xref: /linux/kernel/signal.c (revision a078ccff5642a8fe792a43b3d973bcc3f6dd733f)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/signalfd.h>
26 #include <linux/ratelimit.h>
27 #include <linux/tracehook.h>
28 #include <linux/capability.h>
29 #include <linux/freezer.h>
30 #include <linux/pid_namespace.h>
31 #include <linux/nsproxy.h>
32 #include <linux/user_namespace.h>
33 #include <linux/uprobes.h>
34 #include <linux/compat.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/signal.h>
37 
38 #include <asm/param.h>
39 #include <asm/uaccess.h>
40 #include <asm/unistd.h>
41 #include <asm/siginfo.h>
42 #include <asm/cacheflush.h>
43 #include "audit.h"	/* audit_signal_info() */
44 
45 /*
46  * SLAB caches for signal bits.
47  */
48 
49 static struct kmem_cache *sigqueue_cachep;
50 
51 int print_fatal_signals __read_mostly;
52 
53 static void __user *sig_handler(struct task_struct *t, int sig)
54 {
55 	return t->sighand->action[sig - 1].sa.sa_handler;
56 }
57 
58 static int sig_handler_ignored(void __user *handler, int sig)
59 {
60 	/* Is it explicitly or implicitly ignored? */
61 	return handler == SIG_IGN ||
62 		(handler == SIG_DFL && sig_kernel_ignore(sig));
63 }
64 
65 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
66 {
67 	void __user *handler;
68 
69 	handler = sig_handler(t, sig);
70 
71 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
72 			handler == SIG_DFL && !force)
73 		return 1;
74 
75 	return sig_handler_ignored(handler, sig);
76 }
77 
78 static int sig_ignored(struct task_struct *t, int sig, bool force)
79 {
80 	/*
81 	 * Blocked signals are never ignored, since the
82 	 * signal handler may change by the time it is
83 	 * unblocked.
84 	 */
85 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
86 		return 0;
87 
88 	if (!sig_task_ignored(t, sig, force))
89 		return 0;
90 
91 	/*
92 	 * Tracers may want to know about even ignored signals.
93 	 */
94 	return !t->ptrace;
95 }
96 
97 /*
98  * Re-calculate pending state from the set of locally pending
99  * signals, globally pending signals, and blocked signals.
100  */
101 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
102 {
103 	unsigned long ready;
104 	long i;
105 
106 	switch (_NSIG_WORDS) {
107 	default:
108 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
109 			ready |= signal->sig[i] &~ blocked->sig[i];
110 		break;
111 
112 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
113 		ready |= signal->sig[2] &~ blocked->sig[2];
114 		ready |= signal->sig[1] &~ blocked->sig[1];
115 		ready |= signal->sig[0] &~ blocked->sig[0];
116 		break;
117 
118 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
119 		ready |= signal->sig[0] &~ blocked->sig[0];
120 		break;
121 
122 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
123 	}
124 	return ready !=	0;
125 }
126 
127 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
128 
129 static int recalc_sigpending_tsk(struct task_struct *t)
130 {
131 	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
132 	    PENDING(&t->pending, &t->blocked) ||
133 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
134 		set_tsk_thread_flag(t, TIF_SIGPENDING);
135 		return 1;
136 	}
137 	/*
138 	 * We must never clear the flag in another thread, or in current
139 	 * when it's possible the current syscall is returning -ERESTART*.
140 	 * So we don't clear it here, and only callers who know they should do.
141 	 */
142 	return 0;
143 }
144 
145 /*
146  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
147  * This is superfluous when called on current, the wakeup is a harmless no-op.
148  */
149 void recalc_sigpending_and_wake(struct task_struct *t)
150 {
151 	if (recalc_sigpending_tsk(t))
152 		signal_wake_up(t, 0);
153 }
154 
155 void recalc_sigpending(void)
156 {
157 	if (!recalc_sigpending_tsk(current) && !freezing(current))
158 		clear_thread_flag(TIF_SIGPENDING);
159 
160 }
161 
162 /* Given the mask, find the first available signal that should be serviced. */
163 
164 #define SYNCHRONOUS_MASK \
165 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
166 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
167 
168 int next_signal(struct sigpending *pending, sigset_t *mask)
169 {
170 	unsigned long i, *s, *m, x;
171 	int sig = 0;
172 
173 	s = pending->signal.sig;
174 	m = mask->sig;
175 
176 	/*
177 	 * Handle the first word specially: it contains the
178 	 * synchronous signals that need to be dequeued first.
179 	 */
180 	x = *s &~ *m;
181 	if (x) {
182 		if (x & SYNCHRONOUS_MASK)
183 			x &= SYNCHRONOUS_MASK;
184 		sig = ffz(~x) + 1;
185 		return sig;
186 	}
187 
188 	switch (_NSIG_WORDS) {
189 	default:
190 		for (i = 1; i < _NSIG_WORDS; ++i) {
191 			x = *++s &~ *++m;
192 			if (!x)
193 				continue;
194 			sig = ffz(~x) + i*_NSIG_BPW + 1;
195 			break;
196 		}
197 		break;
198 
199 	case 2:
200 		x = s[1] &~ m[1];
201 		if (!x)
202 			break;
203 		sig = ffz(~x) + _NSIG_BPW + 1;
204 		break;
205 
206 	case 1:
207 		/* Nothing to do */
208 		break;
209 	}
210 
211 	return sig;
212 }
213 
214 static inline void print_dropped_signal(int sig)
215 {
216 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
217 
218 	if (!print_fatal_signals)
219 		return;
220 
221 	if (!__ratelimit(&ratelimit_state))
222 		return;
223 
224 	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
225 				current->comm, current->pid, sig);
226 }
227 
228 /**
229  * task_set_jobctl_pending - set jobctl pending bits
230  * @task: target task
231  * @mask: pending bits to set
232  *
233  * Clear @mask from @task->jobctl.  @mask must be subset of
234  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
235  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
236  * cleared.  If @task is already being killed or exiting, this function
237  * becomes noop.
238  *
239  * CONTEXT:
240  * Must be called with @task->sighand->siglock held.
241  *
242  * RETURNS:
243  * %true if @mask is set, %false if made noop because @task was dying.
244  */
245 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
246 {
247 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
248 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
249 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
250 
251 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
252 		return false;
253 
254 	if (mask & JOBCTL_STOP_SIGMASK)
255 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
256 
257 	task->jobctl |= mask;
258 	return true;
259 }
260 
261 /**
262  * task_clear_jobctl_trapping - clear jobctl trapping bit
263  * @task: target task
264  *
265  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
266  * Clear it and wake up the ptracer.  Note that we don't need any further
267  * locking.  @task->siglock guarantees that @task->parent points to the
268  * ptracer.
269  *
270  * CONTEXT:
271  * Must be called with @task->sighand->siglock held.
272  */
273 void task_clear_jobctl_trapping(struct task_struct *task)
274 {
275 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
276 		task->jobctl &= ~JOBCTL_TRAPPING;
277 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
278 	}
279 }
280 
281 /**
282  * task_clear_jobctl_pending - clear jobctl pending bits
283  * @task: target task
284  * @mask: pending bits to clear
285  *
286  * Clear @mask from @task->jobctl.  @mask must be subset of
287  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
288  * STOP bits are cleared together.
289  *
290  * If clearing of @mask leaves no stop or trap pending, this function calls
291  * task_clear_jobctl_trapping().
292  *
293  * CONTEXT:
294  * Must be called with @task->sighand->siglock held.
295  */
296 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
297 {
298 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
299 
300 	if (mask & JOBCTL_STOP_PENDING)
301 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
302 
303 	task->jobctl &= ~mask;
304 
305 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
306 		task_clear_jobctl_trapping(task);
307 }
308 
309 /**
310  * task_participate_group_stop - participate in a group stop
311  * @task: task participating in a group stop
312  *
313  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
314  * Group stop states are cleared and the group stop count is consumed if
315  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
316  * stop, the appropriate %SIGNAL_* flags are set.
317  *
318  * CONTEXT:
319  * Must be called with @task->sighand->siglock held.
320  *
321  * RETURNS:
322  * %true if group stop completion should be notified to the parent, %false
323  * otherwise.
324  */
325 static bool task_participate_group_stop(struct task_struct *task)
326 {
327 	struct signal_struct *sig = task->signal;
328 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
329 
330 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
331 
332 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
333 
334 	if (!consume)
335 		return false;
336 
337 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
338 		sig->group_stop_count--;
339 
340 	/*
341 	 * Tell the caller to notify completion iff we are entering into a
342 	 * fresh group stop.  Read comment in do_signal_stop() for details.
343 	 */
344 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
345 		sig->flags = SIGNAL_STOP_STOPPED;
346 		return true;
347 	}
348 	return false;
349 }
350 
351 /*
352  * allocate a new signal queue record
353  * - this may be called without locks if and only if t == current, otherwise an
354  *   appropriate lock must be held to stop the target task from exiting
355  */
356 static struct sigqueue *
357 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
358 {
359 	struct sigqueue *q = NULL;
360 	struct user_struct *user;
361 
362 	/*
363 	 * Protect access to @t credentials. This can go away when all
364 	 * callers hold rcu read lock.
365 	 */
366 	rcu_read_lock();
367 	user = get_uid(__task_cred(t)->user);
368 	atomic_inc(&user->sigpending);
369 	rcu_read_unlock();
370 
371 	if (override_rlimit ||
372 	    atomic_read(&user->sigpending) <=
373 			task_rlimit(t, RLIMIT_SIGPENDING)) {
374 		q = kmem_cache_alloc(sigqueue_cachep, flags);
375 	} else {
376 		print_dropped_signal(sig);
377 	}
378 
379 	if (unlikely(q == NULL)) {
380 		atomic_dec(&user->sigpending);
381 		free_uid(user);
382 	} else {
383 		INIT_LIST_HEAD(&q->list);
384 		q->flags = 0;
385 		q->user = user;
386 	}
387 
388 	return q;
389 }
390 
391 static void __sigqueue_free(struct sigqueue *q)
392 {
393 	if (q->flags & SIGQUEUE_PREALLOC)
394 		return;
395 	atomic_dec(&q->user->sigpending);
396 	free_uid(q->user);
397 	kmem_cache_free(sigqueue_cachep, q);
398 }
399 
400 void flush_sigqueue(struct sigpending *queue)
401 {
402 	struct sigqueue *q;
403 
404 	sigemptyset(&queue->signal);
405 	while (!list_empty(&queue->list)) {
406 		q = list_entry(queue->list.next, struct sigqueue , list);
407 		list_del_init(&q->list);
408 		__sigqueue_free(q);
409 	}
410 }
411 
412 /*
413  * Flush all pending signals for a task.
414  */
415 void __flush_signals(struct task_struct *t)
416 {
417 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
418 	flush_sigqueue(&t->pending);
419 	flush_sigqueue(&t->signal->shared_pending);
420 }
421 
422 void flush_signals(struct task_struct *t)
423 {
424 	unsigned long flags;
425 
426 	spin_lock_irqsave(&t->sighand->siglock, flags);
427 	__flush_signals(t);
428 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
429 }
430 
431 static void __flush_itimer_signals(struct sigpending *pending)
432 {
433 	sigset_t signal, retain;
434 	struct sigqueue *q, *n;
435 
436 	signal = pending->signal;
437 	sigemptyset(&retain);
438 
439 	list_for_each_entry_safe(q, n, &pending->list, list) {
440 		int sig = q->info.si_signo;
441 
442 		if (likely(q->info.si_code != SI_TIMER)) {
443 			sigaddset(&retain, sig);
444 		} else {
445 			sigdelset(&signal, sig);
446 			list_del_init(&q->list);
447 			__sigqueue_free(q);
448 		}
449 	}
450 
451 	sigorsets(&pending->signal, &signal, &retain);
452 }
453 
454 void flush_itimer_signals(void)
455 {
456 	struct task_struct *tsk = current;
457 	unsigned long flags;
458 
459 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
460 	__flush_itimer_signals(&tsk->pending);
461 	__flush_itimer_signals(&tsk->signal->shared_pending);
462 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
463 }
464 
465 void ignore_signals(struct task_struct *t)
466 {
467 	int i;
468 
469 	for (i = 0; i < _NSIG; ++i)
470 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
471 
472 	flush_signals(t);
473 }
474 
475 /*
476  * Flush all handlers for a task.
477  */
478 
479 void
480 flush_signal_handlers(struct task_struct *t, int force_default)
481 {
482 	int i;
483 	struct k_sigaction *ka = &t->sighand->action[0];
484 	for (i = _NSIG ; i != 0 ; i--) {
485 		if (force_default || ka->sa.sa_handler != SIG_IGN)
486 			ka->sa.sa_handler = SIG_DFL;
487 		ka->sa.sa_flags = 0;
488 #ifdef __ARCH_HAS_SA_RESTORER
489 		ka->sa.sa_restorer = NULL;
490 #endif
491 		sigemptyset(&ka->sa.sa_mask);
492 		ka++;
493 	}
494 }
495 
496 int unhandled_signal(struct task_struct *tsk, int sig)
497 {
498 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
499 	if (is_global_init(tsk))
500 		return 1;
501 	if (handler != SIG_IGN && handler != SIG_DFL)
502 		return 0;
503 	/* if ptraced, let the tracer determine */
504 	return !tsk->ptrace;
505 }
506 
507 /*
508  * Notify the system that a driver wants to block all signals for this
509  * process, and wants to be notified if any signals at all were to be
510  * sent/acted upon.  If the notifier routine returns non-zero, then the
511  * signal will be acted upon after all.  If the notifier routine returns 0,
512  * then then signal will be blocked.  Only one block per process is
513  * allowed.  priv is a pointer to private data that the notifier routine
514  * can use to determine if the signal should be blocked or not.
515  */
516 void
517 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
518 {
519 	unsigned long flags;
520 
521 	spin_lock_irqsave(&current->sighand->siglock, flags);
522 	current->notifier_mask = mask;
523 	current->notifier_data = priv;
524 	current->notifier = notifier;
525 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
526 }
527 
528 /* Notify the system that blocking has ended. */
529 
530 void
531 unblock_all_signals(void)
532 {
533 	unsigned long flags;
534 
535 	spin_lock_irqsave(&current->sighand->siglock, flags);
536 	current->notifier = NULL;
537 	current->notifier_data = NULL;
538 	recalc_sigpending();
539 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
540 }
541 
542 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
543 {
544 	struct sigqueue *q, *first = NULL;
545 
546 	/*
547 	 * Collect the siginfo appropriate to this signal.  Check if
548 	 * there is another siginfo for the same signal.
549 	*/
550 	list_for_each_entry(q, &list->list, list) {
551 		if (q->info.si_signo == sig) {
552 			if (first)
553 				goto still_pending;
554 			first = q;
555 		}
556 	}
557 
558 	sigdelset(&list->signal, sig);
559 
560 	if (first) {
561 still_pending:
562 		list_del_init(&first->list);
563 		copy_siginfo(info, &first->info);
564 		__sigqueue_free(first);
565 	} else {
566 		/*
567 		 * Ok, it wasn't in the queue.  This must be
568 		 * a fast-pathed signal or we must have been
569 		 * out of queue space.  So zero out the info.
570 		 */
571 		info->si_signo = sig;
572 		info->si_errno = 0;
573 		info->si_code = SI_USER;
574 		info->si_pid = 0;
575 		info->si_uid = 0;
576 	}
577 }
578 
579 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
580 			siginfo_t *info)
581 {
582 	int sig = next_signal(pending, mask);
583 
584 	if (sig) {
585 		if (current->notifier) {
586 			if (sigismember(current->notifier_mask, sig)) {
587 				if (!(current->notifier)(current->notifier_data)) {
588 					clear_thread_flag(TIF_SIGPENDING);
589 					return 0;
590 				}
591 			}
592 		}
593 
594 		collect_signal(sig, pending, info);
595 	}
596 
597 	return sig;
598 }
599 
600 /*
601  * Dequeue a signal and return the element to the caller, which is
602  * expected to free it.
603  *
604  * All callers have to hold the siglock.
605  */
606 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
607 {
608 	int signr;
609 
610 	/* We only dequeue private signals from ourselves, we don't let
611 	 * signalfd steal them
612 	 */
613 	signr = __dequeue_signal(&tsk->pending, mask, info);
614 	if (!signr) {
615 		signr = __dequeue_signal(&tsk->signal->shared_pending,
616 					 mask, info);
617 		/*
618 		 * itimer signal ?
619 		 *
620 		 * itimers are process shared and we restart periodic
621 		 * itimers in the signal delivery path to prevent DoS
622 		 * attacks in the high resolution timer case. This is
623 		 * compliant with the old way of self-restarting
624 		 * itimers, as the SIGALRM is a legacy signal and only
625 		 * queued once. Changing the restart behaviour to
626 		 * restart the timer in the signal dequeue path is
627 		 * reducing the timer noise on heavy loaded !highres
628 		 * systems too.
629 		 */
630 		if (unlikely(signr == SIGALRM)) {
631 			struct hrtimer *tmr = &tsk->signal->real_timer;
632 
633 			if (!hrtimer_is_queued(tmr) &&
634 			    tsk->signal->it_real_incr.tv64 != 0) {
635 				hrtimer_forward(tmr, tmr->base->get_time(),
636 						tsk->signal->it_real_incr);
637 				hrtimer_restart(tmr);
638 			}
639 		}
640 	}
641 
642 	recalc_sigpending();
643 	if (!signr)
644 		return 0;
645 
646 	if (unlikely(sig_kernel_stop(signr))) {
647 		/*
648 		 * Set a marker that we have dequeued a stop signal.  Our
649 		 * caller might release the siglock and then the pending
650 		 * stop signal it is about to process is no longer in the
651 		 * pending bitmasks, but must still be cleared by a SIGCONT
652 		 * (and overruled by a SIGKILL).  So those cases clear this
653 		 * shared flag after we've set it.  Note that this flag may
654 		 * remain set after the signal we return is ignored or
655 		 * handled.  That doesn't matter because its only purpose
656 		 * is to alert stop-signal processing code when another
657 		 * processor has come along and cleared the flag.
658 		 */
659 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
660 	}
661 	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
662 		/*
663 		 * Release the siglock to ensure proper locking order
664 		 * of timer locks outside of siglocks.  Note, we leave
665 		 * irqs disabled here, since the posix-timers code is
666 		 * about to disable them again anyway.
667 		 */
668 		spin_unlock(&tsk->sighand->siglock);
669 		do_schedule_next_timer(info);
670 		spin_lock(&tsk->sighand->siglock);
671 	}
672 	return signr;
673 }
674 
675 /*
676  * Tell a process that it has a new active signal..
677  *
678  * NOTE! we rely on the previous spin_lock to
679  * lock interrupts for us! We can only be called with
680  * "siglock" held, and the local interrupt must
681  * have been disabled when that got acquired!
682  *
683  * No need to set need_resched since signal event passing
684  * goes through ->blocked
685  */
686 void signal_wake_up_state(struct task_struct *t, unsigned int state)
687 {
688 	set_tsk_thread_flag(t, TIF_SIGPENDING);
689 	/*
690 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
691 	 * case. We don't check t->state here because there is a race with it
692 	 * executing another processor and just now entering stopped state.
693 	 * By using wake_up_state, we ensure the process will wake up and
694 	 * handle its death signal.
695 	 */
696 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
697 		kick_process(t);
698 }
699 
700 /*
701  * Remove signals in mask from the pending set and queue.
702  * Returns 1 if any signals were found.
703  *
704  * All callers must be holding the siglock.
705  *
706  * This version takes a sigset mask and looks at all signals,
707  * not just those in the first mask word.
708  */
709 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
710 {
711 	struct sigqueue *q, *n;
712 	sigset_t m;
713 
714 	sigandsets(&m, mask, &s->signal);
715 	if (sigisemptyset(&m))
716 		return 0;
717 
718 	sigandnsets(&s->signal, &s->signal, mask);
719 	list_for_each_entry_safe(q, n, &s->list, list) {
720 		if (sigismember(mask, q->info.si_signo)) {
721 			list_del_init(&q->list);
722 			__sigqueue_free(q);
723 		}
724 	}
725 	return 1;
726 }
727 /*
728  * Remove signals in mask from the pending set and queue.
729  * Returns 1 if any signals were found.
730  *
731  * All callers must be holding the siglock.
732  */
733 static int rm_from_queue(unsigned long mask, struct sigpending *s)
734 {
735 	struct sigqueue *q, *n;
736 
737 	if (!sigtestsetmask(&s->signal, mask))
738 		return 0;
739 
740 	sigdelsetmask(&s->signal, mask);
741 	list_for_each_entry_safe(q, n, &s->list, list) {
742 		if (q->info.si_signo < SIGRTMIN &&
743 		    (mask & sigmask(q->info.si_signo))) {
744 			list_del_init(&q->list);
745 			__sigqueue_free(q);
746 		}
747 	}
748 	return 1;
749 }
750 
751 static inline int is_si_special(const struct siginfo *info)
752 {
753 	return info <= SEND_SIG_FORCED;
754 }
755 
756 static inline bool si_fromuser(const struct siginfo *info)
757 {
758 	return info == SEND_SIG_NOINFO ||
759 		(!is_si_special(info) && SI_FROMUSER(info));
760 }
761 
762 /*
763  * called with RCU read lock from check_kill_permission()
764  */
765 static int kill_ok_by_cred(struct task_struct *t)
766 {
767 	const struct cred *cred = current_cred();
768 	const struct cred *tcred = __task_cred(t);
769 
770 	if (uid_eq(cred->euid, tcred->suid) ||
771 	    uid_eq(cred->euid, tcred->uid)  ||
772 	    uid_eq(cred->uid,  tcred->suid) ||
773 	    uid_eq(cred->uid,  tcred->uid))
774 		return 1;
775 
776 	if (ns_capable(tcred->user_ns, CAP_KILL))
777 		return 1;
778 
779 	return 0;
780 }
781 
782 /*
783  * Bad permissions for sending the signal
784  * - the caller must hold the RCU read lock
785  */
786 static int check_kill_permission(int sig, struct siginfo *info,
787 				 struct task_struct *t)
788 {
789 	struct pid *sid;
790 	int error;
791 
792 	if (!valid_signal(sig))
793 		return -EINVAL;
794 
795 	if (!si_fromuser(info))
796 		return 0;
797 
798 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
799 	if (error)
800 		return error;
801 
802 	if (!same_thread_group(current, t) &&
803 	    !kill_ok_by_cred(t)) {
804 		switch (sig) {
805 		case SIGCONT:
806 			sid = task_session(t);
807 			/*
808 			 * We don't return the error if sid == NULL. The
809 			 * task was unhashed, the caller must notice this.
810 			 */
811 			if (!sid || sid == task_session(current))
812 				break;
813 		default:
814 			return -EPERM;
815 		}
816 	}
817 
818 	return security_task_kill(t, info, sig, 0);
819 }
820 
821 /**
822  * ptrace_trap_notify - schedule trap to notify ptracer
823  * @t: tracee wanting to notify tracer
824  *
825  * This function schedules sticky ptrace trap which is cleared on the next
826  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
827  * ptracer.
828  *
829  * If @t is running, STOP trap will be taken.  If trapped for STOP and
830  * ptracer is listening for events, tracee is woken up so that it can
831  * re-trap for the new event.  If trapped otherwise, STOP trap will be
832  * eventually taken without returning to userland after the existing traps
833  * are finished by PTRACE_CONT.
834  *
835  * CONTEXT:
836  * Must be called with @task->sighand->siglock held.
837  */
838 static void ptrace_trap_notify(struct task_struct *t)
839 {
840 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
841 	assert_spin_locked(&t->sighand->siglock);
842 
843 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
844 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
845 }
846 
847 /*
848  * Handle magic process-wide effects of stop/continue signals. Unlike
849  * the signal actions, these happen immediately at signal-generation
850  * time regardless of blocking, ignoring, or handling.  This does the
851  * actual continuing for SIGCONT, but not the actual stopping for stop
852  * signals. The process stop is done as a signal action for SIG_DFL.
853  *
854  * Returns true if the signal should be actually delivered, otherwise
855  * it should be dropped.
856  */
857 static int prepare_signal(int sig, struct task_struct *p, bool force)
858 {
859 	struct signal_struct *signal = p->signal;
860 	struct task_struct *t;
861 
862 	if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
863 		/*
864 		 * The process is in the middle of dying, nothing to do.
865 		 */
866 	} else if (sig_kernel_stop(sig)) {
867 		/*
868 		 * This is a stop signal.  Remove SIGCONT from all queues.
869 		 */
870 		rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
871 		t = p;
872 		do {
873 			rm_from_queue(sigmask(SIGCONT), &t->pending);
874 		} while_each_thread(p, t);
875 	} else if (sig == SIGCONT) {
876 		unsigned int why;
877 		/*
878 		 * Remove all stop signals from all queues, wake all threads.
879 		 */
880 		rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
881 		t = p;
882 		do {
883 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
884 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
885 			if (likely(!(t->ptrace & PT_SEIZED)))
886 				wake_up_state(t, __TASK_STOPPED);
887 			else
888 				ptrace_trap_notify(t);
889 		} while_each_thread(p, t);
890 
891 		/*
892 		 * Notify the parent with CLD_CONTINUED if we were stopped.
893 		 *
894 		 * If we were in the middle of a group stop, we pretend it
895 		 * was already finished, and then continued. Since SIGCHLD
896 		 * doesn't queue we report only CLD_STOPPED, as if the next
897 		 * CLD_CONTINUED was dropped.
898 		 */
899 		why = 0;
900 		if (signal->flags & SIGNAL_STOP_STOPPED)
901 			why |= SIGNAL_CLD_CONTINUED;
902 		else if (signal->group_stop_count)
903 			why |= SIGNAL_CLD_STOPPED;
904 
905 		if (why) {
906 			/*
907 			 * The first thread which returns from do_signal_stop()
908 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
909 			 * notify its parent. See get_signal_to_deliver().
910 			 */
911 			signal->flags = why | SIGNAL_STOP_CONTINUED;
912 			signal->group_stop_count = 0;
913 			signal->group_exit_code = 0;
914 		}
915 	}
916 
917 	return !sig_ignored(p, sig, force);
918 }
919 
920 /*
921  * Test if P wants to take SIG.  After we've checked all threads with this,
922  * it's equivalent to finding no threads not blocking SIG.  Any threads not
923  * blocking SIG were ruled out because they are not running and already
924  * have pending signals.  Such threads will dequeue from the shared queue
925  * as soon as they're available, so putting the signal on the shared queue
926  * will be equivalent to sending it to one such thread.
927  */
928 static inline int wants_signal(int sig, struct task_struct *p)
929 {
930 	if (sigismember(&p->blocked, sig))
931 		return 0;
932 	if (p->flags & PF_EXITING)
933 		return 0;
934 	if (sig == SIGKILL)
935 		return 1;
936 	if (task_is_stopped_or_traced(p))
937 		return 0;
938 	return task_curr(p) || !signal_pending(p);
939 }
940 
941 static void complete_signal(int sig, struct task_struct *p, int group)
942 {
943 	struct signal_struct *signal = p->signal;
944 	struct task_struct *t;
945 
946 	/*
947 	 * Now find a thread we can wake up to take the signal off the queue.
948 	 *
949 	 * If the main thread wants the signal, it gets first crack.
950 	 * Probably the least surprising to the average bear.
951 	 */
952 	if (wants_signal(sig, p))
953 		t = p;
954 	else if (!group || thread_group_empty(p))
955 		/*
956 		 * There is just one thread and it does not need to be woken.
957 		 * It will dequeue unblocked signals before it runs again.
958 		 */
959 		return;
960 	else {
961 		/*
962 		 * Otherwise try to find a suitable thread.
963 		 */
964 		t = signal->curr_target;
965 		while (!wants_signal(sig, t)) {
966 			t = next_thread(t);
967 			if (t == signal->curr_target)
968 				/*
969 				 * No thread needs to be woken.
970 				 * Any eligible threads will see
971 				 * the signal in the queue soon.
972 				 */
973 				return;
974 		}
975 		signal->curr_target = t;
976 	}
977 
978 	/*
979 	 * Found a killable thread.  If the signal will be fatal,
980 	 * then start taking the whole group down immediately.
981 	 */
982 	if (sig_fatal(p, sig) &&
983 	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
984 	    !sigismember(&t->real_blocked, sig) &&
985 	    (sig == SIGKILL || !t->ptrace)) {
986 		/*
987 		 * This signal will be fatal to the whole group.
988 		 */
989 		if (!sig_kernel_coredump(sig)) {
990 			/*
991 			 * Start a group exit and wake everybody up.
992 			 * This way we don't have other threads
993 			 * running and doing things after a slower
994 			 * thread has the fatal signal pending.
995 			 */
996 			signal->flags = SIGNAL_GROUP_EXIT;
997 			signal->group_exit_code = sig;
998 			signal->group_stop_count = 0;
999 			t = p;
1000 			do {
1001 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1002 				sigaddset(&t->pending.signal, SIGKILL);
1003 				signal_wake_up(t, 1);
1004 			} while_each_thread(p, t);
1005 			return;
1006 		}
1007 	}
1008 
1009 	/*
1010 	 * The signal is already in the shared-pending queue.
1011 	 * Tell the chosen thread to wake up and dequeue it.
1012 	 */
1013 	signal_wake_up(t, sig == SIGKILL);
1014 	return;
1015 }
1016 
1017 static inline int legacy_queue(struct sigpending *signals, int sig)
1018 {
1019 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1020 }
1021 
1022 #ifdef CONFIG_USER_NS
1023 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1024 {
1025 	if (current_user_ns() == task_cred_xxx(t, user_ns))
1026 		return;
1027 
1028 	if (SI_FROMKERNEL(info))
1029 		return;
1030 
1031 	rcu_read_lock();
1032 	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1033 					make_kuid(current_user_ns(), info->si_uid));
1034 	rcu_read_unlock();
1035 }
1036 #else
1037 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1038 {
1039 	return;
1040 }
1041 #endif
1042 
1043 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1044 			int group, int from_ancestor_ns)
1045 {
1046 	struct sigpending *pending;
1047 	struct sigqueue *q;
1048 	int override_rlimit;
1049 	int ret = 0, result;
1050 
1051 	assert_spin_locked(&t->sighand->siglock);
1052 
1053 	result = TRACE_SIGNAL_IGNORED;
1054 	if (!prepare_signal(sig, t,
1055 			from_ancestor_ns || (info == SEND_SIG_FORCED)))
1056 		goto ret;
1057 
1058 	pending = group ? &t->signal->shared_pending : &t->pending;
1059 	/*
1060 	 * Short-circuit ignored signals and support queuing
1061 	 * exactly one non-rt signal, so that we can get more
1062 	 * detailed information about the cause of the signal.
1063 	 */
1064 	result = TRACE_SIGNAL_ALREADY_PENDING;
1065 	if (legacy_queue(pending, sig))
1066 		goto ret;
1067 
1068 	result = TRACE_SIGNAL_DELIVERED;
1069 	/*
1070 	 * fast-pathed signals for kernel-internal things like SIGSTOP
1071 	 * or SIGKILL.
1072 	 */
1073 	if (info == SEND_SIG_FORCED)
1074 		goto out_set;
1075 
1076 	/*
1077 	 * Real-time signals must be queued if sent by sigqueue, or
1078 	 * some other real-time mechanism.  It is implementation
1079 	 * defined whether kill() does so.  We attempt to do so, on
1080 	 * the principle of least surprise, but since kill is not
1081 	 * allowed to fail with EAGAIN when low on memory we just
1082 	 * make sure at least one signal gets delivered and don't
1083 	 * pass on the info struct.
1084 	 */
1085 	if (sig < SIGRTMIN)
1086 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1087 	else
1088 		override_rlimit = 0;
1089 
1090 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1091 		override_rlimit);
1092 	if (q) {
1093 		list_add_tail(&q->list, &pending->list);
1094 		switch ((unsigned long) info) {
1095 		case (unsigned long) SEND_SIG_NOINFO:
1096 			q->info.si_signo = sig;
1097 			q->info.si_errno = 0;
1098 			q->info.si_code = SI_USER;
1099 			q->info.si_pid = task_tgid_nr_ns(current,
1100 							task_active_pid_ns(t));
1101 			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1102 			break;
1103 		case (unsigned long) SEND_SIG_PRIV:
1104 			q->info.si_signo = sig;
1105 			q->info.si_errno = 0;
1106 			q->info.si_code = SI_KERNEL;
1107 			q->info.si_pid = 0;
1108 			q->info.si_uid = 0;
1109 			break;
1110 		default:
1111 			copy_siginfo(&q->info, info);
1112 			if (from_ancestor_ns)
1113 				q->info.si_pid = 0;
1114 			break;
1115 		}
1116 
1117 		userns_fixup_signal_uid(&q->info, t);
1118 
1119 	} else if (!is_si_special(info)) {
1120 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1121 			/*
1122 			 * Queue overflow, abort.  We may abort if the
1123 			 * signal was rt and sent by user using something
1124 			 * other than kill().
1125 			 */
1126 			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1127 			ret = -EAGAIN;
1128 			goto ret;
1129 		} else {
1130 			/*
1131 			 * This is a silent loss of information.  We still
1132 			 * send the signal, but the *info bits are lost.
1133 			 */
1134 			result = TRACE_SIGNAL_LOSE_INFO;
1135 		}
1136 	}
1137 
1138 out_set:
1139 	signalfd_notify(t, sig);
1140 	sigaddset(&pending->signal, sig);
1141 	complete_signal(sig, t, group);
1142 ret:
1143 	trace_signal_generate(sig, info, t, group, result);
1144 	return ret;
1145 }
1146 
1147 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1148 			int group)
1149 {
1150 	int from_ancestor_ns = 0;
1151 
1152 #ifdef CONFIG_PID_NS
1153 	from_ancestor_ns = si_fromuser(info) &&
1154 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1155 #endif
1156 
1157 	return __send_signal(sig, info, t, group, from_ancestor_ns);
1158 }
1159 
1160 static void print_fatal_signal(int signr)
1161 {
1162 	struct pt_regs *regs = signal_pt_regs();
1163 	printk(KERN_INFO "%s/%d: potentially unexpected fatal signal %d.\n",
1164 		current->comm, task_pid_nr(current), signr);
1165 
1166 #if defined(__i386__) && !defined(__arch_um__)
1167 	printk(KERN_INFO "code at %08lx: ", regs->ip);
1168 	{
1169 		int i;
1170 		for (i = 0; i < 16; i++) {
1171 			unsigned char insn;
1172 
1173 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1174 				break;
1175 			printk(KERN_CONT "%02x ", insn);
1176 		}
1177 	}
1178 	printk(KERN_CONT "\n");
1179 #endif
1180 	preempt_disable();
1181 	show_regs(regs);
1182 	preempt_enable();
1183 }
1184 
1185 static int __init setup_print_fatal_signals(char *str)
1186 {
1187 	get_option (&str, &print_fatal_signals);
1188 
1189 	return 1;
1190 }
1191 
1192 __setup("print-fatal-signals=", setup_print_fatal_signals);
1193 
1194 int
1195 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1196 {
1197 	return send_signal(sig, info, p, 1);
1198 }
1199 
1200 static int
1201 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1202 {
1203 	return send_signal(sig, info, t, 0);
1204 }
1205 
1206 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1207 			bool group)
1208 {
1209 	unsigned long flags;
1210 	int ret = -ESRCH;
1211 
1212 	if (lock_task_sighand(p, &flags)) {
1213 		ret = send_signal(sig, info, p, group);
1214 		unlock_task_sighand(p, &flags);
1215 	}
1216 
1217 	return ret;
1218 }
1219 
1220 /*
1221  * Force a signal that the process can't ignore: if necessary
1222  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1223  *
1224  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1225  * since we do not want to have a signal handler that was blocked
1226  * be invoked when user space had explicitly blocked it.
1227  *
1228  * We don't want to have recursive SIGSEGV's etc, for example,
1229  * that is why we also clear SIGNAL_UNKILLABLE.
1230  */
1231 int
1232 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1233 {
1234 	unsigned long int flags;
1235 	int ret, blocked, ignored;
1236 	struct k_sigaction *action;
1237 
1238 	spin_lock_irqsave(&t->sighand->siglock, flags);
1239 	action = &t->sighand->action[sig-1];
1240 	ignored = action->sa.sa_handler == SIG_IGN;
1241 	blocked = sigismember(&t->blocked, sig);
1242 	if (blocked || ignored) {
1243 		action->sa.sa_handler = SIG_DFL;
1244 		if (blocked) {
1245 			sigdelset(&t->blocked, sig);
1246 			recalc_sigpending_and_wake(t);
1247 		}
1248 	}
1249 	if (action->sa.sa_handler == SIG_DFL)
1250 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1251 	ret = specific_send_sig_info(sig, info, t);
1252 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1253 
1254 	return ret;
1255 }
1256 
1257 /*
1258  * Nuke all other threads in the group.
1259  */
1260 int zap_other_threads(struct task_struct *p)
1261 {
1262 	struct task_struct *t = p;
1263 	int count = 0;
1264 
1265 	p->signal->group_stop_count = 0;
1266 
1267 	while_each_thread(p, t) {
1268 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1269 		count++;
1270 
1271 		/* Don't bother with already dead threads */
1272 		if (t->exit_state)
1273 			continue;
1274 		sigaddset(&t->pending.signal, SIGKILL);
1275 		signal_wake_up(t, 1);
1276 	}
1277 
1278 	return count;
1279 }
1280 
1281 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1282 					   unsigned long *flags)
1283 {
1284 	struct sighand_struct *sighand;
1285 
1286 	for (;;) {
1287 		local_irq_save(*flags);
1288 		rcu_read_lock();
1289 		sighand = rcu_dereference(tsk->sighand);
1290 		if (unlikely(sighand == NULL)) {
1291 			rcu_read_unlock();
1292 			local_irq_restore(*flags);
1293 			break;
1294 		}
1295 
1296 		spin_lock(&sighand->siglock);
1297 		if (likely(sighand == tsk->sighand)) {
1298 			rcu_read_unlock();
1299 			break;
1300 		}
1301 		spin_unlock(&sighand->siglock);
1302 		rcu_read_unlock();
1303 		local_irq_restore(*flags);
1304 	}
1305 
1306 	return sighand;
1307 }
1308 
1309 /*
1310  * send signal info to all the members of a group
1311  */
1312 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1313 {
1314 	int ret;
1315 
1316 	rcu_read_lock();
1317 	ret = check_kill_permission(sig, info, p);
1318 	rcu_read_unlock();
1319 
1320 	if (!ret && sig)
1321 		ret = do_send_sig_info(sig, info, p, true);
1322 
1323 	return ret;
1324 }
1325 
1326 /*
1327  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1328  * control characters do (^C, ^Z etc)
1329  * - the caller must hold at least a readlock on tasklist_lock
1330  */
1331 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1332 {
1333 	struct task_struct *p = NULL;
1334 	int retval, success;
1335 
1336 	success = 0;
1337 	retval = -ESRCH;
1338 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1339 		int err = group_send_sig_info(sig, info, p);
1340 		success |= !err;
1341 		retval = err;
1342 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1343 	return success ? 0 : retval;
1344 }
1345 
1346 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1347 {
1348 	int error = -ESRCH;
1349 	struct task_struct *p;
1350 
1351 	rcu_read_lock();
1352 retry:
1353 	p = pid_task(pid, PIDTYPE_PID);
1354 	if (p) {
1355 		error = group_send_sig_info(sig, info, p);
1356 		if (unlikely(error == -ESRCH))
1357 			/*
1358 			 * The task was unhashed in between, try again.
1359 			 * If it is dead, pid_task() will return NULL,
1360 			 * if we race with de_thread() it will find the
1361 			 * new leader.
1362 			 */
1363 			goto retry;
1364 	}
1365 	rcu_read_unlock();
1366 
1367 	return error;
1368 }
1369 
1370 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1371 {
1372 	int error;
1373 	rcu_read_lock();
1374 	error = kill_pid_info(sig, info, find_vpid(pid));
1375 	rcu_read_unlock();
1376 	return error;
1377 }
1378 
1379 static int kill_as_cred_perm(const struct cred *cred,
1380 			     struct task_struct *target)
1381 {
1382 	const struct cred *pcred = __task_cred(target);
1383 	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1384 	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1385 		return 0;
1386 	return 1;
1387 }
1388 
1389 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1390 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1391 			 const struct cred *cred, u32 secid)
1392 {
1393 	int ret = -EINVAL;
1394 	struct task_struct *p;
1395 	unsigned long flags;
1396 
1397 	if (!valid_signal(sig))
1398 		return ret;
1399 
1400 	rcu_read_lock();
1401 	p = pid_task(pid, PIDTYPE_PID);
1402 	if (!p) {
1403 		ret = -ESRCH;
1404 		goto out_unlock;
1405 	}
1406 	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1407 		ret = -EPERM;
1408 		goto out_unlock;
1409 	}
1410 	ret = security_task_kill(p, info, sig, secid);
1411 	if (ret)
1412 		goto out_unlock;
1413 
1414 	if (sig) {
1415 		if (lock_task_sighand(p, &flags)) {
1416 			ret = __send_signal(sig, info, p, 1, 0);
1417 			unlock_task_sighand(p, &flags);
1418 		} else
1419 			ret = -ESRCH;
1420 	}
1421 out_unlock:
1422 	rcu_read_unlock();
1423 	return ret;
1424 }
1425 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1426 
1427 /*
1428  * kill_something_info() interprets pid in interesting ways just like kill(2).
1429  *
1430  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1431  * is probably wrong.  Should make it like BSD or SYSV.
1432  */
1433 
1434 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1435 {
1436 	int ret;
1437 
1438 	if (pid > 0) {
1439 		rcu_read_lock();
1440 		ret = kill_pid_info(sig, info, find_vpid(pid));
1441 		rcu_read_unlock();
1442 		return ret;
1443 	}
1444 
1445 	read_lock(&tasklist_lock);
1446 	if (pid != -1) {
1447 		ret = __kill_pgrp_info(sig, info,
1448 				pid ? find_vpid(-pid) : task_pgrp(current));
1449 	} else {
1450 		int retval = 0, count = 0;
1451 		struct task_struct * p;
1452 
1453 		for_each_process(p) {
1454 			if (task_pid_vnr(p) > 1 &&
1455 					!same_thread_group(p, current)) {
1456 				int err = group_send_sig_info(sig, info, p);
1457 				++count;
1458 				if (err != -EPERM)
1459 					retval = err;
1460 			}
1461 		}
1462 		ret = count ? retval : -ESRCH;
1463 	}
1464 	read_unlock(&tasklist_lock);
1465 
1466 	return ret;
1467 }
1468 
1469 /*
1470  * These are for backward compatibility with the rest of the kernel source.
1471  */
1472 
1473 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1474 {
1475 	/*
1476 	 * Make sure legacy kernel users don't send in bad values
1477 	 * (normal paths check this in check_kill_permission).
1478 	 */
1479 	if (!valid_signal(sig))
1480 		return -EINVAL;
1481 
1482 	return do_send_sig_info(sig, info, p, false);
1483 }
1484 
1485 #define __si_special(priv) \
1486 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1487 
1488 int
1489 send_sig(int sig, struct task_struct *p, int priv)
1490 {
1491 	return send_sig_info(sig, __si_special(priv), p);
1492 }
1493 
1494 void
1495 force_sig(int sig, struct task_struct *p)
1496 {
1497 	force_sig_info(sig, SEND_SIG_PRIV, p);
1498 }
1499 
1500 /*
1501  * When things go south during signal handling, we
1502  * will force a SIGSEGV. And if the signal that caused
1503  * the problem was already a SIGSEGV, we'll want to
1504  * make sure we don't even try to deliver the signal..
1505  */
1506 int
1507 force_sigsegv(int sig, struct task_struct *p)
1508 {
1509 	if (sig == SIGSEGV) {
1510 		unsigned long flags;
1511 		spin_lock_irqsave(&p->sighand->siglock, flags);
1512 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1513 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1514 	}
1515 	force_sig(SIGSEGV, p);
1516 	return 0;
1517 }
1518 
1519 int kill_pgrp(struct pid *pid, int sig, int priv)
1520 {
1521 	int ret;
1522 
1523 	read_lock(&tasklist_lock);
1524 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1525 	read_unlock(&tasklist_lock);
1526 
1527 	return ret;
1528 }
1529 EXPORT_SYMBOL(kill_pgrp);
1530 
1531 int kill_pid(struct pid *pid, int sig, int priv)
1532 {
1533 	return kill_pid_info(sig, __si_special(priv), pid);
1534 }
1535 EXPORT_SYMBOL(kill_pid);
1536 
1537 /*
1538  * These functions support sending signals using preallocated sigqueue
1539  * structures.  This is needed "because realtime applications cannot
1540  * afford to lose notifications of asynchronous events, like timer
1541  * expirations or I/O completions".  In the case of POSIX Timers
1542  * we allocate the sigqueue structure from the timer_create.  If this
1543  * allocation fails we are able to report the failure to the application
1544  * with an EAGAIN error.
1545  */
1546 struct sigqueue *sigqueue_alloc(void)
1547 {
1548 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1549 
1550 	if (q)
1551 		q->flags |= SIGQUEUE_PREALLOC;
1552 
1553 	return q;
1554 }
1555 
1556 void sigqueue_free(struct sigqueue *q)
1557 {
1558 	unsigned long flags;
1559 	spinlock_t *lock = &current->sighand->siglock;
1560 
1561 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1562 	/*
1563 	 * We must hold ->siglock while testing q->list
1564 	 * to serialize with collect_signal() or with
1565 	 * __exit_signal()->flush_sigqueue().
1566 	 */
1567 	spin_lock_irqsave(lock, flags);
1568 	q->flags &= ~SIGQUEUE_PREALLOC;
1569 	/*
1570 	 * If it is queued it will be freed when dequeued,
1571 	 * like the "regular" sigqueue.
1572 	 */
1573 	if (!list_empty(&q->list))
1574 		q = NULL;
1575 	spin_unlock_irqrestore(lock, flags);
1576 
1577 	if (q)
1578 		__sigqueue_free(q);
1579 }
1580 
1581 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1582 {
1583 	int sig = q->info.si_signo;
1584 	struct sigpending *pending;
1585 	unsigned long flags;
1586 	int ret, result;
1587 
1588 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1589 
1590 	ret = -1;
1591 	if (!likely(lock_task_sighand(t, &flags)))
1592 		goto ret;
1593 
1594 	ret = 1; /* the signal is ignored */
1595 	result = TRACE_SIGNAL_IGNORED;
1596 	if (!prepare_signal(sig, t, false))
1597 		goto out;
1598 
1599 	ret = 0;
1600 	if (unlikely(!list_empty(&q->list))) {
1601 		/*
1602 		 * If an SI_TIMER entry is already queue just increment
1603 		 * the overrun count.
1604 		 */
1605 		BUG_ON(q->info.si_code != SI_TIMER);
1606 		q->info.si_overrun++;
1607 		result = TRACE_SIGNAL_ALREADY_PENDING;
1608 		goto out;
1609 	}
1610 	q->info.si_overrun = 0;
1611 
1612 	signalfd_notify(t, sig);
1613 	pending = group ? &t->signal->shared_pending : &t->pending;
1614 	list_add_tail(&q->list, &pending->list);
1615 	sigaddset(&pending->signal, sig);
1616 	complete_signal(sig, t, group);
1617 	result = TRACE_SIGNAL_DELIVERED;
1618 out:
1619 	trace_signal_generate(sig, &q->info, t, group, result);
1620 	unlock_task_sighand(t, &flags);
1621 ret:
1622 	return ret;
1623 }
1624 
1625 /*
1626  * Let a parent know about the death of a child.
1627  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1628  *
1629  * Returns true if our parent ignored us and so we've switched to
1630  * self-reaping.
1631  */
1632 bool do_notify_parent(struct task_struct *tsk, int sig)
1633 {
1634 	struct siginfo info;
1635 	unsigned long flags;
1636 	struct sighand_struct *psig;
1637 	bool autoreap = false;
1638 	cputime_t utime, stime;
1639 
1640 	BUG_ON(sig == -1);
1641 
1642  	/* do_notify_parent_cldstop should have been called instead.  */
1643  	BUG_ON(task_is_stopped_or_traced(tsk));
1644 
1645 	BUG_ON(!tsk->ptrace &&
1646 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1647 
1648 	if (sig != SIGCHLD) {
1649 		/*
1650 		 * This is only possible if parent == real_parent.
1651 		 * Check if it has changed security domain.
1652 		 */
1653 		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1654 			sig = SIGCHLD;
1655 	}
1656 
1657 	info.si_signo = sig;
1658 	info.si_errno = 0;
1659 	/*
1660 	 * We are under tasklist_lock here so our parent is tied to
1661 	 * us and cannot change.
1662 	 *
1663 	 * task_active_pid_ns will always return the same pid namespace
1664 	 * until a task passes through release_task.
1665 	 *
1666 	 * write_lock() currently calls preempt_disable() which is the
1667 	 * same as rcu_read_lock(), but according to Oleg, this is not
1668 	 * correct to rely on this
1669 	 */
1670 	rcu_read_lock();
1671 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1672 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1673 				       task_uid(tsk));
1674 	rcu_read_unlock();
1675 
1676 	task_cputime(tsk, &utime, &stime);
1677 	info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1678 	info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1679 
1680 	info.si_status = tsk->exit_code & 0x7f;
1681 	if (tsk->exit_code & 0x80)
1682 		info.si_code = CLD_DUMPED;
1683 	else if (tsk->exit_code & 0x7f)
1684 		info.si_code = CLD_KILLED;
1685 	else {
1686 		info.si_code = CLD_EXITED;
1687 		info.si_status = tsk->exit_code >> 8;
1688 	}
1689 
1690 	psig = tsk->parent->sighand;
1691 	spin_lock_irqsave(&psig->siglock, flags);
1692 	if (!tsk->ptrace && sig == SIGCHLD &&
1693 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1694 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1695 		/*
1696 		 * We are exiting and our parent doesn't care.  POSIX.1
1697 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1698 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1699 		 * automatically and not left for our parent's wait4 call.
1700 		 * Rather than having the parent do it as a magic kind of
1701 		 * signal handler, we just set this to tell do_exit that we
1702 		 * can be cleaned up without becoming a zombie.  Note that
1703 		 * we still call __wake_up_parent in this case, because a
1704 		 * blocked sys_wait4 might now return -ECHILD.
1705 		 *
1706 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1707 		 * is implementation-defined: we do (if you don't want
1708 		 * it, just use SIG_IGN instead).
1709 		 */
1710 		autoreap = true;
1711 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1712 			sig = 0;
1713 	}
1714 	if (valid_signal(sig) && sig)
1715 		__group_send_sig_info(sig, &info, tsk->parent);
1716 	__wake_up_parent(tsk, tsk->parent);
1717 	spin_unlock_irqrestore(&psig->siglock, flags);
1718 
1719 	return autoreap;
1720 }
1721 
1722 /**
1723  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1724  * @tsk: task reporting the state change
1725  * @for_ptracer: the notification is for ptracer
1726  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1727  *
1728  * Notify @tsk's parent that the stopped/continued state has changed.  If
1729  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1730  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1731  *
1732  * CONTEXT:
1733  * Must be called with tasklist_lock at least read locked.
1734  */
1735 static void do_notify_parent_cldstop(struct task_struct *tsk,
1736 				     bool for_ptracer, int why)
1737 {
1738 	struct siginfo info;
1739 	unsigned long flags;
1740 	struct task_struct *parent;
1741 	struct sighand_struct *sighand;
1742 	cputime_t utime, stime;
1743 
1744 	if (for_ptracer) {
1745 		parent = tsk->parent;
1746 	} else {
1747 		tsk = tsk->group_leader;
1748 		parent = tsk->real_parent;
1749 	}
1750 
1751 	info.si_signo = SIGCHLD;
1752 	info.si_errno = 0;
1753 	/*
1754 	 * see comment in do_notify_parent() about the following 4 lines
1755 	 */
1756 	rcu_read_lock();
1757 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1758 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1759 	rcu_read_unlock();
1760 
1761 	task_cputime(tsk, &utime, &stime);
1762 	info.si_utime = cputime_to_clock_t(utime);
1763 	info.si_stime = cputime_to_clock_t(stime);
1764 
1765  	info.si_code = why;
1766  	switch (why) {
1767  	case CLD_CONTINUED:
1768  		info.si_status = SIGCONT;
1769  		break;
1770  	case CLD_STOPPED:
1771  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1772  		break;
1773  	case CLD_TRAPPED:
1774  		info.si_status = tsk->exit_code & 0x7f;
1775  		break;
1776  	default:
1777  		BUG();
1778  	}
1779 
1780 	sighand = parent->sighand;
1781 	spin_lock_irqsave(&sighand->siglock, flags);
1782 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1783 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1784 		__group_send_sig_info(SIGCHLD, &info, parent);
1785 	/*
1786 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1787 	 */
1788 	__wake_up_parent(tsk, parent);
1789 	spin_unlock_irqrestore(&sighand->siglock, flags);
1790 }
1791 
1792 static inline int may_ptrace_stop(void)
1793 {
1794 	if (!likely(current->ptrace))
1795 		return 0;
1796 	/*
1797 	 * Are we in the middle of do_coredump?
1798 	 * If so and our tracer is also part of the coredump stopping
1799 	 * is a deadlock situation, and pointless because our tracer
1800 	 * is dead so don't allow us to stop.
1801 	 * If SIGKILL was already sent before the caller unlocked
1802 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1803 	 * is safe to enter schedule().
1804 	 *
1805 	 * This is almost outdated, a task with the pending SIGKILL can't
1806 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1807 	 * after SIGKILL was already dequeued.
1808 	 */
1809 	if (unlikely(current->mm->core_state) &&
1810 	    unlikely(current->mm == current->parent->mm))
1811 		return 0;
1812 
1813 	return 1;
1814 }
1815 
1816 /*
1817  * Return non-zero if there is a SIGKILL that should be waking us up.
1818  * Called with the siglock held.
1819  */
1820 static int sigkill_pending(struct task_struct *tsk)
1821 {
1822 	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1823 		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1824 }
1825 
1826 /*
1827  * This must be called with current->sighand->siglock held.
1828  *
1829  * This should be the path for all ptrace stops.
1830  * We always set current->last_siginfo while stopped here.
1831  * That makes it a way to test a stopped process for
1832  * being ptrace-stopped vs being job-control-stopped.
1833  *
1834  * If we actually decide not to stop at all because the tracer
1835  * is gone, we keep current->exit_code unless clear_code.
1836  */
1837 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1838 	__releases(&current->sighand->siglock)
1839 	__acquires(&current->sighand->siglock)
1840 {
1841 	bool gstop_done = false;
1842 
1843 	if (arch_ptrace_stop_needed(exit_code, info)) {
1844 		/*
1845 		 * The arch code has something special to do before a
1846 		 * ptrace stop.  This is allowed to block, e.g. for faults
1847 		 * on user stack pages.  We can't keep the siglock while
1848 		 * calling arch_ptrace_stop, so we must release it now.
1849 		 * To preserve proper semantics, we must do this before
1850 		 * any signal bookkeeping like checking group_stop_count.
1851 		 * Meanwhile, a SIGKILL could come in before we retake the
1852 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1853 		 * So after regaining the lock, we must check for SIGKILL.
1854 		 */
1855 		spin_unlock_irq(&current->sighand->siglock);
1856 		arch_ptrace_stop(exit_code, info);
1857 		spin_lock_irq(&current->sighand->siglock);
1858 		if (sigkill_pending(current))
1859 			return;
1860 	}
1861 
1862 	/*
1863 	 * We're committing to trapping.  TRACED should be visible before
1864 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1865 	 * Also, transition to TRACED and updates to ->jobctl should be
1866 	 * atomic with respect to siglock and should be done after the arch
1867 	 * hook as siglock is released and regrabbed across it.
1868 	 */
1869 	set_current_state(TASK_TRACED);
1870 
1871 	current->last_siginfo = info;
1872 	current->exit_code = exit_code;
1873 
1874 	/*
1875 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1876 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1877 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1878 	 * could be clear now.  We act as if SIGCONT is received after
1879 	 * TASK_TRACED is entered - ignore it.
1880 	 */
1881 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1882 		gstop_done = task_participate_group_stop(current);
1883 
1884 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1885 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1886 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1887 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1888 
1889 	/* entering a trap, clear TRAPPING */
1890 	task_clear_jobctl_trapping(current);
1891 
1892 	spin_unlock_irq(&current->sighand->siglock);
1893 	read_lock(&tasklist_lock);
1894 	if (may_ptrace_stop()) {
1895 		/*
1896 		 * Notify parents of the stop.
1897 		 *
1898 		 * While ptraced, there are two parents - the ptracer and
1899 		 * the real_parent of the group_leader.  The ptracer should
1900 		 * know about every stop while the real parent is only
1901 		 * interested in the completion of group stop.  The states
1902 		 * for the two don't interact with each other.  Notify
1903 		 * separately unless they're gonna be duplicates.
1904 		 */
1905 		do_notify_parent_cldstop(current, true, why);
1906 		if (gstop_done && ptrace_reparented(current))
1907 			do_notify_parent_cldstop(current, false, why);
1908 
1909 		/*
1910 		 * Don't want to allow preemption here, because
1911 		 * sys_ptrace() needs this task to be inactive.
1912 		 *
1913 		 * XXX: implement read_unlock_no_resched().
1914 		 */
1915 		preempt_disable();
1916 		read_unlock(&tasklist_lock);
1917 		preempt_enable_no_resched();
1918 		freezable_schedule();
1919 	} else {
1920 		/*
1921 		 * By the time we got the lock, our tracer went away.
1922 		 * Don't drop the lock yet, another tracer may come.
1923 		 *
1924 		 * If @gstop_done, the ptracer went away between group stop
1925 		 * completion and here.  During detach, it would have set
1926 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1927 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1928 		 * the real parent of the group stop completion is enough.
1929 		 */
1930 		if (gstop_done)
1931 			do_notify_parent_cldstop(current, false, why);
1932 
1933 		/* tasklist protects us from ptrace_freeze_traced() */
1934 		__set_current_state(TASK_RUNNING);
1935 		if (clear_code)
1936 			current->exit_code = 0;
1937 		read_unlock(&tasklist_lock);
1938 	}
1939 
1940 	/*
1941 	 * We are back.  Now reacquire the siglock before touching
1942 	 * last_siginfo, so that we are sure to have synchronized with
1943 	 * any signal-sending on another CPU that wants to examine it.
1944 	 */
1945 	spin_lock_irq(&current->sighand->siglock);
1946 	current->last_siginfo = NULL;
1947 
1948 	/* LISTENING can be set only during STOP traps, clear it */
1949 	current->jobctl &= ~JOBCTL_LISTENING;
1950 
1951 	/*
1952 	 * Queued signals ignored us while we were stopped for tracing.
1953 	 * So check for any that we should take before resuming user mode.
1954 	 * This sets TIF_SIGPENDING, but never clears it.
1955 	 */
1956 	recalc_sigpending_tsk(current);
1957 }
1958 
1959 static void ptrace_do_notify(int signr, int exit_code, int why)
1960 {
1961 	siginfo_t info;
1962 
1963 	memset(&info, 0, sizeof info);
1964 	info.si_signo = signr;
1965 	info.si_code = exit_code;
1966 	info.si_pid = task_pid_vnr(current);
1967 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1968 
1969 	/* Let the debugger run.  */
1970 	ptrace_stop(exit_code, why, 1, &info);
1971 }
1972 
1973 void ptrace_notify(int exit_code)
1974 {
1975 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1976 	if (unlikely(current->task_works))
1977 		task_work_run();
1978 
1979 	spin_lock_irq(&current->sighand->siglock);
1980 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1981 	spin_unlock_irq(&current->sighand->siglock);
1982 }
1983 
1984 /**
1985  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1986  * @signr: signr causing group stop if initiating
1987  *
1988  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1989  * and participate in it.  If already set, participate in the existing
1990  * group stop.  If participated in a group stop (and thus slept), %true is
1991  * returned with siglock released.
1992  *
1993  * If ptraced, this function doesn't handle stop itself.  Instead,
1994  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1995  * untouched.  The caller must ensure that INTERRUPT trap handling takes
1996  * places afterwards.
1997  *
1998  * CONTEXT:
1999  * Must be called with @current->sighand->siglock held, which is released
2000  * on %true return.
2001  *
2002  * RETURNS:
2003  * %false if group stop is already cancelled or ptrace trap is scheduled.
2004  * %true if participated in group stop.
2005  */
2006 static bool do_signal_stop(int signr)
2007 	__releases(&current->sighand->siglock)
2008 {
2009 	struct signal_struct *sig = current->signal;
2010 
2011 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2012 		unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2013 		struct task_struct *t;
2014 
2015 		/* signr will be recorded in task->jobctl for retries */
2016 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2017 
2018 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2019 		    unlikely(signal_group_exit(sig)))
2020 			return false;
2021 		/*
2022 		 * There is no group stop already in progress.  We must
2023 		 * initiate one now.
2024 		 *
2025 		 * While ptraced, a task may be resumed while group stop is
2026 		 * still in effect and then receive a stop signal and
2027 		 * initiate another group stop.  This deviates from the
2028 		 * usual behavior as two consecutive stop signals can't
2029 		 * cause two group stops when !ptraced.  That is why we
2030 		 * also check !task_is_stopped(t) below.
2031 		 *
2032 		 * The condition can be distinguished by testing whether
2033 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2034 		 * group_exit_code in such case.
2035 		 *
2036 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2037 		 * an intervening stop signal is required to cause two
2038 		 * continued events regardless of ptrace.
2039 		 */
2040 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2041 			sig->group_exit_code = signr;
2042 
2043 		sig->group_stop_count = 0;
2044 
2045 		if (task_set_jobctl_pending(current, signr | gstop))
2046 			sig->group_stop_count++;
2047 
2048 		for (t = next_thread(current); t != current;
2049 		     t = next_thread(t)) {
2050 			/*
2051 			 * Setting state to TASK_STOPPED for a group
2052 			 * stop is always done with the siglock held,
2053 			 * so this check has no races.
2054 			 */
2055 			if (!task_is_stopped(t) &&
2056 			    task_set_jobctl_pending(t, signr | gstop)) {
2057 				sig->group_stop_count++;
2058 				if (likely(!(t->ptrace & PT_SEIZED)))
2059 					signal_wake_up(t, 0);
2060 				else
2061 					ptrace_trap_notify(t);
2062 			}
2063 		}
2064 	}
2065 
2066 	if (likely(!current->ptrace)) {
2067 		int notify = 0;
2068 
2069 		/*
2070 		 * If there are no other threads in the group, or if there
2071 		 * is a group stop in progress and we are the last to stop,
2072 		 * report to the parent.
2073 		 */
2074 		if (task_participate_group_stop(current))
2075 			notify = CLD_STOPPED;
2076 
2077 		__set_current_state(TASK_STOPPED);
2078 		spin_unlock_irq(&current->sighand->siglock);
2079 
2080 		/*
2081 		 * Notify the parent of the group stop completion.  Because
2082 		 * we're not holding either the siglock or tasklist_lock
2083 		 * here, ptracer may attach inbetween; however, this is for
2084 		 * group stop and should always be delivered to the real
2085 		 * parent of the group leader.  The new ptracer will get
2086 		 * its notification when this task transitions into
2087 		 * TASK_TRACED.
2088 		 */
2089 		if (notify) {
2090 			read_lock(&tasklist_lock);
2091 			do_notify_parent_cldstop(current, false, notify);
2092 			read_unlock(&tasklist_lock);
2093 		}
2094 
2095 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2096 		freezable_schedule();
2097 		return true;
2098 	} else {
2099 		/*
2100 		 * While ptraced, group stop is handled by STOP trap.
2101 		 * Schedule it and let the caller deal with it.
2102 		 */
2103 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2104 		return false;
2105 	}
2106 }
2107 
2108 /**
2109  * do_jobctl_trap - take care of ptrace jobctl traps
2110  *
2111  * When PT_SEIZED, it's used for both group stop and explicit
2112  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2113  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2114  * the stop signal; otherwise, %SIGTRAP.
2115  *
2116  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2117  * number as exit_code and no siginfo.
2118  *
2119  * CONTEXT:
2120  * Must be called with @current->sighand->siglock held, which may be
2121  * released and re-acquired before returning with intervening sleep.
2122  */
2123 static void do_jobctl_trap(void)
2124 {
2125 	struct signal_struct *signal = current->signal;
2126 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2127 
2128 	if (current->ptrace & PT_SEIZED) {
2129 		if (!signal->group_stop_count &&
2130 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2131 			signr = SIGTRAP;
2132 		WARN_ON_ONCE(!signr);
2133 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2134 				 CLD_STOPPED);
2135 	} else {
2136 		WARN_ON_ONCE(!signr);
2137 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2138 		current->exit_code = 0;
2139 	}
2140 }
2141 
2142 static int ptrace_signal(int signr, siginfo_t *info)
2143 {
2144 	ptrace_signal_deliver();
2145 	/*
2146 	 * We do not check sig_kernel_stop(signr) but set this marker
2147 	 * unconditionally because we do not know whether debugger will
2148 	 * change signr. This flag has no meaning unless we are going
2149 	 * to stop after return from ptrace_stop(). In this case it will
2150 	 * be checked in do_signal_stop(), we should only stop if it was
2151 	 * not cleared by SIGCONT while we were sleeping. See also the
2152 	 * comment in dequeue_signal().
2153 	 */
2154 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2155 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2156 
2157 	/* We're back.  Did the debugger cancel the sig?  */
2158 	signr = current->exit_code;
2159 	if (signr == 0)
2160 		return signr;
2161 
2162 	current->exit_code = 0;
2163 
2164 	/*
2165 	 * Update the siginfo structure if the signal has
2166 	 * changed.  If the debugger wanted something
2167 	 * specific in the siginfo structure then it should
2168 	 * have updated *info via PTRACE_SETSIGINFO.
2169 	 */
2170 	if (signr != info->si_signo) {
2171 		info->si_signo = signr;
2172 		info->si_errno = 0;
2173 		info->si_code = SI_USER;
2174 		rcu_read_lock();
2175 		info->si_pid = task_pid_vnr(current->parent);
2176 		info->si_uid = from_kuid_munged(current_user_ns(),
2177 						task_uid(current->parent));
2178 		rcu_read_unlock();
2179 	}
2180 
2181 	/* If the (new) signal is now blocked, requeue it.  */
2182 	if (sigismember(&current->blocked, signr)) {
2183 		specific_send_sig_info(signr, info, current);
2184 		signr = 0;
2185 	}
2186 
2187 	return signr;
2188 }
2189 
2190 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2191 			  struct pt_regs *regs, void *cookie)
2192 {
2193 	struct sighand_struct *sighand = current->sighand;
2194 	struct signal_struct *signal = current->signal;
2195 	int signr;
2196 
2197 	if (unlikely(current->task_works))
2198 		task_work_run();
2199 
2200 	if (unlikely(uprobe_deny_signal()))
2201 		return 0;
2202 
2203 	/*
2204 	 * Do this once, we can't return to user-mode if freezing() == T.
2205 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2206 	 * thus do not need another check after return.
2207 	 */
2208 	try_to_freeze();
2209 
2210 relock:
2211 	spin_lock_irq(&sighand->siglock);
2212 	/*
2213 	 * Every stopped thread goes here after wakeup. Check to see if
2214 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2215 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2216 	 */
2217 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2218 		int why;
2219 
2220 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2221 			why = CLD_CONTINUED;
2222 		else
2223 			why = CLD_STOPPED;
2224 
2225 		signal->flags &= ~SIGNAL_CLD_MASK;
2226 
2227 		spin_unlock_irq(&sighand->siglock);
2228 
2229 		/*
2230 		 * Notify the parent that we're continuing.  This event is
2231 		 * always per-process and doesn't make whole lot of sense
2232 		 * for ptracers, who shouldn't consume the state via
2233 		 * wait(2) either, but, for backward compatibility, notify
2234 		 * the ptracer of the group leader too unless it's gonna be
2235 		 * a duplicate.
2236 		 */
2237 		read_lock(&tasklist_lock);
2238 		do_notify_parent_cldstop(current, false, why);
2239 
2240 		if (ptrace_reparented(current->group_leader))
2241 			do_notify_parent_cldstop(current->group_leader,
2242 						true, why);
2243 		read_unlock(&tasklist_lock);
2244 
2245 		goto relock;
2246 	}
2247 
2248 	for (;;) {
2249 		struct k_sigaction *ka;
2250 
2251 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2252 		    do_signal_stop(0))
2253 			goto relock;
2254 
2255 		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2256 			do_jobctl_trap();
2257 			spin_unlock_irq(&sighand->siglock);
2258 			goto relock;
2259 		}
2260 
2261 		signr = dequeue_signal(current, &current->blocked, info);
2262 
2263 		if (!signr)
2264 			break; /* will return 0 */
2265 
2266 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2267 			signr = ptrace_signal(signr, info);
2268 			if (!signr)
2269 				continue;
2270 		}
2271 
2272 		ka = &sighand->action[signr-1];
2273 
2274 		/* Trace actually delivered signals. */
2275 		trace_signal_deliver(signr, info, ka);
2276 
2277 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2278 			continue;
2279 		if (ka->sa.sa_handler != SIG_DFL) {
2280 			/* Run the handler.  */
2281 			*return_ka = *ka;
2282 
2283 			if (ka->sa.sa_flags & SA_ONESHOT)
2284 				ka->sa.sa_handler = SIG_DFL;
2285 
2286 			break; /* will return non-zero "signr" value */
2287 		}
2288 
2289 		/*
2290 		 * Now we are doing the default action for this signal.
2291 		 */
2292 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2293 			continue;
2294 
2295 		/*
2296 		 * Global init gets no signals it doesn't want.
2297 		 * Container-init gets no signals it doesn't want from same
2298 		 * container.
2299 		 *
2300 		 * Note that if global/container-init sees a sig_kernel_only()
2301 		 * signal here, the signal must have been generated internally
2302 		 * or must have come from an ancestor namespace. In either
2303 		 * case, the signal cannot be dropped.
2304 		 */
2305 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2306 				!sig_kernel_only(signr))
2307 			continue;
2308 
2309 		if (sig_kernel_stop(signr)) {
2310 			/*
2311 			 * The default action is to stop all threads in
2312 			 * the thread group.  The job control signals
2313 			 * do nothing in an orphaned pgrp, but SIGSTOP
2314 			 * always works.  Note that siglock needs to be
2315 			 * dropped during the call to is_orphaned_pgrp()
2316 			 * because of lock ordering with tasklist_lock.
2317 			 * This allows an intervening SIGCONT to be posted.
2318 			 * We need to check for that and bail out if necessary.
2319 			 */
2320 			if (signr != SIGSTOP) {
2321 				spin_unlock_irq(&sighand->siglock);
2322 
2323 				/* signals can be posted during this window */
2324 
2325 				if (is_current_pgrp_orphaned())
2326 					goto relock;
2327 
2328 				spin_lock_irq(&sighand->siglock);
2329 			}
2330 
2331 			if (likely(do_signal_stop(info->si_signo))) {
2332 				/* It released the siglock.  */
2333 				goto relock;
2334 			}
2335 
2336 			/*
2337 			 * We didn't actually stop, due to a race
2338 			 * with SIGCONT or something like that.
2339 			 */
2340 			continue;
2341 		}
2342 
2343 		spin_unlock_irq(&sighand->siglock);
2344 
2345 		/*
2346 		 * Anything else is fatal, maybe with a core dump.
2347 		 */
2348 		current->flags |= PF_SIGNALED;
2349 
2350 		if (sig_kernel_coredump(signr)) {
2351 			if (print_fatal_signals)
2352 				print_fatal_signal(info->si_signo);
2353 			/*
2354 			 * If it was able to dump core, this kills all
2355 			 * other threads in the group and synchronizes with
2356 			 * their demise.  If we lost the race with another
2357 			 * thread getting here, it set group_exit_code
2358 			 * first and our do_group_exit call below will use
2359 			 * that value and ignore the one we pass it.
2360 			 */
2361 			do_coredump(info);
2362 		}
2363 
2364 		/*
2365 		 * Death signals, no core dump.
2366 		 */
2367 		do_group_exit(info->si_signo);
2368 		/* NOTREACHED */
2369 	}
2370 	spin_unlock_irq(&sighand->siglock);
2371 	return signr;
2372 }
2373 
2374 /**
2375  * signal_delivered -
2376  * @sig:		number of signal being delivered
2377  * @info:		siginfo_t of signal being delivered
2378  * @ka:			sigaction setting that chose the handler
2379  * @regs:		user register state
2380  * @stepping:		nonzero if debugger single-step or block-step in use
2381  *
2382  * This function should be called when a signal has succesfully been
2383  * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask
2384  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2385  * is set in @ka->sa.sa_flags.  Tracing is notified.
2386  */
2387 void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka,
2388 			struct pt_regs *regs, int stepping)
2389 {
2390 	sigset_t blocked;
2391 
2392 	/* A signal was successfully delivered, and the
2393 	   saved sigmask was stored on the signal frame,
2394 	   and will be restored by sigreturn.  So we can
2395 	   simply clear the restore sigmask flag.  */
2396 	clear_restore_sigmask();
2397 
2398 	sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2399 	if (!(ka->sa.sa_flags & SA_NODEFER))
2400 		sigaddset(&blocked, sig);
2401 	set_current_blocked(&blocked);
2402 	tracehook_signal_handler(sig, info, ka, regs, stepping);
2403 }
2404 
2405 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2406 {
2407 	if (failed)
2408 		force_sigsegv(ksig->sig, current);
2409 	else
2410 		signal_delivered(ksig->sig, &ksig->info, &ksig->ka,
2411 			signal_pt_regs(), stepping);
2412 }
2413 
2414 /*
2415  * It could be that complete_signal() picked us to notify about the
2416  * group-wide signal. Other threads should be notified now to take
2417  * the shared signals in @which since we will not.
2418  */
2419 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2420 {
2421 	sigset_t retarget;
2422 	struct task_struct *t;
2423 
2424 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2425 	if (sigisemptyset(&retarget))
2426 		return;
2427 
2428 	t = tsk;
2429 	while_each_thread(tsk, t) {
2430 		if (t->flags & PF_EXITING)
2431 			continue;
2432 
2433 		if (!has_pending_signals(&retarget, &t->blocked))
2434 			continue;
2435 		/* Remove the signals this thread can handle. */
2436 		sigandsets(&retarget, &retarget, &t->blocked);
2437 
2438 		if (!signal_pending(t))
2439 			signal_wake_up(t, 0);
2440 
2441 		if (sigisemptyset(&retarget))
2442 			break;
2443 	}
2444 }
2445 
2446 void exit_signals(struct task_struct *tsk)
2447 {
2448 	int group_stop = 0;
2449 	sigset_t unblocked;
2450 
2451 	/*
2452 	 * @tsk is about to have PF_EXITING set - lock out users which
2453 	 * expect stable threadgroup.
2454 	 */
2455 	threadgroup_change_begin(tsk);
2456 
2457 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2458 		tsk->flags |= PF_EXITING;
2459 		threadgroup_change_end(tsk);
2460 		return;
2461 	}
2462 
2463 	spin_lock_irq(&tsk->sighand->siglock);
2464 	/*
2465 	 * From now this task is not visible for group-wide signals,
2466 	 * see wants_signal(), do_signal_stop().
2467 	 */
2468 	tsk->flags |= PF_EXITING;
2469 
2470 	threadgroup_change_end(tsk);
2471 
2472 	if (!signal_pending(tsk))
2473 		goto out;
2474 
2475 	unblocked = tsk->blocked;
2476 	signotset(&unblocked);
2477 	retarget_shared_pending(tsk, &unblocked);
2478 
2479 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2480 	    task_participate_group_stop(tsk))
2481 		group_stop = CLD_STOPPED;
2482 out:
2483 	spin_unlock_irq(&tsk->sighand->siglock);
2484 
2485 	/*
2486 	 * If group stop has completed, deliver the notification.  This
2487 	 * should always go to the real parent of the group leader.
2488 	 */
2489 	if (unlikely(group_stop)) {
2490 		read_lock(&tasklist_lock);
2491 		do_notify_parent_cldstop(tsk, false, group_stop);
2492 		read_unlock(&tasklist_lock);
2493 	}
2494 }
2495 
2496 EXPORT_SYMBOL(recalc_sigpending);
2497 EXPORT_SYMBOL_GPL(dequeue_signal);
2498 EXPORT_SYMBOL(flush_signals);
2499 EXPORT_SYMBOL(force_sig);
2500 EXPORT_SYMBOL(send_sig);
2501 EXPORT_SYMBOL(send_sig_info);
2502 EXPORT_SYMBOL(sigprocmask);
2503 EXPORT_SYMBOL(block_all_signals);
2504 EXPORT_SYMBOL(unblock_all_signals);
2505 
2506 
2507 /*
2508  * System call entry points.
2509  */
2510 
2511 /**
2512  *  sys_restart_syscall - restart a system call
2513  */
2514 SYSCALL_DEFINE0(restart_syscall)
2515 {
2516 	struct restart_block *restart = &current_thread_info()->restart_block;
2517 	return restart->fn(restart);
2518 }
2519 
2520 long do_no_restart_syscall(struct restart_block *param)
2521 {
2522 	return -EINTR;
2523 }
2524 
2525 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2526 {
2527 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2528 		sigset_t newblocked;
2529 		/* A set of now blocked but previously unblocked signals. */
2530 		sigandnsets(&newblocked, newset, &current->blocked);
2531 		retarget_shared_pending(tsk, &newblocked);
2532 	}
2533 	tsk->blocked = *newset;
2534 	recalc_sigpending();
2535 }
2536 
2537 /**
2538  * set_current_blocked - change current->blocked mask
2539  * @newset: new mask
2540  *
2541  * It is wrong to change ->blocked directly, this helper should be used
2542  * to ensure the process can't miss a shared signal we are going to block.
2543  */
2544 void set_current_blocked(sigset_t *newset)
2545 {
2546 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2547 	__set_current_blocked(newset);
2548 }
2549 
2550 void __set_current_blocked(const sigset_t *newset)
2551 {
2552 	struct task_struct *tsk = current;
2553 
2554 	spin_lock_irq(&tsk->sighand->siglock);
2555 	__set_task_blocked(tsk, newset);
2556 	spin_unlock_irq(&tsk->sighand->siglock);
2557 }
2558 
2559 /*
2560  * This is also useful for kernel threads that want to temporarily
2561  * (or permanently) block certain signals.
2562  *
2563  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2564  * interface happily blocks "unblockable" signals like SIGKILL
2565  * and friends.
2566  */
2567 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2568 {
2569 	struct task_struct *tsk = current;
2570 	sigset_t newset;
2571 
2572 	/* Lockless, only current can change ->blocked, never from irq */
2573 	if (oldset)
2574 		*oldset = tsk->blocked;
2575 
2576 	switch (how) {
2577 	case SIG_BLOCK:
2578 		sigorsets(&newset, &tsk->blocked, set);
2579 		break;
2580 	case SIG_UNBLOCK:
2581 		sigandnsets(&newset, &tsk->blocked, set);
2582 		break;
2583 	case SIG_SETMASK:
2584 		newset = *set;
2585 		break;
2586 	default:
2587 		return -EINVAL;
2588 	}
2589 
2590 	__set_current_blocked(&newset);
2591 	return 0;
2592 }
2593 
2594 /**
2595  *  sys_rt_sigprocmask - change the list of currently blocked signals
2596  *  @how: whether to add, remove, or set signals
2597  *  @nset: stores pending signals
2598  *  @oset: previous value of signal mask if non-null
2599  *  @sigsetsize: size of sigset_t type
2600  */
2601 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2602 		sigset_t __user *, oset, size_t, sigsetsize)
2603 {
2604 	sigset_t old_set, new_set;
2605 	int error;
2606 
2607 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2608 	if (sigsetsize != sizeof(sigset_t))
2609 		return -EINVAL;
2610 
2611 	old_set = current->blocked;
2612 
2613 	if (nset) {
2614 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2615 			return -EFAULT;
2616 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2617 
2618 		error = sigprocmask(how, &new_set, NULL);
2619 		if (error)
2620 			return error;
2621 	}
2622 
2623 	if (oset) {
2624 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2625 			return -EFAULT;
2626 	}
2627 
2628 	return 0;
2629 }
2630 
2631 #ifdef CONFIG_COMPAT
2632 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2633 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2634 {
2635 #ifdef __BIG_ENDIAN
2636 	sigset_t old_set = current->blocked;
2637 
2638 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2639 	if (sigsetsize != sizeof(sigset_t))
2640 		return -EINVAL;
2641 
2642 	if (nset) {
2643 		compat_sigset_t new32;
2644 		sigset_t new_set;
2645 		int error;
2646 		if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2647 			return -EFAULT;
2648 
2649 		sigset_from_compat(&new_set, &new32);
2650 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2651 
2652 		error = sigprocmask(how, &new_set, NULL);
2653 		if (error)
2654 			return error;
2655 	}
2656 	if (oset) {
2657 		compat_sigset_t old32;
2658 		sigset_to_compat(&old32, &old_set);
2659 		if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2660 			return -EFAULT;
2661 	}
2662 	return 0;
2663 #else
2664 	return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2665 				  (sigset_t __user *)oset, sigsetsize);
2666 #endif
2667 }
2668 #endif
2669 
2670 static int do_sigpending(void *set, unsigned long sigsetsize)
2671 {
2672 	if (sigsetsize > sizeof(sigset_t))
2673 		return -EINVAL;
2674 
2675 	spin_lock_irq(&current->sighand->siglock);
2676 	sigorsets(set, &current->pending.signal,
2677 		  &current->signal->shared_pending.signal);
2678 	spin_unlock_irq(&current->sighand->siglock);
2679 
2680 	/* Outside the lock because only this thread touches it.  */
2681 	sigandsets(set, &current->blocked, set);
2682 	return 0;
2683 }
2684 
2685 /**
2686  *  sys_rt_sigpending - examine a pending signal that has been raised
2687  *			while blocked
2688  *  @uset: stores pending signals
2689  *  @sigsetsize: size of sigset_t type or larger
2690  */
2691 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2692 {
2693 	sigset_t set;
2694 	int err = do_sigpending(&set, sigsetsize);
2695 	if (!err && copy_to_user(uset, &set, sigsetsize))
2696 		err = -EFAULT;
2697 	return err;
2698 }
2699 
2700 #ifdef CONFIG_COMPAT
2701 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2702 		compat_size_t, sigsetsize)
2703 {
2704 #ifdef __BIG_ENDIAN
2705 	sigset_t set;
2706 	int err = do_sigpending(&set, sigsetsize);
2707 	if (!err) {
2708 		compat_sigset_t set32;
2709 		sigset_to_compat(&set32, &set);
2710 		/* we can get here only if sigsetsize <= sizeof(set) */
2711 		if (copy_to_user(uset, &set32, sigsetsize))
2712 			err = -EFAULT;
2713 	}
2714 	return err;
2715 #else
2716 	return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2717 #endif
2718 }
2719 #endif
2720 
2721 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2722 
2723 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2724 {
2725 	int err;
2726 
2727 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2728 		return -EFAULT;
2729 	if (from->si_code < 0)
2730 		return __copy_to_user(to, from, sizeof(siginfo_t))
2731 			? -EFAULT : 0;
2732 	/*
2733 	 * If you change siginfo_t structure, please be sure
2734 	 * this code is fixed accordingly.
2735 	 * Please remember to update the signalfd_copyinfo() function
2736 	 * inside fs/signalfd.c too, in case siginfo_t changes.
2737 	 * It should never copy any pad contained in the structure
2738 	 * to avoid security leaks, but must copy the generic
2739 	 * 3 ints plus the relevant union member.
2740 	 */
2741 	err = __put_user(from->si_signo, &to->si_signo);
2742 	err |= __put_user(from->si_errno, &to->si_errno);
2743 	err |= __put_user((short)from->si_code, &to->si_code);
2744 	switch (from->si_code & __SI_MASK) {
2745 	case __SI_KILL:
2746 		err |= __put_user(from->si_pid, &to->si_pid);
2747 		err |= __put_user(from->si_uid, &to->si_uid);
2748 		break;
2749 	case __SI_TIMER:
2750 		 err |= __put_user(from->si_tid, &to->si_tid);
2751 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2752 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2753 		break;
2754 	case __SI_POLL:
2755 		err |= __put_user(from->si_band, &to->si_band);
2756 		err |= __put_user(from->si_fd, &to->si_fd);
2757 		break;
2758 	case __SI_FAULT:
2759 		err |= __put_user(from->si_addr, &to->si_addr);
2760 #ifdef __ARCH_SI_TRAPNO
2761 		err |= __put_user(from->si_trapno, &to->si_trapno);
2762 #endif
2763 #ifdef BUS_MCEERR_AO
2764 		/*
2765 		 * Other callers might not initialize the si_lsb field,
2766 		 * so check explicitly for the right codes here.
2767 		 */
2768 		if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2769 			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2770 #endif
2771 		break;
2772 	case __SI_CHLD:
2773 		err |= __put_user(from->si_pid, &to->si_pid);
2774 		err |= __put_user(from->si_uid, &to->si_uid);
2775 		err |= __put_user(from->si_status, &to->si_status);
2776 		err |= __put_user(from->si_utime, &to->si_utime);
2777 		err |= __put_user(from->si_stime, &to->si_stime);
2778 		break;
2779 	case __SI_RT: /* This is not generated by the kernel as of now. */
2780 	case __SI_MESGQ: /* But this is */
2781 		err |= __put_user(from->si_pid, &to->si_pid);
2782 		err |= __put_user(from->si_uid, &to->si_uid);
2783 		err |= __put_user(from->si_ptr, &to->si_ptr);
2784 		break;
2785 #ifdef __ARCH_SIGSYS
2786 	case __SI_SYS:
2787 		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2788 		err |= __put_user(from->si_syscall, &to->si_syscall);
2789 		err |= __put_user(from->si_arch, &to->si_arch);
2790 		break;
2791 #endif
2792 	default: /* this is just in case for now ... */
2793 		err |= __put_user(from->si_pid, &to->si_pid);
2794 		err |= __put_user(from->si_uid, &to->si_uid);
2795 		break;
2796 	}
2797 	return err;
2798 }
2799 
2800 #endif
2801 
2802 /**
2803  *  do_sigtimedwait - wait for queued signals specified in @which
2804  *  @which: queued signals to wait for
2805  *  @info: if non-null, the signal's siginfo is returned here
2806  *  @ts: upper bound on process time suspension
2807  */
2808 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2809 			const struct timespec *ts)
2810 {
2811 	struct task_struct *tsk = current;
2812 	long timeout = MAX_SCHEDULE_TIMEOUT;
2813 	sigset_t mask = *which;
2814 	int sig;
2815 
2816 	if (ts) {
2817 		if (!timespec_valid(ts))
2818 			return -EINVAL;
2819 		timeout = timespec_to_jiffies(ts);
2820 		/*
2821 		 * We can be close to the next tick, add another one
2822 		 * to ensure we will wait at least the time asked for.
2823 		 */
2824 		if (ts->tv_sec || ts->tv_nsec)
2825 			timeout++;
2826 	}
2827 
2828 	/*
2829 	 * Invert the set of allowed signals to get those we want to block.
2830 	 */
2831 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2832 	signotset(&mask);
2833 
2834 	spin_lock_irq(&tsk->sighand->siglock);
2835 	sig = dequeue_signal(tsk, &mask, info);
2836 	if (!sig && timeout) {
2837 		/*
2838 		 * None ready, temporarily unblock those we're interested
2839 		 * while we are sleeping in so that we'll be awakened when
2840 		 * they arrive. Unblocking is always fine, we can avoid
2841 		 * set_current_blocked().
2842 		 */
2843 		tsk->real_blocked = tsk->blocked;
2844 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2845 		recalc_sigpending();
2846 		spin_unlock_irq(&tsk->sighand->siglock);
2847 
2848 		timeout = schedule_timeout_interruptible(timeout);
2849 
2850 		spin_lock_irq(&tsk->sighand->siglock);
2851 		__set_task_blocked(tsk, &tsk->real_blocked);
2852 		siginitset(&tsk->real_blocked, 0);
2853 		sig = dequeue_signal(tsk, &mask, info);
2854 	}
2855 	spin_unlock_irq(&tsk->sighand->siglock);
2856 
2857 	if (sig)
2858 		return sig;
2859 	return timeout ? -EINTR : -EAGAIN;
2860 }
2861 
2862 /**
2863  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2864  *			in @uthese
2865  *  @uthese: queued signals to wait for
2866  *  @uinfo: if non-null, the signal's siginfo is returned here
2867  *  @uts: upper bound on process time suspension
2868  *  @sigsetsize: size of sigset_t type
2869  */
2870 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2871 		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2872 		size_t, sigsetsize)
2873 {
2874 	sigset_t these;
2875 	struct timespec ts;
2876 	siginfo_t info;
2877 	int ret;
2878 
2879 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2880 	if (sigsetsize != sizeof(sigset_t))
2881 		return -EINVAL;
2882 
2883 	if (copy_from_user(&these, uthese, sizeof(these)))
2884 		return -EFAULT;
2885 
2886 	if (uts) {
2887 		if (copy_from_user(&ts, uts, sizeof(ts)))
2888 			return -EFAULT;
2889 	}
2890 
2891 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2892 
2893 	if (ret > 0 && uinfo) {
2894 		if (copy_siginfo_to_user(uinfo, &info))
2895 			ret = -EFAULT;
2896 	}
2897 
2898 	return ret;
2899 }
2900 
2901 /**
2902  *  sys_kill - send a signal to a process
2903  *  @pid: the PID of the process
2904  *  @sig: signal to be sent
2905  */
2906 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2907 {
2908 	struct siginfo info;
2909 
2910 	info.si_signo = sig;
2911 	info.si_errno = 0;
2912 	info.si_code = SI_USER;
2913 	info.si_pid = task_tgid_vnr(current);
2914 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2915 
2916 	return kill_something_info(sig, &info, pid);
2917 }
2918 
2919 static int
2920 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2921 {
2922 	struct task_struct *p;
2923 	int error = -ESRCH;
2924 
2925 	rcu_read_lock();
2926 	p = find_task_by_vpid(pid);
2927 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2928 		error = check_kill_permission(sig, info, p);
2929 		/*
2930 		 * The null signal is a permissions and process existence
2931 		 * probe.  No signal is actually delivered.
2932 		 */
2933 		if (!error && sig) {
2934 			error = do_send_sig_info(sig, info, p, false);
2935 			/*
2936 			 * If lock_task_sighand() failed we pretend the task
2937 			 * dies after receiving the signal. The window is tiny,
2938 			 * and the signal is private anyway.
2939 			 */
2940 			if (unlikely(error == -ESRCH))
2941 				error = 0;
2942 		}
2943 	}
2944 	rcu_read_unlock();
2945 
2946 	return error;
2947 }
2948 
2949 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2950 {
2951 	struct siginfo info = {};
2952 
2953 	info.si_signo = sig;
2954 	info.si_errno = 0;
2955 	info.si_code = SI_TKILL;
2956 	info.si_pid = task_tgid_vnr(current);
2957 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2958 
2959 	return do_send_specific(tgid, pid, sig, &info);
2960 }
2961 
2962 /**
2963  *  sys_tgkill - send signal to one specific thread
2964  *  @tgid: the thread group ID of the thread
2965  *  @pid: the PID of the thread
2966  *  @sig: signal to be sent
2967  *
2968  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2969  *  exists but it's not belonging to the target process anymore. This
2970  *  method solves the problem of threads exiting and PIDs getting reused.
2971  */
2972 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2973 {
2974 	/* This is only valid for single tasks */
2975 	if (pid <= 0 || tgid <= 0)
2976 		return -EINVAL;
2977 
2978 	return do_tkill(tgid, pid, sig);
2979 }
2980 
2981 /**
2982  *  sys_tkill - send signal to one specific task
2983  *  @pid: the PID of the task
2984  *  @sig: signal to be sent
2985  *
2986  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2987  */
2988 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2989 {
2990 	/* This is only valid for single tasks */
2991 	if (pid <= 0)
2992 		return -EINVAL;
2993 
2994 	return do_tkill(0, pid, sig);
2995 }
2996 
2997 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
2998 {
2999 	/* Not even root can pretend to send signals from the kernel.
3000 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3001 	 */
3002 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3003 	    (task_pid_vnr(current) != pid)) {
3004 		/* We used to allow any < 0 si_code */
3005 		WARN_ON_ONCE(info->si_code < 0);
3006 		return -EPERM;
3007 	}
3008 	info->si_signo = sig;
3009 
3010 	/* POSIX.1b doesn't mention process groups.  */
3011 	return kill_proc_info(sig, info, pid);
3012 }
3013 
3014 /**
3015  *  sys_rt_sigqueueinfo - send signal information to a signal
3016  *  @pid: the PID of the thread
3017  *  @sig: signal to be sent
3018  *  @uinfo: signal info to be sent
3019  */
3020 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3021 		siginfo_t __user *, uinfo)
3022 {
3023 	siginfo_t info;
3024 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3025 		return -EFAULT;
3026 	return do_rt_sigqueueinfo(pid, sig, &info);
3027 }
3028 
3029 #ifdef CONFIG_COMPAT
3030 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3031 			compat_pid_t, pid,
3032 			int, sig,
3033 			struct compat_siginfo __user *, uinfo)
3034 {
3035 	siginfo_t info;
3036 	int ret = copy_siginfo_from_user32(&info, uinfo);
3037 	if (unlikely(ret))
3038 		return ret;
3039 	return do_rt_sigqueueinfo(pid, sig, &info);
3040 }
3041 #endif
3042 
3043 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3044 {
3045 	/* This is only valid for single tasks */
3046 	if (pid <= 0 || tgid <= 0)
3047 		return -EINVAL;
3048 
3049 	/* Not even root can pretend to send signals from the kernel.
3050 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3051 	 */
3052 	if (((info->si_code >= 0 || info->si_code == SI_TKILL)) &&
3053 	    (task_pid_vnr(current) != pid)) {
3054 		/* We used to allow any < 0 si_code */
3055 		WARN_ON_ONCE(info->si_code < 0);
3056 		return -EPERM;
3057 	}
3058 	info->si_signo = sig;
3059 
3060 	return do_send_specific(tgid, pid, sig, info);
3061 }
3062 
3063 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3064 		siginfo_t __user *, uinfo)
3065 {
3066 	siginfo_t info;
3067 
3068 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3069 		return -EFAULT;
3070 
3071 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3072 }
3073 
3074 #ifdef CONFIG_COMPAT
3075 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3076 			compat_pid_t, tgid,
3077 			compat_pid_t, pid,
3078 			int, sig,
3079 			struct compat_siginfo __user *, uinfo)
3080 {
3081 	siginfo_t info;
3082 
3083 	if (copy_siginfo_from_user32(&info, uinfo))
3084 		return -EFAULT;
3085 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3086 }
3087 #endif
3088 
3089 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3090 {
3091 	struct task_struct *t = current;
3092 	struct k_sigaction *k;
3093 	sigset_t mask;
3094 
3095 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3096 		return -EINVAL;
3097 
3098 	k = &t->sighand->action[sig-1];
3099 
3100 	spin_lock_irq(&current->sighand->siglock);
3101 	if (oact)
3102 		*oact = *k;
3103 
3104 	if (act) {
3105 		sigdelsetmask(&act->sa.sa_mask,
3106 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3107 		*k = *act;
3108 		/*
3109 		 * POSIX 3.3.1.3:
3110 		 *  "Setting a signal action to SIG_IGN for a signal that is
3111 		 *   pending shall cause the pending signal to be discarded,
3112 		 *   whether or not it is blocked."
3113 		 *
3114 		 *  "Setting a signal action to SIG_DFL for a signal that is
3115 		 *   pending and whose default action is to ignore the signal
3116 		 *   (for example, SIGCHLD), shall cause the pending signal to
3117 		 *   be discarded, whether or not it is blocked"
3118 		 */
3119 		if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3120 			sigemptyset(&mask);
3121 			sigaddset(&mask, sig);
3122 			rm_from_queue_full(&mask, &t->signal->shared_pending);
3123 			do {
3124 				rm_from_queue_full(&mask, &t->pending);
3125 				t = next_thread(t);
3126 			} while (t != current);
3127 		}
3128 	}
3129 
3130 	spin_unlock_irq(&current->sighand->siglock);
3131 	return 0;
3132 }
3133 
3134 static int
3135 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3136 {
3137 	stack_t oss;
3138 	int error;
3139 
3140 	oss.ss_sp = (void __user *) current->sas_ss_sp;
3141 	oss.ss_size = current->sas_ss_size;
3142 	oss.ss_flags = sas_ss_flags(sp);
3143 
3144 	if (uss) {
3145 		void __user *ss_sp;
3146 		size_t ss_size;
3147 		int ss_flags;
3148 
3149 		error = -EFAULT;
3150 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3151 			goto out;
3152 		error = __get_user(ss_sp, &uss->ss_sp) |
3153 			__get_user(ss_flags, &uss->ss_flags) |
3154 			__get_user(ss_size, &uss->ss_size);
3155 		if (error)
3156 			goto out;
3157 
3158 		error = -EPERM;
3159 		if (on_sig_stack(sp))
3160 			goto out;
3161 
3162 		error = -EINVAL;
3163 		/*
3164 		 * Note - this code used to test ss_flags incorrectly:
3165 		 *  	  old code may have been written using ss_flags==0
3166 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
3167 		 *	  way that worked) - this fix preserves that older
3168 		 *	  mechanism.
3169 		 */
3170 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3171 			goto out;
3172 
3173 		if (ss_flags == SS_DISABLE) {
3174 			ss_size = 0;
3175 			ss_sp = NULL;
3176 		} else {
3177 			error = -ENOMEM;
3178 			if (ss_size < MINSIGSTKSZ)
3179 				goto out;
3180 		}
3181 
3182 		current->sas_ss_sp = (unsigned long) ss_sp;
3183 		current->sas_ss_size = ss_size;
3184 	}
3185 
3186 	error = 0;
3187 	if (uoss) {
3188 		error = -EFAULT;
3189 		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3190 			goto out;
3191 		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3192 			__put_user(oss.ss_size, &uoss->ss_size) |
3193 			__put_user(oss.ss_flags, &uoss->ss_flags);
3194 	}
3195 
3196 out:
3197 	return error;
3198 }
3199 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3200 {
3201 	return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3202 }
3203 
3204 int restore_altstack(const stack_t __user *uss)
3205 {
3206 	int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3207 	/* squash all but EFAULT for now */
3208 	return err == -EFAULT ? err : 0;
3209 }
3210 
3211 int __save_altstack(stack_t __user *uss, unsigned long sp)
3212 {
3213 	struct task_struct *t = current;
3214 	return  __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3215 		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
3216 		__put_user(t->sas_ss_size, &uss->ss_size);
3217 }
3218 
3219 #ifdef CONFIG_COMPAT
3220 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3221 			const compat_stack_t __user *, uss_ptr,
3222 			compat_stack_t __user *, uoss_ptr)
3223 {
3224 	stack_t uss, uoss;
3225 	int ret;
3226 	mm_segment_t seg;
3227 
3228 	if (uss_ptr) {
3229 		compat_stack_t uss32;
3230 
3231 		memset(&uss, 0, sizeof(stack_t));
3232 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3233 			return -EFAULT;
3234 		uss.ss_sp = compat_ptr(uss32.ss_sp);
3235 		uss.ss_flags = uss32.ss_flags;
3236 		uss.ss_size = uss32.ss_size;
3237 	}
3238 	seg = get_fs();
3239 	set_fs(KERNEL_DS);
3240 	ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3241 			     (stack_t __force __user *) &uoss,
3242 			     compat_user_stack_pointer());
3243 	set_fs(seg);
3244 	if (ret >= 0 && uoss_ptr)  {
3245 		if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3246 		    __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3247 		    __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3248 		    __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3249 			ret = -EFAULT;
3250 	}
3251 	return ret;
3252 }
3253 
3254 int compat_restore_altstack(const compat_stack_t __user *uss)
3255 {
3256 	int err = compat_sys_sigaltstack(uss, NULL);
3257 	/* squash all but -EFAULT for now */
3258 	return err == -EFAULT ? err : 0;
3259 }
3260 
3261 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3262 {
3263 	struct task_struct *t = current;
3264 	return  __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3265 		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
3266 		__put_user(t->sas_ss_size, &uss->ss_size);
3267 }
3268 #endif
3269 
3270 #ifdef __ARCH_WANT_SYS_SIGPENDING
3271 
3272 /**
3273  *  sys_sigpending - examine pending signals
3274  *  @set: where mask of pending signal is returned
3275  */
3276 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3277 {
3278 	return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t));
3279 }
3280 
3281 #endif
3282 
3283 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3284 /**
3285  *  sys_sigprocmask - examine and change blocked signals
3286  *  @how: whether to add, remove, or set signals
3287  *  @nset: signals to add or remove (if non-null)
3288  *  @oset: previous value of signal mask if non-null
3289  *
3290  * Some platforms have their own version with special arguments;
3291  * others support only sys_rt_sigprocmask.
3292  */
3293 
3294 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3295 		old_sigset_t __user *, oset)
3296 {
3297 	old_sigset_t old_set, new_set;
3298 	sigset_t new_blocked;
3299 
3300 	old_set = current->blocked.sig[0];
3301 
3302 	if (nset) {
3303 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3304 			return -EFAULT;
3305 
3306 		new_blocked = current->blocked;
3307 
3308 		switch (how) {
3309 		case SIG_BLOCK:
3310 			sigaddsetmask(&new_blocked, new_set);
3311 			break;
3312 		case SIG_UNBLOCK:
3313 			sigdelsetmask(&new_blocked, new_set);
3314 			break;
3315 		case SIG_SETMASK:
3316 			new_blocked.sig[0] = new_set;
3317 			break;
3318 		default:
3319 			return -EINVAL;
3320 		}
3321 
3322 		set_current_blocked(&new_blocked);
3323 	}
3324 
3325 	if (oset) {
3326 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3327 			return -EFAULT;
3328 	}
3329 
3330 	return 0;
3331 }
3332 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3333 
3334 #ifndef CONFIG_ODD_RT_SIGACTION
3335 /**
3336  *  sys_rt_sigaction - alter an action taken by a process
3337  *  @sig: signal to be sent
3338  *  @act: new sigaction
3339  *  @oact: used to save the previous sigaction
3340  *  @sigsetsize: size of sigset_t type
3341  */
3342 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3343 		const struct sigaction __user *, act,
3344 		struct sigaction __user *, oact,
3345 		size_t, sigsetsize)
3346 {
3347 	struct k_sigaction new_sa, old_sa;
3348 	int ret = -EINVAL;
3349 
3350 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3351 	if (sigsetsize != sizeof(sigset_t))
3352 		goto out;
3353 
3354 	if (act) {
3355 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3356 			return -EFAULT;
3357 	}
3358 
3359 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3360 
3361 	if (!ret && oact) {
3362 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3363 			return -EFAULT;
3364 	}
3365 out:
3366 	return ret;
3367 }
3368 #ifdef CONFIG_COMPAT
3369 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3370 		const struct compat_sigaction __user *, act,
3371 		struct compat_sigaction __user *, oact,
3372 		compat_size_t, sigsetsize)
3373 {
3374 	struct k_sigaction new_ka, old_ka;
3375 	compat_sigset_t mask;
3376 #ifdef __ARCH_HAS_SA_RESTORER
3377 	compat_uptr_t restorer;
3378 #endif
3379 	int ret;
3380 
3381 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3382 	if (sigsetsize != sizeof(compat_sigset_t))
3383 		return -EINVAL;
3384 
3385 	if (act) {
3386 		compat_uptr_t handler;
3387 		ret = get_user(handler, &act->sa_handler);
3388 		new_ka.sa.sa_handler = compat_ptr(handler);
3389 #ifdef __ARCH_HAS_SA_RESTORER
3390 		ret |= get_user(restorer, &act->sa_restorer);
3391 		new_ka.sa.sa_restorer = compat_ptr(restorer);
3392 #endif
3393 		ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3394 		ret |= __get_user(new_ka.sa.sa_flags, &act->sa_flags);
3395 		if (ret)
3396 			return -EFAULT;
3397 		sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3398 	}
3399 
3400 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3401 	if (!ret && oact) {
3402 		sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3403 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3404 			       &oact->sa_handler);
3405 		ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3406 		ret |= __put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3407 #ifdef __ARCH_HAS_SA_RESTORER
3408 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3409 				&oact->sa_restorer);
3410 #endif
3411 	}
3412 	return ret;
3413 }
3414 #endif
3415 #endif /* !CONFIG_ODD_RT_SIGACTION */
3416 
3417 #ifdef CONFIG_OLD_SIGACTION
3418 SYSCALL_DEFINE3(sigaction, int, sig,
3419 		const struct old_sigaction __user *, act,
3420 	        struct old_sigaction __user *, oact)
3421 {
3422 	struct k_sigaction new_ka, old_ka;
3423 	int ret;
3424 
3425 	if (act) {
3426 		old_sigset_t mask;
3427 		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3428 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3429 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3430 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3431 		    __get_user(mask, &act->sa_mask))
3432 			return -EFAULT;
3433 #ifdef __ARCH_HAS_KA_RESTORER
3434 		new_ka.ka_restorer = NULL;
3435 #endif
3436 		siginitset(&new_ka.sa.sa_mask, mask);
3437 	}
3438 
3439 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3440 
3441 	if (!ret && oact) {
3442 		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3443 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3444 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3445 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3446 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3447 			return -EFAULT;
3448 	}
3449 
3450 	return ret;
3451 }
3452 #endif
3453 #ifdef CONFIG_COMPAT_OLD_SIGACTION
3454 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3455 		const struct compat_old_sigaction __user *, act,
3456 	        struct compat_old_sigaction __user *, oact)
3457 {
3458 	struct k_sigaction new_ka, old_ka;
3459 	int ret;
3460 	compat_old_sigset_t mask;
3461 	compat_uptr_t handler, restorer;
3462 
3463 	if (act) {
3464 		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3465 		    __get_user(handler, &act->sa_handler) ||
3466 		    __get_user(restorer, &act->sa_restorer) ||
3467 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3468 		    __get_user(mask, &act->sa_mask))
3469 			return -EFAULT;
3470 
3471 #ifdef __ARCH_HAS_KA_RESTORER
3472 		new_ka.ka_restorer = NULL;
3473 #endif
3474 		new_ka.sa.sa_handler = compat_ptr(handler);
3475 		new_ka.sa.sa_restorer = compat_ptr(restorer);
3476 		siginitset(&new_ka.sa.sa_mask, mask);
3477 	}
3478 
3479 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3480 
3481 	if (!ret && oact) {
3482 		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3483 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3484 			       &oact->sa_handler) ||
3485 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3486 			       &oact->sa_restorer) ||
3487 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3488 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3489 			return -EFAULT;
3490 	}
3491 	return ret;
3492 }
3493 #endif
3494 
3495 #ifdef __ARCH_WANT_SYS_SGETMASK
3496 
3497 /*
3498  * For backwards compatibility.  Functionality superseded by sigprocmask.
3499  */
3500 SYSCALL_DEFINE0(sgetmask)
3501 {
3502 	/* SMP safe */
3503 	return current->blocked.sig[0];
3504 }
3505 
3506 SYSCALL_DEFINE1(ssetmask, int, newmask)
3507 {
3508 	int old = current->blocked.sig[0];
3509 	sigset_t newset;
3510 
3511 	siginitset(&newset, newmask);
3512 	set_current_blocked(&newset);
3513 
3514 	return old;
3515 }
3516 #endif /* __ARCH_WANT_SGETMASK */
3517 
3518 #ifdef __ARCH_WANT_SYS_SIGNAL
3519 /*
3520  * For backwards compatibility.  Functionality superseded by sigaction.
3521  */
3522 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3523 {
3524 	struct k_sigaction new_sa, old_sa;
3525 	int ret;
3526 
3527 	new_sa.sa.sa_handler = handler;
3528 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3529 	sigemptyset(&new_sa.sa.sa_mask);
3530 
3531 	ret = do_sigaction(sig, &new_sa, &old_sa);
3532 
3533 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3534 }
3535 #endif /* __ARCH_WANT_SYS_SIGNAL */
3536 
3537 #ifdef __ARCH_WANT_SYS_PAUSE
3538 
3539 SYSCALL_DEFINE0(pause)
3540 {
3541 	while (!signal_pending(current)) {
3542 		current->state = TASK_INTERRUPTIBLE;
3543 		schedule();
3544 	}
3545 	return -ERESTARTNOHAND;
3546 }
3547 
3548 #endif
3549 
3550 int sigsuspend(sigset_t *set)
3551 {
3552 	current->saved_sigmask = current->blocked;
3553 	set_current_blocked(set);
3554 
3555 	current->state = TASK_INTERRUPTIBLE;
3556 	schedule();
3557 	set_restore_sigmask();
3558 	return -ERESTARTNOHAND;
3559 }
3560 
3561 /**
3562  *  sys_rt_sigsuspend - replace the signal mask for a value with the
3563  *	@unewset value until a signal is received
3564  *  @unewset: new signal mask value
3565  *  @sigsetsize: size of sigset_t type
3566  */
3567 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3568 {
3569 	sigset_t newset;
3570 
3571 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3572 	if (sigsetsize != sizeof(sigset_t))
3573 		return -EINVAL;
3574 
3575 	if (copy_from_user(&newset, unewset, sizeof(newset)))
3576 		return -EFAULT;
3577 	return sigsuspend(&newset);
3578 }
3579 
3580 #ifdef CONFIG_COMPAT
3581 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3582 {
3583 #ifdef __BIG_ENDIAN
3584 	sigset_t newset;
3585 	compat_sigset_t newset32;
3586 
3587 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3588 	if (sigsetsize != sizeof(sigset_t))
3589 		return -EINVAL;
3590 
3591 	if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3592 		return -EFAULT;
3593 	sigset_from_compat(&newset, &newset32);
3594 	return sigsuspend(&newset);
3595 #else
3596 	/* on little-endian bitmaps don't care about granularity */
3597 	return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3598 #endif
3599 }
3600 #endif
3601 
3602 #ifdef CONFIG_OLD_SIGSUSPEND
3603 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3604 {
3605 	sigset_t blocked;
3606 	siginitset(&blocked, mask);
3607 	return sigsuspend(&blocked);
3608 }
3609 #endif
3610 #ifdef CONFIG_OLD_SIGSUSPEND3
3611 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3612 {
3613 	sigset_t blocked;
3614 	siginitset(&blocked, mask);
3615 	return sigsuspend(&blocked);
3616 }
3617 #endif
3618 
3619 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3620 {
3621 	return NULL;
3622 }
3623 
3624 void __init signals_init(void)
3625 {
3626 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3627 }
3628 
3629 #ifdef CONFIG_KGDB_KDB
3630 #include <linux/kdb.h>
3631 /*
3632  * kdb_send_sig_info - Allows kdb to send signals without exposing
3633  * signal internals.  This function checks if the required locks are
3634  * available before calling the main signal code, to avoid kdb
3635  * deadlocks.
3636  */
3637 void
3638 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3639 {
3640 	static struct task_struct *kdb_prev_t;
3641 	int sig, new_t;
3642 	if (!spin_trylock(&t->sighand->siglock)) {
3643 		kdb_printf("Can't do kill command now.\n"
3644 			   "The sigmask lock is held somewhere else in "
3645 			   "kernel, try again later\n");
3646 		return;
3647 	}
3648 	spin_unlock(&t->sighand->siglock);
3649 	new_t = kdb_prev_t != t;
3650 	kdb_prev_t = t;
3651 	if (t->state != TASK_RUNNING && new_t) {
3652 		kdb_printf("Process is not RUNNING, sending a signal from "
3653 			   "kdb risks deadlock\n"
3654 			   "on the run queue locks. "
3655 			   "The signal has _not_ been sent.\n"
3656 			   "Reissue the kill command if you want to risk "
3657 			   "the deadlock.\n");
3658 		return;
3659 	}
3660 	sig = info->si_signo;
3661 	if (send_sig_info(sig, info, t))
3662 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3663 			   sig, t->pid);
3664 	else
3665 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3666 }
3667 #endif	/* CONFIG_KGDB_KDB */
3668