xref: /linux/kernel/signal.c (revision 7ec7fb394298c212c30e063c57e0aa895efe9439)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/tracehook.h>
26 #include <linux/capability.h>
27 #include <linux/freezer.h>
28 #include <linux/pid_namespace.h>
29 #include <linux/nsproxy.h>
30 #include <trace/sched.h>
31 
32 #include <asm/param.h>
33 #include <asm/uaccess.h>
34 #include <asm/unistd.h>
35 #include <asm/siginfo.h>
36 #include "audit.h"	/* audit_signal_info() */
37 
38 /*
39  * SLAB caches for signal bits.
40  */
41 
42 static struct kmem_cache *sigqueue_cachep;
43 
44 DEFINE_TRACE(sched_signal_send);
45 
46 static void __user *sig_handler(struct task_struct *t, int sig)
47 {
48 	return t->sighand->action[sig - 1].sa.sa_handler;
49 }
50 
51 static int sig_handler_ignored(void __user *handler, int sig)
52 {
53 	/* Is it explicitly or implicitly ignored? */
54 	return handler == SIG_IGN ||
55 		(handler == SIG_DFL && sig_kernel_ignore(sig));
56 }
57 
58 static int sig_ignored(struct task_struct *t, int sig)
59 {
60 	void __user *handler;
61 
62 	/*
63 	 * Blocked signals are never ignored, since the
64 	 * signal handler may change by the time it is
65 	 * unblocked.
66 	 */
67 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
68 		return 0;
69 
70 	handler = sig_handler(t, sig);
71 	if (!sig_handler_ignored(handler, sig))
72 		return 0;
73 
74 	/*
75 	 * Tracers may want to know about even ignored signals.
76 	 */
77 	return !tracehook_consider_ignored_signal(t, sig, handler);
78 }
79 
80 /*
81  * Re-calculate pending state from the set of locally pending
82  * signals, globally pending signals, and blocked signals.
83  */
84 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
85 {
86 	unsigned long ready;
87 	long i;
88 
89 	switch (_NSIG_WORDS) {
90 	default:
91 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
92 			ready |= signal->sig[i] &~ blocked->sig[i];
93 		break;
94 
95 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
96 		ready |= signal->sig[2] &~ blocked->sig[2];
97 		ready |= signal->sig[1] &~ blocked->sig[1];
98 		ready |= signal->sig[0] &~ blocked->sig[0];
99 		break;
100 
101 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
102 		ready |= signal->sig[0] &~ blocked->sig[0];
103 		break;
104 
105 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
106 	}
107 	return ready !=	0;
108 }
109 
110 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
111 
112 static int recalc_sigpending_tsk(struct task_struct *t)
113 {
114 	if (t->signal->group_stop_count > 0 ||
115 	    PENDING(&t->pending, &t->blocked) ||
116 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
117 		set_tsk_thread_flag(t, TIF_SIGPENDING);
118 		return 1;
119 	}
120 	/*
121 	 * We must never clear the flag in another thread, or in current
122 	 * when it's possible the current syscall is returning -ERESTART*.
123 	 * So we don't clear it here, and only callers who know they should do.
124 	 */
125 	return 0;
126 }
127 
128 /*
129  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
130  * This is superfluous when called on current, the wakeup is a harmless no-op.
131  */
132 void recalc_sigpending_and_wake(struct task_struct *t)
133 {
134 	if (recalc_sigpending_tsk(t))
135 		signal_wake_up(t, 0);
136 }
137 
138 void recalc_sigpending(void)
139 {
140 	if (unlikely(tracehook_force_sigpending()))
141 		set_thread_flag(TIF_SIGPENDING);
142 	else if (!recalc_sigpending_tsk(current) && !freezing(current))
143 		clear_thread_flag(TIF_SIGPENDING);
144 
145 }
146 
147 /* Given the mask, find the first available signal that should be serviced. */
148 
149 int next_signal(struct sigpending *pending, sigset_t *mask)
150 {
151 	unsigned long i, *s, *m, x;
152 	int sig = 0;
153 
154 	s = pending->signal.sig;
155 	m = mask->sig;
156 	switch (_NSIG_WORDS) {
157 	default:
158 		for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
159 			if ((x = *s &~ *m) != 0) {
160 				sig = ffz(~x) + i*_NSIG_BPW + 1;
161 				break;
162 			}
163 		break;
164 
165 	case 2: if ((x = s[0] &~ m[0]) != 0)
166 			sig = 1;
167 		else if ((x = s[1] &~ m[1]) != 0)
168 			sig = _NSIG_BPW + 1;
169 		else
170 			break;
171 		sig += ffz(~x);
172 		break;
173 
174 	case 1: if ((x = *s &~ *m) != 0)
175 			sig = ffz(~x) + 1;
176 		break;
177 	}
178 
179 	return sig;
180 }
181 
182 /*
183  * allocate a new signal queue record
184  * - this may be called without locks if and only if t == current, otherwise an
185  *   appopriate lock must be held to stop the target task from exiting
186  */
187 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
188 					 int override_rlimit)
189 {
190 	struct sigqueue *q = NULL;
191 	struct user_struct *user;
192 
193 	/*
194 	 * We won't get problems with the target's UID changing under us
195 	 * because changing it requires RCU be used, and if t != current, the
196 	 * caller must be holding the RCU readlock (by way of a spinlock) and
197 	 * we use RCU protection here
198 	 */
199 	user = get_uid(__task_cred(t)->user);
200 	atomic_inc(&user->sigpending);
201 	if (override_rlimit ||
202 	    atomic_read(&user->sigpending) <=
203 			t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
204 		q = kmem_cache_alloc(sigqueue_cachep, flags);
205 	if (unlikely(q == NULL)) {
206 		atomic_dec(&user->sigpending);
207 		free_uid(user);
208 	} else {
209 		INIT_LIST_HEAD(&q->list);
210 		q->flags = 0;
211 		q->user = user;
212 	}
213 
214 	return q;
215 }
216 
217 static void __sigqueue_free(struct sigqueue *q)
218 {
219 	if (q->flags & SIGQUEUE_PREALLOC)
220 		return;
221 	atomic_dec(&q->user->sigpending);
222 	free_uid(q->user);
223 	kmem_cache_free(sigqueue_cachep, q);
224 }
225 
226 void flush_sigqueue(struct sigpending *queue)
227 {
228 	struct sigqueue *q;
229 
230 	sigemptyset(&queue->signal);
231 	while (!list_empty(&queue->list)) {
232 		q = list_entry(queue->list.next, struct sigqueue , list);
233 		list_del_init(&q->list);
234 		__sigqueue_free(q);
235 	}
236 }
237 
238 /*
239  * Flush all pending signals for a task.
240  */
241 void flush_signals(struct task_struct *t)
242 {
243 	unsigned long flags;
244 
245 	spin_lock_irqsave(&t->sighand->siglock, flags);
246 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
247 	flush_sigqueue(&t->pending);
248 	flush_sigqueue(&t->signal->shared_pending);
249 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
250 }
251 
252 static void __flush_itimer_signals(struct sigpending *pending)
253 {
254 	sigset_t signal, retain;
255 	struct sigqueue *q, *n;
256 
257 	signal = pending->signal;
258 	sigemptyset(&retain);
259 
260 	list_for_each_entry_safe(q, n, &pending->list, list) {
261 		int sig = q->info.si_signo;
262 
263 		if (likely(q->info.si_code != SI_TIMER)) {
264 			sigaddset(&retain, sig);
265 		} else {
266 			sigdelset(&signal, sig);
267 			list_del_init(&q->list);
268 			__sigqueue_free(q);
269 		}
270 	}
271 
272 	sigorsets(&pending->signal, &signal, &retain);
273 }
274 
275 void flush_itimer_signals(void)
276 {
277 	struct task_struct *tsk = current;
278 	unsigned long flags;
279 
280 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
281 	__flush_itimer_signals(&tsk->pending);
282 	__flush_itimer_signals(&tsk->signal->shared_pending);
283 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
284 }
285 
286 void ignore_signals(struct task_struct *t)
287 {
288 	int i;
289 
290 	for (i = 0; i < _NSIG; ++i)
291 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
292 
293 	flush_signals(t);
294 }
295 
296 /*
297  * Flush all handlers for a task.
298  */
299 
300 void
301 flush_signal_handlers(struct task_struct *t, int force_default)
302 {
303 	int i;
304 	struct k_sigaction *ka = &t->sighand->action[0];
305 	for (i = _NSIG ; i != 0 ; i--) {
306 		if (force_default || ka->sa.sa_handler != SIG_IGN)
307 			ka->sa.sa_handler = SIG_DFL;
308 		ka->sa.sa_flags = 0;
309 		sigemptyset(&ka->sa.sa_mask);
310 		ka++;
311 	}
312 }
313 
314 int unhandled_signal(struct task_struct *tsk, int sig)
315 {
316 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
317 	if (is_global_init(tsk))
318 		return 1;
319 	if (handler != SIG_IGN && handler != SIG_DFL)
320 		return 0;
321 	return !tracehook_consider_fatal_signal(tsk, sig, handler);
322 }
323 
324 
325 /* Notify the system that a driver wants to block all signals for this
326  * process, and wants to be notified if any signals at all were to be
327  * sent/acted upon.  If the notifier routine returns non-zero, then the
328  * signal will be acted upon after all.  If the notifier routine returns 0,
329  * then then signal will be blocked.  Only one block per process is
330  * allowed.  priv is a pointer to private data that the notifier routine
331  * can use to determine if the signal should be blocked or not.  */
332 
333 void
334 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
335 {
336 	unsigned long flags;
337 
338 	spin_lock_irqsave(&current->sighand->siglock, flags);
339 	current->notifier_mask = mask;
340 	current->notifier_data = priv;
341 	current->notifier = notifier;
342 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
343 }
344 
345 /* Notify the system that blocking has ended. */
346 
347 void
348 unblock_all_signals(void)
349 {
350 	unsigned long flags;
351 
352 	spin_lock_irqsave(&current->sighand->siglock, flags);
353 	current->notifier = NULL;
354 	current->notifier_data = NULL;
355 	recalc_sigpending();
356 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
357 }
358 
359 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
360 {
361 	struct sigqueue *q, *first = NULL;
362 
363 	/*
364 	 * Collect the siginfo appropriate to this signal.  Check if
365 	 * there is another siginfo for the same signal.
366 	*/
367 	list_for_each_entry(q, &list->list, list) {
368 		if (q->info.si_signo == sig) {
369 			if (first)
370 				goto still_pending;
371 			first = q;
372 		}
373 	}
374 
375 	sigdelset(&list->signal, sig);
376 
377 	if (first) {
378 still_pending:
379 		list_del_init(&first->list);
380 		copy_siginfo(info, &first->info);
381 		__sigqueue_free(first);
382 	} else {
383 		/* Ok, it wasn't in the queue.  This must be
384 		   a fast-pathed signal or we must have been
385 		   out of queue space.  So zero out the info.
386 		 */
387 		info->si_signo = sig;
388 		info->si_errno = 0;
389 		info->si_code = 0;
390 		info->si_pid = 0;
391 		info->si_uid = 0;
392 	}
393 }
394 
395 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
396 			siginfo_t *info)
397 {
398 	int sig = next_signal(pending, mask);
399 
400 	if (sig) {
401 		if (current->notifier) {
402 			if (sigismember(current->notifier_mask, sig)) {
403 				if (!(current->notifier)(current->notifier_data)) {
404 					clear_thread_flag(TIF_SIGPENDING);
405 					return 0;
406 				}
407 			}
408 		}
409 
410 		collect_signal(sig, pending, info);
411 	}
412 
413 	return sig;
414 }
415 
416 /*
417  * Dequeue a signal and return the element to the caller, which is
418  * expected to free it.
419  *
420  * All callers have to hold the siglock.
421  */
422 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
423 {
424 	int signr;
425 
426 	/* We only dequeue private signals from ourselves, we don't let
427 	 * signalfd steal them
428 	 */
429 	signr = __dequeue_signal(&tsk->pending, mask, info);
430 	if (!signr) {
431 		signr = __dequeue_signal(&tsk->signal->shared_pending,
432 					 mask, info);
433 		/*
434 		 * itimer signal ?
435 		 *
436 		 * itimers are process shared and we restart periodic
437 		 * itimers in the signal delivery path to prevent DoS
438 		 * attacks in the high resolution timer case. This is
439 		 * compliant with the old way of self restarting
440 		 * itimers, as the SIGALRM is a legacy signal and only
441 		 * queued once. Changing the restart behaviour to
442 		 * restart the timer in the signal dequeue path is
443 		 * reducing the timer noise on heavy loaded !highres
444 		 * systems too.
445 		 */
446 		if (unlikely(signr == SIGALRM)) {
447 			struct hrtimer *tmr = &tsk->signal->real_timer;
448 
449 			if (!hrtimer_is_queued(tmr) &&
450 			    tsk->signal->it_real_incr.tv64 != 0) {
451 				hrtimer_forward(tmr, tmr->base->get_time(),
452 						tsk->signal->it_real_incr);
453 				hrtimer_restart(tmr);
454 			}
455 		}
456 	}
457 
458 	recalc_sigpending();
459 	if (!signr)
460 		return 0;
461 
462 	if (unlikely(sig_kernel_stop(signr))) {
463 		/*
464 		 * Set a marker that we have dequeued a stop signal.  Our
465 		 * caller might release the siglock and then the pending
466 		 * stop signal it is about to process is no longer in the
467 		 * pending bitmasks, but must still be cleared by a SIGCONT
468 		 * (and overruled by a SIGKILL).  So those cases clear this
469 		 * shared flag after we've set it.  Note that this flag may
470 		 * remain set after the signal we return is ignored or
471 		 * handled.  That doesn't matter because its only purpose
472 		 * is to alert stop-signal processing code when another
473 		 * processor has come along and cleared the flag.
474 		 */
475 		tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
476 	}
477 	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
478 		/*
479 		 * Release the siglock to ensure proper locking order
480 		 * of timer locks outside of siglocks.  Note, we leave
481 		 * irqs disabled here, since the posix-timers code is
482 		 * about to disable them again anyway.
483 		 */
484 		spin_unlock(&tsk->sighand->siglock);
485 		do_schedule_next_timer(info);
486 		spin_lock(&tsk->sighand->siglock);
487 	}
488 	return signr;
489 }
490 
491 /*
492  * Tell a process that it has a new active signal..
493  *
494  * NOTE! we rely on the previous spin_lock to
495  * lock interrupts for us! We can only be called with
496  * "siglock" held, and the local interrupt must
497  * have been disabled when that got acquired!
498  *
499  * No need to set need_resched since signal event passing
500  * goes through ->blocked
501  */
502 void signal_wake_up(struct task_struct *t, int resume)
503 {
504 	unsigned int mask;
505 
506 	set_tsk_thread_flag(t, TIF_SIGPENDING);
507 
508 	/*
509 	 * For SIGKILL, we want to wake it up in the stopped/traced/killable
510 	 * case. We don't check t->state here because there is a race with it
511 	 * executing another processor and just now entering stopped state.
512 	 * By using wake_up_state, we ensure the process will wake up and
513 	 * handle its death signal.
514 	 */
515 	mask = TASK_INTERRUPTIBLE;
516 	if (resume)
517 		mask |= TASK_WAKEKILL;
518 	if (!wake_up_state(t, mask))
519 		kick_process(t);
520 }
521 
522 /*
523  * Remove signals in mask from the pending set and queue.
524  * Returns 1 if any signals were found.
525  *
526  * All callers must be holding the siglock.
527  *
528  * This version takes a sigset mask and looks at all signals,
529  * not just those in the first mask word.
530  */
531 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
532 {
533 	struct sigqueue *q, *n;
534 	sigset_t m;
535 
536 	sigandsets(&m, mask, &s->signal);
537 	if (sigisemptyset(&m))
538 		return 0;
539 
540 	signandsets(&s->signal, &s->signal, mask);
541 	list_for_each_entry_safe(q, n, &s->list, list) {
542 		if (sigismember(mask, q->info.si_signo)) {
543 			list_del_init(&q->list);
544 			__sigqueue_free(q);
545 		}
546 	}
547 	return 1;
548 }
549 /*
550  * Remove signals in mask from the pending set and queue.
551  * Returns 1 if any signals were found.
552  *
553  * All callers must be holding the siglock.
554  */
555 static int rm_from_queue(unsigned long mask, struct sigpending *s)
556 {
557 	struct sigqueue *q, *n;
558 
559 	if (!sigtestsetmask(&s->signal, mask))
560 		return 0;
561 
562 	sigdelsetmask(&s->signal, mask);
563 	list_for_each_entry_safe(q, n, &s->list, list) {
564 		if (q->info.si_signo < SIGRTMIN &&
565 		    (mask & sigmask(q->info.si_signo))) {
566 			list_del_init(&q->list);
567 			__sigqueue_free(q);
568 		}
569 	}
570 	return 1;
571 }
572 
573 /*
574  * Bad permissions for sending the signal
575  * - the caller must hold at least the RCU read lock
576  */
577 static int check_kill_permission(int sig, struct siginfo *info,
578 				 struct task_struct *t)
579 {
580 	const struct cred *cred = current_cred(), *tcred;
581 	struct pid *sid;
582 	int error;
583 
584 	if (!valid_signal(sig))
585 		return -EINVAL;
586 
587 	if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
588 		return 0;
589 
590 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
591 	if (error)
592 		return error;
593 
594 	tcred = __task_cred(t);
595 	if ((cred->euid ^ tcred->suid) &&
596 	    (cred->euid ^ tcred->uid) &&
597 	    (cred->uid  ^ tcred->suid) &&
598 	    (cred->uid  ^ tcred->uid) &&
599 	    !capable(CAP_KILL)) {
600 		switch (sig) {
601 		case SIGCONT:
602 			sid = task_session(t);
603 			/*
604 			 * We don't return the error if sid == NULL. The
605 			 * task was unhashed, the caller must notice this.
606 			 */
607 			if (!sid || sid == task_session(current))
608 				break;
609 		default:
610 			return -EPERM;
611 		}
612 	}
613 
614 	return security_task_kill(t, info, sig, 0);
615 }
616 
617 /*
618  * Handle magic process-wide effects of stop/continue signals. Unlike
619  * the signal actions, these happen immediately at signal-generation
620  * time regardless of blocking, ignoring, or handling.  This does the
621  * actual continuing for SIGCONT, but not the actual stopping for stop
622  * signals. The process stop is done as a signal action for SIG_DFL.
623  *
624  * Returns true if the signal should be actually delivered, otherwise
625  * it should be dropped.
626  */
627 static int prepare_signal(int sig, struct task_struct *p)
628 {
629 	struct signal_struct *signal = p->signal;
630 	struct task_struct *t;
631 
632 	if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
633 		/*
634 		 * The process is in the middle of dying, nothing to do.
635 		 */
636 	} else if (sig_kernel_stop(sig)) {
637 		/*
638 		 * This is a stop signal.  Remove SIGCONT from all queues.
639 		 */
640 		rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
641 		t = p;
642 		do {
643 			rm_from_queue(sigmask(SIGCONT), &t->pending);
644 		} while_each_thread(p, t);
645 	} else if (sig == SIGCONT) {
646 		unsigned int why;
647 		/*
648 		 * Remove all stop signals from all queues,
649 		 * and wake all threads.
650 		 */
651 		rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
652 		t = p;
653 		do {
654 			unsigned int state;
655 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
656 			/*
657 			 * If there is a handler for SIGCONT, we must make
658 			 * sure that no thread returns to user mode before
659 			 * we post the signal, in case it was the only
660 			 * thread eligible to run the signal handler--then
661 			 * it must not do anything between resuming and
662 			 * running the handler.  With the TIF_SIGPENDING
663 			 * flag set, the thread will pause and acquire the
664 			 * siglock that we hold now and until we've queued
665 			 * the pending signal.
666 			 *
667 			 * Wake up the stopped thread _after_ setting
668 			 * TIF_SIGPENDING
669 			 */
670 			state = __TASK_STOPPED;
671 			if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
672 				set_tsk_thread_flag(t, TIF_SIGPENDING);
673 				state |= TASK_INTERRUPTIBLE;
674 			}
675 			wake_up_state(t, state);
676 		} while_each_thread(p, t);
677 
678 		/*
679 		 * Notify the parent with CLD_CONTINUED if we were stopped.
680 		 *
681 		 * If we were in the middle of a group stop, we pretend it
682 		 * was already finished, and then continued. Since SIGCHLD
683 		 * doesn't queue we report only CLD_STOPPED, as if the next
684 		 * CLD_CONTINUED was dropped.
685 		 */
686 		why = 0;
687 		if (signal->flags & SIGNAL_STOP_STOPPED)
688 			why |= SIGNAL_CLD_CONTINUED;
689 		else if (signal->group_stop_count)
690 			why |= SIGNAL_CLD_STOPPED;
691 
692 		if (why) {
693 			/*
694 			 * The first thread which returns from finish_stop()
695 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
696 			 * notify its parent. See get_signal_to_deliver().
697 			 */
698 			signal->flags = why | SIGNAL_STOP_CONTINUED;
699 			signal->group_stop_count = 0;
700 			signal->group_exit_code = 0;
701 		} else {
702 			/*
703 			 * We are not stopped, but there could be a stop
704 			 * signal in the middle of being processed after
705 			 * being removed from the queue.  Clear that too.
706 			 */
707 			signal->flags &= ~SIGNAL_STOP_DEQUEUED;
708 		}
709 	}
710 
711 	return !sig_ignored(p, sig);
712 }
713 
714 /*
715  * Test if P wants to take SIG.  After we've checked all threads with this,
716  * it's equivalent to finding no threads not blocking SIG.  Any threads not
717  * blocking SIG were ruled out because they are not running and already
718  * have pending signals.  Such threads will dequeue from the shared queue
719  * as soon as they're available, so putting the signal on the shared queue
720  * will be equivalent to sending it to one such thread.
721  */
722 static inline int wants_signal(int sig, struct task_struct *p)
723 {
724 	if (sigismember(&p->blocked, sig))
725 		return 0;
726 	if (p->flags & PF_EXITING)
727 		return 0;
728 	if (sig == SIGKILL)
729 		return 1;
730 	if (task_is_stopped_or_traced(p))
731 		return 0;
732 	return task_curr(p) || !signal_pending(p);
733 }
734 
735 static void complete_signal(int sig, struct task_struct *p, int group)
736 {
737 	struct signal_struct *signal = p->signal;
738 	struct task_struct *t;
739 
740 	/*
741 	 * Now find a thread we can wake up to take the signal off the queue.
742 	 *
743 	 * If the main thread wants the signal, it gets first crack.
744 	 * Probably the least surprising to the average bear.
745 	 */
746 	if (wants_signal(sig, p))
747 		t = p;
748 	else if (!group || thread_group_empty(p))
749 		/*
750 		 * There is just one thread and it does not need to be woken.
751 		 * It will dequeue unblocked signals before it runs again.
752 		 */
753 		return;
754 	else {
755 		/*
756 		 * Otherwise try to find a suitable thread.
757 		 */
758 		t = signal->curr_target;
759 		while (!wants_signal(sig, t)) {
760 			t = next_thread(t);
761 			if (t == signal->curr_target)
762 				/*
763 				 * No thread needs to be woken.
764 				 * Any eligible threads will see
765 				 * the signal in the queue soon.
766 				 */
767 				return;
768 		}
769 		signal->curr_target = t;
770 	}
771 
772 	/*
773 	 * Found a killable thread.  If the signal will be fatal,
774 	 * then start taking the whole group down immediately.
775 	 */
776 	if (sig_fatal(p, sig) &&
777 	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
778 	    !sigismember(&t->real_blocked, sig) &&
779 	    (sig == SIGKILL ||
780 	     !tracehook_consider_fatal_signal(t, sig, SIG_DFL))) {
781 		/*
782 		 * This signal will be fatal to the whole group.
783 		 */
784 		if (!sig_kernel_coredump(sig)) {
785 			/*
786 			 * Start a group exit and wake everybody up.
787 			 * This way we don't have other threads
788 			 * running and doing things after a slower
789 			 * thread has the fatal signal pending.
790 			 */
791 			signal->flags = SIGNAL_GROUP_EXIT;
792 			signal->group_exit_code = sig;
793 			signal->group_stop_count = 0;
794 			t = p;
795 			do {
796 				sigaddset(&t->pending.signal, SIGKILL);
797 				signal_wake_up(t, 1);
798 			} while_each_thread(p, t);
799 			return;
800 		}
801 	}
802 
803 	/*
804 	 * The signal is already in the shared-pending queue.
805 	 * Tell the chosen thread to wake up and dequeue it.
806 	 */
807 	signal_wake_up(t, sig == SIGKILL);
808 	return;
809 }
810 
811 static inline int legacy_queue(struct sigpending *signals, int sig)
812 {
813 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
814 }
815 
816 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
817 			int group)
818 {
819 	struct sigpending *pending;
820 	struct sigqueue *q;
821 
822 	trace_sched_signal_send(sig, t);
823 
824 	assert_spin_locked(&t->sighand->siglock);
825 	if (!prepare_signal(sig, t))
826 		return 0;
827 
828 	pending = group ? &t->signal->shared_pending : &t->pending;
829 	/*
830 	 * Short-circuit ignored signals and support queuing
831 	 * exactly one non-rt signal, so that we can get more
832 	 * detailed information about the cause of the signal.
833 	 */
834 	if (legacy_queue(pending, sig))
835 		return 0;
836 	/*
837 	 * fast-pathed signals for kernel-internal things like SIGSTOP
838 	 * or SIGKILL.
839 	 */
840 	if (info == SEND_SIG_FORCED)
841 		goto out_set;
842 
843 	/* Real-time signals must be queued if sent by sigqueue, or
844 	   some other real-time mechanism.  It is implementation
845 	   defined whether kill() does so.  We attempt to do so, on
846 	   the principle of least surprise, but since kill is not
847 	   allowed to fail with EAGAIN when low on memory we just
848 	   make sure at least one signal gets delivered and don't
849 	   pass on the info struct.  */
850 
851 	q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
852 					     (is_si_special(info) ||
853 					      info->si_code >= 0)));
854 	if (q) {
855 		list_add_tail(&q->list, &pending->list);
856 		switch ((unsigned long) info) {
857 		case (unsigned long) SEND_SIG_NOINFO:
858 			q->info.si_signo = sig;
859 			q->info.si_errno = 0;
860 			q->info.si_code = SI_USER;
861 			q->info.si_pid = task_pid_vnr(current);
862 			q->info.si_uid = current_uid();
863 			break;
864 		case (unsigned long) SEND_SIG_PRIV:
865 			q->info.si_signo = sig;
866 			q->info.si_errno = 0;
867 			q->info.si_code = SI_KERNEL;
868 			q->info.si_pid = 0;
869 			q->info.si_uid = 0;
870 			break;
871 		default:
872 			copy_siginfo(&q->info, info);
873 			break;
874 		}
875 	} else if (!is_si_special(info)) {
876 		if (sig >= SIGRTMIN && info->si_code != SI_USER)
877 		/*
878 		 * Queue overflow, abort.  We may abort if the signal was rt
879 		 * and sent by user using something other than kill().
880 		 */
881 			return -EAGAIN;
882 	}
883 
884 out_set:
885 	signalfd_notify(t, sig);
886 	sigaddset(&pending->signal, sig);
887 	complete_signal(sig, t, group);
888 	return 0;
889 }
890 
891 int print_fatal_signals;
892 
893 static void print_fatal_signal(struct pt_regs *regs, int signr)
894 {
895 	printk("%s/%d: potentially unexpected fatal signal %d.\n",
896 		current->comm, task_pid_nr(current), signr);
897 
898 #if defined(__i386__) && !defined(__arch_um__)
899 	printk("code at %08lx: ", regs->ip);
900 	{
901 		int i;
902 		for (i = 0; i < 16; i++) {
903 			unsigned char insn;
904 
905 			__get_user(insn, (unsigned char *)(regs->ip + i));
906 			printk("%02x ", insn);
907 		}
908 	}
909 #endif
910 	printk("\n");
911 	show_regs(regs);
912 }
913 
914 static int __init setup_print_fatal_signals(char *str)
915 {
916 	get_option (&str, &print_fatal_signals);
917 
918 	return 1;
919 }
920 
921 __setup("print-fatal-signals=", setup_print_fatal_signals);
922 
923 int
924 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
925 {
926 	return send_signal(sig, info, p, 1);
927 }
928 
929 static int
930 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
931 {
932 	return send_signal(sig, info, t, 0);
933 }
934 
935 /*
936  * Force a signal that the process can't ignore: if necessary
937  * we unblock the signal and change any SIG_IGN to SIG_DFL.
938  *
939  * Note: If we unblock the signal, we always reset it to SIG_DFL,
940  * since we do not want to have a signal handler that was blocked
941  * be invoked when user space had explicitly blocked it.
942  *
943  * We don't want to have recursive SIGSEGV's etc, for example,
944  * that is why we also clear SIGNAL_UNKILLABLE.
945  */
946 int
947 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
948 {
949 	unsigned long int flags;
950 	int ret, blocked, ignored;
951 	struct k_sigaction *action;
952 
953 	spin_lock_irqsave(&t->sighand->siglock, flags);
954 	action = &t->sighand->action[sig-1];
955 	ignored = action->sa.sa_handler == SIG_IGN;
956 	blocked = sigismember(&t->blocked, sig);
957 	if (blocked || ignored) {
958 		action->sa.sa_handler = SIG_DFL;
959 		if (blocked) {
960 			sigdelset(&t->blocked, sig);
961 			recalc_sigpending_and_wake(t);
962 		}
963 	}
964 	if (action->sa.sa_handler == SIG_DFL)
965 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
966 	ret = specific_send_sig_info(sig, info, t);
967 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
968 
969 	return ret;
970 }
971 
972 void
973 force_sig_specific(int sig, struct task_struct *t)
974 {
975 	force_sig_info(sig, SEND_SIG_FORCED, t);
976 }
977 
978 /*
979  * Nuke all other threads in the group.
980  */
981 void zap_other_threads(struct task_struct *p)
982 {
983 	struct task_struct *t;
984 
985 	p->signal->group_stop_count = 0;
986 
987 	for (t = next_thread(p); t != p; t = next_thread(t)) {
988 		/*
989 		 * Don't bother with already dead threads
990 		 */
991 		if (t->exit_state)
992 			continue;
993 
994 		/* SIGKILL will be handled before any pending SIGSTOP */
995 		sigaddset(&t->pending.signal, SIGKILL);
996 		signal_wake_up(t, 1);
997 	}
998 }
999 
1000 int __fatal_signal_pending(struct task_struct *tsk)
1001 {
1002 	return sigismember(&tsk->pending.signal, SIGKILL);
1003 }
1004 EXPORT_SYMBOL(__fatal_signal_pending);
1005 
1006 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1007 {
1008 	struct sighand_struct *sighand;
1009 
1010 	rcu_read_lock();
1011 	for (;;) {
1012 		sighand = rcu_dereference(tsk->sighand);
1013 		if (unlikely(sighand == NULL))
1014 			break;
1015 
1016 		spin_lock_irqsave(&sighand->siglock, *flags);
1017 		if (likely(sighand == tsk->sighand))
1018 			break;
1019 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1020 	}
1021 	rcu_read_unlock();
1022 
1023 	return sighand;
1024 }
1025 
1026 /*
1027  * send signal info to all the members of a group
1028  * - the caller must hold the RCU read lock at least
1029  */
1030 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1031 {
1032 	unsigned long flags;
1033 	int ret;
1034 
1035 	ret = check_kill_permission(sig, info, p);
1036 
1037 	if (!ret && sig) {
1038 		ret = -ESRCH;
1039 		if (lock_task_sighand(p, &flags)) {
1040 			ret = __group_send_sig_info(sig, info, p);
1041 			unlock_task_sighand(p, &flags);
1042 		}
1043 	}
1044 
1045 	return ret;
1046 }
1047 
1048 /*
1049  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1050  * control characters do (^C, ^Z etc)
1051  * - the caller must hold at least a readlock on tasklist_lock
1052  */
1053 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1054 {
1055 	struct task_struct *p = NULL;
1056 	int retval, success;
1057 
1058 	success = 0;
1059 	retval = -ESRCH;
1060 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1061 		int err = group_send_sig_info(sig, info, p);
1062 		success |= !err;
1063 		retval = err;
1064 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1065 	return success ? 0 : retval;
1066 }
1067 
1068 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1069 {
1070 	int error = -ESRCH;
1071 	struct task_struct *p;
1072 
1073 	rcu_read_lock();
1074 retry:
1075 	p = pid_task(pid, PIDTYPE_PID);
1076 	if (p) {
1077 		error = group_send_sig_info(sig, info, p);
1078 		if (unlikely(error == -ESRCH))
1079 			/*
1080 			 * The task was unhashed in between, try again.
1081 			 * If it is dead, pid_task() will return NULL,
1082 			 * if we race with de_thread() it will find the
1083 			 * new leader.
1084 			 */
1085 			goto retry;
1086 	}
1087 	rcu_read_unlock();
1088 
1089 	return error;
1090 }
1091 
1092 int
1093 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1094 {
1095 	int error;
1096 	rcu_read_lock();
1097 	error = kill_pid_info(sig, info, find_vpid(pid));
1098 	rcu_read_unlock();
1099 	return error;
1100 }
1101 
1102 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1103 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1104 		      uid_t uid, uid_t euid, u32 secid)
1105 {
1106 	int ret = -EINVAL;
1107 	struct task_struct *p;
1108 	const struct cred *pcred;
1109 
1110 	if (!valid_signal(sig))
1111 		return ret;
1112 
1113 	read_lock(&tasklist_lock);
1114 	p = pid_task(pid, PIDTYPE_PID);
1115 	if (!p) {
1116 		ret = -ESRCH;
1117 		goto out_unlock;
1118 	}
1119 	pcred = __task_cred(p);
1120 	if ((info == SEND_SIG_NOINFO ||
1121 	     (!is_si_special(info) && SI_FROMUSER(info))) &&
1122 	    euid != pcred->suid && euid != pcred->uid &&
1123 	    uid  != pcred->suid && uid  != pcred->uid) {
1124 		ret = -EPERM;
1125 		goto out_unlock;
1126 	}
1127 	ret = security_task_kill(p, info, sig, secid);
1128 	if (ret)
1129 		goto out_unlock;
1130 	if (sig && p->sighand) {
1131 		unsigned long flags;
1132 		spin_lock_irqsave(&p->sighand->siglock, flags);
1133 		ret = __group_send_sig_info(sig, info, p);
1134 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1135 	}
1136 out_unlock:
1137 	read_unlock(&tasklist_lock);
1138 	return ret;
1139 }
1140 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1141 
1142 /*
1143  * kill_something_info() interprets pid in interesting ways just like kill(2).
1144  *
1145  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1146  * is probably wrong.  Should make it like BSD or SYSV.
1147  */
1148 
1149 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1150 {
1151 	int ret;
1152 
1153 	if (pid > 0) {
1154 		rcu_read_lock();
1155 		ret = kill_pid_info(sig, info, find_vpid(pid));
1156 		rcu_read_unlock();
1157 		return ret;
1158 	}
1159 
1160 	read_lock(&tasklist_lock);
1161 	if (pid != -1) {
1162 		ret = __kill_pgrp_info(sig, info,
1163 				pid ? find_vpid(-pid) : task_pgrp(current));
1164 	} else {
1165 		int retval = 0, count = 0;
1166 		struct task_struct * p;
1167 
1168 		for_each_process(p) {
1169 			if (task_pid_vnr(p) > 1 &&
1170 					!same_thread_group(p, current)) {
1171 				int err = group_send_sig_info(sig, info, p);
1172 				++count;
1173 				if (err != -EPERM)
1174 					retval = err;
1175 			}
1176 		}
1177 		ret = count ? retval : -ESRCH;
1178 	}
1179 	read_unlock(&tasklist_lock);
1180 
1181 	return ret;
1182 }
1183 
1184 /*
1185  * These are for backward compatibility with the rest of the kernel source.
1186  */
1187 
1188 /*
1189  * The caller must ensure the task can't exit.
1190  */
1191 int
1192 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1193 {
1194 	int ret;
1195 	unsigned long flags;
1196 
1197 	/*
1198 	 * Make sure legacy kernel users don't send in bad values
1199 	 * (normal paths check this in check_kill_permission).
1200 	 */
1201 	if (!valid_signal(sig))
1202 		return -EINVAL;
1203 
1204 	spin_lock_irqsave(&p->sighand->siglock, flags);
1205 	ret = specific_send_sig_info(sig, info, p);
1206 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
1207 	return ret;
1208 }
1209 
1210 #define __si_special(priv) \
1211 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1212 
1213 int
1214 send_sig(int sig, struct task_struct *p, int priv)
1215 {
1216 	return send_sig_info(sig, __si_special(priv), p);
1217 }
1218 
1219 void
1220 force_sig(int sig, struct task_struct *p)
1221 {
1222 	force_sig_info(sig, SEND_SIG_PRIV, p);
1223 }
1224 
1225 /*
1226  * When things go south during signal handling, we
1227  * will force a SIGSEGV. And if the signal that caused
1228  * the problem was already a SIGSEGV, we'll want to
1229  * make sure we don't even try to deliver the signal..
1230  */
1231 int
1232 force_sigsegv(int sig, struct task_struct *p)
1233 {
1234 	if (sig == SIGSEGV) {
1235 		unsigned long flags;
1236 		spin_lock_irqsave(&p->sighand->siglock, flags);
1237 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1238 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1239 	}
1240 	force_sig(SIGSEGV, p);
1241 	return 0;
1242 }
1243 
1244 int kill_pgrp(struct pid *pid, int sig, int priv)
1245 {
1246 	int ret;
1247 
1248 	read_lock(&tasklist_lock);
1249 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1250 	read_unlock(&tasklist_lock);
1251 
1252 	return ret;
1253 }
1254 EXPORT_SYMBOL(kill_pgrp);
1255 
1256 int kill_pid(struct pid *pid, int sig, int priv)
1257 {
1258 	return kill_pid_info(sig, __si_special(priv), pid);
1259 }
1260 EXPORT_SYMBOL(kill_pid);
1261 
1262 /*
1263  * These functions support sending signals using preallocated sigqueue
1264  * structures.  This is needed "because realtime applications cannot
1265  * afford to lose notifications of asynchronous events, like timer
1266  * expirations or I/O completions".  In the case of Posix Timers
1267  * we allocate the sigqueue structure from the timer_create.  If this
1268  * allocation fails we are able to report the failure to the application
1269  * with an EAGAIN error.
1270  */
1271 
1272 struct sigqueue *sigqueue_alloc(void)
1273 {
1274 	struct sigqueue *q;
1275 
1276 	if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1277 		q->flags |= SIGQUEUE_PREALLOC;
1278 	return(q);
1279 }
1280 
1281 void sigqueue_free(struct sigqueue *q)
1282 {
1283 	unsigned long flags;
1284 	spinlock_t *lock = &current->sighand->siglock;
1285 
1286 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1287 	/*
1288 	 * We must hold ->siglock while testing q->list
1289 	 * to serialize with collect_signal() or with
1290 	 * __exit_signal()->flush_sigqueue().
1291 	 */
1292 	spin_lock_irqsave(lock, flags);
1293 	q->flags &= ~SIGQUEUE_PREALLOC;
1294 	/*
1295 	 * If it is queued it will be freed when dequeued,
1296 	 * like the "regular" sigqueue.
1297 	 */
1298 	if (!list_empty(&q->list))
1299 		q = NULL;
1300 	spin_unlock_irqrestore(lock, flags);
1301 
1302 	if (q)
1303 		__sigqueue_free(q);
1304 }
1305 
1306 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1307 {
1308 	int sig = q->info.si_signo;
1309 	struct sigpending *pending;
1310 	unsigned long flags;
1311 	int ret;
1312 
1313 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1314 
1315 	ret = -1;
1316 	if (!likely(lock_task_sighand(t, &flags)))
1317 		goto ret;
1318 
1319 	ret = 1; /* the signal is ignored */
1320 	if (!prepare_signal(sig, t))
1321 		goto out;
1322 
1323 	ret = 0;
1324 	if (unlikely(!list_empty(&q->list))) {
1325 		/*
1326 		 * If an SI_TIMER entry is already queue just increment
1327 		 * the overrun count.
1328 		 */
1329 		BUG_ON(q->info.si_code != SI_TIMER);
1330 		q->info.si_overrun++;
1331 		goto out;
1332 	}
1333 	q->info.si_overrun = 0;
1334 
1335 	signalfd_notify(t, sig);
1336 	pending = group ? &t->signal->shared_pending : &t->pending;
1337 	list_add_tail(&q->list, &pending->list);
1338 	sigaddset(&pending->signal, sig);
1339 	complete_signal(sig, t, group);
1340 out:
1341 	unlock_task_sighand(t, &flags);
1342 ret:
1343 	return ret;
1344 }
1345 
1346 /*
1347  * Wake up any threads in the parent blocked in wait* syscalls.
1348  */
1349 static inline void __wake_up_parent(struct task_struct *p,
1350 				    struct task_struct *parent)
1351 {
1352 	wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1353 }
1354 
1355 /*
1356  * Let a parent know about the death of a child.
1357  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1358  *
1359  * Returns -1 if our parent ignored us and so we've switched to
1360  * self-reaping, or else @sig.
1361  */
1362 int do_notify_parent(struct task_struct *tsk, int sig)
1363 {
1364 	struct siginfo info;
1365 	unsigned long flags;
1366 	struct sighand_struct *psig;
1367 	struct task_cputime cputime;
1368 	int ret = sig;
1369 
1370 	BUG_ON(sig == -1);
1371 
1372  	/* do_notify_parent_cldstop should have been called instead.  */
1373  	BUG_ON(task_is_stopped_or_traced(tsk));
1374 
1375 	BUG_ON(!tsk->ptrace &&
1376 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1377 
1378 	info.si_signo = sig;
1379 	info.si_errno = 0;
1380 	/*
1381 	 * we are under tasklist_lock here so our parent is tied to
1382 	 * us and cannot exit and release its namespace.
1383 	 *
1384 	 * the only it can is to switch its nsproxy with sys_unshare,
1385 	 * bu uncharing pid namespaces is not allowed, so we'll always
1386 	 * see relevant namespace
1387 	 *
1388 	 * write_lock() currently calls preempt_disable() which is the
1389 	 * same as rcu_read_lock(), but according to Oleg, this is not
1390 	 * correct to rely on this
1391 	 */
1392 	rcu_read_lock();
1393 	info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1394 	info.si_uid = __task_cred(tsk)->uid;
1395 	rcu_read_unlock();
1396 
1397 	thread_group_cputime(tsk, &cputime);
1398 	info.si_utime = cputime_to_jiffies(cputime.utime);
1399 	info.si_stime = cputime_to_jiffies(cputime.stime);
1400 
1401 	info.si_status = tsk->exit_code & 0x7f;
1402 	if (tsk->exit_code & 0x80)
1403 		info.si_code = CLD_DUMPED;
1404 	else if (tsk->exit_code & 0x7f)
1405 		info.si_code = CLD_KILLED;
1406 	else {
1407 		info.si_code = CLD_EXITED;
1408 		info.si_status = tsk->exit_code >> 8;
1409 	}
1410 
1411 	psig = tsk->parent->sighand;
1412 	spin_lock_irqsave(&psig->siglock, flags);
1413 	if (!tsk->ptrace && sig == SIGCHLD &&
1414 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1415 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1416 		/*
1417 		 * We are exiting and our parent doesn't care.  POSIX.1
1418 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1419 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1420 		 * automatically and not left for our parent's wait4 call.
1421 		 * Rather than having the parent do it as a magic kind of
1422 		 * signal handler, we just set this to tell do_exit that we
1423 		 * can be cleaned up without becoming a zombie.  Note that
1424 		 * we still call __wake_up_parent in this case, because a
1425 		 * blocked sys_wait4 might now return -ECHILD.
1426 		 *
1427 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1428 		 * is implementation-defined: we do (if you don't want
1429 		 * it, just use SIG_IGN instead).
1430 		 */
1431 		ret = tsk->exit_signal = -1;
1432 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1433 			sig = -1;
1434 	}
1435 	if (valid_signal(sig) && sig > 0)
1436 		__group_send_sig_info(sig, &info, tsk->parent);
1437 	__wake_up_parent(tsk, tsk->parent);
1438 	spin_unlock_irqrestore(&psig->siglock, flags);
1439 
1440 	return ret;
1441 }
1442 
1443 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1444 {
1445 	struct siginfo info;
1446 	unsigned long flags;
1447 	struct task_struct *parent;
1448 	struct sighand_struct *sighand;
1449 
1450 	if (tsk->ptrace & PT_PTRACED)
1451 		parent = tsk->parent;
1452 	else {
1453 		tsk = tsk->group_leader;
1454 		parent = tsk->real_parent;
1455 	}
1456 
1457 	info.si_signo = SIGCHLD;
1458 	info.si_errno = 0;
1459 	/*
1460 	 * see comment in do_notify_parent() abot the following 3 lines
1461 	 */
1462 	rcu_read_lock();
1463 	info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1464 	info.si_uid = __task_cred(tsk)->uid;
1465 	rcu_read_unlock();
1466 
1467 	info.si_utime = cputime_to_clock_t(tsk->utime);
1468 	info.si_stime = cputime_to_clock_t(tsk->stime);
1469 
1470  	info.si_code = why;
1471  	switch (why) {
1472  	case CLD_CONTINUED:
1473  		info.si_status = SIGCONT;
1474  		break;
1475  	case CLD_STOPPED:
1476  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1477  		break;
1478  	case CLD_TRAPPED:
1479  		info.si_status = tsk->exit_code & 0x7f;
1480  		break;
1481  	default:
1482  		BUG();
1483  	}
1484 
1485 	sighand = parent->sighand;
1486 	spin_lock_irqsave(&sighand->siglock, flags);
1487 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1488 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1489 		__group_send_sig_info(SIGCHLD, &info, parent);
1490 	/*
1491 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1492 	 */
1493 	__wake_up_parent(tsk, parent);
1494 	spin_unlock_irqrestore(&sighand->siglock, flags);
1495 }
1496 
1497 static inline int may_ptrace_stop(void)
1498 {
1499 	if (!likely(current->ptrace & PT_PTRACED))
1500 		return 0;
1501 	/*
1502 	 * Are we in the middle of do_coredump?
1503 	 * If so and our tracer is also part of the coredump stopping
1504 	 * is a deadlock situation, and pointless because our tracer
1505 	 * is dead so don't allow us to stop.
1506 	 * If SIGKILL was already sent before the caller unlocked
1507 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1508 	 * is safe to enter schedule().
1509 	 */
1510 	if (unlikely(current->mm->core_state) &&
1511 	    unlikely(current->mm == current->parent->mm))
1512 		return 0;
1513 
1514 	return 1;
1515 }
1516 
1517 /*
1518  * Return nonzero if there is a SIGKILL that should be waking us up.
1519  * Called with the siglock held.
1520  */
1521 static int sigkill_pending(struct task_struct *tsk)
1522 {
1523 	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1524 		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1525 }
1526 
1527 /*
1528  * This must be called with current->sighand->siglock held.
1529  *
1530  * This should be the path for all ptrace stops.
1531  * We always set current->last_siginfo while stopped here.
1532  * That makes it a way to test a stopped process for
1533  * being ptrace-stopped vs being job-control-stopped.
1534  *
1535  * If we actually decide not to stop at all because the tracer
1536  * is gone, we keep current->exit_code unless clear_code.
1537  */
1538 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1539 {
1540 	if (arch_ptrace_stop_needed(exit_code, info)) {
1541 		/*
1542 		 * The arch code has something special to do before a
1543 		 * ptrace stop.  This is allowed to block, e.g. for faults
1544 		 * on user stack pages.  We can't keep the siglock while
1545 		 * calling arch_ptrace_stop, so we must release it now.
1546 		 * To preserve proper semantics, we must do this before
1547 		 * any signal bookkeeping like checking group_stop_count.
1548 		 * Meanwhile, a SIGKILL could come in before we retake the
1549 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1550 		 * So after regaining the lock, we must check for SIGKILL.
1551 		 */
1552 		spin_unlock_irq(&current->sighand->siglock);
1553 		arch_ptrace_stop(exit_code, info);
1554 		spin_lock_irq(&current->sighand->siglock);
1555 		if (sigkill_pending(current))
1556 			return;
1557 	}
1558 
1559 	/*
1560 	 * If there is a group stop in progress,
1561 	 * we must participate in the bookkeeping.
1562 	 */
1563 	if (current->signal->group_stop_count > 0)
1564 		--current->signal->group_stop_count;
1565 
1566 	current->last_siginfo = info;
1567 	current->exit_code = exit_code;
1568 
1569 	/* Let the debugger run.  */
1570 	__set_current_state(TASK_TRACED);
1571 	spin_unlock_irq(&current->sighand->siglock);
1572 	read_lock(&tasklist_lock);
1573 	if (may_ptrace_stop()) {
1574 		do_notify_parent_cldstop(current, CLD_TRAPPED);
1575 		read_unlock(&tasklist_lock);
1576 		schedule();
1577 	} else {
1578 		/*
1579 		 * By the time we got the lock, our tracer went away.
1580 		 * Don't drop the lock yet, another tracer may come.
1581 		 */
1582 		__set_current_state(TASK_RUNNING);
1583 		if (clear_code)
1584 			current->exit_code = 0;
1585 		read_unlock(&tasklist_lock);
1586 	}
1587 
1588 	/*
1589 	 * While in TASK_TRACED, we were considered "frozen enough".
1590 	 * Now that we woke up, it's crucial if we're supposed to be
1591 	 * frozen that we freeze now before running anything substantial.
1592 	 */
1593 	try_to_freeze();
1594 
1595 	/*
1596 	 * We are back.  Now reacquire the siglock before touching
1597 	 * last_siginfo, so that we are sure to have synchronized with
1598 	 * any signal-sending on another CPU that wants to examine it.
1599 	 */
1600 	spin_lock_irq(&current->sighand->siglock);
1601 	current->last_siginfo = NULL;
1602 
1603 	/*
1604 	 * Queued signals ignored us while we were stopped for tracing.
1605 	 * So check for any that we should take before resuming user mode.
1606 	 * This sets TIF_SIGPENDING, but never clears it.
1607 	 */
1608 	recalc_sigpending_tsk(current);
1609 }
1610 
1611 void ptrace_notify(int exit_code)
1612 {
1613 	siginfo_t info;
1614 
1615 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1616 
1617 	memset(&info, 0, sizeof info);
1618 	info.si_signo = SIGTRAP;
1619 	info.si_code = exit_code;
1620 	info.si_pid = task_pid_vnr(current);
1621 	info.si_uid = current_uid();
1622 
1623 	/* Let the debugger run.  */
1624 	spin_lock_irq(&current->sighand->siglock);
1625 	ptrace_stop(exit_code, 1, &info);
1626 	spin_unlock_irq(&current->sighand->siglock);
1627 }
1628 
1629 static void
1630 finish_stop(int stop_count)
1631 {
1632 	/*
1633 	 * If there are no other threads in the group, or if there is
1634 	 * a group stop in progress and we are the last to stop,
1635 	 * report to the parent.  When ptraced, every thread reports itself.
1636 	 */
1637 	if (tracehook_notify_jctl(stop_count == 0, CLD_STOPPED)) {
1638 		read_lock(&tasklist_lock);
1639 		do_notify_parent_cldstop(current, CLD_STOPPED);
1640 		read_unlock(&tasklist_lock);
1641 	}
1642 
1643 	do {
1644 		schedule();
1645 	} while (try_to_freeze());
1646 	/*
1647 	 * Now we don't run again until continued.
1648 	 */
1649 	current->exit_code = 0;
1650 }
1651 
1652 /*
1653  * This performs the stopping for SIGSTOP and other stop signals.
1654  * We have to stop all threads in the thread group.
1655  * Returns nonzero if we've actually stopped and released the siglock.
1656  * Returns zero if we didn't stop and still hold the siglock.
1657  */
1658 static int do_signal_stop(int signr)
1659 {
1660 	struct signal_struct *sig = current->signal;
1661 	int stop_count;
1662 
1663 	if (sig->group_stop_count > 0) {
1664 		/*
1665 		 * There is a group stop in progress.  We don't need to
1666 		 * start another one.
1667 		 */
1668 		stop_count = --sig->group_stop_count;
1669 	} else {
1670 		struct task_struct *t;
1671 
1672 		if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1673 		    unlikely(signal_group_exit(sig)))
1674 			return 0;
1675 		/*
1676 		 * There is no group stop already in progress.
1677 		 * We must initiate one now.
1678 		 */
1679 		sig->group_exit_code = signr;
1680 
1681 		stop_count = 0;
1682 		for (t = next_thread(current); t != current; t = next_thread(t))
1683 			/*
1684 			 * Setting state to TASK_STOPPED for a group
1685 			 * stop is always done with the siglock held,
1686 			 * so this check has no races.
1687 			 */
1688 			if (!(t->flags & PF_EXITING) &&
1689 			    !task_is_stopped_or_traced(t)) {
1690 				stop_count++;
1691 				signal_wake_up(t, 0);
1692 			}
1693 		sig->group_stop_count = stop_count;
1694 	}
1695 
1696 	if (stop_count == 0)
1697 		sig->flags = SIGNAL_STOP_STOPPED;
1698 	current->exit_code = sig->group_exit_code;
1699 	__set_current_state(TASK_STOPPED);
1700 
1701 	spin_unlock_irq(&current->sighand->siglock);
1702 	finish_stop(stop_count);
1703 	return 1;
1704 }
1705 
1706 static int ptrace_signal(int signr, siginfo_t *info,
1707 			 struct pt_regs *regs, void *cookie)
1708 {
1709 	if (!(current->ptrace & PT_PTRACED))
1710 		return signr;
1711 
1712 	ptrace_signal_deliver(regs, cookie);
1713 
1714 	/* Let the debugger run.  */
1715 	ptrace_stop(signr, 0, info);
1716 
1717 	/* We're back.  Did the debugger cancel the sig?  */
1718 	signr = current->exit_code;
1719 	if (signr == 0)
1720 		return signr;
1721 
1722 	current->exit_code = 0;
1723 
1724 	/* Update the siginfo structure if the signal has
1725 	   changed.  If the debugger wanted something
1726 	   specific in the siginfo structure then it should
1727 	   have updated *info via PTRACE_SETSIGINFO.  */
1728 	if (signr != info->si_signo) {
1729 		info->si_signo = signr;
1730 		info->si_errno = 0;
1731 		info->si_code = SI_USER;
1732 		info->si_pid = task_pid_vnr(current->parent);
1733 		info->si_uid = task_uid(current->parent);
1734 	}
1735 
1736 	/* If the (new) signal is now blocked, requeue it.  */
1737 	if (sigismember(&current->blocked, signr)) {
1738 		specific_send_sig_info(signr, info, current);
1739 		signr = 0;
1740 	}
1741 
1742 	return signr;
1743 }
1744 
1745 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1746 			  struct pt_regs *regs, void *cookie)
1747 {
1748 	struct sighand_struct *sighand = current->sighand;
1749 	struct signal_struct *signal = current->signal;
1750 	int signr;
1751 
1752 relock:
1753 	/*
1754 	 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1755 	 * While in TASK_STOPPED, we were considered "frozen enough".
1756 	 * Now that we woke up, it's crucial if we're supposed to be
1757 	 * frozen that we freeze now before running anything substantial.
1758 	 */
1759 	try_to_freeze();
1760 
1761 	spin_lock_irq(&sighand->siglock);
1762 	/*
1763 	 * Every stopped thread goes here after wakeup. Check to see if
1764 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
1765 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
1766 	 */
1767 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
1768 		int why = (signal->flags & SIGNAL_STOP_CONTINUED)
1769 				? CLD_CONTINUED : CLD_STOPPED;
1770 		signal->flags &= ~SIGNAL_CLD_MASK;
1771 		spin_unlock_irq(&sighand->siglock);
1772 
1773 		if (unlikely(!tracehook_notify_jctl(1, why)))
1774 			goto relock;
1775 
1776 		read_lock(&tasklist_lock);
1777 		do_notify_parent_cldstop(current->group_leader, why);
1778 		read_unlock(&tasklist_lock);
1779 		goto relock;
1780 	}
1781 
1782 	for (;;) {
1783 		struct k_sigaction *ka;
1784 
1785 		if (unlikely(signal->group_stop_count > 0) &&
1786 		    do_signal_stop(0))
1787 			goto relock;
1788 
1789 		/*
1790 		 * Tracing can induce an artifical signal and choose sigaction.
1791 		 * The return value in @signr determines the default action,
1792 		 * but @info->si_signo is the signal number we will report.
1793 		 */
1794 		signr = tracehook_get_signal(current, regs, info, return_ka);
1795 		if (unlikely(signr < 0))
1796 			goto relock;
1797 		if (unlikely(signr != 0))
1798 			ka = return_ka;
1799 		else {
1800 			signr = dequeue_signal(current, &current->blocked,
1801 					       info);
1802 
1803 			if (!signr)
1804 				break; /* will return 0 */
1805 
1806 			if (signr != SIGKILL) {
1807 				signr = ptrace_signal(signr, info,
1808 						      regs, cookie);
1809 				if (!signr)
1810 					continue;
1811 			}
1812 
1813 			ka = &sighand->action[signr-1];
1814 		}
1815 
1816 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
1817 			continue;
1818 		if (ka->sa.sa_handler != SIG_DFL) {
1819 			/* Run the handler.  */
1820 			*return_ka = *ka;
1821 
1822 			if (ka->sa.sa_flags & SA_ONESHOT)
1823 				ka->sa.sa_handler = SIG_DFL;
1824 
1825 			break; /* will return non-zero "signr" value */
1826 		}
1827 
1828 		/*
1829 		 * Now we are doing the default action for this signal.
1830 		 */
1831 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
1832 			continue;
1833 
1834 		/*
1835 		 * Global init gets no signals it doesn't want.
1836 		 */
1837 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
1838 		    !signal_group_exit(signal))
1839 			continue;
1840 
1841 		if (sig_kernel_stop(signr)) {
1842 			/*
1843 			 * The default action is to stop all threads in
1844 			 * the thread group.  The job control signals
1845 			 * do nothing in an orphaned pgrp, but SIGSTOP
1846 			 * always works.  Note that siglock needs to be
1847 			 * dropped during the call to is_orphaned_pgrp()
1848 			 * because of lock ordering with tasklist_lock.
1849 			 * This allows an intervening SIGCONT to be posted.
1850 			 * We need to check for that and bail out if necessary.
1851 			 */
1852 			if (signr != SIGSTOP) {
1853 				spin_unlock_irq(&sighand->siglock);
1854 
1855 				/* signals can be posted during this window */
1856 
1857 				if (is_current_pgrp_orphaned())
1858 					goto relock;
1859 
1860 				spin_lock_irq(&sighand->siglock);
1861 			}
1862 
1863 			if (likely(do_signal_stop(info->si_signo))) {
1864 				/* It released the siglock.  */
1865 				goto relock;
1866 			}
1867 
1868 			/*
1869 			 * We didn't actually stop, due to a race
1870 			 * with SIGCONT or something like that.
1871 			 */
1872 			continue;
1873 		}
1874 
1875 		spin_unlock_irq(&sighand->siglock);
1876 
1877 		/*
1878 		 * Anything else is fatal, maybe with a core dump.
1879 		 */
1880 		current->flags |= PF_SIGNALED;
1881 
1882 		if (sig_kernel_coredump(signr)) {
1883 			if (print_fatal_signals)
1884 				print_fatal_signal(regs, info->si_signo);
1885 			/*
1886 			 * If it was able to dump core, this kills all
1887 			 * other threads in the group and synchronizes with
1888 			 * their demise.  If we lost the race with another
1889 			 * thread getting here, it set group_exit_code
1890 			 * first and our do_group_exit call below will use
1891 			 * that value and ignore the one we pass it.
1892 			 */
1893 			do_coredump(info->si_signo, info->si_signo, regs);
1894 		}
1895 
1896 		/*
1897 		 * Death signals, no core dump.
1898 		 */
1899 		do_group_exit(info->si_signo);
1900 		/* NOTREACHED */
1901 	}
1902 	spin_unlock_irq(&sighand->siglock);
1903 	return signr;
1904 }
1905 
1906 void exit_signals(struct task_struct *tsk)
1907 {
1908 	int group_stop = 0;
1909 	struct task_struct *t;
1910 
1911 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
1912 		tsk->flags |= PF_EXITING;
1913 		return;
1914 	}
1915 
1916 	spin_lock_irq(&tsk->sighand->siglock);
1917 	/*
1918 	 * From now this task is not visible for group-wide signals,
1919 	 * see wants_signal(), do_signal_stop().
1920 	 */
1921 	tsk->flags |= PF_EXITING;
1922 	if (!signal_pending(tsk))
1923 		goto out;
1924 
1925 	/* It could be that __group_complete_signal() choose us to
1926 	 * notify about group-wide signal. Another thread should be
1927 	 * woken now to take the signal since we will not.
1928 	 */
1929 	for (t = tsk; (t = next_thread(t)) != tsk; )
1930 		if (!signal_pending(t) && !(t->flags & PF_EXITING))
1931 			recalc_sigpending_and_wake(t);
1932 
1933 	if (unlikely(tsk->signal->group_stop_count) &&
1934 			!--tsk->signal->group_stop_count) {
1935 		tsk->signal->flags = SIGNAL_STOP_STOPPED;
1936 		group_stop = 1;
1937 	}
1938 out:
1939 	spin_unlock_irq(&tsk->sighand->siglock);
1940 
1941 	if (unlikely(group_stop) && tracehook_notify_jctl(1, CLD_STOPPED)) {
1942 		read_lock(&tasklist_lock);
1943 		do_notify_parent_cldstop(tsk, CLD_STOPPED);
1944 		read_unlock(&tasklist_lock);
1945 	}
1946 }
1947 
1948 EXPORT_SYMBOL(recalc_sigpending);
1949 EXPORT_SYMBOL_GPL(dequeue_signal);
1950 EXPORT_SYMBOL(flush_signals);
1951 EXPORT_SYMBOL(force_sig);
1952 EXPORT_SYMBOL(send_sig);
1953 EXPORT_SYMBOL(send_sig_info);
1954 EXPORT_SYMBOL(sigprocmask);
1955 EXPORT_SYMBOL(block_all_signals);
1956 EXPORT_SYMBOL(unblock_all_signals);
1957 
1958 
1959 /*
1960  * System call entry points.
1961  */
1962 
1963 asmlinkage long sys_restart_syscall(void)
1964 {
1965 	struct restart_block *restart = &current_thread_info()->restart_block;
1966 	return restart->fn(restart);
1967 }
1968 
1969 long do_no_restart_syscall(struct restart_block *param)
1970 {
1971 	return -EINTR;
1972 }
1973 
1974 /*
1975  * We don't need to get the kernel lock - this is all local to this
1976  * particular thread.. (and that's good, because this is _heavily_
1977  * used by various programs)
1978  */
1979 
1980 /*
1981  * This is also useful for kernel threads that want to temporarily
1982  * (or permanently) block certain signals.
1983  *
1984  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1985  * interface happily blocks "unblockable" signals like SIGKILL
1986  * and friends.
1987  */
1988 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1989 {
1990 	int error;
1991 
1992 	spin_lock_irq(&current->sighand->siglock);
1993 	if (oldset)
1994 		*oldset = current->blocked;
1995 
1996 	error = 0;
1997 	switch (how) {
1998 	case SIG_BLOCK:
1999 		sigorsets(&current->blocked, &current->blocked, set);
2000 		break;
2001 	case SIG_UNBLOCK:
2002 		signandsets(&current->blocked, &current->blocked, set);
2003 		break;
2004 	case SIG_SETMASK:
2005 		current->blocked = *set;
2006 		break;
2007 	default:
2008 		error = -EINVAL;
2009 	}
2010 	recalc_sigpending();
2011 	spin_unlock_irq(&current->sighand->siglock);
2012 
2013 	return error;
2014 }
2015 
2016 asmlinkage long
2017 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2018 {
2019 	int error = -EINVAL;
2020 	sigset_t old_set, new_set;
2021 
2022 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2023 	if (sigsetsize != sizeof(sigset_t))
2024 		goto out;
2025 
2026 	if (set) {
2027 		error = -EFAULT;
2028 		if (copy_from_user(&new_set, set, sizeof(*set)))
2029 			goto out;
2030 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2031 
2032 		error = sigprocmask(how, &new_set, &old_set);
2033 		if (error)
2034 			goto out;
2035 		if (oset)
2036 			goto set_old;
2037 	} else if (oset) {
2038 		spin_lock_irq(&current->sighand->siglock);
2039 		old_set = current->blocked;
2040 		spin_unlock_irq(&current->sighand->siglock);
2041 
2042 	set_old:
2043 		error = -EFAULT;
2044 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
2045 			goto out;
2046 	}
2047 	error = 0;
2048 out:
2049 	return error;
2050 }
2051 
2052 long do_sigpending(void __user *set, unsigned long sigsetsize)
2053 {
2054 	long error = -EINVAL;
2055 	sigset_t pending;
2056 
2057 	if (sigsetsize > sizeof(sigset_t))
2058 		goto out;
2059 
2060 	spin_lock_irq(&current->sighand->siglock);
2061 	sigorsets(&pending, &current->pending.signal,
2062 		  &current->signal->shared_pending.signal);
2063 	spin_unlock_irq(&current->sighand->siglock);
2064 
2065 	/* Outside the lock because only this thread touches it.  */
2066 	sigandsets(&pending, &current->blocked, &pending);
2067 
2068 	error = -EFAULT;
2069 	if (!copy_to_user(set, &pending, sigsetsize))
2070 		error = 0;
2071 
2072 out:
2073 	return error;
2074 }
2075 
2076 asmlinkage long
2077 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2078 {
2079 	return do_sigpending(set, sigsetsize);
2080 }
2081 
2082 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2083 
2084 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2085 {
2086 	int err;
2087 
2088 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2089 		return -EFAULT;
2090 	if (from->si_code < 0)
2091 		return __copy_to_user(to, from, sizeof(siginfo_t))
2092 			? -EFAULT : 0;
2093 	/*
2094 	 * If you change siginfo_t structure, please be sure
2095 	 * this code is fixed accordingly.
2096 	 * Please remember to update the signalfd_copyinfo() function
2097 	 * inside fs/signalfd.c too, in case siginfo_t changes.
2098 	 * It should never copy any pad contained in the structure
2099 	 * to avoid security leaks, but must copy the generic
2100 	 * 3 ints plus the relevant union member.
2101 	 */
2102 	err = __put_user(from->si_signo, &to->si_signo);
2103 	err |= __put_user(from->si_errno, &to->si_errno);
2104 	err |= __put_user((short)from->si_code, &to->si_code);
2105 	switch (from->si_code & __SI_MASK) {
2106 	case __SI_KILL:
2107 		err |= __put_user(from->si_pid, &to->si_pid);
2108 		err |= __put_user(from->si_uid, &to->si_uid);
2109 		break;
2110 	case __SI_TIMER:
2111 		 err |= __put_user(from->si_tid, &to->si_tid);
2112 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2113 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2114 		break;
2115 	case __SI_POLL:
2116 		err |= __put_user(from->si_band, &to->si_band);
2117 		err |= __put_user(from->si_fd, &to->si_fd);
2118 		break;
2119 	case __SI_FAULT:
2120 		err |= __put_user(from->si_addr, &to->si_addr);
2121 #ifdef __ARCH_SI_TRAPNO
2122 		err |= __put_user(from->si_trapno, &to->si_trapno);
2123 #endif
2124 		break;
2125 	case __SI_CHLD:
2126 		err |= __put_user(from->si_pid, &to->si_pid);
2127 		err |= __put_user(from->si_uid, &to->si_uid);
2128 		err |= __put_user(from->si_status, &to->si_status);
2129 		err |= __put_user(from->si_utime, &to->si_utime);
2130 		err |= __put_user(from->si_stime, &to->si_stime);
2131 		break;
2132 	case __SI_RT: /* This is not generated by the kernel as of now. */
2133 	case __SI_MESGQ: /* But this is */
2134 		err |= __put_user(from->si_pid, &to->si_pid);
2135 		err |= __put_user(from->si_uid, &to->si_uid);
2136 		err |= __put_user(from->si_ptr, &to->si_ptr);
2137 		break;
2138 	default: /* this is just in case for now ... */
2139 		err |= __put_user(from->si_pid, &to->si_pid);
2140 		err |= __put_user(from->si_uid, &to->si_uid);
2141 		break;
2142 	}
2143 	return err;
2144 }
2145 
2146 #endif
2147 
2148 asmlinkage long
2149 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2150 		    siginfo_t __user *uinfo,
2151 		    const struct timespec __user *uts,
2152 		    size_t sigsetsize)
2153 {
2154 	int ret, sig;
2155 	sigset_t these;
2156 	struct timespec ts;
2157 	siginfo_t info;
2158 	long timeout = 0;
2159 
2160 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2161 	if (sigsetsize != sizeof(sigset_t))
2162 		return -EINVAL;
2163 
2164 	if (copy_from_user(&these, uthese, sizeof(these)))
2165 		return -EFAULT;
2166 
2167 	/*
2168 	 * Invert the set of allowed signals to get those we
2169 	 * want to block.
2170 	 */
2171 	sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2172 	signotset(&these);
2173 
2174 	if (uts) {
2175 		if (copy_from_user(&ts, uts, sizeof(ts)))
2176 			return -EFAULT;
2177 		if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2178 		    || ts.tv_sec < 0)
2179 			return -EINVAL;
2180 	}
2181 
2182 	spin_lock_irq(&current->sighand->siglock);
2183 	sig = dequeue_signal(current, &these, &info);
2184 	if (!sig) {
2185 		timeout = MAX_SCHEDULE_TIMEOUT;
2186 		if (uts)
2187 			timeout = (timespec_to_jiffies(&ts)
2188 				   + (ts.tv_sec || ts.tv_nsec));
2189 
2190 		if (timeout) {
2191 			/* None ready -- temporarily unblock those we're
2192 			 * interested while we are sleeping in so that we'll
2193 			 * be awakened when they arrive.  */
2194 			current->real_blocked = current->blocked;
2195 			sigandsets(&current->blocked, &current->blocked, &these);
2196 			recalc_sigpending();
2197 			spin_unlock_irq(&current->sighand->siglock);
2198 
2199 			timeout = schedule_timeout_interruptible(timeout);
2200 
2201 			spin_lock_irq(&current->sighand->siglock);
2202 			sig = dequeue_signal(current, &these, &info);
2203 			current->blocked = current->real_blocked;
2204 			siginitset(&current->real_blocked, 0);
2205 			recalc_sigpending();
2206 		}
2207 	}
2208 	spin_unlock_irq(&current->sighand->siglock);
2209 
2210 	if (sig) {
2211 		ret = sig;
2212 		if (uinfo) {
2213 			if (copy_siginfo_to_user(uinfo, &info))
2214 				ret = -EFAULT;
2215 		}
2216 	} else {
2217 		ret = -EAGAIN;
2218 		if (timeout)
2219 			ret = -EINTR;
2220 	}
2221 
2222 	return ret;
2223 }
2224 
2225 asmlinkage long
2226 sys_kill(pid_t pid, int sig)
2227 {
2228 	struct siginfo info;
2229 
2230 	info.si_signo = sig;
2231 	info.si_errno = 0;
2232 	info.si_code = SI_USER;
2233 	info.si_pid = task_tgid_vnr(current);
2234 	info.si_uid = current_uid();
2235 
2236 	return kill_something_info(sig, &info, pid);
2237 }
2238 
2239 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2240 {
2241 	int error;
2242 	struct siginfo info;
2243 	struct task_struct *p;
2244 	unsigned long flags;
2245 
2246 	error = -ESRCH;
2247 	info.si_signo = sig;
2248 	info.si_errno = 0;
2249 	info.si_code = SI_TKILL;
2250 	info.si_pid = task_tgid_vnr(current);
2251 	info.si_uid = current_uid();
2252 
2253 	rcu_read_lock();
2254 	p = find_task_by_vpid(pid);
2255 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2256 		error = check_kill_permission(sig, &info, p);
2257 		/*
2258 		 * The null signal is a permissions and process existence
2259 		 * probe.  No signal is actually delivered.
2260 		 *
2261 		 * If lock_task_sighand() fails we pretend the task dies
2262 		 * after receiving the signal. The window is tiny, and the
2263 		 * signal is private anyway.
2264 		 */
2265 		if (!error && sig && lock_task_sighand(p, &flags)) {
2266 			error = specific_send_sig_info(sig, &info, p);
2267 			unlock_task_sighand(p, &flags);
2268 		}
2269 	}
2270 	rcu_read_unlock();
2271 
2272 	return error;
2273 }
2274 
2275 /**
2276  *  sys_tgkill - send signal to one specific thread
2277  *  @tgid: the thread group ID of the thread
2278  *  @pid: the PID of the thread
2279  *  @sig: signal to be sent
2280  *
2281  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2282  *  exists but it's not belonging to the target process anymore. This
2283  *  method solves the problem of threads exiting and PIDs getting reused.
2284  */
2285 asmlinkage long sys_tgkill(pid_t tgid, pid_t pid, int sig)
2286 {
2287 	/* This is only valid for single tasks */
2288 	if (pid <= 0 || tgid <= 0)
2289 		return -EINVAL;
2290 
2291 	return do_tkill(tgid, pid, sig);
2292 }
2293 
2294 /*
2295  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2296  */
2297 asmlinkage long
2298 sys_tkill(pid_t pid, int sig)
2299 {
2300 	/* This is only valid for single tasks */
2301 	if (pid <= 0)
2302 		return -EINVAL;
2303 
2304 	return do_tkill(0, pid, sig);
2305 }
2306 
2307 asmlinkage long
2308 sys_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t __user *uinfo)
2309 {
2310 	siginfo_t info;
2311 
2312 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2313 		return -EFAULT;
2314 
2315 	/* Not even root can pretend to send signals from the kernel.
2316 	   Nor can they impersonate a kill(), which adds source info.  */
2317 	if (info.si_code >= 0)
2318 		return -EPERM;
2319 	info.si_signo = sig;
2320 
2321 	/* POSIX.1b doesn't mention process groups.  */
2322 	return kill_proc_info(sig, &info, pid);
2323 }
2324 
2325 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2326 {
2327 	struct task_struct *t = current;
2328 	struct k_sigaction *k;
2329 	sigset_t mask;
2330 
2331 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2332 		return -EINVAL;
2333 
2334 	k = &t->sighand->action[sig-1];
2335 
2336 	spin_lock_irq(&current->sighand->siglock);
2337 	if (oact)
2338 		*oact = *k;
2339 
2340 	if (act) {
2341 		sigdelsetmask(&act->sa.sa_mask,
2342 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
2343 		*k = *act;
2344 		/*
2345 		 * POSIX 3.3.1.3:
2346 		 *  "Setting a signal action to SIG_IGN for a signal that is
2347 		 *   pending shall cause the pending signal to be discarded,
2348 		 *   whether or not it is blocked."
2349 		 *
2350 		 *  "Setting a signal action to SIG_DFL for a signal that is
2351 		 *   pending and whose default action is to ignore the signal
2352 		 *   (for example, SIGCHLD), shall cause the pending signal to
2353 		 *   be discarded, whether or not it is blocked"
2354 		 */
2355 		if (sig_handler_ignored(sig_handler(t, sig), sig)) {
2356 			sigemptyset(&mask);
2357 			sigaddset(&mask, sig);
2358 			rm_from_queue_full(&mask, &t->signal->shared_pending);
2359 			do {
2360 				rm_from_queue_full(&mask, &t->pending);
2361 				t = next_thread(t);
2362 			} while (t != current);
2363 		}
2364 	}
2365 
2366 	spin_unlock_irq(&current->sighand->siglock);
2367 	return 0;
2368 }
2369 
2370 int
2371 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2372 {
2373 	stack_t oss;
2374 	int error;
2375 
2376 	if (uoss) {
2377 		oss.ss_sp = (void __user *) current->sas_ss_sp;
2378 		oss.ss_size = current->sas_ss_size;
2379 		oss.ss_flags = sas_ss_flags(sp);
2380 	}
2381 
2382 	if (uss) {
2383 		void __user *ss_sp;
2384 		size_t ss_size;
2385 		int ss_flags;
2386 
2387 		error = -EFAULT;
2388 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2389 		    || __get_user(ss_sp, &uss->ss_sp)
2390 		    || __get_user(ss_flags, &uss->ss_flags)
2391 		    || __get_user(ss_size, &uss->ss_size))
2392 			goto out;
2393 
2394 		error = -EPERM;
2395 		if (on_sig_stack(sp))
2396 			goto out;
2397 
2398 		error = -EINVAL;
2399 		/*
2400 		 *
2401 		 * Note - this code used to test ss_flags incorrectly
2402 		 *  	  old code may have been written using ss_flags==0
2403 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
2404 		 *	  way that worked) - this fix preserves that older
2405 		 *	  mechanism
2406 		 */
2407 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2408 			goto out;
2409 
2410 		if (ss_flags == SS_DISABLE) {
2411 			ss_size = 0;
2412 			ss_sp = NULL;
2413 		} else {
2414 			error = -ENOMEM;
2415 			if (ss_size < MINSIGSTKSZ)
2416 				goto out;
2417 		}
2418 
2419 		current->sas_ss_sp = (unsigned long) ss_sp;
2420 		current->sas_ss_size = ss_size;
2421 	}
2422 
2423 	if (uoss) {
2424 		error = -EFAULT;
2425 		if (copy_to_user(uoss, &oss, sizeof(oss)))
2426 			goto out;
2427 	}
2428 
2429 	error = 0;
2430 out:
2431 	return error;
2432 }
2433 
2434 #ifdef __ARCH_WANT_SYS_SIGPENDING
2435 
2436 asmlinkage long
2437 sys_sigpending(old_sigset_t __user *set)
2438 {
2439 	return do_sigpending(set, sizeof(*set));
2440 }
2441 
2442 #endif
2443 
2444 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2445 /* Some platforms have their own version with special arguments others
2446    support only sys_rt_sigprocmask.  */
2447 
2448 asmlinkage long
2449 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2450 {
2451 	int error;
2452 	old_sigset_t old_set, new_set;
2453 
2454 	if (set) {
2455 		error = -EFAULT;
2456 		if (copy_from_user(&new_set, set, sizeof(*set)))
2457 			goto out;
2458 		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2459 
2460 		spin_lock_irq(&current->sighand->siglock);
2461 		old_set = current->blocked.sig[0];
2462 
2463 		error = 0;
2464 		switch (how) {
2465 		default:
2466 			error = -EINVAL;
2467 			break;
2468 		case SIG_BLOCK:
2469 			sigaddsetmask(&current->blocked, new_set);
2470 			break;
2471 		case SIG_UNBLOCK:
2472 			sigdelsetmask(&current->blocked, new_set);
2473 			break;
2474 		case SIG_SETMASK:
2475 			current->blocked.sig[0] = new_set;
2476 			break;
2477 		}
2478 
2479 		recalc_sigpending();
2480 		spin_unlock_irq(&current->sighand->siglock);
2481 		if (error)
2482 			goto out;
2483 		if (oset)
2484 			goto set_old;
2485 	} else if (oset) {
2486 		old_set = current->blocked.sig[0];
2487 	set_old:
2488 		error = -EFAULT;
2489 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
2490 			goto out;
2491 	}
2492 	error = 0;
2493 out:
2494 	return error;
2495 }
2496 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2497 
2498 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2499 asmlinkage long
2500 sys_rt_sigaction(int sig,
2501 		 const struct sigaction __user *act,
2502 		 struct sigaction __user *oact,
2503 		 size_t sigsetsize)
2504 {
2505 	struct k_sigaction new_sa, old_sa;
2506 	int ret = -EINVAL;
2507 
2508 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2509 	if (sigsetsize != sizeof(sigset_t))
2510 		goto out;
2511 
2512 	if (act) {
2513 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2514 			return -EFAULT;
2515 	}
2516 
2517 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2518 
2519 	if (!ret && oact) {
2520 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2521 			return -EFAULT;
2522 	}
2523 out:
2524 	return ret;
2525 }
2526 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2527 
2528 #ifdef __ARCH_WANT_SYS_SGETMASK
2529 
2530 /*
2531  * For backwards compatibility.  Functionality superseded by sigprocmask.
2532  */
2533 asmlinkage long
2534 sys_sgetmask(void)
2535 {
2536 	/* SMP safe */
2537 	return current->blocked.sig[0];
2538 }
2539 
2540 asmlinkage long
2541 sys_ssetmask(int newmask)
2542 {
2543 	int old;
2544 
2545 	spin_lock_irq(&current->sighand->siglock);
2546 	old = current->blocked.sig[0];
2547 
2548 	siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2549 						  sigmask(SIGSTOP)));
2550 	recalc_sigpending();
2551 	spin_unlock_irq(&current->sighand->siglock);
2552 
2553 	return old;
2554 }
2555 #endif /* __ARCH_WANT_SGETMASK */
2556 
2557 #ifdef __ARCH_WANT_SYS_SIGNAL
2558 /*
2559  * For backwards compatibility.  Functionality superseded by sigaction.
2560  */
2561 asmlinkage unsigned long
2562 sys_signal(int sig, __sighandler_t handler)
2563 {
2564 	struct k_sigaction new_sa, old_sa;
2565 	int ret;
2566 
2567 	new_sa.sa.sa_handler = handler;
2568 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2569 	sigemptyset(&new_sa.sa.sa_mask);
2570 
2571 	ret = do_sigaction(sig, &new_sa, &old_sa);
2572 
2573 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2574 }
2575 #endif /* __ARCH_WANT_SYS_SIGNAL */
2576 
2577 #ifdef __ARCH_WANT_SYS_PAUSE
2578 
2579 asmlinkage long
2580 sys_pause(void)
2581 {
2582 	current->state = TASK_INTERRUPTIBLE;
2583 	schedule();
2584 	return -ERESTARTNOHAND;
2585 }
2586 
2587 #endif
2588 
2589 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2590 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2591 {
2592 	sigset_t newset;
2593 
2594 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2595 	if (sigsetsize != sizeof(sigset_t))
2596 		return -EINVAL;
2597 
2598 	if (copy_from_user(&newset, unewset, sizeof(newset)))
2599 		return -EFAULT;
2600 	sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2601 
2602 	spin_lock_irq(&current->sighand->siglock);
2603 	current->saved_sigmask = current->blocked;
2604 	current->blocked = newset;
2605 	recalc_sigpending();
2606 	spin_unlock_irq(&current->sighand->siglock);
2607 
2608 	current->state = TASK_INTERRUPTIBLE;
2609 	schedule();
2610 	set_restore_sigmask();
2611 	return -ERESTARTNOHAND;
2612 }
2613 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2614 
2615 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2616 {
2617 	return NULL;
2618 }
2619 
2620 void __init signals_init(void)
2621 {
2622 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2623 }
2624