xref: /linux/kernel/signal.c (revision 826eba0d77bc74c4d1c611374b76abfe251e8538)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/user.h>
18 #include <linux/sched/debug.h>
19 #include <linux/sched/task.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/sched/cputime.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/proc_fs.h>
25 #include <linux/tty.h>
26 #include <linux/binfmts.h>
27 #include <linux/coredump.h>
28 #include <linux/security.h>
29 #include <linux/syscalls.h>
30 #include <linux/ptrace.h>
31 #include <linux/signal.h>
32 #include <linux/signalfd.h>
33 #include <linux/ratelimit.h>
34 #include <linux/tracehook.h>
35 #include <linux/capability.h>
36 #include <linux/freezer.h>
37 #include <linux/pid_namespace.h>
38 #include <linux/nsproxy.h>
39 #include <linux/user_namespace.h>
40 #include <linux/uprobes.h>
41 #include <linux/compat.h>
42 #include <linux/cn_proc.h>
43 #include <linux/compiler.h>
44 #include <linux/posix-timers.h>
45 #include <linux/livepatch.h>
46 #include <linux/cgroup.h>
47 
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/signal.h>
50 
51 #include <asm/param.h>
52 #include <linux/uaccess.h>
53 #include <asm/unistd.h>
54 #include <asm/siginfo.h>
55 #include <asm/cacheflush.h>
56 #include "audit.h"	/* audit_signal_info() */
57 
58 /*
59  * SLAB caches for signal bits.
60  */
61 
62 static struct kmem_cache *sigqueue_cachep;
63 
64 int print_fatal_signals __read_mostly;
65 
66 static void __user *sig_handler(struct task_struct *t, int sig)
67 {
68 	return t->sighand->action[sig - 1].sa.sa_handler;
69 }
70 
71 static inline bool sig_handler_ignored(void __user *handler, int sig)
72 {
73 	/* Is it explicitly or implicitly ignored? */
74 	return handler == SIG_IGN ||
75 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
76 }
77 
78 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
79 {
80 	void __user *handler;
81 
82 	handler = sig_handler(t, sig);
83 
84 	/* SIGKILL and SIGSTOP may not be sent to the global init */
85 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
86 		return true;
87 
88 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
89 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
90 		return true;
91 
92 	return sig_handler_ignored(handler, sig);
93 }
94 
95 static bool sig_ignored(struct task_struct *t, int sig, bool force)
96 {
97 	/*
98 	 * Blocked signals are never ignored, since the
99 	 * signal handler may change by the time it is
100 	 * unblocked.
101 	 */
102 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
103 		return false;
104 
105 	/*
106 	 * Tracers may want to know about even ignored signal unless it
107 	 * is SIGKILL which can't be reported anyway but can be ignored
108 	 * by SIGNAL_UNKILLABLE task.
109 	 */
110 	if (t->ptrace && sig != SIGKILL)
111 		return false;
112 
113 	return sig_task_ignored(t, sig, force);
114 }
115 
116 /*
117  * Re-calculate pending state from the set of locally pending
118  * signals, globally pending signals, and blocked signals.
119  */
120 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
121 {
122 	unsigned long ready;
123 	long i;
124 
125 	switch (_NSIG_WORDS) {
126 	default:
127 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
128 			ready |= signal->sig[i] &~ blocked->sig[i];
129 		break;
130 
131 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
132 		ready |= signal->sig[2] &~ blocked->sig[2];
133 		ready |= signal->sig[1] &~ blocked->sig[1];
134 		ready |= signal->sig[0] &~ blocked->sig[0];
135 		break;
136 
137 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
138 		ready |= signal->sig[0] &~ blocked->sig[0];
139 		break;
140 
141 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
142 	}
143 	return ready !=	0;
144 }
145 
146 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
147 
148 static bool recalc_sigpending_tsk(struct task_struct *t)
149 {
150 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
151 	    PENDING(&t->pending, &t->blocked) ||
152 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
153 	    cgroup_task_frozen(t)) {
154 		set_tsk_thread_flag(t, TIF_SIGPENDING);
155 		return true;
156 	}
157 
158 	/*
159 	 * We must never clear the flag in another thread, or in current
160 	 * when it's possible the current syscall is returning -ERESTART*.
161 	 * So we don't clear it here, and only callers who know they should do.
162 	 */
163 	return false;
164 }
165 
166 /*
167  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
168  * This is superfluous when called on current, the wakeup is a harmless no-op.
169  */
170 void recalc_sigpending_and_wake(struct task_struct *t)
171 {
172 	if (recalc_sigpending_tsk(t))
173 		signal_wake_up(t, 0);
174 }
175 
176 void recalc_sigpending(void)
177 {
178 	if (!recalc_sigpending_tsk(current) && !freezing(current) &&
179 	    !klp_patch_pending(current))
180 		clear_thread_flag(TIF_SIGPENDING);
181 
182 }
183 EXPORT_SYMBOL(recalc_sigpending);
184 
185 void calculate_sigpending(void)
186 {
187 	/* Have any signals or users of TIF_SIGPENDING been delayed
188 	 * until after fork?
189 	 */
190 	spin_lock_irq(&current->sighand->siglock);
191 	set_tsk_thread_flag(current, TIF_SIGPENDING);
192 	recalc_sigpending();
193 	spin_unlock_irq(&current->sighand->siglock);
194 }
195 
196 /* Given the mask, find the first available signal that should be serviced. */
197 
198 #define SYNCHRONOUS_MASK \
199 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
200 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
201 
202 int next_signal(struct sigpending *pending, sigset_t *mask)
203 {
204 	unsigned long i, *s, *m, x;
205 	int sig = 0;
206 
207 	s = pending->signal.sig;
208 	m = mask->sig;
209 
210 	/*
211 	 * Handle the first word specially: it contains the
212 	 * synchronous signals that need to be dequeued first.
213 	 */
214 	x = *s &~ *m;
215 	if (x) {
216 		if (x & SYNCHRONOUS_MASK)
217 			x &= SYNCHRONOUS_MASK;
218 		sig = ffz(~x) + 1;
219 		return sig;
220 	}
221 
222 	switch (_NSIG_WORDS) {
223 	default:
224 		for (i = 1; i < _NSIG_WORDS; ++i) {
225 			x = *++s &~ *++m;
226 			if (!x)
227 				continue;
228 			sig = ffz(~x) + i*_NSIG_BPW + 1;
229 			break;
230 		}
231 		break;
232 
233 	case 2:
234 		x = s[1] &~ m[1];
235 		if (!x)
236 			break;
237 		sig = ffz(~x) + _NSIG_BPW + 1;
238 		break;
239 
240 	case 1:
241 		/* Nothing to do */
242 		break;
243 	}
244 
245 	return sig;
246 }
247 
248 static inline void print_dropped_signal(int sig)
249 {
250 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
251 
252 	if (!print_fatal_signals)
253 		return;
254 
255 	if (!__ratelimit(&ratelimit_state))
256 		return;
257 
258 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
259 				current->comm, current->pid, sig);
260 }
261 
262 /**
263  * task_set_jobctl_pending - set jobctl pending bits
264  * @task: target task
265  * @mask: pending bits to set
266  *
267  * Clear @mask from @task->jobctl.  @mask must be subset of
268  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
269  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
270  * cleared.  If @task is already being killed or exiting, this function
271  * becomes noop.
272  *
273  * CONTEXT:
274  * Must be called with @task->sighand->siglock held.
275  *
276  * RETURNS:
277  * %true if @mask is set, %false if made noop because @task was dying.
278  */
279 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
280 {
281 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
282 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
283 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
284 
285 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
286 		return false;
287 
288 	if (mask & JOBCTL_STOP_SIGMASK)
289 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
290 
291 	task->jobctl |= mask;
292 	return true;
293 }
294 
295 /**
296  * task_clear_jobctl_trapping - clear jobctl trapping bit
297  * @task: target task
298  *
299  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
300  * Clear it and wake up the ptracer.  Note that we don't need any further
301  * locking.  @task->siglock guarantees that @task->parent points to the
302  * ptracer.
303  *
304  * CONTEXT:
305  * Must be called with @task->sighand->siglock held.
306  */
307 void task_clear_jobctl_trapping(struct task_struct *task)
308 {
309 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
310 		task->jobctl &= ~JOBCTL_TRAPPING;
311 		smp_mb();	/* advised by wake_up_bit() */
312 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
313 	}
314 }
315 
316 /**
317  * task_clear_jobctl_pending - clear jobctl pending bits
318  * @task: target task
319  * @mask: pending bits to clear
320  *
321  * Clear @mask from @task->jobctl.  @mask must be subset of
322  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
323  * STOP bits are cleared together.
324  *
325  * If clearing of @mask leaves no stop or trap pending, this function calls
326  * task_clear_jobctl_trapping().
327  *
328  * CONTEXT:
329  * Must be called with @task->sighand->siglock held.
330  */
331 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
332 {
333 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
334 
335 	if (mask & JOBCTL_STOP_PENDING)
336 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
337 
338 	task->jobctl &= ~mask;
339 
340 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
341 		task_clear_jobctl_trapping(task);
342 }
343 
344 /**
345  * task_participate_group_stop - participate in a group stop
346  * @task: task participating in a group stop
347  *
348  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
349  * Group stop states are cleared and the group stop count is consumed if
350  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
351  * stop, the appropriate %SIGNAL_* flags are set.
352  *
353  * CONTEXT:
354  * Must be called with @task->sighand->siglock held.
355  *
356  * RETURNS:
357  * %true if group stop completion should be notified to the parent, %false
358  * otherwise.
359  */
360 static bool task_participate_group_stop(struct task_struct *task)
361 {
362 	struct signal_struct *sig = task->signal;
363 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
364 
365 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
366 
367 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
368 
369 	if (!consume)
370 		return false;
371 
372 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
373 		sig->group_stop_count--;
374 
375 	/*
376 	 * Tell the caller to notify completion iff we are entering into a
377 	 * fresh group stop.  Read comment in do_signal_stop() for details.
378 	 */
379 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
380 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
381 		return true;
382 	}
383 	return false;
384 }
385 
386 void task_join_group_stop(struct task_struct *task)
387 {
388 	/* Have the new thread join an on-going signal group stop */
389 	unsigned long jobctl = current->jobctl;
390 	if (jobctl & JOBCTL_STOP_PENDING) {
391 		struct signal_struct *sig = current->signal;
392 		unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK;
393 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
394 		if (task_set_jobctl_pending(task, signr | gstop)) {
395 			sig->group_stop_count++;
396 		}
397 	}
398 }
399 
400 /*
401  * allocate a new signal queue record
402  * - this may be called without locks if and only if t == current, otherwise an
403  *   appropriate lock must be held to stop the target task from exiting
404  */
405 static struct sigqueue *
406 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
407 {
408 	struct sigqueue *q = NULL;
409 	struct user_struct *user;
410 
411 	/*
412 	 * Protect access to @t credentials. This can go away when all
413 	 * callers hold rcu read lock.
414 	 */
415 	rcu_read_lock();
416 	user = get_uid(__task_cred(t)->user);
417 	atomic_inc(&user->sigpending);
418 	rcu_read_unlock();
419 
420 	if (override_rlimit ||
421 	    atomic_read(&user->sigpending) <=
422 			task_rlimit(t, RLIMIT_SIGPENDING)) {
423 		q = kmem_cache_alloc(sigqueue_cachep, flags);
424 	} else {
425 		print_dropped_signal(sig);
426 	}
427 
428 	if (unlikely(q == NULL)) {
429 		atomic_dec(&user->sigpending);
430 		free_uid(user);
431 	} else {
432 		INIT_LIST_HEAD(&q->list);
433 		q->flags = 0;
434 		q->user = user;
435 	}
436 
437 	return q;
438 }
439 
440 static void __sigqueue_free(struct sigqueue *q)
441 {
442 	if (q->flags & SIGQUEUE_PREALLOC)
443 		return;
444 	atomic_dec(&q->user->sigpending);
445 	free_uid(q->user);
446 	kmem_cache_free(sigqueue_cachep, q);
447 }
448 
449 void flush_sigqueue(struct sigpending *queue)
450 {
451 	struct sigqueue *q;
452 
453 	sigemptyset(&queue->signal);
454 	while (!list_empty(&queue->list)) {
455 		q = list_entry(queue->list.next, struct sigqueue , list);
456 		list_del_init(&q->list);
457 		__sigqueue_free(q);
458 	}
459 }
460 
461 /*
462  * Flush all pending signals for this kthread.
463  */
464 void flush_signals(struct task_struct *t)
465 {
466 	unsigned long flags;
467 
468 	spin_lock_irqsave(&t->sighand->siglock, flags);
469 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
470 	flush_sigqueue(&t->pending);
471 	flush_sigqueue(&t->signal->shared_pending);
472 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
473 }
474 EXPORT_SYMBOL(flush_signals);
475 
476 #ifdef CONFIG_POSIX_TIMERS
477 static void __flush_itimer_signals(struct sigpending *pending)
478 {
479 	sigset_t signal, retain;
480 	struct sigqueue *q, *n;
481 
482 	signal = pending->signal;
483 	sigemptyset(&retain);
484 
485 	list_for_each_entry_safe(q, n, &pending->list, list) {
486 		int sig = q->info.si_signo;
487 
488 		if (likely(q->info.si_code != SI_TIMER)) {
489 			sigaddset(&retain, sig);
490 		} else {
491 			sigdelset(&signal, sig);
492 			list_del_init(&q->list);
493 			__sigqueue_free(q);
494 		}
495 	}
496 
497 	sigorsets(&pending->signal, &signal, &retain);
498 }
499 
500 void flush_itimer_signals(void)
501 {
502 	struct task_struct *tsk = current;
503 	unsigned long flags;
504 
505 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
506 	__flush_itimer_signals(&tsk->pending);
507 	__flush_itimer_signals(&tsk->signal->shared_pending);
508 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
509 }
510 #endif
511 
512 void ignore_signals(struct task_struct *t)
513 {
514 	int i;
515 
516 	for (i = 0; i < _NSIG; ++i)
517 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
518 
519 	flush_signals(t);
520 }
521 
522 /*
523  * Flush all handlers for a task.
524  */
525 
526 void
527 flush_signal_handlers(struct task_struct *t, int force_default)
528 {
529 	int i;
530 	struct k_sigaction *ka = &t->sighand->action[0];
531 	for (i = _NSIG ; i != 0 ; i--) {
532 		if (force_default || ka->sa.sa_handler != SIG_IGN)
533 			ka->sa.sa_handler = SIG_DFL;
534 		ka->sa.sa_flags = 0;
535 #ifdef __ARCH_HAS_SA_RESTORER
536 		ka->sa.sa_restorer = NULL;
537 #endif
538 		sigemptyset(&ka->sa.sa_mask);
539 		ka++;
540 	}
541 }
542 
543 bool unhandled_signal(struct task_struct *tsk, int sig)
544 {
545 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
546 	if (is_global_init(tsk))
547 		return true;
548 
549 	if (handler != SIG_IGN && handler != SIG_DFL)
550 		return false;
551 
552 	/* if ptraced, let the tracer determine */
553 	return !tsk->ptrace;
554 }
555 
556 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
557 			   bool *resched_timer)
558 {
559 	struct sigqueue *q, *first = NULL;
560 
561 	/*
562 	 * Collect the siginfo appropriate to this signal.  Check if
563 	 * there is another siginfo for the same signal.
564 	*/
565 	list_for_each_entry(q, &list->list, list) {
566 		if (q->info.si_signo == sig) {
567 			if (first)
568 				goto still_pending;
569 			first = q;
570 		}
571 	}
572 
573 	sigdelset(&list->signal, sig);
574 
575 	if (first) {
576 still_pending:
577 		list_del_init(&first->list);
578 		copy_siginfo(info, &first->info);
579 
580 		*resched_timer =
581 			(first->flags & SIGQUEUE_PREALLOC) &&
582 			(info->si_code == SI_TIMER) &&
583 			(info->si_sys_private);
584 
585 		__sigqueue_free(first);
586 	} else {
587 		/*
588 		 * Ok, it wasn't in the queue.  This must be
589 		 * a fast-pathed signal or we must have been
590 		 * out of queue space.  So zero out the info.
591 		 */
592 		clear_siginfo(info);
593 		info->si_signo = sig;
594 		info->si_errno = 0;
595 		info->si_code = SI_USER;
596 		info->si_pid = 0;
597 		info->si_uid = 0;
598 	}
599 }
600 
601 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
602 			kernel_siginfo_t *info, bool *resched_timer)
603 {
604 	int sig = next_signal(pending, mask);
605 
606 	if (sig)
607 		collect_signal(sig, pending, info, resched_timer);
608 	return sig;
609 }
610 
611 /*
612  * Dequeue a signal and return the element to the caller, which is
613  * expected to free it.
614  *
615  * All callers have to hold the siglock.
616  */
617 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
618 {
619 	bool resched_timer = false;
620 	int signr;
621 
622 	/* We only dequeue private signals from ourselves, we don't let
623 	 * signalfd steal them
624 	 */
625 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
626 	if (!signr) {
627 		signr = __dequeue_signal(&tsk->signal->shared_pending,
628 					 mask, info, &resched_timer);
629 #ifdef CONFIG_POSIX_TIMERS
630 		/*
631 		 * itimer signal ?
632 		 *
633 		 * itimers are process shared and we restart periodic
634 		 * itimers in the signal delivery path to prevent DoS
635 		 * attacks in the high resolution timer case. This is
636 		 * compliant with the old way of self-restarting
637 		 * itimers, as the SIGALRM is a legacy signal and only
638 		 * queued once. Changing the restart behaviour to
639 		 * restart the timer in the signal dequeue path is
640 		 * reducing the timer noise on heavy loaded !highres
641 		 * systems too.
642 		 */
643 		if (unlikely(signr == SIGALRM)) {
644 			struct hrtimer *tmr = &tsk->signal->real_timer;
645 
646 			if (!hrtimer_is_queued(tmr) &&
647 			    tsk->signal->it_real_incr != 0) {
648 				hrtimer_forward(tmr, tmr->base->get_time(),
649 						tsk->signal->it_real_incr);
650 				hrtimer_restart(tmr);
651 			}
652 		}
653 #endif
654 	}
655 
656 	recalc_sigpending();
657 	if (!signr)
658 		return 0;
659 
660 	if (unlikely(sig_kernel_stop(signr))) {
661 		/*
662 		 * Set a marker that we have dequeued a stop signal.  Our
663 		 * caller might release the siglock and then the pending
664 		 * stop signal it is about to process is no longer in the
665 		 * pending bitmasks, but must still be cleared by a SIGCONT
666 		 * (and overruled by a SIGKILL).  So those cases clear this
667 		 * shared flag after we've set it.  Note that this flag may
668 		 * remain set after the signal we return is ignored or
669 		 * handled.  That doesn't matter because its only purpose
670 		 * is to alert stop-signal processing code when another
671 		 * processor has come along and cleared the flag.
672 		 */
673 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
674 	}
675 #ifdef CONFIG_POSIX_TIMERS
676 	if (resched_timer) {
677 		/*
678 		 * Release the siglock to ensure proper locking order
679 		 * of timer locks outside of siglocks.  Note, we leave
680 		 * irqs disabled here, since the posix-timers code is
681 		 * about to disable them again anyway.
682 		 */
683 		spin_unlock(&tsk->sighand->siglock);
684 		posixtimer_rearm(info);
685 		spin_lock(&tsk->sighand->siglock);
686 
687 		/* Don't expose the si_sys_private value to userspace */
688 		info->si_sys_private = 0;
689 	}
690 #endif
691 	return signr;
692 }
693 EXPORT_SYMBOL_GPL(dequeue_signal);
694 
695 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
696 {
697 	struct task_struct *tsk = current;
698 	struct sigpending *pending = &tsk->pending;
699 	struct sigqueue *q, *sync = NULL;
700 
701 	/*
702 	 * Might a synchronous signal be in the queue?
703 	 */
704 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
705 		return 0;
706 
707 	/*
708 	 * Return the first synchronous signal in the queue.
709 	 */
710 	list_for_each_entry(q, &pending->list, list) {
711 		/* Synchronous signals have a postive si_code */
712 		if ((q->info.si_code > SI_USER) &&
713 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
714 			sync = q;
715 			goto next;
716 		}
717 	}
718 	return 0;
719 next:
720 	/*
721 	 * Check if there is another siginfo for the same signal.
722 	 */
723 	list_for_each_entry_continue(q, &pending->list, list) {
724 		if (q->info.si_signo == sync->info.si_signo)
725 			goto still_pending;
726 	}
727 
728 	sigdelset(&pending->signal, sync->info.si_signo);
729 	recalc_sigpending();
730 still_pending:
731 	list_del_init(&sync->list);
732 	copy_siginfo(info, &sync->info);
733 	__sigqueue_free(sync);
734 	return info->si_signo;
735 }
736 
737 /*
738  * Tell a process that it has a new active signal..
739  *
740  * NOTE! we rely on the previous spin_lock to
741  * lock interrupts for us! We can only be called with
742  * "siglock" held, and the local interrupt must
743  * have been disabled when that got acquired!
744  *
745  * No need to set need_resched since signal event passing
746  * goes through ->blocked
747  */
748 void signal_wake_up_state(struct task_struct *t, unsigned int state)
749 {
750 	set_tsk_thread_flag(t, TIF_SIGPENDING);
751 	/*
752 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
753 	 * case. We don't check t->state here because there is a race with it
754 	 * executing another processor and just now entering stopped state.
755 	 * By using wake_up_state, we ensure the process will wake up and
756 	 * handle its death signal.
757 	 */
758 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
759 		kick_process(t);
760 }
761 
762 /*
763  * Remove signals in mask from the pending set and queue.
764  * Returns 1 if any signals were found.
765  *
766  * All callers must be holding the siglock.
767  */
768 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
769 {
770 	struct sigqueue *q, *n;
771 	sigset_t m;
772 
773 	sigandsets(&m, mask, &s->signal);
774 	if (sigisemptyset(&m))
775 		return;
776 
777 	sigandnsets(&s->signal, &s->signal, mask);
778 	list_for_each_entry_safe(q, n, &s->list, list) {
779 		if (sigismember(mask, q->info.si_signo)) {
780 			list_del_init(&q->list);
781 			__sigqueue_free(q);
782 		}
783 	}
784 }
785 
786 static inline int is_si_special(const struct kernel_siginfo *info)
787 {
788 	return info <= SEND_SIG_PRIV;
789 }
790 
791 static inline bool si_fromuser(const struct kernel_siginfo *info)
792 {
793 	return info == SEND_SIG_NOINFO ||
794 		(!is_si_special(info) && SI_FROMUSER(info));
795 }
796 
797 /*
798  * called with RCU read lock from check_kill_permission()
799  */
800 static bool kill_ok_by_cred(struct task_struct *t)
801 {
802 	const struct cred *cred = current_cred();
803 	const struct cred *tcred = __task_cred(t);
804 
805 	return uid_eq(cred->euid, tcred->suid) ||
806 	       uid_eq(cred->euid, tcred->uid) ||
807 	       uid_eq(cred->uid, tcred->suid) ||
808 	       uid_eq(cred->uid, tcred->uid) ||
809 	       ns_capable(tcred->user_ns, CAP_KILL);
810 }
811 
812 /*
813  * Bad permissions for sending the signal
814  * - the caller must hold the RCU read lock
815  */
816 static int check_kill_permission(int sig, struct kernel_siginfo *info,
817 				 struct task_struct *t)
818 {
819 	struct pid *sid;
820 	int error;
821 
822 	if (!valid_signal(sig))
823 		return -EINVAL;
824 
825 	if (!si_fromuser(info))
826 		return 0;
827 
828 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
829 	if (error)
830 		return error;
831 
832 	if (!same_thread_group(current, t) &&
833 	    !kill_ok_by_cred(t)) {
834 		switch (sig) {
835 		case SIGCONT:
836 			sid = task_session(t);
837 			/*
838 			 * We don't return the error if sid == NULL. The
839 			 * task was unhashed, the caller must notice this.
840 			 */
841 			if (!sid || sid == task_session(current))
842 				break;
843 			/* fall through */
844 		default:
845 			return -EPERM;
846 		}
847 	}
848 
849 	return security_task_kill(t, info, sig, NULL);
850 }
851 
852 /**
853  * ptrace_trap_notify - schedule trap to notify ptracer
854  * @t: tracee wanting to notify tracer
855  *
856  * This function schedules sticky ptrace trap which is cleared on the next
857  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
858  * ptracer.
859  *
860  * If @t is running, STOP trap will be taken.  If trapped for STOP and
861  * ptracer is listening for events, tracee is woken up so that it can
862  * re-trap for the new event.  If trapped otherwise, STOP trap will be
863  * eventually taken without returning to userland after the existing traps
864  * are finished by PTRACE_CONT.
865  *
866  * CONTEXT:
867  * Must be called with @task->sighand->siglock held.
868  */
869 static void ptrace_trap_notify(struct task_struct *t)
870 {
871 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
872 	assert_spin_locked(&t->sighand->siglock);
873 
874 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
875 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
876 }
877 
878 /*
879  * Handle magic process-wide effects of stop/continue signals. Unlike
880  * the signal actions, these happen immediately at signal-generation
881  * time regardless of blocking, ignoring, or handling.  This does the
882  * actual continuing for SIGCONT, but not the actual stopping for stop
883  * signals. The process stop is done as a signal action for SIG_DFL.
884  *
885  * Returns true if the signal should be actually delivered, otherwise
886  * it should be dropped.
887  */
888 static bool prepare_signal(int sig, struct task_struct *p, bool force)
889 {
890 	struct signal_struct *signal = p->signal;
891 	struct task_struct *t;
892 	sigset_t flush;
893 
894 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
895 		if (!(signal->flags & SIGNAL_GROUP_EXIT))
896 			return sig == SIGKILL;
897 		/*
898 		 * The process is in the middle of dying, nothing to do.
899 		 */
900 	} else if (sig_kernel_stop(sig)) {
901 		/*
902 		 * This is a stop signal.  Remove SIGCONT from all queues.
903 		 */
904 		siginitset(&flush, sigmask(SIGCONT));
905 		flush_sigqueue_mask(&flush, &signal->shared_pending);
906 		for_each_thread(p, t)
907 			flush_sigqueue_mask(&flush, &t->pending);
908 	} else if (sig == SIGCONT) {
909 		unsigned int why;
910 		/*
911 		 * Remove all stop signals from all queues, wake all threads.
912 		 */
913 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
914 		flush_sigqueue_mask(&flush, &signal->shared_pending);
915 		for_each_thread(p, t) {
916 			flush_sigqueue_mask(&flush, &t->pending);
917 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
918 			if (likely(!(t->ptrace & PT_SEIZED)))
919 				wake_up_state(t, __TASK_STOPPED);
920 			else
921 				ptrace_trap_notify(t);
922 		}
923 
924 		/*
925 		 * Notify the parent with CLD_CONTINUED if we were stopped.
926 		 *
927 		 * If we were in the middle of a group stop, we pretend it
928 		 * was already finished, and then continued. Since SIGCHLD
929 		 * doesn't queue we report only CLD_STOPPED, as if the next
930 		 * CLD_CONTINUED was dropped.
931 		 */
932 		why = 0;
933 		if (signal->flags & SIGNAL_STOP_STOPPED)
934 			why |= SIGNAL_CLD_CONTINUED;
935 		else if (signal->group_stop_count)
936 			why |= SIGNAL_CLD_STOPPED;
937 
938 		if (why) {
939 			/*
940 			 * The first thread which returns from do_signal_stop()
941 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
942 			 * notify its parent. See get_signal().
943 			 */
944 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
945 			signal->group_stop_count = 0;
946 			signal->group_exit_code = 0;
947 		}
948 	}
949 
950 	return !sig_ignored(p, sig, force);
951 }
952 
953 /*
954  * Test if P wants to take SIG.  After we've checked all threads with this,
955  * it's equivalent to finding no threads not blocking SIG.  Any threads not
956  * blocking SIG were ruled out because they are not running and already
957  * have pending signals.  Such threads will dequeue from the shared queue
958  * as soon as they're available, so putting the signal on the shared queue
959  * will be equivalent to sending it to one such thread.
960  */
961 static inline bool wants_signal(int sig, struct task_struct *p)
962 {
963 	if (sigismember(&p->blocked, sig))
964 		return false;
965 
966 	if (p->flags & PF_EXITING)
967 		return false;
968 
969 	if (sig == SIGKILL)
970 		return true;
971 
972 	if (task_is_stopped_or_traced(p))
973 		return false;
974 
975 	return task_curr(p) || !signal_pending(p);
976 }
977 
978 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
979 {
980 	struct signal_struct *signal = p->signal;
981 	struct task_struct *t;
982 
983 	/*
984 	 * Now find a thread we can wake up to take the signal off the queue.
985 	 *
986 	 * If the main thread wants the signal, it gets first crack.
987 	 * Probably the least surprising to the average bear.
988 	 */
989 	if (wants_signal(sig, p))
990 		t = p;
991 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
992 		/*
993 		 * There is just one thread and it does not need to be woken.
994 		 * It will dequeue unblocked signals before it runs again.
995 		 */
996 		return;
997 	else {
998 		/*
999 		 * Otherwise try to find a suitable thread.
1000 		 */
1001 		t = signal->curr_target;
1002 		while (!wants_signal(sig, t)) {
1003 			t = next_thread(t);
1004 			if (t == signal->curr_target)
1005 				/*
1006 				 * No thread needs to be woken.
1007 				 * Any eligible threads will see
1008 				 * the signal in the queue soon.
1009 				 */
1010 				return;
1011 		}
1012 		signal->curr_target = t;
1013 	}
1014 
1015 	/*
1016 	 * Found a killable thread.  If the signal will be fatal,
1017 	 * then start taking the whole group down immediately.
1018 	 */
1019 	if (sig_fatal(p, sig) &&
1020 	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1021 	    !sigismember(&t->real_blocked, sig) &&
1022 	    (sig == SIGKILL || !p->ptrace)) {
1023 		/*
1024 		 * This signal will be fatal to the whole group.
1025 		 */
1026 		if (!sig_kernel_coredump(sig)) {
1027 			/*
1028 			 * Start a group exit and wake everybody up.
1029 			 * This way we don't have other threads
1030 			 * running and doing things after a slower
1031 			 * thread has the fatal signal pending.
1032 			 */
1033 			signal->flags = SIGNAL_GROUP_EXIT;
1034 			signal->group_exit_code = sig;
1035 			signal->group_stop_count = 0;
1036 			t = p;
1037 			do {
1038 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1039 				sigaddset(&t->pending.signal, SIGKILL);
1040 				signal_wake_up(t, 1);
1041 			} while_each_thread(p, t);
1042 			return;
1043 		}
1044 	}
1045 
1046 	/*
1047 	 * The signal is already in the shared-pending queue.
1048 	 * Tell the chosen thread to wake up and dequeue it.
1049 	 */
1050 	signal_wake_up(t, sig == SIGKILL);
1051 	return;
1052 }
1053 
1054 static inline bool legacy_queue(struct sigpending *signals, int sig)
1055 {
1056 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1057 }
1058 
1059 #ifdef CONFIG_USER_NS
1060 static inline void userns_fixup_signal_uid(struct kernel_siginfo *info, struct task_struct *t)
1061 {
1062 	if (current_user_ns() == task_cred_xxx(t, user_ns))
1063 		return;
1064 
1065 	if (SI_FROMKERNEL(info))
1066 		return;
1067 
1068 	rcu_read_lock();
1069 	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1070 					make_kuid(current_user_ns(), info->si_uid));
1071 	rcu_read_unlock();
1072 }
1073 #else
1074 static inline void userns_fixup_signal_uid(struct kernel_siginfo *info, struct task_struct *t)
1075 {
1076 	return;
1077 }
1078 #endif
1079 
1080 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1081 			enum pid_type type, int from_ancestor_ns)
1082 {
1083 	struct sigpending *pending;
1084 	struct sigqueue *q;
1085 	int override_rlimit;
1086 	int ret = 0, result;
1087 
1088 	assert_spin_locked(&t->sighand->siglock);
1089 
1090 	result = TRACE_SIGNAL_IGNORED;
1091 	if (!prepare_signal(sig, t,
1092 			from_ancestor_ns || (info == SEND_SIG_PRIV)))
1093 		goto ret;
1094 
1095 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1096 	/*
1097 	 * Short-circuit ignored signals and support queuing
1098 	 * exactly one non-rt signal, so that we can get more
1099 	 * detailed information about the cause of the signal.
1100 	 */
1101 	result = TRACE_SIGNAL_ALREADY_PENDING;
1102 	if (legacy_queue(pending, sig))
1103 		goto ret;
1104 
1105 	result = TRACE_SIGNAL_DELIVERED;
1106 	/*
1107 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1108 	 */
1109 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1110 		goto out_set;
1111 
1112 	/*
1113 	 * Real-time signals must be queued if sent by sigqueue, or
1114 	 * some other real-time mechanism.  It is implementation
1115 	 * defined whether kill() does so.  We attempt to do so, on
1116 	 * the principle of least surprise, but since kill is not
1117 	 * allowed to fail with EAGAIN when low on memory we just
1118 	 * make sure at least one signal gets delivered and don't
1119 	 * pass on the info struct.
1120 	 */
1121 	if (sig < SIGRTMIN)
1122 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1123 	else
1124 		override_rlimit = 0;
1125 
1126 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1127 	if (q) {
1128 		list_add_tail(&q->list, &pending->list);
1129 		switch ((unsigned long) info) {
1130 		case (unsigned long) SEND_SIG_NOINFO:
1131 			clear_siginfo(&q->info);
1132 			q->info.si_signo = sig;
1133 			q->info.si_errno = 0;
1134 			q->info.si_code = SI_USER;
1135 			q->info.si_pid = task_tgid_nr_ns(current,
1136 							task_active_pid_ns(t));
1137 			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1138 			break;
1139 		case (unsigned long) SEND_SIG_PRIV:
1140 			clear_siginfo(&q->info);
1141 			q->info.si_signo = sig;
1142 			q->info.si_errno = 0;
1143 			q->info.si_code = SI_KERNEL;
1144 			q->info.si_pid = 0;
1145 			q->info.si_uid = 0;
1146 			break;
1147 		default:
1148 			copy_siginfo(&q->info, info);
1149 			if (from_ancestor_ns)
1150 				q->info.si_pid = 0;
1151 			break;
1152 		}
1153 
1154 		userns_fixup_signal_uid(&q->info, t);
1155 
1156 	} else if (!is_si_special(info)) {
1157 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1158 			/*
1159 			 * Queue overflow, abort.  We may abort if the
1160 			 * signal was rt and sent by user using something
1161 			 * other than kill().
1162 			 */
1163 			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1164 			ret = -EAGAIN;
1165 			goto ret;
1166 		} else {
1167 			/*
1168 			 * This is a silent loss of information.  We still
1169 			 * send the signal, but the *info bits are lost.
1170 			 */
1171 			result = TRACE_SIGNAL_LOSE_INFO;
1172 		}
1173 	}
1174 
1175 out_set:
1176 	signalfd_notify(t, sig);
1177 	sigaddset(&pending->signal, sig);
1178 
1179 	/* Let multiprocess signals appear after on-going forks */
1180 	if (type > PIDTYPE_TGID) {
1181 		struct multiprocess_signals *delayed;
1182 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1183 			sigset_t *signal = &delayed->signal;
1184 			/* Can't queue both a stop and a continue signal */
1185 			if (sig == SIGCONT)
1186 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1187 			else if (sig_kernel_stop(sig))
1188 				sigdelset(signal, SIGCONT);
1189 			sigaddset(signal, sig);
1190 		}
1191 	}
1192 
1193 	complete_signal(sig, t, type);
1194 ret:
1195 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1196 	return ret;
1197 }
1198 
1199 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1200 			enum pid_type type)
1201 {
1202 	int from_ancestor_ns = 0;
1203 
1204 #ifdef CONFIG_PID_NS
1205 	from_ancestor_ns = si_fromuser(info) &&
1206 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1207 #endif
1208 
1209 	return __send_signal(sig, info, t, type, from_ancestor_ns);
1210 }
1211 
1212 static void print_fatal_signal(int signr)
1213 {
1214 	struct pt_regs *regs = signal_pt_regs();
1215 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1216 
1217 #if defined(__i386__) && !defined(__arch_um__)
1218 	pr_info("code at %08lx: ", regs->ip);
1219 	{
1220 		int i;
1221 		for (i = 0; i < 16; i++) {
1222 			unsigned char insn;
1223 
1224 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1225 				break;
1226 			pr_cont("%02x ", insn);
1227 		}
1228 	}
1229 	pr_cont("\n");
1230 #endif
1231 	preempt_disable();
1232 	show_regs(regs);
1233 	preempt_enable();
1234 }
1235 
1236 static int __init setup_print_fatal_signals(char *str)
1237 {
1238 	get_option (&str, &print_fatal_signals);
1239 
1240 	return 1;
1241 }
1242 
1243 __setup("print-fatal-signals=", setup_print_fatal_signals);
1244 
1245 int
1246 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1247 {
1248 	return send_signal(sig, info, p, PIDTYPE_TGID);
1249 }
1250 
1251 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1252 			enum pid_type type)
1253 {
1254 	unsigned long flags;
1255 	int ret = -ESRCH;
1256 
1257 	if (lock_task_sighand(p, &flags)) {
1258 		ret = send_signal(sig, info, p, type);
1259 		unlock_task_sighand(p, &flags);
1260 	}
1261 
1262 	return ret;
1263 }
1264 
1265 /*
1266  * Force a signal that the process can't ignore: if necessary
1267  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1268  *
1269  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1270  * since we do not want to have a signal handler that was blocked
1271  * be invoked when user space had explicitly blocked it.
1272  *
1273  * We don't want to have recursive SIGSEGV's etc, for example,
1274  * that is why we also clear SIGNAL_UNKILLABLE.
1275  */
1276 int
1277 force_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *t)
1278 {
1279 	unsigned long int flags;
1280 	int ret, blocked, ignored;
1281 	struct k_sigaction *action;
1282 
1283 	spin_lock_irqsave(&t->sighand->siglock, flags);
1284 	action = &t->sighand->action[sig-1];
1285 	ignored = action->sa.sa_handler == SIG_IGN;
1286 	blocked = sigismember(&t->blocked, sig);
1287 	if (blocked || ignored) {
1288 		action->sa.sa_handler = SIG_DFL;
1289 		if (blocked) {
1290 			sigdelset(&t->blocked, sig);
1291 			recalc_sigpending_and_wake(t);
1292 		}
1293 	}
1294 	/*
1295 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1296 	 * debugging to leave init killable.
1297 	 */
1298 	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1299 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1300 	ret = send_signal(sig, info, t, PIDTYPE_PID);
1301 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1302 
1303 	return ret;
1304 }
1305 
1306 /*
1307  * Nuke all other threads in the group.
1308  */
1309 int zap_other_threads(struct task_struct *p)
1310 {
1311 	struct task_struct *t = p;
1312 	int count = 0;
1313 
1314 	p->signal->group_stop_count = 0;
1315 
1316 	while_each_thread(p, t) {
1317 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1318 		count++;
1319 
1320 		/* Don't bother with already dead threads */
1321 		if (t->exit_state)
1322 			continue;
1323 		sigaddset(&t->pending.signal, SIGKILL);
1324 		signal_wake_up(t, 1);
1325 	}
1326 
1327 	return count;
1328 }
1329 
1330 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1331 					   unsigned long *flags)
1332 {
1333 	struct sighand_struct *sighand;
1334 
1335 	rcu_read_lock();
1336 	for (;;) {
1337 		sighand = rcu_dereference(tsk->sighand);
1338 		if (unlikely(sighand == NULL))
1339 			break;
1340 
1341 		/*
1342 		 * This sighand can be already freed and even reused, but
1343 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1344 		 * initializes ->siglock: this slab can't go away, it has
1345 		 * the same object type, ->siglock can't be reinitialized.
1346 		 *
1347 		 * We need to ensure that tsk->sighand is still the same
1348 		 * after we take the lock, we can race with de_thread() or
1349 		 * __exit_signal(). In the latter case the next iteration
1350 		 * must see ->sighand == NULL.
1351 		 */
1352 		spin_lock_irqsave(&sighand->siglock, *flags);
1353 		if (likely(sighand == tsk->sighand))
1354 			break;
1355 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1356 	}
1357 	rcu_read_unlock();
1358 
1359 	return sighand;
1360 }
1361 
1362 /*
1363  * send signal info to all the members of a group
1364  */
1365 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1366 			struct task_struct *p, enum pid_type type)
1367 {
1368 	int ret;
1369 
1370 	rcu_read_lock();
1371 	ret = check_kill_permission(sig, info, p);
1372 	rcu_read_unlock();
1373 
1374 	if (!ret && sig)
1375 		ret = do_send_sig_info(sig, info, p, type);
1376 
1377 	return ret;
1378 }
1379 
1380 /*
1381  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1382  * control characters do (^C, ^Z etc)
1383  * - the caller must hold at least a readlock on tasklist_lock
1384  */
1385 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1386 {
1387 	struct task_struct *p = NULL;
1388 	int retval, success;
1389 
1390 	success = 0;
1391 	retval = -ESRCH;
1392 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1393 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1394 		success |= !err;
1395 		retval = err;
1396 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1397 	return success ? 0 : retval;
1398 }
1399 
1400 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1401 {
1402 	int error = -ESRCH;
1403 	struct task_struct *p;
1404 
1405 	for (;;) {
1406 		rcu_read_lock();
1407 		p = pid_task(pid, PIDTYPE_PID);
1408 		if (p)
1409 			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1410 		rcu_read_unlock();
1411 		if (likely(!p || error != -ESRCH))
1412 			return error;
1413 
1414 		/*
1415 		 * The task was unhashed in between, try again.  If it
1416 		 * is dead, pid_task() will return NULL, if we race with
1417 		 * de_thread() it will find the new leader.
1418 		 */
1419 	}
1420 }
1421 
1422 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1423 {
1424 	int error;
1425 	rcu_read_lock();
1426 	error = kill_pid_info(sig, info, find_vpid(pid));
1427 	rcu_read_unlock();
1428 	return error;
1429 }
1430 
1431 static inline bool kill_as_cred_perm(const struct cred *cred,
1432 				     struct task_struct *target)
1433 {
1434 	const struct cred *pcred = __task_cred(target);
1435 
1436 	return uid_eq(cred->euid, pcred->suid) ||
1437 	       uid_eq(cred->euid, pcred->uid) ||
1438 	       uid_eq(cred->uid, pcred->suid) ||
1439 	       uid_eq(cred->uid, pcred->uid);
1440 }
1441 
1442 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1443 int kill_pid_info_as_cred(int sig, struct kernel_siginfo *info, struct pid *pid,
1444 			 const struct cred *cred)
1445 {
1446 	int ret = -EINVAL;
1447 	struct task_struct *p;
1448 	unsigned long flags;
1449 
1450 	if (!valid_signal(sig))
1451 		return ret;
1452 
1453 	rcu_read_lock();
1454 	p = pid_task(pid, PIDTYPE_PID);
1455 	if (!p) {
1456 		ret = -ESRCH;
1457 		goto out_unlock;
1458 	}
1459 	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1460 		ret = -EPERM;
1461 		goto out_unlock;
1462 	}
1463 	ret = security_task_kill(p, info, sig, cred);
1464 	if (ret)
1465 		goto out_unlock;
1466 
1467 	if (sig) {
1468 		if (lock_task_sighand(p, &flags)) {
1469 			ret = __send_signal(sig, info, p, PIDTYPE_TGID, 0);
1470 			unlock_task_sighand(p, &flags);
1471 		} else
1472 			ret = -ESRCH;
1473 	}
1474 out_unlock:
1475 	rcu_read_unlock();
1476 	return ret;
1477 }
1478 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1479 
1480 /*
1481  * kill_something_info() interprets pid in interesting ways just like kill(2).
1482  *
1483  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1484  * is probably wrong.  Should make it like BSD or SYSV.
1485  */
1486 
1487 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1488 {
1489 	int ret;
1490 
1491 	if (pid > 0) {
1492 		rcu_read_lock();
1493 		ret = kill_pid_info(sig, info, find_vpid(pid));
1494 		rcu_read_unlock();
1495 		return ret;
1496 	}
1497 
1498 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1499 	if (pid == INT_MIN)
1500 		return -ESRCH;
1501 
1502 	read_lock(&tasklist_lock);
1503 	if (pid != -1) {
1504 		ret = __kill_pgrp_info(sig, info,
1505 				pid ? find_vpid(-pid) : task_pgrp(current));
1506 	} else {
1507 		int retval = 0, count = 0;
1508 		struct task_struct * p;
1509 
1510 		for_each_process(p) {
1511 			if (task_pid_vnr(p) > 1 &&
1512 					!same_thread_group(p, current)) {
1513 				int err = group_send_sig_info(sig, info, p,
1514 							      PIDTYPE_MAX);
1515 				++count;
1516 				if (err != -EPERM)
1517 					retval = err;
1518 			}
1519 		}
1520 		ret = count ? retval : -ESRCH;
1521 	}
1522 	read_unlock(&tasklist_lock);
1523 
1524 	return ret;
1525 }
1526 
1527 /*
1528  * These are for backward compatibility with the rest of the kernel source.
1529  */
1530 
1531 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1532 {
1533 	/*
1534 	 * Make sure legacy kernel users don't send in bad values
1535 	 * (normal paths check this in check_kill_permission).
1536 	 */
1537 	if (!valid_signal(sig))
1538 		return -EINVAL;
1539 
1540 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1541 }
1542 EXPORT_SYMBOL(send_sig_info);
1543 
1544 #define __si_special(priv) \
1545 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1546 
1547 int
1548 send_sig(int sig, struct task_struct *p, int priv)
1549 {
1550 	return send_sig_info(sig, __si_special(priv), p);
1551 }
1552 EXPORT_SYMBOL(send_sig);
1553 
1554 void force_sig(int sig, struct task_struct *p)
1555 {
1556 	force_sig_info(sig, SEND_SIG_PRIV, p);
1557 }
1558 EXPORT_SYMBOL(force_sig);
1559 
1560 /*
1561  * When things go south during signal handling, we
1562  * will force a SIGSEGV. And if the signal that caused
1563  * the problem was already a SIGSEGV, we'll want to
1564  * make sure we don't even try to deliver the signal..
1565  */
1566 void force_sigsegv(int sig, struct task_struct *p)
1567 {
1568 	if (sig == SIGSEGV) {
1569 		unsigned long flags;
1570 		spin_lock_irqsave(&p->sighand->siglock, flags);
1571 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1572 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1573 	}
1574 	force_sig(SIGSEGV, p);
1575 }
1576 
1577 int force_sig_fault(int sig, int code, void __user *addr
1578 	___ARCH_SI_TRAPNO(int trapno)
1579 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1580 	, struct task_struct *t)
1581 {
1582 	struct kernel_siginfo info;
1583 
1584 	clear_siginfo(&info);
1585 	info.si_signo = sig;
1586 	info.si_errno = 0;
1587 	info.si_code  = code;
1588 	info.si_addr  = addr;
1589 #ifdef __ARCH_SI_TRAPNO
1590 	info.si_trapno = trapno;
1591 #endif
1592 #ifdef __ia64__
1593 	info.si_imm = imm;
1594 	info.si_flags = flags;
1595 	info.si_isr = isr;
1596 #endif
1597 	return force_sig_info(info.si_signo, &info, t);
1598 }
1599 
1600 int send_sig_fault(int sig, int code, void __user *addr
1601 	___ARCH_SI_TRAPNO(int trapno)
1602 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1603 	, struct task_struct *t)
1604 {
1605 	struct kernel_siginfo info;
1606 
1607 	clear_siginfo(&info);
1608 	info.si_signo = sig;
1609 	info.si_errno = 0;
1610 	info.si_code  = code;
1611 	info.si_addr  = addr;
1612 #ifdef __ARCH_SI_TRAPNO
1613 	info.si_trapno = trapno;
1614 #endif
1615 #ifdef __ia64__
1616 	info.si_imm = imm;
1617 	info.si_flags = flags;
1618 	info.si_isr = isr;
1619 #endif
1620 	return send_sig_info(info.si_signo, &info, t);
1621 }
1622 
1623 int force_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1624 {
1625 	struct kernel_siginfo info;
1626 
1627 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1628 	clear_siginfo(&info);
1629 	info.si_signo = SIGBUS;
1630 	info.si_errno = 0;
1631 	info.si_code = code;
1632 	info.si_addr = addr;
1633 	info.si_addr_lsb = lsb;
1634 	return force_sig_info(info.si_signo, &info, t);
1635 }
1636 
1637 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1638 {
1639 	struct kernel_siginfo info;
1640 
1641 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1642 	clear_siginfo(&info);
1643 	info.si_signo = SIGBUS;
1644 	info.si_errno = 0;
1645 	info.si_code = code;
1646 	info.si_addr = addr;
1647 	info.si_addr_lsb = lsb;
1648 	return send_sig_info(info.si_signo, &info, t);
1649 }
1650 EXPORT_SYMBOL(send_sig_mceerr);
1651 
1652 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1653 {
1654 	struct kernel_siginfo info;
1655 
1656 	clear_siginfo(&info);
1657 	info.si_signo = SIGSEGV;
1658 	info.si_errno = 0;
1659 	info.si_code  = SEGV_BNDERR;
1660 	info.si_addr  = addr;
1661 	info.si_lower = lower;
1662 	info.si_upper = upper;
1663 	return force_sig_info(info.si_signo, &info, current);
1664 }
1665 
1666 #ifdef SEGV_PKUERR
1667 int force_sig_pkuerr(void __user *addr, u32 pkey)
1668 {
1669 	struct kernel_siginfo info;
1670 
1671 	clear_siginfo(&info);
1672 	info.si_signo = SIGSEGV;
1673 	info.si_errno = 0;
1674 	info.si_code  = SEGV_PKUERR;
1675 	info.si_addr  = addr;
1676 	info.si_pkey  = pkey;
1677 	return force_sig_info(info.si_signo, &info, current);
1678 }
1679 #endif
1680 
1681 /* For the crazy architectures that include trap information in
1682  * the errno field, instead of an actual errno value.
1683  */
1684 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1685 {
1686 	struct kernel_siginfo info;
1687 
1688 	clear_siginfo(&info);
1689 	info.si_signo = SIGTRAP;
1690 	info.si_errno = errno;
1691 	info.si_code  = TRAP_HWBKPT;
1692 	info.si_addr  = addr;
1693 	return force_sig_info(info.si_signo, &info, current);
1694 }
1695 
1696 int kill_pgrp(struct pid *pid, int sig, int priv)
1697 {
1698 	int ret;
1699 
1700 	read_lock(&tasklist_lock);
1701 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1702 	read_unlock(&tasklist_lock);
1703 
1704 	return ret;
1705 }
1706 EXPORT_SYMBOL(kill_pgrp);
1707 
1708 int kill_pid(struct pid *pid, int sig, int priv)
1709 {
1710 	return kill_pid_info(sig, __si_special(priv), pid);
1711 }
1712 EXPORT_SYMBOL(kill_pid);
1713 
1714 /*
1715  * These functions support sending signals using preallocated sigqueue
1716  * structures.  This is needed "because realtime applications cannot
1717  * afford to lose notifications of asynchronous events, like timer
1718  * expirations or I/O completions".  In the case of POSIX Timers
1719  * we allocate the sigqueue structure from the timer_create.  If this
1720  * allocation fails we are able to report the failure to the application
1721  * with an EAGAIN error.
1722  */
1723 struct sigqueue *sigqueue_alloc(void)
1724 {
1725 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1726 
1727 	if (q)
1728 		q->flags |= SIGQUEUE_PREALLOC;
1729 
1730 	return q;
1731 }
1732 
1733 void sigqueue_free(struct sigqueue *q)
1734 {
1735 	unsigned long flags;
1736 	spinlock_t *lock = &current->sighand->siglock;
1737 
1738 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1739 	/*
1740 	 * We must hold ->siglock while testing q->list
1741 	 * to serialize with collect_signal() or with
1742 	 * __exit_signal()->flush_sigqueue().
1743 	 */
1744 	spin_lock_irqsave(lock, flags);
1745 	q->flags &= ~SIGQUEUE_PREALLOC;
1746 	/*
1747 	 * If it is queued it will be freed when dequeued,
1748 	 * like the "regular" sigqueue.
1749 	 */
1750 	if (!list_empty(&q->list))
1751 		q = NULL;
1752 	spin_unlock_irqrestore(lock, flags);
1753 
1754 	if (q)
1755 		__sigqueue_free(q);
1756 }
1757 
1758 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1759 {
1760 	int sig = q->info.si_signo;
1761 	struct sigpending *pending;
1762 	struct task_struct *t;
1763 	unsigned long flags;
1764 	int ret, result;
1765 
1766 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1767 
1768 	ret = -1;
1769 	rcu_read_lock();
1770 	t = pid_task(pid, type);
1771 	if (!t || !likely(lock_task_sighand(t, &flags)))
1772 		goto ret;
1773 
1774 	ret = 1; /* the signal is ignored */
1775 	result = TRACE_SIGNAL_IGNORED;
1776 	if (!prepare_signal(sig, t, false))
1777 		goto out;
1778 
1779 	ret = 0;
1780 	if (unlikely(!list_empty(&q->list))) {
1781 		/*
1782 		 * If an SI_TIMER entry is already queue just increment
1783 		 * the overrun count.
1784 		 */
1785 		BUG_ON(q->info.si_code != SI_TIMER);
1786 		q->info.si_overrun++;
1787 		result = TRACE_SIGNAL_ALREADY_PENDING;
1788 		goto out;
1789 	}
1790 	q->info.si_overrun = 0;
1791 
1792 	signalfd_notify(t, sig);
1793 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1794 	list_add_tail(&q->list, &pending->list);
1795 	sigaddset(&pending->signal, sig);
1796 	complete_signal(sig, t, type);
1797 	result = TRACE_SIGNAL_DELIVERED;
1798 out:
1799 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1800 	unlock_task_sighand(t, &flags);
1801 ret:
1802 	rcu_read_unlock();
1803 	return ret;
1804 }
1805 
1806 /*
1807  * Let a parent know about the death of a child.
1808  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1809  *
1810  * Returns true if our parent ignored us and so we've switched to
1811  * self-reaping.
1812  */
1813 bool do_notify_parent(struct task_struct *tsk, int sig)
1814 {
1815 	struct kernel_siginfo info;
1816 	unsigned long flags;
1817 	struct sighand_struct *psig;
1818 	bool autoreap = false;
1819 	u64 utime, stime;
1820 
1821 	BUG_ON(sig == -1);
1822 
1823  	/* do_notify_parent_cldstop should have been called instead.  */
1824  	BUG_ON(task_is_stopped_or_traced(tsk));
1825 
1826 	BUG_ON(!tsk->ptrace &&
1827 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1828 
1829 	if (sig != SIGCHLD) {
1830 		/*
1831 		 * This is only possible if parent == real_parent.
1832 		 * Check if it has changed security domain.
1833 		 */
1834 		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1835 			sig = SIGCHLD;
1836 	}
1837 
1838 	clear_siginfo(&info);
1839 	info.si_signo = sig;
1840 	info.si_errno = 0;
1841 	/*
1842 	 * We are under tasklist_lock here so our parent is tied to
1843 	 * us and cannot change.
1844 	 *
1845 	 * task_active_pid_ns will always return the same pid namespace
1846 	 * until a task passes through release_task.
1847 	 *
1848 	 * write_lock() currently calls preempt_disable() which is the
1849 	 * same as rcu_read_lock(), but according to Oleg, this is not
1850 	 * correct to rely on this
1851 	 */
1852 	rcu_read_lock();
1853 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1854 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1855 				       task_uid(tsk));
1856 	rcu_read_unlock();
1857 
1858 	task_cputime(tsk, &utime, &stime);
1859 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1860 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1861 
1862 	info.si_status = tsk->exit_code & 0x7f;
1863 	if (tsk->exit_code & 0x80)
1864 		info.si_code = CLD_DUMPED;
1865 	else if (tsk->exit_code & 0x7f)
1866 		info.si_code = CLD_KILLED;
1867 	else {
1868 		info.si_code = CLD_EXITED;
1869 		info.si_status = tsk->exit_code >> 8;
1870 	}
1871 
1872 	psig = tsk->parent->sighand;
1873 	spin_lock_irqsave(&psig->siglock, flags);
1874 	if (!tsk->ptrace && sig == SIGCHLD &&
1875 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1876 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1877 		/*
1878 		 * We are exiting and our parent doesn't care.  POSIX.1
1879 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1880 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1881 		 * automatically and not left for our parent's wait4 call.
1882 		 * Rather than having the parent do it as a magic kind of
1883 		 * signal handler, we just set this to tell do_exit that we
1884 		 * can be cleaned up without becoming a zombie.  Note that
1885 		 * we still call __wake_up_parent in this case, because a
1886 		 * blocked sys_wait4 might now return -ECHILD.
1887 		 *
1888 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1889 		 * is implementation-defined: we do (if you don't want
1890 		 * it, just use SIG_IGN instead).
1891 		 */
1892 		autoreap = true;
1893 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1894 			sig = 0;
1895 	}
1896 	if (valid_signal(sig) && sig)
1897 		__group_send_sig_info(sig, &info, tsk->parent);
1898 	__wake_up_parent(tsk, tsk->parent);
1899 	spin_unlock_irqrestore(&psig->siglock, flags);
1900 
1901 	return autoreap;
1902 }
1903 
1904 /**
1905  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1906  * @tsk: task reporting the state change
1907  * @for_ptracer: the notification is for ptracer
1908  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1909  *
1910  * Notify @tsk's parent that the stopped/continued state has changed.  If
1911  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1912  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1913  *
1914  * CONTEXT:
1915  * Must be called with tasklist_lock at least read locked.
1916  */
1917 static void do_notify_parent_cldstop(struct task_struct *tsk,
1918 				     bool for_ptracer, int why)
1919 {
1920 	struct kernel_siginfo info;
1921 	unsigned long flags;
1922 	struct task_struct *parent;
1923 	struct sighand_struct *sighand;
1924 	u64 utime, stime;
1925 
1926 	if (for_ptracer) {
1927 		parent = tsk->parent;
1928 	} else {
1929 		tsk = tsk->group_leader;
1930 		parent = tsk->real_parent;
1931 	}
1932 
1933 	clear_siginfo(&info);
1934 	info.si_signo = SIGCHLD;
1935 	info.si_errno = 0;
1936 	/*
1937 	 * see comment in do_notify_parent() about the following 4 lines
1938 	 */
1939 	rcu_read_lock();
1940 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1941 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1942 	rcu_read_unlock();
1943 
1944 	task_cputime(tsk, &utime, &stime);
1945 	info.si_utime = nsec_to_clock_t(utime);
1946 	info.si_stime = nsec_to_clock_t(stime);
1947 
1948  	info.si_code = why;
1949  	switch (why) {
1950  	case CLD_CONTINUED:
1951  		info.si_status = SIGCONT;
1952  		break;
1953  	case CLD_STOPPED:
1954  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1955  		break;
1956  	case CLD_TRAPPED:
1957  		info.si_status = tsk->exit_code & 0x7f;
1958  		break;
1959  	default:
1960  		BUG();
1961  	}
1962 
1963 	sighand = parent->sighand;
1964 	spin_lock_irqsave(&sighand->siglock, flags);
1965 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1966 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1967 		__group_send_sig_info(SIGCHLD, &info, parent);
1968 	/*
1969 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1970 	 */
1971 	__wake_up_parent(tsk, parent);
1972 	spin_unlock_irqrestore(&sighand->siglock, flags);
1973 }
1974 
1975 static inline bool may_ptrace_stop(void)
1976 {
1977 	if (!likely(current->ptrace))
1978 		return false;
1979 	/*
1980 	 * Are we in the middle of do_coredump?
1981 	 * If so and our tracer is also part of the coredump stopping
1982 	 * is a deadlock situation, and pointless because our tracer
1983 	 * is dead so don't allow us to stop.
1984 	 * If SIGKILL was already sent before the caller unlocked
1985 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1986 	 * is safe to enter schedule().
1987 	 *
1988 	 * This is almost outdated, a task with the pending SIGKILL can't
1989 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1990 	 * after SIGKILL was already dequeued.
1991 	 */
1992 	if (unlikely(current->mm->core_state) &&
1993 	    unlikely(current->mm == current->parent->mm))
1994 		return false;
1995 
1996 	return true;
1997 }
1998 
1999 /*
2000  * Return non-zero if there is a SIGKILL that should be waking us up.
2001  * Called with the siglock held.
2002  */
2003 static bool sigkill_pending(struct task_struct *tsk)
2004 {
2005 	return sigismember(&tsk->pending.signal, SIGKILL) ||
2006 	       sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2007 }
2008 
2009 /*
2010  * This must be called with current->sighand->siglock held.
2011  *
2012  * This should be the path for all ptrace stops.
2013  * We always set current->last_siginfo while stopped here.
2014  * That makes it a way to test a stopped process for
2015  * being ptrace-stopped vs being job-control-stopped.
2016  *
2017  * If we actually decide not to stop at all because the tracer
2018  * is gone, we keep current->exit_code unless clear_code.
2019  */
2020 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2021 	__releases(&current->sighand->siglock)
2022 	__acquires(&current->sighand->siglock)
2023 {
2024 	bool gstop_done = false;
2025 
2026 	if (arch_ptrace_stop_needed(exit_code, info)) {
2027 		/*
2028 		 * The arch code has something special to do before a
2029 		 * ptrace stop.  This is allowed to block, e.g. for faults
2030 		 * on user stack pages.  We can't keep the siglock while
2031 		 * calling arch_ptrace_stop, so we must release it now.
2032 		 * To preserve proper semantics, we must do this before
2033 		 * any signal bookkeeping like checking group_stop_count.
2034 		 * Meanwhile, a SIGKILL could come in before we retake the
2035 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
2036 		 * So after regaining the lock, we must check for SIGKILL.
2037 		 */
2038 		spin_unlock_irq(&current->sighand->siglock);
2039 		arch_ptrace_stop(exit_code, info);
2040 		spin_lock_irq(&current->sighand->siglock);
2041 		if (sigkill_pending(current))
2042 			return;
2043 	}
2044 
2045 	set_special_state(TASK_TRACED);
2046 
2047 	/*
2048 	 * We're committing to trapping.  TRACED should be visible before
2049 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2050 	 * Also, transition to TRACED and updates to ->jobctl should be
2051 	 * atomic with respect to siglock and should be done after the arch
2052 	 * hook as siglock is released and regrabbed across it.
2053 	 *
2054 	 *     TRACER				    TRACEE
2055 	 *
2056 	 *     ptrace_attach()
2057 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2058 	 *     do_wait()
2059 	 *       set_current_state()                smp_wmb();
2060 	 *       ptrace_do_wait()
2061 	 *         wait_task_stopped()
2062 	 *           task_stopped_code()
2063 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2064 	 */
2065 	smp_wmb();
2066 
2067 	current->last_siginfo = info;
2068 	current->exit_code = exit_code;
2069 
2070 	/*
2071 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2072 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2073 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2074 	 * could be clear now.  We act as if SIGCONT is received after
2075 	 * TASK_TRACED is entered - ignore it.
2076 	 */
2077 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2078 		gstop_done = task_participate_group_stop(current);
2079 
2080 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2081 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2082 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2083 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2084 
2085 	/* entering a trap, clear TRAPPING */
2086 	task_clear_jobctl_trapping(current);
2087 
2088 	spin_unlock_irq(&current->sighand->siglock);
2089 	read_lock(&tasklist_lock);
2090 	if (may_ptrace_stop()) {
2091 		/*
2092 		 * Notify parents of the stop.
2093 		 *
2094 		 * While ptraced, there are two parents - the ptracer and
2095 		 * the real_parent of the group_leader.  The ptracer should
2096 		 * know about every stop while the real parent is only
2097 		 * interested in the completion of group stop.  The states
2098 		 * for the two don't interact with each other.  Notify
2099 		 * separately unless they're gonna be duplicates.
2100 		 */
2101 		do_notify_parent_cldstop(current, true, why);
2102 		if (gstop_done && ptrace_reparented(current))
2103 			do_notify_parent_cldstop(current, false, why);
2104 
2105 		/*
2106 		 * Don't want to allow preemption here, because
2107 		 * sys_ptrace() needs this task to be inactive.
2108 		 *
2109 		 * XXX: implement read_unlock_no_resched().
2110 		 */
2111 		preempt_disable();
2112 		read_unlock(&tasklist_lock);
2113 		preempt_enable_no_resched();
2114 		cgroup_enter_frozen();
2115 		freezable_schedule();
2116 	} else {
2117 		/*
2118 		 * By the time we got the lock, our tracer went away.
2119 		 * Don't drop the lock yet, another tracer may come.
2120 		 *
2121 		 * If @gstop_done, the ptracer went away between group stop
2122 		 * completion and here.  During detach, it would have set
2123 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2124 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2125 		 * the real parent of the group stop completion is enough.
2126 		 */
2127 		if (gstop_done)
2128 			do_notify_parent_cldstop(current, false, why);
2129 
2130 		/* tasklist protects us from ptrace_freeze_traced() */
2131 		__set_current_state(TASK_RUNNING);
2132 		if (clear_code)
2133 			current->exit_code = 0;
2134 		read_unlock(&tasklist_lock);
2135 	}
2136 
2137 	/*
2138 	 * We are back.  Now reacquire the siglock before touching
2139 	 * last_siginfo, so that we are sure to have synchronized with
2140 	 * any signal-sending on another CPU that wants to examine it.
2141 	 */
2142 	spin_lock_irq(&current->sighand->siglock);
2143 	current->last_siginfo = NULL;
2144 
2145 	/* LISTENING can be set only during STOP traps, clear it */
2146 	current->jobctl &= ~JOBCTL_LISTENING;
2147 
2148 	/*
2149 	 * Queued signals ignored us while we were stopped for tracing.
2150 	 * So check for any that we should take before resuming user mode.
2151 	 * This sets TIF_SIGPENDING, but never clears it.
2152 	 */
2153 	recalc_sigpending_tsk(current);
2154 }
2155 
2156 static void ptrace_do_notify(int signr, int exit_code, int why)
2157 {
2158 	kernel_siginfo_t info;
2159 
2160 	clear_siginfo(&info);
2161 	info.si_signo = signr;
2162 	info.si_code = exit_code;
2163 	info.si_pid = task_pid_vnr(current);
2164 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2165 
2166 	/* Let the debugger run.  */
2167 	ptrace_stop(exit_code, why, 1, &info);
2168 }
2169 
2170 void ptrace_notify(int exit_code)
2171 {
2172 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2173 	if (unlikely(current->task_works))
2174 		task_work_run();
2175 
2176 	spin_lock_irq(&current->sighand->siglock);
2177 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2178 	spin_unlock_irq(&current->sighand->siglock);
2179 }
2180 
2181 /**
2182  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2183  * @signr: signr causing group stop if initiating
2184  *
2185  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2186  * and participate in it.  If already set, participate in the existing
2187  * group stop.  If participated in a group stop (and thus slept), %true is
2188  * returned with siglock released.
2189  *
2190  * If ptraced, this function doesn't handle stop itself.  Instead,
2191  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2192  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2193  * places afterwards.
2194  *
2195  * CONTEXT:
2196  * Must be called with @current->sighand->siglock held, which is released
2197  * on %true return.
2198  *
2199  * RETURNS:
2200  * %false if group stop is already cancelled or ptrace trap is scheduled.
2201  * %true if participated in group stop.
2202  */
2203 static bool do_signal_stop(int signr)
2204 	__releases(&current->sighand->siglock)
2205 {
2206 	struct signal_struct *sig = current->signal;
2207 
2208 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2209 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2210 		struct task_struct *t;
2211 
2212 		/* signr will be recorded in task->jobctl for retries */
2213 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2214 
2215 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2216 		    unlikely(signal_group_exit(sig)))
2217 			return false;
2218 		/*
2219 		 * There is no group stop already in progress.  We must
2220 		 * initiate one now.
2221 		 *
2222 		 * While ptraced, a task may be resumed while group stop is
2223 		 * still in effect and then receive a stop signal and
2224 		 * initiate another group stop.  This deviates from the
2225 		 * usual behavior as two consecutive stop signals can't
2226 		 * cause two group stops when !ptraced.  That is why we
2227 		 * also check !task_is_stopped(t) below.
2228 		 *
2229 		 * The condition can be distinguished by testing whether
2230 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2231 		 * group_exit_code in such case.
2232 		 *
2233 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2234 		 * an intervening stop signal is required to cause two
2235 		 * continued events regardless of ptrace.
2236 		 */
2237 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2238 			sig->group_exit_code = signr;
2239 
2240 		sig->group_stop_count = 0;
2241 
2242 		if (task_set_jobctl_pending(current, signr | gstop))
2243 			sig->group_stop_count++;
2244 
2245 		t = current;
2246 		while_each_thread(current, t) {
2247 			/*
2248 			 * Setting state to TASK_STOPPED for a group
2249 			 * stop is always done with the siglock held,
2250 			 * so this check has no races.
2251 			 */
2252 			if (!task_is_stopped(t) &&
2253 			    task_set_jobctl_pending(t, signr | gstop)) {
2254 				sig->group_stop_count++;
2255 				if (likely(!(t->ptrace & PT_SEIZED)))
2256 					signal_wake_up(t, 0);
2257 				else
2258 					ptrace_trap_notify(t);
2259 			}
2260 		}
2261 	}
2262 
2263 	if (likely(!current->ptrace)) {
2264 		int notify = 0;
2265 
2266 		/*
2267 		 * If there are no other threads in the group, or if there
2268 		 * is a group stop in progress and we are the last to stop,
2269 		 * report to the parent.
2270 		 */
2271 		if (task_participate_group_stop(current))
2272 			notify = CLD_STOPPED;
2273 
2274 		set_special_state(TASK_STOPPED);
2275 		spin_unlock_irq(&current->sighand->siglock);
2276 
2277 		/*
2278 		 * Notify the parent of the group stop completion.  Because
2279 		 * we're not holding either the siglock or tasklist_lock
2280 		 * here, ptracer may attach inbetween; however, this is for
2281 		 * group stop and should always be delivered to the real
2282 		 * parent of the group leader.  The new ptracer will get
2283 		 * its notification when this task transitions into
2284 		 * TASK_TRACED.
2285 		 */
2286 		if (notify) {
2287 			read_lock(&tasklist_lock);
2288 			do_notify_parent_cldstop(current, false, notify);
2289 			read_unlock(&tasklist_lock);
2290 		}
2291 
2292 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2293 		cgroup_enter_frozen();
2294 		freezable_schedule();
2295 		return true;
2296 	} else {
2297 		/*
2298 		 * While ptraced, group stop is handled by STOP trap.
2299 		 * Schedule it and let the caller deal with it.
2300 		 */
2301 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2302 		return false;
2303 	}
2304 }
2305 
2306 /**
2307  * do_jobctl_trap - take care of ptrace jobctl traps
2308  *
2309  * When PT_SEIZED, it's used for both group stop and explicit
2310  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2311  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2312  * the stop signal; otherwise, %SIGTRAP.
2313  *
2314  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2315  * number as exit_code and no siginfo.
2316  *
2317  * CONTEXT:
2318  * Must be called with @current->sighand->siglock held, which may be
2319  * released and re-acquired before returning with intervening sleep.
2320  */
2321 static void do_jobctl_trap(void)
2322 {
2323 	struct signal_struct *signal = current->signal;
2324 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2325 
2326 	if (current->ptrace & PT_SEIZED) {
2327 		if (!signal->group_stop_count &&
2328 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2329 			signr = SIGTRAP;
2330 		WARN_ON_ONCE(!signr);
2331 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2332 				 CLD_STOPPED);
2333 	} else {
2334 		WARN_ON_ONCE(!signr);
2335 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2336 		current->exit_code = 0;
2337 	}
2338 }
2339 
2340 /**
2341  * do_freezer_trap - handle the freezer jobctl trap
2342  *
2343  * Puts the task into frozen state, if only the task is not about to quit.
2344  * In this case it drops JOBCTL_TRAP_FREEZE.
2345  *
2346  * CONTEXT:
2347  * Must be called with @current->sighand->siglock held,
2348  * which is always released before returning.
2349  */
2350 static void do_freezer_trap(void)
2351 	__releases(&current->sighand->siglock)
2352 {
2353 	/*
2354 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2355 	 * let's make another loop to give it a chance to be handled.
2356 	 * In any case, we'll return back.
2357 	 */
2358 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2359 	     JOBCTL_TRAP_FREEZE) {
2360 		spin_unlock_irq(&current->sighand->siglock);
2361 		return;
2362 	}
2363 
2364 	/*
2365 	 * Now we're sure that there is no pending fatal signal and no
2366 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2367 	 * immediately (if there is a non-fatal signal pending), and
2368 	 * put the task into sleep.
2369 	 */
2370 	__set_current_state(TASK_INTERRUPTIBLE);
2371 	clear_thread_flag(TIF_SIGPENDING);
2372 	spin_unlock_irq(&current->sighand->siglock);
2373 	cgroup_enter_frozen();
2374 	freezable_schedule();
2375 }
2376 
2377 static int ptrace_signal(int signr, kernel_siginfo_t *info)
2378 {
2379 	/*
2380 	 * We do not check sig_kernel_stop(signr) but set this marker
2381 	 * unconditionally because we do not know whether debugger will
2382 	 * change signr. This flag has no meaning unless we are going
2383 	 * to stop after return from ptrace_stop(). In this case it will
2384 	 * be checked in do_signal_stop(), we should only stop if it was
2385 	 * not cleared by SIGCONT while we were sleeping. See also the
2386 	 * comment in dequeue_signal().
2387 	 */
2388 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2389 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2390 
2391 	/* We're back.  Did the debugger cancel the sig?  */
2392 	signr = current->exit_code;
2393 	if (signr == 0)
2394 		return signr;
2395 
2396 	current->exit_code = 0;
2397 
2398 	/*
2399 	 * Update the siginfo structure if the signal has
2400 	 * changed.  If the debugger wanted something
2401 	 * specific in the siginfo structure then it should
2402 	 * have updated *info via PTRACE_SETSIGINFO.
2403 	 */
2404 	if (signr != info->si_signo) {
2405 		clear_siginfo(info);
2406 		info->si_signo = signr;
2407 		info->si_errno = 0;
2408 		info->si_code = SI_USER;
2409 		rcu_read_lock();
2410 		info->si_pid = task_pid_vnr(current->parent);
2411 		info->si_uid = from_kuid_munged(current_user_ns(),
2412 						task_uid(current->parent));
2413 		rcu_read_unlock();
2414 	}
2415 
2416 	/* If the (new) signal is now blocked, requeue it.  */
2417 	if (sigismember(&current->blocked, signr)) {
2418 		send_signal(signr, info, current, PIDTYPE_PID);
2419 		signr = 0;
2420 	}
2421 
2422 	return signr;
2423 }
2424 
2425 bool get_signal(struct ksignal *ksig)
2426 {
2427 	struct sighand_struct *sighand = current->sighand;
2428 	struct signal_struct *signal = current->signal;
2429 	int signr;
2430 
2431 	if (unlikely(current->task_works))
2432 		task_work_run();
2433 
2434 	if (unlikely(uprobe_deny_signal()))
2435 		return false;
2436 
2437 	/*
2438 	 * Do this once, we can't return to user-mode if freezing() == T.
2439 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2440 	 * thus do not need another check after return.
2441 	 */
2442 	try_to_freeze();
2443 
2444 relock:
2445 	spin_lock_irq(&sighand->siglock);
2446 	/*
2447 	 * Every stopped thread goes here after wakeup. Check to see if
2448 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2449 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2450 	 */
2451 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2452 		int why;
2453 
2454 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2455 			why = CLD_CONTINUED;
2456 		else
2457 			why = CLD_STOPPED;
2458 
2459 		signal->flags &= ~SIGNAL_CLD_MASK;
2460 
2461 		spin_unlock_irq(&sighand->siglock);
2462 
2463 		/*
2464 		 * Notify the parent that we're continuing.  This event is
2465 		 * always per-process and doesn't make whole lot of sense
2466 		 * for ptracers, who shouldn't consume the state via
2467 		 * wait(2) either, but, for backward compatibility, notify
2468 		 * the ptracer of the group leader too unless it's gonna be
2469 		 * a duplicate.
2470 		 */
2471 		read_lock(&tasklist_lock);
2472 		do_notify_parent_cldstop(current, false, why);
2473 
2474 		if (ptrace_reparented(current->group_leader))
2475 			do_notify_parent_cldstop(current->group_leader,
2476 						true, why);
2477 		read_unlock(&tasklist_lock);
2478 
2479 		goto relock;
2480 	}
2481 
2482 	/* Has this task already been marked for death? */
2483 	if (signal_group_exit(signal)) {
2484 		ksig->info.si_signo = signr = SIGKILL;
2485 		sigdelset(&current->pending.signal, SIGKILL);
2486 		recalc_sigpending();
2487 		goto fatal;
2488 	}
2489 
2490 	for (;;) {
2491 		struct k_sigaction *ka;
2492 
2493 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2494 		    do_signal_stop(0))
2495 			goto relock;
2496 
2497 		if (unlikely(current->jobctl &
2498 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2499 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2500 				do_jobctl_trap();
2501 				spin_unlock_irq(&sighand->siglock);
2502 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2503 				do_freezer_trap();
2504 
2505 			goto relock;
2506 		}
2507 
2508 		/*
2509 		 * If the task is leaving the frozen state, let's update
2510 		 * cgroup counters and reset the frozen bit.
2511 		 */
2512 		if (unlikely(cgroup_task_frozen(current))) {
2513 			spin_unlock_irq(&sighand->siglock);
2514 			cgroup_leave_frozen(false);
2515 			goto relock;
2516 		}
2517 
2518 		/*
2519 		 * Signals generated by the execution of an instruction
2520 		 * need to be delivered before any other pending signals
2521 		 * so that the instruction pointer in the signal stack
2522 		 * frame points to the faulting instruction.
2523 		 */
2524 		signr = dequeue_synchronous_signal(&ksig->info);
2525 		if (!signr)
2526 			signr = dequeue_signal(current, &current->blocked, &ksig->info);
2527 
2528 		if (!signr)
2529 			break; /* will return 0 */
2530 
2531 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2532 			signr = ptrace_signal(signr, &ksig->info);
2533 			if (!signr)
2534 				continue;
2535 		}
2536 
2537 		ka = &sighand->action[signr-1];
2538 
2539 		/* Trace actually delivered signals. */
2540 		trace_signal_deliver(signr, &ksig->info, ka);
2541 
2542 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2543 			continue;
2544 		if (ka->sa.sa_handler != SIG_DFL) {
2545 			/* Run the handler.  */
2546 			ksig->ka = *ka;
2547 
2548 			if (ka->sa.sa_flags & SA_ONESHOT)
2549 				ka->sa.sa_handler = SIG_DFL;
2550 
2551 			break; /* will return non-zero "signr" value */
2552 		}
2553 
2554 		/*
2555 		 * Now we are doing the default action for this signal.
2556 		 */
2557 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2558 			continue;
2559 
2560 		/*
2561 		 * Global init gets no signals it doesn't want.
2562 		 * Container-init gets no signals it doesn't want from same
2563 		 * container.
2564 		 *
2565 		 * Note that if global/container-init sees a sig_kernel_only()
2566 		 * signal here, the signal must have been generated internally
2567 		 * or must have come from an ancestor namespace. In either
2568 		 * case, the signal cannot be dropped.
2569 		 */
2570 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2571 				!sig_kernel_only(signr))
2572 			continue;
2573 
2574 		if (sig_kernel_stop(signr)) {
2575 			/*
2576 			 * The default action is to stop all threads in
2577 			 * the thread group.  The job control signals
2578 			 * do nothing in an orphaned pgrp, but SIGSTOP
2579 			 * always works.  Note that siglock needs to be
2580 			 * dropped during the call to is_orphaned_pgrp()
2581 			 * because of lock ordering with tasklist_lock.
2582 			 * This allows an intervening SIGCONT to be posted.
2583 			 * We need to check for that and bail out if necessary.
2584 			 */
2585 			if (signr != SIGSTOP) {
2586 				spin_unlock_irq(&sighand->siglock);
2587 
2588 				/* signals can be posted during this window */
2589 
2590 				if (is_current_pgrp_orphaned())
2591 					goto relock;
2592 
2593 				spin_lock_irq(&sighand->siglock);
2594 			}
2595 
2596 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2597 				/* It released the siglock.  */
2598 				goto relock;
2599 			}
2600 
2601 			/*
2602 			 * We didn't actually stop, due to a race
2603 			 * with SIGCONT or something like that.
2604 			 */
2605 			continue;
2606 		}
2607 
2608 	fatal:
2609 		spin_unlock_irq(&sighand->siglock);
2610 		if (unlikely(cgroup_task_frozen(current)))
2611 			cgroup_leave_frozen(true);
2612 
2613 		/*
2614 		 * Anything else is fatal, maybe with a core dump.
2615 		 */
2616 		current->flags |= PF_SIGNALED;
2617 
2618 		if (sig_kernel_coredump(signr)) {
2619 			if (print_fatal_signals)
2620 				print_fatal_signal(ksig->info.si_signo);
2621 			proc_coredump_connector(current);
2622 			/*
2623 			 * If it was able to dump core, this kills all
2624 			 * other threads in the group and synchronizes with
2625 			 * their demise.  If we lost the race with another
2626 			 * thread getting here, it set group_exit_code
2627 			 * first and our do_group_exit call below will use
2628 			 * that value and ignore the one we pass it.
2629 			 */
2630 			do_coredump(&ksig->info);
2631 		}
2632 
2633 		/*
2634 		 * Death signals, no core dump.
2635 		 */
2636 		do_group_exit(ksig->info.si_signo);
2637 		/* NOTREACHED */
2638 	}
2639 	spin_unlock_irq(&sighand->siglock);
2640 
2641 	ksig->sig = signr;
2642 	return ksig->sig > 0;
2643 }
2644 
2645 /**
2646  * signal_delivered -
2647  * @ksig:		kernel signal struct
2648  * @stepping:		nonzero if debugger single-step or block-step in use
2649  *
2650  * This function should be called when a signal has successfully been
2651  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2652  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2653  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2654  */
2655 static void signal_delivered(struct ksignal *ksig, int stepping)
2656 {
2657 	sigset_t blocked;
2658 
2659 	/* A signal was successfully delivered, and the
2660 	   saved sigmask was stored on the signal frame,
2661 	   and will be restored by sigreturn.  So we can
2662 	   simply clear the restore sigmask flag.  */
2663 	clear_restore_sigmask();
2664 
2665 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2666 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2667 		sigaddset(&blocked, ksig->sig);
2668 	set_current_blocked(&blocked);
2669 	tracehook_signal_handler(stepping);
2670 }
2671 
2672 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2673 {
2674 	if (failed)
2675 		force_sigsegv(ksig->sig, current);
2676 	else
2677 		signal_delivered(ksig, stepping);
2678 }
2679 
2680 /*
2681  * It could be that complete_signal() picked us to notify about the
2682  * group-wide signal. Other threads should be notified now to take
2683  * the shared signals in @which since we will not.
2684  */
2685 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2686 {
2687 	sigset_t retarget;
2688 	struct task_struct *t;
2689 
2690 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2691 	if (sigisemptyset(&retarget))
2692 		return;
2693 
2694 	t = tsk;
2695 	while_each_thread(tsk, t) {
2696 		if (t->flags & PF_EXITING)
2697 			continue;
2698 
2699 		if (!has_pending_signals(&retarget, &t->blocked))
2700 			continue;
2701 		/* Remove the signals this thread can handle. */
2702 		sigandsets(&retarget, &retarget, &t->blocked);
2703 
2704 		if (!signal_pending(t))
2705 			signal_wake_up(t, 0);
2706 
2707 		if (sigisemptyset(&retarget))
2708 			break;
2709 	}
2710 }
2711 
2712 void exit_signals(struct task_struct *tsk)
2713 {
2714 	int group_stop = 0;
2715 	sigset_t unblocked;
2716 
2717 	/*
2718 	 * @tsk is about to have PF_EXITING set - lock out users which
2719 	 * expect stable threadgroup.
2720 	 */
2721 	cgroup_threadgroup_change_begin(tsk);
2722 
2723 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2724 		tsk->flags |= PF_EXITING;
2725 		cgroup_threadgroup_change_end(tsk);
2726 		return;
2727 	}
2728 
2729 	spin_lock_irq(&tsk->sighand->siglock);
2730 	/*
2731 	 * From now this task is not visible for group-wide signals,
2732 	 * see wants_signal(), do_signal_stop().
2733 	 */
2734 	tsk->flags |= PF_EXITING;
2735 
2736 	cgroup_threadgroup_change_end(tsk);
2737 
2738 	if (!signal_pending(tsk))
2739 		goto out;
2740 
2741 	unblocked = tsk->blocked;
2742 	signotset(&unblocked);
2743 	retarget_shared_pending(tsk, &unblocked);
2744 
2745 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2746 	    task_participate_group_stop(tsk))
2747 		group_stop = CLD_STOPPED;
2748 out:
2749 	spin_unlock_irq(&tsk->sighand->siglock);
2750 
2751 	/*
2752 	 * If group stop has completed, deliver the notification.  This
2753 	 * should always go to the real parent of the group leader.
2754 	 */
2755 	if (unlikely(group_stop)) {
2756 		read_lock(&tasklist_lock);
2757 		do_notify_parent_cldstop(tsk, false, group_stop);
2758 		read_unlock(&tasklist_lock);
2759 	}
2760 }
2761 
2762 /*
2763  * System call entry points.
2764  */
2765 
2766 /**
2767  *  sys_restart_syscall - restart a system call
2768  */
2769 SYSCALL_DEFINE0(restart_syscall)
2770 {
2771 	struct restart_block *restart = &current->restart_block;
2772 	return restart->fn(restart);
2773 }
2774 
2775 long do_no_restart_syscall(struct restart_block *param)
2776 {
2777 	return -EINTR;
2778 }
2779 
2780 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2781 {
2782 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2783 		sigset_t newblocked;
2784 		/* A set of now blocked but previously unblocked signals. */
2785 		sigandnsets(&newblocked, newset, &current->blocked);
2786 		retarget_shared_pending(tsk, &newblocked);
2787 	}
2788 	tsk->blocked = *newset;
2789 	recalc_sigpending();
2790 }
2791 
2792 /**
2793  * set_current_blocked - change current->blocked mask
2794  * @newset: new mask
2795  *
2796  * It is wrong to change ->blocked directly, this helper should be used
2797  * to ensure the process can't miss a shared signal we are going to block.
2798  */
2799 void set_current_blocked(sigset_t *newset)
2800 {
2801 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2802 	__set_current_blocked(newset);
2803 }
2804 
2805 void __set_current_blocked(const sigset_t *newset)
2806 {
2807 	struct task_struct *tsk = current;
2808 
2809 	/*
2810 	 * In case the signal mask hasn't changed, there is nothing we need
2811 	 * to do. The current->blocked shouldn't be modified by other task.
2812 	 */
2813 	if (sigequalsets(&tsk->blocked, newset))
2814 		return;
2815 
2816 	spin_lock_irq(&tsk->sighand->siglock);
2817 	__set_task_blocked(tsk, newset);
2818 	spin_unlock_irq(&tsk->sighand->siglock);
2819 }
2820 
2821 /*
2822  * This is also useful for kernel threads that want to temporarily
2823  * (or permanently) block certain signals.
2824  *
2825  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2826  * interface happily blocks "unblockable" signals like SIGKILL
2827  * and friends.
2828  */
2829 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2830 {
2831 	struct task_struct *tsk = current;
2832 	sigset_t newset;
2833 
2834 	/* Lockless, only current can change ->blocked, never from irq */
2835 	if (oldset)
2836 		*oldset = tsk->blocked;
2837 
2838 	switch (how) {
2839 	case SIG_BLOCK:
2840 		sigorsets(&newset, &tsk->blocked, set);
2841 		break;
2842 	case SIG_UNBLOCK:
2843 		sigandnsets(&newset, &tsk->blocked, set);
2844 		break;
2845 	case SIG_SETMASK:
2846 		newset = *set;
2847 		break;
2848 	default:
2849 		return -EINVAL;
2850 	}
2851 
2852 	__set_current_blocked(&newset);
2853 	return 0;
2854 }
2855 EXPORT_SYMBOL(sigprocmask);
2856 
2857 /*
2858  * The api helps set app-provided sigmasks.
2859  *
2860  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2861  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
2862  */
2863 int set_user_sigmask(const sigset_t __user *usigmask, sigset_t *set,
2864 		     sigset_t *oldset, size_t sigsetsize)
2865 {
2866 	if (!usigmask)
2867 		return 0;
2868 
2869 	if (sigsetsize != sizeof(sigset_t))
2870 		return -EINVAL;
2871 	if (copy_from_user(set, usigmask, sizeof(sigset_t)))
2872 		return -EFAULT;
2873 
2874 	*oldset = current->blocked;
2875 	set_current_blocked(set);
2876 
2877 	return 0;
2878 }
2879 EXPORT_SYMBOL(set_user_sigmask);
2880 
2881 #ifdef CONFIG_COMPAT
2882 int set_compat_user_sigmask(const compat_sigset_t __user *usigmask,
2883 			    sigset_t *set, sigset_t *oldset,
2884 			    size_t sigsetsize)
2885 {
2886 	if (!usigmask)
2887 		return 0;
2888 
2889 	if (sigsetsize != sizeof(compat_sigset_t))
2890 		return -EINVAL;
2891 	if (get_compat_sigset(set, usigmask))
2892 		return -EFAULT;
2893 
2894 	*oldset = current->blocked;
2895 	set_current_blocked(set);
2896 
2897 	return 0;
2898 }
2899 EXPORT_SYMBOL(set_compat_user_sigmask);
2900 #endif
2901 
2902 /*
2903  * restore_user_sigmask:
2904  * usigmask: sigmask passed in from userland.
2905  * sigsaved: saved sigmask when the syscall started and changed the sigmask to
2906  *           usigmask.
2907  *
2908  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2909  * epoll_pwait where a new sigmask is passed in from userland for the syscalls.
2910  */
2911 void restore_user_sigmask(const void __user *usigmask, sigset_t *sigsaved)
2912 {
2913 
2914 	if (!usigmask)
2915 		return;
2916 	/*
2917 	 * When signals are pending, do not restore them here.
2918 	 * Restoring sigmask here can lead to delivering signals that the above
2919 	 * syscalls are intended to block because of the sigmask passed in.
2920 	 */
2921 	if (signal_pending(current)) {
2922 		current->saved_sigmask = *sigsaved;
2923 		set_restore_sigmask();
2924 		return;
2925 	}
2926 
2927 	/*
2928 	 * This is needed because the fast syscall return path does not restore
2929 	 * saved_sigmask when signals are not pending.
2930 	 */
2931 	set_current_blocked(sigsaved);
2932 }
2933 EXPORT_SYMBOL(restore_user_sigmask);
2934 
2935 /**
2936  *  sys_rt_sigprocmask - change the list of currently blocked signals
2937  *  @how: whether to add, remove, or set signals
2938  *  @nset: stores pending signals
2939  *  @oset: previous value of signal mask if non-null
2940  *  @sigsetsize: size of sigset_t type
2941  */
2942 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2943 		sigset_t __user *, oset, size_t, sigsetsize)
2944 {
2945 	sigset_t old_set, new_set;
2946 	int error;
2947 
2948 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2949 	if (sigsetsize != sizeof(sigset_t))
2950 		return -EINVAL;
2951 
2952 	old_set = current->blocked;
2953 
2954 	if (nset) {
2955 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2956 			return -EFAULT;
2957 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2958 
2959 		error = sigprocmask(how, &new_set, NULL);
2960 		if (error)
2961 			return error;
2962 	}
2963 
2964 	if (oset) {
2965 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2966 			return -EFAULT;
2967 	}
2968 
2969 	return 0;
2970 }
2971 
2972 #ifdef CONFIG_COMPAT
2973 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2974 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2975 {
2976 	sigset_t old_set = current->blocked;
2977 
2978 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2979 	if (sigsetsize != sizeof(sigset_t))
2980 		return -EINVAL;
2981 
2982 	if (nset) {
2983 		sigset_t new_set;
2984 		int error;
2985 		if (get_compat_sigset(&new_set, nset))
2986 			return -EFAULT;
2987 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2988 
2989 		error = sigprocmask(how, &new_set, NULL);
2990 		if (error)
2991 			return error;
2992 	}
2993 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
2994 }
2995 #endif
2996 
2997 static void do_sigpending(sigset_t *set)
2998 {
2999 	spin_lock_irq(&current->sighand->siglock);
3000 	sigorsets(set, &current->pending.signal,
3001 		  &current->signal->shared_pending.signal);
3002 	spin_unlock_irq(&current->sighand->siglock);
3003 
3004 	/* Outside the lock because only this thread touches it.  */
3005 	sigandsets(set, &current->blocked, set);
3006 }
3007 
3008 /**
3009  *  sys_rt_sigpending - examine a pending signal that has been raised
3010  *			while blocked
3011  *  @uset: stores pending signals
3012  *  @sigsetsize: size of sigset_t type or larger
3013  */
3014 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3015 {
3016 	sigset_t set;
3017 
3018 	if (sigsetsize > sizeof(*uset))
3019 		return -EINVAL;
3020 
3021 	do_sigpending(&set);
3022 
3023 	if (copy_to_user(uset, &set, sigsetsize))
3024 		return -EFAULT;
3025 
3026 	return 0;
3027 }
3028 
3029 #ifdef CONFIG_COMPAT
3030 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3031 		compat_size_t, sigsetsize)
3032 {
3033 	sigset_t set;
3034 
3035 	if (sigsetsize > sizeof(*uset))
3036 		return -EINVAL;
3037 
3038 	do_sigpending(&set);
3039 
3040 	return put_compat_sigset(uset, &set, sigsetsize);
3041 }
3042 #endif
3043 
3044 static const struct {
3045 	unsigned char limit, layout;
3046 } sig_sicodes[] = {
3047 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3048 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3049 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3050 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3051 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3052 #if defined(SIGEMT)
3053 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3054 #endif
3055 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3056 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3057 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3058 };
3059 
3060 static bool known_siginfo_layout(unsigned sig, int si_code)
3061 {
3062 	if (si_code == SI_KERNEL)
3063 		return true;
3064 	else if ((si_code > SI_USER)) {
3065 		if (sig_specific_sicodes(sig)) {
3066 			if (si_code <= sig_sicodes[sig].limit)
3067 				return true;
3068 		}
3069 		else if (si_code <= NSIGPOLL)
3070 			return true;
3071 	}
3072 	else if (si_code >= SI_DETHREAD)
3073 		return true;
3074 	else if (si_code == SI_ASYNCNL)
3075 		return true;
3076 	return false;
3077 }
3078 
3079 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3080 {
3081 	enum siginfo_layout layout = SIL_KILL;
3082 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3083 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3084 		    (si_code <= sig_sicodes[sig].limit)) {
3085 			layout = sig_sicodes[sig].layout;
3086 			/* Handle the exceptions */
3087 			if ((sig == SIGBUS) &&
3088 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3089 				layout = SIL_FAULT_MCEERR;
3090 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3091 				layout = SIL_FAULT_BNDERR;
3092 #ifdef SEGV_PKUERR
3093 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3094 				layout = SIL_FAULT_PKUERR;
3095 #endif
3096 		}
3097 		else if (si_code <= NSIGPOLL)
3098 			layout = SIL_POLL;
3099 	} else {
3100 		if (si_code == SI_TIMER)
3101 			layout = SIL_TIMER;
3102 		else if (si_code == SI_SIGIO)
3103 			layout = SIL_POLL;
3104 		else if (si_code < 0)
3105 			layout = SIL_RT;
3106 	}
3107 	return layout;
3108 }
3109 
3110 static inline char __user *si_expansion(const siginfo_t __user *info)
3111 {
3112 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3113 }
3114 
3115 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3116 {
3117 	char __user *expansion = si_expansion(to);
3118 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3119 		return -EFAULT;
3120 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3121 		return -EFAULT;
3122 	return 0;
3123 }
3124 
3125 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3126 				       const siginfo_t __user *from)
3127 {
3128 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3129 		char __user *expansion = si_expansion(from);
3130 		char buf[SI_EXPANSION_SIZE];
3131 		int i;
3132 		/*
3133 		 * An unknown si_code might need more than
3134 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3135 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3136 		 * will return this data to userspace exactly.
3137 		 */
3138 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3139 			return -EFAULT;
3140 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3141 			if (buf[i] != 0)
3142 				return -E2BIG;
3143 		}
3144 	}
3145 	return 0;
3146 }
3147 
3148 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3149 				    const siginfo_t __user *from)
3150 {
3151 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3152 		return -EFAULT;
3153 	to->si_signo = signo;
3154 	return post_copy_siginfo_from_user(to, from);
3155 }
3156 
3157 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3158 {
3159 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3160 		return -EFAULT;
3161 	return post_copy_siginfo_from_user(to, from);
3162 }
3163 
3164 #ifdef CONFIG_COMPAT
3165 int copy_siginfo_to_user32(struct compat_siginfo __user *to,
3166 			   const struct kernel_siginfo *from)
3167 #if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
3168 {
3169 	return __copy_siginfo_to_user32(to, from, in_x32_syscall());
3170 }
3171 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3172 			     const struct kernel_siginfo *from, bool x32_ABI)
3173 #endif
3174 {
3175 	struct compat_siginfo new;
3176 	memset(&new, 0, sizeof(new));
3177 
3178 	new.si_signo = from->si_signo;
3179 	new.si_errno = from->si_errno;
3180 	new.si_code  = from->si_code;
3181 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3182 	case SIL_KILL:
3183 		new.si_pid = from->si_pid;
3184 		new.si_uid = from->si_uid;
3185 		break;
3186 	case SIL_TIMER:
3187 		new.si_tid     = from->si_tid;
3188 		new.si_overrun = from->si_overrun;
3189 		new.si_int     = from->si_int;
3190 		break;
3191 	case SIL_POLL:
3192 		new.si_band = from->si_band;
3193 		new.si_fd   = from->si_fd;
3194 		break;
3195 	case SIL_FAULT:
3196 		new.si_addr = ptr_to_compat(from->si_addr);
3197 #ifdef __ARCH_SI_TRAPNO
3198 		new.si_trapno = from->si_trapno;
3199 #endif
3200 		break;
3201 	case SIL_FAULT_MCEERR:
3202 		new.si_addr = ptr_to_compat(from->si_addr);
3203 #ifdef __ARCH_SI_TRAPNO
3204 		new.si_trapno = from->si_trapno;
3205 #endif
3206 		new.si_addr_lsb = from->si_addr_lsb;
3207 		break;
3208 	case SIL_FAULT_BNDERR:
3209 		new.si_addr = ptr_to_compat(from->si_addr);
3210 #ifdef __ARCH_SI_TRAPNO
3211 		new.si_trapno = from->si_trapno;
3212 #endif
3213 		new.si_lower = ptr_to_compat(from->si_lower);
3214 		new.si_upper = ptr_to_compat(from->si_upper);
3215 		break;
3216 	case SIL_FAULT_PKUERR:
3217 		new.si_addr = ptr_to_compat(from->si_addr);
3218 #ifdef __ARCH_SI_TRAPNO
3219 		new.si_trapno = from->si_trapno;
3220 #endif
3221 		new.si_pkey = from->si_pkey;
3222 		break;
3223 	case SIL_CHLD:
3224 		new.si_pid    = from->si_pid;
3225 		new.si_uid    = from->si_uid;
3226 		new.si_status = from->si_status;
3227 #ifdef CONFIG_X86_X32_ABI
3228 		if (x32_ABI) {
3229 			new._sifields._sigchld_x32._utime = from->si_utime;
3230 			new._sifields._sigchld_x32._stime = from->si_stime;
3231 		} else
3232 #endif
3233 		{
3234 			new.si_utime = from->si_utime;
3235 			new.si_stime = from->si_stime;
3236 		}
3237 		break;
3238 	case SIL_RT:
3239 		new.si_pid = from->si_pid;
3240 		new.si_uid = from->si_uid;
3241 		new.si_int = from->si_int;
3242 		break;
3243 	case SIL_SYS:
3244 		new.si_call_addr = ptr_to_compat(from->si_call_addr);
3245 		new.si_syscall   = from->si_syscall;
3246 		new.si_arch      = from->si_arch;
3247 		break;
3248 	}
3249 
3250 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3251 		return -EFAULT;
3252 
3253 	return 0;
3254 }
3255 
3256 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3257 					 const struct compat_siginfo *from)
3258 {
3259 	clear_siginfo(to);
3260 	to->si_signo = from->si_signo;
3261 	to->si_errno = from->si_errno;
3262 	to->si_code  = from->si_code;
3263 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3264 	case SIL_KILL:
3265 		to->si_pid = from->si_pid;
3266 		to->si_uid = from->si_uid;
3267 		break;
3268 	case SIL_TIMER:
3269 		to->si_tid     = from->si_tid;
3270 		to->si_overrun = from->si_overrun;
3271 		to->si_int     = from->si_int;
3272 		break;
3273 	case SIL_POLL:
3274 		to->si_band = from->si_band;
3275 		to->si_fd   = from->si_fd;
3276 		break;
3277 	case SIL_FAULT:
3278 		to->si_addr = compat_ptr(from->si_addr);
3279 #ifdef __ARCH_SI_TRAPNO
3280 		to->si_trapno = from->si_trapno;
3281 #endif
3282 		break;
3283 	case SIL_FAULT_MCEERR:
3284 		to->si_addr = compat_ptr(from->si_addr);
3285 #ifdef __ARCH_SI_TRAPNO
3286 		to->si_trapno = from->si_trapno;
3287 #endif
3288 		to->si_addr_lsb = from->si_addr_lsb;
3289 		break;
3290 	case SIL_FAULT_BNDERR:
3291 		to->si_addr = compat_ptr(from->si_addr);
3292 #ifdef __ARCH_SI_TRAPNO
3293 		to->si_trapno = from->si_trapno;
3294 #endif
3295 		to->si_lower = compat_ptr(from->si_lower);
3296 		to->si_upper = compat_ptr(from->si_upper);
3297 		break;
3298 	case SIL_FAULT_PKUERR:
3299 		to->si_addr = compat_ptr(from->si_addr);
3300 #ifdef __ARCH_SI_TRAPNO
3301 		to->si_trapno = from->si_trapno;
3302 #endif
3303 		to->si_pkey = from->si_pkey;
3304 		break;
3305 	case SIL_CHLD:
3306 		to->si_pid    = from->si_pid;
3307 		to->si_uid    = from->si_uid;
3308 		to->si_status = from->si_status;
3309 #ifdef CONFIG_X86_X32_ABI
3310 		if (in_x32_syscall()) {
3311 			to->si_utime = from->_sifields._sigchld_x32._utime;
3312 			to->si_stime = from->_sifields._sigchld_x32._stime;
3313 		} else
3314 #endif
3315 		{
3316 			to->si_utime = from->si_utime;
3317 			to->si_stime = from->si_stime;
3318 		}
3319 		break;
3320 	case SIL_RT:
3321 		to->si_pid = from->si_pid;
3322 		to->si_uid = from->si_uid;
3323 		to->si_int = from->si_int;
3324 		break;
3325 	case SIL_SYS:
3326 		to->si_call_addr = compat_ptr(from->si_call_addr);
3327 		to->si_syscall   = from->si_syscall;
3328 		to->si_arch      = from->si_arch;
3329 		break;
3330 	}
3331 	return 0;
3332 }
3333 
3334 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3335 				      const struct compat_siginfo __user *ufrom)
3336 {
3337 	struct compat_siginfo from;
3338 
3339 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3340 		return -EFAULT;
3341 
3342 	from.si_signo = signo;
3343 	return post_copy_siginfo_from_user32(to, &from);
3344 }
3345 
3346 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3347 			     const struct compat_siginfo __user *ufrom)
3348 {
3349 	struct compat_siginfo from;
3350 
3351 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3352 		return -EFAULT;
3353 
3354 	return post_copy_siginfo_from_user32(to, &from);
3355 }
3356 #endif /* CONFIG_COMPAT */
3357 
3358 /**
3359  *  do_sigtimedwait - wait for queued signals specified in @which
3360  *  @which: queued signals to wait for
3361  *  @info: if non-null, the signal's siginfo is returned here
3362  *  @ts: upper bound on process time suspension
3363  */
3364 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3365 		    const struct timespec64 *ts)
3366 {
3367 	ktime_t *to = NULL, timeout = KTIME_MAX;
3368 	struct task_struct *tsk = current;
3369 	sigset_t mask = *which;
3370 	int sig, ret = 0;
3371 
3372 	if (ts) {
3373 		if (!timespec64_valid(ts))
3374 			return -EINVAL;
3375 		timeout = timespec64_to_ktime(*ts);
3376 		to = &timeout;
3377 	}
3378 
3379 	/*
3380 	 * Invert the set of allowed signals to get those we want to block.
3381 	 */
3382 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3383 	signotset(&mask);
3384 
3385 	spin_lock_irq(&tsk->sighand->siglock);
3386 	sig = dequeue_signal(tsk, &mask, info);
3387 	if (!sig && timeout) {
3388 		/*
3389 		 * None ready, temporarily unblock those we're interested
3390 		 * while we are sleeping in so that we'll be awakened when
3391 		 * they arrive. Unblocking is always fine, we can avoid
3392 		 * set_current_blocked().
3393 		 */
3394 		tsk->real_blocked = tsk->blocked;
3395 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3396 		recalc_sigpending();
3397 		spin_unlock_irq(&tsk->sighand->siglock);
3398 
3399 		__set_current_state(TASK_INTERRUPTIBLE);
3400 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3401 							 HRTIMER_MODE_REL);
3402 		spin_lock_irq(&tsk->sighand->siglock);
3403 		__set_task_blocked(tsk, &tsk->real_blocked);
3404 		sigemptyset(&tsk->real_blocked);
3405 		sig = dequeue_signal(tsk, &mask, info);
3406 	}
3407 	spin_unlock_irq(&tsk->sighand->siglock);
3408 
3409 	if (sig)
3410 		return sig;
3411 	return ret ? -EINTR : -EAGAIN;
3412 }
3413 
3414 /**
3415  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3416  *			in @uthese
3417  *  @uthese: queued signals to wait for
3418  *  @uinfo: if non-null, the signal's siginfo is returned here
3419  *  @uts: upper bound on process time suspension
3420  *  @sigsetsize: size of sigset_t type
3421  */
3422 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3423 		siginfo_t __user *, uinfo,
3424 		const struct __kernel_timespec __user *, uts,
3425 		size_t, sigsetsize)
3426 {
3427 	sigset_t these;
3428 	struct timespec64 ts;
3429 	kernel_siginfo_t info;
3430 	int ret;
3431 
3432 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3433 	if (sigsetsize != sizeof(sigset_t))
3434 		return -EINVAL;
3435 
3436 	if (copy_from_user(&these, uthese, sizeof(these)))
3437 		return -EFAULT;
3438 
3439 	if (uts) {
3440 		if (get_timespec64(&ts, uts))
3441 			return -EFAULT;
3442 	}
3443 
3444 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3445 
3446 	if (ret > 0 && uinfo) {
3447 		if (copy_siginfo_to_user(uinfo, &info))
3448 			ret = -EFAULT;
3449 	}
3450 
3451 	return ret;
3452 }
3453 
3454 #ifdef CONFIG_COMPAT_32BIT_TIME
3455 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3456 		siginfo_t __user *, uinfo,
3457 		const struct old_timespec32 __user *, uts,
3458 		size_t, sigsetsize)
3459 {
3460 	sigset_t these;
3461 	struct timespec64 ts;
3462 	kernel_siginfo_t info;
3463 	int ret;
3464 
3465 	if (sigsetsize != sizeof(sigset_t))
3466 		return -EINVAL;
3467 
3468 	if (copy_from_user(&these, uthese, sizeof(these)))
3469 		return -EFAULT;
3470 
3471 	if (uts) {
3472 		if (get_old_timespec32(&ts, uts))
3473 			return -EFAULT;
3474 	}
3475 
3476 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3477 
3478 	if (ret > 0 && uinfo) {
3479 		if (copy_siginfo_to_user(uinfo, &info))
3480 			ret = -EFAULT;
3481 	}
3482 
3483 	return ret;
3484 }
3485 #endif
3486 
3487 #ifdef CONFIG_COMPAT
3488 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3489 		struct compat_siginfo __user *, uinfo,
3490 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3491 {
3492 	sigset_t s;
3493 	struct timespec64 t;
3494 	kernel_siginfo_t info;
3495 	long ret;
3496 
3497 	if (sigsetsize != sizeof(sigset_t))
3498 		return -EINVAL;
3499 
3500 	if (get_compat_sigset(&s, uthese))
3501 		return -EFAULT;
3502 
3503 	if (uts) {
3504 		if (get_timespec64(&t, uts))
3505 			return -EFAULT;
3506 	}
3507 
3508 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3509 
3510 	if (ret > 0 && uinfo) {
3511 		if (copy_siginfo_to_user32(uinfo, &info))
3512 			ret = -EFAULT;
3513 	}
3514 
3515 	return ret;
3516 }
3517 
3518 #ifdef CONFIG_COMPAT_32BIT_TIME
3519 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3520 		struct compat_siginfo __user *, uinfo,
3521 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3522 {
3523 	sigset_t s;
3524 	struct timespec64 t;
3525 	kernel_siginfo_t info;
3526 	long ret;
3527 
3528 	if (sigsetsize != sizeof(sigset_t))
3529 		return -EINVAL;
3530 
3531 	if (get_compat_sigset(&s, uthese))
3532 		return -EFAULT;
3533 
3534 	if (uts) {
3535 		if (get_old_timespec32(&t, uts))
3536 			return -EFAULT;
3537 	}
3538 
3539 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3540 
3541 	if (ret > 0 && uinfo) {
3542 		if (copy_siginfo_to_user32(uinfo, &info))
3543 			ret = -EFAULT;
3544 	}
3545 
3546 	return ret;
3547 }
3548 #endif
3549 #endif
3550 
3551 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3552 {
3553 	clear_siginfo(info);
3554 	info->si_signo = sig;
3555 	info->si_errno = 0;
3556 	info->si_code = SI_USER;
3557 	info->si_pid = task_tgid_vnr(current);
3558 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3559 }
3560 
3561 /**
3562  *  sys_kill - send a signal to a process
3563  *  @pid: the PID of the process
3564  *  @sig: signal to be sent
3565  */
3566 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3567 {
3568 	struct kernel_siginfo info;
3569 
3570 	prepare_kill_siginfo(sig, &info);
3571 
3572 	return kill_something_info(sig, &info, pid);
3573 }
3574 
3575 /*
3576  * Verify that the signaler and signalee either are in the same pid namespace
3577  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3578  * namespace.
3579  */
3580 static bool access_pidfd_pidns(struct pid *pid)
3581 {
3582 	struct pid_namespace *active = task_active_pid_ns(current);
3583 	struct pid_namespace *p = ns_of_pid(pid);
3584 
3585 	for (;;) {
3586 		if (!p)
3587 			return false;
3588 		if (p == active)
3589 			break;
3590 		p = p->parent;
3591 	}
3592 
3593 	return true;
3594 }
3595 
3596 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info)
3597 {
3598 #ifdef CONFIG_COMPAT
3599 	/*
3600 	 * Avoid hooking up compat syscalls and instead handle necessary
3601 	 * conversions here. Note, this is a stop-gap measure and should not be
3602 	 * considered a generic solution.
3603 	 */
3604 	if (in_compat_syscall())
3605 		return copy_siginfo_from_user32(
3606 			kinfo, (struct compat_siginfo __user *)info);
3607 #endif
3608 	return copy_siginfo_from_user(kinfo, info);
3609 }
3610 
3611 static struct pid *pidfd_to_pid(const struct file *file)
3612 {
3613 	if (file->f_op == &pidfd_fops)
3614 		return file->private_data;
3615 
3616 	return tgid_pidfd_to_pid(file);
3617 }
3618 
3619 /**
3620  * sys_pidfd_send_signal - send a signal to a process through a task file
3621  *                          descriptor
3622  * @pidfd:  the file descriptor of the process
3623  * @sig:    signal to be sent
3624  * @info:   the signal info
3625  * @flags:  future flags to be passed
3626  *
3627  * The syscall currently only signals via PIDTYPE_PID which covers
3628  * kill(<positive-pid>, <signal>. It does not signal threads or process
3629  * groups.
3630  * In order to extend the syscall to threads and process groups the @flags
3631  * argument should be used. In essence, the @flags argument will determine
3632  * what is signaled and not the file descriptor itself. Put in other words,
3633  * grouping is a property of the flags argument not a property of the file
3634  * descriptor.
3635  *
3636  * Return: 0 on success, negative errno on failure
3637  */
3638 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3639 		siginfo_t __user *, info, unsigned int, flags)
3640 {
3641 	int ret;
3642 	struct fd f;
3643 	struct pid *pid;
3644 	kernel_siginfo_t kinfo;
3645 
3646 	/* Enforce flags be set to 0 until we add an extension. */
3647 	if (flags)
3648 		return -EINVAL;
3649 
3650 	f = fdget(pidfd);
3651 	if (!f.file)
3652 		return -EBADF;
3653 
3654 	/* Is this a pidfd? */
3655 	pid = pidfd_to_pid(f.file);
3656 	if (IS_ERR(pid)) {
3657 		ret = PTR_ERR(pid);
3658 		goto err;
3659 	}
3660 
3661 	ret = -EINVAL;
3662 	if (!access_pidfd_pidns(pid))
3663 		goto err;
3664 
3665 	if (info) {
3666 		ret = copy_siginfo_from_user_any(&kinfo, info);
3667 		if (unlikely(ret))
3668 			goto err;
3669 
3670 		ret = -EINVAL;
3671 		if (unlikely(sig != kinfo.si_signo))
3672 			goto err;
3673 
3674 		/* Only allow sending arbitrary signals to yourself. */
3675 		ret = -EPERM;
3676 		if ((task_pid(current) != pid) &&
3677 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3678 			goto err;
3679 	} else {
3680 		prepare_kill_siginfo(sig, &kinfo);
3681 	}
3682 
3683 	ret = kill_pid_info(sig, &kinfo, pid);
3684 
3685 err:
3686 	fdput(f);
3687 	return ret;
3688 }
3689 
3690 static int
3691 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3692 {
3693 	struct task_struct *p;
3694 	int error = -ESRCH;
3695 
3696 	rcu_read_lock();
3697 	p = find_task_by_vpid(pid);
3698 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3699 		error = check_kill_permission(sig, info, p);
3700 		/*
3701 		 * The null signal is a permissions and process existence
3702 		 * probe.  No signal is actually delivered.
3703 		 */
3704 		if (!error && sig) {
3705 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3706 			/*
3707 			 * If lock_task_sighand() failed we pretend the task
3708 			 * dies after receiving the signal. The window is tiny,
3709 			 * and the signal is private anyway.
3710 			 */
3711 			if (unlikely(error == -ESRCH))
3712 				error = 0;
3713 		}
3714 	}
3715 	rcu_read_unlock();
3716 
3717 	return error;
3718 }
3719 
3720 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3721 {
3722 	struct kernel_siginfo info;
3723 
3724 	clear_siginfo(&info);
3725 	info.si_signo = sig;
3726 	info.si_errno = 0;
3727 	info.si_code = SI_TKILL;
3728 	info.si_pid = task_tgid_vnr(current);
3729 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3730 
3731 	return do_send_specific(tgid, pid, sig, &info);
3732 }
3733 
3734 /**
3735  *  sys_tgkill - send signal to one specific thread
3736  *  @tgid: the thread group ID of the thread
3737  *  @pid: the PID of the thread
3738  *  @sig: signal to be sent
3739  *
3740  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3741  *  exists but it's not belonging to the target process anymore. This
3742  *  method solves the problem of threads exiting and PIDs getting reused.
3743  */
3744 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3745 {
3746 	/* This is only valid for single tasks */
3747 	if (pid <= 0 || tgid <= 0)
3748 		return -EINVAL;
3749 
3750 	return do_tkill(tgid, pid, sig);
3751 }
3752 
3753 /**
3754  *  sys_tkill - send signal to one specific task
3755  *  @pid: the PID of the task
3756  *  @sig: signal to be sent
3757  *
3758  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3759  */
3760 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3761 {
3762 	/* This is only valid for single tasks */
3763 	if (pid <= 0)
3764 		return -EINVAL;
3765 
3766 	return do_tkill(0, pid, sig);
3767 }
3768 
3769 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3770 {
3771 	/* Not even root can pretend to send signals from the kernel.
3772 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3773 	 */
3774 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3775 	    (task_pid_vnr(current) != pid))
3776 		return -EPERM;
3777 
3778 	/* POSIX.1b doesn't mention process groups.  */
3779 	return kill_proc_info(sig, info, pid);
3780 }
3781 
3782 /**
3783  *  sys_rt_sigqueueinfo - send signal information to a signal
3784  *  @pid: the PID of the thread
3785  *  @sig: signal to be sent
3786  *  @uinfo: signal info to be sent
3787  */
3788 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3789 		siginfo_t __user *, uinfo)
3790 {
3791 	kernel_siginfo_t info;
3792 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3793 	if (unlikely(ret))
3794 		return ret;
3795 	return do_rt_sigqueueinfo(pid, sig, &info);
3796 }
3797 
3798 #ifdef CONFIG_COMPAT
3799 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3800 			compat_pid_t, pid,
3801 			int, sig,
3802 			struct compat_siginfo __user *, uinfo)
3803 {
3804 	kernel_siginfo_t info;
3805 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3806 	if (unlikely(ret))
3807 		return ret;
3808 	return do_rt_sigqueueinfo(pid, sig, &info);
3809 }
3810 #endif
3811 
3812 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3813 {
3814 	/* This is only valid for single tasks */
3815 	if (pid <= 0 || tgid <= 0)
3816 		return -EINVAL;
3817 
3818 	/* Not even root can pretend to send signals from the kernel.
3819 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3820 	 */
3821 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3822 	    (task_pid_vnr(current) != pid))
3823 		return -EPERM;
3824 
3825 	return do_send_specific(tgid, pid, sig, info);
3826 }
3827 
3828 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3829 		siginfo_t __user *, uinfo)
3830 {
3831 	kernel_siginfo_t info;
3832 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3833 	if (unlikely(ret))
3834 		return ret;
3835 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3836 }
3837 
3838 #ifdef CONFIG_COMPAT
3839 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3840 			compat_pid_t, tgid,
3841 			compat_pid_t, pid,
3842 			int, sig,
3843 			struct compat_siginfo __user *, uinfo)
3844 {
3845 	kernel_siginfo_t info;
3846 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3847 	if (unlikely(ret))
3848 		return ret;
3849 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3850 }
3851 #endif
3852 
3853 /*
3854  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3855  */
3856 void kernel_sigaction(int sig, __sighandler_t action)
3857 {
3858 	spin_lock_irq(&current->sighand->siglock);
3859 	current->sighand->action[sig - 1].sa.sa_handler = action;
3860 	if (action == SIG_IGN) {
3861 		sigset_t mask;
3862 
3863 		sigemptyset(&mask);
3864 		sigaddset(&mask, sig);
3865 
3866 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3867 		flush_sigqueue_mask(&mask, &current->pending);
3868 		recalc_sigpending();
3869 	}
3870 	spin_unlock_irq(&current->sighand->siglock);
3871 }
3872 EXPORT_SYMBOL(kernel_sigaction);
3873 
3874 void __weak sigaction_compat_abi(struct k_sigaction *act,
3875 		struct k_sigaction *oact)
3876 {
3877 }
3878 
3879 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3880 {
3881 	struct task_struct *p = current, *t;
3882 	struct k_sigaction *k;
3883 	sigset_t mask;
3884 
3885 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3886 		return -EINVAL;
3887 
3888 	k = &p->sighand->action[sig-1];
3889 
3890 	spin_lock_irq(&p->sighand->siglock);
3891 	if (oact)
3892 		*oact = *k;
3893 
3894 	sigaction_compat_abi(act, oact);
3895 
3896 	if (act) {
3897 		sigdelsetmask(&act->sa.sa_mask,
3898 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3899 		*k = *act;
3900 		/*
3901 		 * POSIX 3.3.1.3:
3902 		 *  "Setting a signal action to SIG_IGN for a signal that is
3903 		 *   pending shall cause the pending signal to be discarded,
3904 		 *   whether or not it is blocked."
3905 		 *
3906 		 *  "Setting a signal action to SIG_DFL for a signal that is
3907 		 *   pending and whose default action is to ignore the signal
3908 		 *   (for example, SIGCHLD), shall cause the pending signal to
3909 		 *   be discarded, whether or not it is blocked"
3910 		 */
3911 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3912 			sigemptyset(&mask);
3913 			sigaddset(&mask, sig);
3914 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3915 			for_each_thread(p, t)
3916 				flush_sigqueue_mask(&mask, &t->pending);
3917 		}
3918 	}
3919 
3920 	spin_unlock_irq(&p->sighand->siglock);
3921 	return 0;
3922 }
3923 
3924 static int
3925 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
3926 		size_t min_ss_size)
3927 {
3928 	struct task_struct *t = current;
3929 
3930 	if (oss) {
3931 		memset(oss, 0, sizeof(stack_t));
3932 		oss->ss_sp = (void __user *) t->sas_ss_sp;
3933 		oss->ss_size = t->sas_ss_size;
3934 		oss->ss_flags = sas_ss_flags(sp) |
3935 			(current->sas_ss_flags & SS_FLAG_BITS);
3936 	}
3937 
3938 	if (ss) {
3939 		void __user *ss_sp = ss->ss_sp;
3940 		size_t ss_size = ss->ss_size;
3941 		unsigned ss_flags = ss->ss_flags;
3942 		int ss_mode;
3943 
3944 		if (unlikely(on_sig_stack(sp)))
3945 			return -EPERM;
3946 
3947 		ss_mode = ss_flags & ~SS_FLAG_BITS;
3948 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3949 				ss_mode != 0))
3950 			return -EINVAL;
3951 
3952 		if (ss_mode == SS_DISABLE) {
3953 			ss_size = 0;
3954 			ss_sp = NULL;
3955 		} else {
3956 			if (unlikely(ss_size < min_ss_size))
3957 				return -ENOMEM;
3958 		}
3959 
3960 		t->sas_ss_sp = (unsigned long) ss_sp;
3961 		t->sas_ss_size = ss_size;
3962 		t->sas_ss_flags = ss_flags;
3963 	}
3964 	return 0;
3965 }
3966 
3967 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3968 {
3969 	stack_t new, old;
3970 	int err;
3971 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
3972 		return -EFAULT;
3973 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
3974 			      current_user_stack_pointer(),
3975 			      MINSIGSTKSZ);
3976 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
3977 		err = -EFAULT;
3978 	return err;
3979 }
3980 
3981 int restore_altstack(const stack_t __user *uss)
3982 {
3983 	stack_t new;
3984 	if (copy_from_user(&new, uss, sizeof(stack_t)))
3985 		return -EFAULT;
3986 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
3987 			     MINSIGSTKSZ);
3988 	/* squash all but EFAULT for now */
3989 	return 0;
3990 }
3991 
3992 int __save_altstack(stack_t __user *uss, unsigned long sp)
3993 {
3994 	struct task_struct *t = current;
3995 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3996 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3997 		__put_user(t->sas_ss_size, &uss->ss_size);
3998 	if (err)
3999 		return err;
4000 	if (t->sas_ss_flags & SS_AUTODISARM)
4001 		sas_ss_reset(t);
4002 	return 0;
4003 }
4004 
4005 #ifdef CONFIG_COMPAT
4006 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4007 				 compat_stack_t __user *uoss_ptr)
4008 {
4009 	stack_t uss, uoss;
4010 	int ret;
4011 
4012 	if (uss_ptr) {
4013 		compat_stack_t uss32;
4014 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4015 			return -EFAULT;
4016 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4017 		uss.ss_flags = uss32.ss_flags;
4018 		uss.ss_size = uss32.ss_size;
4019 	}
4020 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4021 			     compat_user_stack_pointer(),
4022 			     COMPAT_MINSIGSTKSZ);
4023 	if (ret >= 0 && uoss_ptr)  {
4024 		compat_stack_t old;
4025 		memset(&old, 0, sizeof(old));
4026 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4027 		old.ss_flags = uoss.ss_flags;
4028 		old.ss_size = uoss.ss_size;
4029 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4030 			ret = -EFAULT;
4031 	}
4032 	return ret;
4033 }
4034 
4035 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4036 			const compat_stack_t __user *, uss_ptr,
4037 			compat_stack_t __user *, uoss_ptr)
4038 {
4039 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4040 }
4041 
4042 int compat_restore_altstack(const compat_stack_t __user *uss)
4043 {
4044 	int err = do_compat_sigaltstack(uss, NULL);
4045 	/* squash all but -EFAULT for now */
4046 	return err == -EFAULT ? err : 0;
4047 }
4048 
4049 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4050 {
4051 	int err;
4052 	struct task_struct *t = current;
4053 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4054 			 &uss->ss_sp) |
4055 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4056 		__put_user(t->sas_ss_size, &uss->ss_size);
4057 	if (err)
4058 		return err;
4059 	if (t->sas_ss_flags & SS_AUTODISARM)
4060 		sas_ss_reset(t);
4061 	return 0;
4062 }
4063 #endif
4064 
4065 #ifdef __ARCH_WANT_SYS_SIGPENDING
4066 
4067 /**
4068  *  sys_sigpending - examine pending signals
4069  *  @uset: where mask of pending signal is returned
4070  */
4071 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4072 {
4073 	sigset_t set;
4074 
4075 	if (sizeof(old_sigset_t) > sizeof(*uset))
4076 		return -EINVAL;
4077 
4078 	do_sigpending(&set);
4079 
4080 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4081 		return -EFAULT;
4082 
4083 	return 0;
4084 }
4085 
4086 #ifdef CONFIG_COMPAT
4087 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4088 {
4089 	sigset_t set;
4090 
4091 	do_sigpending(&set);
4092 
4093 	return put_user(set.sig[0], set32);
4094 }
4095 #endif
4096 
4097 #endif
4098 
4099 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4100 /**
4101  *  sys_sigprocmask - examine and change blocked signals
4102  *  @how: whether to add, remove, or set signals
4103  *  @nset: signals to add or remove (if non-null)
4104  *  @oset: previous value of signal mask if non-null
4105  *
4106  * Some platforms have their own version with special arguments;
4107  * others support only sys_rt_sigprocmask.
4108  */
4109 
4110 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4111 		old_sigset_t __user *, oset)
4112 {
4113 	old_sigset_t old_set, new_set;
4114 	sigset_t new_blocked;
4115 
4116 	old_set = current->blocked.sig[0];
4117 
4118 	if (nset) {
4119 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4120 			return -EFAULT;
4121 
4122 		new_blocked = current->blocked;
4123 
4124 		switch (how) {
4125 		case SIG_BLOCK:
4126 			sigaddsetmask(&new_blocked, new_set);
4127 			break;
4128 		case SIG_UNBLOCK:
4129 			sigdelsetmask(&new_blocked, new_set);
4130 			break;
4131 		case SIG_SETMASK:
4132 			new_blocked.sig[0] = new_set;
4133 			break;
4134 		default:
4135 			return -EINVAL;
4136 		}
4137 
4138 		set_current_blocked(&new_blocked);
4139 	}
4140 
4141 	if (oset) {
4142 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4143 			return -EFAULT;
4144 	}
4145 
4146 	return 0;
4147 }
4148 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4149 
4150 #ifndef CONFIG_ODD_RT_SIGACTION
4151 /**
4152  *  sys_rt_sigaction - alter an action taken by a process
4153  *  @sig: signal to be sent
4154  *  @act: new sigaction
4155  *  @oact: used to save the previous sigaction
4156  *  @sigsetsize: size of sigset_t type
4157  */
4158 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4159 		const struct sigaction __user *, act,
4160 		struct sigaction __user *, oact,
4161 		size_t, sigsetsize)
4162 {
4163 	struct k_sigaction new_sa, old_sa;
4164 	int ret;
4165 
4166 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4167 	if (sigsetsize != sizeof(sigset_t))
4168 		return -EINVAL;
4169 
4170 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4171 		return -EFAULT;
4172 
4173 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4174 	if (ret)
4175 		return ret;
4176 
4177 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4178 		return -EFAULT;
4179 
4180 	return 0;
4181 }
4182 #ifdef CONFIG_COMPAT
4183 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4184 		const struct compat_sigaction __user *, act,
4185 		struct compat_sigaction __user *, oact,
4186 		compat_size_t, sigsetsize)
4187 {
4188 	struct k_sigaction new_ka, old_ka;
4189 #ifdef __ARCH_HAS_SA_RESTORER
4190 	compat_uptr_t restorer;
4191 #endif
4192 	int ret;
4193 
4194 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4195 	if (sigsetsize != sizeof(compat_sigset_t))
4196 		return -EINVAL;
4197 
4198 	if (act) {
4199 		compat_uptr_t handler;
4200 		ret = get_user(handler, &act->sa_handler);
4201 		new_ka.sa.sa_handler = compat_ptr(handler);
4202 #ifdef __ARCH_HAS_SA_RESTORER
4203 		ret |= get_user(restorer, &act->sa_restorer);
4204 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4205 #endif
4206 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4207 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4208 		if (ret)
4209 			return -EFAULT;
4210 	}
4211 
4212 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4213 	if (!ret && oact) {
4214 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4215 			       &oact->sa_handler);
4216 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4217 					 sizeof(oact->sa_mask));
4218 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4219 #ifdef __ARCH_HAS_SA_RESTORER
4220 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4221 				&oact->sa_restorer);
4222 #endif
4223 	}
4224 	return ret;
4225 }
4226 #endif
4227 #endif /* !CONFIG_ODD_RT_SIGACTION */
4228 
4229 #ifdef CONFIG_OLD_SIGACTION
4230 SYSCALL_DEFINE3(sigaction, int, sig,
4231 		const struct old_sigaction __user *, act,
4232 	        struct old_sigaction __user *, oact)
4233 {
4234 	struct k_sigaction new_ka, old_ka;
4235 	int ret;
4236 
4237 	if (act) {
4238 		old_sigset_t mask;
4239 		if (!access_ok(act, sizeof(*act)) ||
4240 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4241 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4242 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4243 		    __get_user(mask, &act->sa_mask))
4244 			return -EFAULT;
4245 #ifdef __ARCH_HAS_KA_RESTORER
4246 		new_ka.ka_restorer = NULL;
4247 #endif
4248 		siginitset(&new_ka.sa.sa_mask, mask);
4249 	}
4250 
4251 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4252 
4253 	if (!ret && oact) {
4254 		if (!access_ok(oact, sizeof(*oact)) ||
4255 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4256 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4257 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4258 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4259 			return -EFAULT;
4260 	}
4261 
4262 	return ret;
4263 }
4264 #endif
4265 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4266 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4267 		const struct compat_old_sigaction __user *, act,
4268 	        struct compat_old_sigaction __user *, oact)
4269 {
4270 	struct k_sigaction new_ka, old_ka;
4271 	int ret;
4272 	compat_old_sigset_t mask;
4273 	compat_uptr_t handler, restorer;
4274 
4275 	if (act) {
4276 		if (!access_ok(act, sizeof(*act)) ||
4277 		    __get_user(handler, &act->sa_handler) ||
4278 		    __get_user(restorer, &act->sa_restorer) ||
4279 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4280 		    __get_user(mask, &act->sa_mask))
4281 			return -EFAULT;
4282 
4283 #ifdef __ARCH_HAS_KA_RESTORER
4284 		new_ka.ka_restorer = NULL;
4285 #endif
4286 		new_ka.sa.sa_handler = compat_ptr(handler);
4287 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4288 		siginitset(&new_ka.sa.sa_mask, mask);
4289 	}
4290 
4291 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4292 
4293 	if (!ret && oact) {
4294 		if (!access_ok(oact, sizeof(*oact)) ||
4295 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4296 			       &oact->sa_handler) ||
4297 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4298 			       &oact->sa_restorer) ||
4299 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4300 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4301 			return -EFAULT;
4302 	}
4303 	return ret;
4304 }
4305 #endif
4306 
4307 #ifdef CONFIG_SGETMASK_SYSCALL
4308 
4309 /*
4310  * For backwards compatibility.  Functionality superseded by sigprocmask.
4311  */
4312 SYSCALL_DEFINE0(sgetmask)
4313 {
4314 	/* SMP safe */
4315 	return current->blocked.sig[0];
4316 }
4317 
4318 SYSCALL_DEFINE1(ssetmask, int, newmask)
4319 {
4320 	int old = current->blocked.sig[0];
4321 	sigset_t newset;
4322 
4323 	siginitset(&newset, newmask);
4324 	set_current_blocked(&newset);
4325 
4326 	return old;
4327 }
4328 #endif /* CONFIG_SGETMASK_SYSCALL */
4329 
4330 #ifdef __ARCH_WANT_SYS_SIGNAL
4331 /*
4332  * For backwards compatibility.  Functionality superseded by sigaction.
4333  */
4334 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4335 {
4336 	struct k_sigaction new_sa, old_sa;
4337 	int ret;
4338 
4339 	new_sa.sa.sa_handler = handler;
4340 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4341 	sigemptyset(&new_sa.sa.sa_mask);
4342 
4343 	ret = do_sigaction(sig, &new_sa, &old_sa);
4344 
4345 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4346 }
4347 #endif /* __ARCH_WANT_SYS_SIGNAL */
4348 
4349 #ifdef __ARCH_WANT_SYS_PAUSE
4350 
4351 SYSCALL_DEFINE0(pause)
4352 {
4353 	while (!signal_pending(current)) {
4354 		__set_current_state(TASK_INTERRUPTIBLE);
4355 		schedule();
4356 	}
4357 	return -ERESTARTNOHAND;
4358 }
4359 
4360 #endif
4361 
4362 static int sigsuspend(sigset_t *set)
4363 {
4364 	current->saved_sigmask = current->blocked;
4365 	set_current_blocked(set);
4366 
4367 	while (!signal_pending(current)) {
4368 		__set_current_state(TASK_INTERRUPTIBLE);
4369 		schedule();
4370 	}
4371 	set_restore_sigmask();
4372 	return -ERESTARTNOHAND;
4373 }
4374 
4375 /**
4376  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4377  *	@unewset value until a signal is received
4378  *  @unewset: new signal mask value
4379  *  @sigsetsize: size of sigset_t type
4380  */
4381 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4382 {
4383 	sigset_t newset;
4384 
4385 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4386 	if (sigsetsize != sizeof(sigset_t))
4387 		return -EINVAL;
4388 
4389 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4390 		return -EFAULT;
4391 	return sigsuspend(&newset);
4392 }
4393 
4394 #ifdef CONFIG_COMPAT
4395 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4396 {
4397 	sigset_t newset;
4398 
4399 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4400 	if (sigsetsize != sizeof(sigset_t))
4401 		return -EINVAL;
4402 
4403 	if (get_compat_sigset(&newset, unewset))
4404 		return -EFAULT;
4405 	return sigsuspend(&newset);
4406 }
4407 #endif
4408 
4409 #ifdef CONFIG_OLD_SIGSUSPEND
4410 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4411 {
4412 	sigset_t blocked;
4413 	siginitset(&blocked, mask);
4414 	return sigsuspend(&blocked);
4415 }
4416 #endif
4417 #ifdef CONFIG_OLD_SIGSUSPEND3
4418 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4419 {
4420 	sigset_t blocked;
4421 	siginitset(&blocked, mask);
4422 	return sigsuspend(&blocked);
4423 }
4424 #endif
4425 
4426 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4427 {
4428 	return NULL;
4429 }
4430 
4431 static inline void siginfo_buildtime_checks(void)
4432 {
4433 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4434 
4435 	/* Verify the offsets in the two siginfos match */
4436 #define CHECK_OFFSET(field) \
4437 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4438 
4439 	/* kill */
4440 	CHECK_OFFSET(si_pid);
4441 	CHECK_OFFSET(si_uid);
4442 
4443 	/* timer */
4444 	CHECK_OFFSET(si_tid);
4445 	CHECK_OFFSET(si_overrun);
4446 	CHECK_OFFSET(si_value);
4447 
4448 	/* rt */
4449 	CHECK_OFFSET(si_pid);
4450 	CHECK_OFFSET(si_uid);
4451 	CHECK_OFFSET(si_value);
4452 
4453 	/* sigchld */
4454 	CHECK_OFFSET(si_pid);
4455 	CHECK_OFFSET(si_uid);
4456 	CHECK_OFFSET(si_status);
4457 	CHECK_OFFSET(si_utime);
4458 	CHECK_OFFSET(si_stime);
4459 
4460 	/* sigfault */
4461 	CHECK_OFFSET(si_addr);
4462 	CHECK_OFFSET(si_addr_lsb);
4463 	CHECK_OFFSET(si_lower);
4464 	CHECK_OFFSET(si_upper);
4465 	CHECK_OFFSET(si_pkey);
4466 
4467 	/* sigpoll */
4468 	CHECK_OFFSET(si_band);
4469 	CHECK_OFFSET(si_fd);
4470 
4471 	/* sigsys */
4472 	CHECK_OFFSET(si_call_addr);
4473 	CHECK_OFFSET(si_syscall);
4474 	CHECK_OFFSET(si_arch);
4475 #undef CHECK_OFFSET
4476 }
4477 
4478 void __init signals_init(void)
4479 {
4480 	siginfo_buildtime_checks();
4481 
4482 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4483 }
4484 
4485 #ifdef CONFIG_KGDB_KDB
4486 #include <linux/kdb.h>
4487 /*
4488  * kdb_send_sig - Allows kdb to send signals without exposing
4489  * signal internals.  This function checks if the required locks are
4490  * available before calling the main signal code, to avoid kdb
4491  * deadlocks.
4492  */
4493 void kdb_send_sig(struct task_struct *t, int sig)
4494 {
4495 	static struct task_struct *kdb_prev_t;
4496 	int new_t, ret;
4497 	if (!spin_trylock(&t->sighand->siglock)) {
4498 		kdb_printf("Can't do kill command now.\n"
4499 			   "The sigmask lock is held somewhere else in "
4500 			   "kernel, try again later\n");
4501 		return;
4502 	}
4503 	new_t = kdb_prev_t != t;
4504 	kdb_prev_t = t;
4505 	if (t->state != TASK_RUNNING && new_t) {
4506 		spin_unlock(&t->sighand->siglock);
4507 		kdb_printf("Process is not RUNNING, sending a signal from "
4508 			   "kdb risks deadlock\n"
4509 			   "on the run queue locks. "
4510 			   "The signal has _not_ been sent.\n"
4511 			   "Reissue the kill command if you want to risk "
4512 			   "the deadlock.\n");
4513 		return;
4514 	}
4515 	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4516 	spin_unlock(&t->sighand->siglock);
4517 	if (ret)
4518 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4519 			   sig, t->pid);
4520 	else
4521 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4522 }
4523 #endif	/* CONFIG_KGDB_KDB */
4524