1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/module.h> 15 #include <linux/smp_lock.h> 16 #include <linux/init.h> 17 #include <linux/sched.h> 18 #include <linux/fs.h> 19 #include <linux/tty.h> 20 #include <linux/binfmts.h> 21 #include <linux/security.h> 22 #include <linux/syscalls.h> 23 #include <linux/ptrace.h> 24 #include <linux/signal.h> 25 #include <linux/capability.h> 26 #include <asm/param.h> 27 #include <asm/uaccess.h> 28 #include <asm/unistd.h> 29 #include <asm/siginfo.h> 30 #include "audit.h" /* audit_signal_info() */ 31 32 /* 33 * SLAB caches for signal bits. 34 */ 35 36 static kmem_cache_t *sigqueue_cachep; 37 38 /* 39 * In POSIX a signal is sent either to a specific thread (Linux task) 40 * or to the process as a whole (Linux thread group). How the signal 41 * is sent determines whether it's to one thread or the whole group, 42 * which determines which signal mask(s) are involved in blocking it 43 * from being delivered until later. When the signal is delivered, 44 * either it's caught or ignored by a user handler or it has a default 45 * effect that applies to the whole thread group (POSIX process). 46 * 47 * The possible effects an unblocked signal set to SIG_DFL can have are: 48 * ignore - Nothing Happens 49 * terminate - kill the process, i.e. all threads in the group, 50 * similar to exit_group. The group leader (only) reports 51 * WIFSIGNALED status to its parent. 52 * coredump - write a core dump file describing all threads using 53 * the same mm and then kill all those threads 54 * stop - stop all the threads in the group, i.e. TASK_STOPPED state 55 * 56 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored. 57 * Other signals when not blocked and set to SIG_DFL behaves as follows. 58 * The job control signals also have other special effects. 59 * 60 * +--------------------+------------------+ 61 * | POSIX signal | default action | 62 * +--------------------+------------------+ 63 * | SIGHUP | terminate | 64 * | SIGINT | terminate | 65 * | SIGQUIT | coredump | 66 * | SIGILL | coredump | 67 * | SIGTRAP | coredump | 68 * | SIGABRT/SIGIOT | coredump | 69 * | SIGBUS | coredump | 70 * | SIGFPE | coredump | 71 * | SIGKILL | terminate(+) | 72 * | SIGUSR1 | terminate | 73 * | SIGSEGV | coredump | 74 * | SIGUSR2 | terminate | 75 * | SIGPIPE | terminate | 76 * | SIGALRM | terminate | 77 * | SIGTERM | terminate | 78 * | SIGCHLD | ignore | 79 * | SIGCONT | ignore(*) | 80 * | SIGSTOP | stop(*)(+) | 81 * | SIGTSTP | stop(*) | 82 * | SIGTTIN | stop(*) | 83 * | SIGTTOU | stop(*) | 84 * | SIGURG | ignore | 85 * | SIGXCPU | coredump | 86 * | SIGXFSZ | coredump | 87 * | SIGVTALRM | terminate | 88 * | SIGPROF | terminate | 89 * | SIGPOLL/SIGIO | terminate | 90 * | SIGSYS/SIGUNUSED | coredump | 91 * | SIGSTKFLT | terminate | 92 * | SIGWINCH | ignore | 93 * | SIGPWR | terminate | 94 * | SIGRTMIN-SIGRTMAX | terminate | 95 * +--------------------+------------------+ 96 * | non-POSIX signal | default action | 97 * +--------------------+------------------+ 98 * | SIGEMT | coredump | 99 * +--------------------+------------------+ 100 * 101 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default". 102 * (*) Special job control effects: 103 * When SIGCONT is sent, it resumes the process (all threads in the group) 104 * from TASK_STOPPED state and also clears any pending/queued stop signals 105 * (any of those marked with "stop(*)"). This happens regardless of blocking, 106 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears 107 * any pending/queued SIGCONT signals; this happens regardless of blocking, 108 * catching, or ignored the stop signal, though (except for SIGSTOP) the 109 * default action of stopping the process may happen later or never. 110 */ 111 112 #ifdef SIGEMT 113 #define M_SIGEMT M(SIGEMT) 114 #else 115 #define M_SIGEMT 0 116 #endif 117 118 #if SIGRTMIN > BITS_PER_LONG 119 #define M(sig) (1ULL << ((sig)-1)) 120 #else 121 #define M(sig) (1UL << ((sig)-1)) 122 #endif 123 #define T(sig, mask) (M(sig) & (mask)) 124 125 #define SIG_KERNEL_ONLY_MASK (\ 126 M(SIGKILL) | M(SIGSTOP) ) 127 128 #define SIG_KERNEL_STOP_MASK (\ 129 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) ) 130 131 #define SIG_KERNEL_COREDUMP_MASK (\ 132 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \ 133 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \ 134 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT ) 135 136 #define SIG_KERNEL_IGNORE_MASK (\ 137 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) ) 138 139 #define sig_kernel_only(sig) \ 140 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK)) 141 #define sig_kernel_coredump(sig) \ 142 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK)) 143 #define sig_kernel_ignore(sig) \ 144 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK)) 145 #define sig_kernel_stop(sig) \ 146 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK)) 147 148 #define sig_needs_tasklist(sig) ((sig) == SIGCONT) 149 150 #define sig_user_defined(t, signr) \ 151 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \ 152 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN)) 153 154 #define sig_fatal(t, signr) \ 155 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \ 156 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL) 157 158 static int sig_ignored(struct task_struct *t, int sig) 159 { 160 void __user * handler; 161 162 /* 163 * Tracers always want to know about signals.. 164 */ 165 if (t->ptrace & PT_PTRACED) 166 return 0; 167 168 /* 169 * Blocked signals are never ignored, since the 170 * signal handler may change by the time it is 171 * unblocked. 172 */ 173 if (sigismember(&t->blocked, sig)) 174 return 0; 175 176 /* Is it explicitly or implicitly ignored? */ 177 handler = t->sighand->action[sig-1].sa.sa_handler; 178 return handler == SIG_IGN || 179 (handler == SIG_DFL && sig_kernel_ignore(sig)); 180 } 181 182 /* 183 * Re-calculate pending state from the set of locally pending 184 * signals, globally pending signals, and blocked signals. 185 */ 186 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 187 { 188 unsigned long ready; 189 long i; 190 191 switch (_NSIG_WORDS) { 192 default: 193 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 194 ready |= signal->sig[i] &~ blocked->sig[i]; 195 break; 196 197 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 198 ready |= signal->sig[2] &~ blocked->sig[2]; 199 ready |= signal->sig[1] &~ blocked->sig[1]; 200 ready |= signal->sig[0] &~ blocked->sig[0]; 201 break; 202 203 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 204 ready |= signal->sig[0] &~ blocked->sig[0]; 205 break; 206 207 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 208 } 209 return ready != 0; 210 } 211 212 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 213 214 fastcall void recalc_sigpending_tsk(struct task_struct *t) 215 { 216 if (t->signal->group_stop_count > 0 || 217 (freezing(t)) || 218 PENDING(&t->pending, &t->blocked) || 219 PENDING(&t->signal->shared_pending, &t->blocked)) 220 set_tsk_thread_flag(t, TIF_SIGPENDING); 221 else 222 clear_tsk_thread_flag(t, TIF_SIGPENDING); 223 } 224 225 void recalc_sigpending(void) 226 { 227 recalc_sigpending_tsk(current); 228 } 229 230 /* Given the mask, find the first available signal that should be serviced. */ 231 232 static int 233 next_signal(struct sigpending *pending, sigset_t *mask) 234 { 235 unsigned long i, *s, *m, x; 236 int sig = 0; 237 238 s = pending->signal.sig; 239 m = mask->sig; 240 switch (_NSIG_WORDS) { 241 default: 242 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m) 243 if ((x = *s &~ *m) != 0) { 244 sig = ffz(~x) + i*_NSIG_BPW + 1; 245 break; 246 } 247 break; 248 249 case 2: if ((x = s[0] &~ m[0]) != 0) 250 sig = 1; 251 else if ((x = s[1] &~ m[1]) != 0) 252 sig = _NSIG_BPW + 1; 253 else 254 break; 255 sig += ffz(~x); 256 break; 257 258 case 1: if ((x = *s &~ *m) != 0) 259 sig = ffz(~x) + 1; 260 break; 261 } 262 263 return sig; 264 } 265 266 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags, 267 int override_rlimit) 268 { 269 struct sigqueue *q = NULL; 270 271 atomic_inc(&t->user->sigpending); 272 if (override_rlimit || 273 atomic_read(&t->user->sigpending) <= 274 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur) 275 q = kmem_cache_alloc(sigqueue_cachep, flags); 276 if (unlikely(q == NULL)) { 277 atomic_dec(&t->user->sigpending); 278 } else { 279 INIT_LIST_HEAD(&q->list); 280 q->flags = 0; 281 q->user = get_uid(t->user); 282 } 283 return(q); 284 } 285 286 static void __sigqueue_free(struct sigqueue *q) 287 { 288 if (q->flags & SIGQUEUE_PREALLOC) 289 return; 290 atomic_dec(&q->user->sigpending); 291 free_uid(q->user); 292 kmem_cache_free(sigqueue_cachep, q); 293 } 294 295 void flush_sigqueue(struct sigpending *queue) 296 { 297 struct sigqueue *q; 298 299 sigemptyset(&queue->signal); 300 while (!list_empty(&queue->list)) { 301 q = list_entry(queue->list.next, struct sigqueue , list); 302 list_del_init(&q->list); 303 __sigqueue_free(q); 304 } 305 } 306 307 /* 308 * Flush all pending signals for a task. 309 */ 310 void flush_signals(struct task_struct *t) 311 { 312 unsigned long flags; 313 314 spin_lock_irqsave(&t->sighand->siglock, flags); 315 clear_tsk_thread_flag(t,TIF_SIGPENDING); 316 flush_sigqueue(&t->pending); 317 flush_sigqueue(&t->signal->shared_pending); 318 spin_unlock_irqrestore(&t->sighand->siglock, flags); 319 } 320 321 /* 322 * Flush all handlers for a task. 323 */ 324 325 void 326 flush_signal_handlers(struct task_struct *t, int force_default) 327 { 328 int i; 329 struct k_sigaction *ka = &t->sighand->action[0]; 330 for (i = _NSIG ; i != 0 ; i--) { 331 if (force_default || ka->sa.sa_handler != SIG_IGN) 332 ka->sa.sa_handler = SIG_DFL; 333 ka->sa.sa_flags = 0; 334 sigemptyset(&ka->sa.sa_mask); 335 ka++; 336 } 337 } 338 339 340 /* Notify the system that a driver wants to block all signals for this 341 * process, and wants to be notified if any signals at all were to be 342 * sent/acted upon. If the notifier routine returns non-zero, then the 343 * signal will be acted upon after all. If the notifier routine returns 0, 344 * then then signal will be blocked. Only one block per process is 345 * allowed. priv is a pointer to private data that the notifier routine 346 * can use to determine if the signal should be blocked or not. */ 347 348 void 349 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) 350 { 351 unsigned long flags; 352 353 spin_lock_irqsave(¤t->sighand->siglock, flags); 354 current->notifier_mask = mask; 355 current->notifier_data = priv; 356 current->notifier = notifier; 357 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 358 } 359 360 /* Notify the system that blocking has ended. */ 361 362 void 363 unblock_all_signals(void) 364 { 365 unsigned long flags; 366 367 spin_lock_irqsave(¤t->sighand->siglock, flags); 368 current->notifier = NULL; 369 current->notifier_data = NULL; 370 recalc_sigpending(); 371 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 372 } 373 374 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info) 375 { 376 struct sigqueue *q, *first = NULL; 377 int still_pending = 0; 378 379 if (unlikely(!sigismember(&list->signal, sig))) 380 return 0; 381 382 /* 383 * Collect the siginfo appropriate to this signal. Check if 384 * there is another siginfo for the same signal. 385 */ 386 list_for_each_entry(q, &list->list, list) { 387 if (q->info.si_signo == sig) { 388 if (first) { 389 still_pending = 1; 390 break; 391 } 392 first = q; 393 } 394 } 395 if (first) { 396 list_del_init(&first->list); 397 copy_siginfo(info, &first->info); 398 __sigqueue_free(first); 399 if (!still_pending) 400 sigdelset(&list->signal, sig); 401 } else { 402 403 /* Ok, it wasn't in the queue. This must be 404 a fast-pathed signal or we must have been 405 out of queue space. So zero out the info. 406 */ 407 sigdelset(&list->signal, sig); 408 info->si_signo = sig; 409 info->si_errno = 0; 410 info->si_code = 0; 411 info->si_pid = 0; 412 info->si_uid = 0; 413 } 414 return 1; 415 } 416 417 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 418 siginfo_t *info) 419 { 420 int sig = 0; 421 422 sig = next_signal(pending, mask); 423 if (sig) { 424 if (current->notifier) { 425 if (sigismember(current->notifier_mask, sig)) { 426 if (!(current->notifier)(current->notifier_data)) { 427 clear_thread_flag(TIF_SIGPENDING); 428 return 0; 429 } 430 } 431 } 432 433 if (!collect_signal(sig, pending, info)) 434 sig = 0; 435 436 } 437 recalc_sigpending(); 438 439 return sig; 440 } 441 442 /* 443 * Dequeue a signal and return the element to the caller, which is 444 * expected to free it. 445 * 446 * All callers have to hold the siglock. 447 */ 448 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 449 { 450 int signr = __dequeue_signal(&tsk->pending, mask, info); 451 if (!signr) 452 signr = __dequeue_signal(&tsk->signal->shared_pending, 453 mask, info); 454 if (signr && unlikely(sig_kernel_stop(signr))) { 455 /* 456 * Set a marker that we have dequeued a stop signal. Our 457 * caller might release the siglock and then the pending 458 * stop signal it is about to process is no longer in the 459 * pending bitmasks, but must still be cleared by a SIGCONT 460 * (and overruled by a SIGKILL). So those cases clear this 461 * shared flag after we've set it. Note that this flag may 462 * remain set after the signal we return is ignored or 463 * handled. That doesn't matter because its only purpose 464 * is to alert stop-signal processing code when another 465 * processor has come along and cleared the flag. 466 */ 467 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) 468 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED; 469 } 470 if ( signr && 471 ((info->si_code & __SI_MASK) == __SI_TIMER) && 472 info->si_sys_private){ 473 /* 474 * Release the siglock to ensure proper locking order 475 * of timer locks outside of siglocks. Note, we leave 476 * irqs disabled here, since the posix-timers code is 477 * about to disable them again anyway. 478 */ 479 spin_unlock(&tsk->sighand->siglock); 480 do_schedule_next_timer(info); 481 spin_lock(&tsk->sighand->siglock); 482 } 483 return signr; 484 } 485 486 /* 487 * Tell a process that it has a new active signal.. 488 * 489 * NOTE! we rely on the previous spin_lock to 490 * lock interrupts for us! We can only be called with 491 * "siglock" held, and the local interrupt must 492 * have been disabled when that got acquired! 493 * 494 * No need to set need_resched since signal event passing 495 * goes through ->blocked 496 */ 497 void signal_wake_up(struct task_struct *t, int resume) 498 { 499 unsigned int mask; 500 501 set_tsk_thread_flag(t, TIF_SIGPENDING); 502 503 /* 504 * For SIGKILL, we want to wake it up in the stopped/traced case. 505 * We don't check t->state here because there is a race with it 506 * executing another processor and just now entering stopped state. 507 * By using wake_up_state, we ensure the process will wake up and 508 * handle its death signal. 509 */ 510 mask = TASK_INTERRUPTIBLE; 511 if (resume) 512 mask |= TASK_STOPPED | TASK_TRACED; 513 if (!wake_up_state(t, mask)) 514 kick_process(t); 515 } 516 517 /* 518 * Remove signals in mask from the pending set and queue. 519 * Returns 1 if any signals were found. 520 * 521 * All callers must be holding the siglock. 522 * 523 * This version takes a sigset mask and looks at all signals, 524 * not just those in the first mask word. 525 */ 526 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s) 527 { 528 struct sigqueue *q, *n; 529 sigset_t m; 530 531 sigandsets(&m, mask, &s->signal); 532 if (sigisemptyset(&m)) 533 return 0; 534 535 signandsets(&s->signal, &s->signal, mask); 536 list_for_each_entry_safe(q, n, &s->list, list) { 537 if (sigismember(mask, q->info.si_signo)) { 538 list_del_init(&q->list); 539 __sigqueue_free(q); 540 } 541 } 542 return 1; 543 } 544 /* 545 * Remove signals in mask from the pending set and queue. 546 * Returns 1 if any signals were found. 547 * 548 * All callers must be holding the siglock. 549 */ 550 static int rm_from_queue(unsigned long mask, struct sigpending *s) 551 { 552 struct sigqueue *q, *n; 553 554 if (!sigtestsetmask(&s->signal, mask)) 555 return 0; 556 557 sigdelsetmask(&s->signal, mask); 558 list_for_each_entry_safe(q, n, &s->list, list) { 559 if (q->info.si_signo < SIGRTMIN && 560 (mask & sigmask(q->info.si_signo))) { 561 list_del_init(&q->list); 562 __sigqueue_free(q); 563 } 564 } 565 return 1; 566 } 567 568 /* 569 * Bad permissions for sending the signal 570 */ 571 static int check_kill_permission(int sig, struct siginfo *info, 572 struct task_struct *t) 573 { 574 int error = -EINVAL; 575 if (!valid_signal(sig)) 576 return error; 577 error = -EPERM; 578 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) 579 && ((sig != SIGCONT) || 580 (current->signal->session != t->signal->session)) 581 && (current->euid ^ t->suid) && (current->euid ^ t->uid) 582 && (current->uid ^ t->suid) && (current->uid ^ t->uid) 583 && !capable(CAP_KILL)) 584 return error; 585 586 error = security_task_kill(t, info, sig, 0); 587 if (!error) 588 audit_signal_info(sig, t); /* Let audit system see the signal */ 589 return error; 590 } 591 592 /* forward decl */ 593 static void do_notify_parent_cldstop(struct task_struct *tsk, int why); 594 595 /* 596 * Handle magic process-wide effects of stop/continue signals. 597 * Unlike the signal actions, these happen immediately at signal-generation 598 * time regardless of blocking, ignoring, or handling. This does the 599 * actual continuing for SIGCONT, but not the actual stopping for stop 600 * signals. The process stop is done as a signal action for SIG_DFL. 601 */ 602 static void handle_stop_signal(int sig, struct task_struct *p) 603 { 604 struct task_struct *t; 605 606 if (p->signal->flags & SIGNAL_GROUP_EXIT) 607 /* 608 * The process is in the middle of dying already. 609 */ 610 return; 611 612 if (sig_kernel_stop(sig)) { 613 /* 614 * This is a stop signal. Remove SIGCONT from all queues. 615 */ 616 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending); 617 t = p; 618 do { 619 rm_from_queue(sigmask(SIGCONT), &t->pending); 620 t = next_thread(t); 621 } while (t != p); 622 } else if (sig == SIGCONT) { 623 /* 624 * Remove all stop signals from all queues, 625 * and wake all threads. 626 */ 627 if (unlikely(p->signal->group_stop_count > 0)) { 628 /* 629 * There was a group stop in progress. We'll 630 * pretend it finished before we got here. We are 631 * obliged to report it to the parent: if the 632 * SIGSTOP happened "after" this SIGCONT, then it 633 * would have cleared this pending SIGCONT. If it 634 * happened "before" this SIGCONT, then the parent 635 * got the SIGCHLD about the stop finishing before 636 * the continue happened. We do the notification 637 * now, and it's as if the stop had finished and 638 * the SIGCHLD was pending on entry to this kill. 639 */ 640 p->signal->group_stop_count = 0; 641 p->signal->flags = SIGNAL_STOP_CONTINUED; 642 spin_unlock(&p->sighand->siglock); 643 do_notify_parent_cldstop(p, CLD_STOPPED); 644 spin_lock(&p->sighand->siglock); 645 } 646 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); 647 t = p; 648 do { 649 unsigned int state; 650 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 651 652 /* 653 * If there is a handler for SIGCONT, we must make 654 * sure that no thread returns to user mode before 655 * we post the signal, in case it was the only 656 * thread eligible to run the signal handler--then 657 * it must not do anything between resuming and 658 * running the handler. With the TIF_SIGPENDING 659 * flag set, the thread will pause and acquire the 660 * siglock that we hold now and until we've queued 661 * the pending signal. 662 * 663 * Wake up the stopped thread _after_ setting 664 * TIF_SIGPENDING 665 */ 666 state = TASK_STOPPED; 667 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) { 668 set_tsk_thread_flag(t, TIF_SIGPENDING); 669 state |= TASK_INTERRUPTIBLE; 670 } 671 wake_up_state(t, state); 672 673 t = next_thread(t); 674 } while (t != p); 675 676 if (p->signal->flags & SIGNAL_STOP_STOPPED) { 677 /* 678 * We were in fact stopped, and are now continued. 679 * Notify the parent with CLD_CONTINUED. 680 */ 681 p->signal->flags = SIGNAL_STOP_CONTINUED; 682 p->signal->group_exit_code = 0; 683 spin_unlock(&p->sighand->siglock); 684 do_notify_parent_cldstop(p, CLD_CONTINUED); 685 spin_lock(&p->sighand->siglock); 686 } else { 687 /* 688 * We are not stopped, but there could be a stop 689 * signal in the middle of being processed after 690 * being removed from the queue. Clear that too. 691 */ 692 p->signal->flags = 0; 693 } 694 } else if (sig == SIGKILL) { 695 /* 696 * Make sure that any pending stop signal already dequeued 697 * is undone by the wakeup for SIGKILL. 698 */ 699 p->signal->flags = 0; 700 } 701 } 702 703 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 704 struct sigpending *signals) 705 { 706 struct sigqueue * q = NULL; 707 int ret = 0; 708 709 /* 710 * fast-pathed signals for kernel-internal things like SIGSTOP 711 * or SIGKILL. 712 */ 713 if (info == SEND_SIG_FORCED) 714 goto out_set; 715 716 /* Real-time signals must be queued if sent by sigqueue, or 717 some other real-time mechanism. It is implementation 718 defined whether kill() does so. We attempt to do so, on 719 the principle of least surprise, but since kill is not 720 allowed to fail with EAGAIN when low on memory we just 721 make sure at least one signal gets delivered and don't 722 pass on the info struct. */ 723 724 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN && 725 (is_si_special(info) || 726 info->si_code >= 0))); 727 if (q) { 728 list_add_tail(&q->list, &signals->list); 729 switch ((unsigned long) info) { 730 case (unsigned long) SEND_SIG_NOINFO: 731 q->info.si_signo = sig; 732 q->info.si_errno = 0; 733 q->info.si_code = SI_USER; 734 q->info.si_pid = current->pid; 735 q->info.si_uid = current->uid; 736 break; 737 case (unsigned long) SEND_SIG_PRIV: 738 q->info.si_signo = sig; 739 q->info.si_errno = 0; 740 q->info.si_code = SI_KERNEL; 741 q->info.si_pid = 0; 742 q->info.si_uid = 0; 743 break; 744 default: 745 copy_siginfo(&q->info, info); 746 break; 747 } 748 } else if (!is_si_special(info)) { 749 if (sig >= SIGRTMIN && info->si_code != SI_USER) 750 /* 751 * Queue overflow, abort. We may abort if the signal was rt 752 * and sent by user using something other than kill(). 753 */ 754 return -EAGAIN; 755 } 756 757 out_set: 758 sigaddset(&signals->signal, sig); 759 return ret; 760 } 761 762 #define LEGACY_QUEUE(sigptr, sig) \ 763 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig))) 764 765 766 static int 767 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 768 { 769 int ret = 0; 770 771 BUG_ON(!irqs_disabled()); 772 assert_spin_locked(&t->sighand->siglock); 773 774 /* Short-circuit ignored signals. */ 775 if (sig_ignored(t, sig)) 776 goto out; 777 778 /* Support queueing exactly one non-rt signal, so that we 779 can get more detailed information about the cause of 780 the signal. */ 781 if (LEGACY_QUEUE(&t->pending, sig)) 782 goto out; 783 784 ret = send_signal(sig, info, t, &t->pending); 785 if (!ret && !sigismember(&t->blocked, sig)) 786 signal_wake_up(t, sig == SIGKILL); 787 out: 788 return ret; 789 } 790 791 /* 792 * Force a signal that the process can't ignore: if necessary 793 * we unblock the signal and change any SIG_IGN to SIG_DFL. 794 * 795 * Note: If we unblock the signal, we always reset it to SIG_DFL, 796 * since we do not want to have a signal handler that was blocked 797 * be invoked when user space had explicitly blocked it. 798 * 799 * We don't want to have recursive SIGSEGV's etc, for example. 800 */ 801 int 802 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 803 { 804 unsigned long int flags; 805 int ret, blocked, ignored; 806 struct k_sigaction *action; 807 808 spin_lock_irqsave(&t->sighand->siglock, flags); 809 action = &t->sighand->action[sig-1]; 810 ignored = action->sa.sa_handler == SIG_IGN; 811 blocked = sigismember(&t->blocked, sig); 812 if (blocked || ignored) { 813 action->sa.sa_handler = SIG_DFL; 814 if (blocked) { 815 sigdelset(&t->blocked, sig); 816 recalc_sigpending_tsk(t); 817 } 818 } 819 ret = specific_send_sig_info(sig, info, t); 820 spin_unlock_irqrestore(&t->sighand->siglock, flags); 821 822 return ret; 823 } 824 825 void 826 force_sig_specific(int sig, struct task_struct *t) 827 { 828 force_sig_info(sig, SEND_SIG_FORCED, t); 829 } 830 831 /* 832 * Test if P wants to take SIG. After we've checked all threads with this, 833 * it's equivalent to finding no threads not blocking SIG. Any threads not 834 * blocking SIG were ruled out because they are not running and already 835 * have pending signals. Such threads will dequeue from the shared queue 836 * as soon as they're available, so putting the signal on the shared queue 837 * will be equivalent to sending it to one such thread. 838 */ 839 static inline int wants_signal(int sig, struct task_struct *p) 840 { 841 if (sigismember(&p->blocked, sig)) 842 return 0; 843 if (p->flags & PF_EXITING) 844 return 0; 845 if (sig == SIGKILL) 846 return 1; 847 if (p->state & (TASK_STOPPED | TASK_TRACED)) 848 return 0; 849 return task_curr(p) || !signal_pending(p); 850 } 851 852 static void 853 __group_complete_signal(int sig, struct task_struct *p) 854 { 855 struct task_struct *t; 856 857 /* 858 * Now find a thread we can wake up to take the signal off the queue. 859 * 860 * If the main thread wants the signal, it gets first crack. 861 * Probably the least surprising to the average bear. 862 */ 863 if (wants_signal(sig, p)) 864 t = p; 865 else if (thread_group_empty(p)) 866 /* 867 * There is just one thread and it does not need to be woken. 868 * It will dequeue unblocked signals before it runs again. 869 */ 870 return; 871 else { 872 /* 873 * Otherwise try to find a suitable thread. 874 */ 875 t = p->signal->curr_target; 876 if (t == NULL) 877 /* restart balancing at this thread */ 878 t = p->signal->curr_target = p; 879 880 while (!wants_signal(sig, t)) { 881 t = next_thread(t); 882 if (t == p->signal->curr_target) 883 /* 884 * No thread needs to be woken. 885 * Any eligible threads will see 886 * the signal in the queue soon. 887 */ 888 return; 889 } 890 p->signal->curr_target = t; 891 } 892 893 /* 894 * Found a killable thread. If the signal will be fatal, 895 * then start taking the whole group down immediately. 896 */ 897 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) && 898 !sigismember(&t->real_blocked, sig) && 899 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) { 900 /* 901 * This signal will be fatal to the whole group. 902 */ 903 if (!sig_kernel_coredump(sig)) { 904 /* 905 * Start a group exit and wake everybody up. 906 * This way we don't have other threads 907 * running and doing things after a slower 908 * thread has the fatal signal pending. 909 */ 910 p->signal->flags = SIGNAL_GROUP_EXIT; 911 p->signal->group_exit_code = sig; 912 p->signal->group_stop_count = 0; 913 t = p; 914 do { 915 sigaddset(&t->pending.signal, SIGKILL); 916 signal_wake_up(t, 1); 917 t = next_thread(t); 918 } while (t != p); 919 return; 920 } 921 922 /* 923 * There will be a core dump. We make all threads other 924 * than the chosen one go into a group stop so that nothing 925 * happens until it gets scheduled, takes the signal off 926 * the shared queue, and does the core dump. This is a 927 * little more complicated than strictly necessary, but it 928 * keeps the signal state that winds up in the core dump 929 * unchanged from the death state, e.g. which thread had 930 * the core-dump signal unblocked. 931 */ 932 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 933 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); 934 p->signal->group_stop_count = 0; 935 p->signal->group_exit_task = t; 936 t = p; 937 do { 938 p->signal->group_stop_count++; 939 signal_wake_up(t, 0); 940 t = next_thread(t); 941 } while (t != p); 942 wake_up_process(p->signal->group_exit_task); 943 return; 944 } 945 946 /* 947 * The signal is already in the shared-pending queue. 948 * Tell the chosen thread to wake up and dequeue it. 949 */ 950 signal_wake_up(t, sig == SIGKILL); 951 return; 952 } 953 954 int 955 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 956 { 957 int ret = 0; 958 959 assert_spin_locked(&p->sighand->siglock); 960 handle_stop_signal(sig, p); 961 962 /* Short-circuit ignored signals. */ 963 if (sig_ignored(p, sig)) 964 return ret; 965 966 if (LEGACY_QUEUE(&p->signal->shared_pending, sig)) 967 /* This is a non-RT signal and we already have one queued. */ 968 return ret; 969 970 /* 971 * Put this signal on the shared-pending queue, or fail with EAGAIN. 972 * We always use the shared queue for process-wide signals, 973 * to avoid several races. 974 */ 975 ret = send_signal(sig, info, p, &p->signal->shared_pending); 976 if (unlikely(ret)) 977 return ret; 978 979 __group_complete_signal(sig, p); 980 return 0; 981 } 982 983 /* 984 * Nuke all other threads in the group. 985 */ 986 void zap_other_threads(struct task_struct *p) 987 { 988 struct task_struct *t; 989 990 p->signal->flags = SIGNAL_GROUP_EXIT; 991 p->signal->group_stop_count = 0; 992 993 if (thread_group_empty(p)) 994 return; 995 996 for (t = next_thread(p); t != p; t = next_thread(t)) { 997 /* 998 * Don't bother with already dead threads 999 */ 1000 if (t->exit_state) 1001 continue; 1002 1003 /* 1004 * We don't want to notify the parent, since we are 1005 * killed as part of a thread group due to another 1006 * thread doing an execve() or similar. So set the 1007 * exit signal to -1 to allow immediate reaping of 1008 * the process. But don't detach the thread group 1009 * leader. 1010 */ 1011 if (t != p->group_leader) 1012 t->exit_signal = -1; 1013 1014 /* SIGKILL will be handled before any pending SIGSTOP */ 1015 sigaddset(&t->pending.signal, SIGKILL); 1016 signal_wake_up(t, 1); 1017 } 1018 } 1019 1020 /* 1021 * Must be called under rcu_read_lock() or with tasklist_lock read-held. 1022 */ 1023 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags) 1024 { 1025 struct sighand_struct *sighand; 1026 1027 for (;;) { 1028 sighand = rcu_dereference(tsk->sighand); 1029 if (unlikely(sighand == NULL)) 1030 break; 1031 1032 spin_lock_irqsave(&sighand->siglock, *flags); 1033 if (likely(sighand == tsk->sighand)) 1034 break; 1035 spin_unlock_irqrestore(&sighand->siglock, *flags); 1036 } 1037 1038 return sighand; 1039 } 1040 1041 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1042 { 1043 unsigned long flags; 1044 int ret; 1045 1046 ret = check_kill_permission(sig, info, p); 1047 1048 if (!ret && sig) { 1049 ret = -ESRCH; 1050 if (lock_task_sighand(p, &flags)) { 1051 ret = __group_send_sig_info(sig, info, p); 1052 unlock_task_sighand(p, &flags); 1053 } 1054 } 1055 1056 return ret; 1057 } 1058 1059 /* 1060 * kill_pg_info() sends a signal to a process group: this is what the tty 1061 * control characters do (^C, ^Z etc) 1062 */ 1063 1064 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp) 1065 { 1066 struct task_struct *p = NULL; 1067 int retval, success; 1068 1069 if (pgrp <= 0) 1070 return -EINVAL; 1071 1072 success = 0; 1073 retval = -ESRCH; 1074 do_each_task_pid(pgrp, PIDTYPE_PGID, p) { 1075 int err = group_send_sig_info(sig, info, p); 1076 success |= !err; 1077 retval = err; 1078 } while_each_task_pid(pgrp, PIDTYPE_PGID, p); 1079 return success ? 0 : retval; 1080 } 1081 1082 int 1083 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp) 1084 { 1085 int retval; 1086 1087 read_lock(&tasklist_lock); 1088 retval = __kill_pg_info(sig, info, pgrp); 1089 read_unlock(&tasklist_lock); 1090 1091 return retval; 1092 } 1093 1094 int 1095 kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1096 { 1097 int error; 1098 int acquired_tasklist_lock = 0; 1099 struct task_struct *p; 1100 1101 rcu_read_lock(); 1102 if (unlikely(sig_needs_tasklist(sig))) { 1103 read_lock(&tasklist_lock); 1104 acquired_tasklist_lock = 1; 1105 } 1106 p = find_task_by_pid(pid); 1107 error = -ESRCH; 1108 if (p) 1109 error = group_send_sig_info(sig, info, p); 1110 if (unlikely(acquired_tasklist_lock)) 1111 read_unlock(&tasklist_lock); 1112 rcu_read_unlock(); 1113 return error; 1114 } 1115 1116 /* like kill_proc_info(), but doesn't use uid/euid of "current" */ 1117 int kill_proc_info_as_uid(int sig, struct siginfo *info, pid_t pid, 1118 uid_t uid, uid_t euid, u32 secid) 1119 { 1120 int ret = -EINVAL; 1121 struct task_struct *p; 1122 1123 if (!valid_signal(sig)) 1124 return ret; 1125 1126 read_lock(&tasklist_lock); 1127 p = find_task_by_pid(pid); 1128 if (!p) { 1129 ret = -ESRCH; 1130 goto out_unlock; 1131 } 1132 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) 1133 && (euid != p->suid) && (euid != p->uid) 1134 && (uid != p->suid) && (uid != p->uid)) { 1135 ret = -EPERM; 1136 goto out_unlock; 1137 } 1138 ret = security_task_kill(p, info, sig, secid); 1139 if (ret) 1140 goto out_unlock; 1141 if (sig && p->sighand) { 1142 unsigned long flags; 1143 spin_lock_irqsave(&p->sighand->siglock, flags); 1144 ret = __group_send_sig_info(sig, info, p); 1145 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1146 } 1147 out_unlock: 1148 read_unlock(&tasklist_lock); 1149 return ret; 1150 } 1151 EXPORT_SYMBOL_GPL(kill_proc_info_as_uid); 1152 1153 /* 1154 * kill_something_info() interprets pid in interesting ways just like kill(2). 1155 * 1156 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1157 * is probably wrong. Should make it like BSD or SYSV. 1158 */ 1159 1160 static int kill_something_info(int sig, struct siginfo *info, int pid) 1161 { 1162 if (!pid) { 1163 return kill_pg_info(sig, info, process_group(current)); 1164 } else if (pid == -1) { 1165 int retval = 0, count = 0; 1166 struct task_struct * p; 1167 1168 read_lock(&tasklist_lock); 1169 for_each_process(p) { 1170 if (p->pid > 1 && p->tgid != current->tgid) { 1171 int err = group_send_sig_info(sig, info, p); 1172 ++count; 1173 if (err != -EPERM) 1174 retval = err; 1175 } 1176 } 1177 read_unlock(&tasklist_lock); 1178 return count ? retval : -ESRCH; 1179 } else if (pid < 0) { 1180 return kill_pg_info(sig, info, -pid); 1181 } else { 1182 return kill_proc_info(sig, info, pid); 1183 } 1184 } 1185 1186 /* 1187 * These are for backward compatibility with the rest of the kernel source. 1188 */ 1189 1190 /* 1191 * These two are the most common entry points. They send a signal 1192 * just to the specific thread. 1193 */ 1194 int 1195 send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1196 { 1197 int ret; 1198 unsigned long flags; 1199 1200 /* 1201 * Make sure legacy kernel users don't send in bad values 1202 * (normal paths check this in check_kill_permission). 1203 */ 1204 if (!valid_signal(sig)) 1205 return -EINVAL; 1206 1207 /* 1208 * We need the tasklist lock even for the specific 1209 * thread case (when we don't need to follow the group 1210 * lists) in order to avoid races with "p->sighand" 1211 * going away or changing from under us. 1212 */ 1213 read_lock(&tasklist_lock); 1214 spin_lock_irqsave(&p->sighand->siglock, flags); 1215 ret = specific_send_sig_info(sig, info, p); 1216 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1217 read_unlock(&tasklist_lock); 1218 return ret; 1219 } 1220 1221 #define __si_special(priv) \ 1222 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1223 1224 int 1225 send_sig(int sig, struct task_struct *p, int priv) 1226 { 1227 return send_sig_info(sig, __si_special(priv), p); 1228 } 1229 1230 /* 1231 * This is the entry point for "process-wide" signals. 1232 * They will go to an appropriate thread in the thread group. 1233 */ 1234 int 1235 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1236 { 1237 int ret; 1238 read_lock(&tasklist_lock); 1239 ret = group_send_sig_info(sig, info, p); 1240 read_unlock(&tasklist_lock); 1241 return ret; 1242 } 1243 1244 void 1245 force_sig(int sig, struct task_struct *p) 1246 { 1247 force_sig_info(sig, SEND_SIG_PRIV, p); 1248 } 1249 1250 /* 1251 * When things go south during signal handling, we 1252 * will force a SIGSEGV. And if the signal that caused 1253 * the problem was already a SIGSEGV, we'll want to 1254 * make sure we don't even try to deliver the signal.. 1255 */ 1256 int 1257 force_sigsegv(int sig, struct task_struct *p) 1258 { 1259 if (sig == SIGSEGV) { 1260 unsigned long flags; 1261 spin_lock_irqsave(&p->sighand->siglock, flags); 1262 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1263 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1264 } 1265 force_sig(SIGSEGV, p); 1266 return 0; 1267 } 1268 1269 int 1270 kill_pg(pid_t pgrp, int sig, int priv) 1271 { 1272 return kill_pg_info(sig, __si_special(priv), pgrp); 1273 } 1274 1275 int 1276 kill_proc(pid_t pid, int sig, int priv) 1277 { 1278 return kill_proc_info(sig, __si_special(priv), pid); 1279 } 1280 1281 /* 1282 * These functions support sending signals using preallocated sigqueue 1283 * structures. This is needed "because realtime applications cannot 1284 * afford to lose notifications of asynchronous events, like timer 1285 * expirations or I/O completions". In the case of Posix Timers 1286 * we allocate the sigqueue structure from the timer_create. If this 1287 * allocation fails we are able to report the failure to the application 1288 * with an EAGAIN error. 1289 */ 1290 1291 struct sigqueue *sigqueue_alloc(void) 1292 { 1293 struct sigqueue *q; 1294 1295 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0))) 1296 q->flags |= SIGQUEUE_PREALLOC; 1297 return(q); 1298 } 1299 1300 void sigqueue_free(struct sigqueue *q) 1301 { 1302 unsigned long flags; 1303 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1304 /* 1305 * If the signal is still pending remove it from the 1306 * pending queue. 1307 */ 1308 if (unlikely(!list_empty(&q->list))) { 1309 spinlock_t *lock = ¤t->sighand->siglock; 1310 read_lock(&tasklist_lock); 1311 spin_lock_irqsave(lock, flags); 1312 if (!list_empty(&q->list)) 1313 list_del_init(&q->list); 1314 spin_unlock_irqrestore(lock, flags); 1315 read_unlock(&tasklist_lock); 1316 } 1317 q->flags &= ~SIGQUEUE_PREALLOC; 1318 __sigqueue_free(q); 1319 } 1320 1321 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) 1322 { 1323 unsigned long flags; 1324 int ret = 0; 1325 1326 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1327 1328 /* 1329 * The rcu based delayed sighand destroy makes it possible to 1330 * run this without tasklist lock held. The task struct itself 1331 * cannot go away as create_timer did get_task_struct(). 1332 * 1333 * We return -1, when the task is marked exiting, so 1334 * posix_timer_event can redirect it to the group leader 1335 */ 1336 rcu_read_lock(); 1337 1338 if (!likely(lock_task_sighand(p, &flags))) { 1339 ret = -1; 1340 goto out_err; 1341 } 1342 1343 if (unlikely(!list_empty(&q->list))) { 1344 /* 1345 * If an SI_TIMER entry is already queue just increment 1346 * the overrun count. 1347 */ 1348 BUG_ON(q->info.si_code != SI_TIMER); 1349 q->info.si_overrun++; 1350 goto out; 1351 } 1352 /* Short-circuit ignored signals. */ 1353 if (sig_ignored(p, sig)) { 1354 ret = 1; 1355 goto out; 1356 } 1357 1358 list_add_tail(&q->list, &p->pending.list); 1359 sigaddset(&p->pending.signal, sig); 1360 if (!sigismember(&p->blocked, sig)) 1361 signal_wake_up(p, sig == SIGKILL); 1362 1363 out: 1364 unlock_task_sighand(p, &flags); 1365 out_err: 1366 rcu_read_unlock(); 1367 1368 return ret; 1369 } 1370 1371 int 1372 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) 1373 { 1374 unsigned long flags; 1375 int ret = 0; 1376 1377 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1378 1379 read_lock(&tasklist_lock); 1380 /* Since it_lock is held, p->sighand cannot be NULL. */ 1381 spin_lock_irqsave(&p->sighand->siglock, flags); 1382 handle_stop_signal(sig, p); 1383 1384 /* Short-circuit ignored signals. */ 1385 if (sig_ignored(p, sig)) { 1386 ret = 1; 1387 goto out; 1388 } 1389 1390 if (unlikely(!list_empty(&q->list))) { 1391 /* 1392 * If an SI_TIMER entry is already queue just increment 1393 * the overrun count. Other uses should not try to 1394 * send the signal multiple times. 1395 */ 1396 BUG_ON(q->info.si_code != SI_TIMER); 1397 q->info.si_overrun++; 1398 goto out; 1399 } 1400 1401 /* 1402 * Put this signal on the shared-pending queue. 1403 * We always use the shared queue for process-wide signals, 1404 * to avoid several races. 1405 */ 1406 list_add_tail(&q->list, &p->signal->shared_pending.list); 1407 sigaddset(&p->signal->shared_pending.signal, sig); 1408 1409 __group_complete_signal(sig, p); 1410 out: 1411 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1412 read_unlock(&tasklist_lock); 1413 return ret; 1414 } 1415 1416 /* 1417 * Wake up any threads in the parent blocked in wait* syscalls. 1418 */ 1419 static inline void __wake_up_parent(struct task_struct *p, 1420 struct task_struct *parent) 1421 { 1422 wake_up_interruptible_sync(&parent->signal->wait_chldexit); 1423 } 1424 1425 /* 1426 * Let a parent know about the death of a child. 1427 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1428 */ 1429 1430 void do_notify_parent(struct task_struct *tsk, int sig) 1431 { 1432 struct siginfo info; 1433 unsigned long flags; 1434 struct sighand_struct *psig; 1435 1436 BUG_ON(sig == -1); 1437 1438 /* do_notify_parent_cldstop should have been called instead. */ 1439 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED)); 1440 1441 BUG_ON(!tsk->ptrace && 1442 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1443 1444 info.si_signo = sig; 1445 info.si_errno = 0; 1446 info.si_pid = tsk->pid; 1447 info.si_uid = tsk->uid; 1448 1449 /* FIXME: find out whether or not this is supposed to be c*time. */ 1450 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime, 1451 tsk->signal->utime)); 1452 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime, 1453 tsk->signal->stime)); 1454 1455 info.si_status = tsk->exit_code & 0x7f; 1456 if (tsk->exit_code & 0x80) 1457 info.si_code = CLD_DUMPED; 1458 else if (tsk->exit_code & 0x7f) 1459 info.si_code = CLD_KILLED; 1460 else { 1461 info.si_code = CLD_EXITED; 1462 info.si_status = tsk->exit_code >> 8; 1463 } 1464 1465 psig = tsk->parent->sighand; 1466 spin_lock_irqsave(&psig->siglock, flags); 1467 if (!tsk->ptrace && sig == SIGCHLD && 1468 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1469 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1470 /* 1471 * We are exiting and our parent doesn't care. POSIX.1 1472 * defines special semantics for setting SIGCHLD to SIG_IGN 1473 * or setting the SA_NOCLDWAIT flag: we should be reaped 1474 * automatically and not left for our parent's wait4 call. 1475 * Rather than having the parent do it as a magic kind of 1476 * signal handler, we just set this to tell do_exit that we 1477 * can be cleaned up without becoming a zombie. Note that 1478 * we still call __wake_up_parent in this case, because a 1479 * blocked sys_wait4 might now return -ECHILD. 1480 * 1481 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1482 * is implementation-defined: we do (if you don't want 1483 * it, just use SIG_IGN instead). 1484 */ 1485 tsk->exit_signal = -1; 1486 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1487 sig = 0; 1488 } 1489 if (valid_signal(sig) && sig > 0) 1490 __group_send_sig_info(sig, &info, tsk->parent); 1491 __wake_up_parent(tsk, tsk->parent); 1492 spin_unlock_irqrestore(&psig->siglock, flags); 1493 } 1494 1495 static void do_notify_parent_cldstop(struct task_struct *tsk, int why) 1496 { 1497 struct siginfo info; 1498 unsigned long flags; 1499 struct task_struct *parent; 1500 struct sighand_struct *sighand; 1501 1502 if (tsk->ptrace & PT_PTRACED) 1503 parent = tsk->parent; 1504 else { 1505 tsk = tsk->group_leader; 1506 parent = tsk->real_parent; 1507 } 1508 1509 info.si_signo = SIGCHLD; 1510 info.si_errno = 0; 1511 info.si_pid = tsk->pid; 1512 info.si_uid = tsk->uid; 1513 1514 /* FIXME: find out whether or not this is supposed to be c*time. */ 1515 info.si_utime = cputime_to_jiffies(tsk->utime); 1516 info.si_stime = cputime_to_jiffies(tsk->stime); 1517 1518 info.si_code = why; 1519 switch (why) { 1520 case CLD_CONTINUED: 1521 info.si_status = SIGCONT; 1522 break; 1523 case CLD_STOPPED: 1524 info.si_status = tsk->signal->group_exit_code & 0x7f; 1525 break; 1526 case CLD_TRAPPED: 1527 info.si_status = tsk->exit_code & 0x7f; 1528 break; 1529 default: 1530 BUG(); 1531 } 1532 1533 sighand = parent->sighand; 1534 spin_lock_irqsave(&sighand->siglock, flags); 1535 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1536 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1537 __group_send_sig_info(SIGCHLD, &info, parent); 1538 /* 1539 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1540 */ 1541 __wake_up_parent(tsk, parent); 1542 spin_unlock_irqrestore(&sighand->siglock, flags); 1543 } 1544 1545 static inline int may_ptrace_stop(void) 1546 { 1547 if (!likely(current->ptrace & PT_PTRACED)) 1548 return 0; 1549 1550 if (unlikely(current->parent == current->real_parent && 1551 (current->ptrace & PT_ATTACHED))) 1552 return 0; 1553 1554 if (unlikely(current->signal == current->parent->signal) && 1555 unlikely(current->signal->flags & SIGNAL_GROUP_EXIT)) 1556 return 0; 1557 1558 /* 1559 * Are we in the middle of do_coredump? 1560 * If so and our tracer is also part of the coredump stopping 1561 * is a deadlock situation, and pointless because our tracer 1562 * is dead so don't allow us to stop. 1563 * If SIGKILL was already sent before the caller unlocked 1564 * ->siglock we must see ->core_waiters != 0. Otherwise it 1565 * is safe to enter schedule(). 1566 */ 1567 if (unlikely(current->mm->core_waiters) && 1568 unlikely(current->mm == current->parent->mm)) 1569 return 0; 1570 1571 return 1; 1572 } 1573 1574 /* 1575 * This must be called with current->sighand->siglock held. 1576 * 1577 * This should be the path for all ptrace stops. 1578 * We always set current->last_siginfo while stopped here. 1579 * That makes it a way to test a stopped process for 1580 * being ptrace-stopped vs being job-control-stopped. 1581 * 1582 * If we actually decide not to stop at all because the tracer is gone, 1583 * we leave nostop_code in current->exit_code. 1584 */ 1585 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info) 1586 { 1587 /* 1588 * If there is a group stop in progress, 1589 * we must participate in the bookkeeping. 1590 */ 1591 if (current->signal->group_stop_count > 0) 1592 --current->signal->group_stop_count; 1593 1594 current->last_siginfo = info; 1595 current->exit_code = exit_code; 1596 1597 /* Let the debugger run. */ 1598 set_current_state(TASK_TRACED); 1599 spin_unlock_irq(¤t->sighand->siglock); 1600 try_to_freeze(); 1601 read_lock(&tasklist_lock); 1602 if (may_ptrace_stop()) { 1603 do_notify_parent_cldstop(current, CLD_TRAPPED); 1604 read_unlock(&tasklist_lock); 1605 schedule(); 1606 } else { 1607 /* 1608 * By the time we got the lock, our tracer went away. 1609 * Don't stop here. 1610 */ 1611 read_unlock(&tasklist_lock); 1612 set_current_state(TASK_RUNNING); 1613 current->exit_code = nostop_code; 1614 } 1615 1616 /* 1617 * We are back. Now reacquire the siglock before touching 1618 * last_siginfo, so that we are sure to have synchronized with 1619 * any signal-sending on another CPU that wants to examine it. 1620 */ 1621 spin_lock_irq(¤t->sighand->siglock); 1622 current->last_siginfo = NULL; 1623 1624 /* 1625 * Queued signals ignored us while we were stopped for tracing. 1626 * So check for any that we should take before resuming user mode. 1627 */ 1628 recalc_sigpending(); 1629 } 1630 1631 void ptrace_notify(int exit_code) 1632 { 1633 siginfo_t info; 1634 1635 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1636 1637 memset(&info, 0, sizeof info); 1638 info.si_signo = SIGTRAP; 1639 info.si_code = exit_code; 1640 info.si_pid = current->pid; 1641 info.si_uid = current->uid; 1642 1643 /* Let the debugger run. */ 1644 spin_lock_irq(¤t->sighand->siglock); 1645 ptrace_stop(exit_code, 0, &info); 1646 spin_unlock_irq(¤t->sighand->siglock); 1647 } 1648 1649 static void 1650 finish_stop(int stop_count) 1651 { 1652 /* 1653 * If there are no other threads in the group, or if there is 1654 * a group stop in progress and we are the last to stop, 1655 * report to the parent. When ptraced, every thread reports itself. 1656 */ 1657 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) { 1658 read_lock(&tasklist_lock); 1659 do_notify_parent_cldstop(current, CLD_STOPPED); 1660 read_unlock(&tasklist_lock); 1661 } 1662 1663 schedule(); 1664 /* 1665 * Now we don't run again until continued. 1666 */ 1667 current->exit_code = 0; 1668 } 1669 1670 /* 1671 * This performs the stopping for SIGSTOP and other stop signals. 1672 * We have to stop all threads in the thread group. 1673 * Returns nonzero if we've actually stopped and released the siglock. 1674 * Returns zero if we didn't stop and still hold the siglock. 1675 */ 1676 static int do_signal_stop(int signr) 1677 { 1678 struct signal_struct *sig = current->signal; 1679 int stop_count; 1680 1681 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) 1682 return 0; 1683 1684 if (sig->group_stop_count > 0) { 1685 /* 1686 * There is a group stop in progress. We don't need to 1687 * start another one. 1688 */ 1689 stop_count = --sig->group_stop_count; 1690 } else { 1691 /* 1692 * There is no group stop already in progress. 1693 * We must initiate one now. 1694 */ 1695 struct task_struct *t; 1696 1697 sig->group_exit_code = signr; 1698 1699 stop_count = 0; 1700 for (t = next_thread(current); t != current; t = next_thread(t)) 1701 /* 1702 * Setting state to TASK_STOPPED for a group 1703 * stop is always done with the siglock held, 1704 * so this check has no races. 1705 */ 1706 if (!t->exit_state && 1707 !(t->state & (TASK_STOPPED|TASK_TRACED))) { 1708 stop_count++; 1709 signal_wake_up(t, 0); 1710 } 1711 sig->group_stop_count = stop_count; 1712 } 1713 1714 if (stop_count == 0) 1715 sig->flags = SIGNAL_STOP_STOPPED; 1716 current->exit_code = sig->group_exit_code; 1717 __set_current_state(TASK_STOPPED); 1718 1719 spin_unlock_irq(¤t->sighand->siglock); 1720 finish_stop(stop_count); 1721 return 1; 1722 } 1723 1724 /* 1725 * Do appropriate magic when group_stop_count > 0. 1726 * We return nonzero if we stopped, after releasing the siglock. 1727 * We return zero if we still hold the siglock and should look 1728 * for another signal without checking group_stop_count again. 1729 */ 1730 static int handle_group_stop(void) 1731 { 1732 int stop_count; 1733 1734 if (current->signal->group_exit_task == current) { 1735 /* 1736 * Group stop is so we can do a core dump, 1737 * We are the initiating thread, so get on with it. 1738 */ 1739 current->signal->group_exit_task = NULL; 1740 return 0; 1741 } 1742 1743 if (current->signal->flags & SIGNAL_GROUP_EXIT) 1744 /* 1745 * Group stop is so another thread can do a core dump, 1746 * or else we are racing against a death signal. 1747 * Just punt the stop so we can get the next signal. 1748 */ 1749 return 0; 1750 1751 /* 1752 * There is a group stop in progress. We stop 1753 * without any associated signal being in our queue. 1754 */ 1755 stop_count = --current->signal->group_stop_count; 1756 if (stop_count == 0) 1757 current->signal->flags = SIGNAL_STOP_STOPPED; 1758 current->exit_code = current->signal->group_exit_code; 1759 set_current_state(TASK_STOPPED); 1760 spin_unlock_irq(¤t->sighand->siglock); 1761 finish_stop(stop_count); 1762 return 1; 1763 } 1764 1765 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, 1766 struct pt_regs *regs, void *cookie) 1767 { 1768 sigset_t *mask = ¤t->blocked; 1769 int signr = 0; 1770 1771 try_to_freeze(); 1772 1773 relock: 1774 spin_lock_irq(¤t->sighand->siglock); 1775 for (;;) { 1776 struct k_sigaction *ka; 1777 1778 if (unlikely(current->signal->group_stop_count > 0) && 1779 handle_group_stop()) 1780 goto relock; 1781 1782 signr = dequeue_signal(current, mask, info); 1783 1784 if (!signr) 1785 break; /* will return 0 */ 1786 1787 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) { 1788 ptrace_signal_deliver(regs, cookie); 1789 1790 /* Let the debugger run. */ 1791 ptrace_stop(signr, signr, info); 1792 1793 /* We're back. Did the debugger cancel the sig? */ 1794 signr = current->exit_code; 1795 if (signr == 0) 1796 continue; 1797 1798 current->exit_code = 0; 1799 1800 /* Update the siginfo structure if the signal has 1801 changed. If the debugger wanted something 1802 specific in the siginfo structure then it should 1803 have updated *info via PTRACE_SETSIGINFO. */ 1804 if (signr != info->si_signo) { 1805 info->si_signo = signr; 1806 info->si_errno = 0; 1807 info->si_code = SI_USER; 1808 info->si_pid = current->parent->pid; 1809 info->si_uid = current->parent->uid; 1810 } 1811 1812 /* If the (new) signal is now blocked, requeue it. */ 1813 if (sigismember(¤t->blocked, signr)) { 1814 specific_send_sig_info(signr, info, current); 1815 continue; 1816 } 1817 } 1818 1819 ka = ¤t->sighand->action[signr-1]; 1820 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 1821 continue; 1822 if (ka->sa.sa_handler != SIG_DFL) { 1823 /* Run the handler. */ 1824 *return_ka = *ka; 1825 1826 if (ka->sa.sa_flags & SA_ONESHOT) 1827 ka->sa.sa_handler = SIG_DFL; 1828 1829 break; /* will return non-zero "signr" value */ 1830 } 1831 1832 /* 1833 * Now we are doing the default action for this signal. 1834 */ 1835 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 1836 continue; 1837 1838 /* Init gets no signals it doesn't want. */ 1839 if (current == child_reaper) 1840 continue; 1841 1842 if (sig_kernel_stop(signr)) { 1843 /* 1844 * The default action is to stop all threads in 1845 * the thread group. The job control signals 1846 * do nothing in an orphaned pgrp, but SIGSTOP 1847 * always works. Note that siglock needs to be 1848 * dropped during the call to is_orphaned_pgrp() 1849 * because of lock ordering with tasklist_lock. 1850 * This allows an intervening SIGCONT to be posted. 1851 * We need to check for that and bail out if necessary. 1852 */ 1853 if (signr != SIGSTOP) { 1854 spin_unlock_irq(¤t->sighand->siglock); 1855 1856 /* signals can be posted during this window */ 1857 1858 if (is_orphaned_pgrp(process_group(current))) 1859 goto relock; 1860 1861 spin_lock_irq(¤t->sighand->siglock); 1862 } 1863 1864 if (likely(do_signal_stop(signr))) { 1865 /* It released the siglock. */ 1866 goto relock; 1867 } 1868 1869 /* 1870 * We didn't actually stop, due to a race 1871 * with SIGCONT or something like that. 1872 */ 1873 continue; 1874 } 1875 1876 spin_unlock_irq(¤t->sighand->siglock); 1877 1878 /* 1879 * Anything else is fatal, maybe with a core dump. 1880 */ 1881 current->flags |= PF_SIGNALED; 1882 if (sig_kernel_coredump(signr)) { 1883 /* 1884 * If it was able to dump core, this kills all 1885 * other threads in the group and synchronizes with 1886 * their demise. If we lost the race with another 1887 * thread getting here, it set group_exit_code 1888 * first and our do_group_exit call below will use 1889 * that value and ignore the one we pass it. 1890 */ 1891 do_coredump((long)signr, signr, regs); 1892 } 1893 1894 /* 1895 * Death signals, no core dump. 1896 */ 1897 do_group_exit(signr); 1898 /* NOTREACHED */ 1899 } 1900 spin_unlock_irq(¤t->sighand->siglock); 1901 return signr; 1902 } 1903 1904 EXPORT_SYMBOL(recalc_sigpending); 1905 EXPORT_SYMBOL_GPL(dequeue_signal); 1906 EXPORT_SYMBOL(flush_signals); 1907 EXPORT_SYMBOL(force_sig); 1908 EXPORT_SYMBOL(kill_pg); 1909 EXPORT_SYMBOL(kill_proc); 1910 EXPORT_SYMBOL(ptrace_notify); 1911 EXPORT_SYMBOL(send_sig); 1912 EXPORT_SYMBOL(send_sig_info); 1913 EXPORT_SYMBOL(sigprocmask); 1914 EXPORT_SYMBOL(block_all_signals); 1915 EXPORT_SYMBOL(unblock_all_signals); 1916 1917 1918 /* 1919 * System call entry points. 1920 */ 1921 1922 asmlinkage long sys_restart_syscall(void) 1923 { 1924 struct restart_block *restart = ¤t_thread_info()->restart_block; 1925 return restart->fn(restart); 1926 } 1927 1928 long do_no_restart_syscall(struct restart_block *param) 1929 { 1930 return -EINTR; 1931 } 1932 1933 /* 1934 * We don't need to get the kernel lock - this is all local to this 1935 * particular thread.. (and that's good, because this is _heavily_ 1936 * used by various programs) 1937 */ 1938 1939 /* 1940 * This is also useful for kernel threads that want to temporarily 1941 * (or permanently) block certain signals. 1942 * 1943 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 1944 * interface happily blocks "unblockable" signals like SIGKILL 1945 * and friends. 1946 */ 1947 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 1948 { 1949 int error; 1950 1951 spin_lock_irq(¤t->sighand->siglock); 1952 if (oldset) 1953 *oldset = current->blocked; 1954 1955 error = 0; 1956 switch (how) { 1957 case SIG_BLOCK: 1958 sigorsets(¤t->blocked, ¤t->blocked, set); 1959 break; 1960 case SIG_UNBLOCK: 1961 signandsets(¤t->blocked, ¤t->blocked, set); 1962 break; 1963 case SIG_SETMASK: 1964 current->blocked = *set; 1965 break; 1966 default: 1967 error = -EINVAL; 1968 } 1969 recalc_sigpending(); 1970 spin_unlock_irq(¤t->sighand->siglock); 1971 1972 return error; 1973 } 1974 1975 asmlinkage long 1976 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize) 1977 { 1978 int error = -EINVAL; 1979 sigset_t old_set, new_set; 1980 1981 /* XXX: Don't preclude handling different sized sigset_t's. */ 1982 if (sigsetsize != sizeof(sigset_t)) 1983 goto out; 1984 1985 if (set) { 1986 error = -EFAULT; 1987 if (copy_from_user(&new_set, set, sizeof(*set))) 1988 goto out; 1989 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 1990 1991 error = sigprocmask(how, &new_set, &old_set); 1992 if (error) 1993 goto out; 1994 if (oset) 1995 goto set_old; 1996 } else if (oset) { 1997 spin_lock_irq(¤t->sighand->siglock); 1998 old_set = current->blocked; 1999 spin_unlock_irq(¤t->sighand->siglock); 2000 2001 set_old: 2002 error = -EFAULT; 2003 if (copy_to_user(oset, &old_set, sizeof(*oset))) 2004 goto out; 2005 } 2006 error = 0; 2007 out: 2008 return error; 2009 } 2010 2011 long do_sigpending(void __user *set, unsigned long sigsetsize) 2012 { 2013 long error = -EINVAL; 2014 sigset_t pending; 2015 2016 if (sigsetsize > sizeof(sigset_t)) 2017 goto out; 2018 2019 spin_lock_irq(¤t->sighand->siglock); 2020 sigorsets(&pending, ¤t->pending.signal, 2021 ¤t->signal->shared_pending.signal); 2022 spin_unlock_irq(¤t->sighand->siglock); 2023 2024 /* Outside the lock because only this thread touches it. */ 2025 sigandsets(&pending, ¤t->blocked, &pending); 2026 2027 error = -EFAULT; 2028 if (!copy_to_user(set, &pending, sigsetsize)) 2029 error = 0; 2030 2031 out: 2032 return error; 2033 } 2034 2035 asmlinkage long 2036 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize) 2037 { 2038 return do_sigpending(set, sigsetsize); 2039 } 2040 2041 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2042 2043 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) 2044 { 2045 int err; 2046 2047 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2048 return -EFAULT; 2049 if (from->si_code < 0) 2050 return __copy_to_user(to, from, sizeof(siginfo_t)) 2051 ? -EFAULT : 0; 2052 /* 2053 * If you change siginfo_t structure, please be sure 2054 * this code is fixed accordingly. 2055 * It should never copy any pad contained in the structure 2056 * to avoid security leaks, but must copy the generic 2057 * 3 ints plus the relevant union member. 2058 */ 2059 err = __put_user(from->si_signo, &to->si_signo); 2060 err |= __put_user(from->si_errno, &to->si_errno); 2061 err |= __put_user((short)from->si_code, &to->si_code); 2062 switch (from->si_code & __SI_MASK) { 2063 case __SI_KILL: 2064 err |= __put_user(from->si_pid, &to->si_pid); 2065 err |= __put_user(from->si_uid, &to->si_uid); 2066 break; 2067 case __SI_TIMER: 2068 err |= __put_user(from->si_tid, &to->si_tid); 2069 err |= __put_user(from->si_overrun, &to->si_overrun); 2070 err |= __put_user(from->si_ptr, &to->si_ptr); 2071 break; 2072 case __SI_POLL: 2073 err |= __put_user(from->si_band, &to->si_band); 2074 err |= __put_user(from->si_fd, &to->si_fd); 2075 break; 2076 case __SI_FAULT: 2077 err |= __put_user(from->si_addr, &to->si_addr); 2078 #ifdef __ARCH_SI_TRAPNO 2079 err |= __put_user(from->si_trapno, &to->si_trapno); 2080 #endif 2081 break; 2082 case __SI_CHLD: 2083 err |= __put_user(from->si_pid, &to->si_pid); 2084 err |= __put_user(from->si_uid, &to->si_uid); 2085 err |= __put_user(from->si_status, &to->si_status); 2086 err |= __put_user(from->si_utime, &to->si_utime); 2087 err |= __put_user(from->si_stime, &to->si_stime); 2088 break; 2089 case __SI_RT: /* This is not generated by the kernel as of now. */ 2090 case __SI_MESGQ: /* But this is */ 2091 err |= __put_user(from->si_pid, &to->si_pid); 2092 err |= __put_user(from->si_uid, &to->si_uid); 2093 err |= __put_user(from->si_ptr, &to->si_ptr); 2094 break; 2095 default: /* this is just in case for now ... */ 2096 err |= __put_user(from->si_pid, &to->si_pid); 2097 err |= __put_user(from->si_uid, &to->si_uid); 2098 break; 2099 } 2100 return err; 2101 } 2102 2103 #endif 2104 2105 asmlinkage long 2106 sys_rt_sigtimedwait(const sigset_t __user *uthese, 2107 siginfo_t __user *uinfo, 2108 const struct timespec __user *uts, 2109 size_t sigsetsize) 2110 { 2111 int ret, sig; 2112 sigset_t these; 2113 struct timespec ts; 2114 siginfo_t info; 2115 long timeout = 0; 2116 2117 /* XXX: Don't preclude handling different sized sigset_t's. */ 2118 if (sigsetsize != sizeof(sigset_t)) 2119 return -EINVAL; 2120 2121 if (copy_from_user(&these, uthese, sizeof(these))) 2122 return -EFAULT; 2123 2124 /* 2125 * Invert the set of allowed signals to get those we 2126 * want to block. 2127 */ 2128 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2129 signotset(&these); 2130 2131 if (uts) { 2132 if (copy_from_user(&ts, uts, sizeof(ts))) 2133 return -EFAULT; 2134 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0 2135 || ts.tv_sec < 0) 2136 return -EINVAL; 2137 } 2138 2139 spin_lock_irq(¤t->sighand->siglock); 2140 sig = dequeue_signal(current, &these, &info); 2141 if (!sig) { 2142 timeout = MAX_SCHEDULE_TIMEOUT; 2143 if (uts) 2144 timeout = (timespec_to_jiffies(&ts) 2145 + (ts.tv_sec || ts.tv_nsec)); 2146 2147 if (timeout) { 2148 /* None ready -- temporarily unblock those we're 2149 * interested while we are sleeping in so that we'll 2150 * be awakened when they arrive. */ 2151 current->real_blocked = current->blocked; 2152 sigandsets(¤t->blocked, ¤t->blocked, &these); 2153 recalc_sigpending(); 2154 spin_unlock_irq(¤t->sighand->siglock); 2155 2156 timeout = schedule_timeout_interruptible(timeout); 2157 2158 spin_lock_irq(¤t->sighand->siglock); 2159 sig = dequeue_signal(current, &these, &info); 2160 current->blocked = current->real_blocked; 2161 siginitset(¤t->real_blocked, 0); 2162 recalc_sigpending(); 2163 } 2164 } 2165 spin_unlock_irq(¤t->sighand->siglock); 2166 2167 if (sig) { 2168 ret = sig; 2169 if (uinfo) { 2170 if (copy_siginfo_to_user(uinfo, &info)) 2171 ret = -EFAULT; 2172 } 2173 } else { 2174 ret = -EAGAIN; 2175 if (timeout) 2176 ret = -EINTR; 2177 } 2178 2179 return ret; 2180 } 2181 2182 asmlinkage long 2183 sys_kill(int pid, int sig) 2184 { 2185 struct siginfo info; 2186 2187 info.si_signo = sig; 2188 info.si_errno = 0; 2189 info.si_code = SI_USER; 2190 info.si_pid = current->tgid; 2191 info.si_uid = current->uid; 2192 2193 return kill_something_info(sig, &info, pid); 2194 } 2195 2196 static int do_tkill(int tgid, int pid, int sig) 2197 { 2198 int error; 2199 struct siginfo info; 2200 struct task_struct *p; 2201 2202 error = -ESRCH; 2203 info.si_signo = sig; 2204 info.si_errno = 0; 2205 info.si_code = SI_TKILL; 2206 info.si_pid = current->tgid; 2207 info.si_uid = current->uid; 2208 2209 read_lock(&tasklist_lock); 2210 p = find_task_by_pid(pid); 2211 if (p && (tgid <= 0 || p->tgid == tgid)) { 2212 error = check_kill_permission(sig, &info, p); 2213 /* 2214 * The null signal is a permissions and process existence 2215 * probe. No signal is actually delivered. 2216 */ 2217 if (!error && sig && p->sighand) { 2218 spin_lock_irq(&p->sighand->siglock); 2219 handle_stop_signal(sig, p); 2220 error = specific_send_sig_info(sig, &info, p); 2221 spin_unlock_irq(&p->sighand->siglock); 2222 } 2223 } 2224 read_unlock(&tasklist_lock); 2225 2226 return error; 2227 } 2228 2229 /** 2230 * sys_tgkill - send signal to one specific thread 2231 * @tgid: the thread group ID of the thread 2232 * @pid: the PID of the thread 2233 * @sig: signal to be sent 2234 * 2235 * This syscall also checks the tgid and returns -ESRCH even if the PID 2236 * exists but it's not belonging to the target process anymore. This 2237 * method solves the problem of threads exiting and PIDs getting reused. 2238 */ 2239 asmlinkage long sys_tgkill(int tgid, int pid, int sig) 2240 { 2241 /* This is only valid for single tasks */ 2242 if (pid <= 0 || tgid <= 0) 2243 return -EINVAL; 2244 2245 return do_tkill(tgid, pid, sig); 2246 } 2247 2248 /* 2249 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2250 */ 2251 asmlinkage long 2252 sys_tkill(int pid, int sig) 2253 { 2254 /* This is only valid for single tasks */ 2255 if (pid <= 0) 2256 return -EINVAL; 2257 2258 return do_tkill(0, pid, sig); 2259 } 2260 2261 asmlinkage long 2262 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo) 2263 { 2264 siginfo_t info; 2265 2266 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2267 return -EFAULT; 2268 2269 /* Not even root can pretend to send signals from the kernel. 2270 Nor can they impersonate a kill(), which adds source info. */ 2271 if (info.si_code >= 0) 2272 return -EPERM; 2273 info.si_signo = sig; 2274 2275 /* POSIX.1b doesn't mention process groups. */ 2276 return kill_proc_info(sig, &info, pid); 2277 } 2278 2279 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 2280 { 2281 struct k_sigaction *k; 2282 sigset_t mask; 2283 2284 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 2285 return -EINVAL; 2286 2287 k = ¤t->sighand->action[sig-1]; 2288 2289 spin_lock_irq(¤t->sighand->siglock); 2290 if (signal_pending(current)) { 2291 /* 2292 * If there might be a fatal signal pending on multiple 2293 * threads, make sure we take it before changing the action. 2294 */ 2295 spin_unlock_irq(¤t->sighand->siglock); 2296 return -ERESTARTNOINTR; 2297 } 2298 2299 if (oact) 2300 *oact = *k; 2301 2302 if (act) { 2303 sigdelsetmask(&act->sa.sa_mask, 2304 sigmask(SIGKILL) | sigmask(SIGSTOP)); 2305 *k = *act; 2306 /* 2307 * POSIX 3.3.1.3: 2308 * "Setting a signal action to SIG_IGN for a signal that is 2309 * pending shall cause the pending signal to be discarded, 2310 * whether or not it is blocked." 2311 * 2312 * "Setting a signal action to SIG_DFL for a signal that is 2313 * pending and whose default action is to ignore the signal 2314 * (for example, SIGCHLD), shall cause the pending signal to 2315 * be discarded, whether or not it is blocked" 2316 */ 2317 if (act->sa.sa_handler == SIG_IGN || 2318 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) { 2319 struct task_struct *t = current; 2320 sigemptyset(&mask); 2321 sigaddset(&mask, sig); 2322 rm_from_queue_full(&mask, &t->signal->shared_pending); 2323 do { 2324 rm_from_queue_full(&mask, &t->pending); 2325 recalc_sigpending_tsk(t); 2326 t = next_thread(t); 2327 } while (t != current); 2328 } 2329 } 2330 2331 spin_unlock_irq(¤t->sighand->siglock); 2332 return 0; 2333 } 2334 2335 int 2336 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 2337 { 2338 stack_t oss; 2339 int error; 2340 2341 if (uoss) { 2342 oss.ss_sp = (void __user *) current->sas_ss_sp; 2343 oss.ss_size = current->sas_ss_size; 2344 oss.ss_flags = sas_ss_flags(sp); 2345 } 2346 2347 if (uss) { 2348 void __user *ss_sp; 2349 size_t ss_size; 2350 int ss_flags; 2351 2352 error = -EFAULT; 2353 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)) 2354 || __get_user(ss_sp, &uss->ss_sp) 2355 || __get_user(ss_flags, &uss->ss_flags) 2356 || __get_user(ss_size, &uss->ss_size)) 2357 goto out; 2358 2359 error = -EPERM; 2360 if (on_sig_stack(sp)) 2361 goto out; 2362 2363 error = -EINVAL; 2364 /* 2365 * 2366 * Note - this code used to test ss_flags incorrectly 2367 * old code may have been written using ss_flags==0 2368 * to mean ss_flags==SS_ONSTACK (as this was the only 2369 * way that worked) - this fix preserves that older 2370 * mechanism 2371 */ 2372 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) 2373 goto out; 2374 2375 if (ss_flags == SS_DISABLE) { 2376 ss_size = 0; 2377 ss_sp = NULL; 2378 } else { 2379 error = -ENOMEM; 2380 if (ss_size < MINSIGSTKSZ) 2381 goto out; 2382 } 2383 2384 current->sas_ss_sp = (unsigned long) ss_sp; 2385 current->sas_ss_size = ss_size; 2386 } 2387 2388 if (uoss) { 2389 error = -EFAULT; 2390 if (copy_to_user(uoss, &oss, sizeof(oss))) 2391 goto out; 2392 } 2393 2394 error = 0; 2395 out: 2396 return error; 2397 } 2398 2399 #ifdef __ARCH_WANT_SYS_SIGPENDING 2400 2401 asmlinkage long 2402 sys_sigpending(old_sigset_t __user *set) 2403 { 2404 return do_sigpending(set, sizeof(*set)); 2405 } 2406 2407 #endif 2408 2409 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 2410 /* Some platforms have their own version with special arguments others 2411 support only sys_rt_sigprocmask. */ 2412 2413 asmlinkage long 2414 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset) 2415 { 2416 int error; 2417 old_sigset_t old_set, new_set; 2418 2419 if (set) { 2420 error = -EFAULT; 2421 if (copy_from_user(&new_set, set, sizeof(*set))) 2422 goto out; 2423 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP)); 2424 2425 spin_lock_irq(¤t->sighand->siglock); 2426 old_set = current->blocked.sig[0]; 2427 2428 error = 0; 2429 switch (how) { 2430 default: 2431 error = -EINVAL; 2432 break; 2433 case SIG_BLOCK: 2434 sigaddsetmask(¤t->blocked, new_set); 2435 break; 2436 case SIG_UNBLOCK: 2437 sigdelsetmask(¤t->blocked, new_set); 2438 break; 2439 case SIG_SETMASK: 2440 current->blocked.sig[0] = new_set; 2441 break; 2442 } 2443 2444 recalc_sigpending(); 2445 spin_unlock_irq(¤t->sighand->siglock); 2446 if (error) 2447 goto out; 2448 if (oset) 2449 goto set_old; 2450 } else if (oset) { 2451 old_set = current->blocked.sig[0]; 2452 set_old: 2453 error = -EFAULT; 2454 if (copy_to_user(oset, &old_set, sizeof(*oset))) 2455 goto out; 2456 } 2457 error = 0; 2458 out: 2459 return error; 2460 } 2461 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 2462 2463 #ifdef __ARCH_WANT_SYS_RT_SIGACTION 2464 asmlinkage long 2465 sys_rt_sigaction(int sig, 2466 const struct sigaction __user *act, 2467 struct sigaction __user *oact, 2468 size_t sigsetsize) 2469 { 2470 struct k_sigaction new_sa, old_sa; 2471 int ret = -EINVAL; 2472 2473 /* XXX: Don't preclude handling different sized sigset_t's. */ 2474 if (sigsetsize != sizeof(sigset_t)) 2475 goto out; 2476 2477 if (act) { 2478 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 2479 return -EFAULT; 2480 } 2481 2482 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 2483 2484 if (!ret && oact) { 2485 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 2486 return -EFAULT; 2487 } 2488 out: 2489 return ret; 2490 } 2491 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */ 2492 2493 #ifdef __ARCH_WANT_SYS_SGETMASK 2494 2495 /* 2496 * For backwards compatibility. Functionality superseded by sigprocmask. 2497 */ 2498 asmlinkage long 2499 sys_sgetmask(void) 2500 { 2501 /* SMP safe */ 2502 return current->blocked.sig[0]; 2503 } 2504 2505 asmlinkage long 2506 sys_ssetmask(int newmask) 2507 { 2508 int old; 2509 2510 spin_lock_irq(¤t->sighand->siglock); 2511 old = current->blocked.sig[0]; 2512 2513 siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)| 2514 sigmask(SIGSTOP))); 2515 recalc_sigpending(); 2516 spin_unlock_irq(¤t->sighand->siglock); 2517 2518 return old; 2519 } 2520 #endif /* __ARCH_WANT_SGETMASK */ 2521 2522 #ifdef __ARCH_WANT_SYS_SIGNAL 2523 /* 2524 * For backwards compatibility. Functionality superseded by sigaction. 2525 */ 2526 asmlinkage unsigned long 2527 sys_signal(int sig, __sighandler_t handler) 2528 { 2529 struct k_sigaction new_sa, old_sa; 2530 int ret; 2531 2532 new_sa.sa.sa_handler = handler; 2533 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 2534 sigemptyset(&new_sa.sa.sa_mask); 2535 2536 ret = do_sigaction(sig, &new_sa, &old_sa); 2537 2538 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 2539 } 2540 #endif /* __ARCH_WANT_SYS_SIGNAL */ 2541 2542 #ifdef __ARCH_WANT_SYS_PAUSE 2543 2544 asmlinkage long 2545 sys_pause(void) 2546 { 2547 current->state = TASK_INTERRUPTIBLE; 2548 schedule(); 2549 return -ERESTARTNOHAND; 2550 } 2551 2552 #endif 2553 2554 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND 2555 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize) 2556 { 2557 sigset_t newset; 2558 2559 /* XXX: Don't preclude handling different sized sigset_t's. */ 2560 if (sigsetsize != sizeof(sigset_t)) 2561 return -EINVAL; 2562 2563 if (copy_from_user(&newset, unewset, sizeof(newset))) 2564 return -EFAULT; 2565 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2566 2567 spin_lock_irq(¤t->sighand->siglock); 2568 current->saved_sigmask = current->blocked; 2569 current->blocked = newset; 2570 recalc_sigpending(); 2571 spin_unlock_irq(¤t->sighand->siglock); 2572 2573 current->state = TASK_INTERRUPTIBLE; 2574 schedule(); 2575 set_thread_flag(TIF_RESTORE_SIGMASK); 2576 return -ERESTARTNOHAND; 2577 } 2578 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */ 2579 2580 void __init signals_init(void) 2581 { 2582 sigqueue_cachep = 2583 kmem_cache_create("sigqueue", 2584 sizeof(struct sigqueue), 2585 __alignof__(struct sigqueue), 2586 SLAB_PANIC, NULL, NULL); 2587 } 2588