1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/signal.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 8 * 9 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 10 * Changes to use preallocated sigqueue structures 11 * to allow signals to be sent reliably. 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/user.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/sched/cputime.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/mm.h> 26 #include <linux/proc_fs.h> 27 #include <linux/tty.h> 28 #include <linux/binfmts.h> 29 #include <linux/coredump.h> 30 #include <linux/security.h> 31 #include <linux/syscalls.h> 32 #include <linux/ptrace.h> 33 #include <linux/signal.h> 34 #include <linux/signalfd.h> 35 #include <linux/ratelimit.h> 36 #include <linux/task_work.h> 37 #include <linux/capability.h> 38 #include <linux/freezer.h> 39 #include <linux/pid_namespace.h> 40 #include <linux/nsproxy.h> 41 #include <linux/user_namespace.h> 42 #include <linux/uprobes.h> 43 #include <linux/compat.h> 44 #include <linux/cn_proc.h> 45 #include <linux/compiler.h> 46 #include <linux/posix-timers.h> 47 #include <linux/cgroup.h> 48 #include <linux/audit.h> 49 #include <linux/sysctl.h> 50 #include <uapi/linux/pidfd.h> 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/signal.h> 54 55 #include <asm/param.h> 56 #include <linux/uaccess.h> 57 #include <asm/unistd.h> 58 #include <asm/siginfo.h> 59 #include <asm/cacheflush.h> 60 #include <asm/syscall.h> /* for syscall_get_* */ 61 62 /* 63 * SLAB caches for signal bits. 64 */ 65 66 static struct kmem_cache *sigqueue_cachep; 67 68 int print_fatal_signals __read_mostly; 69 70 static void __user *sig_handler(struct task_struct *t, int sig) 71 { 72 return t->sighand->action[sig - 1].sa.sa_handler; 73 } 74 75 static inline bool sig_handler_ignored(void __user *handler, int sig) 76 { 77 /* Is it explicitly or implicitly ignored? */ 78 return handler == SIG_IGN || 79 (handler == SIG_DFL && sig_kernel_ignore(sig)); 80 } 81 82 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 83 { 84 void __user *handler; 85 86 handler = sig_handler(t, sig); 87 88 /* SIGKILL and SIGSTOP may not be sent to the global init */ 89 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 90 return true; 91 92 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 93 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 94 return true; 95 96 /* Only allow kernel generated signals to this kthread */ 97 if (unlikely((t->flags & PF_KTHREAD) && 98 (handler == SIG_KTHREAD_KERNEL) && !force)) 99 return true; 100 101 return sig_handler_ignored(handler, sig); 102 } 103 104 static bool sig_ignored(struct task_struct *t, int sig, bool force) 105 { 106 /* 107 * Blocked signals are never ignored, since the 108 * signal handler may change by the time it is 109 * unblocked. 110 */ 111 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 112 return false; 113 114 /* 115 * Tracers may want to know about even ignored signal unless it 116 * is SIGKILL which can't be reported anyway but can be ignored 117 * by SIGNAL_UNKILLABLE task. 118 */ 119 if (t->ptrace && sig != SIGKILL) 120 return false; 121 122 return sig_task_ignored(t, sig, force); 123 } 124 125 /* 126 * Re-calculate pending state from the set of locally pending 127 * signals, globally pending signals, and blocked signals. 128 */ 129 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 130 { 131 unsigned long ready; 132 long i; 133 134 switch (_NSIG_WORDS) { 135 default: 136 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 137 ready |= signal->sig[i] &~ blocked->sig[i]; 138 break; 139 140 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 141 ready |= signal->sig[2] &~ blocked->sig[2]; 142 ready |= signal->sig[1] &~ blocked->sig[1]; 143 ready |= signal->sig[0] &~ blocked->sig[0]; 144 break; 145 146 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 147 ready |= signal->sig[0] &~ blocked->sig[0]; 148 break; 149 150 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 151 } 152 return ready != 0; 153 } 154 155 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 156 157 static bool recalc_sigpending_tsk(struct task_struct *t) 158 { 159 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || 160 PENDING(&t->pending, &t->blocked) || 161 PENDING(&t->signal->shared_pending, &t->blocked) || 162 cgroup_task_frozen(t)) { 163 set_tsk_thread_flag(t, TIF_SIGPENDING); 164 return true; 165 } 166 167 /* 168 * We must never clear the flag in another thread, or in current 169 * when it's possible the current syscall is returning -ERESTART*. 170 * So we don't clear it here, and only callers who know they should do. 171 */ 172 return false; 173 } 174 175 void recalc_sigpending(void) 176 { 177 if (!recalc_sigpending_tsk(current) && !freezing(current)) 178 clear_thread_flag(TIF_SIGPENDING); 179 180 } 181 EXPORT_SYMBOL(recalc_sigpending); 182 183 void calculate_sigpending(void) 184 { 185 /* Have any signals or users of TIF_SIGPENDING been delayed 186 * until after fork? 187 */ 188 spin_lock_irq(¤t->sighand->siglock); 189 set_tsk_thread_flag(current, TIF_SIGPENDING); 190 recalc_sigpending(); 191 spin_unlock_irq(¤t->sighand->siglock); 192 } 193 194 /* Given the mask, find the first available signal that should be serviced. */ 195 196 #define SYNCHRONOUS_MASK \ 197 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 198 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 199 200 int next_signal(struct sigpending *pending, sigset_t *mask) 201 { 202 unsigned long i, *s, *m, x; 203 int sig = 0; 204 205 s = pending->signal.sig; 206 m = mask->sig; 207 208 /* 209 * Handle the first word specially: it contains the 210 * synchronous signals that need to be dequeued first. 211 */ 212 x = *s &~ *m; 213 if (x) { 214 if (x & SYNCHRONOUS_MASK) 215 x &= SYNCHRONOUS_MASK; 216 sig = ffz(~x) + 1; 217 return sig; 218 } 219 220 switch (_NSIG_WORDS) { 221 default: 222 for (i = 1; i < _NSIG_WORDS; ++i) { 223 x = *++s &~ *++m; 224 if (!x) 225 continue; 226 sig = ffz(~x) + i*_NSIG_BPW + 1; 227 break; 228 } 229 break; 230 231 case 2: 232 x = s[1] &~ m[1]; 233 if (!x) 234 break; 235 sig = ffz(~x) + _NSIG_BPW + 1; 236 break; 237 238 case 1: 239 /* Nothing to do */ 240 break; 241 } 242 243 return sig; 244 } 245 246 static inline void print_dropped_signal(int sig) 247 { 248 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 249 250 if (!print_fatal_signals) 251 return; 252 253 if (!__ratelimit(&ratelimit_state)) 254 return; 255 256 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 257 current->comm, current->pid, sig); 258 } 259 260 /** 261 * task_set_jobctl_pending - set jobctl pending bits 262 * @task: target task 263 * @mask: pending bits to set 264 * 265 * Clear @mask from @task->jobctl. @mask must be subset of 266 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 267 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 268 * cleared. If @task is already being killed or exiting, this function 269 * becomes noop. 270 * 271 * CONTEXT: 272 * Must be called with @task->sighand->siglock held. 273 * 274 * RETURNS: 275 * %true if @mask is set, %false if made noop because @task was dying. 276 */ 277 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 278 { 279 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 280 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 281 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 282 283 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 284 return false; 285 286 if (mask & JOBCTL_STOP_SIGMASK) 287 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 288 289 task->jobctl |= mask; 290 return true; 291 } 292 293 /** 294 * task_clear_jobctl_trapping - clear jobctl trapping bit 295 * @task: target task 296 * 297 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 298 * Clear it and wake up the ptracer. Note that we don't need any further 299 * locking. @task->siglock guarantees that @task->parent points to the 300 * ptracer. 301 * 302 * CONTEXT: 303 * Must be called with @task->sighand->siglock held. 304 */ 305 void task_clear_jobctl_trapping(struct task_struct *task) 306 { 307 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 308 task->jobctl &= ~JOBCTL_TRAPPING; 309 smp_mb(); /* advised by wake_up_bit() */ 310 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 311 } 312 } 313 314 /** 315 * task_clear_jobctl_pending - clear jobctl pending bits 316 * @task: target task 317 * @mask: pending bits to clear 318 * 319 * Clear @mask from @task->jobctl. @mask must be subset of 320 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 321 * STOP bits are cleared together. 322 * 323 * If clearing of @mask leaves no stop or trap pending, this function calls 324 * task_clear_jobctl_trapping(). 325 * 326 * CONTEXT: 327 * Must be called with @task->sighand->siglock held. 328 */ 329 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 330 { 331 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 332 333 if (mask & JOBCTL_STOP_PENDING) 334 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 335 336 task->jobctl &= ~mask; 337 338 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 339 task_clear_jobctl_trapping(task); 340 } 341 342 /** 343 * task_participate_group_stop - participate in a group stop 344 * @task: task participating in a group stop 345 * 346 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 347 * Group stop states are cleared and the group stop count is consumed if 348 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 349 * stop, the appropriate `SIGNAL_*` flags are set. 350 * 351 * CONTEXT: 352 * Must be called with @task->sighand->siglock held. 353 * 354 * RETURNS: 355 * %true if group stop completion should be notified to the parent, %false 356 * otherwise. 357 */ 358 static bool task_participate_group_stop(struct task_struct *task) 359 { 360 struct signal_struct *sig = task->signal; 361 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 362 363 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 364 365 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 366 367 if (!consume) 368 return false; 369 370 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 371 sig->group_stop_count--; 372 373 /* 374 * Tell the caller to notify completion iff we are entering into a 375 * fresh group stop. Read comment in do_signal_stop() for details. 376 */ 377 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 378 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 379 return true; 380 } 381 return false; 382 } 383 384 void task_join_group_stop(struct task_struct *task) 385 { 386 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK; 387 struct signal_struct *sig = current->signal; 388 389 if (sig->group_stop_count) { 390 sig->group_stop_count++; 391 mask |= JOBCTL_STOP_CONSUME; 392 } else if (!(sig->flags & SIGNAL_STOP_STOPPED)) 393 return; 394 395 /* Have the new thread join an on-going signal group stop */ 396 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING); 397 } 398 399 /* 400 * allocate a new signal queue record 401 * - this may be called without locks if and only if t == current, otherwise an 402 * appropriate lock must be held to stop the target task from exiting 403 */ 404 static struct sigqueue * 405 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags, 406 int override_rlimit, const unsigned int sigqueue_flags) 407 { 408 struct sigqueue *q = NULL; 409 struct ucounts *ucounts; 410 long sigpending; 411 412 /* 413 * Protect access to @t credentials. This can go away when all 414 * callers hold rcu read lock. 415 * 416 * NOTE! A pending signal will hold on to the user refcount, 417 * and we get/put the refcount only when the sigpending count 418 * changes from/to zero. 419 */ 420 rcu_read_lock(); 421 ucounts = task_ucounts(t); 422 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 423 rcu_read_unlock(); 424 if (!sigpending) 425 return NULL; 426 427 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) { 428 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags); 429 } else { 430 print_dropped_signal(sig); 431 } 432 433 if (unlikely(q == NULL)) { 434 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 435 } else { 436 INIT_LIST_HEAD(&q->list); 437 q->flags = sigqueue_flags; 438 q->ucounts = ucounts; 439 } 440 return q; 441 } 442 443 static void __sigqueue_free(struct sigqueue *q) 444 { 445 if (q->flags & SIGQUEUE_PREALLOC) 446 return; 447 if (q->ucounts) { 448 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING); 449 q->ucounts = NULL; 450 } 451 kmem_cache_free(sigqueue_cachep, q); 452 } 453 454 void flush_sigqueue(struct sigpending *queue) 455 { 456 struct sigqueue *q; 457 458 sigemptyset(&queue->signal); 459 while (!list_empty(&queue->list)) { 460 q = list_entry(queue->list.next, struct sigqueue , list); 461 list_del_init(&q->list); 462 __sigqueue_free(q); 463 } 464 } 465 466 /* 467 * Flush all pending signals for this kthread. 468 */ 469 void flush_signals(struct task_struct *t) 470 { 471 unsigned long flags; 472 473 spin_lock_irqsave(&t->sighand->siglock, flags); 474 clear_tsk_thread_flag(t, TIF_SIGPENDING); 475 flush_sigqueue(&t->pending); 476 flush_sigqueue(&t->signal->shared_pending); 477 spin_unlock_irqrestore(&t->sighand->siglock, flags); 478 } 479 EXPORT_SYMBOL(flush_signals); 480 481 #ifdef CONFIG_POSIX_TIMERS 482 static void __flush_itimer_signals(struct sigpending *pending) 483 { 484 sigset_t signal, retain; 485 struct sigqueue *q, *n; 486 487 signal = pending->signal; 488 sigemptyset(&retain); 489 490 list_for_each_entry_safe(q, n, &pending->list, list) { 491 int sig = q->info.si_signo; 492 493 if (likely(q->info.si_code != SI_TIMER)) { 494 sigaddset(&retain, sig); 495 } else { 496 sigdelset(&signal, sig); 497 list_del_init(&q->list); 498 __sigqueue_free(q); 499 } 500 } 501 502 sigorsets(&pending->signal, &signal, &retain); 503 } 504 505 void flush_itimer_signals(void) 506 { 507 struct task_struct *tsk = current; 508 unsigned long flags; 509 510 spin_lock_irqsave(&tsk->sighand->siglock, flags); 511 __flush_itimer_signals(&tsk->pending); 512 __flush_itimer_signals(&tsk->signal->shared_pending); 513 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 514 } 515 #endif 516 517 void ignore_signals(struct task_struct *t) 518 { 519 int i; 520 521 for (i = 0; i < _NSIG; ++i) 522 t->sighand->action[i].sa.sa_handler = SIG_IGN; 523 524 flush_signals(t); 525 } 526 527 /* 528 * Flush all handlers for a task. 529 */ 530 531 void 532 flush_signal_handlers(struct task_struct *t, int force_default) 533 { 534 int i; 535 struct k_sigaction *ka = &t->sighand->action[0]; 536 for (i = _NSIG ; i != 0 ; i--) { 537 if (force_default || ka->sa.sa_handler != SIG_IGN) 538 ka->sa.sa_handler = SIG_DFL; 539 ka->sa.sa_flags = 0; 540 #ifdef __ARCH_HAS_SA_RESTORER 541 ka->sa.sa_restorer = NULL; 542 #endif 543 sigemptyset(&ka->sa.sa_mask); 544 ka++; 545 } 546 } 547 548 bool unhandled_signal(struct task_struct *tsk, int sig) 549 { 550 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 551 if (is_global_init(tsk)) 552 return true; 553 554 if (handler != SIG_IGN && handler != SIG_DFL) 555 return false; 556 557 /* If dying, we handle all new signals by ignoring them */ 558 if (fatal_signal_pending(tsk)) 559 return false; 560 561 /* if ptraced, let the tracer determine */ 562 return !tsk->ptrace; 563 } 564 565 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 566 bool *resched_timer) 567 { 568 struct sigqueue *q, *first = NULL; 569 570 /* 571 * Collect the siginfo appropriate to this signal. Check if 572 * there is another siginfo for the same signal. 573 */ 574 list_for_each_entry(q, &list->list, list) { 575 if (q->info.si_signo == sig) { 576 if (first) 577 goto still_pending; 578 first = q; 579 } 580 } 581 582 sigdelset(&list->signal, sig); 583 584 if (first) { 585 still_pending: 586 list_del_init(&first->list); 587 copy_siginfo(info, &first->info); 588 589 *resched_timer = 590 (first->flags & SIGQUEUE_PREALLOC) && 591 (info->si_code == SI_TIMER) && 592 (info->si_sys_private); 593 594 __sigqueue_free(first); 595 } else { 596 /* 597 * Ok, it wasn't in the queue. This must be 598 * a fast-pathed signal or we must have been 599 * out of queue space. So zero out the info. 600 */ 601 clear_siginfo(info); 602 info->si_signo = sig; 603 info->si_errno = 0; 604 info->si_code = SI_USER; 605 info->si_pid = 0; 606 info->si_uid = 0; 607 } 608 } 609 610 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 611 kernel_siginfo_t *info, bool *resched_timer) 612 { 613 int sig = next_signal(pending, mask); 614 615 if (sig) 616 collect_signal(sig, pending, info, resched_timer); 617 return sig; 618 } 619 620 /* 621 * Dequeue a signal and return the element to the caller, which is 622 * expected to free it. 623 * 624 * All callers have to hold the siglock. 625 */ 626 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, 627 kernel_siginfo_t *info, enum pid_type *type) 628 { 629 bool resched_timer = false; 630 int signr; 631 632 /* We only dequeue private signals from ourselves, we don't let 633 * signalfd steal them 634 */ 635 *type = PIDTYPE_PID; 636 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 637 if (!signr) { 638 *type = PIDTYPE_TGID; 639 signr = __dequeue_signal(&tsk->signal->shared_pending, 640 mask, info, &resched_timer); 641 #ifdef CONFIG_POSIX_TIMERS 642 /* 643 * itimer signal ? 644 * 645 * itimers are process shared and we restart periodic 646 * itimers in the signal delivery path to prevent DoS 647 * attacks in the high resolution timer case. This is 648 * compliant with the old way of self-restarting 649 * itimers, as the SIGALRM is a legacy signal and only 650 * queued once. Changing the restart behaviour to 651 * restart the timer in the signal dequeue path is 652 * reducing the timer noise on heavy loaded !highres 653 * systems too. 654 */ 655 if (unlikely(signr == SIGALRM)) { 656 struct hrtimer *tmr = &tsk->signal->real_timer; 657 658 if (!hrtimer_is_queued(tmr) && 659 tsk->signal->it_real_incr != 0) { 660 hrtimer_forward(tmr, tmr->base->get_time(), 661 tsk->signal->it_real_incr); 662 hrtimer_restart(tmr); 663 } 664 } 665 #endif 666 } 667 668 recalc_sigpending(); 669 if (!signr) 670 return 0; 671 672 if (unlikely(sig_kernel_stop(signr))) { 673 /* 674 * Set a marker that we have dequeued a stop signal. Our 675 * caller might release the siglock and then the pending 676 * stop signal it is about to process is no longer in the 677 * pending bitmasks, but must still be cleared by a SIGCONT 678 * (and overruled by a SIGKILL). So those cases clear this 679 * shared flag after we've set it. Note that this flag may 680 * remain set after the signal we return is ignored or 681 * handled. That doesn't matter because its only purpose 682 * is to alert stop-signal processing code when another 683 * processor has come along and cleared the flag. 684 */ 685 current->jobctl |= JOBCTL_STOP_DEQUEUED; 686 } 687 #ifdef CONFIG_POSIX_TIMERS 688 if (resched_timer) { 689 /* 690 * Release the siglock to ensure proper locking order 691 * of timer locks outside of siglocks. Note, we leave 692 * irqs disabled here, since the posix-timers code is 693 * about to disable them again anyway. 694 */ 695 spin_unlock(&tsk->sighand->siglock); 696 posixtimer_rearm(info); 697 spin_lock(&tsk->sighand->siglock); 698 699 /* Don't expose the si_sys_private value to userspace */ 700 info->si_sys_private = 0; 701 } 702 #endif 703 return signr; 704 } 705 EXPORT_SYMBOL_GPL(dequeue_signal); 706 707 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 708 { 709 struct task_struct *tsk = current; 710 struct sigpending *pending = &tsk->pending; 711 struct sigqueue *q, *sync = NULL; 712 713 /* 714 * Might a synchronous signal be in the queue? 715 */ 716 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 717 return 0; 718 719 /* 720 * Return the first synchronous signal in the queue. 721 */ 722 list_for_each_entry(q, &pending->list, list) { 723 /* Synchronous signals have a positive si_code */ 724 if ((q->info.si_code > SI_USER) && 725 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 726 sync = q; 727 goto next; 728 } 729 } 730 return 0; 731 next: 732 /* 733 * Check if there is another siginfo for the same signal. 734 */ 735 list_for_each_entry_continue(q, &pending->list, list) { 736 if (q->info.si_signo == sync->info.si_signo) 737 goto still_pending; 738 } 739 740 sigdelset(&pending->signal, sync->info.si_signo); 741 recalc_sigpending(); 742 still_pending: 743 list_del_init(&sync->list); 744 copy_siginfo(info, &sync->info); 745 __sigqueue_free(sync); 746 return info->si_signo; 747 } 748 749 /* 750 * Tell a process that it has a new active signal.. 751 * 752 * NOTE! we rely on the previous spin_lock to 753 * lock interrupts for us! We can only be called with 754 * "siglock" held, and the local interrupt must 755 * have been disabled when that got acquired! 756 * 757 * No need to set need_resched since signal event passing 758 * goes through ->blocked 759 */ 760 void signal_wake_up_state(struct task_struct *t, unsigned int state) 761 { 762 lockdep_assert_held(&t->sighand->siglock); 763 764 set_tsk_thread_flag(t, TIF_SIGPENDING); 765 766 /* 767 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 768 * case. We don't check t->state here because there is a race with it 769 * executing another processor and just now entering stopped state. 770 * By using wake_up_state, we ensure the process will wake up and 771 * handle its death signal. 772 */ 773 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 774 kick_process(t); 775 } 776 777 /* 778 * Remove signals in mask from the pending set and queue. 779 * Returns 1 if any signals were found. 780 * 781 * All callers must be holding the siglock. 782 */ 783 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 784 { 785 struct sigqueue *q, *n; 786 sigset_t m; 787 788 sigandsets(&m, mask, &s->signal); 789 if (sigisemptyset(&m)) 790 return; 791 792 sigandnsets(&s->signal, &s->signal, mask); 793 list_for_each_entry_safe(q, n, &s->list, list) { 794 if (sigismember(mask, q->info.si_signo)) { 795 list_del_init(&q->list); 796 __sigqueue_free(q); 797 } 798 } 799 } 800 801 static inline int is_si_special(const struct kernel_siginfo *info) 802 { 803 return info <= SEND_SIG_PRIV; 804 } 805 806 static inline bool si_fromuser(const struct kernel_siginfo *info) 807 { 808 return info == SEND_SIG_NOINFO || 809 (!is_si_special(info) && SI_FROMUSER(info)); 810 } 811 812 /* 813 * called with RCU read lock from check_kill_permission() 814 */ 815 static bool kill_ok_by_cred(struct task_struct *t) 816 { 817 const struct cred *cred = current_cred(); 818 const struct cred *tcred = __task_cred(t); 819 820 return uid_eq(cred->euid, tcred->suid) || 821 uid_eq(cred->euid, tcred->uid) || 822 uid_eq(cred->uid, tcred->suid) || 823 uid_eq(cred->uid, tcred->uid) || 824 ns_capable(tcred->user_ns, CAP_KILL); 825 } 826 827 /* 828 * Bad permissions for sending the signal 829 * - the caller must hold the RCU read lock 830 */ 831 static int check_kill_permission(int sig, struct kernel_siginfo *info, 832 struct task_struct *t) 833 { 834 struct pid *sid; 835 int error; 836 837 if (!valid_signal(sig)) 838 return -EINVAL; 839 840 if (!si_fromuser(info)) 841 return 0; 842 843 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 844 if (error) 845 return error; 846 847 if (!same_thread_group(current, t) && 848 !kill_ok_by_cred(t)) { 849 switch (sig) { 850 case SIGCONT: 851 sid = task_session(t); 852 /* 853 * We don't return the error if sid == NULL. The 854 * task was unhashed, the caller must notice this. 855 */ 856 if (!sid || sid == task_session(current)) 857 break; 858 fallthrough; 859 default: 860 return -EPERM; 861 } 862 } 863 864 return security_task_kill(t, info, sig, NULL); 865 } 866 867 /** 868 * ptrace_trap_notify - schedule trap to notify ptracer 869 * @t: tracee wanting to notify tracer 870 * 871 * This function schedules sticky ptrace trap which is cleared on the next 872 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 873 * ptracer. 874 * 875 * If @t is running, STOP trap will be taken. If trapped for STOP and 876 * ptracer is listening for events, tracee is woken up so that it can 877 * re-trap for the new event. If trapped otherwise, STOP trap will be 878 * eventually taken without returning to userland after the existing traps 879 * are finished by PTRACE_CONT. 880 * 881 * CONTEXT: 882 * Must be called with @task->sighand->siglock held. 883 */ 884 static void ptrace_trap_notify(struct task_struct *t) 885 { 886 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 887 lockdep_assert_held(&t->sighand->siglock); 888 889 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 890 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 891 } 892 893 /* 894 * Handle magic process-wide effects of stop/continue signals. Unlike 895 * the signal actions, these happen immediately at signal-generation 896 * time regardless of blocking, ignoring, or handling. This does the 897 * actual continuing for SIGCONT, but not the actual stopping for stop 898 * signals. The process stop is done as a signal action for SIG_DFL. 899 * 900 * Returns true if the signal should be actually delivered, otherwise 901 * it should be dropped. 902 */ 903 static bool prepare_signal(int sig, struct task_struct *p, bool force) 904 { 905 struct signal_struct *signal = p->signal; 906 struct task_struct *t; 907 sigset_t flush; 908 909 if (signal->flags & SIGNAL_GROUP_EXIT) { 910 if (signal->core_state) 911 return sig == SIGKILL; 912 /* 913 * The process is in the middle of dying, drop the signal. 914 */ 915 return false; 916 } else if (sig_kernel_stop(sig)) { 917 /* 918 * This is a stop signal. Remove SIGCONT from all queues. 919 */ 920 siginitset(&flush, sigmask(SIGCONT)); 921 flush_sigqueue_mask(&flush, &signal->shared_pending); 922 for_each_thread(p, t) 923 flush_sigqueue_mask(&flush, &t->pending); 924 } else if (sig == SIGCONT) { 925 unsigned int why; 926 /* 927 * Remove all stop signals from all queues, wake all threads. 928 */ 929 siginitset(&flush, SIG_KERNEL_STOP_MASK); 930 flush_sigqueue_mask(&flush, &signal->shared_pending); 931 for_each_thread(p, t) { 932 flush_sigqueue_mask(&flush, &t->pending); 933 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 934 if (likely(!(t->ptrace & PT_SEIZED))) { 935 t->jobctl &= ~JOBCTL_STOPPED; 936 wake_up_state(t, __TASK_STOPPED); 937 } else 938 ptrace_trap_notify(t); 939 } 940 941 /* 942 * Notify the parent with CLD_CONTINUED if we were stopped. 943 * 944 * If we were in the middle of a group stop, we pretend it 945 * was already finished, and then continued. Since SIGCHLD 946 * doesn't queue we report only CLD_STOPPED, as if the next 947 * CLD_CONTINUED was dropped. 948 */ 949 why = 0; 950 if (signal->flags & SIGNAL_STOP_STOPPED) 951 why |= SIGNAL_CLD_CONTINUED; 952 else if (signal->group_stop_count) 953 why |= SIGNAL_CLD_STOPPED; 954 955 if (why) { 956 /* 957 * The first thread which returns from do_signal_stop() 958 * will take ->siglock, notice SIGNAL_CLD_MASK, and 959 * notify its parent. See get_signal(). 960 */ 961 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 962 signal->group_stop_count = 0; 963 signal->group_exit_code = 0; 964 } 965 } 966 967 return !sig_ignored(p, sig, force); 968 } 969 970 /* 971 * Test if P wants to take SIG. After we've checked all threads with this, 972 * it's equivalent to finding no threads not blocking SIG. Any threads not 973 * blocking SIG were ruled out because they are not running and already 974 * have pending signals. Such threads will dequeue from the shared queue 975 * as soon as they're available, so putting the signal on the shared queue 976 * will be equivalent to sending it to one such thread. 977 */ 978 static inline bool wants_signal(int sig, struct task_struct *p) 979 { 980 if (sigismember(&p->blocked, sig)) 981 return false; 982 983 if (p->flags & PF_EXITING) 984 return false; 985 986 if (sig == SIGKILL) 987 return true; 988 989 if (task_is_stopped_or_traced(p)) 990 return false; 991 992 return task_curr(p) || !task_sigpending(p); 993 } 994 995 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 996 { 997 struct signal_struct *signal = p->signal; 998 struct task_struct *t; 999 1000 /* 1001 * Now find a thread we can wake up to take the signal off the queue. 1002 * 1003 * Try the suggested task first (may or may not be the main thread). 1004 */ 1005 if (wants_signal(sig, p)) 1006 t = p; 1007 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 1008 /* 1009 * There is just one thread and it does not need to be woken. 1010 * It will dequeue unblocked signals before it runs again. 1011 */ 1012 return; 1013 else { 1014 /* 1015 * Otherwise try to find a suitable thread. 1016 */ 1017 t = signal->curr_target; 1018 while (!wants_signal(sig, t)) { 1019 t = next_thread(t); 1020 if (t == signal->curr_target) 1021 /* 1022 * No thread needs to be woken. 1023 * Any eligible threads will see 1024 * the signal in the queue soon. 1025 */ 1026 return; 1027 } 1028 signal->curr_target = t; 1029 } 1030 1031 /* 1032 * Found a killable thread. If the signal will be fatal, 1033 * then start taking the whole group down immediately. 1034 */ 1035 if (sig_fatal(p, sig) && 1036 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) && 1037 !sigismember(&t->real_blocked, sig) && 1038 (sig == SIGKILL || !p->ptrace)) { 1039 /* 1040 * This signal will be fatal to the whole group. 1041 */ 1042 if (!sig_kernel_coredump(sig)) { 1043 /* 1044 * Start a group exit and wake everybody up. 1045 * This way we don't have other threads 1046 * running and doing things after a slower 1047 * thread has the fatal signal pending. 1048 */ 1049 signal->flags = SIGNAL_GROUP_EXIT; 1050 signal->group_exit_code = sig; 1051 signal->group_stop_count = 0; 1052 __for_each_thread(signal, t) { 1053 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1054 sigaddset(&t->pending.signal, SIGKILL); 1055 signal_wake_up(t, 1); 1056 } 1057 return; 1058 } 1059 } 1060 1061 /* 1062 * The signal is already in the shared-pending queue. 1063 * Tell the chosen thread to wake up and dequeue it. 1064 */ 1065 signal_wake_up(t, sig == SIGKILL); 1066 return; 1067 } 1068 1069 static inline bool legacy_queue(struct sigpending *signals, int sig) 1070 { 1071 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1072 } 1073 1074 static int __send_signal_locked(int sig, struct kernel_siginfo *info, 1075 struct task_struct *t, enum pid_type type, bool force) 1076 { 1077 struct sigpending *pending; 1078 struct sigqueue *q; 1079 int override_rlimit; 1080 int ret = 0, result; 1081 1082 lockdep_assert_held(&t->sighand->siglock); 1083 1084 result = TRACE_SIGNAL_IGNORED; 1085 if (!prepare_signal(sig, t, force)) 1086 goto ret; 1087 1088 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1089 /* 1090 * Short-circuit ignored signals and support queuing 1091 * exactly one non-rt signal, so that we can get more 1092 * detailed information about the cause of the signal. 1093 */ 1094 result = TRACE_SIGNAL_ALREADY_PENDING; 1095 if (legacy_queue(pending, sig)) 1096 goto ret; 1097 1098 result = TRACE_SIGNAL_DELIVERED; 1099 /* 1100 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1101 */ 1102 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1103 goto out_set; 1104 1105 /* 1106 * Real-time signals must be queued if sent by sigqueue, or 1107 * some other real-time mechanism. It is implementation 1108 * defined whether kill() does so. We attempt to do so, on 1109 * the principle of least surprise, but since kill is not 1110 * allowed to fail with EAGAIN when low on memory we just 1111 * make sure at least one signal gets delivered and don't 1112 * pass on the info struct. 1113 */ 1114 if (sig < SIGRTMIN) 1115 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1116 else 1117 override_rlimit = 0; 1118 1119 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0); 1120 1121 if (q) { 1122 list_add_tail(&q->list, &pending->list); 1123 switch ((unsigned long) info) { 1124 case (unsigned long) SEND_SIG_NOINFO: 1125 clear_siginfo(&q->info); 1126 q->info.si_signo = sig; 1127 q->info.si_errno = 0; 1128 q->info.si_code = SI_USER; 1129 q->info.si_pid = task_tgid_nr_ns(current, 1130 task_active_pid_ns(t)); 1131 rcu_read_lock(); 1132 q->info.si_uid = 1133 from_kuid_munged(task_cred_xxx(t, user_ns), 1134 current_uid()); 1135 rcu_read_unlock(); 1136 break; 1137 case (unsigned long) SEND_SIG_PRIV: 1138 clear_siginfo(&q->info); 1139 q->info.si_signo = sig; 1140 q->info.si_errno = 0; 1141 q->info.si_code = SI_KERNEL; 1142 q->info.si_pid = 0; 1143 q->info.si_uid = 0; 1144 break; 1145 default: 1146 copy_siginfo(&q->info, info); 1147 break; 1148 } 1149 } else if (!is_si_special(info) && 1150 sig >= SIGRTMIN && info->si_code != SI_USER) { 1151 /* 1152 * Queue overflow, abort. We may abort if the 1153 * signal was rt and sent by user using something 1154 * other than kill(). 1155 */ 1156 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1157 ret = -EAGAIN; 1158 goto ret; 1159 } else { 1160 /* 1161 * This is a silent loss of information. We still 1162 * send the signal, but the *info bits are lost. 1163 */ 1164 result = TRACE_SIGNAL_LOSE_INFO; 1165 } 1166 1167 out_set: 1168 signalfd_notify(t, sig); 1169 sigaddset(&pending->signal, sig); 1170 1171 /* Let multiprocess signals appear after on-going forks */ 1172 if (type > PIDTYPE_TGID) { 1173 struct multiprocess_signals *delayed; 1174 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1175 sigset_t *signal = &delayed->signal; 1176 /* Can't queue both a stop and a continue signal */ 1177 if (sig == SIGCONT) 1178 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1179 else if (sig_kernel_stop(sig)) 1180 sigdelset(signal, SIGCONT); 1181 sigaddset(signal, sig); 1182 } 1183 } 1184 1185 complete_signal(sig, t, type); 1186 ret: 1187 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1188 return ret; 1189 } 1190 1191 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) 1192 { 1193 bool ret = false; 1194 switch (siginfo_layout(info->si_signo, info->si_code)) { 1195 case SIL_KILL: 1196 case SIL_CHLD: 1197 case SIL_RT: 1198 ret = true; 1199 break; 1200 case SIL_TIMER: 1201 case SIL_POLL: 1202 case SIL_FAULT: 1203 case SIL_FAULT_TRAPNO: 1204 case SIL_FAULT_MCEERR: 1205 case SIL_FAULT_BNDERR: 1206 case SIL_FAULT_PKUERR: 1207 case SIL_FAULT_PERF_EVENT: 1208 case SIL_SYS: 1209 ret = false; 1210 break; 1211 } 1212 return ret; 1213 } 1214 1215 int send_signal_locked(int sig, struct kernel_siginfo *info, 1216 struct task_struct *t, enum pid_type type) 1217 { 1218 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ 1219 bool force = false; 1220 1221 if (info == SEND_SIG_NOINFO) { 1222 /* Force if sent from an ancestor pid namespace */ 1223 force = !task_pid_nr_ns(current, task_active_pid_ns(t)); 1224 } else if (info == SEND_SIG_PRIV) { 1225 /* Don't ignore kernel generated signals */ 1226 force = true; 1227 } else if (has_si_pid_and_uid(info)) { 1228 /* SIGKILL and SIGSTOP is special or has ids */ 1229 struct user_namespace *t_user_ns; 1230 1231 rcu_read_lock(); 1232 t_user_ns = task_cred_xxx(t, user_ns); 1233 if (current_user_ns() != t_user_ns) { 1234 kuid_t uid = make_kuid(current_user_ns(), info->si_uid); 1235 info->si_uid = from_kuid_munged(t_user_ns, uid); 1236 } 1237 rcu_read_unlock(); 1238 1239 /* A kernel generated signal? */ 1240 force = (info->si_code == SI_KERNEL); 1241 1242 /* From an ancestor pid namespace? */ 1243 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { 1244 info->si_pid = 0; 1245 force = true; 1246 } 1247 } 1248 return __send_signal_locked(sig, info, t, type, force); 1249 } 1250 1251 static void print_fatal_signal(int signr) 1252 { 1253 struct pt_regs *regs = task_pt_regs(current); 1254 struct file *exe_file; 1255 1256 exe_file = get_task_exe_file(current); 1257 if (exe_file) { 1258 pr_info("%pD: %s: potentially unexpected fatal signal %d.\n", 1259 exe_file, current->comm, signr); 1260 fput(exe_file); 1261 } else { 1262 pr_info("%s: potentially unexpected fatal signal %d.\n", 1263 current->comm, signr); 1264 } 1265 1266 #if defined(__i386__) && !defined(__arch_um__) 1267 pr_info("code at %08lx: ", regs->ip); 1268 { 1269 int i; 1270 for (i = 0; i < 16; i++) { 1271 unsigned char insn; 1272 1273 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1274 break; 1275 pr_cont("%02x ", insn); 1276 } 1277 } 1278 pr_cont("\n"); 1279 #endif 1280 preempt_disable(); 1281 show_regs(regs); 1282 preempt_enable(); 1283 } 1284 1285 static int __init setup_print_fatal_signals(char *str) 1286 { 1287 get_option (&str, &print_fatal_signals); 1288 1289 return 1; 1290 } 1291 1292 __setup("print-fatal-signals=", setup_print_fatal_signals); 1293 1294 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1295 enum pid_type type) 1296 { 1297 unsigned long flags; 1298 int ret = -ESRCH; 1299 1300 if (lock_task_sighand(p, &flags)) { 1301 ret = send_signal_locked(sig, info, p, type); 1302 unlock_task_sighand(p, &flags); 1303 } 1304 1305 return ret; 1306 } 1307 1308 enum sig_handler { 1309 HANDLER_CURRENT, /* If reachable use the current handler */ 1310 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */ 1311 HANDLER_EXIT, /* Only visible as the process exit code */ 1312 }; 1313 1314 /* 1315 * Force a signal that the process can't ignore: if necessary 1316 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1317 * 1318 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1319 * since we do not want to have a signal handler that was blocked 1320 * be invoked when user space had explicitly blocked it. 1321 * 1322 * We don't want to have recursive SIGSEGV's etc, for example, 1323 * that is why we also clear SIGNAL_UNKILLABLE. 1324 */ 1325 static int 1326 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t, 1327 enum sig_handler handler) 1328 { 1329 unsigned long int flags; 1330 int ret, blocked, ignored; 1331 struct k_sigaction *action; 1332 int sig = info->si_signo; 1333 1334 spin_lock_irqsave(&t->sighand->siglock, flags); 1335 action = &t->sighand->action[sig-1]; 1336 ignored = action->sa.sa_handler == SIG_IGN; 1337 blocked = sigismember(&t->blocked, sig); 1338 if (blocked || ignored || (handler != HANDLER_CURRENT)) { 1339 action->sa.sa_handler = SIG_DFL; 1340 if (handler == HANDLER_EXIT) 1341 action->sa.sa_flags |= SA_IMMUTABLE; 1342 if (blocked) 1343 sigdelset(&t->blocked, sig); 1344 } 1345 /* 1346 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1347 * debugging to leave init killable. But HANDLER_EXIT is always fatal. 1348 */ 1349 if (action->sa.sa_handler == SIG_DFL && 1350 (!t->ptrace || (handler == HANDLER_EXIT))) 1351 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1352 ret = send_signal_locked(sig, info, t, PIDTYPE_PID); 1353 /* This can happen if the signal was already pending and blocked */ 1354 if (!task_sigpending(t)) 1355 signal_wake_up(t, 0); 1356 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1357 1358 return ret; 1359 } 1360 1361 int force_sig_info(struct kernel_siginfo *info) 1362 { 1363 return force_sig_info_to_task(info, current, HANDLER_CURRENT); 1364 } 1365 1366 /* 1367 * Nuke all other threads in the group. 1368 */ 1369 int zap_other_threads(struct task_struct *p) 1370 { 1371 struct task_struct *t; 1372 int count = 0; 1373 1374 p->signal->group_stop_count = 0; 1375 1376 for_other_threads(p, t) { 1377 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1378 /* Don't require de_thread to wait for the vhost_worker */ 1379 if ((t->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER) 1380 count++; 1381 1382 /* Don't bother with already dead threads */ 1383 if (t->exit_state) 1384 continue; 1385 sigaddset(&t->pending.signal, SIGKILL); 1386 signal_wake_up(t, 1); 1387 } 1388 1389 return count; 1390 } 1391 1392 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1393 unsigned long *flags) 1394 { 1395 struct sighand_struct *sighand; 1396 1397 rcu_read_lock(); 1398 for (;;) { 1399 sighand = rcu_dereference(tsk->sighand); 1400 if (unlikely(sighand == NULL)) 1401 break; 1402 1403 /* 1404 * This sighand can be already freed and even reused, but 1405 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1406 * initializes ->siglock: this slab can't go away, it has 1407 * the same object type, ->siglock can't be reinitialized. 1408 * 1409 * We need to ensure that tsk->sighand is still the same 1410 * after we take the lock, we can race with de_thread() or 1411 * __exit_signal(). In the latter case the next iteration 1412 * must see ->sighand == NULL. 1413 */ 1414 spin_lock_irqsave(&sighand->siglock, *flags); 1415 if (likely(sighand == rcu_access_pointer(tsk->sighand))) 1416 break; 1417 spin_unlock_irqrestore(&sighand->siglock, *flags); 1418 } 1419 rcu_read_unlock(); 1420 1421 return sighand; 1422 } 1423 1424 #ifdef CONFIG_LOCKDEP 1425 void lockdep_assert_task_sighand_held(struct task_struct *task) 1426 { 1427 struct sighand_struct *sighand; 1428 1429 rcu_read_lock(); 1430 sighand = rcu_dereference(task->sighand); 1431 if (sighand) 1432 lockdep_assert_held(&sighand->siglock); 1433 else 1434 WARN_ON_ONCE(1); 1435 rcu_read_unlock(); 1436 } 1437 #endif 1438 1439 /* 1440 * send signal info to all the members of a thread group or to the 1441 * individual thread if type == PIDTYPE_PID. 1442 */ 1443 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1444 struct task_struct *p, enum pid_type type) 1445 { 1446 int ret; 1447 1448 rcu_read_lock(); 1449 ret = check_kill_permission(sig, info, p); 1450 rcu_read_unlock(); 1451 1452 if (!ret && sig) 1453 ret = do_send_sig_info(sig, info, p, type); 1454 1455 return ret; 1456 } 1457 1458 /* 1459 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1460 * control characters do (^C, ^Z etc) 1461 * - the caller must hold at least a readlock on tasklist_lock 1462 */ 1463 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1464 { 1465 struct task_struct *p = NULL; 1466 int ret = -ESRCH; 1467 1468 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1469 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1470 /* 1471 * If group_send_sig_info() succeeds at least once ret 1472 * becomes 0 and after that the code below has no effect. 1473 * Otherwise we return the last err or -ESRCH if this 1474 * process group is empty. 1475 */ 1476 if (ret) 1477 ret = err; 1478 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1479 1480 return ret; 1481 } 1482 1483 static int kill_pid_info_type(int sig, struct kernel_siginfo *info, 1484 struct pid *pid, enum pid_type type) 1485 { 1486 int error = -ESRCH; 1487 struct task_struct *p; 1488 1489 for (;;) { 1490 rcu_read_lock(); 1491 p = pid_task(pid, PIDTYPE_PID); 1492 if (p) 1493 error = group_send_sig_info(sig, info, p, type); 1494 rcu_read_unlock(); 1495 if (likely(!p || error != -ESRCH)) 1496 return error; 1497 /* 1498 * The task was unhashed in between, try again. If it 1499 * is dead, pid_task() will return NULL, if we race with 1500 * de_thread() it will find the new leader. 1501 */ 1502 } 1503 } 1504 1505 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1506 { 1507 return kill_pid_info_type(sig, info, pid, PIDTYPE_TGID); 1508 } 1509 1510 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1511 { 1512 int error; 1513 rcu_read_lock(); 1514 error = kill_pid_info(sig, info, find_vpid(pid)); 1515 rcu_read_unlock(); 1516 return error; 1517 } 1518 1519 static inline bool kill_as_cred_perm(const struct cred *cred, 1520 struct task_struct *target) 1521 { 1522 const struct cred *pcred = __task_cred(target); 1523 1524 return uid_eq(cred->euid, pcred->suid) || 1525 uid_eq(cred->euid, pcred->uid) || 1526 uid_eq(cred->uid, pcred->suid) || 1527 uid_eq(cred->uid, pcred->uid); 1528 } 1529 1530 /* 1531 * The usb asyncio usage of siginfo is wrong. The glibc support 1532 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. 1533 * AKA after the generic fields: 1534 * kernel_pid_t si_pid; 1535 * kernel_uid32_t si_uid; 1536 * sigval_t si_value; 1537 * 1538 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout 1539 * after the generic fields is: 1540 * void __user *si_addr; 1541 * 1542 * This is a practical problem when there is a 64bit big endian kernel 1543 * and a 32bit userspace. As the 32bit address will encoded in the low 1544 * 32bits of the pointer. Those low 32bits will be stored at higher 1545 * address than appear in a 32 bit pointer. So userspace will not 1546 * see the address it was expecting for it's completions. 1547 * 1548 * There is nothing in the encoding that can allow 1549 * copy_siginfo_to_user32 to detect this confusion of formats, so 1550 * handle this by requiring the caller of kill_pid_usb_asyncio to 1551 * notice when this situration takes place and to store the 32bit 1552 * pointer in sival_int, instead of sival_addr of the sigval_t addr 1553 * parameter. 1554 */ 1555 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, 1556 struct pid *pid, const struct cred *cred) 1557 { 1558 struct kernel_siginfo info; 1559 struct task_struct *p; 1560 unsigned long flags; 1561 int ret = -EINVAL; 1562 1563 if (!valid_signal(sig)) 1564 return ret; 1565 1566 clear_siginfo(&info); 1567 info.si_signo = sig; 1568 info.si_errno = errno; 1569 info.si_code = SI_ASYNCIO; 1570 *((sigval_t *)&info.si_pid) = addr; 1571 1572 rcu_read_lock(); 1573 p = pid_task(pid, PIDTYPE_PID); 1574 if (!p) { 1575 ret = -ESRCH; 1576 goto out_unlock; 1577 } 1578 if (!kill_as_cred_perm(cred, p)) { 1579 ret = -EPERM; 1580 goto out_unlock; 1581 } 1582 ret = security_task_kill(p, &info, sig, cred); 1583 if (ret) 1584 goto out_unlock; 1585 1586 if (sig) { 1587 if (lock_task_sighand(p, &flags)) { 1588 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false); 1589 unlock_task_sighand(p, &flags); 1590 } else 1591 ret = -ESRCH; 1592 } 1593 out_unlock: 1594 rcu_read_unlock(); 1595 return ret; 1596 } 1597 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); 1598 1599 /* 1600 * kill_something_info() interprets pid in interesting ways just like kill(2). 1601 * 1602 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1603 * is probably wrong. Should make it like BSD or SYSV. 1604 */ 1605 1606 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1607 { 1608 int ret; 1609 1610 if (pid > 0) 1611 return kill_proc_info(sig, info, pid); 1612 1613 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1614 if (pid == INT_MIN) 1615 return -ESRCH; 1616 1617 read_lock(&tasklist_lock); 1618 if (pid != -1) { 1619 ret = __kill_pgrp_info(sig, info, 1620 pid ? find_vpid(-pid) : task_pgrp(current)); 1621 } else { 1622 int retval = 0, count = 0; 1623 struct task_struct * p; 1624 1625 for_each_process(p) { 1626 if (task_pid_vnr(p) > 1 && 1627 !same_thread_group(p, current)) { 1628 int err = group_send_sig_info(sig, info, p, 1629 PIDTYPE_MAX); 1630 ++count; 1631 if (err != -EPERM) 1632 retval = err; 1633 } 1634 } 1635 ret = count ? retval : -ESRCH; 1636 } 1637 read_unlock(&tasklist_lock); 1638 1639 return ret; 1640 } 1641 1642 /* 1643 * These are for backward compatibility with the rest of the kernel source. 1644 */ 1645 1646 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1647 { 1648 /* 1649 * Make sure legacy kernel users don't send in bad values 1650 * (normal paths check this in check_kill_permission). 1651 */ 1652 if (!valid_signal(sig)) 1653 return -EINVAL; 1654 1655 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1656 } 1657 EXPORT_SYMBOL(send_sig_info); 1658 1659 #define __si_special(priv) \ 1660 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1661 1662 int 1663 send_sig(int sig, struct task_struct *p, int priv) 1664 { 1665 return send_sig_info(sig, __si_special(priv), p); 1666 } 1667 EXPORT_SYMBOL(send_sig); 1668 1669 void force_sig(int sig) 1670 { 1671 struct kernel_siginfo info; 1672 1673 clear_siginfo(&info); 1674 info.si_signo = sig; 1675 info.si_errno = 0; 1676 info.si_code = SI_KERNEL; 1677 info.si_pid = 0; 1678 info.si_uid = 0; 1679 force_sig_info(&info); 1680 } 1681 EXPORT_SYMBOL(force_sig); 1682 1683 void force_fatal_sig(int sig) 1684 { 1685 struct kernel_siginfo info; 1686 1687 clear_siginfo(&info); 1688 info.si_signo = sig; 1689 info.si_errno = 0; 1690 info.si_code = SI_KERNEL; 1691 info.si_pid = 0; 1692 info.si_uid = 0; 1693 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL); 1694 } 1695 1696 void force_exit_sig(int sig) 1697 { 1698 struct kernel_siginfo info; 1699 1700 clear_siginfo(&info); 1701 info.si_signo = sig; 1702 info.si_errno = 0; 1703 info.si_code = SI_KERNEL; 1704 info.si_pid = 0; 1705 info.si_uid = 0; 1706 force_sig_info_to_task(&info, current, HANDLER_EXIT); 1707 } 1708 1709 /* 1710 * When things go south during signal handling, we 1711 * will force a SIGSEGV. And if the signal that caused 1712 * the problem was already a SIGSEGV, we'll want to 1713 * make sure we don't even try to deliver the signal.. 1714 */ 1715 void force_sigsegv(int sig) 1716 { 1717 if (sig == SIGSEGV) 1718 force_fatal_sig(SIGSEGV); 1719 else 1720 force_sig(SIGSEGV); 1721 } 1722 1723 int force_sig_fault_to_task(int sig, int code, void __user *addr, 1724 struct task_struct *t) 1725 { 1726 struct kernel_siginfo info; 1727 1728 clear_siginfo(&info); 1729 info.si_signo = sig; 1730 info.si_errno = 0; 1731 info.si_code = code; 1732 info.si_addr = addr; 1733 return force_sig_info_to_task(&info, t, HANDLER_CURRENT); 1734 } 1735 1736 int force_sig_fault(int sig, int code, void __user *addr) 1737 { 1738 return force_sig_fault_to_task(sig, code, addr, current); 1739 } 1740 1741 int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t) 1742 { 1743 struct kernel_siginfo info; 1744 1745 clear_siginfo(&info); 1746 info.si_signo = sig; 1747 info.si_errno = 0; 1748 info.si_code = code; 1749 info.si_addr = addr; 1750 return send_sig_info(info.si_signo, &info, t); 1751 } 1752 1753 int force_sig_mceerr(int code, void __user *addr, short lsb) 1754 { 1755 struct kernel_siginfo info; 1756 1757 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1758 clear_siginfo(&info); 1759 info.si_signo = SIGBUS; 1760 info.si_errno = 0; 1761 info.si_code = code; 1762 info.si_addr = addr; 1763 info.si_addr_lsb = lsb; 1764 return force_sig_info(&info); 1765 } 1766 1767 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1768 { 1769 struct kernel_siginfo info; 1770 1771 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1772 clear_siginfo(&info); 1773 info.si_signo = SIGBUS; 1774 info.si_errno = 0; 1775 info.si_code = code; 1776 info.si_addr = addr; 1777 info.si_addr_lsb = lsb; 1778 return send_sig_info(info.si_signo, &info, t); 1779 } 1780 EXPORT_SYMBOL(send_sig_mceerr); 1781 1782 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1783 { 1784 struct kernel_siginfo info; 1785 1786 clear_siginfo(&info); 1787 info.si_signo = SIGSEGV; 1788 info.si_errno = 0; 1789 info.si_code = SEGV_BNDERR; 1790 info.si_addr = addr; 1791 info.si_lower = lower; 1792 info.si_upper = upper; 1793 return force_sig_info(&info); 1794 } 1795 1796 #ifdef SEGV_PKUERR 1797 int force_sig_pkuerr(void __user *addr, u32 pkey) 1798 { 1799 struct kernel_siginfo info; 1800 1801 clear_siginfo(&info); 1802 info.si_signo = SIGSEGV; 1803 info.si_errno = 0; 1804 info.si_code = SEGV_PKUERR; 1805 info.si_addr = addr; 1806 info.si_pkey = pkey; 1807 return force_sig_info(&info); 1808 } 1809 #endif 1810 1811 int send_sig_perf(void __user *addr, u32 type, u64 sig_data) 1812 { 1813 struct kernel_siginfo info; 1814 1815 clear_siginfo(&info); 1816 info.si_signo = SIGTRAP; 1817 info.si_errno = 0; 1818 info.si_code = TRAP_PERF; 1819 info.si_addr = addr; 1820 info.si_perf_data = sig_data; 1821 info.si_perf_type = type; 1822 1823 /* 1824 * Signals generated by perf events should not terminate the whole 1825 * process if SIGTRAP is blocked, however, delivering the signal 1826 * asynchronously is better than not delivering at all. But tell user 1827 * space if the signal was asynchronous, so it can clearly be 1828 * distinguished from normal synchronous ones. 1829 */ 1830 info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ? 1831 TRAP_PERF_FLAG_ASYNC : 1832 0; 1833 1834 return send_sig_info(info.si_signo, &info, current); 1835 } 1836 1837 /** 1838 * force_sig_seccomp - signals the task to allow in-process syscall emulation 1839 * @syscall: syscall number to send to userland 1840 * @reason: filter-supplied reason code to send to userland (via si_errno) 1841 * @force_coredump: true to trigger a coredump 1842 * 1843 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. 1844 */ 1845 int force_sig_seccomp(int syscall, int reason, bool force_coredump) 1846 { 1847 struct kernel_siginfo info; 1848 1849 clear_siginfo(&info); 1850 info.si_signo = SIGSYS; 1851 info.si_code = SYS_SECCOMP; 1852 info.si_call_addr = (void __user *)KSTK_EIP(current); 1853 info.si_errno = reason; 1854 info.si_arch = syscall_get_arch(current); 1855 info.si_syscall = syscall; 1856 return force_sig_info_to_task(&info, current, 1857 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT); 1858 } 1859 1860 /* For the crazy architectures that include trap information in 1861 * the errno field, instead of an actual errno value. 1862 */ 1863 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1864 { 1865 struct kernel_siginfo info; 1866 1867 clear_siginfo(&info); 1868 info.si_signo = SIGTRAP; 1869 info.si_errno = errno; 1870 info.si_code = TRAP_HWBKPT; 1871 info.si_addr = addr; 1872 return force_sig_info(&info); 1873 } 1874 1875 /* For the rare architectures that include trap information using 1876 * si_trapno. 1877 */ 1878 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno) 1879 { 1880 struct kernel_siginfo info; 1881 1882 clear_siginfo(&info); 1883 info.si_signo = sig; 1884 info.si_errno = 0; 1885 info.si_code = code; 1886 info.si_addr = addr; 1887 info.si_trapno = trapno; 1888 return force_sig_info(&info); 1889 } 1890 1891 /* For the rare architectures that include trap information using 1892 * si_trapno. 1893 */ 1894 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, 1895 struct task_struct *t) 1896 { 1897 struct kernel_siginfo info; 1898 1899 clear_siginfo(&info); 1900 info.si_signo = sig; 1901 info.si_errno = 0; 1902 info.si_code = code; 1903 info.si_addr = addr; 1904 info.si_trapno = trapno; 1905 return send_sig_info(info.si_signo, &info, t); 1906 } 1907 1908 static int kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1909 { 1910 int ret; 1911 read_lock(&tasklist_lock); 1912 ret = __kill_pgrp_info(sig, info, pgrp); 1913 read_unlock(&tasklist_lock); 1914 return ret; 1915 } 1916 1917 int kill_pgrp(struct pid *pid, int sig, int priv) 1918 { 1919 return kill_pgrp_info(sig, __si_special(priv), pid); 1920 } 1921 EXPORT_SYMBOL(kill_pgrp); 1922 1923 int kill_pid(struct pid *pid, int sig, int priv) 1924 { 1925 return kill_pid_info(sig, __si_special(priv), pid); 1926 } 1927 EXPORT_SYMBOL(kill_pid); 1928 1929 /* 1930 * These functions support sending signals using preallocated sigqueue 1931 * structures. This is needed "because realtime applications cannot 1932 * afford to lose notifications of asynchronous events, like timer 1933 * expirations or I/O completions". In the case of POSIX Timers 1934 * we allocate the sigqueue structure from the timer_create. If this 1935 * allocation fails we are able to report the failure to the application 1936 * with an EAGAIN error. 1937 */ 1938 struct sigqueue *sigqueue_alloc(void) 1939 { 1940 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC); 1941 } 1942 1943 void sigqueue_free(struct sigqueue *q) 1944 { 1945 unsigned long flags; 1946 spinlock_t *lock = ¤t->sighand->siglock; 1947 1948 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1949 /* 1950 * We must hold ->siglock while testing q->list 1951 * to serialize with collect_signal() or with 1952 * __exit_signal()->flush_sigqueue(). 1953 */ 1954 spin_lock_irqsave(lock, flags); 1955 q->flags &= ~SIGQUEUE_PREALLOC; 1956 /* 1957 * If it is queued it will be freed when dequeued, 1958 * like the "regular" sigqueue. 1959 */ 1960 if (!list_empty(&q->list)) 1961 q = NULL; 1962 spin_unlock_irqrestore(lock, flags); 1963 1964 if (q) 1965 __sigqueue_free(q); 1966 } 1967 1968 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) 1969 { 1970 int sig = q->info.si_signo; 1971 struct sigpending *pending; 1972 struct task_struct *t; 1973 unsigned long flags; 1974 int ret, result; 1975 1976 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1977 1978 ret = -1; 1979 rcu_read_lock(); 1980 1981 /* 1982 * This function is used by POSIX timers to deliver a timer signal. 1983 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID 1984 * set), the signal must be delivered to the specific thread (queues 1985 * into t->pending). 1986 * 1987 * Where type is not PIDTYPE_PID, signals must be delivered to the 1988 * process. In this case, prefer to deliver to current if it is in 1989 * the same thread group as the target process, which avoids 1990 * unnecessarily waking up a potentially idle task. 1991 */ 1992 t = pid_task(pid, type); 1993 if (!t) 1994 goto ret; 1995 if (type != PIDTYPE_PID && same_thread_group(t, current)) 1996 t = current; 1997 if (!likely(lock_task_sighand(t, &flags))) 1998 goto ret; 1999 2000 ret = 1; /* the signal is ignored */ 2001 result = TRACE_SIGNAL_IGNORED; 2002 if (!prepare_signal(sig, t, false)) 2003 goto out; 2004 2005 ret = 0; 2006 if (unlikely(!list_empty(&q->list))) { 2007 /* 2008 * If an SI_TIMER entry is already queue just increment 2009 * the overrun count. 2010 */ 2011 BUG_ON(q->info.si_code != SI_TIMER); 2012 q->info.si_overrun++; 2013 result = TRACE_SIGNAL_ALREADY_PENDING; 2014 goto out; 2015 } 2016 q->info.si_overrun = 0; 2017 2018 signalfd_notify(t, sig); 2019 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 2020 list_add_tail(&q->list, &pending->list); 2021 sigaddset(&pending->signal, sig); 2022 complete_signal(sig, t, type); 2023 result = TRACE_SIGNAL_DELIVERED; 2024 out: 2025 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result); 2026 unlock_task_sighand(t, &flags); 2027 ret: 2028 rcu_read_unlock(); 2029 return ret; 2030 } 2031 2032 void do_notify_pidfd(struct task_struct *task) 2033 { 2034 struct pid *pid = task_pid(task); 2035 2036 WARN_ON(task->exit_state == 0); 2037 2038 __wake_up(&pid->wait_pidfd, TASK_NORMAL, 0, 2039 poll_to_key(EPOLLIN | EPOLLRDNORM)); 2040 } 2041 2042 /* 2043 * Let a parent know about the death of a child. 2044 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 2045 * 2046 * Returns true if our parent ignored us and so we've switched to 2047 * self-reaping. 2048 */ 2049 bool do_notify_parent(struct task_struct *tsk, int sig) 2050 { 2051 struct kernel_siginfo info; 2052 unsigned long flags; 2053 struct sighand_struct *psig; 2054 bool autoreap = false; 2055 u64 utime, stime; 2056 2057 WARN_ON_ONCE(sig == -1); 2058 2059 /* do_notify_parent_cldstop should have been called instead. */ 2060 WARN_ON_ONCE(task_is_stopped_or_traced(tsk)); 2061 2062 WARN_ON_ONCE(!tsk->ptrace && 2063 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 2064 /* 2065 * tsk is a group leader and has no threads, wake up the 2066 * non-PIDFD_THREAD waiters. 2067 */ 2068 if (thread_group_empty(tsk)) 2069 do_notify_pidfd(tsk); 2070 2071 if (sig != SIGCHLD) { 2072 /* 2073 * This is only possible if parent == real_parent. 2074 * Check if it has changed security domain. 2075 */ 2076 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) 2077 sig = SIGCHLD; 2078 } 2079 2080 clear_siginfo(&info); 2081 info.si_signo = sig; 2082 info.si_errno = 0; 2083 /* 2084 * We are under tasklist_lock here so our parent is tied to 2085 * us and cannot change. 2086 * 2087 * task_active_pid_ns will always return the same pid namespace 2088 * until a task passes through release_task. 2089 * 2090 * write_lock() currently calls preempt_disable() which is the 2091 * same as rcu_read_lock(), but according to Oleg, this is not 2092 * correct to rely on this 2093 */ 2094 rcu_read_lock(); 2095 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 2096 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 2097 task_uid(tsk)); 2098 rcu_read_unlock(); 2099 2100 task_cputime(tsk, &utime, &stime); 2101 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 2102 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 2103 2104 info.si_status = tsk->exit_code & 0x7f; 2105 if (tsk->exit_code & 0x80) 2106 info.si_code = CLD_DUMPED; 2107 else if (tsk->exit_code & 0x7f) 2108 info.si_code = CLD_KILLED; 2109 else { 2110 info.si_code = CLD_EXITED; 2111 info.si_status = tsk->exit_code >> 8; 2112 } 2113 2114 psig = tsk->parent->sighand; 2115 spin_lock_irqsave(&psig->siglock, flags); 2116 if (!tsk->ptrace && sig == SIGCHLD && 2117 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 2118 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 2119 /* 2120 * We are exiting and our parent doesn't care. POSIX.1 2121 * defines special semantics for setting SIGCHLD to SIG_IGN 2122 * or setting the SA_NOCLDWAIT flag: we should be reaped 2123 * automatically and not left for our parent's wait4 call. 2124 * Rather than having the parent do it as a magic kind of 2125 * signal handler, we just set this to tell do_exit that we 2126 * can be cleaned up without becoming a zombie. Note that 2127 * we still call __wake_up_parent in this case, because a 2128 * blocked sys_wait4 might now return -ECHILD. 2129 * 2130 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 2131 * is implementation-defined: we do (if you don't want 2132 * it, just use SIG_IGN instead). 2133 */ 2134 autoreap = true; 2135 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 2136 sig = 0; 2137 } 2138 /* 2139 * Send with __send_signal as si_pid and si_uid are in the 2140 * parent's namespaces. 2141 */ 2142 if (valid_signal(sig) && sig) 2143 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false); 2144 __wake_up_parent(tsk, tsk->parent); 2145 spin_unlock_irqrestore(&psig->siglock, flags); 2146 2147 return autoreap; 2148 } 2149 2150 /** 2151 * do_notify_parent_cldstop - notify parent of stopped/continued state change 2152 * @tsk: task reporting the state change 2153 * @for_ptracer: the notification is for ptracer 2154 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 2155 * 2156 * Notify @tsk's parent that the stopped/continued state has changed. If 2157 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 2158 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 2159 * 2160 * CONTEXT: 2161 * Must be called with tasklist_lock at least read locked. 2162 */ 2163 static void do_notify_parent_cldstop(struct task_struct *tsk, 2164 bool for_ptracer, int why) 2165 { 2166 struct kernel_siginfo info; 2167 unsigned long flags; 2168 struct task_struct *parent; 2169 struct sighand_struct *sighand; 2170 u64 utime, stime; 2171 2172 if (for_ptracer) { 2173 parent = tsk->parent; 2174 } else { 2175 tsk = tsk->group_leader; 2176 parent = tsk->real_parent; 2177 } 2178 2179 clear_siginfo(&info); 2180 info.si_signo = SIGCHLD; 2181 info.si_errno = 0; 2182 /* 2183 * see comment in do_notify_parent() about the following 4 lines 2184 */ 2185 rcu_read_lock(); 2186 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 2187 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 2188 rcu_read_unlock(); 2189 2190 task_cputime(tsk, &utime, &stime); 2191 info.si_utime = nsec_to_clock_t(utime); 2192 info.si_stime = nsec_to_clock_t(stime); 2193 2194 info.si_code = why; 2195 switch (why) { 2196 case CLD_CONTINUED: 2197 info.si_status = SIGCONT; 2198 break; 2199 case CLD_STOPPED: 2200 info.si_status = tsk->signal->group_exit_code & 0x7f; 2201 break; 2202 case CLD_TRAPPED: 2203 info.si_status = tsk->exit_code & 0x7f; 2204 break; 2205 default: 2206 BUG(); 2207 } 2208 2209 sighand = parent->sighand; 2210 spin_lock_irqsave(&sighand->siglock, flags); 2211 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 2212 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 2213 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID); 2214 /* 2215 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 2216 */ 2217 __wake_up_parent(tsk, parent); 2218 spin_unlock_irqrestore(&sighand->siglock, flags); 2219 } 2220 2221 /* 2222 * This must be called with current->sighand->siglock held. 2223 * 2224 * This should be the path for all ptrace stops. 2225 * We always set current->last_siginfo while stopped here. 2226 * That makes it a way to test a stopped process for 2227 * being ptrace-stopped vs being job-control-stopped. 2228 * 2229 * Returns the signal the ptracer requested the code resume 2230 * with. If the code did not stop because the tracer is gone, 2231 * the stop signal remains unchanged unless clear_code. 2232 */ 2233 static int ptrace_stop(int exit_code, int why, unsigned long message, 2234 kernel_siginfo_t *info) 2235 __releases(¤t->sighand->siglock) 2236 __acquires(¤t->sighand->siglock) 2237 { 2238 bool gstop_done = false; 2239 2240 if (arch_ptrace_stop_needed()) { 2241 /* 2242 * The arch code has something special to do before a 2243 * ptrace stop. This is allowed to block, e.g. for faults 2244 * on user stack pages. We can't keep the siglock while 2245 * calling arch_ptrace_stop, so we must release it now. 2246 * To preserve proper semantics, we must do this before 2247 * any signal bookkeeping like checking group_stop_count. 2248 */ 2249 spin_unlock_irq(¤t->sighand->siglock); 2250 arch_ptrace_stop(); 2251 spin_lock_irq(¤t->sighand->siglock); 2252 } 2253 2254 /* 2255 * After this point ptrace_signal_wake_up or signal_wake_up 2256 * will clear TASK_TRACED if ptrace_unlink happens or a fatal 2257 * signal comes in. Handle previous ptrace_unlinks and fatal 2258 * signals here to prevent ptrace_stop sleeping in schedule. 2259 */ 2260 if (!current->ptrace || __fatal_signal_pending(current)) 2261 return exit_code; 2262 2263 set_special_state(TASK_TRACED); 2264 current->jobctl |= JOBCTL_TRACED; 2265 2266 /* 2267 * We're committing to trapping. TRACED should be visible before 2268 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2269 * Also, transition to TRACED and updates to ->jobctl should be 2270 * atomic with respect to siglock and should be done after the arch 2271 * hook as siglock is released and regrabbed across it. 2272 * 2273 * TRACER TRACEE 2274 * 2275 * ptrace_attach() 2276 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2277 * do_wait() 2278 * set_current_state() smp_wmb(); 2279 * ptrace_do_wait() 2280 * wait_task_stopped() 2281 * task_stopped_code() 2282 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2283 */ 2284 smp_wmb(); 2285 2286 current->ptrace_message = message; 2287 current->last_siginfo = info; 2288 current->exit_code = exit_code; 2289 2290 /* 2291 * If @why is CLD_STOPPED, we're trapping to participate in a group 2292 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2293 * across siglock relocks since INTERRUPT was scheduled, PENDING 2294 * could be clear now. We act as if SIGCONT is received after 2295 * TASK_TRACED is entered - ignore it. 2296 */ 2297 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2298 gstop_done = task_participate_group_stop(current); 2299 2300 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2301 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2302 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2303 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2304 2305 /* entering a trap, clear TRAPPING */ 2306 task_clear_jobctl_trapping(current); 2307 2308 spin_unlock_irq(¤t->sighand->siglock); 2309 read_lock(&tasklist_lock); 2310 /* 2311 * Notify parents of the stop. 2312 * 2313 * While ptraced, there are two parents - the ptracer and 2314 * the real_parent of the group_leader. The ptracer should 2315 * know about every stop while the real parent is only 2316 * interested in the completion of group stop. The states 2317 * for the two don't interact with each other. Notify 2318 * separately unless they're gonna be duplicates. 2319 */ 2320 if (current->ptrace) 2321 do_notify_parent_cldstop(current, true, why); 2322 if (gstop_done && (!current->ptrace || ptrace_reparented(current))) 2323 do_notify_parent_cldstop(current, false, why); 2324 2325 /* 2326 * The previous do_notify_parent_cldstop() invocation woke ptracer. 2327 * One a PREEMPTION kernel this can result in preemption requirement 2328 * which will be fulfilled after read_unlock() and the ptracer will be 2329 * put on the CPU. 2330 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for 2331 * this task wait in schedule(). If this task gets preempted then it 2332 * remains enqueued on the runqueue. The ptracer will observe this and 2333 * then sleep for a delay of one HZ tick. In the meantime this task 2334 * gets scheduled, enters schedule() and will wait for the ptracer. 2335 * 2336 * This preemption point is not bad from a correctness point of 2337 * view but extends the runtime by one HZ tick time due to the 2338 * ptracer's sleep. The preempt-disable section ensures that there 2339 * will be no preemption between unlock and schedule() and so 2340 * improving the performance since the ptracer will observe that 2341 * the tracee is scheduled out once it gets on the CPU. 2342 * 2343 * On PREEMPT_RT locking tasklist_lock does not disable preemption. 2344 * Therefore the task can be preempted after do_notify_parent_cldstop() 2345 * before unlocking tasklist_lock so there is no benefit in doing this. 2346 * 2347 * In fact disabling preemption is harmful on PREEMPT_RT because 2348 * the spinlock_t in cgroup_enter_frozen() must not be acquired 2349 * with preemption disabled due to the 'sleeping' spinlock 2350 * substitution of RT. 2351 */ 2352 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 2353 preempt_disable(); 2354 read_unlock(&tasklist_lock); 2355 cgroup_enter_frozen(); 2356 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 2357 preempt_enable_no_resched(); 2358 schedule(); 2359 cgroup_leave_frozen(true); 2360 2361 /* 2362 * We are back. Now reacquire the siglock before touching 2363 * last_siginfo, so that we are sure to have synchronized with 2364 * any signal-sending on another CPU that wants to examine it. 2365 */ 2366 spin_lock_irq(¤t->sighand->siglock); 2367 exit_code = current->exit_code; 2368 current->last_siginfo = NULL; 2369 current->ptrace_message = 0; 2370 current->exit_code = 0; 2371 2372 /* LISTENING can be set only during STOP traps, clear it */ 2373 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN); 2374 2375 /* 2376 * Queued signals ignored us while we were stopped for tracing. 2377 * So check for any that we should take before resuming user mode. 2378 * This sets TIF_SIGPENDING, but never clears it. 2379 */ 2380 recalc_sigpending_tsk(current); 2381 return exit_code; 2382 } 2383 2384 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message) 2385 { 2386 kernel_siginfo_t info; 2387 2388 clear_siginfo(&info); 2389 info.si_signo = signr; 2390 info.si_code = exit_code; 2391 info.si_pid = task_pid_vnr(current); 2392 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2393 2394 /* Let the debugger run. */ 2395 return ptrace_stop(exit_code, why, message, &info); 2396 } 2397 2398 int ptrace_notify(int exit_code, unsigned long message) 2399 { 2400 int signr; 2401 2402 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2403 if (unlikely(task_work_pending(current))) 2404 task_work_run(); 2405 2406 spin_lock_irq(¤t->sighand->siglock); 2407 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message); 2408 spin_unlock_irq(¤t->sighand->siglock); 2409 return signr; 2410 } 2411 2412 /** 2413 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2414 * @signr: signr causing group stop if initiating 2415 * 2416 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2417 * and participate in it. If already set, participate in the existing 2418 * group stop. If participated in a group stop (and thus slept), %true is 2419 * returned with siglock released. 2420 * 2421 * If ptraced, this function doesn't handle stop itself. Instead, 2422 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2423 * untouched. The caller must ensure that INTERRUPT trap handling takes 2424 * places afterwards. 2425 * 2426 * CONTEXT: 2427 * Must be called with @current->sighand->siglock held, which is released 2428 * on %true return. 2429 * 2430 * RETURNS: 2431 * %false if group stop is already cancelled or ptrace trap is scheduled. 2432 * %true if participated in group stop. 2433 */ 2434 static bool do_signal_stop(int signr) 2435 __releases(¤t->sighand->siglock) 2436 { 2437 struct signal_struct *sig = current->signal; 2438 2439 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2440 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2441 struct task_struct *t; 2442 2443 /* signr will be recorded in task->jobctl for retries */ 2444 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2445 2446 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2447 unlikely(sig->flags & SIGNAL_GROUP_EXIT) || 2448 unlikely(sig->group_exec_task)) 2449 return false; 2450 /* 2451 * There is no group stop already in progress. We must 2452 * initiate one now. 2453 * 2454 * While ptraced, a task may be resumed while group stop is 2455 * still in effect and then receive a stop signal and 2456 * initiate another group stop. This deviates from the 2457 * usual behavior as two consecutive stop signals can't 2458 * cause two group stops when !ptraced. That is why we 2459 * also check !task_is_stopped(t) below. 2460 * 2461 * The condition can be distinguished by testing whether 2462 * SIGNAL_STOP_STOPPED is already set. Don't generate 2463 * group_exit_code in such case. 2464 * 2465 * This is not necessary for SIGNAL_STOP_CONTINUED because 2466 * an intervening stop signal is required to cause two 2467 * continued events regardless of ptrace. 2468 */ 2469 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2470 sig->group_exit_code = signr; 2471 2472 sig->group_stop_count = 0; 2473 if (task_set_jobctl_pending(current, signr | gstop)) 2474 sig->group_stop_count++; 2475 2476 for_other_threads(current, t) { 2477 /* 2478 * Setting state to TASK_STOPPED for a group 2479 * stop is always done with the siglock held, 2480 * so this check has no races. 2481 */ 2482 if (!task_is_stopped(t) && 2483 task_set_jobctl_pending(t, signr | gstop)) { 2484 sig->group_stop_count++; 2485 if (likely(!(t->ptrace & PT_SEIZED))) 2486 signal_wake_up(t, 0); 2487 else 2488 ptrace_trap_notify(t); 2489 } 2490 } 2491 } 2492 2493 if (likely(!current->ptrace)) { 2494 int notify = 0; 2495 2496 /* 2497 * If there are no other threads in the group, or if there 2498 * is a group stop in progress and we are the last to stop, 2499 * report to the parent. 2500 */ 2501 if (task_participate_group_stop(current)) 2502 notify = CLD_STOPPED; 2503 2504 current->jobctl |= JOBCTL_STOPPED; 2505 set_special_state(TASK_STOPPED); 2506 spin_unlock_irq(¤t->sighand->siglock); 2507 2508 /* 2509 * Notify the parent of the group stop completion. Because 2510 * we're not holding either the siglock or tasklist_lock 2511 * here, ptracer may attach inbetween; however, this is for 2512 * group stop and should always be delivered to the real 2513 * parent of the group leader. The new ptracer will get 2514 * its notification when this task transitions into 2515 * TASK_TRACED. 2516 */ 2517 if (notify) { 2518 read_lock(&tasklist_lock); 2519 do_notify_parent_cldstop(current, false, notify); 2520 read_unlock(&tasklist_lock); 2521 } 2522 2523 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2524 cgroup_enter_frozen(); 2525 schedule(); 2526 return true; 2527 } else { 2528 /* 2529 * While ptraced, group stop is handled by STOP trap. 2530 * Schedule it and let the caller deal with it. 2531 */ 2532 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2533 return false; 2534 } 2535 } 2536 2537 /** 2538 * do_jobctl_trap - take care of ptrace jobctl traps 2539 * 2540 * When PT_SEIZED, it's used for both group stop and explicit 2541 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2542 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2543 * the stop signal; otherwise, %SIGTRAP. 2544 * 2545 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2546 * number as exit_code and no siginfo. 2547 * 2548 * CONTEXT: 2549 * Must be called with @current->sighand->siglock held, which may be 2550 * released and re-acquired before returning with intervening sleep. 2551 */ 2552 static void do_jobctl_trap(void) 2553 { 2554 struct signal_struct *signal = current->signal; 2555 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2556 2557 if (current->ptrace & PT_SEIZED) { 2558 if (!signal->group_stop_count && 2559 !(signal->flags & SIGNAL_STOP_STOPPED)) 2560 signr = SIGTRAP; 2561 WARN_ON_ONCE(!signr); 2562 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2563 CLD_STOPPED, 0); 2564 } else { 2565 WARN_ON_ONCE(!signr); 2566 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2567 } 2568 } 2569 2570 /** 2571 * do_freezer_trap - handle the freezer jobctl trap 2572 * 2573 * Puts the task into frozen state, if only the task is not about to quit. 2574 * In this case it drops JOBCTL_TRAP_FREEZE. 2575 * 2576 * CONTEXT: 2577 * Must be called with @current->sighand->siglock held, 2578 * which is always released before returning. 2579 */ 2580 static void do_freezer_trap(void) 2581 __releases(¤t->sighand->siglock) 2582 { 2583 /* 2584 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, 2585 * let's make another loop to give it a chance to be handled. 2586 * In any case, we'll return back. 2587 */ 2588 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != 2589 JOBCTL_TRAP_FREEZE) { 2590 spin_unlock_irq(¤t->sighand->siglock); 2591 return; 2592 } 2593 2594 /* 2595 * Now we're sure that there is no pending fatal signal and no 2596 * pending traps. Clear TIF_SIGPENDING to not get out of schedule() 2597 * immediately (if there is a non-fatal signal pending), and 2598 * put the task into sleep. 2599 */ 2600 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 2601 clear_thread_flag(TIF_SIGPENDING); 2602 spin_unlock_irq(¤t->sighand->siglock); 2603 cgroup_enter_frozen(); 2604 schedule(); 2605 } 2606 2607 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type) 2608 { 2609 /* 2610 * We do not check sig_kernel_stop(signr) but set this marker 2611 * unconditionally because we do not know whether debugger will 2612 * change signr. This flag has no meaning unless we are going 2613 * to stop after return from ptrace_stop(). In this case it will 2614 * be checked in do_signal_stop(), we should only stop if it was 2615 * not cleared by SIGCONT while we were sleeping. See also the 2616 * comment in dequeue_signal(). 2617 */ 2618 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2619 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info); 2620 2621 /* We're back. Did the debugger cancel the sig? */ 2622 if (signr == 0) 2623 return signr; 2624 2625 /* 2626 * Update the siginfo structure if the signal has 2627 * changed. If the debugger wanted something 2628 * specific in the siginfo structure then it should 2629 * have updated *info via PTRACE_SETSIGINFO. 2630 */ 2631 if (signr != info->si_signo) { 2632 clear_siginfo(info); 2633 info->si_signo = signr; 2634 info->si_errno = 0; 2635 info->si_code = SI_USER; 2636 rcu_read_lock(); 2637 info->si_pid = task_pid_vnr(current->parent); 2638 info->si_uid = from_kuid_munged(current_user_ns(), 2639 task_uid(current->parent)); 2640 rcu_read_unlock(); 2641 } 2642 2643 /* If the (new) signal is now blocked, requeue it. */ 2644 if (sigismember(¤t->blocked, signr) || 2645 fatal_signal_pending(current)) { 2646 send_signal_locked(signr, info, current, type); 2647 signr = 0; 2648 } 2649 2650 return signr; 2651 } 2652 2653 static void hide_si_addr_tag_bits(struct ksignal *ksig) 2654 { 2655 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) { 2656 case SIL_FAULT: 2657 case SIL_FAULT_TRAPNO: 2658 case SIL_FAULT_MCEERR: 2659 case SIL_FAULT_BNDERR: 2660 case SIL_FAULT_PKUERR: 2661 case SIL_FAULT_PERF_EVENT: 2662 ksig->info.si_addr = arch_untagged_si_addr( 2663 ksig->info.si_addr, ksig->sig, ksig->info.si_code); 2664 break; 2665 case SIL_KILL: 2666 case SIL_TIMER: 2667 case SIL_POLL: 2668 case SIL_CHLD: 2669 case SIL_RT: 2670 case SIL_SYS: 2671 break; 2672 } 2673 } 2674 2675 bool get_signal(struct ksignal *ksig) 2676 { 2677 struct sighand_struct *sighand = current->sighand; 2678 struct signal_struct *signal = current->signal; 2679 int signr; 2680 2681 clear_notify_signal(); 2682 if (unlikely(task_work_pending(current))) 2683 task_work_run(); 2684 2685 if (!task_sigpending(current)) 2686 return false; 2687 2688 if (unlikely(uprobe_deny_signal())) 2689 return false; 2690 2691 /* 2692 * Do this once, we can't return to user-mode if freezing() == T. 2693 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2694 * thus do not need another check after return. 2695 */ 2696 try_to_freeze(); 2697 2698 relock: 2699 spin_lock_irq(&sighand->siglock); 2700 2701 /* 2702 * Every stopped thread goes here after wakeup. Check to see if 2703 * we should notify the parent, prepare_signal(SIGCONT) encodes 2704 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2705 */ 2706 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2707 int why; 2708 2709 if (signal->flags & SIGNAL_CLD_CONTINUED) 2710 why = CLD_CONTINUED; 2711 else 2712 why = CLD_STOPPED; 2713 2714 signal->flags &= ~SIGNAL_CLD_MASK; 2715 2716 spin_unlock_irq(&sighand->siglock); 2717 2718 /* 2719 * Notify the parent that we're continuing. This event is 2720 * always per-process and doesn't make whole lot of sense 2721 * for ptracers, who shouldn't consume the state via 2722 * wait(2) either, but, for backward compatibility, notify 2723 * the ptracer of the group leader too unless it's gonna be 2724 * a duplicate. 2725 */ 2726 read_lock(&tasklist_lock); 2727 do_notify_parent_cldstop(current, false, why); 2728 2729 if (ptrace_reparented(current->group_leader)) 2730 do_notify_parent_cldstop(current->group_leader, 2731 true, why); 2732 read_unlock(&tasklist_lock); 2733 2734 goto relock; 2735 } 2736 2737 for (;;) { 2738 struct k_sigaction *ka; 2739 enum pid_type type; 2740 2741 /* Has this task already been marked for death? */ 2742 if ((signal->flags & SIGNAL_GROUP_EXIT) || 2743 signal->group_exec_task) { 2744 signr = SIGKILL; 2745 sigdelset(¤t->pending.signal, SIGKILL); 2746 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, 2747 &sighand->action[SIGKILL-1]); 2748 recalc_sigpending(); 2749 /* 2750 * implies do_group_exit() or return to PF_USER_WORKER, 2751 * no need to initialize ksig->info/etc. 2752 */ 2753 goto fatal; 2754 } 2755 2756 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2757 do_signal_stop(0)) 2758 goto relock; 2759 2760 if (unlikely(current->jobctl & 2761 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { 2762 if (current->jobctl & JOBCTL_TRAP_MASK) { 2763 do_jobctl_trap(); 2764 spin_unlock_irq(&sighand->siglock); 2765 } else if (current->jobctl & JOBCTL_TRAP_FREEZE) 2766 do_freezer_trap(); 2767 2768 goto relock; 2769 } 2770 2771 /* 2772 * If the task is leaving the frozen state, let's update 2773 * cgroup counters and reset the frozen bit. 2774 */ 2775 if (unlikely(cgroup_task_frozen(current))) { 2776 spin_unlock_irq(&sighand->siglock); 2777 cgroup_leave_frozen(false); 2778 goto relock; 2779 } 2780 2781 /* 2782 * Signals generated by the execution of an instruction 2783 * need to be delivered before any other pending signals 2784 * so that the instruction pointer in the signal stack 2785 * frame points to the faulting instruction. 2786 */ 2787 type = PIDTYPE_PID; 2788 signr = dequeue_synchronous_signal(&ksig->info); 2789 if (!signr) 2790 signr = dequeue_signal(current, ¤t->blocked, 2791 &ksig->info, &type); 2792 2793 if (!signr) 2794 break; /* will return 0 */ 2795 2796 if (unlikely(current->ptrace) && (signr != SIGKILL) && 2797 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) { 2798 signr = ptrace_signal(signr, &ksig->info, type); 2799 if (!signr) 2800 continue; 2801 } 2802 2803 ka = &sighand->action[signr-1]; 2804 2805 /* Trace actually delivered signals. */ 2806 trace_signal_deliver(signr, &ksig->info, ka); 2807 2808 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2809 continue; 2810 if (ka->sa.sa_handler != SIG_DFL) { 2811 /* Run the handler. */ 2812 ksig->ka = *ka; 2813 2814 if (ka->sa.sa_flags & SA_ONESHOT) 2815 ka->sa.sa_handler = SIG_DFL; 2816 2817 break; /* will return non-zero "signr" value */ 2818 } 2819 2820 /* 2821 * Now we are doing the default action for this signal. 2822 */ 2823 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2824 continue; 2825 2826 /* 2827 * Global init gets no signals it doesn't want. 2828 * Container-init gets no signals it doesn't want from same 2829 * container. 2830 * 2831 * Note that if global/container-init sees a sig_kernel_only() 2832 * signal here, the signal must have been generated internally 2833 * or must have come from an ancestor namespace. In either 2834 * case, the signal cannot be dropped. 2835 */ 2836 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2837 !sig_kernel_only(signr)) 2838 continue; 2839 2840 if (sig_kernel_stop(signr)) { 2841 /* 2842 * The default action is to stop all threads in 2843 * the thread group. The job control signals 2844 * do nothing in an orphaned pgrp, but SIGSTOP 2845 * always works. Note that siglock needs to be 2846 * dropped during the call to is_orphaned_pgrp() 2847 * because of lock ordering with tasklist_lock. 2848 * This allows an intervening SIGCONT to be posted. 2849 * We need to check for that and bail out if necessary. 2850 */ 2851 if (signr != SIGSTOP) { 2852 spin_unlock_irq(&sighand->siglock); 2853 2854 /* signals can be posted during this window */ 2855 2856 if (is_current_pgrp_orphaned()) 2857 goto relock; 2858 2859 spin_lock_irq(&sighand->siglock); 2860 } 2861 2862 if (likely(do_signal_stop(signr))) { 2863 /* It released the siglock. */ 2864 goto relock; 2865 } 2866 2867 /* 2868 * We didn't actually stop, due to a race 2869 * with SIGCONT or something like that. 2870 */ 2871 continue; 2872 } 2873 2874 fatal: 2875 spin_unlock_irq(&sighand->siglock); 2876 if (unlikely(cgroup_task_frozen(current))) 2877 cgroup_leave_frozen(true); 2878 2879 /* 2880 * Anything else is fatal, maybe with a core dump. 2881 */ 2882 current->flags |= PF_SIGNALED; 2883 2884 if (sig_kernel_coredump(signr)) { 2885 if (print_fatal_signals) 2886 print_fatal_signal(signr); 2887 proc_coredump_connector(current); 2888 /* 2889 * If it was able to dump core, this kills all 2890 * other threads in the group and synchronizes with 2891 * their demise. If we lost the race with another 2892 * thread getting here, it set group_exit_code 2893 * first and our do_group_exit call below will use 2894 * that value and ignore the one we pass it. 2895 */ 2896 do_coredump(&ksig->info); 2897 } 2898 2899 /* 2900 * PF_USER_WORKER threads will catch and exit on fatal signals 2901 * themselves. They have cleanup that must be performed, so we 2902 * cannot call do_exit() on their behalf. Note that ksig won't 2903 * be properly initialized, PF_USER_WORKER's shouldn't use it. 2904 */ 2905 if (current->flags & PF_USER_WORKER) 2906 goto out; 2907 2908 /* 2909 * Death signals, no core dump. 2910 */ 2911 do_group_exit(signr); 2912 /* NOTREACHED */ 2913 } 2914 spin_unlock_irq(&sighand->siglock); 2915 2916 ksig->sig = signr; 2917 2918 if (signr && !(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS)) 2919 hide_si_addr_tag_bits(ksig); 2920 out: 2921 return signr > 0; 2922 } 2923 2924 /** 2925 * signal_delivered - called after signal delivery to update blocked signals 2926 * @ksig: kernel signal struct 2927 * @stepping: nonzero if debugger single-step or block-step in use 2928 * 2929 * This function should be called when a signal has successfully been 2930 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2931 * is always blocked), and the signal itself is blocked unless %SA_NODEFER 2932 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2933 */ 2934 static void signal_delivered(struct ksignal *ksig, int stepping) 2935 { 2936 sigset_t blocked; 2937 2938 /* A signal was successfully delivered, and the 2939 saved sigmask was stored on the signal frame, 2940 and will be restored by sigreturn. So we can 2941 simply clear the restore sigmask flag. */ 2942 clear_restore_sigmask(); 2943 2944 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2945 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2946 sigaddset(&blocked, ksig->sig); 2947 set_current_blocked(&blocked); 2948 if (current->sas_ss_flags & SS_AUTODISARM) 2949 sas_ss_reset(current); 2950 if (stepping) 2951 ptrace_notify(SIGTRAP, 0); 2952 } 2953 2954 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2955 { 2956 if (failed) 2957 force_sigsegv(ksig->sig); 2958 else 2959 signal_delivered(ksig, stepping); 2960 } 2961 2962 /* 2963 * It could be that complete_signal() picked us to notify about the 2964 * group-wide signal. Other threads should be notified now to take 2965 * the shared signals in @which since we will not. 2966 */ 2967 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2968 { 2969 sigset_t retarget; 2970 struct task_struct *t; 2971 2972 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2973 if (sigisemptyset(&retarget)) 2974 return; 2975 2976 for_other_threads(tsk, t) { 2977 if (t->flags & PF_EXITING) 2978 continue; 2979 2980 if (!has_pending_signals(&retarget, &t->blocked)) 2981 continue; 2982 /* Remove the signals this thread can handle. */ 2983 sigandsets(&retarget, &retarget, &t->blocked); 2984 2985 if (!task_sigpending(t)) 2986 signal_wake_up(t, 0); 2987 2988 if (sigisemptyset(&retarget)) 2989 break; 2990 } 2991 } 2992 2993 void exit_signals(struct task_struct *tsk) 2994 { 2995 int group_stop = 0; 2996 sigset_t unblocked; 2997 2998 /* 2999 * @tsk is about to have PF_EXITING set - lock out users which 3000 * expect stable threadgroup. 3001 */ 3002 cgroup_threadgroup_change_begin(tsk); 3003 3004 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) { 3005 sched_mm_cid_exit_signals(tsk); 3006 tsk->flags |= PF_EXITING; 3007 cgroup_threadgroup_change_end(tsk); 3008 return; 3009 } 3010 3011 spin_lock_irq(&tsk->sighand->siglock); 3012 /* 3013 * From now this task is not visible for group-wide signals, 3014 * see wants_signal(), do_signal_stop(). 3015 */ 3016 sched_mm_cid_exit_signals(tsk); 3017 tsk->flags |= PF_EXITING; 3018 3019 cgroup_threadgroup_change_end(tsk); 3020 3021 if (!task_sigpending(tsk)) 3022 goto out; 3023 3024 unblocked = tsk->blocked; 3025 signotset(&unblocked); 3026 retarget_shared_pending(tsk, &unblocked); 3027 3028 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 3029 task_participate_group_stop(tsk)) 3030 group_stop = CLD_STOPPED; 3031 out: 3032 spin_unlock_irq(&tsk->sighand->siglock); 3033 3034 /* 3035 * If group stop has completed, deliver the notification. This 3036 * should always go to the real parent of the group leader. 3037 */ 3038 if (unlikely(group_stop)) { 3039 read_lock(&tasklist_lock); 3040 do_notify_parent_cldstop(tsk, false, group_stop); 3041 read_unlock(&tasklist_lock); 3042 } 3043 } 3044 3045 /* 3046 * System call entry points. 3047 */ 3048 3049 /** 3050 * sys_restart_syscall - restart a system call 3051 */ 3052 SYSCALL_DEFINE0(restart_syscall) 3053 { 3054 struct restart_block *restart = ¤t->restart_block; 3055 return restart->fn(restart); 3056 } 3057 3058 long do_no_restart_syscall(struct restart_block *param) 3059 { 3060 return -EINTR; 3061 } 3062 3063 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 3064 { 3065 if (task_sigpending(tsk) && !thread_group_empty(tsk)) { 3066 sigset_t newblocked; 3067 /* A set of now blocked but previously unblocked signals. */ 3068 sigandnsets(&newblocked, newset, ¤t->blocked); 3069 retarget_shared_pending(tsk, &newblocked); 3070 } 3071 tsk->blocked = *newset; 3072 recalc_sigpending(); 3073 } 3074 3075 /** 3076 * set_current_blocked - change current->blocked mask 3077 * @newset: new mask 3078 * 3079 * It is wrong to change ->blocked directly, this helper should be used 3080 * to ensure the process can't miss a shared signal we are going to block. 3081 */ 3082 void set_current_blocked(sigset_t *newset) 3083 { 3084 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3085 __set_current_blocked(newset); 3086 } 3087 3088 void __set_current_blocked(const sigset_t *newset) 3089 { 3090 struct task_struct *tsk = current; 3091 3092 /* 3093 * In case the signal mask hasn't changed, there is nothing we need 3094 * to do. The current->blocked shouldn't be modified by other task. 3095 */ 3096 if (sigequalsets(&tsk->blocked, newset)) 3097 return; 3098 3099 spin_lock_irq(&tsk->sighand->siglock); 3100 __set_task_blocked(tsk, newset); 3101 spin_unlock_irq(&tsk->sighand->siglock); 3102 } 3103 3104 /* 3105 * This is also useful for kernel threads that want to temporarily 3106 * (or permanently) block certain signals. 3107 * 3108 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 3109 * interface happily blocks "unblockable" signals like SIGKILL 3110 * and friends. 3111 */ 3112 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 3113 { 3114 struct task_struct *tsk = current; 3115 sigset_t newset; 3116 3117 /* Lockless, only current can change ->blocked, never from irq */ 3118 if (oldset) 3119 *oldset = tsk->blocked; 3120 3121 switch (how) { 3122 case SIG_BLOCK: 3123 sigorsets(&newset, &tsk->blocked, set); 3124 break; 3125 case SIG_UNBLOCK: 3126 sigandnsets(&newset, &tsk->blocked, set); 3127 break; 3128 case SIG_SETMASK: 3129 newset = *set; 3130 break; 3131 default: 3132 return -EINVAL; 3133 } 3134 3135 __set_current_blocked(&newset); 3136 return 0; 3137 } 3138 EXPORT_SYMBOL(sigprocmask); 3139 3140 /* 3141 * The api helps set app-provided sigmasks. 3142 * 3143 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 3144 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 3145 * 3146 * Note that it does set_restore_sigmask() in advance, so it must be always 3147 * paired with restore_saved_sigmask_unless() before return from syscall. 3148 */ 3149 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) 3150 { 3151 sigset_t kmask; 3152 3153 if (!umask) 3154 return 0; 3155 if (sigsetsize != sizeof(sigset_t)) 3156 return -EINVAL; 3157 if (copy_from_user(&kmask, umask, sizeof(sigset_t))) 3158 return -EFAULT; 3159 3160 set_restore_sigmask(); 3161 current->saved_sigmask = current->blocked; 3162 set_current_blocked(&kmask); 3163 3164 return 0; 3165 } 3166 3167 #ifdef CONFIG_COMPAT 3168 int set_compat_user_sigmask(const compat_sigset_t __user *umask, 3169 size_t sigsetsize) 3170 { 3171 sigset_t kmask; 3172 3173 if (!umask) 3174 return 0; 3175 if (sigsetsize != sizeof(compat_sigset_t)) 3176 return -EINVAL; 3177 if (get_compat_sigset(&kmask, umask)) 3178 return -EFAULT; 3179 3180 set_restore_sigmask(); 3181 current->saved_sigmask = current->blocked; 3182 set_current_blocked(&kmask); 3183 3184 return 0; 3185 } 3186 #endif 3187 3188 /** 3189 * sys_rt_sigprocmask - change the list of currently blocked signals 3190 * @how: whether to add, remove, or set signals 3191 * @nset: stores pending signals 3192 * @oset: previous value of signal mask if non-null 3193 * @sigsetsize: size of sigset_t type 3194 */ 3195 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 3196 sigset_t __user *, oset, size_t, sigsetsize) 3197 { 3198 sigset_t old_set, new_set; 3199 int error; 3200 3201 /* XXX: Don't preclude handling different sized sigset_t's. */ 3202 if (sigsetsize != sizeof(sigset_t)) 3203 return -EINVAL; 3204 3205 old_set = current->blocked; 3206 3207 if (nset) { 3208 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 3209 return -EFAULT; 3210 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3211 3212 error = sigprocmask(how, &new_set, NULL); 3213 if (error) 3214 return error; 3215 } 3216 3217 if (oset) { 3218 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 3219 return -EFAULT; 3220 } 3221 3222 return 0; 3223 } 3224 3225 #ifdef CONFIG_COMPAT 3226 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 3227 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 3228 { 3229 sigset_t old_set = current->blocked; 3230 3231 /* XXX: Don't preclude handling different sized sigset_t's. */ 3232 if (sigsetsize != sizeof(sigset_t)) 3233 return -EINVAL; 3234 3235 if (nset) { 3236 sigset_t new_set; 3237 int error; 3238 if (get_compat_sigset(&new_set, nset)) 3239 return -EFAULT; 3240 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3241 3242 error = sigprocmask(how, &new_set, NULL); 3243 if (error) 3244 return error; 3245 } 3246 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 3247 } 3248 #endif 3249 3250 static void do_sigpending(sigset_t *set) 3251 { 3252 spin_lock_irq(¤t->sighand->siglock); 3253 sigorsets(set, ¤t->pending.signal, 3254 ¤t->signal->shared_pending.signal); 3255 spin_unlock_irq(¤t->sighand->siglock); 3256 3257 /* Outside the lock because only this thread touches it. */ 3258 sigandsets(set, ¤t->blocked, set); 3259 } 3260 3261 /** 3262 * sys_rt_sigpending - examine a pending signal that has been raised 3263 * while blocked 3264 * @uset: stores pending signals 3265 * @sigsetsize: size of sigset_t type or larger 3266 */ 3267 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 3268 { 3269 sigset_t set; 3270 3271 if (sigsetsize > sizeof(*uset)) 3272 return -EINVAL; 3273 3274 do_sigpending(&set); 3275 3276 if (copy_to_user(uset, &set, sigsetsize)) 3277 return -EFAULT; 3278 3279 return 0; 3280 } 3281 3282 #ifdef CONFIG_COMPAT 3283 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 3284 compat_size_t, sigsetsize) 3285 { 3286 sigset_t set; 3287 3288 if (sigsetsize > sizeof(*uset)) 3289 return -EINVAL; 3290 3291 do_sigpending(&set); 3292 3293 return put_compat_sigset(uset, &set, sigsetsize); 3294 } 3295 #endif 3296 3297 static const struct { 3298 unsigned char limit, layout; 3299 } sig_sicodes[] = { 3300 [SIGILL] = { NSIGILL, SIL_FAULT }, 3301 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 3302 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 3303 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 3304 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 3305 #if defined(SIGEMT) 3306 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 3307 #endif 3308 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 3309 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 3310 [SIGSYS] = { NSIGSYS, SIL_SYS }, 3311 }; 3312 3313 static bool known_siginfo_layout(unsigned sig, int si_code) 3314 { 3315 if (si_code == SI_KERNEL) 3316 return true; 3317 else if ((si_code > SI_USER)) { 3318 if (sig_specific_sicodes(sig)) { 3319 if (si_code <= sig_sicodes[sig].limit) 3320 return true; 3321 } 3322 else if (si_code <= NSIGPOLL) 3323 return true; 3324 } 3325 else if (si_code >= SI_DETHREAD) 3326 return true; 3327 else if (si_code == SI_ASYNCNL) 3328 return true; 3329 return false; 3330 } 3331 3332 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3333 { 3334 enum siginfo_layout layout = SIL_KILL; 3335 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3336 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3337 (si_code <= sig_sicodes[sig].limit)) { 3338 layout = sig_sicodes[sig].layout; 3339 /* Handle the exceptions */ 3340 if ((sig == SIGBUS) && 3341 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3342 layout = SIL_FAULT_MCEERR; 3343 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3344 layout = SIL_FAULT_BNDERR; 3345 #ifdef SEGV_PKUERR 3346 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3347 layout = SIL_FAULT_PKUERR; 3348 #endif 3349 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF)) 3350 layout = SIL_FAULT_PERF_EVENT; 3351 else if (IS_ENABLED(CONFIG_SPARC) && 3352 (sig == SIGILL) && (si_code == ILL_ILLTRP)) 3353 layout = SIL_FAULT_TRAPNO; 3354 else if (IS_ENABLED(CONFIG_ALPHA) && 3355 ((sig == SIGFPE) || 3356 ((sig == SIGTRAP) && (si_code == TRAP_UNK)))) 3357 layout = SIL_FAULT_TRAPNO; 3358 } 3359 else if (si_code <= NSIGPOLL) 3360 layout = SIL_POLL; 3361 } else { 3362 if (si_code == SI_TIMER) 3363 layout = SIL_TIMER; 3364 else if (si_code == SI_SIGIO) 3365 layout = SIL_POLL; 3366 else if (si_code < 0) 3367 layout = SIL_RT; 3368 } 3369 return layout; 3370 } 3371 3372 static inline char __user *si_expansion(const siginfo_t __user *info) 3373 { 3374 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3375 } 3376 3377 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3378 { 3379 char __user *expansion = si_expansion(to); 3380 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3381 return -EFAULT; 3382 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3383 return -EFAULT; 3384 return 0; 3385 } 3386 3387 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3388 const siginfo_t __user *from) 3389 { 3390 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3391 char __user *expansion = si_expansion(from); 3392 char buf[SI_EXPANSION_SIZE]; 3393 int i; 3394 /* 3395 * An unknown si_code might need more than 3396 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3397 * extra bytes are 0. This guarantees copy_siginfo_to_user 3398 * will return this data to userspace exactly. 3399 */ 3400 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3401 return -EFAULT; 3402 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3403 if (buf[i] != 0) 3404 return -E2BIG; 3405 } 3406 } 3407 return 0; 3408 } 3409 3410 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3411 const siginfo_t __user *from) 3412 { 3413 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3414 return -EFAULT; 3415 to->si_signo = signo; 3416 return post_copy_siginfo_from_user(to, from); 3417 } 3418 3419 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3420 { 3421 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3422 return -EFAULT; 3423 return post_copy_siginfo_from_user(to, from); 3424 } 3425 3426 #ifdef CONFIG_COMPAT 3427 /** 3428 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo 3429 * @to: compat siginfo destination 3430 * @from: kernel siginfo source 3431 * 3432 * Note: This function does not work properly for the SIGCHLD on x32, but 3433 * fortunately it doesn't have to. The only valid callers for this function are 3434 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. 3435 * The latter does not care because SIGCHLD will never cause a coredump. 3436 */ 3437 void copy_siginfo_to_external32(struct compat_siginfo *to, 3438 const struct kernel_siginfo *from) 3439 { 3440 memset(to, 0, sizeof(*to)); 3441 3442 to->si_signo = from->si_signo; 3443 to->si_errno = from->si_errno; 3444 to->si_code = from->si_code; 3445 switch(siginfo_layout(from->si_signo, from->si_code)) { 3446 case SIL_KILL: 3447 to->si_pid = from->si_pid; 3448 to->si_uid = from->si_uid; 3449 break; 3450 case SIL_TIMER: 3451 to->si_tid = from->si_tid; 3452 to->si_overrun = from->si_overrun; 3453 to->si_int = from->si_int; 3454 break; 3455 case SIL_POLL: 3456 to->si_band = from->si_band; 3457 to->si_fd = from->si_fd; 3458 break; 3459 case SIL_FAULT: 3460 to->si_addr = ptr_to_compat(from->si_addr); 3461 break; 3462 case SIL_FAULT_TRAPNO: 3463 to->si_addr = ptr_to_compat(from->si_addr); 3464 to->si_trapno = from->si_trapno; 3465 break; 3466 case SIL_FAULT_MCEERR: 3467 to->si_addr = ptr_to_compat(from->si_addr); 3468 to->si_addr_lsb = from->si_addr_lsb; 3469 break; 3470 case SIL_FAULT_BNDERR: 3471 to->si_addr = ptr_to_compat(from->si_addr); 3472 to->si_lower = ptr_to_compat(from->si_lower); 3473 to->si_upper = ptr_to_compat(from->si_upper); 3474 break; 3475 case SIL_FAULT_PKUERR: 3476 to->si_addr = ptr_to_compat(from->si_addr); 3477 to->si_pkey = from->si_pkey; 3478 break; 3479 case SIL_FAULT_PERF_EVENT: 3480 to->si_addr = ptr_to_compat(from->si_addr); 3481 to->si_perf_data = from->si_perf_data; 3482 to->si_perf_type = from->si_perf_type; 3483 to->si_perf_flags = from->si_perf_flags; 3484 break; 3485 case SIL_CHLD: 3486 to->si_pid = from->si_pid; 3487 to->si_uid = from->si_uid; 3488 to->si_status = from->si_status; 3489 to->si_utime = from->si_utime; 3490 to->si_stime = from->si_stime; 3491 break; 3492 case SIL_RT: 3493 to->si_pid = from->si_pid; 3494 to->si_uid = from->si_uid; 3495 to->si_int = from->si_int; 3496 break; 3497 case SIL_SYS: 3498 to->si_call_addr = ptr_to_compat(from->si_call_addr); 3499 to->si_syscall = from->si_syscall; 3500 to->si_arch = from->si_arch; 3501 break; 3502 } 3503 } 3504 3505 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3506 const struct kernel_siginfo *from) 3507 { 3508 struct compat_siginfo new; 3509 3510 copy_siginfo_to_external32(&new, from); 3511 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3512 return -EFAULT; 3513 return 0; 3514 } 3515 3516 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3517 const struct compat_siginfo *from) 3518 { 3519 clear_siginfo(to); 3520 to->si_signo = from->si_signo; 3521 to->si_errno = from->si_errno; 3522 to->si_code = from->si_code; 3523 switch(siginfo_layout(from->si_signo, from->si_code)) { 3524 case SIL_KILL: 3525 to->si_pid = from->si_pid; 3526 to->si_uid = from->si_uid; 3527 break; 3528 case SIL_TIMER: 3529 to->si_tid = from->si_tid; 3530 to->si_overrun = from->si_overrun; 3531 to->si_int = from->si_int; 3532 break; 3533 case SIL_POLL: 3534 to->si_band = from->si_band; 3535 to->si_fd = from->si_fd; 3536 break; 3537 case SIL_FAULT: 3538 to->si_addr = compat_ptr(from->si_addr); 3539 break; 3540 case SIL_FAULT_TRAPNO: 3541 to->si_addr = compat_ptr(from->si_addr); 3542 to->si_trapno = from->si_trapno; 3543 break; 3544 case SIL_FAULT_MCEERR: 3545 to->si_addr = compat_ptr(from->si_addr); 3546 to->si_addr_lsb = from->si_addr_lsb; 3547 break; 3548 case SIL_FAULT_BNDERR: 3549 to->si_addr = compat_ptr(from->si_addr); 3550 to->si_lower = compat_ptr(from->si_lower); 3551 to->si_upper = compat_ptr(from->si_upper); 3552 break; 3553 case SIL_FAULT_PKUERR: 3554 to->si_addr = compat_ptr(from->si_addr); 3555 to->si_pkey = from->si_pkey; 3556 break; 3557 case SIL_FAULT_PERF_EVENT: 3558 to->si_addr = compat_ptr(from->si_addr); 3559 to->si_perf_data = from->si_perf_data; 3560 to->si_perf_type = from->si_perf_type; 3561 to->si_perf_flags = from->si_perf_flags; 3562 break; 3563 case SIL_CHLD: 3564 to->si_pid = from->si_pid; 3565 to->si_uid = from->si_uid; 3566 to->si_status = from->si_status; 3567 #ifdef CONFIG_X86_X32_ABI 3568 if (in_x32_syscall()) { 3569 to->si_utime = from->_sifields._sigchld_x32._utime; 3570 to->si_stime = from->_sifields._sigchld_x32._stime; 3571 } else 3572 #endif 3573 { 3574 to->si_utime = from->si_utime; 3575 to->si_stime = from->si_stime; 3576 } 3577 break; 3578 case SIL_RT: 3579 to->si_pid = from->si_pid; 3580 to->si_uid = from->si_uid; 3581 to->si_int = from->si_int; 3582 break; 3583 case SIL_SYS: 3584 to->si_call_addr = compat_ptr(from->si_call_addr); 3585 to->si_syscall = from->si_syscall; 3586 to->si_arch = from->si_arch; 3587 break; 3588 } 3589 return 0; 3590 } 3591 3592 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3593 const struct compat_siginfo __user *ufrom) 3594 { 3595 struct compat_siginfo from; 3596 3597 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3598 return -EFAULT; 3599 3600 from.si_signo = signo; 3601 return post_copy_siginfo_from_user32(to, &from); 3602 } 3603 3604 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3605 const struct compat_siginfo __user *ufrom) 3606 { 3607 struct compat_siginfo from; 3608 3609 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3610 return -EFAULT; 3611 3612 return post_copy_siginfo_from_user32(to, &from); 3613 } 3614 #endif /* CONFIG_COMPAT */ 3615 3616 /** 3617 * do_sigtimedwait - wait for queued signals specified in @which 3618 * @which: queued signals to wait for 3619 * @info: if non-null, the signal's siginfo is returned here 3620 * @ts: upper bound on process time suspension 3621 */ 3622 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3623 const struct timespec64 *ts) 3624 { 3625 ktime_t *to = NULL, timeout = KTIME_MAX; 3626 struct task_struct *tsk = current; 3627 sigset_t mask = *which; 3628 enum pid_type type; 3629 int sig, ret = 0; 3630 3631 if (ts) { 3632 if (!timespec64_valid(ts)) 3633 return -EINVAL; 3634 timeout = timespec64_to_ktime(*ts); 3635 to = &timeout; 3636 } 3637 3638 /* 3639 * Invert the set of allowed signals to get those we want to block. 3640 */ 3641 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3642 signotset(&mask); 3643 3644 spin_lock_irq(&tsk->sighand->siglock); 3645 sig = dequeue_signal(tsk, &mask, info, &type); 3646 if (!sig && timeout) { 3647 /* 3648 * None ready, temporarily unblock those we're interested 3649 * while we are sleeping in so that we'll be awakened when 3650 * they arrive. Unblocking is always fine, we can avoid 3651 * set_current_blocked(). 3652 */ 3653 tsk->real_blocked = tsk->blocked; 3654 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3655 recalc_sigpending(); 3656 spin_unlock_irq(&tsk->sighand->siglock); 3657 3658 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 3659 ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3660 HRTIMER_MODE_REL); 3661 spin_lock_irq(&tsk->sighand->siglock); 3662 __set_task_blocked(tsk, &tsk->real_blocked); 3663 sigemptyset(&tsk->real_blocked); 3664 sig = dequeue_signal(tsk, &mask, info, &type); 3665 } 3666 spin_unlock_irq(&tsk->sighand->siglock); 3667 3668 if (sig) 3669 return sig; 3670 return ret ? -EINTR : -EAGAIN; 3671 } 3672 3673 /** 3674 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3675 * in @uthese 3676 * @uthese: queued signals to wait for 3677 * @uinfo: if non-null, the signal's siginfo is returned here 3678 * @uts: upper bound on process time suspension 3679 * @sigsetsize: size of sigset_t type 3680 */ 3681 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3682 siginfo_t __user *, uinfo, 3683 const struct __kernel_timespec __user *, uts, 3684 size_t, sigsetsize) 3685 { 3686 sigset_t these; 3687 struct timespec64 ts; 3688 kernel_siginfo_t info; 3689 int ret; 3690 3691 /* XXX: Don't preclude handling different sized sigset_t's. */ 3692 if (sigsetsize != sizeof(sigset_t)) 3693 return -EINVAL; 3694 3695 if (copy_from_user(&these, uthese, sizeof(these))) 3696 return -EFAULT; 3697 3698 if (uts) { 3699 if (get_timespec64(&ts, uts)) 3700 return -EFAULT; 3701 } 3702 3703 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3704 3705 if (ret > 0 && uinfo) { 3706 if (copy_siginfo_to_user(uinfo, &info)) 3707 ret = -EFAULT; 3708 } 3709 3710 return ret; 3711 } 3712 3713 #ifdef CONFIG_COMPAT_32BIT_TIME 3714 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3715 siginfo_t __user *, uinfo, 3716 const struct old_timespec32 __user *, uts, 3717 size_t, sigsetsize) 3718 { 3719 sigset_t these; 3720 struct timespec64 ts; 3721 kernel_siginfo_t info; 3722 int ret; 3723 3724 if (sigsetsize != sizeof(sigset_t)) 3725 return -EINVAL; 3726 3727 if (copy_from_user(&these, uthese, sizeof(these))) 3728 return -EFAULT; 3729 3730 if (uts) { 3731 if (get_old_timespec32(&ts, uts)) 3732 return -EFAULT; 3733 } 3734 3735 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3736 3737 if (ret > 0 && uinfo) { 3738 if (copy_siginfo_to_user(uinfo, &info)) 3739 ret = -EFAULT; 3740 } 3741 3742 return ret; 3743 } 3744 #endif 3745 3746 #ifdef CONFIG_COMPAT 3747 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3748 struct compat_siginfo __user *, uinfo, 3749 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3750 { 3751 sigset_t s; 3752 struct timespec64 t; 3753 kernel_siginfo_t info; 3754 long ret; 3755 3756 if (sigsetsize != sizeof(sigset_t)) 3757 return -EINVAL; 3758 3759 if (get_compat_sigset(&s, uthese)) 3760 return -EFAULT; 3761 3762 if (uts) { 3763 if (get_timespec64(&t, uts)) 3764 return -EFAULT; 3765 } 3766 3767 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3768 3769 if (ret > 0 && uinfo) { 3770 if (copy_siginfo_to_user32(uinfo, &info)) 3771 ret = -EFAULT; 3772 } 3773 3774 return ret; 3775 } 3776 3777 #ifdef CONFIG_COMPAT_32BIT_TIME 3778 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3779 struct compat_siginfo __user *, uinfo, 3780 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3781 { 3782 sigset_t s; 3783 struct timespec64 t; 3784 kernel_siginfo_t info; 3785 long ret; 3786 3787 if (sigsetsize != sizeof(sigset_t)) 3788 return -EINVAL; 3789 3790 if (get_compat_sigset(&s, uthese)) 3791 return -EFAULT; 3792 3793 if (uts) { 3794 if (get_old_timespec32(&t, uts)) 3795 return -EFAULT; 3796 } 3797 3798 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3799 3800 if (ret > 0 && uinfo) { 3801 if (copy_siginfo_to_user32(uinfo, &info)) 3802 ret = -EFAULT; 3803 } 3804 3805 return ret; 3806 } 3807 #endif 3808 #endif 3809 3810 static void prepare_kill_siginfo(int sig, struct kernel_siginfo *info, 3811 enum pid_type type) 3812 { 3813 clear_siginfo(info); 3814 info->si_signo = sig; 3815 info->si_errno = 0; 3816 info->si_code = (type == PIDTYPE_PID) ? SI_TKILL : SI_USER; 3817 info->si_pid = task_tgid_vnr(current); 3818 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3819 } 3820 3821 /** 3822 * sys_kill - send a signal to a process 3823 * @pid: the PID of the process 3824 * @sig: signal to be sent 3825 */ 3826 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3827 { 3828 struct kernel_siginfo info; 3829 3830 prepare_kill_siginfo(sig, &info, PIDTYPE_TGID); 3831 3832 return kill_something_info(sig, &info, pid); 3833 } 3834 3835 /* 3836 * Verify that the signaler and signalee either are in the same pid namespace 3837 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3838 * namespace. 3839 */ 3840 static bool access_pidfd_pidns(struct pid *pid) 3841 { 3842 struct pid_namespace *active = task_active_pid_ns(current); 3843 struct pid_namespace *p = ns_of_pid(pid); 3844 3845 for (;;) { 3846 if (!p) 3847 return false; 3848 if (p == active) 3849 break; 3850 p = p->parent; 3851 } 3852 3853 return true; 3854 } 3855 3856 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, 3857 siginfo_t __user *info) 3858 { 3859 #ifdef CONFIG_COMPAT 3860 /* 3861 * Avoid hooking up compat syscalls and instead handle necessary 3862 * conversions here. Note, this is a stop-gap measure and should not be 3863 * considered a generic solution. 3864 */ 3865 if (in_compat_syscall()) 3866 return copy_siginfo_from_user32( 3867 kinfo, (struct compat_siginfo __user *)info); 3868 #endif 3869 return copy_siginfo_from_user(kinfo, info); 3870 } 3871 3872 static struct pid *pidfd_to_pid(const struct file *file) 3873 { 3874 struct pid *pid; 3875 3876 pid = pidfd_pid(file); 3877 if (!IS_ERR(pid)) 3878 return pid; 3879 3880 return tgid_pidfd_to_pid(file); 3881 } 3882 3883 #define PIDFD_SEND_SIGNAL_FLAGS \ 3884 (PIDFD_SIGNAL_THREAD | PIDFD_SIGNAL_THREAD_GROUP | \ 3885 PIDFD_SIGNAL_PROCESS_GROUP) 3886 3887 /** 3888 * sys_pidfd_send_signal - Signal a process through a pidfd 3889 * @pidfd: file descriptor of the process 3890 * @sig: signal to send 3891 * @info: signal info 3892 * @flags: future flags 3893 * 3894 * Send the signal to the thread group or to the individual thread depending 3895 * on PIDFD_THREAD. 3896 * In the future extension to @flags may be used to override the default scope 3897 * of @pidfd. 3898 * 3899 * Return: 0 on success, negative errno on failure 3900 */ 3901 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 3902 siginfo_t __user *, info, unsigned int, flags) 3903 { 3904 int ret; 3905 struct fd f; 3906 struct pid *pid; 3907 kernel_siginfo_t kinfo; 3908 enum pid_type type; 3909 3910 /* Enforce flags be set to 0 until we add an extension. */ 3911 if (flags & ~PIDFD_SEND_SIGNAL_FLAGS) 3912 return -EINVAL; 3913 3914 /* Ensure that only a single signal scope determining flag is set. */ 3915 if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1) 3916 return -EINVAL; 3917 3918 f = fdget(pidfd); 3919 if (!f.file) 3920 return -EBADF; 3921 3922 /* Is this a pidfd? */ 3923 pid = pidfd_to_pid(f.file); 3924 if (IS_ERR(pid)) { 3925 ret = PTR_ERR(pid); 3926 goto err; 3927 } 3928 3929 ret = -EINVAL; 3930 if (!access_pidfd_pidns(pid)) 3931 goto err; 3932 3933 switch (flags) { 3934 case 0: 3935 /* Infer scope from the type of pidfd. */ 3936 if (f.file->f_flags & PIDFD_THREAD) 3937 type = PIDTYPE_PID; 3938 else 3939 type = PIDTYPE_TGID; 3940 break; 3941 case PIDFD_SIGNAL_THREAD: 3942 type = PIDTYPE_PID; 3943 break; 3944 case PIDFD_SIGNAL_THREAD_GROUP: 3945 type = PIDTYPE_TGID; 3946 break; 3947 case PIDFD_SIGNAL_PROCESS_GROUP: 3948 type = PIDTYPE_PGID; 3949 break; 3950 } 3951 3952 if (info) { 3953 ret = copy_siginfo_from_user_any(&kinfo, info); 3954 if (unlikely(ret)) 3955 goto err; 3956 3957 ret = -EINVAL; 3958 if (unlikely(sig != kinfo.si_signo)) 3959 goto err; 3960 3961 /* Only allow sending arbitrary signals to yourself. */ 3962 ret = -EPERM; 3963 if ((task_pid(current) != pid || type > PIDTYPE_TGID) && 3964 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) 3965 goto err; 3966 } else { 3967 prepare_kill_siginfo(sig, &kinfo, type); 3968 } 3969 3970 if (type == PIDTYPE_PGID) 3971 ret = kill_pgrp_info(sig, &kinfo, pid); 3972 else 3973 ret = kill_pid_info_type(sig, &kinfo, pid, type); 3974 err: 3975 fdput(f); 3976 return ret; 3977 } 3978 3979 static int 3980 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 3981 { 3982 struct task_struct *p; 3983 int error = -ESRCH; 3984 3985 rcu_read_lock(); 3986 p = find_task_by_vpid(pid); 3987 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 3988 error = check_kill_permission(sig, info, p); 3989 /* 3990 * The null signal is a permissions and process existence 3991 * probe. No signal is actually delivered. 3992 */ 3993 if (!error && sig) { 3994 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 3995 /* 3996 * If lock_task_sighand() failed we pretend the task 3997 * dies after receiving the signal. The window is tiny, 3998 * and the signal is private anyway. 3999 */ 4000 if (unlikely(error == -ESRCH)) 4001 error = 0; 4002 } 4003 } 4004 rcu_read_unlock(); 4005 4006 return error; 4007 } 4008 4009 static int do_tkill(pid_t tgid, pid_t pid, int sig) 4010 { 4011 struct kernel_siginfo info; 4012 4013 prepare_kill_siginfo(sig, &info, PIDTYPE_PID); 4014 4015 return do_send_specific(tgid, pid, sig, &info); 4016 } 4017 4018 /** 4019 * sys_tgkill - send signal to one specific thread 4020 * @tgid: the thread group ID of the thread 4021 * @pid: the PID of the thread 4022 * @sig: signal to be sent 4023 * 4024 * This syscall also checks the @tgid and returns -ESRCH even if the PID 4025 * exists but it's not belonging to the target process anymore. This 4026 * method solves the problem of threads exiting and PIDs getting reused. 4027 */ 4028 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 4029 { 4030 /* This is only valid for single tasks */ 4031 if (pid <= 0 || tgid <= 0) 4032 return -EINVAL; 4033 4034 return do_tkill(tgid, pid, sig); 4035 } 4036 4037 /** 4038 * sys_tkill - send signal to one specific task 4039 * @pid: the PID of the task 4040 * @sig: signal to be sent 4041 * 4042 * Send a signal to only one task, even if it's a CLONE_THREAD task. 4043 */ 4044 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 4045 { 4046 /* This is only valid for single tasks */ 4047 if (pid <= 0) 4048 return -EINVAL; 4049 4050 return do_tkill(0, pid, sig); 4051 } 4052 4053 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 4054 { 4055 /* Not even root can pretend to send signals from the kernel. 4056 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4057 */ 4058 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4059 (task_pid_vnr(current) != pid)) 4060 return -EPERM; 4061 4062 /* POSIX.1b doesn't mention process groups. */ 4063 return kill_proc_info(sig, info, pid); 4064 } 4065 4066 /** 4067 * sys_rt_sigqueueinfo - send signal information to a signal 4068 * @pid: the PID of the thread 4069 * @sig: signal to be sent 4070 * @uinfo: signal info to be sent 4071 */ 4072 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 4073 siginfo_t __user *, uinfo) 4074 { 4075 kernel_siginfo_t info; 4076 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4077 if (unlikely(ret)) 4078 return ret; 4079 return do_rt_sigqueueinfo(pid, sig, &info); 4080 } 4081 4082 #ifdef CONFIG_COMPAT 4083 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 4084 compat_pid_t, pid, 4085 int, sig, 4086 struct compat_siginfo __user *, uinfo) 4087 { 4088 kernel_siginfo_t info; 4089 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4090 if (unlikely(ret)) 4091 return ret; 4092 return do_rt_sigqueueinfo(pid, sig, &info); 4093 } 4094 #endif 4095 4096 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 4097 { 4098 /* This is only valid for single tasks */ 4099 if (pid <= 0 || tgid <= 0) 4100 return -EINVAL; 4101 4102 /* Not even root can pretend to send signals from the kernel. 4103 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4104 */ 4105 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4106 (task_pid_vnr(current) != pid)) 4107 return -EPERM; 4108 4109 return do_send_specific(tgid, pid, sig, info); 4110 } 4111 4112 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 4113 siginfo_t __user *, uinfo) 4114 { 4115 kernel_siginfo_t info; 4116 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4117 if (unlikely(ret)) 4118 return ret; 4119 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4120 } 4121 4122 #ifdef CONFIG_COMPAT 4123 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 4124 compat_pid_t, tgid, 4125 compat_pid_t, pid, 4126 int, sig, 4127 struct compat_siginfo __user *, uinfo) 4128 { 4129 kernel_siginfo_t info; 4130 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4131 if (unlikely(ret)) 4132 return ret; 4133 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4134 } 4135 #endif 4136 4137 /* 4138 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 4139 */ 4140 void kernel_sigaction(int sig, __sighandler_t action) 4141 { 4142 spin_lock_irq(¤t->sighand->siglock); 4143 current->sighand->action[sig - 1].sa.sa_handler = action; 4144 if (action == SIG_IGN) { 4145 sigset_t mask; 4146 4147 sigemptyset(&mask); 4148 sigaddset(&mask, sig); 4149 4150 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 4151 flush_sigqueue_mask(&mask, ¤t->pending); 4152 recalc_sigpending(); 4153 } 4154 spin_unlock_irq(¤t->sighand->siglock); 4155 } 4156 EXPORT_SYMBOL(kernel_sigaction); 4157 4158 void __weak sigaction_compat_abi(struct k_sigaction *act, 4159 struct k_sigaction *oact) 4160 { 4161 } 4162 4163 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 4164 { 4165 struct task_struct *p = current, *t; 4166 struct k_sigaction *k; 4167 sigset_t mask; 4168 4169 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 4170 return -EINVAL; 4171 4172 k = &p->sighand->action[sig-1]; 4173 4174 spin_lock_irq(&p->sighand->siglock); 4175 if (k->sa.sa_flags & SA_IMMUTABLE) { 4176 spin_unlock_irq(&p->sighand->siglock); 4177 return -EINVAL; 4178 } 4179 if (oact) 4180 *oact = *k; 4181 4182 /* 4183 * Make sure that we never accidentally claim to support SA_UNSUPPORTED, 4184 * e.g. by having an architecture use the bit in their uapi. 4185 */ 4186 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED); 4187 4188 /* 4189 * Clear unknown flag bits in order to allow userspace to detect missing 4190 * support for flag bits and to allow the kernel to use non-uapi bits 4191 * internally. 4192 */ 4193 if (act) 4194 act->sa.sa_flags &= UAPI_SA_FLAGS; 4195 if (oact) 4196 oact->sa.sa_flags &= UAPI_SA_FLAGS; 4197 4198 sigaction_compat_abi(act, oact); 4199 4200 if (act) { 4201 sigdelsetmask(&act->sa.sa_mask, 4202 sigmask(SIGKILL) | sigmask(SIGSTOP)); 4203 *k = *act; 4204 /* 4205 * POSIX 3.3.1.3: 4206 * "Setting a signal action to SIG_IGN for a signal that is 4207 * pending shall cause the pending signal to be discarded, 4208 * whether or not it is blocked." 4209 * 4210 * "Setting a signal action to SIG_DFL for a signal that is 4211 * pending and whose default action is to ignore the signal 4212 * (for example, SIGCHLD), shall cause the pending signal to 4213 * be discarded, whether or not it is blocked" 4214 */ 4215 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 4216 sigemptyset(&mask); 4217 sigaddset(&mask, sig); 4218 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 4219 for_each_thread(p, t) 4220 flush_sigqueue_mask(&mask, &t->pending); 4221 } 4222 } 4223 4224 spin_unlock_irq(&p->sighand->siglock); 4225 return 0; 4226 } 4227 4228 #ifdef CONFIG_DYNAMIC_SIGFRAME 4229 static inline void sigaltstack_lock(void) 4230 __acquires(¤t->sighand->siglock) 4231 { 4232 spin_lock_irq(¤t->sighand->siglock); 4233 } 4234 4235 static inline void sigaltstack_unlock(void) 4236 __releases(¤t->sighand->siglock) 4237 { 4238 spin_unlock_irq(¤t->sighand->siglock); 4239 } 4240 #else 4241 static inline void sigaltstack_lock(void) { } 4242 static inline void sigaltstack_unlock(void) { } 4243 #endif 4244 4245 static int 4246 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 4247 size_t min_ss_size) 4248 { 4249 struct task_struct *t = current; 4250 int ret = 0; 4251 4252 if (oss) { 4253 memset(oss, 0, sizeof(stack_t)); 4254 oss->ss_sp = (void __user *) t->sas_ss_sp; 4255 oss->ss_size = t->sas_ss_size; 4256 oss->ss_flags = sas_ss_flags(sp) | 4257 (current->sas_ss_flags & SS_FLAG_BITS); 4258 } 4259 4260 if (ss) { 4261 void __user *ss_sp = ss->ss_sp; 4262 size_t ss_size = ss->ss_size; 4263 unsigned ss_flags = ss->ss_flags; 4264 int ss_mode; 4265 4266 if (unlikely(on_sig_stack(sp))) 4267 return -EPERM; 4268 4269 ss_mode = ss_flags & ~SS_FLAG_BITS; 4270 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 4271 ss_mode != 0)) 4272 return -EINVAL; 4273 4274 /* 4275 * Return before taking any locks if no actual 4276 * sigaltstack changes were requested. 4277 */ 4278 if (t->sas_ss_sp == (unsigned long)ss_sp && 4279 t->sas_ss_size == ss_size && 4280 t->sas_ss_flags == ss_flags) 4281 return 0; 4282 4283 sigaltstack_lock(); 4284 if (ss_mode == SS_DISABLE) { 4285 ss_size = 0; 4286 ss_sp = NULL; 4287 } else { 4288 if (unlikely(ss_size < min_ss_size)) 4289 ret = -ENOMEM; 4290 if (!sigaltstack_size_valid(ss_size)) 4291 ret = -ENOMEM; 4292 } 4293 if (!ret) { 4294 t->sas_ss_sp = (unsigned long) ss_sp; 4295 t->sas_ss_size = ss_size; 4296 t->sas_ss_flags = ss_flags; 4297 } 4298 sigaltstack_unlock(); 4299 } 4300 return ret; 4301 } 4302 4303 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 4304 { 4305 stack_t new, old; 4306 int err; 4307 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 4308 return -EFAULT; 4309 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 4310 current_user_stack_pointer(), 4311 MINSIGSTKSZ); 4312 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 4313 err = -EFAULT; 4314 return err; 4315 } 4316 4317 int restore_altstack(const stack_t __user *uss) 4318 { 4319 stack_t new; 4320 if (copy_from_user(&new, uss, sizeof(stack_t))) 4321 return -EFAULT; 4322 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 4323 MINSIGSTKSZ); 4324 /* squash all but EFAULT for now */ 4325 return 0; 4326 } 4327 4328 int __save_altstack(stack_t __user *uss, unsigned long sp) 4329 { 4330 struct task_struct *t = current; 4331 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 4332 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4333 __put_user(t->sas_ss_size, &uss->ss_size); 4334 return err; 4335 } 4336 4337 #ifdef CONFIG_COMPAT 4338 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 4339 compat_stack_t __user *uoss_ptr) 4340 { 4341 stack_t uss, uoss; 4342 int ret; 4343 4344 if (uss_ptr) { 4345 compat_stack_t uss32; 4346 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 4347 return -EFAULT; 4348 uss.ss_sp = compat_ptr(uss32.ss_sp); 4349 uss.ss_flags = uss32.ss_flags; 4350 uss.ss_size = uss32.ss_size; 4351 } 4352 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 4353 compat_user_stack_pointer(), 4354 COMPAT_MINSIGSTKSZ); 4355 if (ret >= 0 && uoss_ptr) { 4356 compat_stack_t old; 4357 memset(&old, 0, sizeof(old)); 4358 old.ss_sp = ptr_to_compat(uoss.ss_sp); 4359 old.ss_flags = uoss.ss_flags; 4360 old.ss_size = uoss.ss_size; 4361 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 4362 ret = -EFAULT; 4363 } 4364 return ret; 4365 } 4366 4367 COMPAT_SYSCALL_DEFINE2(sigaltstack, 4368 const compat_stack_t __user *, uss_ptr, 4369 compat_stack_t __user *, uoss_ptr) 4370 { 4371 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 4372 } 4373 4374 int compat_restore_altstack(const compat_stack_t __user *uss) 4375 { 4376 int err = do_compat_sigaltstack(uss, NULL); 4377 /* squash all but -EFAULT for now */ 4378 return err == -EFAULT ? err : 0; 4379 } 4380 4381 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 4382 { 4383 int err; 4384 struct task_struct *t = current; 4385 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 4386 &uss->ss_sp) | 4387 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4388 __put_user(t->sas_ss_size, &uss->ss_size); 4389 return err; 4390 } 4391 #endif 4392 4393 #ifdef __ARCH_WANT_SYS_SIGPENDING 4394 4395 /** 4396 * sys_sigpending - examine pending signals 4397 * @uset: where mask of pending signal is returned 4398 */ 4399 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4400 { 4401 sigset_t set; 4402 4403 if (sizeof(old_sigset_t) > sizeof(*uset)) 4404 return -EINVAL; 4405 4406 do_sigpending(&set); 4407 4408 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4409 return -EFAULT; 4410 4411 return 0; 4412 } 4413 4414 #ifdef CONFIG_COMPAT 4415 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4416 { 4417 sigset_t set; 4418 4419 do_sigpending(&set); 4420 4421 return put_user(set.sig[0], set32); 4422 } 4423 #endif 4424 4425 #endif 4426 4427 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 4428 /** 4429 * sys_sigprocmask - examine and change blocked signals 4430 * @how: whether to add, remove, or set signals 4431 * @nset: signals to add or remove (if non-null) 4432 * @oset: previous value of signal mask if non-null 4433 * 4434 * Some platforms have their own version with special arguments; 4435 * others support only sys_rt_sigprocmask. 4436 */ 4437 4438 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4439 old_sigset_t __user *, oset) 4440 { 4441 old_sigset_t old_set, new_set; 4442 sigset_t new_blocked; 4443 4444 old_set = current->blocked.sig[0]; 4445 4446 if (nset) { 4447 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4448 return -EFAULT; 4449 4450 new_blocked = current->blocked; 4451 4452 switch (how) { 4453 case SIG_BLOCK: 4454 sigaddsetmask(&new_blocked, new_set); 4455 break; 4456 case SIG_UNBLOCK: 4457 sigdelsetmask(&new_blocked, new_set); 4458 break; 4459 case SIG_SETMASK: 4460 new_blocked.sig[0] = new_set; 4461 break; 4462 default: 4463 return -EINVAL; 4464 } 4465 4466 set_current_blocked(&new_blocked); 4467 } 4468 4469 if (oset) { 4470 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4471 return -EFAULT; 4472 } 4473 4474 return 0; 4475 } 4476 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4477 4478 #ifndef CONFIG_ODD_RT_SIGACTION 4479 /** 4480 * sys_rt_sigaction - alter an action taken by a process 4481 * @sig: signal to be sent 4482 * @act: new sigaction 4483 * @oact: used to save the previous sigaction 4484 * @sigsetsize: size of sigset_t type 4485 */ 4486 SYSCALL_DEFINE4(rt_sigaction, int, sig, 4487 const struct sigaction __user *, act, 4488 struct sigaction __user *, oact, 4489 size_t, sigsetsize) 4490 { 4491 struct k_sigaction new_sa, old_sa; 4492 int ret; 4493 4494 /* XXX: Don't preclude handling different sized sigset_t's. */ 4495 if (sigsetsize != sizeof(sigset_t)) 4496 return -EINVAL; 4497 4498 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4499 return -EFAULT; 4500 4501 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4502 if (ret) 4503 return ret; 4504 4505 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4506 return -EFAULT; 4507 4508 return 0; 4509 } 4510 #ifdef CONFIG_COMPAT 4511 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4512 const struct compat_sigaction __user *, act, 4513 struct compat_sigaction __user *, oact, 4514 compat_size_t, sigsetsize) 4515 { 4516 struct k_sigaction new_ka, old_ka; 4517 #ifdef __ARCH_HAS_SA_RESTORER 4518 compat_uptr_t restorer; 4519 #endif 4520 int ret; 4521 4522 /* XXX: Don't preclude handling different sized sigset_t's. */ 4523 if (sigsetsize != sizeof(compat_sigset_t)) 4524 return -EINVAL; 4525 4526 if (act) { 4527 compat_uptr_t handler; 4528 ret = get_user(handler, &act->sa_handler); 4529 new_ka.sa.sa_handler = compat_ptr(handler); 4530 #ifdef __ARCH_HAS_SA_RESTORER 4531 ret |= get_user(restorer, &act->sa_restorer); 4532 new_ka.sa.sa_restorer = compat_ptr(restorer); 4533 #endif 4534 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4535 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4536 if (ret) 4537 return -EFAULT; 4538 } 4539 4540 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4541 if (!ret && oact) { 4542 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4543 &oact->sa_handler); 4544 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4545 sizeof(oact->sa_mask)); 4546 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4547 #ifdef __ARCH_HAS_SA_RESTORER 4548 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4549 &oact->sa_restorer); 4550 #endif 4551 } 4552 return ret; 4553 } 4554 #endif 4555 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4556 4557 #ifdef CONFIG_OLD_SIGACTION 4558 SYSCALL_DEFINE3(sigaction, int, sig, 4559 const struct old_sigaction __user *, act, 4560 struct old_sigaction __user *, oact) 4561 { 4562 struct k_sigaction new_ka, old_ka; 4563 int ret; 4564 4565 if (act) { 4566 old_sigset_t mask; 4567 if (!access_ok(act, sizeof(*act)) || 4568 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4569 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4570 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4571 __get_user(mask, &act->sa_mask)) 4572 return -EFAULT; 4573 #ifdef __ARCH_HAS_KA_RESTORER 4574 new_ka.ka_restorer = NULL; 4575 #endif 4576 siginitset(&new_ka.sa.sa_mask, mask); 4577 } 4578 4579 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4580 4581 if (!ret && oact) { 4582 if (!access_ok(oact, sizeof(*oact)) || 4583 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4584 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4585 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4586 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4587 return -EFAULT; 4588 } 4589 4590 return ret; 4591 } 4592 #endif 4593 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4594 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4595 const struct compat_old_sigaction __user *, act, 4596 struct compat_old_sigaction __user *, oact) 4597 { 4598 struct k_sigaction new_ka, old_ka; 4599 int ret; 4600 compat_old_sigset_t mask; 4601 compat_uptr_t handler, restorer; 4602 4603 if (act) { 4604 if (!access_ok(act, sizeof(*act)) || 4605 __get_user(handler, &act->sa_handler) || 4606 __get_user(restorer, &act->sa_restorer) || 4607 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4608 __get_user(mask, &act->sa_mask)) 4609 return -EFAULT; 4610 4611 #ifdef __ARCH_HAS_KA_RESTORER 4612 new_ka.ka_restorer = NULL; 4613 #endif 4614 new_ka.sa.sa_handler = compat_ptr(handler); 4615 new_ka.sa.sa_restorer = compat_ptr(restorer); 4616 siginitset(&new_ka.sa.sa_mask, mask); 4617 } 4618 4619 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4620 4621 if (!ret && oact) { 4622 if (!access_ok(oact, sizeof(*oact)) || 4623 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4624 &oact->sa_handler) || 4625 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4626 &oact->sa_restorer) || 4627 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4628 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4629 return -EFAULT; 4630 } 4631 return ret; 4632 } 4633 #endif 4634 4635 #ifdef CONFIG_SGETMASK_SYSCALL 4636 4637 /* 4638 * For backwards compatibility. Functionality superseded by sigprocmask. 4639 */ 4640 SYSCALL_DEFINE0(sgetmask) 4641 { 4642 /* SMP safe */ 4643 return current->blocked.sig[0]; 4644 } 4645 4646 SYSCALL_DEFINE1(ssetmask, int, newmask) 4647 { 4648 int old = current->blocked.sig[0]; 4649 sigset_t newset; 4650 4651 siginitset(&newset, newmask); 4652 set_current_blocked(&newset); 4653 4654 return old; 4655 } 4656 #endif /* CONFIG_SGETMASK_SYSCALL */ 4657 4658 #ifdef __ARCH_WANT_SYS_SIGNAL 4659 /* 4660 * For backwards compatibility. Functionality superseded by sigaction. 4661 */ 4662 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4663 { 4664 struct k_sigaction new_sa, old_sa; 4665 int ret; 4666 4667 new_sa.sa.sa_handler = handler; 4668 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4669 sigemptyset(&new_sa.sa.sa_mask); 4670 4671 ret = do_sigaction(sig, &new_sa, &old_sa); 4672 4673 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4674 } 4675 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4676 4677 #ifdef __ARCH_WANT_SYS_PAUSE 4678 4679 SYSCALL_DEFINE0(pause) 4680 { 4681 while (!signal_pending(current)) { 4682 __set_current_state(TASK_INTERRUPTIBLE); 4683 schedule(); 4684 } 4685 return -ERESTARTNOHAND; 4686 } 4687 4688 #endif 4689 4690 static int sigsuspend(sigset_t *set) 4691 { 4692 current->saved_sigmask = current->blocked; 4693 set_current_blocked(set); 4694 4695 while (!signal_pending(current)) { 4696 __set_current_state(TASK_INTERRUPTIBLE); 4697 schedule(); 4698 } 4699 set_restore_sigmask(); 4700 return -ERESTARTNOHAND; 4701 } 4702 4703 /** 4704 * sys_rt_sigsuspend - replace the signal mask for a value with the 4705 * @unewset value until a signal is received 4706 * @unewset: new signal mask value 4707 * @sigsetsize: size of sigset_t type 4708 */ 4709 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4710 { 4711 sigset_t newset; 4712 4713 /* XXX: Don't preclude handling different sized sigset_t's. */ 4714 if (sigsetsize != sizeof(sigset_t)) 4715 return -EINVAL; 4716 4717 if (copy_from_user(&newset, unewset, sizeof(newset))) 4718 return -EFAULT; 4719 return sigsuspend(&newset); 4720 } 4721 4722 #ifdef CONFIG_COMPAT 4723 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4724 { 4725 sigset_t newset; 4726 4727 /* XXX: Don't preclude handling different sized sigset_t's. */ 4728 if (sigsetsize != sizeof(sigset_t)) 4729 return -EINVAL; 4730 4731 if (get_compat_sigset(&newset, unewset)) 4732 return -EFAULT; 4733 return sigsuspend(&newset); 4734 } 4735 #endif 4736 4737 #ifdef CONFIG_OLD_SIGSUSPEND 4738 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4739 { 4740 sigset_t blocked; 4741 siginitset(&blocked, mask); 4742 return sigsuspend(&blocked); 4743 } 4744 #endif 4745 #ifdef CONFIG_OLD_SIGSUSPEND3 4746 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4747 { 4748 sigset_t blocked; 4749 siginitset(&blocked, mask); 4750 return sigsuspend(&blocked); 4751 } 4752 #endif 4753 4754 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4755 { 4756 return NULL; 4757 } 4758 4759 static inline void siginfo_buildtime_checks(void) 4760 { 4761 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4762 4763 /* Verify the offsets in the two siginfos match */ 4764 #define CHECK_OFFSET(field) \ 4765 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4766 4767 /* kill */ 4768 CHECK_OFFSET(si_pid); 4769 CHECK_OFFSET(si_uid); 4770 4771 /* timer */ 4772 CHECK_OFFSET(si_tid); 4773 CHECK_OFFSET(si_overrun); 4774 CHECK_OFFSET(si_value); 4775 4776 /* rt */ 4777 CHECK_OFFSET(si_pid); 4778 CHECK_OFFSET(si_uid); 4779 CHECK_OFFSET(si_value); 4780 4781 /* sigchld */ 4782 CHECK_OFFSET(si_pid); 4783 CHECK_OFFSET(si_uid); 4784 CHECK_OFFSET(si_status); 4785 CHECK_OFFSET(si_utime); 4786 CHECK_OFFSET(si_stime); 4787 4788 /* sigfault */ 4789 CHECK_OFFSET(si_addr); 4790 CHECK_OFFSET(si_trapno); 4791 CHECK_OFFSET(si_addr_lsb); 4792 CHECK_OFFSET(si_lower); 4793 CHECK_OFFSET(si_upper); 4794 CHECK_OFFSET(si_pkey); 4795 CHECK_OFFSET(si_perf_data); 4796 CHECK_OFFSET(si_perf_type); 4797 CHECK_OFFSET(si_perf_flags); 4798 4799 /* sigpoll */ 4800 CHECK_OFFSET(si_band); 4801 CHECK_OFFSET(si_fd); 4802 4803 /* sigsys */ 4804 CHECK_OFFSET(si_call_addr); 4805 CHECK_OFFSET(si_syscall); 4806 CHECK_OFFSET(si_arch); 4807 #undef CHECK_OFFSET 4808 4809 /* usb asyncio */ 4810 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != 4811 offsetof(struct siginfo, si_addr)); 4812 if (sizeof(int) == sizeof(void __user *)) { 4813 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != 4814 sizeof(void __user *)); 4815 } else { 4816 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + 4817 sizeof_field(struct siginfo, si_uid)) != 4818 sizeof(void __user *)); 4819 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != 4820 offsetof(struct siginfo, si_uid)); 4821 } 4822 #ifdef CONFIG_COMPAT 4823 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != 4824 offsetof(struct compat_siginfo, si_addr)); 4825 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4826 sizeof(compat_uptr_t)); 4827 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4828 sizeof_field(struct siginfo, si_pid)); 4829 #endif 4830 } 4831 4832 #if defined(CONFIG_SYSCTL) 4833 static struct ctl_table signal_debug_table[] = { 4834 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE 4835 { 4836 .procname = "exception-trace", 4837 .data = &show_unhandled_signals, 4838 .maxlen = sizeof(int), 4839 .mode = 0644, 4840 .proc_handler = proc_dointvec 4841 }, 4842 #endif 4843 { } 4844 }; 4845 4846 static int __init init_signal_sysctls(void) 4847 { 4848 register_sysctl_init("debug", signal_debug_table); 4849 return 0; 4850 } 4851 early_initcall(init_signal_sysctls); 4852 #endif /* CONFIG_SYSCTL */ 4853 4854 void __init signals_init(void) 4855 { 4856 siginfo_buildtime_checks(); 4857 4858 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT); 4859 } 4860 4861 #ifdef CONFIG_KGDB_KDB 4862 #include <linux/kdb.h> 4863 /* 4864 * kdb_send_sig - Allows kdb to send signals without exposing 4865 * signal internals. This function checks if the required locks are 4866 * available before calling the main signal code, to avoid kdb 4867 * deadlocks. 4868 */ 4869 void kdb_send_sig(struct task_struct *t, int sig) 4870 { 4871 static struct task_struct *kdb_prev_t; 4872 int new_t, ret; 4873 if (!spin_trylock(&t->sighand->siglock)) { 4874 kdb_printf("Can't do kill command now.\n" 4875 "The sigmask lock is held somewhere else in " 4876 "kernel, try again later\n"); 4877 return; 4878 } 4879 new_t = kdb_prev_t != t; 4880 kdb_prev_t = t; 4881 if (!task_is_running(t) && new_t) { 4882 spin_unlock(&t->sighand->siglock); 4883 kdb_printf("Process is not RUNNING, sending a signal from " 4884 "kdb risks deadlock\n" 4885 "on the run queue locks. " 4886 "The signal has _not_ been sent.\n" 4887 "Reissue the kill command if you want to risk " 4888 "the deadlock.\n"); 4889 return; 4890 } 4891 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 4892 spin_unlock(&t->sighand->siglock); 4893 if (ret) 4894 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4895 sig, t->pid); 4896 else 4897 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4898 } 4899 #endif /* CONFIG_KGDB_KDB */ 4900