1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/signal.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 8 * 9 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 10 * Changes to use preallocated sigqueue structures 11 * to allow signals to be sent reliably. 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/user.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/sched/cputime.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/mm.h> 26 #include <linux/proc_fs.h> 27 #include <linux/tty.h> 28 #include <linux/binfmts.h> 29 #include <linux/coredump.h> 30 #include <linux/security.h> 31 #include <linux/syscalls.h> 32 #include <linux/ptrace.h> 33 #include <linux/signal.h> 34 #include <linux/signalfd.h> 35 #include <linux/ratelimit.h> 36 #include <linux/task_work.h> 37 #include <linux/capability.h> 38 #include <linux/freezer.h> 39 #include <linux/pid_namespace.h> 40 #include <linux/nsproxy.h> 41 #include <linux/user_namespace.h> 42 #include <linux/uprobes.h> 43 #include <linux/compat.h> 44 #include <linux/cn_proc.h> 45 #include <linux/compiler.h> 46 #include <linux/posix-timers.h> 47 #include <linux/cgroup.h> 48 #include <linux/audit.h> 49 #include <linux/sysctl.h> 50 #include <uapi/linux/pidfd.h> 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/signal.h> 54 55 #include <asm/param.h> 56 #include <linux/uaccess.h> 57 #include <asm/unistd.h> 58 #include <asm/siginfo.h> 59 #include <asm/cacheflush.h> 60 #include <asm/syscall.h> /* for syscall_get_* */ 61 62 /* 63 * SLAB caches for signal bits. 64 */ 65 66 static struct kmem_cache *sigqueue_cachep; 67 68 int print_fatal_signals __read_mostly; 69 70 static void __user *sig_handler(struct task_struct *t, int sig) 71 { 72 return t->sighand->action[sig - 1].sa.sa_handler; 73 } 74 75 static inline bool sig_handler_ignored(void __user *handler, int sig) 76 { 77 /* Is it explicitly or implicitly ignored? */ 78 return handler == SIG_IGN || 79 (handler == SIG_DFL && sig_kernel_ignore(sig)); 80 } 81 82 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 83 { 84 void __user *handler; 85 86 handler = sig_handler(t, sig); 87 88 /* SIGKILL and SIGSTOP may not be sent to the global init */ 89 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 90 return true; 91 92 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 93 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 94 return true; 95 96 /* Only allow kernel generated signals to this kthread */ 97 if (unlikely((t->flags & PF_KTHREAD) && 98 (handler == SIG_KTHREAD_KERNEL) && !force)) 99 return true; 100 101 return sig_handler_ignored(handler, sig); 102 } 103 104 static bool sig_ignored(struct task_struct *t, int sig, bool force) 105 { 106 /* 107 * Blocked signals are never ignored, since the 108 * signal handler may change by the time it is 109 * unblocked. 110 */ 111 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 112 return false; 113 114 /* 115 * Tracers may want to know about even ignored signal unless it 116 * is SIGKILL which can't be reported anyway but can be ignored 117 * by SIGNAL_UNKILLABLE task. 118 */ 119 if (t->ptrace && sig != SIGKILL) 120 return false; 121 122 return sig_task_ignored(t, sig, force); 123 } 124 125 /* 126 * Re-calculate pending state from the set of locally pending 127 * signals, globally pending signals, and blocked signals. 128 */ 129 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 130 { 131 unsigned long ready; 132 long i; 133 134 switch (_NSIG_WORDS) { 135 default: 136 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 137 ready |= signal->sig[i] &~ blocked->sig[i]; 138 break; 139 140 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 141 ready |= signal->sig[2] &~ blocked->sig[2]; 142 ready |= signal->sig[1] &~ blocked->sig[1]; 143 ready |= signal->sig[0] &~ blocked->sig[0]; 144 break; 145 146 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 147 ready |= signal->sig[0] &~ blocked->sig[0]; 148 break; 149 150 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 151 } 152 return ready != 0; 153 } 154 155 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 156 157 static bool recalc_sigpending_tsk(struct task_struct *t) 158 { 159 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || 160 PENDING(&t->pending, &t->blocked) || 161 PENDING(&t->signal->shared_pending, &t->blocked) || 162 cgroup_task_frozen(t)) { 163 set_tsk_thread_flag(t, TIF_SIGPENDING); 164 return true; 165 } 166 167 /* 168 * We must never clear the flag in another thread, or in current 169 * when it's possible the current syscall is returning -ERESTART*. 170 * So we don't clear it here, and only callers who know they should do. 171 */ 172 return false; 173 } 174 175 void recalc_sigpending(void) 176 { 177 if (!recalc_sigpending_tsk(current) && !freezing(current)) 178 clear_thread_flag(TIF_SIGPENDING); 179 180 } 181 EXPORT_SYMBOL(recalc_sigpending); 182 183 void calculate_sigpending(void) 184 { 185 /* Have any signals or users of TIF_SIGPENDING been delayed 186 * until after fork? 187 */ 188 spin_lock_irq(¤t->sighand->siglock); 189 set_tsk_thread_flag(current, TIF_SIGPENDING); 190 recalc_sigpending(); 191 spin_unlock_irq(¤t->sighand->siglock); 192 } 193 194 /* Given the mask, find the first available signal that should be serviced. */ 195 196 #define SYNCHRONOUS_MASK \ 197 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 198 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 199 200 int next_signal(struct sigpending *pending, sigset_t *mask) 201 { 202 unsigned long i, *s, *m, x; 203 int sig = 0; 204 205 s = pending->signal.sig; 206 m = mask->sig; 207 208 /* 209 * Handle the first word specially: it contains the 210 * synchronous signals that need to be dequeued first. 211 */ 212 x = *s &~ *m; 213 if (x) { 214 if (x & SYNCHRONOUS_MASK) 215 x &= SYNCHRONOUS_MASK; 216 sig = ffz(~x) + 1; 217 return sig; 218 } 219 220 switch (_NSIG_WORDS) { 221 default: 222 for (i = 1; i < _NSIG_WORDS; ++i) { 223 x = *++s &~ *++m; 224 if (!x) 225 continue; 226 sig = ffz(~x) + i*_NSIG_BPW + 1; 227 break; 228 } 229 break; 230 231 case 2: 232 x = s[1] &~ m[1]; 233 if (!x) 234 break; 235 sig = ffz(~x) + _NSIG_BPW + 1; 236 break; 237 238 case 1: 239 /* Nothing to do */ 240 break; 241 } 242 243 return sig; 244 } 245 246 static inline void print_dropped_signal(int sig) 247 { 248 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 249 250 if (!print_fatal_signals) 251 return; 252 253 if (!__ratelimit(&ratelimit_state)) 254 return; 255 256 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 257 current->comm, current->pid, sig); 258 } 259 260 /** 261 * task_set_jobctl_pending - set jobctl pending bits 262 * @task: target task 263 * @mask: pending bits to set 264 * 265 * Clear @mask from @task->jobctl. @mask must be subset of 266 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 267 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 268 * cleared. If @task is already being killed or exiting, this function 269 * becomes noop. 270 * 271 * CONTEXT: 272 * Must be called with @task->sighand->siglock held. 273 * 274 * RETURNS: 275 * %true if @mask is set, %false if made noop because @task was dying. 276 */ 277 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 278 { 279 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 280 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 281 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 282 283 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 284 return false; 285 286 if (mask & JOBCTL_STOP_SIGMASK) 287 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 288 289 task->jobctl |= mask; 290 return true; 291 } 292 293 /** 294 * task_clear_jobctl_trapping - clear jobctl trapping bit 295 * @task: target task 296 * 297 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 298 * Clear it and wake up the ptracer. Note that we don't need any further 299 * locking. @task->siglock guarantees that @task->parent points to the 300 * ptracer. 301 * 302 * CONTEXT: 303 * Must be called with @task->sighand->siglock held. 304 */ 305 void task_clear_jobctl_trapping(struct task_struct *task) 306 { 307 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 308 task->jobctl &= ~JOBCTL_TRAPPING; 309 smp_mb(); /* advised by wake_up_bit() */ 310 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 311 } 312 } 313 314 /** 315 * task_clear_jobctl_pending - clear jobctl pending bits 316 * @task: target task 317 * @mask: pending bits to clear 318 * 319 * Clear @mask from @task->jobctl. @mask must be subset of 320 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 321 * STOP bits are cleared together. 322 * 323 * If clearing of @mask leaves no stop or trap pending, this function calls 324 * task_clear_jobctl_trapping(). 325 * 326 * CONTEXT: 327 * Must be called with @task->sighand->siglock held. 328 */ 329 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 330 { 331 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 332 333 if (mask & JOBCTL_STOP_PENDING) 334 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 335 336 task->jobctl &= ~mask; 337 338 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 339 task_clear_jobctl_trapping(task); 340 } 341 342 /** 343 * task_participate_group_stop - participate in a group stop 344 * @task: task participating in a group stop 345 * 346 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 347 * Group stop states are cleared and the group stop count is consumed if 348 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 349 * stop, the appropriate `SIGNAL_*` flags are set. 350 * 351 * CONTEXT: 352 * Must be called with @task->sighand->siglock held. 353 * 354 * RETURNS: 355 * %true if group stop completion should be notified to the parent, %false 356 * otherwise. 357 */ 358 static bool task_participate_group_stop(struct task_struct *task) 359 { 360 struct signal_struct *sig = task->signal; 361 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 362 363 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 364 365 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 366 367 if (!consume) 368 return false; 369 370 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 371 sig->group_stop_count--; 372 373 /* 374 * Tell the caller to notify completion iff we are entering into a 375 * fresh group stop. Read comment in do_signal_stop() for details. 376 */ 377 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 378 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 379 return true; 380 } 381 return false; 382 } 383 384 void task_join_group_stop(struct task_struct *task) 385 { 386 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK; 387 struct signal_struct *sig = current->signal; 388 389 if (sig->group_stop_count) { 390 sig->group_stop_count++; 391 mask |= JOBCTL_STOP_CONSUME; 392 } else if (!(sig->flags & SIGNAL_STOP_STOPPED)) 393 return; 394 395 /* Have the new thread join an on-going signal group stop */ 396 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING); 397 } 398 399 /* 400 * allocate a new signal queue record 401 * - this may be called without locks if and only if t == current, otherwise an 402 * appropriate lock must be held to stop the target task from exiting 403 */ 404 static struct sigqueue * 405 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags, 406 int override_rlimit, const unsigned int sigqueue_flags) 407 { 408 struct sigqueue *q = NULL; 409 struct ucounts *ucounts; 410 long sigpending; 411 412 /* 413 * Protect access to @t credentials. This can go away when all 414 * callers hold rcu read lock. 415 * 416 * NOTE! A pending signal will hold on to the user refcount, 417 * and we get/put the refcount only when the sigpending count 418 * changes from/to zero. 419 */ 420 rcu_read_lock(); 421 ucounts = task_ucounts(t); 422 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 423 rcu_read_unlock(); 424 if (!sigpending) 425 return NULL; 426 427 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) { 428 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags); 429 } else { 430 print_dropped_signal(sig); 431 } 432 433 if (unlikely(q == NULL)) { 434 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 435 } else { 436 INIT_LIST_HEAD(&q->list); 437 q->flags = sigqueue_flags; 438 q->ucounts = ucounts; 439 } 440 return q; 441 } 442 443 static void __sigqueue_free(struct sigqueue *q) 444 { 445 if (q->flags & SIGQUEUE_PREALLOC) 446 return; 447 if (q->ucounts) { 448 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING); 449 q->ucounts = NULL; 450 } 451 kmem_cache_free(sigqueue_cachep, q); 452 } 453 454 void flush_sigqueue(struct sigpending *queue) 455 { 456 struct sigqueue *q; 457 458 sigemptyset(&queue->signal); 459 while (!list_empty(&queue->list)) { 460 q = list_entry(queue->list.next, struct sigqueue , list); 461 list_del_init(&q->list); 462 __sigqueue_free(q); 463 } 464 } 465 466 /* 467 * Flush all pending signals for this kthread. 468 */ 469 void flush_signals(struct task_struct *t) 470 { 471 unsigned long flags; 472 473 spin_lock_irqsave(&t->sighand->siglock, flags); 474 clear_tsk_thread_flag(t, TIF_SIGPENDING); 475 flush_sigqueue(&t->pending); 476 flush_sigqueue(&t->signal->shared_pending); 477 spin_unlock_irqrestore(&t->sighand->siglock, flags); 478 } 479 EXPORT_SYMBOL(flush_signals); 480 481 #ifdef CONFIG_POSIX_TIMERS 482 static void __flush_itimer_signals(struct sigpending *pending) 483 { 484 sigset_t signal, retain; 485 struct sigqueue *q, *n; 486 487 signal = pending->signal; 488 sigemptyset(&retain); 489 490 list_for_each_entry_safe(q, n, &pending->list, list) { 491 int sig = q->info.si_signo; 492 493 if (likely(q->info.si_code != SI_TIMER)) { 494 sigaddset(&retain, sig); 495 } else { 496 sigdelset(&signal, sig); 497 list_del_init(&q->list); 498 __sigqueue_free(q); 499 } 500 } 501 502 sigorsets(&pending->signal, &signal, &retain); 503 } 504 505 void flush_itimer_signals(void) 506 { 507 struct task_struct *tsk = current; 508 unsigned long flags; 509 510 spin_lock_irqsave(&tsk->sighand->siglock, flags); 511 __flush_itimer_signals(&tsk->pending); 512 __flush_itimer_signals(&tsk->signal->shared_pending); 513 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 514 } 515 #endif 516 517 void ignore_signals(struct task_struct *t) 518 { 519 int i; 520 521 for (i = 0; i < _NSIG; ++i) 522 t->sighand->action[i].sa.sa_handler = SIG_IGN; 523 524 flush_signals(t); 525 } 526 527 /* 528 * Flush all handlers for a task. 529 */ 530 531 void 532 flush_signal_handlers(struct task_struct *t, int force_default) 533 { 534 int i; 535 struct k_sigaction *ka = &t->sighand->action[0]; 536 for (i = _NSIG ; i != 0 ; i--) { 537 if (force_default || ka->sa.sa_handler != SIG_IGN) 538 ka->sa.sa_handler = SIG_DFL; 539 ka->sa.sa_flags = 0; 540 #ifdef __ARCH_HAS_SA_RESTORER 541 ka->sa.sa_restorer = NULL; 542 #endif 543 sigemptyset(&ka->sa.sa_mask); 544 ka++; 545 } 546 } 547 548 bool unhandled_signal(struct task_struct *tsk, int sig) 549 { 550 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 551 if (is_global_init(tsk)) 552 return true; 553 554 if (handler != SIG_IGN && handler != SIG_DFL) 555 return false; 556 557 /* If dying, we handle all new signals by ignoring them */ 558 if (fatal_signal_pending(tsk)) 559 return false; 560 561 /* if ptraced, let the tracer determine */ 562 return !tsk->ptrace; 563 } 564 565 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 566 bool *resched_timer) 567 { 568 struct sigqueue *q, *first = NULL; 569 570 /* 571 * Collect the siginfo appropriate to this signal. Check if 572 * there is another siginfo for the same signal. 573 */ 574 list_for_each_entry(q, &list->list, list) { 575 if (q->info.si_signo == sig) { 576 if (first) 577 goto still_pending; 578 first = q; 579 } 580 } 581 582 sigdelset(&list->signal, sig); 583 584 if (first) { 585 still_pending: 586 list_del_init(&first->list); 587 copy_siginfo(info, &first->info); 588 589 *resched_timer = 590 (first->flags & SIGQUEUE_PREALLOC) && 591 (info->si_code == SI_TIMER) && 592 (info->si_sys_private); 593 594 __sigqueue_free(first); 595 } else { 596 /* 597 * Ok, it wasn't in the queue. This must be 598 * a fast-pathed signal or we must have been 599 * out of queue space. So zero out the info. 600 */ 601 clear_siginfo(info); 602 info->si_signo = sig; 603 info->si_errno = 0; 604 info->si_code = SI_USER; 605 info->si_pid = 0; 606 info->si_uid = 0; 607 } 608 } 609 610 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 611 kernel_siginfo_t *info, bool *resched_timer) 612 { 613 int sig = next_signal(pending, mask); 614 615 if (sig) 616 collect_signal(sig, pending, info, resched_timer); 617 return sig; 618 } 619 620 /* 621 * Try to dequeue a signal. If a deliverable signal is found fill in the 622 * caller provided siginfo and return the signal number. Otherwise return 623 * 0. 624 */ 625 int dequeue_signal(sigset_t *mask, kernel_siginfo_t *info, enum pid_type *type) 626 { 627 struct task_struct *tsk = current; 628 bool resched_timer = false; 629 int signr; 630 631 lockdep_assert_held(&tsk->sighand->siglock); 632 633 *type = PIDTYPE_PID; 634 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 635 if (!signr) { 636 *type = PIDTYPE_TGID; 637 signr = __dequeue_signal(&tsk->signal->shared_pending, 638 mask, info, &resched_timer); 639 #ifdef CONFIG_POSIX_TIMERS 640 /* 641 * itimer signal ? 642 * 643 * itimers are process shared and we restart periodic 644 * itimers in the signal delivery path to prevent DoS 645 * attacks in the high resolution timer case. This is 646 * compliant with the old way of self-restarting 647 * itimers, as the SIGALRM is a legacy signal and only 648 * queued once. Changing the restart behaviour to 649 * restart the timer in the signal dequeue path is 650 * reducing the timer noise on heavy loaded !highres 651 * systems too. 652 */ 653 if (unlikely(signr == SIGALRM)) { 654 struct hrtimer *tmr = &tsk->signal->real_timer; 655 656 if (!hrtimer_is_queued(tmr) && 657 tsk->signal->it_real_incr != 0) { 658 hrtimer_forward(tmr, tmr->base->get_time(), 659 tsk->signal->it_real_incr); 660 hrtimer_restart(tmr); 661 } 662 } 663 #endif 664 } 665 666 recalc_sigpending(); 667 if (!signr) 668 return 0; 669 670 if (unlikely(sig_kernel_stop(signr))) { 671 /* 672 * Set a marker that we have dequeued a stop signal. Our 673 * caller might release the siglock and then the pending 674 * stop signal it is about to process is no longer in the 675 * pending bitmasks, but must still be cleared by a SIGCONT 676 * (and overruled by a SIGKILL). So those cases clear this 677 * shared flag after we've set it. Note that this flag may 678 * remain set after the signal we return is ignored or 679 * handled. That doesn't matter because its only purpose 680 * is to alert stop-signal processing code when another 681 * processor has come along and cleared the flag. 682 */ 683 current->jobctl |= JOBCTL_STOP_DEQUEUED; 684 } 685 #ifdef CONFIG_POSIX_TIMERS 686 if (resched_timer) { 687 /* 688 * Release the siglock to ensure proper locking order 689 * of timer locks outside of siglocks. Note, we leave 690 * irqs disabled here, since the posix-timers code is 691 * about to disable them again anyway. 692 */ 693 spin_unlock(&tsk->sighand->siglock); 694 posixtimer_rearm(info); 695 spin_lock(&tsk->sighand->siglock); 696 697 /* Don't expose the si_sys_private value to userspace */ 698 info->si_sys_private = 0; 699 } 700 #endif 701 return signr; 702 } 703 EXPORT_SYMBOL_GPL(dequeue_signal); 704 705 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 706 { 707 struct task_struct *tsk = current; 708 struct sigpending *pending = &tsk->pending; 709 struct sigqueue *q, *sync = NULL; 710 711 /* 712 * Might a synchronous signal be in the queue? 713 */ 714 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 715 return 0; 716 717 /* 718 * Return the first synchronous signal in the queue. 719 */ 720 list_for_each_entry(q, &pending->list, list) { 721 /* Synchronous signals have a positive si_code */ 722 if ((q->info.si_code > SI_USER) && 723 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 724 sync = q; 725 goto next; 726 } 727 } 728 return 0; 729 next: 730 /* 731 * Check if there is another siginfo for the same signal. 732 */ 733 list_for_each_entry_continue(q, &pending->list, list) { 734 if (q->info.si_signo == sync->info.si_signo) 735 goto still_pending; 736 } 737 738 sigdelset(&pending->signal, sync->info.si_signo); 739 recalc_sigpending(); 740 still_pending: 741 list_del_init(&sync->list); 742 copy_siginfo(info, &sync->info); 743 __sigqueue_free(sync); 744 return info->si_signo; 745 } 746 747 /* 748 * Tell a process that it has a new active signal.. 749 * 750 * NOTE! we rely on the previous spin_lock to 751 * lock interrupts for us! We can only be called with 752 * "siglock" held, and the local interrupt must 753 * have been disabled when that got acquired! 754 * 755 * No need to set need_resched since signal event passing 756 * goes through ->blocked 757 */ 758 void signal_wake_up_state(struct task_struct *t, unsigned int state) 759 { 760 lockdep_assert_held(&t->sighand->siglock); 761 762 set_tsk_thread_flag(t, TIF_SIGPENDING); 763 764 /* 765 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 766 * case. We don't check t->state here because there is a race with it 767 * executing another processor and just now entering stopped state. 768 * By using wake_up_state, we ensure the process will wake up and 769 * handle its death signal. 770 */ 771 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 772 kick_process(t); 773 } 774 775 /* 776 * Remove signals in mask from the pending set and queue. 777 * Returns 1 if any signals were found. 778 * 779 * All callers must be holding the siglock. 780 */ 781 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 782 { 783 struct sigqueue *q, *n; 784 sigset_t m; 785 786 sigandsets(&m, mask, &s->signal); 787 if (sigisemptyset(&m)) 788 return; 789 790 sigandnsets(&s->signal, &s->signal, mask); 791 list_for_each_entry_safe(q, n, &s->list, list) { 792 if (sigismember(mask, q->info.si_signo)) { 793 list_del_init(&q->list); 794 __sigqueue_free(q); 795 } 796 } 797 } 798 799 static inline int is_si_special(const struct kernel_siginfo *info) 800 { 801 return info <= SEND_SIG_PRIV; 802 } 803 804 static inline bool si_fromuser(const struct kernel_siginfo *info) 805 { 806 return info == SEND_SIG_NOINFO || 807 (!is_si_special(info) && SI_FROMUSER(info)); 808 } 809 810 /* 811 * called with RCU read lock from check_kill_permission() 812 */ 813 static bool kill_ok_by_cred(struct task_struct *t) 814 { 815 const struct cred *cred = current_cred(); 816 const struct cred *tcred = __task_cred(t); 817 818 return uid_eq(cred->euid, tcred->suid) || 819 uid_eq(cred->euid, tcred->uid) || 820 uid_eq(cred->uid, tcred->suid) || 821 uid_eq(cred->uid, tcred->uid) || 822 ns_capable(tcred->user_ns, CAP_KILL); 823 } 824 825 /* 826 * Bad permissions for sending the signal 827 * - the caller must hold the RCU read lock 828 */ 829 static int check_kill_permission(int sig, struct kernel_siginfo *info, 830 struct task_struct *t) 831 { 832 struct pid *sid; 833 int error; 834 835 if (!valid_signal(sig)) 836 return -EINVAL; 837 838 if (!si_fromuser(info)) 839 return 0; 840 841 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 842 if (error) 843 return error; 844 845 if (!same_thread_group(current, t) && 846 !kill_ok_by_cred(t)) { 847 switch (sig) { 848 case SIGCONT: 849 sid = task_session(t); 850 /* 851 * We don't return the error if sid == NULL. The 852 * task was unhashed, the caller must notice this. 853 */ 854 if (!sid || sid == task_session(current)) 855 break; 856 fallthrough; 857 default: 858 return -EPERM; 859 } 860 } 861 862 return security_task_kill(t, info, sig, NULL); 863 } 864 865 /** 866 * ptrace_trap_notify - schedule trap to notify ptracer 867 * @t: tracee wanting to notify tracer 868 * 869 * This function schedules sticky ptrace trap which is cleared on the next 870 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 871 * ptracer. 872 * 873 * If @t is running, STOP trap will be taken. If trapped for STOP and 874 * ptracer is listening for events, tracee is woken up so that it can 875 * re-trap for the new event. If trapped otherwise, STOP trap will be 876 * eventually taken without returning to userland after the existing traps 877 * are finished by PTRACE_CONT. 878 * 879 * CONTEXT: 880 * Must be called with @task->sighand->siglock held. 881 */ 882 static void ptrace_trap_notify(struct task_struct *t) 883 { 884 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 885 lockdep_assert_held(&t->sighand->siglock); 886 887 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 888 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 889 } 890 891 /* 892 * Handle magic process-wide effects of stop/continue signals. Unlike 893 * the signal actions, these happen immediately at signal-generation 894 * time regardless of blocking, ignoring, or handling. This does the 895 * actual continuing for SIGCONT, but not the actual stopping for stop 896 * signals. The process stop is done as a signal action for SIG_DFL. 897 * 898 * Returns true if the signal should be actually delivered, otherwise 899 * it should be dropped. 900 */ 901 static bool prepare_signal(int sig, struct task_struct *p, bool force) 902 { 903 struct signal_struct *signal = p->signal; 904 struct task_struct *t; 905 sigset_t flush; 906 907 if (signal->flags & SIGNAL_GROUP_EXIT) { 908 if (signal->core_state) 909 return sig == SIGKILL; 910 /* 911 * The process is in the middle of dying, drop the signal. 912 */ 913 return false; 914 } else if (sig_kernel_stop(sig)) { 915 /* 916 * This is a stop signal. Remove SIGCONT from all queues. 917 */ 918 siginitset(&flush, sigmask(SIGCONT)); 919 flush_sigqueue_mask(&flush, &signal->shared_pending); 920 for_each_thread(p, t) 921 flush_sigqueue_mask(&flush, &t->pending); 922 } else if (sig == SIGCONT) { 923 unsigned int why; 924 /* 925 * Remove all stop signals from all queues, wake all threads. 926 */ 927 siginitset(&flush, SIG_KERNEL_STOP_MASK); 928 flush_sigqueue_mask(&flush, &signal->shared_pending); 929 for_each_thread(p, t) { 930 flush_sigqueue_mask(&flush, &t->pending); 931 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 932 if (likely(!(t->ptrace & PT_SEIZED))) { 933 t->jobctl &= ~JOBCTL_STOPPED; 934 wake_up_state(t, __TASK_STOPPED); 935 } else 936 ptrace_trap_notify(t); 937 } 938 939 /* 940 * Notify the parent with CLD_CONTINUED if we were stopped. 941 * 942 * If we were in the middle of a group stop, we pretend it 943 * was already finished, and then continued. Since SIGCHLD 944 * doesn't queue we report only CLD_STOPPED, as if the next 945 * CLD_CONTINUED was dropped. 946 */ 947 why = 0; 948 if (signal->flags & SIGNAL_STOP_STOPPED) 949 why |= SIGNAL_CLD_CONTINUED; 950 else if (signal->group_stop_count) 951 why |= SIGNAL_CLD_STOPPED; 952 953 if (why) { 954 /* 955 * The first thread which returns from do_signal_stop() 956 * will take ->siglock, notice SIGNAL_CLD_MASK, and 957 * notify its parent. See get_signal(). 958 */ 959 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 960 signal->group_stop_count = 0; 961 signal->group_exit_code = 0; 962 } 963 } 964 965 return !sig_ignored(p, sig, force); 966 } 967 968 /* 969 * Test if P wants to take SIG. After we've checked all threads with this, 970 * it's equivalent to finding no threads not blocking SIG. Any threads not 971 * blocking SIG were ruled out because they are not running and already 972 * have pending signals. Such threads will dequeue from the shared queue 973 * as soon as they're available, so putting the signal on the shared queue 974 * will be equivalent to sending it to one such thread. 975 */ 976 static inline bool wants_signal(int sig, struct task_struct *p) 977 { 978 if (sigismember(&p->blocked, sig)) 979 return false; 980 981 if (p->flags & PF_EXITING) 982 return false; 983 984 if (sig == SIGKILL) 985 return true; 986 987 if (task_is_stopped_or_traced(p)) 988 return false; 989 990 return task_curr(p) || !task_sigpending(p); 991 } 992 993 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 994 { 995 struct signal_struct *signal = p->signal; 996 struct task_struct *t; 997 998 /* 999 * Now find a thread we can wake up to take the signal off the queue. 1000 * 1001 * Try the suggested task first (may or may not be the main thread). 1002 */ 1003 if (wants_signal(sig, p)) 1004 t = p; 1005 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 1006 /* 1007 * There is just one thread and it does not need to be woken. 1008 * It will dequeue unblocked signals before it runs again. 1009 */ 1010 return; 1011 else { 1012 /* 1013 * Otherwise try to find a suitable thread. 1014 */ 1015 t = signal->curr_target; 1016 while (!wants_signal(sig, t)) { 1017 t = next_thread(t); 1018 if (t == signal->curr_target) 1019 /* 1020 * No thread needs to be woken. 1021 * Any eligible threads will see 1022 * the signal in the queue soon. 1023 */ 1024 return; 1025 } 1026 signal->curr_target = t; 1027 } 1028 1029 /* 1030 * Found a killable thread. If the signal will be fatal, 1031 * then start taking the whole group down immediately. 1032 */ 1033 if (sig_fatal(p, sig) && 1034 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) && 1035 !sigismember(&t->real_blocked, sig) && 1036 (sig == SIGKILL || !p->ptrace)) { 1037 /* 1038 * This signal will be fatal to the whole group. 1039 */ 1040 if (!sig_kernel_coredump(sig)) { 1041 /* 1042 * Start a group exit and wake everybody up. 1043 * This way we don't have other threads 1044 * running and doing things after a slower 1045 * thread has the fatal signal pending. 1046 */ 1047 signal->flags = SIGNAL_GROUP_EXIT; 1048 signal->group_exit_code = sig; 1049 signal->group_stop_count = 0; 1050 __for_each_thread(signal, t) { 1051 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1052 sigaddset(&t->pending.signal, SIGKILL); 1053 signal_wake_up(t, 1); 1054 } 1055 return; 1056 } 1057 } 1058 1059 /* 1060 * The signal is already in the shared-pending queue. 1061 * Tell the chosen thread to wake up and dequeue it. 1062 */ 1063 signal_wake_up(t, sig == SIGKILL); 1064 return; 1065 } 1066 1067 static inline bool legacy_queue(struct sigpending *signals, int sig) 1068 { 1069 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1070 } 1071 1072 static int __send_signal_locked(int sig, struct kernel_siginfo *info, 1073 struct task_struct *t, enum pid_type type, bool force) 1074 { 1075 struct sigpending *pending; 1076 struct sigqueue *q; 1077 int override_rlimit; 1078 int ret = 0, result; 1079 1080 lockdep_assert_held(&t->sighand->siglock); 1081 1082 result = TRACE_SIGNAL_IGNORED; 1083 if (!prepare_signal(sig, t, force)) 1084 goto ret; 1085 1086 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1087 /* 1088 * Short-circuit ignored signals and support queuing 1089 * exactly one non-rt signal, so that we can get more 1090 * detailed information about the cause of the signal. 1091 */ 1092 result = TRACE_SIGNAL_ALREADY_PENDING; 1093 if (legacy_queue(pending, sig)) 1094 goto ret; 1095 1096 result = TRACE_SIGNAL_DELIVERED; 1097 /* 1098 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1099 */ 1100 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1101 goto out_set; 1102 1103 /* 1104 * Real-time signals must be queued if sent by sigqueue, or 1105 * some other real-time mechanism. It is implementation 1106 * defined whether kill() does so. We attempt to do so, on 1107 * the principle of least surprise, but since kill is not 1108 * allowed to fail with EAGAIN when low on memory we just 1109 * make sure at least one signal gets delivered and don't 1110 * pass on the info struct. 1111 */ 1112 if (sig < SIGRTMIN) 1113 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1114 else 1115 override_rlimit = 0; 1116 1117 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0); 1118 1119 if (q) { 1120 list_add_tail(&q->list, &pending->list); 1121 switch ((unsigned long) info) { 1122 case (unsigned long) SEND_SIG_NOINFO: 1123 clear_siginfo(&q->info); 1124 q->info.si_signo = sig; 1125 q->info.si_errno = 0; 1126 q->info.si_code = SI_USER; 1127 q->info.si_pid = task_tgid_nr_ns(current, 1128 task_active_pid_ns(t)); 1129 rcu_read_lock(); 1130 q->info.si_uid = 1131 from_kuid_munged(task_cred_xxx(t, user_ns), 1132 current_uid()); 1133 rcu_read_unlock(); 1134 break; 1135 case (unsigned long) SEND_SIG_PRIV: 1136 clear_siginfo(&q->info); 1137 q->info.si_signo = sig; 1138 q->info.si_errno = 0; 1139 q->info.si_code = SI_KERNEL; 1140 q->info.si_pid = 0; 1141 q->info.si_uid = 0; 1142 break; 1143 default: 1144 copy_siginfo(&q->info, info); 1145 break; 1146 } 1147 } else if (!is_si_special(info) && 1148 sig >= SIGRTMIN && info->si_code != SI_USER) { 1149 /* 1150 * Queue overflow, abort. We may abort if the 1151 * signal was rt and sent by user using something 1152 * other than kill(). 1153 */ 1154 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1155 ret = -EAGAIN; 1156 goto ret; 1157 } else { 1158 /* 1159 * This is a silent loss of information. We still 1160 * send the signal, but the *info bits are lost. 1161 */ 1162 result = TRACE_SIGNAL_LOSE_INFO; 1163 } 1164 1165 out_set: 1166 signalfd_notify(t, sig); 1167 sigaddset(&pending->signal, sig); 1168 1169 /* Let multiprocess signals appear after on-going forks */ 1170 if (type > PIDTYPE_TGID) { 1171 struct multiprocess_signals *delayed; 1172 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1173 sigset_t *signal = &delayed->signal; 1174 /* Can't queue both a stop and a continue signal */ 1175 if (sig == SIGCONT) 1176 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1177 else if (sig_kernel_stop(sig)) 1178 sigdelset(signal, SIGCONT); 1179 sigaddset(signal, sig); 1180 } 1181 } 1182 1183 complete_signal(sig, t, type); 1184 ret: 1185 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1186 return ret; 1187 } 1188 1189 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) 1190 { 1191 bool ret = false; 1192 switch (siginfo_layout(info->si_signo, info->si_code)) { 1193 case SIL_KILL: 1194 case SIL_CHLD: 1195 case SIL_RT: 1196 ret = true; 1197 break; 1198 case SIL_TIMER: 1199 case SIL_POLL: 1200 case SIL_FAULT: 1201 case SIL_FAULT_TRAPNO: 1202 case SIL_FAULT_MCEERR: 1203 case SIL_FAULT_BNDERR: 1204 case SIL_FAULT_PKUERR: 1205 case SIL_FAULT_PERF_EVENT: 1206 case SIL_SYS: 1207 ret = false; 1208 break; 1209 } 1210 return ret; 1211 } 1212 1213 int send_signal_locked(int sig, struct kernel_siginfo *info, 1214 struct task_struct *t, enum pid_type type) 1215 { 1216 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ 1217 bool force = false; 1218 1219 if (info == SEND_SIG_NOINFO) { 1220 /* Force if sent from an ancestor pid namespace */ 1221 force = !task_pid_nr_ns(current, task_active_pid_ns(t)); 1222 } else if (info == SEND_SIG_PRIV) { 1223 /* Don't ignore kernel generated signals */ 1224 force = true; 1225 } else if (has_si_pid_and_uid(info)) { 1226 /* SIGKILL and SIGSTOP is special or has ids */ 1227 struct user_namespace *t_user_ns; 1228 1229 rcu_read_lock(); 1230 t_user_ns = task_cred_xxx(t, user_ns); 1231 if (current_user_ns() != t_user_ns) { 1232 kuid_t uid = make_kuid(current_user_ns(), info->si_uid); 1233 info->si_uid = from_kuid_munged(t_user_ns, uid); 1234 } 1235 rcu_read_unlock(); 1236 1237 /* A kernel generated signal? */ 1238 force = (info->si_code == SI_KERNEL); 1239 1240 /* From an ancestor pid namespace? */ 1241 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { 1242 info->si_pid = 0; 1243 force = true; 1244 } 1245 } 1246 return __send_signal_locked(sig, info, t, type, force); 1247 } 1248 1249 static void print_fatal_signal(int signr) 1250 { 1251 struct pt_regs *regs = task_pt_regs(current); 1252 struct file *exe_file; 1253 1254 exe_file = get_task_exe_file(current); 1255 if (exe_file) { 1256 pr_info("%pD: %s: potentially unexpected fatal signal %d.\n", 1257 exe_file, current->comm, signr); 1258 fput(exe_file); 1259 } else { 1260 pr_info("%s: potentially unexpected fatal signal %d.\n", 1261 current->comm, signr); 1262 } 1263 1264 #if defined(__i386__) && !defined(__arch_um__) 1265 pr_info("code at %08lx: ", regs->ip); 1266 { 1267 int i; 1268 for (i = 0; i < 16; i++) { 1269 unsigned char insn; 1270 1271 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1272 break; 1273 pr_cont("%02x ", insn); 1274 } 1275 } 1276 pr_cont("\n"); 1277 #endif 1278 preempt_disable(); 1279 show_regs(regs); 1280 preempt_enable(); 1281 } 1282 1283 static int __init setup_print_fatal_signals(char *str) 1284 { 1285 get_option (&str, &print_fatal_signals); 1286 1287 return 1; 1288 } 1289 1290 __setup("print-fatal-signals=", setup_print_fatal_signals); 1291 1292 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1293 enum pid_type type) 1294 { 1295 unsigned long flags; 1296 int ret = -ESRCH; 1297 1298 if (lock_task_sighand(p, &flags)) { 1299 ret = send_signal_locked(sig, info, p, type); 1300 unlock_task_sighand(p, &flags); 1301 } 1302 1303 return ret; 1304 } 1305 1306 enum sig_handler { 1307 HANDLER_CURRENT, /* If reachable use the current handler */ 1308 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */ 1309 HANDLER_EXIT, /* Only visible as the process exit code */ 1310 }; 1311 1312 /* 1313 * Force a signal that the process can't ignore: if necessary 1314 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1315 * 1316 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1317 * since we do not want to have a signal handler that was blocked 1318 * be invoked when user space had explicitly blocked it. 1319 * 1320 * We don't want to have recursive SIGSEGV's etc, for example, 1321 * that is why we also clear SIGNAL_UNKILLABLE. 1322 */ 1323 static int 1324 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t, 1325 enum sig_handler handler) 1326 { 1327 unsigned long int flags; 1328 int ret, blocked, ignored; 1329 struct k_sigaction *action; 1330 int sig = info->si_signo; 1331 1332 spin_lock_irqsave(&t->sighand->siglock, flags); 1333 action = &t->sighand->action[sig-1]; 1334 ignored = action->sa.sa_handler == SIG_IGN; 1335 blocked = sigismember(&t->blocked, sig); 1336 if (blocked || ignored || (handler != HANDLER_CURRENT)) { 1337 action->sa.sa_handler = SIG_DFL; 1338 if (handler == HANDLER_EXIT) 1339 action->sa.sa_flags |= SA_IMMUTABLE; 1340 if (blocked) 1341 sigdelset(&t->blocked, sig); 1342 } 1343 /* 1344 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1345 * debugging to leave init killable. But HANDLER_EXIT is always fatal. 1346 */ 1347 if (action->sa.sa_handler == SIG_DFL && 1348 (!t->ptrace || (handler == HANDLER_EXIT))) 1349 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1350 ret = send_signal_locked(sig, info, t, PIDTYPE_PID); 1351 /* This can happen if the signal was already pending and blocked */ 1352 if (!task_sigpending(t)) 1353 signal_wake_up(t, 0); 1354 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1355 1356 return ret; 1357 } 1358 1359 int force_sig_info(struct kernel_siginfo *info) 1360 { 1361 return force_sig_info_to_task(info, current, HANDLER_CURRENT); 1362 } 1363 1364 /* 1365 * Nuke all other threads in the group. 1366 */ 1367 int zap_other_threads(struct task_struct *p) 1368 { 1369 struct task_struct *t; 1370 int count = 0; 1371 1372 p->signal->group_stop_count = 0; 1373 1374 for_other_threads(p, t) { 1375 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1376 count++; 1377 1378 /* Don't bother with already dead threads */ 1379 if (t->exit_state) 1380 continue; 1381 sigaddset(&t->pending.signal, SIGKILL); 1382 signal_wake_up(t, 1); 1383 } 1384 1385 return count; 1386 } 1387 1388 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1389 unsigned long *flags) 1390 { 1391 struct sighand_struct *sighand; 1392 1393 rcu_read_lock(); 1394 for (;;) { 1395 sighand = rcu_dereference(tsk->sighand); 1396 if (unlikely(sighand == NULL)) 1397 break; 1398 1399 /* 1400 * This sighand can be already freed and even reused, but 1401 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1402 * initializes ->siglock: this slab can't go away, it has 1403 * the same object type, ->siglock can't be reinitialized. 1404 * 1405 * We need to ensure that tsk->sighand is still the same 1406 * after we take the lock, we can race with de_thread() or 1407 * __exit_signal(). In the latter case the next iteration 1408 * must see ->sighand == NULL. 1409 */ 1410 spin_lock_irqsave(&sighand->siglock, *flags); 1411 if (likely(sighand == rcu_access_pointer(tsk->sighand))) 1412 break; 1413 spin_unlock_irqrestore(&sighand->siglock, *flags); 1414 } 1415 rcu_read_unlock(); 1416 1417 return sighand; 1418 } 1419 1420 #ifdef CONFIG_LOCKDEP 1421 void lockdep_assert_task_sighand_held(struct task_struct *task) 1422 { 1423 struct sighand_struct *sighand; 1424 1425 rcu_read_lock(); 1426 sighand = rcu_dereference(task->sighand); 1427 if (sighand) 1428 lockdep_assert_held(&sighand->siglock); 1429 else 1430 WARN_ON_ONCE(1); 1431 rcu_read_unlock(); 1432 } 1433 #endif 1434 1435 /* 1436 * send signal info to all the members of a thread group or to the 1437 * individual thread if type == PIDTYPE_PID. 1438 */ 1439 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1440 struct task_struct *p, enum pid_type type) 1441 { 1442 int ret; 1443 1444 rcu_read_lock(); 1445 ret = check_kill_permission(sig, info, p); 1446 rcu_read_unlock(); 1447 1448 if (!ret && sig) 1449 ret = do_send_sig_info(sig, info, p, type); 1450 1451 return ret; 1452 } 1453 1454 /* 1455 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1456 * control characters do (^C, ^Z etc) 1457 * - the caller must hold at least a readlock on tasklist_lock 1458 */ 1459 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1460 { 1461 struct task_struct *p = NULL; 1462 int ret = -ESRCH; 1463 1464 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1465 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1466 /* 1467 * If group_send_sig_info() succeeds at least once ret 1468 * becomes 0 and after that the code below has no effect. 1469 * Otherwise we return the last err or -ESRCH if this 1470 * process group is empty. 1471 */ 1472 if (ret) 1473 ret = err; 1474 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1475 1476 return ret; 1477 } 1478 1479 static int kill_pid_info_type(int sig, struct kernel_siginfo *info, 1480 struct pid *pid, enum pid_type type) 1481 { 1482 int error = -ESRCH; 1483 struct task_struct *p; 1484 1485 for (;;) { 1486 rcu_read_lock(); 1487 p = pid_task(pid, PIDTYPE_PID); 1488 if (p) 1489 error = group_send_sig_info(sig, info, p, type); 1490 rcu_read_unlock(); 1491 if (likely(!p || error != -ESRCH)) 1492 return error; 1493 /* 1494 * The task was unhashed in between, try again. If it 1495 * is dead, pid_task() will return NULL, if we race with 1496 * de_thread() it will find the new leader. 1497 */ 1498 } 1499 } 1500 1501 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1502 { 1503 return kill_pid_info_type(sig, info, pid, PIDTYPE_TGID); 1504 } 1505 1506 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1507 { 1508 int error; 1509 rcu_read_lock(); 1510 error = kill_pid_info(sig, info, find_vpid(pid)); 1511 rcu_read_unlock(); 1512 return error; 1513 } 1514 1515 static inline bool kill_as_cred_perm(const struct cred *cred, 1516 struct task_struct *target) 1517 { 1518 const struct cred *pcred = __task_cred(target); 1519 1520 return uid_eq(cred->euid, pcred->suid) || 1521 uid_eq(cred->euid, pcred->uid) || 1522 uid_eq(cred->uid, pcred->suid) || 1523 uid_eq(cred->uid, pcred->uid); 1524 } 1525 1526 /* 1527 * The usb asyncio usage of siginfo is wrong. The glibc support 1528 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. 1529 * AKA after the generic fields: 1530 * kernel_pid_t si_pid; 1531 * kernel_uid32_t si_uid; 1532 * sigval_t si_value; 1533 * 1534 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout 1535 * after the generic fields is: 1536 * void __user *si_addr; 1537 * 1538 * This is a practical problem when there is a 64bit big endian kernel 1539 * and a 32bit userspace. As the 32bit address will encoded in the low 1540 * 32bits of the pointer. Those low 32bits will be stored at higher 1541 * address than appear in a 32 bit pointer. So userspace will not 1542 * see the address it was expecting for it's completions. 1543 * 1544 * There is nothing in the encoding that can allow 1545 * copy_siginfo_to_user32 to detect this confusion of formats, so 1546 * handle this by requiring the caller of kill_pid_usb_asyncio to 1547 * notice when this situration takes place and to store the 32bit 1548 * pointer in sival_int, instead of sival_addr of the sigval_t addr 1549 * parameter. 1550 */ 1551 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, 1552 struct pid *pid, const struct cred *cred) 1553 { 1554 struct kernel_siginfo info; 1555 struct task_struct *p; 1556 unsigned long flags; 1557 int ret = -EINVAL; 1558 1559 if (!valid_signal(sig)) 1560 return ret; 1561 1562 clear_siginfo(&info); 1563 info.si_signo = sig; 1564 info.si_errno = errno; 1565 info.si_code = SI_ASYNCIO; 1566 *((sigval_t *)&info.si_pid) = addr; 1567 1568 rcu_read_lock(); 1569 p = pid_task(pid, PIDTYPE_PID); 1570 if (!p) { 1571 ret = -ESRCH; 1572 goto out_unlock; 1573 } 1574 if (!kill_as_cred_perm(cred, p)) { 1575 ret = -EPERM; 1576 goto out_unlock; 1577 } 1578 ret = security_task_kill(p, &info, sig, cred); 1579 if (ret) 1580 goto out_unlock; 1581 1582 if (sig) { 1583 if (lock_task_sighand(p, &flags)) { 1584 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false); 1585 unlock_task_sighand(p, &flags); 1586 } else 1587 ret = -ESRCH; 1588 } 1589 out_unlock: 1590 rcu_read_unlock(); 1591 return ret; 1592 } 1593 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); 1594 1595 /* 1596 * kill_something_info() interprets pid in interesting ways just like kill(2). 1597 * 1598 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1599 * is probably wrong. Should make it like BSD or SYSV. 1600 */ 1601 1602 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1603 { 1604 int ret; 1605 1606 if (pid > 0) 1607 return kill_proc_info(sig, info, pid); 1608 1609 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1610 if (pid == INT_MIN) 1611 return -ESRCH; 1612 1613 read_lock(&tasklist_lock); 1614 if (pid != -1) { 1615 ret = __kill_pgrp_info(sig, info, 1616 pid ? find_vpid(-pid) : task_pgrp(current)); 1617 } else { 1618 int retval = 0, count = 0; 1619 struct task_struct * p; 1620 1621 for_each_process(p) { 1622 if (task_pid_vnr(p) > 1 && 1623 !same_thread_group(p, current)) { 1624 int err = group_send_sig_info(sig, info, p, 1625 PIDTYPE_MAX); 1626 ++count; 1627 if (err != -EPERM) 1628 retval = err; 1629 } 1630 } 1631 ret = count ? retval : -ESRCH; 1632 } 1633 read_unlock(&tasklist_lock); 1634 1635 return ret; 1636 } 1637 1638 /* 1639 * These are for backward compatibility with the rest of the kernel source. 1640 */ 1641 1642 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1643 { 1644 /* 1645 * Make sure legacy kernel users don't send in bad values 1646 * (normal paths check this in check_kill_permission). 1647 */ 1648 if (!valid_signal(sig)) 1649 return -EINVAL; 1650 1651 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1652 } 1653 EXPORT_SYMBOL(send_sig_info); 1654 1655 #define __si_special(priv) \ 1656 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1657 1658 int 1659 send_sig(int sig, struct task_struct *p, int priv) 1660 { 1661 return send_sig_info(sig, __si_special(priv), p); 1662 } 1663 EXPORT_SYMBOL(send_sig); 1664 1665 void force_sig(int sig) 1666 { 1667 struct kernel_siginfo info; 1668 1669 clear_siginfo(&info); 1670 info.si_signo = sig; 1671 info.si_errno = 0; 1672 info.si_code = SI_KERNEL; 1673 info.si_pid = 0; 1674 info.si_uid = 0; 1675 force_sig_info(&info); 1676 } 1677 EXPORT_SYMBOL(force_sig); 1678 1679 void force_fatal_sig(int sig) 1680 { 1681 struct kernel_siginfo info; 1682 1683 clear_siginfo(&info); 1684 info.si_signo = sig; 1685 info.si_errno = 0; 1686 info.si_code = SI_KERNEL; 1687 info.si_pid = 0; 1688 info.si_uid = 0; 1689 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL); 1690 } 1691 1692 void force_exit_sig(int sig) 1693 { 1694 struct kernel_siginfo info; 1695 1696 clear_siginfo(&info); 1697 info.si_signo = sig; 1698 info.si_errno = 0; 1699 info.si_code = SI_KERNEL; 1700 info.si_pid = 0; 1701 info.si_uid = 0; 1702 force_sig_info_to_task(&info, current, HANDLER_EXIT); 1703 } 1704 1705 /* 1706 * When things go south during signal handling, we 1707 * will force a SIGSEGV. And if the signal that caused 1708 * the problem was already a SIGSEGV, we'll want to 1709 * make sure we don't even try to deliver the signal.. 1710 */ 1711 void force_sigsegv(int sig) 1712 { 1713 if (sig == SIGSEGV) 1714 force_fatal_sig(SIGSEGV); 1715 else 1716 force_sig(SIGSEGV); 1717 } 1718 1719 int force_sig_fault_to_task(int sig, int code, void __user *addr, 1720 struct task_struct *t) 1721 { 1722 struct kernel_siginfo info; 1723 1724 clear_siginfo(&info); 1725 info.si_signo = sig; 1726 info.si_errno = 0; 1727 info.si_code = code; 1728 info.si_addr = addr; 1729 return force_sig_info_to_task(&info, t, HANDLER_CURRENT); 1730 } 1731 1732 int force_sig_fault(int sig, int code, void __user *addr) 1733 { 1734 return force_sig_fault_to_task(sig, code, addr, current); 1735 } 1736 1737 int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t) 1738 { 1739 struct kernel_siginfo info; 1740 1741 clear_siginfo(&info); 1742 info.si_signo = sig; 1743 info.si_errno = 0; 1744 info.si_code = code; 1745 info.si_addr = addr; 1746 return send_sig_info(info.si_signo, &info, t); 1747 } 1748 1749 int force_sig_mceerr(int code, void __user *addr, short lsb) 1750 { 1751 struct kernel_siginfo info; 1752 1753 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1754 clear_siginfo(&info); 1755 info.si_signo = SIGBUS; 1756 info.si_errno = 0; 1757 info.si_code = code; 1758 info.si_addr = addr; 1759 info.si_addr_lsb = lsb; 1760 return force_sig_info(&info); 1761 } 1762 1763 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1764 { 1765 struct kernel_siginfo info; 1766 1767 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1768 clear_siginfo(&info); 1769 info.si_signo = SIGBUS; 1770 info.si_errno = 0; 1771 info.si_code = code; 1772 info.si_addr = addr; 1773 info.si_addr_lsb = lsb; 1774 return send_sig_info(info.si_signo, &info, t); 1775 } 1776 EXPORT_SYMBOL(send_sig_mceerr); 1777 1778 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1779 { 1780 struct kernel_siginfo info; 1781 1782 clear_siginfo(&info); 1783 info.si_signo = SIGSEGV; 1784 info.si_errno = 0; 1785 info.si_code = SEGV_BNDERR; 1786 info.si_addr = addr; 1787 info.si_lower = lower; 1788 info.si_upper = upper; 1789 return force_sig_info(&info); 1790 } 1791 1792 #ifdef SEGV_PKUERR 1793 int force_sig_pkuerr(void __user *addr, u32 pkey) 1794 { 1795 struct kernel_siginfo info; 1796 1797 clear_siginfo(&info); 1798 info.si_signo = SIGSEGV; 1799 info.si_errno = 0; 1800 info.si_code = SEGV_PKUERR; 1801 info.si_addr = addr; 1802 info.si_pkey = pkey; 1803 return force_sig_info(&info); 1804 } 1805 #endif 1806 1807 int send_sig_perf(void __user *addr, u32 type, u64 sig_data) 1808 { 1809 struct kernel_siginfo info; 1810 1811 clear_siginfo(&info); 1812 info.si_signo = SIGTRAP; 1813 info.si_errno = 0; 1814 info.si_code = TRAP_PERF; 1815 info.si_addr = addr; 1816 info.si_perf_data = sig_data; 1817 info.si_perf_type = type; 1818 1819 /* 1820 * Signals generated by perf events should not terminate the whole 1821 * process if SIGTRAP is blocked, however, delivering the signal 1822 * asynchronously is better than not delivering at all. But tell user 1823 * space if the signal was asynchronous, so it can clearly be 1824 * distinguished from normal synchronous ones. 1825 */ 1826 info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ? 1827 TRAP_PERF_FLAG_ASYNC : 1828 0; 1829 1830 return send_sig_info(info.si_signo, &info, current); 1831 } 1832 1833 /** 1834 * force_sig_seccomp - signals the task to allow in-process syscall emulation 1835 * @syscall: syscall number to send to userland 1836 * @reason: filter-supplied reason code to send to userland (via si_errno) 1837 * @force_coredump: true to trigger a coredump 1838 * 1839 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. 1840 */ 1841 int force_sig_seccomp(int syscall, int reason, bool force_coredump) 1842 { 1843 struct kernel_siginfo info; 1844 1845 clear_siginfo(&info); 1846 info.si_signo = SIGSYS; 1847 info.si_code = SYS_SECCOMP; 1848 info.si_call_addr = (void __user *)KSTK_EIP(current); 1849 info.si_errno = reason; 1850 info.si_arch = syscall_get_arch(current); 1851 info.si_syscall = syscall; 1852 return force_sig_info_to_task(&info, current, 1853 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT); 1854 } 1855 1856 /* For the crazy architectures that include trap information in 1857 * the errno field, instead of an actual errno value. 1858 */ 1859 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1860 { 1861 struct kernel_siginfo info; 1862 1863 clear_siginfo(&info); 1864 info.si_signo = SIGTRAP; 1865 info.si_errno = errno; 1866 info.si_code = TRAP_HWBKPT; 1867 info.si_addr = addr; 1868 return force_sig_info(&info); 1869 } 1870 1871 /* For the rare architectures that include trap information using 1872 * si_trapno. 1873 */ 1874 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno) 1875 { 1876 struct kernel_siginfo info; 1877 1878 clear_siginfo(&info); 1879 info.si_signo = sig; 1880 info.si_errno = 0; 1881 info.si_code = code; 1882 info.si_addr = addr; 1883 info.si_trapno = trapno; 1884 return force_sig_info(&info); 1885 } 1886 1887 /* For the rare architectures that include trap information using 1888 * si_trapno. 1889 */ 1890 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, 1891 struct task_struct *t) 1892 { 1893 struct kernel_siginfo info; 1894 1895 clear_siginfo(&info); 1896 info.si_signo = sig; 1897 info.si_errno = 0; 1898 info.si_code = code; 1899 info.si_addr = addr; 1900 info.si_trapno = trapno; 1901 return send_sig_info(info.si_signo, &info, t); 1902 } 1903 1904 static int kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1905 { 1906 int ret; 1907 read_lock(&tasklist_lock); 1908 ret = __kill_pgrp_info(sig, info, pgrp); 1909 read_unlock(&tasklist_lock); 1910 return ret; 1911 } 1912 1913 int kill_pgrp(struct pid *pid, int sig, int priv) 1914 { 1915 return kill_pgrp_info(sig, __si_special(priv), pid); 1916 } 1917 EXPORT_SYMBOL(kill_pgrp); 1918 1919 int kill_pid(struct pid *pid, int sig, int priv) 1920 { 1921 return kill_pid_info(sig, __si_special(priv), pid); 1922 } 1923 EXPORT_SYMBOL(kill_pid); 1924 1925 /* 1926 * These functions support sending signals using preallocated sigqueue 1927 * structures. This is needed "because realtime applications cannot 1928 * afford to lose notifications of asynchronous events, like timer 1929 * expirations or I/O completions". In the case of POSIX Timers 1930 * we allocate the sigqueue structure from the timer_create. If this 1931 * allocation fails we are able to report the failure to the application 1932 * with an EAGAIN error. 1933 */ 1934 struct sigqueue *sigqueue_alloc(void) 1935 { 1936 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC); 1937 } 1938 1939 void sigqueue_free(struct sigqueue *q) 1940 { 1941 spinlock_t *lock = ¤t->sighand->siglock; 1942 unsigned long flags; 1943 1944 if (WARN_ON_ONCE(!(q->flags & SIGQUEUE_PREALLOC))) 1945 return; 1946 /* 1947 * We must hold ->siglock while testing q->list 1948 * to serialize with collect_signal() or with 1949 * __exit_signal()->flush_sigqueue(). 1950 */ 1951 spin_lock_irqsave(lock, flags); 1952 q->flags &= ~SIGQUEUE_PREALLOC; 1953 /* 1954 * If it is queued it will be freed when dequeued, 1955 * like the "regular" sigqueue. 1956 */ 1957 if (!list_empty(&q->list)) 1958 q = NULL; 1959 spin_unlock_irqrestore(lock, flags); 1960 1961 if (q) 1962 __sigqueue_free(q); 1963 } 1964 1965 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) 1966 { 1967 int sig = q->info.si_signo; 1968 struct sigpending *pending; 1969 struct task_struct *t; 1970 unsigned long flags; 1971 int ret, result; 1972 1973 if (WARN_ON_ONCE(!(q->flags & SIGQUEUE_PREALLOC))) 1974 return 0; 1975 if (WARN_ON_ONCE(q->info.si_code != SI_TIMER)) 1976 return 0; 1977 1978 ret = -1; 1979 rcu_read_lock(); 1980 1981 /* 1982 * This function is used by POSIX timers to deliver a timer signal. 1983 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID 1984 * set), the signal must be delivered to the specific thread (queues 1985 * into t->pending). 1986 * 1987 * Where type is not PIDTYPE_PID, signals must be delivered to the 1988 * process. In this case, prefer to deliver to current if it is in 1989 * the same thread group as the target process, which avoids 1990 * unnecessarily waking up a potentially idle task. 1991 */ 1992 t = pid_task(pid, type); 1993 if (!t) 1994 goto ret; 1995 if (type != PIDTYPE_PID && same_thread_group(t, current)) 1996 t = current; 1997 if (!likely(lock_task_sighand(t, &flags))) 1998 goto ret; 1999 2000 ret = 1; /* the signal is ignored */ 2001 result = TRACE_SIGNAL_IGNORED; 2002 if (!prepare_signal(sig, t, false)) 2003 goto out; 2004 2005 ret = 0; 2006 if (unlikely(!list_empty(&q->list))) { 2007 /* 2008 * If an SI_TIMER entry is already queue just increment 2009 * the overrun count. 2010 */ 2011 q->info.si_overrun++; 2012 result = TRACE_SIGNAL_ALREADY_PENDING; 2013 goto out; 2014 } 2015 q->info.si_overrun = 0; 2016 2017 signalfd_notify(t, sig); 2018 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 2019 list_add_tail(&q->list, &pending->list); 2020 sigaddset(&pending->signal, sig); 2021 complete_signal(sig, t, type); 2022 result = TRACE_SIGNAL_DELIVERED; 2023 out: 2024 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result); 2025 unlock_task_sighand(t, &flags); 2026 ret: 2027 rcu_read_unlock(); 2028 return ret; 2029 } 2030 2031 void do_notify_pidfd(struct task_struct *task) 2032 { 2033 struct pid *pid = task_pid(task); 2034 2035 WARN_ON(task->exit_state == 0); 2036 2037 __wake_up(&pid->wait_pidfd, TASK_NORMAL, 0, 2038 poll_to_key(EPOLLIN | EPOLLRDNORM)); 2039 } 2040 2041 /* 2042 * Let a parent know about the death of a child. 2043 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 2044 * 2045 * Returns true if our parent ignored us and so we've switched to 2046 * self-reaping. 2047 */ 2048 bool do_notify_parent(struct task_struct *tsk, int sig) 2049 { 2050 struct kernel_siginfo info; 2051 unsigned long flags; 2052 struct sighand_struct *psig; 2053 bool autoreap = false; 2054 u64 utime, stime; 2055 2056 WARN_ON_ONCE(sig == -1); 2057 2058 /* do_notify_parent_cldstop should have been called instead. */ 2059 WARN_ON_ONCE(task_is_stopped_or_traced(tsk)); 2060 2061 WARN_ON_ONCE(!tsk->ptrace && 2062 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 2063 /* 2064 * tsk is a group leader and has no threads, wake up the 2065 * non-PIDFD_THREAD waiters. 2066 */ 2067 if (thread_group_empty(tsk)) 2068 do_notify_pidfd(tsk); 2069 2070 if (sig != SIGCHLD) { 2071 /* 2072 * This is only possible if parent == real_parent. 2073 * Check if it has changed security domain. 2074 */ 2075 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) 2076 sig = SIGCHLD; 2077 } 2078 2079 clear_siginfo(&info); 2080 info.si_signo = sig; 2081 info.si_errno = 0; 2082 /* 2083 * We are under tasklist_lock here so our parent is tied to 2084 * us and cannot change. 2085 * 2086 * task_active_pid_ns will always return the same pid namespace 2087 * until a task passes through release_task. 2088 * 2089 * write_lock() currently calls preempt_disable() which is the 2090 * same as rcu_read_lock(), but according to Oleg, this is not 2091 * correct to rely on this 2092 */ 2093 rcu_read_lock(); 2094 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 2095 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 2096 task_uid(tsk)); 2097 rcu_read_unlock(); 2098 2099 task_cputime(tsk, &utime, &stime); 2100 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 2101 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 2102 2103 info.si_status = tsk->exit_code & 0x7f; 2104 if (tsk->exit_code & 0x80) 2105 info.si_code = CLD_DUMPED; 2106 else if (tsk->exit_code & 0x7f) 2107 info.si_code = CLD_KILLED; 2108 else { 2109 info.si_code = CLD_EXITED; 2110 info.si_status = tsk->exit_code >> 8; 2111 } 2112 2113 psig = tsk->parent->sighand; 2114 spin_lock_irqsave(&psig->siglock, flags); 2115 if (!tsk->ptrace && sig == SIGCHLD && 2116 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 2117 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 2118 /* 2119 * We are exiting and our parent doesn't care. POSIX.1 2120 * defines special semantics for setting SIGCHLD to SIG_IGN 2121 * or setting the SA_NOCLDWAIT flag: we should be reaped 2122 * automatically and not left for our parent's wait4 call. 2123 * Rather than having the parent do it as a magic kind of 2124 * signal handler, we just set this to tell do_exit that we 2125 * can be cleaned up without becoming a zombie. Note that 2126 * we still call __wake_up_parent in this case, because a 2127 * blocked sys_wait4 might now return -ECHILD. 2128 * 2129 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 2130 * is implementation-defined: we do (if you don't want 2131 * it, just use SIG_IGN instead). 2132 */ 2133 autoreap = true; 2134 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 2135 sig = 0; 2136 } 2137 /* 2138 * Send with __send_signal as si_pid and si_uid are in the 2139 * parent's namespaces. 2140 */ 2141 if (valid_signal(sig) && sig) 2142 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false); 2143 __wake_up_parent(tsk, tsk->parent); 2144 spin_unlock_irqrestore(&psig->siglock, flags); 2145 2146 return autoreap; 2147 } 2148 2149 /** 2150 * do_notify_parent_cldstop - notify parent of stopped/continued state change 2151 * @tsk: task reporting the state change 2152 * @for_ptracer: the notification is for ptracer 2153 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 2154 * 2155 * Notify @tsk's parent that the stopped/continued state has changed. If 2156 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 2157 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 2158 * 2159 * CONTEXT: 2160 * Must be called with tasklist_lock at least read locked. 2161 */ 2162 static void do_notify_parent_cldstop(struct task_struct *tsk, 2163 bool for_ptracer, int why) 2164 { 2165 struct kernel_siginfo info; 2166 unsigned long flags; 2167 struct task_struct *parent; 2168 struct sighand_struct *sighand; 2169 u64 utime, stime; 2170 2171 if (for_ptracer) { 2172 parent = tsk->parent; 2173 } else { 2174 tsk = tsk->group_leader; 2175 parent = tsk->real_parent; 2176 } 2177 2178 clear_siginfo(&info); 2179 info.si_signo = SIGCHLD; 2180 info.si_errno = 0; 2181 /* 2182 * see comment in do_notify_parent() about the following 4 lines 2183 */ 2184 rcu_read_lock(); 2185 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 2186 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 2187 rcu_read_unlock(); 2188 2189 task_cputime(tsk, &utime, &stime); 2190 info.si_utime = nsec_to_clock_t(utime); 2191 info.si_stime = nsec_to_clock_t(stime); 2192 2193 info.si_code = why; 2194 switch (why) { 2195 case CLD_CONTINUED: 2196 info.si_status = SIGCONT; 2197 break; 2198 case CLD_STOPPED: 2199 info.si_status = tsk->signal->group_exit_code & 0x7f; 2200 break; 2201 case CLD_TRAPPED: 2202 info.si_status = tsk->exit_code & 0x7f; 2203 break; 2204 default: 2205 BUG(); 2206 } 2207 2208 sighand = parent->sighand; 2209 spin_lock_irqsave(&sighand->siglock, flags); 2210 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 2211 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 2212 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID); 2213 /* 2214 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 2215 */ 2216 __wake_up_parent(tsk, parent); 2217 spin_unlock_irqrestore(&sighand->siglock, flags); 2218 } 2219 2220 /* 2221 * This must be called with current->sighand->siglock held. 2222 * 2223 * This should be the path for all ptrace stops. 2224 * We always set current->last_siginfo while stopped here. 2225 * That makes it a way to test a stopped process for 2226 * being ptrace-stopped vs being job-control-stopped. 2227 * 2228 * Returns the signal the ptracer requested the code resume 2229 * with. If the code did not stop because the tracer is gone, 2230 * the stop signal remains unchanged unless clear_code. 2231 */ 2232 static int ptrace_stop(int exit_code, int why, unsigned long message, 2233 kernel_siginfo_t *info) 2234 __releases(¤t->sighand->siglock) 2235 __acquires(¤t->sighand->siglock) 2236 { 2237 bool gstop_done = false; 2238 2239 if (arch_ptrace_stop_needed()) { 2240 /* 2241 * The arch code has something special to do before a 2242 * ptrace stop. This is allowed to block, e.g. for faults 2243 * on user stack pages. We can't keep the siglock while 2244 * calling arch_ptrace_stop, so we must release it now. 2245 * To preserve proper semantics, we must do this before 2246 * any signal bookkeeping like checking group_stop_count. 2247 */ 2248 spin_unlock_irq(¤t->sighand->siglock); 2249 arch_ptrace_stop(); 2250 spin_lock_irq(¤t->sighand->siglock); 2251 } 2252 2253 /* 2254 * After this point ptrace_signal_wake_up or signal_wake_up 2255 * will clear TASK_TRACED if ptrace_unlink happens or a fatal 2256 * signal comes in. Handle previous ptrace_unlinks and fatal 2257 * signals here to prevent ptrace_stop sleeping in schedule. 2258 */ 2259 if (!current->ptrace || __fatal_signal_pending(current)) 2260 return exit_code; 2261 2262 set_special_state(TASK_TRACED); 2263 current->jobctl |= JOBCTL_TRACED; 2264 2265 /* 2266 * We're committing to trapping. TRACED should be visible before 2267 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2268 * Also, transition to TRACED and updates to ->jobctl should be 2269 * atomic with respect to siglock and should be done after the arch 2270 * hook as siglock is released and regrabbed across it. 2271 * 2272 * TRACER TRACEE 2273 * 2274 * ptrace_attach() 2275 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2276 * do_wait() 2277 * set_current_state() smp_wmb(); 2278 * ptrace_do_wait() 2279 * wait_task_stopped() 2280 * task_stopped_code() 2281 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2282 */ 2283 smp_wmb(); 2284 2285 current->ptrace_message = message; 2286 current->last_siginfo = info; 2287 current->exit_code = exit_code; 2288 2289 /* 2290 * If @why is CLD_STOPPED, we're trapping to participate in a group 2291 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2292 * across siglock relocks since INTERRUPT was scheduled, PENDING 2293 * could be clear now. We act as if SIGCONT is received after 2294 * TASK_TRACED is entered - ignore it. 2295 */ 2296 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2297 gstop_done = task_participate_group_stop(current); 2298 2299 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2300 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2301 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2302 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2303 2304 /* entering a trap, clear TRAPPING */ 2305 task_clear_jobctl_trapping(current); 2306 2307 spin_unlock_irq(¤t->sighand->siglock); 2308 read_lock(&tasklist_lock); 2309 /* 2310 * Notify parents of the stop. 2311 * 2312 * While ptraced, there are two parents - the ptracer and 2313 * the real_parent of the group_leader. The ptracer should 2314 * know about every stop while the real parent is only 2315 * interested in the completion of group stop. The states 2316 * for the two don't interact with each other. Notify 2317 * separately unless they're gonna be duplicates. 2318 */ 2319 if (current->ptrace) 2320 do_notify_parent_cldstop(current, true, why); 2321 if (gstop_done && (!current->ptrace || ptrace_reparented(current))) 2322 do_notify_parent_cldstop(current, false, why); 2323 2324 /* 2325 * The previous do_notify_parent_cldstop() invocation woke ptracer. 2326 * One a PREEMPTION kernel this can result in preemption requirement 2327 * which will be fulfilled after read_unlock() and the ptracer will be 2328 * put on the CPU. 2329 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for 2330 * this task wait in schedule(). If this task gets preempted then it 2331 * remains enqueued on the runqueue. The ptracer will observe this and 2332 * then sleep for a delay of one HZ tick. In the meantime this task 2333 * gets scheduled, enters schedule() and will wait for the ptracer. 2334 * 2335 * This preemption point is not bad from a correctness point of 2336 * view but extends the runtime by one HZ tick time due to the 2337 * ptracer's sleep. The preempt-disable section ensures that there 2338 * will be no preemption between unlock and schedule() and so 2339 * improving the performance since the ptracer will observe that 2340 * the tracee is scheduled out once it gets on the CPU. 2341 * 2342 * On PREEMPT_RT locking tasklist_lock does not disable preemption. 2343 * Therefore the task can be preempted after do_notify_parent_cldstop() 2344 * before unlocking tasklist_lock so there is no benefit in doing this. 2345 * 2346 * In fact disabling preemption is harmful on PREEMPT_RT because 2347 * the spinlock_t in cgroup_enter_frozen() must not be acquired 2348 * with preemption disabled due to the 'sleeping' spinlock 2349 * substitution of RT. 2350 */ 2351 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 2352 preempt_disable(); 2353 read_unlock(&tasklist_lock); 2354 cgroup_enter_frozen(); 2355 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 2356 preempt_enable_no_resched(); 2357 schedule(); 2358 cgroup_leave_frozen(true); 2359 2360 /* 2361 * We are back. Now reacquire the siglock before touching 2362 * last_siginfo, so that we are sure to have synchronized with 2363 * any signal-sending on another CPU that wants to examine it. 2364 */ 2365 spin_lock_irq(¤t->sighand->siglock); 2366 exit_code = current->exit_code; 2367 current->last_siginfo = NULL; 2368 current->ptrace_message = 0; 2369 current->exit_code = 0; 2370 2371 /* LISTENING can be set only during STOP traps, clear it */ 2372 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN); 2373 2374 /* 2375 * Queued signals ignored us while we were stopped for tracing. 2376 * So check for any that we should take before resuming user mode. 2377 * This sets TIF_SIGPENDING, but never clears it. 2378 */ 2379 recalc_sigpending_tsk(current); 2380 return exit_code; 2381 } 2382 2383 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message) 2384 { 2385 kernel_siginfo_t info; 2386 2387 clear_siginfo(&info); 2388 info.si_signo = signr; 2389 info.si_code = exit_code; 2390 info.si_pid = task_pid_vnr(current); 2391 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2392 2393 /* Let the debugger run. */ 2394 return ptrace_stop(exit_code, why, message, &info); 2395 } 2396 2397 int ptrace_notify(int exit_code, unsigned long message) 2398 { 2399 int signr; 2400 2401 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2402 if (unlikely(task_work_pending(current))) 2403 task_work_run(); 2404 2405 spin_lock_irq(¤t->sighand->siglock); 2406 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message); 2407 spin_unlock_irq(¤t->sighand->siglock); 2408 return signr; 2409 } 2410 2411 /** 2412 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2413 * @signr: signr causing group stop if initiating 2414 * 2415 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2416 * and participate in it. If already set, participate in the existing 2417 * group stop. If participated in a group stop (and thus slept), %true is 2418 * returned with siglock released. 2419 * 2420 * If ptraced, this function doesn't handle stop itself. Instead, 2421 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2422 * untouched. The caller must ensure that INTERRUPT trap handling takes 2423 * places afterwards. 2424 * 2425 * CONTEXT: 2426 * Must be called with @current->sighand->siglock held, which is released 2427 * on %true return. 2428 * 2429 * RETURNS: 2430 * %false if group stop is already cancelled or ptrace trap is scheduled. 2431 * %true if participated in group stop. 2432 */ 2433 static bool do_signal_stop(int signr) 2434 __releases(¤t->sighand->siglock) 2435 { 2436 struct signal_struct *sig = current->signal; 2437 2438 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2439 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2440 struct task_struct *t; 2441 2442 /* signr will be recorded in task->jobctl for retries */ 2443 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2444 2445 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2446 unlikely(sig->flags & SIGNAL_GROUP_EXIT) || 2447 unlikely(sig->group_exec_task)) 2448 return false; 2449 /* 2450 * There is no group stop already in progress. We must 2451 * initiate one now. 2452 * 2453 * While ptraced, a task may be resumed while group stop is 2454 * still in effect and then receive a stop signal and 2455 * initiate another group stop. This deviates from the 2456 * usual behavior as two consecutive stop signals can't 2457 * cause two group stops when !ptraced. That is why we 2458 * also check !task_is_stopped(t) below. 2459 * 2460 * The condition can be distinguished by testing whether 2461 * SIGNAL_STOP_STOPPED is already set. Don't generate 2462 * group_exit_code in such case. 2463 * 2464 * This is not necessary for SIGNAL_STOP_CONTINUED because 2465 * an intervening stop signal is required to cause two 2466 * continued events regardless of ptrace. 2467 */ 2468 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2469 sig->group_exit_code = signr; 2470 2471 sig->group_stop_count = 0; 2472 if (task_set_jobctl_pending(current, signr | gstop)) 2473 sig->group_stop_count++; 2474 2475 for_other_threads(current, t) { 2476 /* 2477 * Setting state to TASK_STOPPED for a group 2478 * stop is always done with the siglock held, 2479 * so this check has no races. 2480 */ 2481 if (!task_is_stopped(t) && 2482 task_set_jobctl_pending(t, signr | gstop)) { 2483 sig->group_stop_count++; 2484 if (likely(!(t->ptrace & PT_SEIZED))) 2485 signal_wake_up(t, 0); 2486 else 2487 ptrace_trap_notify(t); 2488 } 2489 } 2490 } 2491 2492 if (likely(!current->ptrace)) { 2493 int notify = 0; 2494 2495 /* 2496 * If there are no other threads in the group, or if there 2497 * is a group stop in progress and we are the last to stop, 2498 * report to the parent. 2499 */ 2500 if (task_participate_group_stop(current)) 2501 notify = CLD_STOPPED; 2502 2503 current->jobctl |= JOBCTL_STOPPED; 2504 set_special_state(TASK_STOPPED); 2505 spin_unlock_irq(¤t->sighand->siglock); 2506 2507 /* 2508 * Notify the parent of the group stop completion. Because 2509 * we're not holding either the siglock or tasklist_lock 2510 * here, ptracer may attach inbetween; however, this is for 2511 * group stop and should always be delivered to the real 2512 * parent of the group leader. The new ptracer will get 2513 * its notification when this task transitions into 2514 * TASK_TRACED. 2515 */ 2516 if (notify) { 2517 read_lock(&tasklist_lock); 2518 do_notify_parent_cldstop(current, false, notify); 2519 read_unlock(&tasklist_lock); 2520 } 2521 2522 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2523 cgroup_enter_frozen(); 2524 schedule(); 2525 return true; 2526 } else { 2527 /* 2528 * While ptraced, group stop is handled by STOP trap. 2529 * Schedule it and let the caller deal with it. 2530 */ 2531 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2532 return false; 2533 } 2534 } 2535 2536 /** 2537 * do_jobctl_trap - take care of ptrace jobctl traps 2538 * 2539 * When PT_SEIZED, it's used for both group stop and explicit 2540 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2541 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2542 * the stop signal; otherwise, %SIGTRAP. 2543 * 2544 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2545 * number as exit_code and no siginfo. 2546 * 2547 * CONTEXT: 2548 * Must be called with @current->sighand->siglock held, which may be 2549 * released and re-acquired before returning with intervening sleep. 2550 */ 2551 static void do_jobctl_trap(void) 2552 { 2553 struct signal_struct *signal = current->signal; 2554 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2555 2556 if (current->ptrace & PT_SEIZED) { 2557 if (!signal->group_stop_count && 2558 !(signal->flags & SIGNAL_STOP_STOPPED)) 2559 signr = SIGTRAP; 2560 WARN_ON_ONCE(!signr); 2561 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2562 CLD_STOPPED, 0); 2563 } else { 2564 WARN_ON_ONCE(!signr); 2565 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2566 } 2567 } 2568 2569 /** 2570 * do_freezer_trap - handle the freezer jobctl trap 2571 * 2572 * Puts the task into frozen state, if only the task is not about to quit. 2573 * In this case it drops JOBCTL_TRAP_FREEZE. 2574 * 2575 * CONTEXT: 2576 * Must be called with @current->sighand->siglock held, 2577 * which is always released before returning. 2578 */ 2579 static void do_freezer_trap(void) 2580 __releases(¤t->sighand->siglock) 2581 { 2582 /* 2583 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, 2584 * let's make another loop to give it a chance to be handled. 2585 * In any case, we'll return back. 2586 */ 2587 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != 2588 JOBCTL_TRAP_FREEZE) { 2589 spin_unlock_irq(¤t->sighand->siglock); 2590 return; 2591 } 2592 2593 /* 2594 * Now we're sure that there is no pending fatal signal and no 2595 * pending traps. Clear TIF_SIGPENDING to not get out of schedule() 2596 * immediately (if there is a non-fatal signal pending), and 2597 * put the task into sleep. 2598 */ 2599 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 2600 clear_thread_flag(TIF_SIGPENDING); 2601 spin_unlock_irq(¤t->sighand->siglock); 2602 cgroup_enter_frozen(); 2603 schedule(); 2604 2605 /* 2606 * We could've been woken by task_work, run it to clear 2607 * TIF_NOTIFY_SIGNAL. The caller will retry if necessary. 2608 */ 2609 clear_notify_signal(); 2610 if (unlikely(task_work_pending(current))) 2611 task_work_run(); 2612 } 2613 2614 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type) 2615 { 2616 /* 2617 * We do not check sig_kernel_stop(signr) but set this marker 2618 * unconditionally because we do not know whether debugger will 2619 * change signr. This flag has no meaning unless we are going 2620 * to stop after return from ptrace_stop(). In this case it will 2621 * be checked in do_signal_stop(), we should only stop if it was 2622 * not cleared by SIGCONT while we were sleeping. See also the 2623 * comment in dequeue_signal(). 2624 */ 2625 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2626 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info); 2627 2628 /* We're back. Did the debugger cancel the sig? */ 2629 if (signr == 0) 2630 return signr; 2631 2632 /* 2633 * Update the siginfo structure if the signal has 2634 * changed. If the debugger wanted something 2635 * specific in the siginfo structure then it should 2636 * have updated *info via PTRACE_SETSIGINFO. 2637 */ 2638 if (signr != info->si_signo) { 2639 clear_siginfo(info); 2640 info->si_signo = signr; 2641 info->si_errno = 0; 2642 info->si_code = SI_USER; 2643 rcu_read_lock(); 2644 info->si_pid = task_pid_vnr(current->parent); 2645 info->si_uid = from_kuid_munged(current_user_ns(), 2646 task_uid(current->parent)); 2647 rcu_read_unlock(); 2648 } 2649 2650 /* If the (new) signal is now blocked, requeue it. */ 2651 if (sigismember(¤t->blocked, signr) || 2652 fatal_signal_pending(current)) { 2653 send_signal_locked(signr, info, current, type); 2654 signr = 0; 2655 } 2656 2657 return signr; 2658 } 2659 2660 static void hide_si_addr_tag_bits(struct ksignal *ksig) 2661 { 2662 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) { 2663 case SIL_FAULT: 2664 case SIL_FAULT_TRAPNO: 2665 case SIL_FAULT_MCEERR: 2666 case SIL_FAULT_BNDERR: 2667 case SIL_FAULT_PKUERR: 2668 case SIL_FAULT_PERF_EVENT: 2669 ksig->info.si_addr = arch_untagged_si_addr( 2670 ksig->info.si_addr, ksig->sig, ksig->info.si_code); 2671 break; 2672 case SIL_KILL: 2673 case SIL_TIMER: 2674 case SIL_POLL: 2675 case SIL_CHLD: 2676 case SIL_RT: 2677 case SIL_SYS: 2678 break; 2679 } 2680 } 2681 2682 bool get_signal(struct ksignal *ksig) 2683 { 2684 struct sighand_struct *sighand = current->sighand; 2685 struct signal_struct *signal = current->signal; 2686 int signr; 2687 2688 clear_notify_signal(); 2689 if (unlikely(task_work_pending(current))) 2690 task_work_run(); 2691 2692 if (!task_sigpending(current)) 2693 return false; 2694 2695 if (unlikely(uprobe_deny_signal())) 2696 return false; 2697 2698 /* 2699 * Do this once, we can't return to user-mode if freezing() == T. 2700 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2701 * thus do not need another check after return. 2702 */ 2703 try_to_freeze(); 2704 2705 relock: 2706 spin_lock_irq(&sighand->siglock); 2707 2708 /* 2709 * Every stopped thread goes here after wakeup. Check to see if 2710 * we should notify the parent, prepare_signal(SIGCONT) encodes 2711 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2712 */ 2713 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2714 int why; 2715 2716 if (signal->flags & SIGNAL_CLD_CONTINUED) 2717 why = CLD_CONTINUED; 2718 else 2719 why = CLD_STOPPED; 2720 2721 signal->flags &= ~SIGNAL_CLD_MASK; 2722 2723 spin_unlock_irq(&sighand->siglock); 2724 2725 /* 2726 * Notify the parent that we're continuing. This event is 2727 * always per-process and doesn't make whole lot of sense 2728 * for ptracers, who shouldn't consume the state via 2729 * wait(2) either, but, for backward compatibility, notify 2730 * the ptracer of the group leader too unless it's gonna be 2731 * a duplicate. 2732 */ 2733 read_lock(&tasklist_lock); 2734 do_notify_parent_cldstop(current, false, why); 2735 2736 if (ptrace_reparented(current->group_leader)) 2737 do_notify_parent_cldstop(current->group_leader, 2738 true, why); 2739 read_unlock(&tasklist_lock); 2740 2741 goto relock; 2742 } 2743 2744 for (;;) { 2745 struct k_sigaction *ka; 2746 enum pid_type type; 2747 2748 /* Has this task already been marked for death? */ 2749 if ((signal->flags & SIGNAL_GROUP_EXIT) || 2750 signal->group_exec_task) { 2751 signr = SIGKILL; 2752 sigdelset(¤t->pending.signal, SIGKILL); 2753 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, 2754 &sighand->action[SIGKILL-1]); 2755 recalc_sigpending(); 2756 /* 2757 * implies do_group_exit() or return to PF_USER_WORKER, 2758 * no need to initialize ksig->info/etc. 2759 */ 2760 goto fatal; 2761 } 2762 2763 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2764 do_signal_stop(0)) 2765 goto relock; 2766 2767 if (unlikely(current->jobctl & 2768 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { 2769 if (current->jobctl & JOBCTL_TRAP_MASK) { 2770 do_jobctl_trap(); 2771 spin_unlock_irq(&sighand->siglock); 2772 } else if (current->jobctl & JOBCTL_TRAP_FREEZE) 2773 do_freezer_trap(); 2774 2775 goto relock; 2776 } 2777 2778 /* 2779 * If the task is leaving the frozen state, let's update 2780 * cgroup counters and reset the frozen bit. 2781 */ 2782 if (unlikely(cgroup_task_frozen(current))) { 2783 spin_unlock_irq(&sighand->siglock); 2784 cgroup_leave_frozen(false); 2785 goto relock; 2786 } 2787 2788 /* 2789 * Signals generated by the execution of an instruction 2790 * need to be delivered before any other pending signals 2791 * so that the instruction pointer in the signal stack 2792 * frame points to the faulting instruction. 2793 */ 2794 type = PIDTYPE_PID; 2795 signr = dequeue_synchronous_signal(&ksig->info); 2796 if (!signr) 2797 signr = dequeue_signal(¤t->blocked, &ksig->info, &type); 2798 2799 if (!signr) 2800 break; /* will return 0 */ 2801 2802 if (unlikely(current->ptrace) && (signr != SIGKILL) && 2803 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) { 2804 signr = ptrace_signal(signr, &ksig->info, type); 2805 if (!signr) 2806 continue; 2807 } 2808 2809 ka = &sighand->action[signr-1]; 2810 2811 /* Trace actually delivered signals. */ 2812 trace_signal_deliver(signr, &ksig->info, ka); 2813 2814 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2815 continue; 2816 if (ka->sa.sa_handler != SIG_DFL) { 2817 /* Run the handler. */ 2818 ksig->ka = *ka; 2819 2820 if (ka->sa.sa_flags & SA_ONESHOT) 2821 ka->sa.sa_handler = SIG_DFL; 2822 2823 break; /* will return non-zero "signr" value */ 2824 } 2825 2826 /* 2827 * Now we are doing the default action for this signal. 2828 */ 2829 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2830 continue; 2831 2832 /* 2833 * Global init gets no signals it doesn't want. 2834 * Container-init gets no signals it doesn't want from same 2835 * container. 2836 * 2837 * Note that if global/container-init sees a sig_kernel_only() 2838 * signal here, the signal must have been generated internally 2839 * or must have come from an ancestor namespace. In either 2840 * case, the signal cannot be dropped. 2841 */ 2842 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2843 !sig_kernel_only(signr)) 2844 continue; 2845 2846 if (sig_kernel_stop(signr)) { 2847 /* 2848 * The default action is to stop all threads in 2849 * the thread group. The job control signals 2850 * do nothing in an orphaned pgrp, but SIGSTOP 2851 * always works. Note that siglock needs to be 2852 * dropped during the call to is_orphaned_pgrp() 2853 * because of lock ordering with tasklist_lock. 2854 * This allows an intervening SIGCONT to be posted. 2855 * We need to check for that and bail out if necessary. 2856 */ 2857 if (signr != SIGSTOP) { 2858 spin_unlock_irq(&sighand->siglock); 2859 2860 /* signals can be posted during this window */ 2861 2862 if (is_current_pgrp_orphaned()) 2863 goto relock; 2864 2865 spin_lock_irq(&sighand->siglock); 2866 } 2867 2868 if (likely(do_signal_stop(signr))) { 2869 /* It released the siglock. */ 2870 goto relock; 2871 } 2872 2873 /* 2874 * We didn't actually stop, due to a race 2875 * with SIGCONT or something like that. 2876 */ 2877 continue; 2878 } 2879 2880 fatal: 2881 spin_unlock_irq(&sighand->siglock); 2882 if (unlikely(cgroup_task_frozen(current))) 2883 cgroup_leave_frozen(true); 2884 2885 /* 2886 * Anything else is fatal, maybe with a core dump. 2887 */ 2888 current->flags |= PF_SIGNALED; 2889 2890 if (sig_kernel_coredump(signr)) { 2891 int ret; 2892 2893 if (print_fatal_signals) 2894 print_fatal_signal(signr); 2895 proc_coredump_connector(current); 2896 /* 2897 * If it was able to dump core, this kills all 2898 * other threads in the group and synchronizes with 2899 * their demise. If we lost the race with another 2900 * thread getting here, it set group_exit_code 2901 * first and our do_group_exit call below will use 2902 * that value and ignore the one we pass it. 2903 */ 2904 ret = do_coredump(&ksig->info); 2905 if (ret) 2906 coredump_report_failure("coredump has not been created, error %d", 2907 ret); 2908 else if (!IS_ENABLED(CONFIG_COREDUMP)) { 2909 /* 2910 * Coredumps are not available, can't fail collecting 2911 * the coredump. 2912 * 2913 * Leave a note though that the coredump is going to be 2914 * not created. This is not an error or a warning as disabling 2915 * support in the kernel for coredumps isn't commonplace, and 2916 * the user must've built the kernel with the custom config so 2917 * let them know all works as desired. 2918 */ 2919 coredump_report("no coredump collected as " 2920 "that is disabled in the kernel configuration"); 2921 } 2922 } 2923 2924 /* 2925 * PF_USER_WORKER threads will catch and exit on fatal signals 2926 * themselves. They have cleanup that must be performed, so we 2927 * cannot call do_exit() on their behalf. Note that ksig won't 2928 * be properly initialized, PF_USER_WORKER's shouldn't use it. 2929 */ 2930 if (current->flags & PF_USER_WORKER) 2931 goto out; 2932 2933 /* 2934 * Death signals, no core dump. 2935 */ 2936 do_group_exit(signr); 2937 /* NOTREACHED */ 2938 } 2939 spin_unlock_irq(&sighand->siglock); 2940 2941 ksig->sig = signr; 2942 2943 if (signr && !(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS)) 2944 hide_si_addr_tag_bits(ksig); 2945 out: 2946 return signr > 0; 2947 } 2948 2949 /** 2950 * signal_delivered - called after signal delivery to update blocked signals 2951 * @ksig: kernel signal struct 2952 * @stepping: nonzero if debugger single-step or block-step in use 2953 * 2954 * This function should be called when a signal has successfully been 2955 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2956 * is always blocked), and the signal itself is blocked unless %SA_NODEFER 2957 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2958 */ 2959 static void signal_delivered(struct ksignal *ksig, int stepping) 2960 { 2961 sigset_t blocked; 2962 2963 /* A signal was successfully delivered, and the 2964 saved sigmask was stored on the signal frame, 2965 and will be restored by sigreturn. So we can 2966 simply clear the restore sigmask flag. */ 2967 clear_restore_sigmask(); 2968 2969 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2970 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2971 sigaddset(&blocked, ksig->sig); 2972 set_current_blocked(&blocked); 2973 if (current->sas_ss_flags & SS_AUTODISARM) 2974 sas_ss_reset(current); 2975 if (stepping) 2976 ptrace_notify(SIGTRAP, 0); 2977 } 2978 2979 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2980 { 2981 if (failed) 2982 force_sigsegv(ksig->sig); 2983 else 2984 signal_delivered(ksig, stepping); 2985 } 2986 2987 /* 2988 * It could be that complete_signal() picked us to notify about the 2989 * group-wide signal. Other threads should be notified now to take 2990 * the shared signals in @which since we will not. 2991 */ 2992 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2993 { 2994 sigset_t retarget; 2995 struct task_struct *t; 2996 2997 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2998 if (sigisemptyset(&retarget)) 2999 return; 3000 3001 for_other_threads(tsk, t) { 3002 if (t->flags & PF_EXITING) 3003 continue; 3004 3005 if (!has_pending_signals(&retarget, &t->blocked)) 3006 continue; 3007 /* Remove the signals this thread can handle. */ 3008 sigandsets(&retarget, &retarget, &t->blocked); 3009 3010 if (!task_sigpending(t)) 3011 signal_wake_up(t, 0); 3012 3013 if (sigisemptyset(&retarget)) 3014 break; 3015 } 3016 } 3017 3018 void exit_signals(struct task_struct *tsk) 3019 { 3020 int group_stop = 0; 3021 sigset_t unblocked; 3022 3023 /* 3024 * @tsk is about to have PF_EXITING set - lock out users which 3025 * expect stable threadgroup. 3026 */ 3027 cgroup_threadgroup_change_begin(tsk); 3028 3029 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) { 3030 sched_mm_cid_exit_signals(tsk); 3031 tsk->flags |= PF_EXITING; 3032 cgroup_threadgroup_change_end(tsk); 3033 return; 3034 } 3035 3036 spin_lock_irq(&tsk->sighand->siglock); 3037 /* 3038 * From now this task is not visible for group-wide signals, 3039 * see wants_signal(), do_signal_stop(). 3040 */ 3041 sched_mm_cid_exit_signals(tsk); 3042 tsk->flags |= PF_EXITING; 3043 3044 cgroup_threadgroup_change_end(tsk); 3045 3046 if (!task_sigpending(tsk)) 3047 goto out; 3048 3049 unblocked = tsk->blocked; 3050 signotset(&unblocked); 3051 retarget_shared_pending(tsk, &unblocked); 3052 3053 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 3054 task_participate_group_stop(tsk)) 3055 group_stop = CLD_STOPPED; 3056 out: 3057 spin_unlock_irq(&tsk->sighand->siglock); 3058 3059 /* 3060 * If group stop has completed, deliver the notification. This 3061 * should always go to the real parent of the group leader. 3062 */ 3063 if (unlikely(group_stop)) { 3064 read_lock(&tasklist_lock); 3065 do_notify_parent_cldstop(tsk, false, group_stop); 3066 read_unlock(&tasklist_lock); 3067 } 3068 } 3069 3070 /* 3071 * System call entry points. 3072 */ 3073 3074 /** 3075 * sys_restart_syscall - restart a system call 3076 */ 3077 SYSCALL_DEFINE0(restart_syscall) 3078 { 3079 struct restart_block *restart = ¤t->restart_block; 3080 return restart->fn(restart); 3081 } 3082 3083 long do_no_restart_syscall(struct restart_block *param) 3084 { 3085 return -EINTR; 3086 } 3087 3088 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 3089 { 3090 if (task_sigpending(tsk) && !thread_group_empty(tsk)) { 3091 sigset_t newblocked; 3092 /* A set of now blocked but previously unblocked signals. */ 3093 sigandnsets(&newblocked, newset, ¤t->blocked); 3094 retarget_shared_pending(tsk, &newblocked); 3095 } 3096 tsk->blocked = *newset; 3097 recalc_sigpending(); 3098 } 3099 3100 /** 3101 * set_current_blocked - change current->blocked mask 3102 * @newset: new mask 3103 * 3104 * It is wrong to change ->blocked directly, this helper should be used 3105 * to ensure the process can't miss a shared signal we are going to block. 3106 */ 3107 void set_current_blocked(sigset_t *newset) 3108 { 3109 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3110 __set_current_blocked(newset); 3111 } 3112 3113 void __set_current_blocked(const sigset_t *newset) 3114 { 3115 struct task_struct *tsk = current; 3116 3117 /* 3118 * In case the signal mask hasn't changed, there is nothing we need 3119 * to do. The current->blocked shouldn't be modified by other task. 3120 */ 3121 if (sigequalsets(&tsk->blocked, newset)) 3122 return; 3123 3124 spin_lock_irq(&tsk->sighand->siglock); 3125 __set_task_blocked(tsk, newset); 3126 spin_unlock_irq(&tsk->sighand->siglock); 3127 } 3128 3129 /* 3130 * This is also useful for kernel threads that want to temporarily 3131 * (or permanently) block certain signals. 3132 * 3133 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 3134 * interface happily blocks "unblockable" signals like SIGKILL 3135 * and friends. 3136 */ 3137 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 3138 { 3139 struct task_struct *tsk = current; 3140 sigset_t newset; 3141 3142 /* Lockless, only current can change ->blocked, never from irq */ 3143 if (oldset) 3144 *oldset = tsk->blocked; 3145 3146 switch (how) { 3147 case SIG_BLOCK: 3148 sigorsets(&newset, &tsk->blocked, set); 3149 break; 3150 case SIG_UNBLOCK: 3151 sigandnsets(&newset, &tsk->blocked, set); 3152 break; 3153 case SIG_SETMASK: 3154 newset = *set; 3155 break; 3156 default: 3157 return -EINVAL; 3158 } 3159 3160 __set_current_blocked(&newset); 3161 return 0; 3162 } 3163 EXPORT_SYMBOL(sigprocmask); 3164 3165 /* 3166 * The api helps set app-provided sigmasks. 3167 * 3168 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 3169 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 3170 * 3171 * Note that it does set_restore_sigmask() in advance, so it must be always 3172 * paired with restore_saved_sigmask_unless() before return from syscall. 3173 */ 3174 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) 3175 { 3176 sigset_t kmask; 3177 3178 if (!umask) 3179 return 0; 3180 if (sigsetsize != sizeof(sigset_t)) 3181 return -EINVAL; 3182 if (copy_from_user(&kmask, umask, sizeof(sigset_t))) 3183 return -EFAULT; 3184 3185 set_restore_sigmask(); 3186 current->saved_sigmask = current->blocked; 3187 set_current_blocked(&kmask); 3188 3189 return 0; 3190 } 3191 3192 #ifdef CONFIG_COMPAT 3193 int set_compat_user_sigmask(const compat_sigset_t __user *umask, 3194 size_t sigsetsize) 3195 { 3196 sigset_t kmask; 3197 3198 if (!umask) 3199 return 0; 3200 if (sigsetsize != sizeof(compat_sigset_t)) 3201 return -EINVAL; 3202 if (get_compat_sigset(&kmask, umask)) 3203 return -EFAULT; 3204 3205 set_restore_sigmask(); 3206 current->saved_sigmask = current->blocked; 3207 set_current_blocked(&kmask); 3208 3209 return 0; 3210 } 3211 #endif 3212 3213 /** 3214 * sys_rt_sigprocmask - change the list of currently blocked signals 3215 * @how: whether to add, remove, or set signals 3216 * @nset: stores pending signals 3217 * @oset: previous value of signal mask if non-null 3218 * @sigsetsize: size of sigset_t type 3219 */ 3220 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 3221 sigset_t __user *, oset, size_t, sigsetsize) 3222 { 3223 sigset_t old_set, new_set; 3224 int error; 3225 3226 /* XXX: Don't preclude handling different sized sigset_t's. */ 3227 if (sigsetsize != sizeof(sigset_t)) 3228 return -EINVAL; 3229 3230 old_set = current->blocked; 3231 3232 if (nset) { 3233 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 3234 return -EFAULT; 3235 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3236 3237 error = sigprocmask(how, &new_set, NULL); 3238 if (error) 3239 return error; 3240 } 3241 3242 if (oset) { 3243 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 3244 return -EFAULT; 3245 } 3246 3247 return 0; 3248 } 3249 3250 #ifdef CONFIG_COMPAT 3251 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 3252 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 3253 { 3254 sigset_t old_set = current->blocked; 3255 3256 /* XXX: Don't preclude handling different sized sigset_t's. */ 3257 if (sigsetsize != sizeof(sigset_t)) 3258 return -EINVAL; 3259 3260 if (nset) { 3261 sigset_t new_set; 3262 int error; 3263 if (get_compat_sigset(&new_set, nset)) 3264 return -EFAULT; 3265 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3266 3267 error = sigprocmask(how, &new_set, NULL); 3268 if (error) 3269 return error; 3270 } 3271 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 3272 } 3273 #endif 3274 3275 static void do_sigpending(sigset_t *set) 3276 { 3277 spin_lock_irq(¤t->sighand->siglock); 3278 sigorsets(set, ¤t->pending.signal, 3279 ¤t->signal->shared_pending.signal); 3280 spin_unlock_irq(¤t->sighand->siglock); 3281 3282 /* Outside the lock because only this thread touches it. */ 3283 sigandsets(set, ¤t->blocked, set); 3284 } 3285 3286 /** 3287 * sys_rt_sigpending - examine a pending signal that has been raised 3288 * while blocked 3289 * @uset: stores pending signals 3290 * @sigsetsize: size of sigset_t type or larger 3291 */ 3292 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 3293 { 3294 sigset_t set; 3295 3296 if (sigsetsize > sizeof(*uset)) 3297 return -EINVAL; 3298 3299 do_sigpending(&set); 3300 3301 if (copy_to_user(uset, &set, sigsetsize)) 3302 return -EFAULT; 3303 3304 return 0; 3305 } 3306 3307 #ifdef CONFIG_COMPAT 3308 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 3309 compat_size_t, sigsetsize) 3310 { 3311 sigset_t set; 3312 3313 if (sigsetsize > sizeof(*uset)) 3314 return -EINVAL; 3315 3316 do_sigpending(&set); 3317 3318 return put_compat_sigset(uset, &set, sigsetsize); 3319 } 3320 #endif 3321 3322 static const struct { 3323 unsigned char limit, layout; 3324 } sig_sicodes[] = { 3325 [SIGILL] = { NSIGILL, SIL_FAULT }, 3326 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 3327 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 3328 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 3329 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 3330 #if defined(SIGEMT) 3331 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 3332 #endif 3333 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 3334 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 3335 [SIGSYS] = { NSIGSYS, SIL_SYS }, 3336 }; 3337 3338 static bool known_siginfo_layout(unsigned sig, int si_code) 3339 { 3340 if (si_code == SI_KERNEL) 3341 return true; 3342 else if ((si_code > SI_USER)) { 3343 if (sig_specific_sicodes(sig)) { 3344 if (si_code <= sig_sicodes[sig].limit) 3345 return true; 3346 } 3347 else if (si_code <= NSIGPOLL) 3348 return true; 3349 } 3350 else if (si_code >= SI_DETHREAD) 3351 return true; 3352 else if (si_code == SI_ASYNCNL) 3353 return true; 3354 return false; 3355 } 3356 3357 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3358 { 3359 enum siginfo_layout layout = SIL_KILL; 3360 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3361 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3362 (si_code <= sig_sicodes[sig].limit)) { 3363 layout = sig_sicodes[sig].layout; 3364 /* Handle the exceptions */ 3365 if ((sig == SIGBUS) && 3366 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3367 layout = SIL_FAULT_MCEERR; 3368 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3369 layout = SIL_FAULT_BNDERR; 3370 #ifdef SEGV_PKUERR 3371 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3372 layout = SIL_FAULT_PKUERR; 3373 #endif 3374 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF)) 3375 layout = SIL_FAULT_PERF_EVENT; 3376 else if (IS_ENABLED(CONFIG_SPARC) && 3377 (sig == SIGILL) && (si_code == ILL_ILLTRP)) 3378 layout = SIL_FAULT_TRAPNO; 3379 else if (IS_ENABLED(CONFIG_ALPHA) && 3380 ((sig == SIGFPE) || 3381 ((sig == SIGTRAP) && (si_code == TRAP_UNK)))) 3382 layout = SIL_FAULT_TRAPNO; 3383 } 3384 else if (si_code <= NSIGPOLL) 3385 layout = SIL_POLL; 3386 } else { 3387 if (si_code == SI_TIMER) 3388 layout = SIL_TIMER; 3389 else if (si_code == SI_SIGIO) 3390 layout = SIL_POLL; 3391 else if (si_code < 0) 3392 layout = SIL_RT; 3393 } 3394 return layout; 3395 } 3396 3397 static inline char __user *si_expansion(const siginfo_t __user *info) 3398 { 3399 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3400 } 3401 3402 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3403 { 3404 char __user *expansion = si_expansion(to); 3405 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3406 return -EFAULT; 3407 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3408 return -EFAULT; 3409 return 0; 3410 } 3411 3412 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3413 const siginfo_t __user *from) 3414 { 3415 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3416 char __user *expansion = si_expansion(from); 3417 char buf[SI_EXPANSION_SIZE]; 3418 int i; 3419 /* 3420 * An unknown si_code might need more than 3421 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3422 * extra bytes are 0. This guarantees copy_siginfo_to_user 3423 * will return this data to userspace exactly. 3424 */ 3425 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3426 return -EFAULT; 3427 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3428 if (buf[i] != 0) 3429 return -E2BIG; 3430 } 3431 } 3432 return 0; 3433 } 3434 3435 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3436 const siginfo_t __user *from) 3437 { 3438 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3439 return -EFAULT; 3440 to->si_signo = signo; 3441 return post_copy_siginfo_from_user(to, from); 3442 } 3443 3444 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3445 { 3446 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3447 return -EFAULT; 3448 return post_copy_siginfo_from_user(to, from); 3449 } 3450 3451 #ifdef CONFIG_COMPAT 3452 /** 3453 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo 3454 * @to: compat siginfo destination 3455 * @from: kernel siginfo source 3456 * 3457 * Note: This function does not work properly for the SIGCHLD on x32, but 3458 * fortunately it doesn't have to. The only valid callers for this function are 3459 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. 3460 * The latter does not care because SIGCHLD will never cause a coredump. 3461 */ 3462 void copy_siginfo_to_external32(struct compat_siginfo *to, 3463 const struct kernel_siginfo *from) 3464 { 3465 memset(to, 0, sizeof(*to)); 3466 3467 to->si_signo = from->si_signo; 3468 to->si_errno = from->si_errno; 3469 to->si_code = from->si_code; 3470 switch(siginfo_layout(from->si_signo, from->si_code)) { 3471 case SIL_KILL: 3472 to->si_pid = from->si_pid; 3473 to->si_uid = from->si_uid; 3474 break; 3475 case SIL_TIMER: 3476 to->si_tid = from->si_tid; 3477 to->si_overrun = from->si_overrun; 3478 to->si_int = from->si_int; 3479 break; 3480 case SIL_POLL: 3481 to->si_band = from->si_band; 3482 to->si_fd = from->si_fd; 3483 break; 3484 case SIL_FAULT: 3485 to->si_addr = ptr_to_compat(from->si_addr); 3486 break; 3487 case SIL_FAULT_TRAPNO: 3488 to->si_addr = ptr_to_compat(from->si_addr); 3489 to->si_trapno = from->si_trapno; 3490 break; 3491 case SIL_FAULT_MCEERR: 3492 to->si_addr = ptr_to_compat(from->si_addr); 3493 to->si_addr_lsb = from->si_addr_lsb; 3494 break; 3495 case SIL_FAULT_BNDERR: 3496 to->si_addr = ptr_to_compat(from->si_addr); 3497 to->si_lower = ptr_to_compat(from->si_lower); 3498 to->si_upper = ptr_to_compat(from->si_upper); 3499 break; 3500 case SIL_FAULT_PKUERR: 3501 to->si_addr = ptr_to_compat(from->si_addr); 3502 to->si_pkey = from->si_pkey; 3503 break; 3504 case SIL_FAULT_PERF_EVENT: 3505 to->si_addr = ptr_to_compat(from->si_addr); 3506 to->si_perf_data = from->si_perf_data; 3507 to->si_perf_type = from->si_perf_type; 3508 to->si_perf_flags = from->si_perf_flags; 3509 break; 3510 case SIL_CHLD: 3511 to->si_pid = from->si_pid; 3512 to->si_uid = from->si_uid; 3513 to->si_status = from->si_status; 3514 to->si_utime = from->si_utime; 3515 to->si_stime = from->si_stime; 3516 break; 3517 case SIL_RT: 3518 to->si_pid = from->si_pid; 3519 to->si_uid = from->si_uid; 3520 to->si_int = from->si_int; 3521 break; 3522 case SIL_SYS: 3523 to->si_call_addr = ptr_to_compat(from->si_call_addr); 3524 to->si_syscall = from->si_syscall; 3525 to->si_arch = from->si_arch; 3526 break; 3527 } 3528 } 3529 3530 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3531 const struct kernel_siginfo *from) 3532 { 3533 struct compat_siginfo new; 3534 3535 copy_siginfo_to_external32(&new, from); 3536 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3537 return -EFAULT; 3538 return 0; 3539 } 3540 3541 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3542 const struct compat_siginfo *from) 3543 { 3544 clear_siginfo(to); 3545 to->si_signo = from->si_signo; 3546 to->si_errno = from->si_errno; 3547 to->si_code = from->si_code; 3548 switch(siginfo_layout(from->si_signo, from->si_code)) { 3549 case SIL_KILL: 3550 to->si_pid = from->si_pid; 3551 to->si_uid = from->si_uid; 3552 break; 3553 case SIL_TIMER: 3554 to->si_tid = from->si_tid; 3555 to->si_overrun = from->si_overrun; 3556 to->si_int = from->si_int; 3557 break; 3558 case SIL_POLL: 3559 to->si_band = from->si_band; 3560 to->si_fd = from->si_fd; 3561 break; 3562 case SIL_FAULT: 3563 to->si_addr = compat_ptr(from->si_addr); 3564 break; 3565 case SIL_FAULT_TRAPNO: 3566 to->si_addr = compat_ptr(from->si_addr); 3567 to->si_trapno = from->si_trapno; 3568 break; 3569 case SIL_FAULT_MCEERR: 3570 to->si_addr = compat_ptr(from->si_addr); 3571 to->si_addr_lsb = from->si_addr_lsb; 3572 break; 3573 case SIL_FAULT_BNDERR: 3574 to->si_addr = compat_ptr(from->si_addr); 3575 to->si_lower = compat_ptr(from->si_lower); 3576 to->si_upper = compat_ptr(from->si_upper); 3577 break; 3578 case SIL_FAULT_PKUERR: 3579 to->si_addr = compat_ptr(from->si_addr); 3580 to->si_pkey = from->si_pkey; 3581 break; 3582 case SIL_FAULT_PERF_EVENT: 3583 to->si_addr = compat_ptr(from->si_addr); 3584 to->si_perf_data = from->si_perf_data; 3585 to->si_perf_type = from->si_perf_type; 3586 to->si_perf_flags = from->si_perf_flags; 3587 break; 3588 case SIL_CHLD: 3589 to->si_pid = from->si_pid; 3590 to->si_uid = from->si_uid; 3591 to->si_status = from->si_status; 3592 #ifdef CONFIG_X86_X32_ABI 3593 if (in_x32_syscall()) { 3594 to->si_utime = from->_sifields._sigchld_x32._utime; 3595 to->si_stime = from->_sifields._sigchld_x32._stime; 3596 } else 3597 #endif 3598 { 3599 to->si_utime = from->si_utime; 3600 to->si_stime = from->si_stime; 3601 } 3602 break; 3603 case SIL_RT: 3604 to->si_pid = from->si_pid; 3605 to->si_uid = from->si_uid; 3606 to->si_int = from->si_int; 3607 break; 3608 case SIL_SYS: 3609 to->si_call_addr = compat_ptr(from->si_call_addr); 3610 to->si_syscall = from->si_syscall; 3611 to->si_arch = from->si_arch; 3612 break; 3613 } 3614 return 0; 3615 } 3616 3617 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3618 const struct compat_siginfo __user *ufrom) 3619 { 3620 struct compat_siginfo from; 3621 3622 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3623 return -EFAULT; 3624 3625 from.si_signo = signo; 3626 return post_copy_siginfo_from_user32(to, &from); 3627 } 3628 3629 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3630 const struct compat_siginfo __user *ufrom) 3631 { 3632 struct compat_siginfo from; 3633 3634 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3635 return -EFAULT; 3636 3637 return post_copy_siginfo_from_user32(to, &from); 3638 } 3639 #endif /* CONFIG_COMPAT */ 3640 3641 /** 3642 * do_sigtimedwait - wait for queued signals specified in @which 3643 * @which: queued signals to wait for 3644 * @info: if non-null, the signal's siginfo is returned here 3645 * @ts: upper bound on process time suspension 3646 */ 3647 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3648 const struct timespec64 *ts) 3649 { 3650 ktime_t *to = NULL, timeout = KTIME_MAX; 3651 struct task_struct *tsk = current; 3652 sigset_t mask = *which; 3653 enum pid_type type; 3654 int sig, ret = 0; 3655 3656 if (ts) { 3657 if (!timespec64_valid(ts)) 3658 return -EINVAL; 3659 timeout = timespec64_to_ktime(*ts); 3660 to = &timeout; 3661 } 3662 3663 /* 3664 * Invert the set of allowed signals to get those we want to block. 3665 */ 3666 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3667 signotset(&mask); 3668 3669 spin_lock_irq(&tsk->sighand->siglock); 3670 sig = dequeue_signal(&mask, info, &type); 3671 if (!sig && timeout) { 3672 /* 3673 * None ready, temporarily unblock those we're interested 3674 * while we are sleeping in so that we'll be awakened when 3675 * they arrive. Unblocking is always fine, we can avoid 3676 * set_current_blocked(). 3677 */ 3678 tsk->real_blocked = tsk->blocked; 3679 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3680 recalc_sigpending(); 3681 spin_unlock_irq(&tsk->sighand->siglock); 3682 3683 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 3684 ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3685 HRTIMER_MODE_REL); 3686 spin_lock_irq(&tsk->sighand->siglock); 3687 __set_task_blocked(tsk, &tsk->real_blocked); 3688 sigemptyset(&tsk->real_blocked); 3689 sig = dequeue_signal(&mask, info, &type); 3690 } 3691 spin_unlock_irq(&tsk->sighand->siglock); 3692 3693 if (sig) 3694 return sig; 3695 return ret ? -EINTR : -EAGAIN; 3696 } 3697 3698 /** 3699 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3700 * in @uthese 3701 * @uthese: queued signals to wait for 3702 * @uinfo: if non-null, the signal's siginfo is returned here 3703 * @uts: upper bound on process time suspension 3704 * @sigsetsize: size of sigset_t type 3705 */ 3706 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3707 siginfo_t __user *, uinfo, 3708 const struct __kernel_timespec __user *, uts, 3709 size_t, sigsetsize) 3710 { 3711 sigset_t these; 3712 struct timespec64 ts; 3713 kernel_siginfo_t info; 3714 int ret; 3715 3716 /* XXX: Don't preclude handling different sized sigset_t's. */ 3717 if (sigsetsize != sizeof(sigset_t)) 3718 return -EINVAL; 3719 3720 if (copy_from_user(&these, uthese, sizeof(these))) 3721 return -EFAULT; 3722 3723 if (uts) { 3724 if (get_timespec64(&ts, uts)) 3725 return -EFAULT; 3726 } 3727 3728 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3729 3730 if (ret > 0 && uinfo) { 3731 if (copy_siginfo_to_user(uinfo, &info)) 3732 ret = -EFAULT; 3733 } 3734 3735 return ret; 3736 } 3737 3738 #ifdef CONFIG_COMPAT_32BIT_TIME 3739 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3740 siginfo_t __user *, uinfo, 3741 const struct old_timespec32 __user *, uts, 3742 size_t, sigsetsize) 3743 { 3744 sigset_t these; 3745 struct timespec64 ts; 3746 kernel_siginfo_t info; 3747 int ret; 3748 3749 if (sigsetsize != sizeof(sigset_t)) 3750 return -EINVAL; 3751 3752 if (copy_from_user(&these, uthese, sizeof(these))) 3753 return -EFAULT; 3754 3755 if (uts) { 3756 if (get_old_timespec32(&ts, uts)) 3757 return -EFAULT; 3758 } 3759 3760 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3761 3762 if (ret > 0 && uinfo) { 3763 if (copy_siginfo_to_user(uinfo, &info)) 3764 ret = -EFAULT; 3765 } 3766 3767 return ret; 3768 } 3769 #endif 3770 3771 #ifdef CONFIG_COMPAT 3772 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3773 struct compat_siginfo __user *, uinfo, 3774 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3775 { 3776 sigset_t s; 3777 struct timespec64 t; 3778 kernel_siginfo_t info; 3779 long ret; 3780 3781 if (sigsetsize != sizeof(sigset_t)) 3782 return -EINVAL; 3783 3784 if (get_compat_sigset(&s, uthese)) 3785 return -EFAULT; 3786 3787 if (uts) { 3788 if (get_timespec64(&t, uts)) 3789 return -EFAULT; 3790 } 3791 3792 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3793 3794 if (ret > 0 && uinfo) { 3795 if (copy_siginfo_to_user32(uinfo, &info)) 3796 ret = -EFAULT; 3797 } 3798 3799 return ret; 3800 } 3801 3802 #ifdef CONFIG_COMPAT_32BIT_TIME 3803 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3804 struct compat_siginfo __user *, uinfo, 3805 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3806 { 3807 sigset_t s; 3808 struct timespec64 t; 3809 kernel_siginfo_t info; 3810 long ret; 3811 3812 if (sigsetsize != sizeof(sigset_t)) 3813 return -EINVAL; 3814 3815 if (get_compat_sigset(&s, uthese)) 3816 return -EFAULT; 3817 3818 if (uts) { 3819 if (get_old_timespec32(&t, uts)) 3820 return -EFAULT; 3821 } 3822 3823 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3824 3825 if (ret > 0 && uinfo) { 3826 if (copy_siginfo_to_user32(uinfo, &info)) 3827 ret = -EFAULT; 3828 } 3829 3830 return ret; 3831 } 3832 #endif 3833 #endif 3834 3835 static void prepare_kill_siginfo(int sig, struct kernel_siginfo *info, 3836 enum pid_type type) 3837 { 3838 clear_siginfo(info); 3839 info->si_signo = sig; 3840 info->si_errno = 0; 3841 info->si_code = (type == PIDTYPE_PID) ? SI_TKILL : SI_USER; 3842 info->si_pid = task_tgid_vnr(current); 3843 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3844 } 3845 3846 /** 3847 * sys_kill - send a signal to a process 3848 * @pid: the PID of the process 3849 * @sig: signal to be sent 3850 */ 3851 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3852 { 3853 struct kernel_siginfo info; 3854 3855 prepare_kill_siginfo(sig, &info, PIDTYPE_TGID); 3856 3857 return kill_something_info(sig, &info, pid); 3858 } 3859 3860 /* 3861 * Verify that the signaler and signalee either are in the same pid namespace 3862 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3863 * namespace. 3864 */ 3865 static bool access_pidfd_pidns(struct pid *pid) 3866 { 3867 struct pid_namespace *active = task_active_pid_ns(current); 3868 struct pid_namespace *p = ns_of_pid(pid); 3869 3870 for (;;) { 3871 if (!p) 3872 return false; 3873 if (p == active) 3874 break; 3875 p = p->parent; 3876 } 3877 3878 return true; 3879 } 3880 3881 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, 3882 siginfo_t __user *info) 3883 { 3884 #ifdef CONFIG_COMPAT 3885 /* 3886 * Avoid hooking up compat syscalls and instead handle necessary 3887 * conversions here. Note, this is a stop-gap measure and should not be 3888 * considered a generic solution. 3889 */ 3890 if (in_compat_syscall()) 3891 return copy_siginfo_from_user32( 3892 kinfo, (struct compat_siginfo __user *)info); 3893 #endif 3894 return copy_siginfo_from_user(kinfo, info); 3895 } 3896 3897 static struct pid *pidfd_to_pid(const struct file *file) 3898 { 3899 struct pid *pid; 3900 3901 pid = pidfd_pid(file); 3902 if (!IS_ERR(pid)) 3903 return pid; 3904 3905 return tgid_pidfd_to_pid(file); 3906 } 3907 3908 #define PIDFD_SEND_SIGNAL_FLAGS \ 3909 (PIDFD_SIGNAL_THREAD | PIDFD_SIGNAL_THREAD_GROUP | \ 3910 PIDFD_SIGNAL_PROCESS_GROUP) 3911 3912 /** 3913 * sys_pidfd_send_signal - Signal a process through a pidfd 3914 * @pidfd: file descriptor of the process 3915 * @sig: signal to send 3916 * @info: signal info 3917 * @flags: future flags 3918 * 3919 * Send the signal to the thread group or to the individual thread depending 3920 * on PIDFD_THREAD. 3921 * In the future extension to @flags may be used to override the default scope 3922 * of @pidfd. 3923 * 3924 * Return: 0 on success, negative errno on failure 3925 */ 3926 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 3927 siginfo_t __user *, info, unsigned int, flags) 3928 { 3929 int ret; 3930 struct fd f; 3931 struct pid *pid; 3932 kernel_siginfo_t kinfo; 3933 enum pid_type type; 3934 3935 /* Enforce flags be set to 0 until we add an extension. */ 3936 if (flags & ~PIDFD_SEND_SIGNAL_FLAGS) 3937 return -EINVAL; 3938 3939 /* Ensure that only a single signal scope determining flag is set. */ 3940 if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1) 3941 return -EINVAL; 3942 3943 f = fdget(pidfd); 3944 if (!fd_file(f)) 3945 return -EBADF; 3946 3947 /* Is this a pidfd? */ 3948 pid = pidfd_to_pid(fd_file(f)); 3949 if (IS_ERR(pid)) { 3950 ret = PTR_ERR(pid); 3951 goto err; 3952 } 3953 3954 ret = -EINVAL; 3955 if (!access_pidfd_pidns(pid)) 3956 goto err; 3957 3958 switch (flags) { 3959 case 0: 3960 /* Infer scope from the type of pidfd. */ 3961 if (fd_file(f)->f_flags & PIDFD_THREAD) 3962 type = PIDTYPE_PID; 3963 else 3964 type = PIDTYPE_TGID; 3965 break; 3966 case PIDFD_SIGNAL_THREAD: 3967 type = PIDTYPE_PID; 3968 break; 3969 case PIDFD_SIGNAL_THREAD_GROUP: 3970 type = PIDTYPE_TGID; 3971 break; 3972 case PIDFD_SIGNAL_PROCESS_GROUP: 3973 type = PIDTYPE_PGID; 3974 break; 3975 } 3976 3977 if (info) { 3978 ret = copy_siginfo_from_user_any(&kinfo, info); 3979 if (unlikely(ret)) 3980 goto err; 3981 3982 ret = -EINVAL; 3983 if (unlikely(sig != kinfo.si_signo)) 3984 goto err; 3985 3986 /* Only allow sending arbitrary signals to yourself. */ 3987 ret = -EPERM; 3988 if ((task_pid(current) != pid || type > PIDTYPE_TGID) && 3989 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) 3990 goto err; 3991 } else { 3992 prepare_kill_siginfo(sig, &kinfo, type); 3993 } 3994 3995 if (type == PIDTYPE_PGID) 3996 ret = kill_pgrp_info(sig, &kinfo, pid); 3997 else 3998 ret = kill_pid_info_type(sig, &kinfo, pid, type); 3999 err: 4000 fdput(f); 4001 return ret; 4002 } 4003 4004 static int 4005 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 4006 { 4007 struct task_struct *p; 4008 int error = -ESRCH; 4009 4010 rcu_read_lock(); 4011 p = find_task_by_vpid(pid); 4012 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 4013 error = check_kill_permission(sig, info, p); 4014 /* 4015 * The null signal is a permissions and process existence 4016 * probe. No signal is actually delivered. 4017 */ 4018 if (!error && sig) { 4019 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 4020 /* 4021 * If lock_task_sighand() failed we pretend the task 4022 * dies after receiving the signal. The window is tiny, 4023 * and the signal is private anyway. 4024 */ 4025 if (unlikely(error == -ESRCH)) 4026 error = 0; 4027 } 4028 } 4029 rcu_read_unlock(); 4030 4031 return error; 4032 } 4033 4034 static int do_tkill(pid_t tgid, pid_t pid, int sig) 4035 { 4036 struct kernel_siginfo info; 4037 4038 prepare_kill_siginfo(sig, &info, PIDTYPE_PID); 4039 4040 return do_send_specific(tgid, pid, sig, &info); 4041 } 4042 4043 /** 4044 * sys_tgkill - send signal to one specific thread 4045 * @tgid: the thread group ID of the thread 4046 * @pid: the PID of the thread 4047 * @sig: signal to be sent 4048 * 4049 * This syscall also checks the @tgid and returns -ESRCH even if the PID 4050 * exists but it's not belonging to the target process anymore. This 4051 * method solves the problem of threads exiting and PIDs getting reused. 4052 */ 4053 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 4054 { 4055 /* This is only valid for single tasks */ 4056 if (pid <= 0 || tgid <= 0) 4057 return -EINVAL; 4058 4059 return do_tkill(tgid, pid, sig); 4060 } 4061 4062 /** 4063 * sys_tkill - send signal to one specific task 4064 * @pid: the PID of the task 4065 * @sig: signal to be sent 4066 * 4067 * Send a signal to only one task, even if it's a CLONE_THREAD task. 4068 */ 4069 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 4070 { 4071 /* This is only valid for single tasks */ 4072 if (pid <= 0) 4073 return -EINVAL; 4074 4075 return do_tkill(0, pid, sig); 4076 } 4077 4078 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 4079 { 4080 /* Not even root can pretend to send signals from the kernel. 4081 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4082 */ 4083 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4084 (task_pid_vnr(current) != pid)) 4085 return -EPERM; 4086 4087 /* POSIX.1b doesn't mention process groups. */ 4088 return kill_proc_info(sig, info, pid); 4089 } 4090 4091 /** 4092 * sys_rt_sigqueueinfo - send signal information to a signal 4093 * @pid: the PID of the thread 4094 * @sig: signal to be sent 4095 * @uinfo: signal info to be sent 4096 */ 4097 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 4098 siginfo_t __user *, uinfo) 4099 { 4100 kernel_siginfo_t info; 4101 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4102 if (unlikely(ret)) 4103 return ret; 4104 return do_rt_sigqueueinfo(pid, sig, &info); 4105 } 4106 4107 #ifdef CONFIG_COMPAT 4108 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 4109 compat_pid_t, pid, 4110 int, sig, 4111 struct compat_siginfo __user *, uinfo) 4112 { 4113 kernel_siginfo_t info; 4114 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4115 if (unlikely(ret)) 4116 return ret; 4117 return do_rt_sigqueueinfo(pid, sig, &info); 4118 } 4119 #endif 4120 4121 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 4122 { 4123 /* This is only valid for single tasks */ 4124 if (pid <= 0 || tgid <= 0) 4125 return -EINVAL; 4126 4127 /* Not even root can pretend to send signals from the kernel. 4128 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4129 */ 4130 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4131 (task_pid_vnr(current) != pid)) 4132 return -EPERM; 4133 4134 return do_send_specific(tgid, pid, sig, info); 4135 } 4136 4137 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 4138 siginfo_t __user *, uinfo) 4139 { 4140 kernel_siginfo_t info; 4141 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4142 if (unlikely(ret)) 4143 return ret; 4144 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4145 } 4146 4147 #ifdef CONFIG_COMPAT 4148 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 4149 compat_pid_t, tgid, 4150 compat_pid_t, pid, 4151 int, sig, 4152 struct compat_siginfo __user *, uinfo) 4153 { 4154 kernel_siginfo_t info; 4155 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4156 if (unlikely(ret)) 4157 return ret; 4158 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4159 } 4160 #endif 4161 4162 /* 4163 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 4164 */ 4165 void kernel_sigaction(int sig, __sighandler_t action) 4166 { 4167 spin_lock_irq(¤t->sighand->siglock); 4168 current->sighand->action[sig - 1].sa.sa_handler = action; 4169 if (action == SIG_IGN) { 4170 sigset_t mask; 4171 4172 sigemptyset(&mask); 4173 sigaddset(&mask, sig); 4174 4175 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 4176 flush_sigqueue_mask(&mask, ¤t->pending); 4177 recalc_sigpending(); 4178 } 4179 spin_unlock_irq(¤t->sighand->siglock); 4180 } 4181 EXPORT_SYMBOL(kernel_sigaction); 4182 4183 void __weak sigaction_compat_abi(struct k_sigaction *act, 4184 struct k_sigaction *oact) 4185 { 4186 } 4187 4188 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 4189 { 4190 struct task_struct *p = current, *t; 4191 struct k_sigaction *k; 4192 sigset_t mask; 4193 4194 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 4195 return -EINVAL; 4196 4197 k = &p->sighand->action[sig-1]; 4198 4199 spin_lock_irq(&p->sighand->siglock); 4200 if (k->sa.sa_flags & SA_IMMUTABLE) { 4201 spin_unlock_irq(&p->sighand->siglock); 4202 return -EINVAL; 4203 } 4204 if (oact) 4205 *oact = *k; 4206 4207 /* 4208 * Make sure that we never accidentally claim to support SA_UNSUPPORTED, 4209 * e.g. by having an architecture use the bit in their uapi. 4210 */ 4211 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED); 4212 4213 /* 4214 * Clear unknown flag bits in order to allow userspace to detect missing 4215 * support for flag bits and to allow the kernel to use non-uapi bits 4216 * internally. 4217 */ 4218 if (act) 4219 act->sa.sa_flags &= UAPI_SA_FLAGS; 4220 if (oact) 4221 oact->sa.sa_flags &= UAPI_SA_FLAGS; 4222 4223 sigaction_compat_abi(act, oact); 4224 4225 if (act) { 4226 sigdelsetmask(&act->sa.sa_mask, 4227 sigmask(SIGKILL) | sigmask(SIGSTOP)); 4228 *k = *act; 4229 /* 4230 * POSIX 3.3.1.3: 4231 * "Setting a signal action to SIG_IGN for a signal that is 4232 * pending shall cause the pending signal to be discarded, 4233 * whether or not it is blocked." 4234 * 4235 * "Setting a signal action to SIG_DFL for a signal that is 4236 * pending and whose default action is to ignore the signal 4237 * (for example, SIGCHLD), shall cause the pending signal to 4238 * be discarded, whether or not it is blocked" 4239 */ 4240 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 4241 sigemptyset(&mask); 4242 sigaddset(&mask, sig); 4243 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 4244 for_each_thread(p, t) 4245 flush_sigqueue_mask(&mask, &t->pending); 4246 } 4247 } 4248 4249 spin_unlock_irq(&p->sighand->siglock); 4250 return 0; 4251 } 4252 4253 #ifdef CONFIG_DYNAMIC_SIGFRAME 4254 static inline void sigaltstack_lock(void) 4255 __acquires(¤t->sighand->siglock) 4256 { 4257 spin_lock_irq(¤t->sighand->siglock); 4258 } 4259 4260 static inline void sigaltstack_unlock(void) 4261 __releases(¤t->sighand->siglock) 4262 { 4263 spin_unlock_irq(¤t->sighand->siglock); 4264 } 4265 #else 4266 static inline void sigaltstack_lock(void) { } 4267 static inline void sigaltstack_unlock(void) { } 4268 #endif 4269 4270 static int 4271 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 4272 size_t min_ss_size) 4273 { 4274 struct task_struct *t = current; 4275 int ret = 0; 4276 4277 if (oss) { 4278 memset(oss, 0, sizeof(stack_t)); 4279 oss->ss_sp = (void __user *) t->sas_ss_sp; 4280 oss->ss_size = t->sas_ss_size; 4281 oss->ss_flags = sas_ss_flags(sp) | 4282 (current->sas_ss_flags & SS_FLAG_BITS); 4283 } 4284 4285 if (ss) { 4286 void __user *ss_sp = ss->ss_sp; 4287 size_t ss_size = ss->ss_size; 4288 unsigned ss_flags = ss->ss_flags; 4289 int ss_mode; 4290 4291 if (unlikely(on_sig_stack(sp))) 4292 return -EPERM; 4293 4294 ss_mode = ss_flags & ~SS_FLAG_BITS; 4295 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 4296 ss_mode != 0)) 4297 return -EINVAL; 4298 4299 /* 4300 * Return before taking any locks if no actual 4301 * sigaltstack changes were requested. 4302 */ 4303 if (t->sas_ss_sp == (unsigned long)ss_sp && 4304 t->sas_ss_size == ss_size && 4305 t->sas_ss_flags == ss_flags) 4306 return 0; 4307 4308 sigaltstack_lock(); 4309 if (ss_mode == SS_DISABLE) { 4310 ss_size = 0; 4311 ss_sp = NULL; 4312 } else { 4313 if (unlikely(ss_size < min_ss_size)) 4314 ret = -ENOMEM; 4315 if (!sigaltstack_size_valid(ss_size)) 4316 ret = -ENOMEM; 4317 } 4318 if (!ret) { 4319 t->sas_ss_sp = (unsigned long) ss_sp; 4320 t->sas_ss_size = ss_size; 4321 t->sas_ss_flags = ss_flags; 4322 } 4323 sigaltstack_unlock(); 4324 } 4325 return ret; 4326 } 4327 4328 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 4329 { 4330 stack_t new, old; 4331 int err; 4332 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 4333 return -EFAULT; 4334 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 4335 current_user_stack_pointer(), 4336 MINSIGSTKSZ); 4337 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 4338 err = -EFAULT; 4339 return err; 4340 } 4341 4342 int restore_altstack(const stack_t __user *uss) 4343 { 4344 stack_t new; 4345 if (copy_from_user(&new, uss, sizeof(stack_t))) 4346 return -EFAULT; 4347 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 4348 MINSIGSTKSZ); 4349 /* squash all but EFAULT for now */ 4350 return 0; 4351 } 4352 4353 int __save_altstack(stack_t __user *uss, unsigned long sp) 4354 { 4355 struct task_struct *t = current; 4356 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 4357 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4358 __put_user(t->sas_ss_size, &uss->ss_size); 4359 return err; 4360 } 4361 4362 #ifdef CONFIG_COMPAT 4363 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 4364 compat_stack_t __user *uoss_ptr) 4365 { 4366 stack_t uss, uoss; 4367 int ret; 4368 4369 if (uss_ptr) { 4370 compat_stack_t uss32; 4371 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 4372 return -EFAULT; 4373 uss.ss_sp = compat_ptr(uss32.ss_sp); 4374 uss.ss_flags = uss32.ss_flags; 4375 uss.ss_size = uss32.ss_size; 4376 } 4377 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 4378 compat_user_stack_pointer(), 4379 COMPAT_MINSIGSTKSZ); 4380 if (ret >= 0 && uoss_ptr) { 4381 compat_stack_t old; 4382 memset(&old, 0, sizeof(old)); 4383 old.ss_sp = ptr_to_compat(uoss.ss_sp); 4384 old.ss_flags = uoss.ss_flags; 4385 old.ss_size = uoss.ss_size; 4386 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 4387 ret = -EFAULT; 4388 } 4389 return ret; 4390 } 4391 4392 COMPAT_SYSCALL_DEFINE2(sigaltstack, 4393 const compat_stack_t __user *, uss_ptr, 4394 compat_stack_t __user *, uoss_ptr) 4395 { 4396 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 4397 } 4398 4399 int compat_restore_altstack(const compat_stack_t __user *uss) 4400 { 4401 int err = do_compat_sigaltstack(uss, NULL); 4402 /* squash all but -EFAULT for now */ 4403 return err == -EFAULT ? err : 0; 4404 } 4405 4406 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 4407 { 4408 int err; 4409 struct task_struct *t = current; 4410 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 4411 &uss->ss_sp) | 4412 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4413 __put_user(t->sas_ss_size, &uss->ss_size); 4414 return err; 4415 } 4416 #endif 4417 4418 #ifdef __ARCH_WANT_SYS_SIGPENDING 4419 4420 /** 4421 * sys_sigpending - examine pending signals 4422 * @uset: where mask of pending signal is returned 4423 */ 4424 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4425 { 4426 sigset_t set; 4427 4428 if (sizeof(old_sigset_t) > sizeof(*uset)) 4429 return -EINVAL; 4430 4431 do_sigpending(&set); 4432 4433 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4434 return -EFAULT; 4435 4436 return 0; 4437 } 4438 4439 #ifdef CONFIG_COMPAT 4440 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4441 { 4442 sigset_t set; 4443 4444 do_sigpending(&set); 4445 4446 return put_user(set.sig[0], set32); 4447 } 4448 #endif 4449 4450 #endif 4451 4452 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 4453 /** 4454 * sys_sigprocmask - examine and change blocked signals 4455 * @how: whether to add, remove, or set signals 4456 * @nset: signals to add or remove (if non-null) 4457 * @oset: previous value of signal mask if non-null 4458 * 4459 * Some platforms have their own version with special arguments; 4460 * others support only sys_rt_sigprocmask. 4461 */ 4462 4463 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4464 old_sigset_t __user *, oset) 4465 { 4466 old_sigset_t old_set, new_set; 4467 sigset_t new_blocked; 4468 4469 old_set = current->blocked.sig[0]; 4470 4471 if (nset) { 4472 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4473 return -EFAULT; 4474 4475 new_blocked = current->blocked; 4476 4477 switch (how) { 4478 case SIG_BLOCK: 4479 sigaddsetmask(&new_blocked, new_set); 4480 break; 4481 case SIG_UNBLOCK: 4482 sigdelsetmask(&new_blocked, new_set); 4483 break; 4484 case SIG_SETMASK: 4485 new_blocked.sig[0] = new_set; 4486 break; 4487 default: 4488 return -EINVAL; 4489 } 4490 4491 set_current_blocked(&new_blocked); 4492 } 4493 4494 if (oset) { 4495 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4496 return -EFAULT; 4497 } 4498 4499 return 0; 4500 } 4501 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4502 4503 #ifndef CONFIG_ODD_RT_SIGACTION 4504 /** 4505 * sys_rt_sigaction - alter an action taken by a process 4506 * @sig: signal to be sent 4507 * @act: new sigaction 4508 * @oact: used to save the previous sigaction 4509 * @sigsetsize: size of sigset_t type 4510 */ 4511 SYSCALL_DEFINE4(rt_sigaction, int, sig, 4512 const struct sigaction __user *, act, 4513 struct sigaction __user *, oact, 4514 size_t, sigsetsize) 4515 { 4516 struct k_sigaction new_sa, old_sa; 4517 int ret; 4518 4519 /* XXX: Don't preclude handling different sized sigset_t's. */ 4520 if (sigsetsize != sizeof(sigset_t)) 4521 return -EINVAL; 4522 4523 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4524 return -EFAULT; 4525 4526 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4527 if (ret) 4528 return ret; 4529 4530 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4531 return -EFAULT; 4532 4533 return 0; 4534 } 4535 #ifdef CONFIG_COMPAT 4536 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4537 const struct compat_sigaction __user *, act, 4538 struct compat_sigaction __user *, oact, 4539 compat_size_t, sigsetsize) 4540 { 4541 struct k_sigaction new_ka, old_ka; 4542 #ifdef __ARCH_HAS_SA_RESTORER 4543 compat_uptr_t restorer; 4544 #endif 4545 int ret; 4546 4547 /* XXX: Don't preclude handling different sized sigset_t's. */ 4548 if (sigsetsize != sizeof(compat_sigset_t)) 4549 return -EINVAL; 4550 4551 if (act) { 4552 compat_uptr_t handler; 4553 ret = get_user(handler, &act->sa_handler); 4554 new_ka.sa.sa_handler = compat_ptr(handler); 4555 #ifdef __ARCH_HAS_SA_RESTORER 4556 ret |= get_user(restorer, &act->sa_restorer); 4557 new_ka.sa.sa_restorer = compat_ptr(restorer); 4558 #endif 4559 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4560 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4561 if (ret) 4562 return -EFAULT; 4563 } 4564 4565 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4566 if (!ret && oact) { 4567 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4568 &oact->sa_handler); 4569 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4570 sizeof(oact->sa_mask)); 4571 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4572 #ifdef __ARCH_HAS_SA_RESTORER 4573 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4574 &oact->sa_restorer); 4575 #endif 4576 } 4577 return ret; 4578 } 4579 #endif 4580 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4581 4582 #ifdef CONFIG_OLD_SIGACTION 4583 SYSCALL_DEFINE3(sigaction, int, sig, 4584 const struct old_sigaction __user *, act, 4585 struct old_sigaction __user *, oact) 4586 { 4587 struct k_sigaction new_ka, old_ka; 4588 int ret; 4589 4590 if (act) { 4591 old_sigset_t mask; 4592 if (!access_ok(act, sizeof(*act)) || 4593 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4594 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4595 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4596 __get_user(mask, &act->sa_mask)) 4597 return -EFAULT; 4598 #ifdef __ARCH_HAS_KA_RESTORER 4599 new_ka.ka_restorer = NULL; 4600 #endif 4601 siginitset(&new_ka.sa.sa_mask, mask); 4602 } 4603 4604 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4605 4606 if (!ret && oact) { 4607 if (!access_ok(oact, sizeof(*oact)) || 4608 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4609 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4610 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4611 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4612 return -EFAULT; 4613 } 4614 4615 return ret; 4616 } 4617 #endif 4618 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4619 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4620 const struct compat_old_sigaction __user *, act, 4621 struct compat_old_sigaction __user *, oact) 4622 { 4623 struct k_sigaction new_ka, old_ka; 4624 int ret; 4625 compat_old_sigset_t mask; 4626 compat_uptr_t handler, restorer; 4627 4628 if (act) { 4629 if (!access_ok(act, sizeof(*act)) || 4630 __get_user(handler, &act->sa_handler) || 4631 __get_user(restorer, &act->sa_restorer) || 4632 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4633 __get_user(mask, &act->sa_mask)) 4634 return -EFAULT; 4635 4636 #ifdef __ARCH_HAS_KA_RESTORER 4637 new_ka.ka_restorer = NULL; 4638 #endif 4639 new_ka.sa.sa_handler = compat_ptr(handler); 4640 new_ka.sa.sa_restorer = compat_ptr(restorer); 4641 siginitset(&new_ka.sa.sa_mask, mask); 4642 } 4643 4644 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4645 4646 if (!ret && oact) { 4647 if (!access_ok(oact, sizeof(*oact)) || 4648 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4649 &oact->sa_handler) || 4650 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4651 &oact->sa_restorer) || 4652 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4653 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4654 return -EFAULT; 4655 } 4656 return ret; 4657 } 4658 #endif 4659 4660 #ifdef CONFIG_SGETMASK_SYSCALL 4661 4662 /* 4663 * For backwards compatibility. Functionality superseded by sigprocmask. 4664 */ 4665 SYSCALL_DEFINE0(sgetmask) 4666 { 4667 /* SMP safe */ 4668 return current->blocked.sig[0]; 4669 } 4670 4671 SYSCALL_DEFINE1(ssetmask, int, newmask) 4672 { 4673 int old = current->blocked.sig[0]; 4674 sigset_t newset; 4675 4676 siginitset(&newset, newmask); 4677 set_current_blocked(&newset); 4678 4679 return old; 4680 } 4681 #endif /* CONFIG_SGETMASK_SYSCALL */ 4682 4683 #ifdef __ARCH_WANT_SYS_SIGNAL 4684 /* 4685 * For backwards compatibility. Functionality superseded by sigaction. 4686 */ 4687 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4688 { 4689 struct k_sigaction new_sa, old_sa; 4690 int ret; 4691 4692 new_sa.sa.sa_handler = handler; 4693 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4694 sigemptyset(&new_sa.sa.sa_mask); 4695 4696 ret = do_sigaction(sig, &new_sa, &old_sa); 4697 4698 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4699 } 4700 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4701 4702 #ifdef __ARCH_WANT_SYS_PAUSE 4703 4704 SYSCALL_DEFINE0(pause) 4705 { 4706 while (!signal_pending(current)) { 4707 __set_current_state(TASK_INTERRUPTIBLE); 4708 schedule(); 4709 } 4710 return -ERESTARTNOHAND; 4711 } 4712 4713 #endif 4714 4715 static int sigsuspend(sigset_t *set) 4716 { 4717 current->saved_sigmask = current->blocked; 4718 set_current_blocked(set); 4719 4720 while (!signal_pending(current)) { 4721 __set_current_state(TASK_INTERRUPTIBLE); 4722 schedule(); 4723 } 4724 set_restore_sigmask(); 4725 return -ERESTARTNOHAND; 4726 } 4727 4728 /** 4729 * sys_rt_sigsuspend - replace the signal mask for a value with the 4730 * @unewset value until a signal is received 4731 * @unewset: new signal mask value 4732 * @sigsetsize: size of sigset_t type 4733 */ 4734 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4735 { 4736 sigset_t newset; 4737 4738 /* XXX: Don't preclude handling different sized sigset_t's. */ 4739 if (sigsetsize != sizeof(sigset_t)) 4740 return -EINVAL; 4741 4742 if (copy_from_user(&newset, unewset, sizeof(newset))) 4743 return -EFAULT; 4744 return sigsuspend(&newset); 4745 } 4746 4747 #ifdef CONFIG_COMPAT 4748 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4749 { 4750 sigset_t newset; 4751 4752 /* XXX: Don't preclude handling different sized sigset_t's. */ 4753 if (sigsetsize != sizeof(sigset_t)) 4754 return -EINVAL; 4755 4756 if (get_compat_sigset(&newset, unewset)) 4757 return -EFAULT; 4758 return sigsuspend(&newset); 4759 } 4760 #endif 4761 4762 #ifdef CONFIG_OLD_SIGSUSPEND 4763 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4764 { 4765 sigset_t blocked; 4766 siginitset(&blocked, mask); 4767 return sigsuspend(&blocked); 4768 } 4769 #endif 4770 #ifdef CONFIG_OLD_SIGSUSPEND3 4771 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4772 { 4773 sigset_t blocked; 4774 siginitset(&blocked, mask); 4775 return sigsuspend(&blocked); 4776 } 4777 #endif 4778 4779 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4780 { 4781 return NULL; 4782 } 4783 4784 static inline void siginfo_buildtime_checks(void) 4785 { 4786 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4787 4788 /* Verify the offsets in the two siginfos match */ 4789 #define CHECK_OFFSET(field) \ 4790 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4791 4792 /* kill */ 4793 CHECK_OFFSET(si_pid); 4794 CHECK_OFFSET(si_uid); 4795 4796 /* timer */ 4797 CHECK_OFFSET(si_tid); 4798 CHECK_OFFSET(si_overrun); 4799 CHECK_OFFSET(si_value); 4800 4801 /* rt */ 4802 CHECK_OFFSET(si_pid); 4803 CHECK_OFFSET(si_uid); 4804 CHECK_OFFSET(si_value); 4805 4806 /* sigchld */ 4807 CHECK_OFFSET(si_pid); 4808 CHECK_OFFSET(si_uid); 4809 CHECK_OFFSET(si_status); 4810 CHECK_OFFSET(si_utime); 4811 CHECK_OFFSET(si_stime); 4812 4813 /* sigfault */ 4814 CHECK_OFFSET(si_addr); 4815 CHECK_OFFSET(si_trapno); 4816 CHECK_OFFSET(si_addr_lsb); 4817 CHECK_OFFSET(si_lower); 4818 CHECK_OFFSET(si_upper); 4819 CHECK_OFFSET(si_pkey); 4820 CHECK_OFFSET(si_perf_data); 4821 CHECK_OFFSET(si_perf_type); 4822 CHECK_OFFSET(si_perf_flags); 4823 4824 /* sigpoll */ 4825 CHECK_OFFSET(si_band); 4826 CHECK_OFFSET(si_fd); 4827 4828 /* sigsys */ 4829 CHECK_OFFSET(si_call_addr); 4830 CHECK_OFFSET(si_syscall); 4831 CHECK_OFFSET(si_arch); 4832 #undef CHECK_OFFSET 4833 4834 /* usb asyncio */ 4835 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != 4836 offsetof(struct siginfo, si_addr)); 4837 if (sizeof(int) == sizeof(void __user *)) { 4838 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != 4839 sizeof(void __user *)); 4840 } else { 4841 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + 4842 sizeof_field(struct siginfo, si_uid)) != 4843 sizeof(void __user *)); 4844 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != 4845 offsetof(struct siginfo, si_uid)); 4846 } 4847 #ifdef CONFIG_COMPAT 4848 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != 4849 offsetof(struct compat_siginfo, si_addr)); 4850 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4851 sizeof(compat_uptr_t)); 4852 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4853 sizeof_field(struct siginfo, si_pid)); 4854 #endif 4855 } 4856 4857 #if defined(CONFIG_SYSCTL) 4858 static struct ctl_table signal_debug_table[] = { 4859 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE 4860 { 4861 .procname = "exception-trace", 4862 .data = &show_unhandled_signals, 4863 .maxlen = sizeof(int), 4864 .mode = 0644, 4865 .proc_handler = proc_dointvec 4866 }, 4867 #endif 4868 }; 4869 4870 static int __init init_signal_sysctls(void) 4871 { 4872 register_sysctl_init("debug", signal_debug_table); 4873 return 0; 4874 } 4875 early_initcall(init_signal_sysctls); 4876 #endif /* CONFIG_SYSCTL */ 4877 4878 void __init signals_init(void) 4879 { 4880 siginfo_buildtime_checks(); 4881 4882 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT); 4883 } 4884 4885 #ifdef CONFIG_KGDB_KDB 4886 #include <linux/kdb.h> 4887 /* 4888 * kdb_send_sig - Allows kdb to send signals without exposing 4889 * signal internals. This function checks if the required locks are 4890 * available before calling the main signal code, to avoid kdb 4891 * deadlocks. 4892 */ 4893 void kdb_send_sig(struct task_struct *t, int sig) 4894 { 4895 static struct task_struct *kdb_prev_t; 4896 int new_t, ret; 4897 if (!spin_trylock(&t->sighand->siglock)) { 4898 kdb_printf("Can't do kill command now.\n" 4899 "The sigmask lock is held somewhere else in " 4900 "kernel, try again later\n"); 4901 return; 4902 } 4903 new_t = kdb_prev_t != t; 4904 kdb_prev_t = t; 4905 if (!task_is_running(t) && new_t) { 4906 spin_unlock(&t->sighand->siglock); 4907 kdb_printf("Process is not RUNNING, sending a signal from " 4908 "kdb risks deadlock\n" 4909 "on the run queue locks. " 4910 "The signal has _not_ been sent.\n" 4911 "Reissue the kill command if you want to risk " 4912 "the deadlock.\n"); 4913 return; 4914 } 4915 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 4916 spin_unlock(&t->sighand->siglock); 4917 if (ret) 4918 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4919 sig, t->pid); 4920 else 4921 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4922 } 4923 #endif /* CONFIG_KGDB_KDB */ 4924