2212 /* 2213 * Every stopped thread goes here after wakeup. Check to see if 2214 * we should notify the parent, prepare_signal(SIGCONT) encodes 2215 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2216 */ 2217 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2218 int why; 2219 2220 if (signal->flags & SIGNAL_CLD_CONTINUED) 2221 why = CLD_CONTINUED; 2222 else 2223 why = CLD_STOPPED; 2224 2225 signal->flags &= ~SIGNAL_CLD_MASK; 2226 2227 spin_unlock_irq(&sighand->siglock); 2228 2229 /* 2230 * Notify the parent that we're continuing. This event is 2231 * always per-process and doesn't make whole lot of sense 2232 * for ptracers, who shouldn't consume the state via 2233 * wait(2) either, but, for backward compatibility, notify 2234 * the ptracer of the group leader too unless it's gonna be 2235 * a duplicate. 2236 */ 2237 read_lock(&tasklist_lock); 2238 do_notify_parent_cldstop(current, false, why); 2239 2240 if (ptrace_reparented(current->group_leader)) 2241 do_notify_parent_cldstop(current->group_leader, 2242 true, why); 2243 read_unlock(&tasklist_lock); 2244 2245 goto relock; 2246 } 2247 2248 for (;;) { 2249 struct k_sigaction *ka; 2250 2251 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2252 do_signal_stop(0)) 2253 goto relock; 2254 2255 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) { 2256 do_jobctl_trap(); 2257 spin_unlock_irq(&sighand->siglock); 2258 goto relock; 2259 } 2260 2261 signr = dequeue_signal(current, ¤t->blocked, info); 2262 2263 if (!signr) 2264 break; /* will return 0 */ 2265 2266 if (unlikely(current->ptrace) && signr != SIGKILL) { 2267 signr = ptrace_signal(signr, info); 2268 if (!signr) 2269 continue; 2270 } 2271 2272 ka = &sighand->action[signr-1]; 2273 2274 /* Trace actually delivered signals. */ 2275 trace_signal_deliver(signr, info, ka); 2276 2277 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2278 continue; 2279 if (ka->sa.sa_handler != SIG_DFL) { 2280 /* Run the handler. */ 2281 *return_ka = *ka; 2282 2283 if (ka->sa.sa_flags & SA_ONESHOT) 2284 ka->sa.sa_handler = SIG_DFL; 2285 2286 break; /* will return non-zero "signr" value */ 2287 } 2288 2289 /* 2290 * Now we are doing the default action for this signal. 2291 */ 2292 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2293 continue; 2294 2295 /* 2296 * Global init gets no signals it doesn't want. 2297 * Container-init gets no signals it doesn't want from same 2298 * container. 2299 * 2300 * Note that if global/container-init sees a sig_kernel_only() 2301 * signal here, the signal must have been generated internally 2302 * or must have come from an ancestor namespace. In either 2303 * case, the signal cannot be dropped. 2304 */ 2305 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2306 !sig_kernel_only(signr)) 2307 continue; 2308 2309 if (sig_kernel_stop(signr)) { 2310 /* 2311 * The default action is to stop all threads in 2312 * the thread group. The job control signals 2313 * do nothing in an orphaned pgrp, but SIGSTOP 2314 * always works. Note that siglock needs to be 2315 * dropped during the call to is_orphaned_pgrp() 2316 * because of lock ordering with tasklist_lock. 2317 * This allows an intervening SIGCONT to be posted. 2318 * We need to check for that and bail out if necessary. 2319 */ 2320 if (signr != SIGSTOP) { 2321 spin_unlock_irq(&sighand->siglock); 2322 2323 /* signals can be posted during this window */ 2324 2325 if (is_current_pgrp_orphaned()) 2326 goto relock; 2327 2328 spin_lock_irq(&sighand->siglock); 2329 } 2330 2331 if (likely(do_signal_stop(info->si_signo))) { 2332 /* It released the siglock. */ 2333 goto relock; 2334 } 2335 2336 /* 2337 * We didn't actually stop, due to a race 2338 * with SIGCONT or something like that. 2339 */ 2340 continue; 2341 } 2342 2343 spin_unlock_irq(&sighand->siglock); 2344 2345 /* 2346 * Anything else is fatal, maybe with a core dump. 2347 */ 2348 current->flags |= PF_SIGNALED; 2349 2350 if (sig_kernel_coredump(signr)) { 2351 if (print_fatal_signals) 2352 print_fatal_signal(info->si_signo); 2353 /* 2354 * If it was able to dump core, this kills all 2355 * other threads in the group and synchronizes with 2356 * their demise. If we lost the race with another 2357 * thread getting here, it set group_exit_code 2358 * first and our do_group_exit call below will use 2359 * that value and ignore the one we pass it. 2360 */ 2361 do_coredump(info); 2362 } 2363 2364 /* 2365 * Death signals, no core dump. 2366 */ 2367 do_group_exit(info->si_signo); 2368 /* NOTREACHED */ 2369 } 2370 spin_unlock_irq(&sighand->siglock); 2371 return signr; 2372 } 2373 2374 /** 2375 * signal_delivered - 2376 * @sig: number of signal being delivered 2377 * @info: siginfo_t of signal being delivered 2378 * @ka: sigaction setting that chose the handler 2379 * @regs: user register state 2380 * @stepping: nonzero if debugger single-step or block-step in use 2381 * 2382 * This function should be called when a signal has succesfully been 2383 * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask 2384 * is always blocked, and the signal itself is blocked unless %SA_NODEFER 2385 * is set in @ka->sa.sa_flags. Tracing is notified. 2386 */ 2387 void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka, 2388 struct pt_regs *regs, int stepping) 2389 { 2390 sigset_t blocked; 2391 2392 /* A signal was successfully delivered, and the 2393 saved sigmask was stored on the signal frame, 2394 and will be restored by sigreturn. So we can 2395 simply clear the restore sigmask flag. */ 2396 clear_restore_sigmask(); 2397 2398 sigorsets(&blocked, ¤t->blocked, &ka->sa.sa_mask); 2399 if (!(ka->sa.sa_flags & SA_NODEFER)) 2400 sigaddset(&blocked, sig); 2401 set_current_blocked(&blocked); 2402 tracehook_signal_handler(sig, info, ka, regs, stepping); 2403 } 2404 2405 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2406 { 2407 if (failed) 2408 force_sigsegv(ksig->sig, current); 2409 else 2410 signal_delivered(ksig->sig, &ksig->info, &ksig->ka, 2411 signal_pt_regs(), stepping); 2412 } 2413 2414 /* 2415 * It could be that complete_signal() picked us to notify about the 2416 * group-wide signal. Other threads should be notified now to take 2417 * the shared signals in @which since we will not. 2418 */ 2419 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2420 { 2421 sigset_t retarget; 2422 struct task_struct *t; 2423 2424 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2425 if (sigisemptyset(&retarget)) 2426 return; 2427 2428 t = tsk; 2429 while_each_thread(tsk, t) { 2430 if (t->flags & PF_EXITING) 2431 continue; 2432 2433 if (!has_pending_signals(&retarget, &t->blocked)) 2434 continue; 2435 /* Remove the signals this thread can handle. */ 2436 sigandsets(&retarget, &retarget, &t->blocked); 2437 2438 if (!signal_pending(t)) 2439 signal_wake_up(t, 0); 2440 2441 if (sigisemptyset(&retarget)) 2442 break; 2443 } 2444 } 2445 2446 void exit_signals(struct task_struct *tsk) 2447 { 2448 int group_stop = 0; 2449 sigset_t unblocked; 2450 2451 /* 2452 * @tsk is about to have PF_EXITING set - lock out users which 2453 * expect stable threadgroup. 2454 */ 2455 threadgroup_change_begin(tsk); 2456 2457 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 2458 tsk->flags |= PF_EXITING; 2459 threadgroup_change_end(tsk); 2460 return; 2461 } 2462 2463 spin_lock_irq(&tsk->sighand->siglock); 2464 /* 2465 * From now this task is not visible for group-wide signals, 2466 * see wants_signal(), do_signal_stop(). 2467 */ 2468 tsk->flags |= PF_EXITING; 2469 2470 threadgroup_change_end(tsk); 2471 2472 if (!signal_pending(tsk)) 2473 goto out; 2474 2475 unblocked = tsk->blocked; 2476 signotset(&unblocked); 2477 retarget_shared_pending(tsk, &unblocked); 2478 2479 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2480 task_participate_group_stop(tsk)) 2481 group_stop = CLD_STOPPED; 2482 out: 2483 spin_unlock_irq(&tsk->sighand->siglock); 2484 2485 /* 2486 * If group stop has completed, deliver the notification. This 2487 * should always go to the real parent of the group leader. 2488 */ 2489 if (unlikely(group_stop)) { 2490 read_lock(&tasklist_lock); 2491 do_notify_parent_cldstop(tsk, false, group_stop); 2492 read_unlock(&tasklist_lock); 2493 } 2494 } 2495 2496 EXPORT_SYMBOL(recalc_sigpending); 2497 EXPORT_SYMBOL_GPL(dequeue_signal); 2498 EXPORT_SYMBOL(flush_signals); 2499 EXPORT_SYMBOL(force_sig); 2500 EXPORT_SYMBOL(send_sig); 2501 EXPORT_SYMBOL(send_sig_info); 2502 EXPORT_SYMBOL(sigprocmask); 2503 EXPORT_SYMBOL(block_all_signals); 2504 EXPORT_SYMBOL(unblock_all_signals); 2505 2506 2507 /* 2508 * System call entry points. 2509 */ 2510 2511 /** 2512 * sys_restart_syscall - restart a system call 2513 */ 2514 SYSCALL_DEFINE0(restart_syscall) 2515 { 2516 struct restart_block *restart = ¤t_thread_info()->restart_block; 2517 return restart->fn(restart); 2518 } 2519 2520 long do_no_restart_syscall(struct restart_block *param) 2521 { 2522 return -EINTR; 2523 } 2524 2525 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 2526 { 2527 if (signal_pending(tsk) && !thread_group_empty(tsk)) { 2528 sigset_t newblocked; 2529 /* A set of now blocked but previously unblocked signals. */ 2530 sigandnsets(&newblocked, newset, ¤t->blocked); 2531 retarget_shared_pending(tsk, &newblocked); 2532 } 2533 tsk->blocked = *newset; 2534 recalc_sigpending(); 2535 } 2536 2537 /** 2538 * set_current_blocked - change current->blocked mask 2539 * @newset: new mask 2540 * 2541 * It is wrong to change ->blocked directly, this helper should be used 2542 * to ensure the process can't miss a shared signal we are going to block. 2543 */ 2544 void set_current_blocked(sigset_t *newset) 2545 { 2546 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2547 __set_current_blocked(newset); 2548 } 2549 2550 void __set_current_blocked(const sigset_t *newset) 2551 { 2552 struct task_struct *tsk = current; 2553 2554 spin_lock_irq(&tsk->sighand->siglock); 2555 __set_task_blocked(tsk, newset); 2556 spin_unlock_irq(&tsk->sighand->siglock); 2557 } 2558 2559 /* 2560 * This is also useful for kernel threads that want to temporarily 2561 * (or permanently) block certain signals. 2562 * 2563 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2564 * interface happily blocks "unblockable" signals like SIGKILL 2565 * and friends. 2566 */ 2567 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2568 { 2569 struct task_struct *tsk = current; 2570 sigset_t newset; 2571 2572 /* Lockless, only current can change ->blocked, never from irq */ 2573 if (oldset) 2574 *oldset = tsk->blocked; 2575 2576 switch (how) { 2577 case SIG_BLOCK: 2578 sigorsets(&newset, &tsk->blocked, set); 2579 break; 2580 case SIG_UNBLOCK: 2581 sigandnsets(&newset, &tsk->blocked, set); 2582 break; 2583 case SIG_SETMASK: 2584 newset = *set; 2585 break; 2586 default: 2587 return -EINVAL; 2588 } 2589 2590 __set_current_blocked(&newset); 2591 return 0; 2592 } 2593 2594 /** 2595 * sys_rt_sigprocmask - change the list of currently blocked signals 2596 * @how: whether to add, remove, or set signals 2597 * @nset: stores pending signals 2598 * @oset: previous value of signal mask if non-null 2599 * @sigsetsize: size of sigset_t type 2600 */ 2601 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 2602 sigset_t __user *, oset, size_t, sigsetsize) 2603 { 2604 sigset_t old_set, new_set; 2605 int error; 2606 2607 /* XXX: Don't preclude handling different sized sigset_t's. */ 2608 if (sigsetsize != sizeof(sigset_t)) 2609 return -EINVAL; 2610 2611 old_set = current->blocked; 2612 2613 if (nset) { 2614 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 2615 return -EFAULT; 2616 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2617 2618 error = sigprocmask(how, &new_set, NULL); 2619 if (error) 2620 return error; 2621 } 2622 2623 if (oset) { 2624 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 2625 return -EFAULT; 2626 } 2627 2628 return 0; 2629 } 2630 2631 #ifdef CONFIG_COMPAT 2632 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 2633 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 2634 { 2635 #ifdef __BIG_ENDIAN 2636 sigset_t old_set = current->blocked; 2637 2638 /* XXX: Don't preclude handling different sized sigset_t's. */ 2639 if (sigsetsize != sizeof(sigset_t)) 2640 return -EINVAL; 2641 2642 if (nset) { 2643 compat_sigset_t new32; 2644 sigset_t new_set; 2645 int error; 2646 if (copy_from_user(&new32, nset, sizeof(compat_sigset_t))) 2647 return -EFAULT; 2648 2649 sigset_from_compat(&new_set, &new32); 2650 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2651 2652 error = sigprocmask(how, &new_set, NULL); 2653 if (error) 2654 return error; 2655 } 2656 if (oset) { 2657 compat_sigset_t old32; 2658 sigset_to_compat(&old32, &old_set); 2659 if (copy_to_user(oset, &old32, sizeof(compat_sigset_t))) 2660 return -EFAULT; 2661 } 2662 return 0; 2663 #else 2664 return sys_rt_sigprocmask(how, (sigset_t __user *)nset, 2665 (sigset_t __user *)oset, sigsetsize); 2666 #endif 2667 } 2668 #endif 2669 2670 static int do_sigpending(void *set, unsigned long sigsetsize) 2671 { 2672 if (sigsetsize > sizeof(sigset_t)) 2673 return -EINVAL; 2674 2675 spin_lock_irq(¤t->sighand->siglock); 2676 sigorsets(set, ¤t->pending.signal, 2677 ¤t->signal->shared_pending.signal); 2678 spin_unlock_irq(¤t->sighand->siglock); 2679 2680 /* Outside the lock because only this thread touches it. */ 2681 sigandsets(set, ¤t->blocked, set); 2682 return 0; 2683 } 2684 2685 /** 2686 * sys_rt_sigpending - examine a pending signal that has been raised 2687 * while blocked 2688 * @uset: stores pending signals 2689 * @sigsetsize: size of sigset_t type or larger 2690 */ 2691 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 2692 { 2693 sigset_t set; 2694 int err = do_sigpending(&set, sigsetsize); 2695 if (!err && copy_to_user(uset, &set, sigsetsize)) 2696 err = -EFAULT; 2697 return err; 2698 } 2699 2700 #ifdef CONFIG_COMPAT 2701 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 2702 compat_size_t, sigsetsize) 2703 { 2704 #ifdef __BIG_ENDIAN 2705 sigset_t set; 2706 int err = do_sigpending(&set, sigsetsize); 2707 if (!err) { 2708 compat_sigset_t set32; 2709 sigset_to_compat(&set32, &set); 2710 /* we can get here only if sigsetsize <= sizeof(set) */ 2711 if (copy_to_user(uset, &set32, sigsetsize)) 2712 err = -EFAULT; 2713 } 2714 return err; 2715 #else 2716 return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize); 2717 #endif 2718 } 2719 #endif 2720 2721 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2722 2723 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) 2724 { 2725 int err; 2726 2727 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2728 return -EFAULT; 2729 if (from->si_code < 0) 2730 return __copy_to_user(to, from, sizeof(siginfo_t)) 2731 ? -EFAULT : 0; 2732 /* 2733 * If you change siginfo_t structure, please be sure 2734 * this code is fixed accordingly. 2735 * Please remember to update the signalfd_copyinfo() function 2736 * inside fs/signalfd.c too, in case siginfo_t changes. 2737 * It should never copy any pad contained in the structure 2738 * to avoid security leaks, but must copy the generic 2739 * 3 ints plus the relevant union member. 2740 */ 2741 err = __put_user(from->si_signo, &to->si_signo); 2742 err |= __put_user(from->si_errno, &to->si_errno); 2743 err |= __put_user((short)from->si_code, &to->si_code); 2744 switch (from->si_code & __SI_MASK) { 2745 case __SI_KILL: 2746 err |= __put_user(from->si_pid, &to->si_pid); 2747 err |= __put_user(from->si_uid, &to->si_uid); 2748 break; 2749 case __SI_TIMER: 2750 err |= __put_user(from->si_tid, &to->si_tid); 2751 err |= __put_user(from->si_overrun, &to->si_overrun); 2752 err |= __put_user(from->si_ptr, &to->si_ptr); 2753 break; 2754 case __SI_POLL: 2755 err |= __put_user(from->si_band, &to->si_band); 2756 err |= __put_user(from->si_fd, &to->si_fd); 2757 break; 2758 case __SI_FAULT: 2759 err |= __put_user(from->si_addr, &to->si_addr); 2760 #ifdef __ARCH_SI_TRAPNO 2761 err |= __put_user(from->si_trapno, &to->si_trapno); 2762 #endif 2763 #ifdef BUS_MCEERR_AO 2764 /* 2765 * Other callers might not initialize the si_lsb field, 2766 * so check explicitly for the right codes here. 2767 */ 2768 if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO) 2769 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb); 2770 #endif 2771 break; 2772 case __SI_CHLD: 2773 err |= __put_user(from->si_pid, &to->si_pid); 2774 err |= __put_user(from->si_uid, &to->si_uid); 2775 err |= __put_user(from->si_status, &to->si_status); 2776 err |= __put_user(from->si_utime, &to->si_utime); 2777 err |= __put_user(from->si_stime, &to->si_stime); 2778 break; 2779 case __SI_RT: /* This is not generated by the kernel as of now. */ 2780 case __SI_MESGQ: /* But this is */ 2781 err |= __put_user(from->si_pid, &to->si_pid); 2782 err |= __put_user(from->si_uid, &to->si_uid); 2783 err |= __put_user(from->si_ptr, &to->si_ptr); 2784 break; 2785 #ifdef __ARCH_SIGSYS 2786 case __SI_SYS: 2787 err |= __put_user(from->si_call_addr, &to->si_call_addr); 2788 err |= __put_user(from->si_syscall, &to->si_syscall); 2789 err |= __put_user(from->si_arch, &to->si_arch); 2790 break; 2791 #endif 2792 default: /* this is just in case for now ... */ 2793 err |= __put_user(from->si_pid, &to->si_pid); 2794 err |= __put_user(from->si_uid, &to->si_uid); 2795 break; 2796 } 2797 return err; 2798 } 2799 2800 #endif 2801 2802 /** 2803 * do_sigtimedwait - wait for queued signals specified in @which 2804 * @which: queued signals to wait for 2805 * @info: if non-null, the signal's siginfo is returned here 2806 * @ts: upper bound on process time suspension 2807 */ 2808 int do_sigtimedwait(const sigset_t *which, siginfo_t *info, 2809 const struct timespec *ts) 2810 { 2811 struct task_struct *tsk = current; 2812 long timeout = MAX_SCHEDULE_TIMEOUT; 2813 sigset_t mask = *which; 2814 int sig; 2815 2816 if (ts) { 2817 if (!timespec_valid(ts)) 2818 return -EINVAL; 2819 timeout = timespec_to_jiffies(ts); 2820 /* 2821 * We can be close to the next tick, add another one 2822 * to ensure we will wait at least the time asked for. 2823 */ 2824 if (ts->tv_sec || ts->tv_nsec) 2825 timeout++; 2826 } 2827 2828 /* 2829 * Invert the set of allowed signals to get those we want to block. 2830 */ 2831 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2832 signotset(&mask); 2833 2834 spin_lock_irq(&tsk->sighand->siglock); 2835 sig = dequeue_signal(tsk, &mask, info); 2836 if (!sig && timeout) { 2837 /* 2838 * None ready, temporarily unblock those we're interested 2839 * while we are sleeping in so that we'll be awakened when 2840 * they arrive. Unblocking is always fine, we can avoid 2841 * set_current_blocked(). 2842 */ 2843 tsk->real_blocked = tsk->blocked; 2844 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 2845 recalc_sigpending(); 2846 spin_unlock_irq(&tsk->sighand->siglock); 2847 2848 timeout = schedule_timeout_interruptible(timeout); 2849 2850 spin_lock_irq(&tsk->sighand->siglock); 2851 __set_task_blocked(tsk, &tsk->real_blocked); 2852 siginitset(&tsk->real_blocked, 0); 2853 sig = dequeue_signal(tsk, &mask, info); 2854 } 2855 spin_unlock_irq(&tsk->sighand->siglock); 2856 2857 if (sig) 2858 return sig; 2859 return timeout ? -EINTR : -EAGAIN; 2860 } 2861 2862 /** 2863 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 2864 * in @uthese 2865 * @uthese: queued signals to wait for 2866 * @uinfo: if non-null, the signal's siginfo is returned here 2867 * @uts: upper bound on process time suspension 2868 * @sigsetsize: size of sigset_t type 2869 */ 2870 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 2871 siginfo_t __user *, uinfo, const struct timespec __user *, uts, 2872 size_t, sigsetsize) 2873 { 2874 sigset_t these; 2875 struct timespec ts; 2876 siginfo_t info; 2877 int ret; 2878 2879 /* XXX: Don't preclude handling different sized sigset_t's. */ 2880 if (sigsetsize != sizeof(sigset_t)) 2881 return -EINVAL; 2882 2883 if (copy_from_user(&these, uthese, sizeof(these))) 2884 return -EFAULT; 2885 2886 if (uts) { 2887 if (copy_from_user(&ts, uts, sizeof(ts))) 2888 return -EFAULT; 2889 } 2890 2891 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 2892 2893 if (ret > 0 && uinfo) { 2894 if (copy_siginfo_to_user(uinfo, &info)) 2895 ret = -EFAULT; 2896 } 2897 2898 return ret; 2899 } 2900 2901 /** 2902 * sys_kill - send a signal to a process 2903 * @pid: the PID of the process 2904 * @sig: signal to be sent 2905 */ 2906 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 2907 { 2908 struct siginfo info; 2909 2910 info.si_signo = sig; 2911 info.si_errno = 0; 2912 info.si_code = SI_USER; 2913 info.si_pid = task_tgid_vnr(current); 2914 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2915 2916 return kill_something_info(sig, &info, pid); 2917 } 2918 2919 static int 2920 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) 2921 { 2922 struct task_struct *p; 2923 int error = -ESRCH; 2924 2925 rcu_read_lock(); 2926 p = find_task_by_vpid(pid); 2927 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 2928 error = check_kill_permission(sig, info, p); 2929 /* 2930 * The null signal is a permissions and process existence 2931 * probe. No signal is actually delivered. 2932 */ 2933 if (!error && sig) { 2934 error = do_send_sig_info(sig, info, p, false); 2935 /* 2936 * If lock_task_sighand() failed we pretend the task 2937 * dies after receiving the signal. The window is tiny, 2938 * and the signal is private anyway. 2939 */ 2940 if (unlikely(error == -ESRCH)) 2941 error = 0; 2942 } 2943 } 2944 rcu_read_unlock(); 2945 2946 return error; 2947 } 2948 2949 static int do_tkill(pid_t tgid, pid_t pid, int sig) 2950 { 2951 struct siginfo info = {}; 2952 2953 info.si_signo = sig; 2954 info.si_errno = 0; 2955 info.si_code = SI_TKILL; 2956 info.si_pid = task_tgid_vnr(current); 2957 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2958 2959 return do_send_specific(tgid, pid, sig, &info); 2960 } 2961 2962 /** 2963 * sys_tgkill - send signal to one specific thread 2964 * @tgid: the thread group ID of the thread 2965 * @pid: the PID of the thread 2966 * @sig: signal to be sent 2967 * 2968 * This syscall also checks the @tgid and returns -ESRCH even if the PID 2969 * exists but it's not belonging to the target process anymore. This 2970 * method solves the problem of threads exiting and PIDs getting reused. 2971 */ 2972 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 2973 { 2974 /* This is only valid for single tasks */ 2975 if (pid <= 0 || tgid <= 0) 2976 return -EINVAL; 2977 2978 return do_tkill(tgid, pid, sig); 2979 } 2980 2981 /** 2982 * sys_tkill - send signal to one specific task 2983 * @pid: the PID of the task 2984 * @sig: signal to be sent 2985 * 2986 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2987 */ 2988 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 2989 { 2990 /* This is only valid for single tasks */ 2991 if (pid <= 0) 2992 return -EINVAL; 2993 2994 return do_tkill(0, pid, sig); 2995 } 2996 2997 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info) 2998 { 2999 /* Not even root can pretend to send signals from the kernel. 3000 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3001 */ 3002 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3003 (task_pid_vnr(current) != pid)) { 3004 /* We used to allow any < 0 si_code */ 3005 WARN_ON_ONCE(info->si_code < 0); 3006 return -EPERM; 3007 } 3008 info->si_signo = sig; 3009 3010 /* POSIX.1b doesn't mention process groups. */ 3011 return kill_proc_info(sig, info, pid); 3012 } 3013 3014 /** 3015 * sys_rt_sigqueueinfo - send signal information to a signal 3016 * @pid: the PID of the thread 3017 * @sig: signal to be sent 3018 * @uinfo: signal info to be sent 3019 */ 3020 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 3021 siginfo_t __user *, uinfo) 3022 { 3023 siginfo_t info; 3024 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 3025 return -EFAULT; 3026 return do_rt_sigqueueinfo(pid, sig, &info); 3027 } 3028 3029 #ifdef CONFIG_COMPAT 3030 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 3031 compat_pid_t, pid, 3032 int, sig, 3033 struct compat_siginfo __user *, uinfo) 3034 { 3035 siginfo_t info; 3036 int ret = copy_siginfo_from_user32(&info, uinfo); 3037 if (unlikely(ret)) 3038 return ret; 3039 return do_rt_sigqueueinfo(pid, sig, &info); 3040 } 3041 #endif 3042 3043 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info) 3044 { 3045 /* This is only valid for single tasks */ 3046 if (pid <= 0 || tgid <= 0) 3047 return -EINVAL; 3048 3049 /* Not even root can pretend to send signals from the kernel. 3050 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3051 */ 3052 if (((info->si_code >= 0 || info->si_code == SI_TKILL)) && 3053 (task_pid_vnr(current) != pid)) { 3054 /* We used to allow any < 0 si_code */ 3055 WARN_ON_ONCE(info->si_code < 0); 3056 return -EPERM; 3057 } 3058 info->si_signo = sig; 3059 3060 return do_send_specific(tgid, pid, sig, info); 3061 } 3062 3063 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 3064 siginfo_t __user *, uinfo) 3065 { 3066 siginfo_t info; 3067 3068 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 3069 return -EFAULT; 3070 3071 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3072 } 3073 3074 #ifdef CONFIG_COMPAT 3075 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 3076 compat_pid_t, tgid, 3077 compat_pid_t, pid, 3078 int, sig, 3079 struct compat_siginfo __user *, uinfo) 3080 { 3081 siginfo_t info; 3082 3083 if (copy_siginfo_from_user32(&info, uinfo)) 3084 return -EFAULT; 3085 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3086 } 3087 #endif 3088 3089 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 3090 { 3091 struct task_struct *t = current; 3092 struct k_sigaction *k; 3093 sigset_t mask; 3094 3095 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 3096 return -EINVAL; 3097 3098 k = &t->sighand->action[sig-1]; 3099 3100 spin_lock_irq(¤t->sighand->siglock); 3101 if (oact) 3102 *oact = *k; 3103 3104 if (act) { 3105 sigdelsetmask(&act->sa.sa_mask, 3106 sigmask(SIGKILL) | sigmask(SIGSTOP)); 3107 *k = *act; 3108 /* 3109 * POSIX 3.3.1.3: 3110 * "Setting a signal action to SIG_IGN for a signal that is 3111 * pending shall cause the pending signal to be discarded, 3112 * whether or not it is blocked." 3113 * 3114 * "Setting a signal action to SIG_DFL for a signal that is 3115 * pending and whose default action is to ignore the signal 3116 * (for example, SIGCHLD), shall cause the pending signal to 3117 * be discarded, whether or not it is blocked" 3118 */ 3119 if (sig_handler_ignored(sig_handler(t, sig), sig)) { 3120 sigemptyset(&mask); 3121 sigaddset(&mask, sig); 3122 rm_from_queue_full(&mask, &t->signal->shared_pending); 3123 do { 3124 rm_from_queue_full(&mask, &t->pending); 3125 t = next_thread(t); 3126 } while (t != current); 3127 } 3128 } 3129 3130 spin_unlock_irq(¤t->sighand->siglock); 3131 return 0; 3132 } 3133 3134 static int 3135 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 3136 { 3137 stack_t oss; 3138 int error; 3139 3140 oss.ss_sp = (void __user *) current->sas_ss_sp; 3141 oss.ss_size = current->sas_ss_size; 3142 oss.ss_flags = sas_ss_flags(sp); 3143 3144 if (uss) { 3145 void __user *ss_sp; 3146 size_t ss_size; 3147 int ss_flags; 3148 3149 error = -EFAULT; 3150 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))) 3151 goto out; 3152 error = __get_user(ss_sp, &uss->ss_sp) | 3153 __get_user(ss_flags, &uss->ss_flags) | 3154 __get_user(ss_size, &uss->ss_size); 3155 if (error) 3156 goto out; 3157 3158 error = -EPERM; 3159 if (on_sig_stack(sp)) 3160 goto out; 3161 3162 error = -EINVAL; 3163 /* 3164 * Note - this code used to test ss_flags incorrectly: 3165 * old code may have been written using ss_flags==0 3166 * to mean ss_flags==SS_ONSTACK (as this was the only 3167 * way that worked) - this fix preserves that older 3168 * mechanism. 3169 */ 3170 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) 3171 goto out; 3172 3173 if (ss_flags == SS_DISABLE) { 3174 ss_size = 0; 3175 ss_sp = NULL; 3176 } else { 3177 error = -ENOMEM; 3178 if (ss_size < MINSIGSTKSZ) 3179 goto out; 3180 } 3181 3182 current->sas_ss_sp = (unsigned long) ss_sp; 3183 current->sas_ss_size = ss_size; 3184 } 3185 3186 error = 0; 3187 if (uoss) { 3188 error = -EFAULT; 3189 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss))) 3190 goto out; 3191 error = __put_user(oss.ss_sp, &uoss->ss_sp) | 3192 __put_user(oss.ss_size, &uoss->ss_size) | 3193 __put_user(oss.ss_flags, &uoss->ss_flags); 3194 } 3195 3196 out: 3197 return error; 3198 } 3199 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 3200 { 3201 return do_sigaltstack(uss, uoss, current_user_stack_pointer()); 3202 } 3203 3204 int restore_altstack(const stack_t __user *uss) 3205 { 3206 int err = do_sigaltstack(uss, NULL, current_user_stack_pointer()); 3207 /* squash all but EFAULT for now */ 3208 return err == -EFAULT ? err : 0; 3209 } 3210 3211 int __save_altstack(stack_t __user *uss, unsigned long sp) 3212 { 3213 struct task_struct *t = current; 3214 return __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 3215 __put_user(sas_ss_flags(sp), &uss->ss_flags) | 3216 __put_user(t->sas_ss_size, &uss->ss_size); 3217 } 3218 3219 #ifdef CONFIG_COMPAT 3220 COMPAT_SYSCALL_DEFINE2(sigaltstack, 3221 const compat_stack_t __user *, uss_ptr, 3222 compat_stack_t __user *, uoss_ptr) 3223 { 3224 stack_t uss, uoss; 3225 int ret; 3226 mm_segment_t seg; 3227 3228 if (uss_ptr) { 3229 compat_stack_t uss32; 3230 3231 memset(&uss, 0, sizeof(stack_t)); 3232 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 3233 return -EFAULT; 3234 uss.ss_sp = compat_ptr(uss32.ss_sp); 3235 uss.ss_flags = uss32.ss_flags; 3236 uss.ss_size = uss32.ss_size; 3237 } 3238 seg = get_fs(); 3239 set_fs(KERNEL_DS); 3240 ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL), 3241 (stack_t __force __user *) &uoss, 3242 compat_user_stack_pointer()); 3243 set_fs(seg); 3244 if (ret >= 0 && uoss_ptr) { 3245 if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) || 3246 __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) || 3247 __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) || 3248 __put_user(uoss.ss_size, &uoss_ptr->ss_size)) 3249 ret = -EFAULT; 3250 } 3251 return ret; 3252 } 3253 3254 int compat_restore_altstack(const compat_stack_t __user *uss) 3255 { 3256 int err = compat_sys_sigaltstack(uss, NULL); 3257 /* squash all but -EFAULT for now */ 3258 return err == -EFAULT ? err : 0; 3259 } 3260 3261 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 3262 { 3263 struct task_struct *t = current; 3264 return __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) | 3265 __put_user(sas_ss_flags(sp), &uss->ss_flags) | 3266 __put_user(t->sas_ss_size, &uss->ss_size); 3267 } 3268 #endif 3269 3270 #ifdef __ARCH_WANT_SYS_SIGPENDING 3271 3272 /** 3273 * sys_sigpending - examine pending signals 3274 * @set: where mask of pending signal is returned 3275 */ 3276 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set) 3277 { 3278 return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t)); 3279 } 3280 3281 #endif 3282 3283 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 3284 /** 3285 * sys_sigprocmask - examine and change blocked signals 3286 * @how: whether to add, remove, or set signals 3287 * @nset: signals to add or remove (if non-null) 3288 * @oset: previous value of signal mask if non-null 3289 * 3290 * Some platforms have their own version with special arguments; 3291 * others support only sys_rt_sigprocmask. 3292 */ 3293 3294 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 3295 old_sigset_t __user *, oset) 3296 { 3297 old_sigset_t old_set, new_set; 3298 sigset_t new_blocked; 3299 3300 old_set = current->blocked.sig[0]; 3301 3302 if (nset) { 3303 if (copy_from_user(&new_set, nset, sizeof(*nset))) 3304 return -EFAULT; 3305 3306 new_blocked = current->blocked; 3307 3308 switch (how) { 3309 case SIG_BLOCK: 3310 sigaddsetmask(&new_blocked, new_set); 3311 break; 3312 case SIG_UNBLOCK: 3313 sigdelsetmask(&new_blocked, new_set); 3314 break; 3315 case SIG_SETMASK: 3316 new_blocked.sig[0] = new_set; 3317 break; 3318 default: 3319 return -EINVAL; 3320 } 3321 3322 set_current_blocked(&new_blocked); 3323 } 3324 3325 if (oset) { 3326 if (copy_to_user(oset, &old_set, sizeof(*oset))) 3327 return -EFAULT; 3328 } 3329 3330 return 0; 3331 } 3332 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 3333 3334 #ifndef CONFIG_ODD_RT_SIGACTION 3335 /** 3336 * sys_rt_sigaction - alter an action taken by a process 3337 * @sig: signal to be sent 3338 * @act: new sigaction 3339 * @oact: used to save the previous sigaction 3340 * @sigsetsize: size of sigset_t type 3341 */ 3342 SYSCALL_DEFINE4(rt_sigaction, int, sig, 3343 const struct sigaction __user *, act, 3344 struct sigaction __user *, oact, 3345 size_t, sigsetsize) 3346 { 3347 struct k_sigaction new_sa, old_sa; 3348 int ret = -EINVAL; 3349 3350 /* XXX: Don't preclude handling different sized sigset_t's. */ 3351 if (sigsetsize != sizeof(sigset_t)) 3352 goto out; 3353 3354 if (act) { 3355 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 3356 return -EFAULT; 3357 } 3358 3359 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 3360 3361 if (!ret && oact) { 3362 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 3363 return -EFAULT; 3364 } 3365 out: 3366 return ret; 3367 } 3368 #ifdef CONFIG_COMPAT 3369 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 3370 const struct compat_sigaction __user *, act, 3371 struct compat_sigaction __user *, oact, 3372 compat_size_t, sigsetsize) 3373 { 3374 struct k_sigaction new_ka, old_ka; 3375 compat_sigset_t mask; 3376 #ifdef __ARCH_HAS_SA_RESTORER 3377 compat_uptr_t restorer; 3378 #endif 3379 int ret; 3380 3381 /* XXX: Don't preclude handling different sized sigset_t's. */ 3382 if (sigsetsize != sizeof(compat_sigset_t)) 3383 return -EINVAL; 3384 3385 if (act) { 3386 compat_uptr_t handler; 3387 ret = get_user(handler, &act->sa_handler); 3388 new_ka.sa.sa_handler = compat_ptr(handler); 3389 #ifdef __ARCH_HAS_SA_RESTORER 3390 ret |= get_user(restorer, &act->sa_restorer); 3391 new_ka.sa.sa_restorer = compat_ptr(restorer); 3392 #endif 3393 ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask)); 3394 ret |= __get_user(new_ka.sa.sa_flags, &act->sa_flags); 3395 if (ret) 3396 return -EFAULT; 3397 sigset_from_compat(&new_ka.sa.sa_mask, &mask); 3398 } 3399 3400 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3401 if (!ret && oact) { 3402 sigset_to_compat(&mask, &old_ka.sa.sa_mask); 3403 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 3404 &oact->sa_handler); 3405 ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask)); 3406 ret |= __put_user(old_ka.sa.sa_flags, &oact->sa_flags); 3407 #ifdef __ARCH_HAS_SA_RESTORER 3408 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 3409 &oact->sa_restorer); 3410 #endif 3411 } 3412 return ret; 3413 } 3414 #endif 3415 #endif /* !CONFIG_ODD_RT_SIGACTION */ 3416 3417 #ifdef CONFIG_OLD_SIGACTION 3418 SYSCALL_DEFINE3(sigaction, int, sig, 3419 const struct old_sigaction __user *, act, 3420 struct old_sigaction __user *, oact) 3421 { 3422 struct k_sigaction new_ka, old_ka; 3423 int ret; 3424 3425 if (act) { 3426 old_sigset_t mask; 3427 if (!access_ok(VERIFY_READ, act, sizeof(*act)) || 3428 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 3429 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 3430 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 3431 __get_user(mask, &act->sa_mask)) 3432 return -EFAULT; 3433 #ifdef __ARCH_HAS_KA_RESTORER 3434 new_ka.ka_restorer = NULL; 3435 #endif 3436 siginitset(&new_ka.sa.sa_mask, mask); 3437 } 3438 3439 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3440 3441 if (!ret && oact) { 3442 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) || 3443 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 3444 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 3445 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 3446 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 3447 return -EFAULT; 3448 } 3449 3450 return ret; 3451 } 3452 #endif 3453 #ifdef CONFIG_COMPAT_OLD_SIGACTION 3454 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 3455 const struct compat_old_sigaction __user *, act, 3456 struct compat_old_sigaction __user *, oact) 3457 { 3458 struct k_sigaction new_ka, old_ka; 3459 int ret; 3460 compat_old_sigset_t mask; 3461 compat_uptr_t handler, restorer; 3462 3463 if (act) { 3464 if (!access_ok(VERIFY_READ, act, sizeof(*act)) || 3465 __get_user(handler, &act->sa_handler) || 3466 __get_user(restorer, &act->sa_restorer) || 3467 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 3468 __get_user(mask, &act->sa_mask)) 3469 return -EFAULT; 3470 3471 #ifdef __ARCH_HAS_KA_RESTORER 3472 new_ka.ka_restorer = NULL; 3473 #endif 3474 new_ka.sa.sa_handler = compat_ptr(handler); 3475 new_ka.sa.sa_restorer = compat_ptr(restorer); 3476 siginitset(&new_ka.sa.sa_mask, mask); 3477 } 3478 3479 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3480 3481 if (!ret && oact) { 3482 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) || 3483 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 3484 &oact->sa_handler) || 3485 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 3486 &oact->sa_restorer) || 3487 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 3488 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 3489 return -EFAULT; 3490 } 3491 return ret; 3492 } 3493 #endif 3494 3495 #ifdef __ARCH_WANT_SYS_SGETMASK 3496 3497 /* 3498 * For backwards compatibility. Functionality superseded by sigprocmask. 3499 */ 3500 SYSCALL_DEFINE0(sgetmask) 3501 { 3502 /* SMP safe */ 3503 return current->blocked.sig[0]; 3504 } 3505 3506 SYSCALL_DEFINE1(ssetmask, int, newmask) 3507 { 3508 int old = current->blocked.sig[0]; 3509 sigset_t newset; 3510 3511 siginitset(&newset, newmask); 3512 set_current_blocked(&newset); 3513 3514 return old; 3515 } 3516 #endif /* __ARCH_WANT_SGETMASK */ 3517 3518 #ifdef __ARCH_WANT_SYS_SIGNAL 3519 /* 3520 * For backwards compatibility. Functionality superseded by sigaction. 3521 */ 3522 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 3523 { 3524 struct k_sigaction new_sa, old_sa; 3525 int ret; 3526 3527 new_sa.sa.sa_handler = handler; 3528 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 3529 sigemptyset(&new_sa.sa.sa_mask); 3530 3531 ret = do_sigaction(sig, &new_sa, &old_sa); 3532 3533 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 3534 } 3535 #endif /* __ARCH_WANT_SYS_SIGNAL */ 3536 3537 #ifdef __ARCH_WANT_SYS_PAUSE 3538 3539 SYSCALL_DEFINE0(pause) 3540 { 3541 while (!signal_pending(current)) { 3542 current->state = TASK_INTERRUPTIBLE; 3543 schedule(); 3544 } 3545 return -ERESTARTNOHAND; 3546 } 3547 3548 #endif 3549 3550 int sigsuspend(sigset_t *set) 3551 { 3552 current->saved_sigmask = current->blocked; 3553 set_current_blocked(set); 3554 3555 current->state = TASK_INTERRUPTIBLE; 3556 schedule(); 3557 set_restore_sigmask(); 3558 return -ERESTARTNOHAND; 3559 } 3560 3561 /** 3562 * sys_rt_sigsuspend - replace the signal mask for a value with the 3563 * @unewset value until a signal is received 3564 * @unewset: new signal mask value 3565 * @sigsetsize: size of sigset_t type 3566 */ 3567 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 3568 { 3569 sigset_t newset; 3570 3571 /* XXX: Don't preclude handling different sized sigset_t's. */ 3572 if (sigsetsize != sizeof(sigset_t)) 3573 return -EINVAL; 3574 3575 if (copy_from_user(&newset, unewset, sizeof(newset))) 3576 return -EFAULT; 3577 return sigsuspend(&newset); 3578 } 3579 3580 #ifdef CONFIG_COMPAT 3581 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 3582 { 3583 #ifdef __BIG_ENDIAN 3584 sigset_t newset; 3585 compat_sigset_t newset32; 3586 3587 /* XXX: Don't preclude handling different sized sigset_t's. */ 3588 if (sigsetsize != sizeof(sigset_t)) 3589 return -EINVAL; 3590 3591 if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t))) 3592 return -EFAULT; 3593 sigset_from_compat(&newset, &newset32); 3594 return sigsuspend(&newset); 3595 #else 3596 /* on little-endian bitmaps don't care about granularity */ 3597 return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize); 3598 #endif 3599 } 3600 #endif 3601 3602 #ifdef CONFIG_OLD_SIGSUSPEND 3603 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 3604 { 3605 sigset_t blocked; 3606 siginitset(&blocked, mask); 3607 return sigsuspend(&blocked); 3608 } 3609 #endif 3610 #ifdef CONFIG_OLD_SIGSUSPEND3 3611 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 3612 { 3613 sigset_t blocked; 3614 siginitset(&blocked, mask); 3615 return sigsuspend(&blocked); 3616 } 3617 #endif 3618 3619 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma) 3620 { 3621 return NULL; 3622 } 3623 3624 void __init signals_init(void) 3625 { 3626 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 3627 } 3628 3629 #ifdef CONFIG_KGDB_KDB 3630 #include <linux/kdb.h> 3631 /* 3632 * kdb_send_sig_info - Allows kdb to send signals without exposing 3633 * signal internals. This function checks if the required locks are 3634 * available before calling the main signal code, to avoid kdb 3635 * deadlocks. 3636 */ 3637 void 3638 kdb_send_sig_info(struct task_struct *t, struct siginfo *info) 3639 { 3640 static struct task_struct *kdb_prev_t; 3641 int sig, new_t; 3642 if (!spin_trylock(&t->sighand->siglock)) { 3643 kdb_printf("Can't do kill command now.\n" 3644 "The sigmask lock is held somewhere else in " 3645 "kernel, try again later\n"); 3646 return; 3647 } 3648 spin_unlock(&t->sighand->siglock); 3649 new_t = kdb_prev_t != t; 3650 kdb_prev_t = t; 3651 if (t->state != TASK_RUNNING && new_t) { 3652 kdb_printf("Process is not RUNNING, sending a signal from " 3653 "kdb risks deadlock\n" 3654 "on the run queue locks. " 3655 "The signal has _not_ been sent.\n" 3656 "Reissue the kill command if you want to risk " 3657 "the deadlock.\n"); 3658 return; 3659 } 3660 sig = info->si_signo; 3661 if (send_sig_info(sig, info, t)) 3662 kdb_printf("Fail to deliver Signal %d to process %d.\n", 3663 sig, t->pid); 3664 else 3665 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 3666 } 3667 #endif /* CONFIG_KGDB_KDB */ 3668