1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/export.h> 15 #include <linux/init.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/tty.h> 19 #include <linux/binfmts.h> 20 #include <linux/security.h> 21 #include <linux/syscalls.h> 22 #include <linux/ptrace.h> 23 #include <linux/signal.h> 24 #include <linux/signalfd.h> 25 #include <linux/ratelimit.h> 26 #include <linux/tracehook.h> 27 #include <linux/capability.h> 28 #include <linux/freezer.h> 29 #include <linux/pid_namespace.h> 30 #include <linux/nsproxy.h> 31 #include <linux/user_namespace.h> 32 #define CREATE_TRACE_POINTS 33 #include <trace/events/signal.h> 34 35 #include <asm/param.h> 36 #include <asm/uaccess.h> 37 #include <asm/unistd.h> 38 #include <asm/siginfo.h> 39 #include "audit.h" /* audit_signal_info() */ 40 41 /* 42 * SLAB caches for signal bits. 43 */ 44 45 static struct kmem_cache *sigqueue_cachep; 46 47 int print_fatal_signals __read_mostly; 48 49 static void __user *sig_handler(struct task_struct *t, int sig) 50 { 51 return t->sighand->action[sig - 1].sa.sa_handler; 52 } 53 54 static int sig_handler_ignored(void __user *handler, int sig) 55 { 56 /* Is it explicitly or implicitly ignored? */ 57 return handler == SIG_IGN || 58 (handler == SIG_DFL && sig_kernel_ignore(sig)); 59 } 60 61 static int sig_task_ignored(struct task_struct *t, int sig, 62 int from_ancestor_ns) 63 { 64 void __user *handler; 65 66 handler = sig_handler(t, sig); 67 68 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 69 handler == SIG_DFL && !from_ancestor_ns) 70 return 1; 71 72 return sig_handler_ignored(handler, sig); 73 } 74 75 static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns) 76 { 77 /* 78 * Blocked signals are never ignored, since the 79 * signal handler may change by the time it is 80 * unblocked. 81 */ 82 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 83 return 0; 84 85 if (!sig_task_ignored(t, sig, from_ancestor_ns)) 86 return 0; 87 88 /* 89 * Tracers may want to know about even ignored signals. 90 */ 91 return !t->ptrace; 92 } 93 94 /* 95 * Re-calculate pending state from the set of locally pending 96 * signals, globally pending signals, and blocked signals. 97 */ 98 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 99 { 100 unsigned long ready; 101 long i; 102 103 switch (_NSIG_WORDS) { 104 default: 105 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 106 ready |= signal->sig[i] &~ blocked->sig[i]; 107 break; 108 109 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 110 ready |= signal->sig[2] &~ blocked->sig[2]; 111 ready |= signal->sig[1] &~ blocked->sig[1]; 112 ready |= signal->sig[0] &~ blocked->sig[0]; 113 break; 114 115 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 116 ready |= signal->sig[0] &~ blocked->sig[0]; 117 break; 118 119 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 120 } 121 return ready != 0; 122 } 123 124 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 125 126 static int recalc_sigpending_tsk(struct task_struct *t) 127 { 128 if ((t->jobctl & JOBCTL_PENDING_MASK) || 129 PENDING(&t->pending, &t->blocked) || 130 PENDING(&t->signal->shared_pending, &t->blocked)) { 131 set_tsk_thread_flag(t, TIF_SIGPENDING); 132 return 1; 133 } 134 /* 135 * We must never clear the flag in another thread, or in current 136 * when it's possible the current syscall is returning -ERESTART*. 137 * So we don't clear it here, and only callers who know they should do. 138 */ 139 return 0; 140 } 141 142 /* 143 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 144 * This is superfluous when called on current, the wakeup is a harmless no-op. 145 */ 146 void recalc_sigpending_and_wake(struct task_struct *t) 147 { 148 if (recalc_sigpending_tsk(t)) 149 signal_wake_up(t, 0); 150 } 151 152 void recalc_sigpending(void) 153 { 154 if (!recalc_sigpending_tsk(current) && !freezing(current)) 155 clear_thread_flag(TIF_SIGPENDING); 156 157 } 158 159 /* Given the mask, find the first available signal that should be serviced. */ 160 161 #define SYNCHRONOUS_MASK \ 162 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 163 sigmask(SIGTRAP) | sigmask(SIGFPE)) 164 165 int next_signal(struct sigpending *pending, sigset_t *mask) 166 { 167 unsigned long i, *s, *m, x; 168 int sig = 0; 169 170 s = pending->signal.sig; 171 m = mask->sig; 172 173 /* 174 * Handle the first word specially: it contains the 175 * synchronous signals that need to be dequeued first. 176 */ 177 x = *s &~ *m; 178 if (x) { 179 if (x & SYNCHRONOUS_MASK) 180 x &= SYNCHRONOUS_MASK; 181 sig = ffz(~x) + 1; 182 return sig; 183 } 184 185 switch (_NSIG_WORDS) { 186 default: 187 for (i = 1; i < _NSIG_WORDS; ++i) { 188 x = *++s &~ *++m; 189 if (!x) 190 continue; 191 sig = ffz(~x) + i*_NSIG_BPW + 1; 192 break; 193 } 194 break; 195 196 case 2: 197 x = s[1] &~ m[1]; 198 if (!x) 199 break; 200 sig = ffz(~x) + _NSIG_BPW + 1; 201 break; 202 203 case 1: 204 /* Nothing to do */ 205 break; 206 } 207 208 return sig; 209 } 210 211 static inline void print_dropped_signal(int sig) 212 { 213 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 214 215 if (!print_fatal_signals) 216 return; 217 218 if (!__ratelimit(&ratelimit_state)) 219 return; 220 221 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 222 current->comm, current->pid, sig); 223 } 224 225 /** 226 * task_set_jobctl_pending - set jobctl pending bits 227 * @task: target task 228 * @mask: pending bits to set 229 * 230 * Clear @mask from @task->jobctl. @mask must be subset of 231 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 232 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 233 * cleared. If @task is already being killed or exiting, this function 234 * becomes noop. 235 * 236 * CONTEXT: 237 * Must be called with @task->sighand->siglock held. 238 * 239 * RETURNS: 240 * %true if @mask is set, %false if made noop because @task was dying. 241 */ 242 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask) 243 { 244 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 245 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 246 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 247 248 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 249 return false; 250 251 if (mask & JOBCTL_STOP_SIGMASK) 252 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 253 254 task->jobctl |= mask; 255 return true; 256 } 257 258 /** 259 * task_clear_jobctl_trapping - clear jobctl trapping bit 260 * @task: target task 261 * 262 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 263 * Clear it and wake up the ptracer. Note that we don't need any further 264 * locking. @task->siglock guarantees that @task->parent points to the 265 * ptracer. 266 * 267 * CONTEXT: 268 * Must be called with @task->sighand->siglock held. 269 */ 270 void task_clear_jobctl_trapping(struct task_struct *task) 271 { 272 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 273 task->jobctl &= ~JOBCTL_TRAPPING; 274 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 275 } 276 } 277 278 /** 279 * task_clear_jobctl_pending - clear jobctl pending bits 280 * @task: target task 281 * @mask: pending bits to clear 282 * 283 * Clear @mask from @task->jobctl. @mask must be subset of 284 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 285 * STOP bits are cleared together. 286 * 287 * If clearing of @mask leaves no stop or trap pending, this function calls 288 * task_clear_jobctl_trapping(). 289 * 290 * CONTEXT: 291 * Must be called with @task->sighand->siglock held. 292 */ 293 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask) 294 { 295 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 296 297 if (mask & JOBCTL_STOP_PENDING) 298 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 299 300 task->jobctl &= ~mask; 301 302 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 303 task_clear_jobctl_trapping(task); 304 } 305 306 /** 307 * task_participate_group_stop - participate in a group stop 308 * @task: task participating in a group stop 309 * 310 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 311 * Group stop states are cleared and the group stop count is consumed if 312 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 313 * stop, the appropriate %SIGNAL_* flags are set. 314 * 315 * CONTEXT: 316 * Must be called with @task->sighand->siglock held. 317 * 318 * RETURNS: 319 * %true if group stop completion should be notified to the parent, %false 320 * otherwise. 321 */ 322 static bool task_participate_group_stop(struct task_struct *task) 323 { 324 struct signal_struct *sig = task->signal; 325 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 326 327 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 328 329 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 330 331 if (!consume) 332 return false; 333 334 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 335 sig->group_stop_count--; 336 337 /* 338 * Tell the caller to notify completion iff we are entering into a 339 * fresh group stop. Read comment in do_signal_stop() for details. 340 */ 341 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 342 sig->flags = SIGNAL_STOP_STOPPED; 343 return true; 344 } 345 return false; 346 } 347 348 /* 349 * allocate a new signal queue record 350 * - this may be called without locks if and only if t == current, otherwise an 351 * appropriate lock must be held to stop the target task from exiting 352 */ 353 static struct sigqueue * 354 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) 355 { 356 struct sigqueue *q = NULL; 357 struct user_struct *user; 358 359 /* 360 * Protect access to @t credentials. This can go away when all 361 * callers hold rcu read lock. 362 */ 363 rcu_read_lock(); 364 user = get_uid(__task_cred(t)->user); 365 atomic_inc(&user->sigpending); 366 rcu_read_unlock(); 367 368 if (override_rlimit || 369 atomic_read(&user->sigpending) <= 370 task_rlimit(t, RLIMIT_SIGPENDING)) { 371 q = kmem_cache_alloc(sigqueue_cachep, flags); 372 } else { 373 print_dropped_signal(sig); 374 } 375 376 if (unlikely(q == NULL)) { 377 atomic_dec(&user->sigpending); 378 free_uid(user); 379 } else { 380 INIT_LIST_HEAD(&q->list); 381 q->flags = 0; 382 q->user = user; 383 } 384 385 return q; 386 } 387 388 static void __sigqueue_free(struct sigqueue *q) 389 { 390 if (q->flags & SIGQUEUE_PREALLOC) 391 return; 392 atomic_dec(&q->user->sigpending); 393 free_uid(q->user); 394 kmem_cache_free(sigqueue_cachep, q); 395 } 396 397 void flush_sigqueue(struct sigpending *queue) 398 { 399 struct sigqueue *q; 400 401 sigemptyset(&queue->signal); 402 while (!list_empty(&queue->list)) { 403 q = list_entry(queue->list.next, struct sigqueue , list); 404 list_del_init(&q->list); 405 __sigqueue_free(q); 406 } 407 } 408 409 /* 410 * Flush all pending signals for a task. 411 */ 412 void __flush_signals(struct task_struct *t) 413 { 414 clear_tsk_thread_flag(t, TIF_SIGPENDING); 415 flush_sigqueue(&t->pending); 416 flush_sigqueue(&t->signal->shared_pending); 417 } 418 419 void flush_signals(struct task_struct *t) 420 { 421 unsigned long flags; 422 423 spin_lock_irqsave(&t->sighand->siglock, flags); 424 __flush_signals(t); 425 spin_unlock_irqrestore(&t->sighand->siglock, flags); 426 } 427 428 static void __flush_itimer_signals(struct sigpending *pending) 429 { 430 sigset_t signal, retain; 431 struct sigqueue *q, *n; 432 433 signal = pending->signal; 434 sigemptyset(&retain); 435 436 list_for_each_entry_safe(q, n, &pending->list, list) { 437 int sig = q->info.si_signo; 438 439 if (likely(q->info.si_code != SI_TIMER)) { 440 sigaddset(&retain, sig); 441 } else { 442 sigdelset(&signal, sig); 443 list_del_init(&q->list); 444 __sigqueue_free(q); 445 } 446 } 447 448 sigorsets(&pending->signal, &signal, &retain); 449 } 450 451 void flush_itimer_signals(void) 452 { 453 struct task_struct *tsk = current; 454 unsigned long flags; 455 456 spin_lock_irqsave(&tsk->sighand->siglock, flags); 457 __flush_itimer_signals(&tsk->pending); 458 __flush_itimer_signals(&tsk->signal->shared_pending); 459 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 460 } 461 462 void ignore_signals(struct task_struct *t) 463 { 464 int i; 465 466 for (i = 0; i < _NSIG; ++i) 467 t->sighand->action[i].sa.sa_handler = SIG_IGN; 468 469 flush_signals(t); 470 } 471 472 /* 473 * Flush all handlers for a task. 474 */ 475 476 void 477 flush_signal_handlers(struct task_struct *t, int force_default) 478 { 479 int i; 480 struct k_sigaction *ka = &t->sighand->action[0]; 481 for (i = _NSIG ; i != 0 ; i--) { 482 if (force_default || ka->sa.sa_handler != SIG_IGN) 483 ka->sa.sa_handler = SIG_DFL; 484 ka->sa.sa_flags = 0; 485 sigemptyset(&ka->sa.sa_mask); 486 ka++; 487 } 488 } 489 490 int unhandled_signal(struct task_struct *tsk, int sig) 491 { 492 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 493 if (is_global_init(tsk)) 494 return 1; 495 if (handler != SIG_IGN && handler != SIG_DFL) 496 return 0; 497 /* if ptraced, let the tracer determine */ 498 return !tsk->ptrace; 499 } 500 501 /* 502 * Notify the system that a driver wants to block all signals for this 503 * process, and wants to be notified if any signals at all were to be 504 * sent/acted upon. If the notifier routine returns non-zero, then the 505 * signal will be acted upon after all. If the notifier routine returns 0, 506 * then then signal will be blocked. Only one block per process is 507 * allowed. priv is a pointer to private data that the notifier routine 508 * can use to determine if the signal should be blocked or not. 509 */ 510 void 511 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) 512 { 513 unsigned long flags; 514 515 spin_lock_irqsave(¤t->sighand->siglock, flags); 516 current->notifier_mask = mask; 517 current->notifier_data = priv; 518 current->notifier = notifier; 519 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 520 } 521 522 /* Notify the system that blocking has ended. */ 523 524 void 525 unblock_all_signals(void) 526 { 527 unsigned long flags; 528 529 spin_lock_irqsave(¤t->sighand->siglock, flags); 530 current->notifier = NULL; 531 current->notifier_data = NULL; 532 recalc_sigpending(); 533 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 534 } 535 536 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info) 537 { 538 struct sigqueue *q, *first = NULL; 539 540 /* 541 * Collect the siginfo appropriate to this signal. Check if 542 * there is another siginfo for the same signal. 543 */ 544 list_for_each_entry(q, &list->list, list) { 545 if (q->info.si_signo == sig) { 546 if (first) 547 goto still_pending; 548 first = q; 549 } 550 } 551 552 sigdelset(&list->signal, sig); 553 554 if (first) { 555 still_pending: 556 list_del_init(&first->list); 557 copy_siginfo(info, &first->info); 558 __sigqueue_free(first); 559 } else { 560 /* 561 * Ok, it wasn't in the queue. This must be 562 * a fast-pathed signal or we must have been 563 * out of queue space. So zero out the info. 564 */ 565 info->si_signo = sig; 566 info->si_errno = 0; 567 info->si_code = SI_USER; 568 info->si_pid = 0; 569 info->si_uid = 0; 570 } 571 } 572 573 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 574 siginfo_t *info) 575 { 576 int sig = next_signal(pending, mask); 577 578 if (sig) { 579 if (current->notifier) { 580 if (sigismember(current->notifier_mask, sig)) { 581 if (!(current->notifier)(current->notifier_data)) { 582 clear_thread_flag(TIF_SIGPENDING); 583 return 0; 584 } 585 } 586 } 587 588 collect_signal(sig, pending, info); 589 } 590 591 return sig; 592 } 593 594 /* 595 * Dequeue a signal and return the element to the caller, which is 596 * expected to free it. 597 * 598 * All callers have to hold the siglock. 599 */ 600 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 601 { 602 int signr; 603 604 /* We only dequeue private signals from ourselves, we don't let 605 * signalfd steal them 606 */ 607 signr = __dequeue_signal(&tsk->pending, mask, info); 608 if (!signr) { 609 signr = __dequeue_signal(&tsk->signal->shared_pending, 610 mask, info); 611 /* 612 * itimer signal ? 613 * 614 * itimers are process shared and we restart periodic 615 * itimers in the signal delivery path to prevent DoS 616 * attacks in the high resolution timer case. This is 617 * compliant with the old way of self-restarting 618 * itimers, as the SIGALRM is a legacy signal and only 619 * queued once. Changing the restart behaviour to 620 * restart the timer in the signal dequeue path is 621 * reducing the timer noise on heavy loaded !highres 622 * systems too. 623 */ 624 if (unlikely(signr == SIGALRM)) { 625 struct hrtimer *tmr = &tsk->signal->real_timer; 626 627 if (!hrtimer_is_queued(tmr) && 628 tsk->signal->it_real_incr.tv64 != 0) { 629 hrtimer_forward(tmr, tmr->base->get_time(), 630 tsk->signal->it_real_incr); 631 hrtimer_restart(tmr); 632 } 633 } 634 } 635 636 recalc_sigpending(); 637 if (!signr) 638 return 0; 639 640 if (unlikely(sig_kernel_stop(signr))) { 641 /* 642 * Set a marker that we have dequeued a stop signal. Our 643 * caller might release the siglock and then the pending 644 * stop signal it is about to process is no longer in the 645 * pending bitmasks, but must still be cleared by a SIGCONT 646 * (and overruled by a SIGKILL). So those cases clear this 647 * shared flag after we've set it. Note that this flag may 648 * remain set after the signal we return is ignored or 649 * handled. That doesn't matter because its only purpose 650 * is to alert stop-signal processing code when another 651 * processor has come along and cleared the flag. 652 */ 653 current->jobctl |= JOBCTL_STOP_DEQUEUED; 654 } 655 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) { 656 /* 657 * Release the siglock to ensure proper locking order 658 * of timer locks outside of siglocks. Note, we leave 659 * irqs disabled here, since the posix-timers code is 660 * about to disable them again anyway. 661 */ 662 spin_unlock(&tsk->sighand->siglock); 663 do_schedule_next_timer(info); 664 spin_lock(&tsk->sighand->siglock); 665 } 666 return signr; 667 } 668 669 /* 670 * Tell a process that it has a new active signal.. 671 * 672 * NOTE! we rely on the previous spin_lock to 673 * lock interrupts for us! We can only be called with 674 * "siglock" held, and the local interrupt must 675 * have been disabled when that got acquired! 676 * 677 * No need to set need_resched since signal event passing 678 * goes through ->blocked 679 */ 680 void signal_wake_up(struct task_struct *t, int resume) 681 { 682 unsigned int mask; 683 684 set_tsk_thread_flag(t, TIF_SIGPENDING); 685 686 /* 687 * For SIGKILL, we want to wake it up in the stopped/traced/killable 688 * case. We don't check t->state here because there is a race with it 689 * executing another processor and just now entering stopped state. 690 * By using wake_up_state, we ensure the process will wake up and 691 * handle its death signal. 692 */ 693 mask = TASK_INTERRUPTIBLE; 694 if (resume) 695 mask |= TASK_WAKEKILL; 696 if (!wake_up_state(t, mask)) 697 kick_process(t); 698 } 699 700 /* 701 * Remove signals in mask from the pending set and queue. 702 * Returns 1 if any signals were found. 703 * 704 * All callers must be holding the siglock. 705 * 706 * This version takes a sigset mask and looks at all signals, 707 * not just those in the first mask word. 708 */ 709 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s) 710 { 711 struct sigqueue *q, *n; 712 sigset_t m; 713 714 sigandsets(&m, mask, &s->signal); 715 if (sigisemptyset(&m)) 716 return 0; 717 718 sigandnsets(&s->signal, &s->signal, mask); 719 list_for_each_entry_safe(q, n, &s->list, list) { 720 if (sigismember(mask, q->info.si_signo)) { 721 list_del_init(&q->list); 722 __sigqueue_free(q); 723 } 724 } 725 return 1; 726 } 727 /* 728 * Remove signals in mask from the pending set and queue. 729 * Returns 1 if any signals were found. 730 * 731 * All callers must be holding the siglock. 732 */ 733 static int rm_from_queue(unsigned long mask, struct sigpending *s) 734 { 735 struct sigqueue *q, *n; 736 737 if (!sigtestsetmask(&s->signal, mask)) 738 return 0; 739 740 sigdelsetmask(&s->signal, mask); 741 list_for_each_entry_safe(q, n, &s->list, list) { 742 if (q->info.si_signo < SIGRTMIN && 743 (mask & sigmask(q->info.si_signo))) { 744 list_del_init(&q->list); 745 __sigqueue_free(q); 746 } 747 } 748 return 1; 749 } 750 751 static inline int is_si_special(const struct siginfo *info) 752 { 753 return info <= SEND_SIG_FORCED; 754 } 755 756 static inline bool si_fromuser(const struct siginfo *info) 757 { 758 return info == SEND_SIG_NOINFO || 759 (!is_si_special(info) && SI_FROMUSER(info)); 760 } 761 762 /* 763 * called with RCU read lock from check_kill_permission() 764 */ 765 static int kill_ok_by_cred(struct task_struct *t) 766 { 767 const struct cred *cred = current_cred(); 768 const struct cred *tcred = __task_cred(t); 769 770 if (cred->user->user_ns == tcred->user->user_ns && 771 (cred->euid == tcred->suid || 772 cred->euid == tcred->uid || 773 cred->uid == tcred->suid || 774 cred->uid == tcred->uid)) 775 return 1; 776 777 if (ns_capable(tcred->user->user_ns, CAP_KILL)) 778 return 1; 779 780 return 0; 781 } 782 783 /* 784 * Bad permissions for sending the signal 785 * - the caller must hold the RCU read lock 786 */ 787 static int check_kill_permission(int sig, struct siginfo *info, 788 struct task_struct *t) 789 { 790 struct pid *sid; 791 int error; 792 793 if (!valid_signal(sig)) 794 return -EINVAL; 795 796 if (!si_fromuser(info)) 797 return 0; 798 799 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 800 if (error) 801 return error; 802 803 if (!same_thread_group(current, t) && 804 !kill_ok_by_cred(t)) { 805 switch (sig) { 806 case SIGCONT: 807 sid = task_session(t); 808 /* 809 * We don't return the error if sid == NULL. The 810 * task was unhashed, the caller must notice this. 811 */ 812 if (!sid || sid == task_session(current)) 813 break; 814 default: 815 return -EPERM; 816 } 817 } 818 819 return security_task_kill(t, info, sig, 0); 820 } 821 822 /** 823 * ptrace_trap_notify - schedule trap to notify ptracer 824 * @t: tracee wanting to notify tracer 825 * 826 * This function schedules sticky ptrace trap which is cleared on the next 827 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 828 * ptracer. 829 * 830 * If @t is running, STOP trap will be taken. If trapped for STOP and 831 * ptracer is listening for events, tracee is woken up so that it can 832 * re-trap for the new event. If trapped otherwise, STOP trap will be 833 * eventually taken without returning to userland after the existing traps 834 * are finished by PTRACE_CONT. 835 * 836 * CONTEXT: 837 * Must be called with @task->sighand->siglock held. 838 */ 839 static void ptrace_trap_notify(struct task_struct *t) 840 { 841 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 842 assert_spin_locked(&t->sighand->siglock); 843 844 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 845 signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 846 } 847 848 /* 849 * Handle magic process-wide effects of stop/continue signals. Unlike 850 * the signal actions, these happen immediately at signal-generation 851 * time regardless of blocking, ignoring, or handling. This does the 852 * actual continuing for SIGCONT, but not the actual stopping for stop 853 * signals. The process stop is done as a signal action for SIG_DFL. 854 * 855 * Returns true if the signal should be actually delivered, otherwise 856 * it should be dropped. 857 */ 858 static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns) 859 { 860 struct signal_struct *signal = p->signal; 861 struct task_struct *t; 862 863 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) { 864 /* 865 * The process is in the middle of dying, nothing to do. 866 */ 867 } else if (sig_kernel_stop(sig)) { 868 /* 869 * This is a stop signal. Remove SIGCONT from all queues. 870 */ 871 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending); 872 t = p; 873 do { 874 rm_from_queue(sigmask(SIGCONT), &t->pending); 875 } while_each_thread(p, t); 876 } else if (sig == SIGCONT) { 877 unsigned int why; 878 /* 879 * Remove all stop signals from all queues, wake all threads. 880 */ 881 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending); 882 t = p; 883 do { 884 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 885 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 886 if (likely(!(t->ptrace & PT_SEIZED))) 887 wake_up_state(t, __TASK_STOPPED); 888 else 889 ptrace_trap_notify(t); 890 } while_each_thread(p, t); 891 892 /* 893 * Notify the parent with CLD_CONTINUED if we were stopped. 894 * 895 * If we were in the middle of a group stop, we pretend it 896 * was already finished, and then continued. Since SIGCHLD 897 * doesn't queue we report only CLD_STOPPED, as if the next 898 * CLD_CONTINUED was dropped. 899 */ 900 why = 0; 901 if (signal->flags & SIGNAL_STOP_STOPPED) 902 why |= SIGNAL_CLD_CONTINUED; 903 else if (signal->group_stop_count) 904 why |= SIGNAL_CLD_STOPPED; 905 906 if (why) { 907 /* 908 * The first thread which returns from do_signal_stop() 909 * will take ->siglock, notice SIGNAL_CLD_MASK, and 910 * notify its parent. See get_signal_to_deliver(). 911 */ 912 signal->flags = why | SIGNAL_STOP_CONTINUED; 913 signal->group_stop_count = 0; 914 signal->group_exit_code = 0; 915 } 916 } 917 918 return !sig_ignored(p, sig, from_ancestor_ns); 919 } 920 921 /* 922 * Test if P wants to take SIG. After we've checked all threads with this, 923 * it's equivalent to finding no threads not blocking SIG. Any threads not 924 * blocking SIG were ruled out because they are not running and already 925 * have pending signals. Such threads will dequeue from the shared queue 926 * as soon as they're available, so putting the signal on the shared queue 927 * will be equivalent to sending it to one such thread. 928 */ 929 static inline int wants_signal(int sig, struct task_struct *p) 930 { 931 if (sigismember(&p->blocked, sig)) 932 return 0; 933 if (p->flags & PF_EXITING) 934 return 0; 935 if (sig == SIGKILL) 936 return 1; 937 if (task_is_stopped_or_traced(p)) 938 return 0; 939 return task_curr(p) || !signal_pending(p); 940 } 941 942 static void complete_signal(int sig, struct task_struct *p, int group) 943 { 944 struct signal_struct *signal = p->signal; 945 struct task_struct *t; 946 947 /* 948 * Now find a thread we can wake up to take the signal off the queue. 949 * 950 * If the main thread wants the signal, it gets first crack. 951 * Probably the least surprising to the average bear. 952 */ 953 if (wants_signal(sig, p)) 954 t = p; 955 else if (!group || thread_group_empty(p)) 956 /* 957 * There is just one thread and it does not need to be woken. 958 * It will dequeue unblocked signals before it runs again. 959 */ 960 return; 961 else { 962 /* 963 * Otherwise try to find a suitable thread. 964 */ 965 t = signal->curr_target; 966 while (!wants_signal(sig, t)) { 967 t = next_thread(t); 968 if (t == signal->curr_target) 969 /* 970 * No thread needs to be woken. 971 * Any eligible threads will see 972 * the signal in the queue soon. 973 */ 974 return; 975 } 976 signal->curr_target = t; 977 } 978 979 /* 980 * Found a killable thread. If the signal will be fatal, 981 * then start taking the whole group down immediately. 982 */ 983 if (sig_fatal(p, sig) && 984 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) && 985 !sigismember(&t->real_blocked, sig) && 986 (sig == SIGKILL || !t->ptrace)) { 987 /* 988 * This signal will be fatal to the whole group. 989 */ 990 if (!sig_kernel_coredump(sig)) { 991 /* 992 * Start a group exit and wake everybody up. 993 * This way we don't have other threads 994 * running and doing things after a slower 995 * thread has the fatal signal pending. 996 */ 997 signal->flags = SIGNAL_GROUP_EXIT; 998 signal->group_exit_code = sig; 999 signal->group_stop_count = 0; 1000 t = p; 1001 do { 1002 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1003 sigaddset(&t->pending.signal, SIGKILL); 1004 signal_wake_up(t, 1); 1005 } while_each_thread(p, t); 1006 return; 1007 } 1008 } 1009 1010 /* 1011 * The signal is already in the shared-pending queue. 1012 * Tell the chosen thread to wake up and dequeue it. 1013 */ 1014 signal_wake_up(t, sig == SIGKILL); 1015 return; 1016 } 1017 1018 static inline int legacy_queue(struct sigpending *signals, int sig) 1019 { 1020 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1021 } 1022 1023 /* 1024 * map the uid in struct cred into user namespace *ns 1025 */ 1026 static inline uid_t map_cred_ns(const struct cred *cred, 1027 struct user_namespace *ns) 1028 { 1029 return user_ns_map_uid(ns, cred, cred->uid); 1030 } 1031 1032 #ifdef CONFIG_USER_NS 1033 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 1034 { 1035 if (current_user_ns() == task_cred_xxx(t, user_ns)) 1036 return; 1037 1038 if (SI_FROMKERNEL(info)) 1039 return; 1040 1041 info->si_uid = user_ns_map_uid(task_cred_xxx(t, user_ns), 1042 current_cred(), info->si_uid); 1043 } 1044 #else 1045 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 1046 { 1047 return; 1048 } 1049 #endif 1050 1051 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t, 1052 int group, int from_ancestor_ns) 1053 { 1054 struct sigpending *pending; 1055 struct sigqueue *q; 1056 int override_rlimit; 1057 1058 trace_signal_generate(sig, info, t); 1059 1060 assert_spin_locked(&t->sighand->siglock); 1061 1062 if (!prepare_signal(sig, t, from_ancestor_ns)) 1063 return 0; 1064 1065 pending = group ? &t->signal->shared_pending : &t->pending; 1066 /* 1067 * Short-circuit ignored signals and support queuing 1068 * exactly one non-rt signal, so that we can get more 1069 * detailed information about the cause of the signal. 1070 */ 1071 if (legacy_queue(pending, sig)) 1072 return 0; 1073 /* 1074 * fast-pathed signals for kernel-internal things like SIGSTOP 1075 * or SIGKILL. 1076 */ 1077 if (info == SEND_SIG_FORCED) 1078 goto out_set; 1079 1080 /* 1081 * Real-time signals must be queued if sent by sigqueue, or 1082 * some other real-time mechanism. It is implementation 1083 * defined whether kill() does so. We attempt to do so, on 1084 * the principle of least surprise, but since kill is not 1085 * allowed to fail with EAGAIN when low on memory we just 1086 * make sure at least one signal gets delivered and don't 1087 * pass on the info struct. 1088 */ 1089 if (sig < SIGRTMIN) 1090 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1091 else 1092 override_rlimit = 0; 1093 1094 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE, 1095 override_rlimit); 1096 if (q) { 1097 list_add_tail(&q->list, &pending->list); 1098 switch ((unsigned long) info) { 1099 case (unsigned long) SEND_SIG_NOINFO: 1100 q->info.si_signo = sig; 1101 q->info.si_errno = 0; 1102 q->info.si_code = SI_USER; 1103 q->info.si_pid = task_tgid_nr_ns(current, 1104 task_active_pid_ns(t)); 1105 q->info.si_uid = current_uid(); 1106 break; 1107 case (unsigned long) SEND_SIG_PRIV: 1108 q->info.si_signo = sig; 1109 q->info.si_errno = 0; 1110 q->info.si_code = SI_KERNEL; 1111 q->info.si_pid = 0; 1112 q->info.si_uid = 0; 1113 break; 1114 default: 1115 copy_siginfo(&q->info, info); 1116 if (from_ancestor_ns) 1117 q->info.si_pid = 0; 1118 break; 1119 } 1120 1121 userns_fixup_signal_uid(&q->info, t); 1122 1123 } else if (!is_si_special(info)) { 1124 if (sig >= SIGRTMIN && info->si_code != SI_USER) { 1125 /* 1126 * Queue overflow, abort. We may abort if the 1127 * signal was rt and sent by user using something 1128 * other than kill(). 1129 */ 1130 trace_signal_overflow_fail(sig, group, info); 1131 return -EAGAIN; 1132 } else { 1133 /* 1134 * This is a silent loss of information. We still 1135 * send the signal, but the *info bits are lost. 1136 */ 1137 trace_signal_lose_info(sig, group, info); 1138 } 1139 } 1140 1141 out_set: 1142 signalfd_notify(t, sig); 1143 sigaddset(&pending->signal, sig); 1144 complete_signal(sig, t, group); 1145 return 0; 1146 } 1147 1148 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 1149 int group) 1150 { 1151 int from_ancestor_ns = 0; 1152 1153 #ifdef CONFIG_PID_NS 1154 from_ancestor_ns = si_fromuser(info) && 1155 !task_pid_nr_ns(current, task_active_pid_ns(t)); 1156 #endif 1157 1158 return __send_signal(sig, info, t, group, from_ancestor_ns); 1159 } 1160 1161 static void print_fatal_signal(struct pt_regs *regs, int signr) 1162 { 1163 printk("%s/%d: potentially unexpected fatal signal %d.\n", 1164 current->comm, task_pid_nr(current), signr); 1165 1166 #if defined(__i386__) && !defined(__arch_um__) 1167 printk("code at %08lx: ", regs->ip); 1168 { 1169 int i; 1170 for (i = 0; i < 16; i++) { 1171 unsigned char insn; 1172 1173 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1174 break; 1175 printk("%02x ", insn); 1176 } 1177 } 1178 #endif 1179 printk("\n"); 1180 preempt_disable(); 1181 show_regs(regs); 1182 preempt_enable(); 1183 } 1184 1185 static int __init setup_print_fatal_signals(char *str) 1186 { 1187 get_option (&str, &print_fatal_signals); 1188 1189 return 1; 1190 } 1191 1192 __setup("print-fatal-signals=", setup_print_fatal_signals); 1193 1194 int 1195 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1196 { 1197 return send_signal(sig, info, p, 1); 1198 } 1199 1200 static int 1201 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1202 { 1203 return send_signal(sig, info, t, 0); 1204 } 1205 1206 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p, 1207 bool group) 1208 { 1209 unsigned long flags; 1210 int ret = -ESRCH; 1211 1212 if (lock_task_sighand(p, &flags)) { 1213 ret = send_signal(sig, info, p, group); 1214 unlock_task_sighand(p, &flags); 1215 } 1216 1217 return ret; 1218 } 1219 1220 /* 1221 * Force a signal that the process can't ignore: if necessary 1222 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1223 * 1224 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1225 * since we do not want to have a signal handler that was blocked 1226 * be invoked when user space had explicitly blocked it. 1227 * 1228 * We don't want to have recursive SIGSEGV's etc, for example, 1229 * that is why we also clear SIGNAL_UNKILLABLE. 1230 */ 1231 int 1232 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1233 { 1234 unsigned long int flags; 1235 int ret, blocked, ignored; 1236 struct k_sigaction *action; 1237 1238 spin_lock_irqsave(&t->sighand->siglock, flags); 1239 action = &t->sighand->action[sig-1]; 1240 ignored = action->sa.sa_handler == SIG_IGN; 1241 blocked = sigismember(&t->blocked, sig); 1242 if (blocked || ignored) { 1243 action->sa.sa_handler = SIG_DFL; 1244 if (blocked) { 1245 sigdelset(&t->blocked, sig); 1246 recalc_sigpending_and_wake(t); 1247 } 1248 } 1249 if (action->sa.sa_handler == SIG_DFL) 1250 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1251 ret = specific_send_sig_info(sig, info, t); 1252 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1253 1254 return ret; 1255 } 1256 1257 /* 1258 * Nuke all other threads in the group. 1259 */ 1260 int zap_other_threads(struct task_struct *p) 1261 { 1262 struct task_struct *t = p; 1263 int count = 0; 1264 1265 p->signal->group_stop_count = 0; 1266 1267 while_each_thread(p, t) { 1268 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1269 count++; 1270 1271 /* Don't bother with already dead threads */ 1272 if (t->exit_state) 1273 continue; 1274 sigaddset(&t->pending.signal, SIGKILL); 1275 signal_wake_up(t, 1); 1276 } 1277 1278 return count; 1279 } 1280 1281 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1282 unsigned long *flags) 1283 { 1284 struct sighand_struct *sighand; 1285 1286 for (;;) { 1287 local_irq_save(*flags); 1288 rcu_read_lock(); 1289 sighand = rcu_dereference(tsk->sighand); 1290 if (unlikely(sighand == NULL)) { 1291 rcu_read_unlock(); 1292 local_irq_restore(*flags); 1293 break; 1294 } 1295 1296 spin_lock(&sighand->siglock); 1297 if (likely(sighand == tsk->sighand)) { 1298 rcu_read_unlock(); 1299 break; 1300 } 1301 spin_unlock(&sighand->siglock); 1302 rcu_read_unlock(); 1303 local_irq_restore(*flags); 1304 } 1305 1306 return sighand; 1307 } 1308 1309 /* 1310 * send signal info to all the members of a group 1311 */ 1312 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1313 { 1314 int ret; 1315 1316 rcu_read_lock(); 1317 ret = check_kill_permission(sig, info, p); 1318 rcu_read_unlock(); 1319 1320 if (!ret && sig) 1321 ret = do_send_sig_info(sig, info, p, true); 1322 1323 return ret; 1324 } 1325 1326 /* 1327 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1328 * control characters do (^C, ^Z etc) 1329 * - the caller must hold at least a readlock on tasklist_lock 1330 */ 1331 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1332 { 1333 struct task_struct *p = NULL; 1334 int retval, success; 1335 1336 success = 0; 1337 retval = -ESRCH; 1338 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1339 int err = group_send_sig_info(sig, info, p); 1340 success |= !err; 1341 retval = err; 1342 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1343 return success ? 0 : retval; 1344 } 1345 1346 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) 1347 { 1348 int error = -ESRCH; 1349 struct task_struct *p; 1350 1351 rcu_read_lock(); 1352 retry: 1353 p = pid_task(pid, PIDTYPE_PID); 1354 if (p) { 1355 error = group_send_sig_info(sig, info, p); 1356 if (unlikely(error == -ESRCH)) 1357 /* 1358 * The task was unhashed in between, try again. 1359 * If it is dead, pid_task() will return NULL, 1360 * if we race with de_thread() it will find the 1361 * new leader. 1362 */ 1363 goto retry; 1364 } 1365 rcu_read_unlock(); 1366 1367 return error; 1368 } 1369 1370 int kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1371 { 1372 int error; 1373 rcu_read_lock(); 1374 error = kill_pid_info(sig, info, find_vpid(pid)); 1375 rcu_read_unlock(); 1376 return error; 1377 } 1378 1379 static int kill_as_cred_perm(const struct cred *cred, 1380 struct task_struct *target) 1381 { 1382 const struct cred *pcred = __task_cred(target); 1383 if (cred->user_ns != pcred->user_ns) 1384 return 0; 1385 if (cred->euid != pcred->suid && cred->euid != pcred->uid && 1386 cred->uid != pcred->suid && cred->uid != pcred->uid) 1387 return 0; 1388 return 1; 1389 } 1390 1391 /* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1392 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid, 1393 const struct cred *cred, u32 secid) 1394 { 1395 int ret = -EINVAL; 1396 struct task_struct *p; 1397 unsigned long flags; 1398 1399 if (!valid_signal(sig)) 1400 return ret; 1401 1402 rcu_read_lock(); 1403 p = pid_task(pid, PIDTYPE_PID); 1404 if (!p) { 1405 ret = -ESRCH; 1406 goto out_unlock; 1407 } 1408 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) { 1409 ret = -EPERM; 1410 goto out_unlock; 1411 } 1412 ret = security_task_kill(p, info, sig, secid); 1413 if (ret) 1414 goto out_unlock; 1415 1416 if (sig) { 1417 if (lock_task_sighand(p, &flags)) { 1418 ret = __send_signal(sig, info, p, 1, 0); 1419 unlock_task_sighand(p, &flags); 1420 } else 1421 ret = -ESRCH; 1422 } 1423 out_unlock: 1424 rcu_read_unlock(); 1425 return ret; 1426 } 1427 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred); 1428 1429 /* 1430 * kill_something_info() interprets pid in interesting ways just like kill(2). 1431 * 1432 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1433 * is probably wrong. Should make it like BSD or SYSV. 1434 */ 1435 1436 static int kill_something_info(int sig, struct siginfo *info, pid_t pid) 1437 { 1438 int ret; 1439 1440 if (pid > 0) { 1441 rcu_read_lock(); 1442 ret = kill_pid_info(sig, info, find_vpid(pid)); 1443 rcu_read_unlock(); 1444 return ret; 1445 } 1446 1447 read_lock(&tasklist_lock); 1448 if (pid != -1) { 1449 ret = __kill_pgrp_info(sig, info, 1450 pid ? find_vpid(-pid) : task_pgrp(current)); 1451 } else { 1452 int retval = 0, count = 0; 1453 struct task_struct * p; 1454 1455 for_each_process(p) { 1456 if (task_pid_vnr(p) > 1 && 1457 !same_thread_group(p, current)) { 1458 int err = group_send_sig_info(sig, info, p); 1459 ++count; 1460 if (err != -EPERM) 1461 retval = err; 1462 } 1463 } 1464 ret = count ? retval : -ESRCH; 1465 } 1466 read_unlock(&tasklist_lock); 1467 1468 return ret; 1469 } 1470 1471 /* 1472 * These are for backward compatibility with the rest of the kernel source. 1473 */ 1474 1475 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1476 { 1477 /* 1478 * Make sure legacy kernel users don't send in bad values 1479 * (normal paths check this in check_kill_permission). 1480 */ 1481 if (!valid_signal(sig)) 1482 return -EINVAL; 1483 1484 return do_send_sig_info(sig, info, p, false); 1485 } 1486 1487 #define __si_special(priv) \ 1488 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1489 1490 int 1491 send_sig(int sig, struct task_struct *p, int priv) 1492 { 1493 return send_sig_info(sig, __si_special(priv), p); 1494 } 1495 1496 void 1497 force_sig(int sig, struct task_struct *p) 1498 { 1499 force_sig_info(sig, SEND_SIG_PRIV, p); 1500 } 1501 1502 /* 1503 * When things go south during signal handling, we 1504 * will force a SIGSEGV. And if the signal that caused 1505 * the problem was already a SIGSEGV, we'll want to 1506 * make sure we don't even try to deliver the signal.. 1507 */ 1508 int 1509 force_sigsegv(int sig, struct task_struct *p) 1510 { 1511 if (sig == SIGSEGV) { 1512 unsigned long flags; 1513 spin_lock_irqsave(&p->sighand->siglock, flags); 1514 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1515 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1516 } 1517 force_sig(SIGSEGV, p); 1518 return 0; 1519 } 1520 1521 int kill_pgrp(struct pid *pid, int sig, int priv) 1522 { 1523 int ret; 1524 1525 read_lock(&tasklist_lock); 1526 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1527 read_unlock(&tasklist_lock); 1528 1529 return ret; 1530 } 1531 EXPORT_SYMBOL(kill_pgrp); 1532 1533 int kill_pid(struct pid *pid, int sig, int priv) 1534 { 1535 return kill_pid_info(sig, __si_special(priv), pid); 1536 } 1537 EXPORT_SYMBOL(kill_pid); 1538 1539 /* 1540 * These functions support sending signals using preallocated sigqueue 1541 * structures. This is needed "because realtime applications cannot 1542 * afford to lose notifications of asynchronous events, like timer 1543 * expirations or I/O completions". In the case of POSIX Timers 1544 * we allocate the sigqueue structure from the timer_create. If this 1545 * allocation fails we are able to report the failure to the application 1546 * with an EAGAIN error. 1547 */ 1548 struct sigqueue *sigqueue_alloc(void) 1549 { 1550 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); 1551 1552 if (q) 1553 q->flags |= SIGQUEUE_PREALLOC; 1554 1555 return q; 1556 } 1557 1558 void sigqueue_free(struct sigqueue *q) 1559 { 1560 unsigned long flags; 1561 spinlock_t *lock = ¤t->sighand->siglock; 1562 1563 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1564 /* 1565 * We must hold ->siglock while testing q->list 1566 * to serialize with collect_signal() or with 1567 * __exit_signal()->flush_sigqueue(). 1568 */ 1569 spin_lock_irqsave(lock, flags); 1570 q->flags &= ~SIGQUEUE_PREALLOC; 1571 /* 1572 * If it is queued it will be freed when dequeued, 1573 * like the "regular" sigqueue. 1574 */ 1575 if (!list_empty(&q->list)) 1576 q = NULL; 1577 spin_unlock_irqrestore(lock, flags); 1578 1579 if (q) 1580 __sigqueue_free(q); 1581 } 1582 1583 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) 1584 { 1585 int sig = q->info.si_signo; 1586 struct sigpending *pending; 1587 unsigned long flags; 1588 int ret; 1589 1590 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1591 1592 ret = -1; 1593 if (!likely(lock_task_sighand(t, &flags))) 1594 goto ret; 1595 1596 ret = 1; /* the signal is ignored */ 1597 if (!prepare_signal(sig, t, 0)) 1598 goto out; 1599 1600 ret = 0; 1601 if (unlikely(!list_empty(&q->list))) { 1602 /* 1603 * If an SI_TIMER entry is already queue just increment 1604 * the overrun count. 1605 */ 1606 BUG_ON(q->info.si_code != SI_TIMER); 1607 q->info.si_overrun++; 1608 goto out; 1609 } 1610 q->info.si_overrun = 0; 1611 1612 signalfd_notify(t, sig); 1613 pending = group ? &t->signal->shared_pending : &t->pending; 1614 list_add_tail(&q->list, &pending->list); 1615 sigaddset(&pending->signal, sig); 1616 complete_signal(sig, t, group); 1617 out: 1618 unlock_task_sighand(t, &flags); 1619 ret: 1620 return ret; 1621 } 1622 1623 /* 1624 * Let a parent know about the death of a child. 1625 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1626 * 1627 * Returns true if our parent ignored us and so we've switched to 1628 * self-reaping. 1629 */ 1630 bool do_notify_parent(struct task_struct *tsk, int sig) 1631 { 1632 struct siginfo info; 1633 unsigned long flags; 1634 struct sighand_struct *psig; 1635 bool autoreap = false; 1636 1637 BUG_ON(sig == -1); 1638 1639 /* do_notify_parent_cldstop should have been called instead. */ 1640 BUG_ON(task_is_stopped_or_traced(tsk)); 1641 1642 BUG_ON(!tsk->ptrace && 1643 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1644 1645 info.si_signo = sig; 1646 info.si_errno = 0; 1647 /* 1648 * we are under tasklist_lock here so our parent is tied to 1649 * us and cannot exit and release its namespace. 1650 * 1651 * the only it can is to switch its nsproxy with sys_unshare, 1652 * bu uncharing pid namespaces is not allowed, so we'll always 1653 * see relevant namespace 1654 * 1655 * write_lock() currently calls preempt_disable() which is the 1656 * same as rcu_read_lock(), but according to Oleg, this is not 1657 * correct to rely on this 1658 */ 1659 rcu_read_lock(); 1660 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns); 1661 info.si_uid = map_cred_ns(__task_cred(tsk), 1662 task_cred_xxx(tsk->parent, user_ns)); 1663 rcu_read_unlock(); 1664 1665 info.si_utime = cputime_to_clock_t(tsk->utime + tsk->signal->utime); 1666 info.si_stime = cputime_to_clock_t(tsk->stime + tsk->signal->stime); 1667 1668 info.si_status = tsk->exit_code & 0x7f; 1669 if (tsk->exit_code & 0x80) 1670 info.si_code = CLD_DUMPED; 1671 else if (tsk->exit_code & 0x7f) 1672 info.si_code = CLD_KILLED; 1673 else { 1674 info.si_code = CLD_EXITED; 1675 info.si_status = tsk->exit_code >> 8; 1676 } 1677 1678 psig = tsk->parent->sighand; 1679 spin_lock_irqsave(&psig->siglock, flags); 1680 if (!tsk->ptrace && sig == SIGCHLD && 1681 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1682 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1683 /* 1684 * We are exiting and our parent doesn't care. POSIX.1 1685 * defines special semantics for setting SIGCHLD to SIG_IGN 1686 * or setting the SA_NOCLDWAIT flag: we should be reaped 1687 * automatically and not left for our parent's wait4 call. 1688 * Rather than having the parent do it as a magic kind of 1689 * signal handler, we just set this to tell do_exit that we 1690 * can be cleaned up without becoming a zombie. Note that 1691 * we still call __wake_up_parent in this case, because a 1692 * blocked sys_wait4 might now return -ECHILD. 1693 * 1694 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1695 * is implementation-defined: we do (if you don't want 1696 * it, just use SIG_IGN instead). 1697 */ 1698 autoreap = true; 1699 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1700 sig = 0; 1701 } 1702 if (valid_signal(sig) && sig) 1703 __group_send_sig_info(sig, &info, tsk->parent); 1704 __wake_up_parent(tsk, tsk->parent); 1705 spin_unlock_irqrestore(&psig->siglock, flags); 1706 1707 return autoreap; 1708 } 1709 1710 /** 1711 * do_notify_parent_cldstop - notify parent of stopped/continued state change 1712 * @tsk: task reporting the state change 1713 * @for_ptracer: the notification is for ptracer 1714 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 1715 * 1716 * Notify @tsk's parent that the stopped/continued state has changed. If 1717 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 1718 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 1719 * 1720 * CONTEXT: 1721 * Must be called with tasklist_lock at least read locked. 1722 */ 1723 static void do_notify_parent_cldstop(struct task_struct *tsk, 1724 bool for_ptracer, int why) 1725 { 1726 struct siginfo info; 1727 unsigned long flags; 1728 struct task_struct *parent; 1729 struct sighand_struct *sighand; 1730 1731 if (for_ptracer) { 1732 parent = tsk->parent; 1733 } else { 1734 tsk = tsk->group_leader; 1735 parent = tsk->real_parent; 1736 } 1737 1738 info.si_signo = SIGCHLD; 1739 info.si_errno = 0; 1740 /* 1741 * see comment in do_notify_parent() about the following 4 lines 1742 */ 1743 rcu_read_lock(); 1744 info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns); 1745 info.si_uid = map_cred_ns(__task_cred(tsk), 1746 task_cred_xxx(parent, user_ns)); 1747 rcu_read_unlock(); 1748 1749 info.si_utime = cputime_to_clock_t(tsk->utime); 1750 info.si_stime = cputime_to_clock_t(tsk->stime); 1751 1752 info.si_code = why; 1753 switch (why) { 1754 case CLD_CONTINUED: 1755 info.si_status = SIGCONT; 1756 break; 1757 case CLD_STOPPED: 1758 info.si_status = tsk->signal->group_exit_code & 0x7f; 1759 break; 1760 case CLD_TRAPPED: 1761 info.si_status = tsk->exit_code & 0x7f; 1762 break; 1763 default: 1764 BUG(); 1765 } 1766 1767 sighand = parent->sighand; 1768 spin_lock_irqsave(&sighand->siglock, flags); 1769 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1770 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1771 __group_send_sig_info(SIGCHLD, &info, parent); 1772 /* 1773 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1774 */ 1775 __wake_up_parent(tsk, parent); 1776 spin_unlock_irqrestore(&sighand->siglock, flags); 1777 } 1778 1779 static inline int may_ptrace_stop(void) 1780 { 1781 if (!likely(current->ptrace)) 1782 return 0; 1783 /* 1784 * Are we in the middle of do_coredump? 1785 * If so and our tracer is also part of the coredump stopping 1786 * is a deadlock situation, and pointless because our tracer 1787 * is dead so don't allow us to stop. 1788 * If SIGKILL was already sent before the caller unlocked 1789 * ->siglock we must see ->core_state != NULL. Otherwise it 1790 * is safe to enter schedule(). 1791 */ 1792 if (unlikely(current->mm->core_state) && 1793 unlikely(current->mm == current->parent->mm)) 1794 return 0; 1795 1796 return 1; 1797 } 1798 1799 /* 1800 * Return non-zero if there is a SIGKILL that should be waking us up. 1801 * Called with the siglock held. 1802 */ 1803 static int sigkill_pending(struct task_struct *tsk) 1804 { 1805 return sigismember(&tsk->pending.signal, SIGKILL) || 1806 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 1807 } 1808 1809 /* 1810 * This must be called with current->sighand->siglock held. 1811 * 1812 * This should be the path for all ptrace stops. 1813 * We always set current->last_siginfo while stopped here. 1814 * That makes it a way to test a stopped process for 1815 * being ptrace-stopped vs being job-control-stopped. 1816 * 1817 * If we actually decide not to stop at all because the tracer 1818 * is gone, we keep current->exit_code unless clear_code. 1819 */ 1820 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info) 1821 __releases(¤t->sighand->siglock) 1822 __acquires(¤t->sighand->siglock) 1823 { 1824 bool gstop_done = false; 1825 1826 if (arch_ptrace_stop_needed(exit_code, info)) { 1827 /* 1828 * The arch code has something special to do before a 1829 * ptrace stop. This is allowed to block, e.g. for faults 1830 * on user stack pages. We can't keep the siglock while 1831 * calling arch_ptrace_stop, so we must release it now. 1832 * To preserve proper semantics, we must do this before 1833 * any signal bookkeeping like checking group_stop_count. 1834 * Meanwhile, a SIGKILL could come in before we retake the 1835 * siglock. That must prevent us from sleeping in TASK_TRACED. 1836 * So after regaining the lock, we must check for SIGKILL. 1837 */ 1838 spin_unlock_irq(¤t->sighand->siglock); 1839 arch_ptrace_stop(exit_code, info); 1840 spin_lock_irq(¤t->sighand->siglock); 1841 if (sigkill_pending(current)) 1842 return; 1843 } 1844 1845 /* 1846 * We're committing to trapping. TRACED should be visible before 1847 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 1848 * Also, transition to TRACED and updates to ->jobctl should be 1849 * atomic with respect to siglock and should be done after the arch 1850 * hook as siglock is released and regrabbed across it. 1851 */ 1852 set_current_state(TASK_TRACED); 1853 1854 current->last_siginfo = info; 1855 current->exit_code = exit_code; 1856 1857 /* 1858 * If @why is CLD_STOPPED, we're trapping to participate in a group 1859 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 1860 * across siglock relocks since INTERRUPT was scheduled, PENDING 1861 * could be clear now. We act as if SIGCONT is received after 1862 * TASK_TRACED is entered - ignore it. 1863 */ 1864 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 1865 gstop_done = task_participate_group_stop(current); 1866 1867 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 1868 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 1869 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 1870 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 1871 1872 /* entering a trap, clear TRAPPING */ 1873 task_clear_jobctl_trapping(current); 1874 1875 spin_unlock_irq(¤t->sighand->siglock); 1876 read_lock(&tasklist_lock); 1877 if (may_ptrace_stop()) { 1878 /* 1879 * Notify parents of the stop. 1880 * 1881 * While ptraced, there are two parents - the ptracer and 1882 * the real_parent of the group_leader. The ptracer should 1883 * know about every stop while the real parent is only 1884 * interested in the completion of group stop. The states 1885 * for the two don't interact with each other. Notify 1886 * separately unless they're gonna be duplicates. 1887 */ 1888 do_notify_parent_cldstop(current, true, why); 1889 if (gstop_done && ptrace_reparented(current)) 1890 do_notify_parent_cldstop(current, false, why); 1891 1892 /* 1893 * Don't want to allow preemption here, because 1894 * sys_ptrace() needs this task to be inactive. 1895 * 1896 * XXX: implement read_unlock_no_resched(). 1897 */ 1898 preempt_disable(); 1899 read_unlock(&tasklist_lock); 1900 preempt_enable_no_resched(); 1901 schedule(); 1902 } else { 1903 /* 1904 * By the time we got the lock, our tracer went away. 1905 * Don't drop the lock yet, another tracer may come. 1906 * 1907 * If @gstop_done, the ptracer went away between group stop 1908 * completion and here. During detach, it would have set 1909 * JOBCTL_STOP_PENDING on us and we'll re-enter 1910 * TASK_STOPPED in do_signal_stop() on return, so notifying 1911 * the real parent of the group stop completion is enough. 1912 */ 1913 if (gstop_done) 1914 do_notify_parent_cldstop(current, false, why); 1915 1916 __set_current_state(TASK_RUNNING); 1917 if (clear_code) 1918 current->exit_code = 0; 1919 read_unlock(&tasklist_lock); 1920 } 1921 1922 /* 1923 * While in TASK_TRACED, we were considered "frozen enough". 1924 * Now that we woke up, it's crucial if we're supposed to be 1925 * frozen that we freeze now before running anything substantial. 1926 */ 1927 try_to_freeze(); 1928 1929 /* 1930 * We are back. Now reacquire the siglock before touching 1931 * last_siginfo, so that we are sure to have synchronized with 1932 * any signal-sending on another CPU that wants to examine it. 1933 */ 1934 spin_lock_irq(¤t->sighand->siglock); 1935 current->last_siginfo = NULL; 1936 1937 /* LISTENING can be set only during STOP traps, clear it */ 1938 current->jobctl &= ~JOBCTL_LISTENING; 1939 1940 /* 1941 * Queued signals ignored us while we were stopped for tracing. 1942 * So check for any that we should take before resuming user mode. 1943 * This sets TIF_SIGPENDING, but never clears it. 1944 */ 1945 recalc_sigpending_tsk(current); 1946 } 1947 1948 static void ptrace_do_notify(int signr, int exit_code, int why) 1949 { 1950 siginfo_t info; 1951 1952 memset(&info, 0, sizeof info); 1953 info.si_signo = signr; 1954 info.si_code = exit_code; 1955 info.si_pid = task_pid_vnr(current); 1956 info.si_uid = current_uid(); 1957 1958 /* Let the debugger run. */ 1959 ptrace_stop(exit_code, why, 1, &info); 1960 } 1961 1962 void ptrace_notify(int exit_code) 1963 { 1964 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1965 1966 spin_lock_irq(¤t->sighand->siglock); 1967 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 1968 spin_unlock_irq(¤t->sighand->siglock); 1969 } 1970 1971 /** 1972 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 1973 * @signr: signr causing group stop if initiating 1974 * 1975 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 1976 * and participate in it. If already set, participate in the existing 1977 * group stop. If participated in a group stop (and thus slept), %true is 1978 * returned with siglock released. 1979 * 1980 * If ptraced, this function doesn't handle stop itself. Instead, 1981 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 1982 * untouched. The caller must ensure that INTERRUPT trap handling takes 1983 * places afterwards. 1984 * 1985 * CONTEXT: 1986 * Must be called with @current->sighand->siglock held, which is released 1987 * on %true return. 1988 * 1989 * RETURNS: 1990 * %false if group stop is already cancelled or ptrace trap is scheduled. 1991 * %true if participated in group stop. 1992 */ 1993 static bool do_signal_stop(int signr) 1994 __releases(¤t->sighand->siglock) 1995 { 1996 struct signal_struct *sig = current->signal; 1997 1998 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 1999 unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2000 struct task_struct *t; 2001 2002 /* signr will be recorded in task->jobctl for retries */ 2003 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2004 2005 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2006 unlikely(signal_group_exit(sig))) 2007 return false; 2008 /* 2009 * There is no group stop already in progress. We must 2010 * initiate one now. 2011 * 2012 * While ptraced, a task may be resumed while group stop is 2013 * still in effect and then receive a stop signal and 2014 * initiate another group stop. This deviates from the 2015 * usual behavior as two consecutive stop signals can't 2016 * cause two group stops when !ptraced. That is why we 2017 * also check !task_is_stopped(t) below. 2018 * 2019 * The condition can be distinguished by testing whether 2020 * SIGNAL_STOP_STOPPED is already set. Don't generate 2021 * group_exit_code in such case. 2022 * 2023 * This is not necessary for SIGNAL_STOP_CONTINUED because 2024 * an intervening stop signal is required to cause two 2025 * continued events regardless of ptrace. 2026 */ 2027 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2028 sig->group_exit_code = signr; 2029 2030 sig->group_stop_count = 0; 2031 2032 if (task_set_jobctl_pending(current, signr | gstop)) 2033 sig->group_stop_count++; 2034 2035 for (t = next_thread(current); t != current; 2036 t = next_thread(t)) { 2037 /* 2038 * Setting state to TASK_STOPPED for a group 2039 * stop is always done with the siglock held, 2040 * so this check has no races. 2041 */ 2042 if (!task_is_stopped(t) && 2043 task_set_jobctl_pending(t, signr | gstop)) { 2044 sig->group_stop_count++; 2045 if (likely(!(t->ptrace & PT_SEIZED))) 2046 signal_wake_up(t, 0); 2047 else 2048 ptrace_trap_notify(t); 2049 } 2050 } 2051 } 2052 2053 if (likely(!current->ptrace)) { 2054 int notify = 0; 2055 2056 /* 2057 * If there are no other threads in the group, or if there 2058 * is a group stop in progress and we are the last to stop, 2059 * report to the parent. 2060 */ 2061 if (task_participate_group_stop(current)) 2062 notify = CLD_STOPPED; 2063 2064 __set_current_state(TASK_STOPPED); 2065 spin_unlock_irq(¤t->sighand->siglock); 2066 2067 /* 2068 * Notify the parent of the group stop completion. Because 2069 * we're not holding either the siglock or tasklist_lock 2070 * here, ptracer may attach inbetween; however, this is for 2071 * group stop and should always be delivered to the real 2072 * parent of the group leader. The new ptracer will get 2073 * its notification when this task transitions into 2074 * TASK_TRACED. 2075 */ 2076 if (notify) { 2077 read_lock(&tasklist_lock); 2078 do_notify_parent_cldstop(current, false, notify); 2079 read_unlock(&tasklist_lock); 2080 } 2081 2082 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2083 schedule(); 2084 return true; 2085 } else { 2086 /* 2087 * While ptraced, group stop is handled by STOP trap. 2088 * Schedule it and let the caller deal with it. 2089 */ 2090 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2091 return false; 2092 } 2093 } 2094 2095 /** 2096 * do_jobctl_trap - take care of ptrace jobctl traps 2097 * 2098 * When PT_SEIZED, it's used for both group stop and explicit 2099 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2100 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2101 * the stop signal; otherwise, %SIGTRAP. 2102 * 2103 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2104 * number as exit_code and no siginfo. 2105 * 2106 * CONTEXT: 2107 * Must be called with @current->sighand->siglock held, which may be 2108 * released and re-acquired before returning with intervening sleep. 2109 */ 2110 static void do_jobctl_trap(void) 2111 { 2112 struct signal_struct *signal = current->signal; 2113 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2114 2115 if (current->ptrace & PT_SEIZED) { 2116 if (!signal->group_stop_count && 2117 !(signal->flags & SIGNAL_STOP_STOPPED)) 2118 signr = SIGTRAP; 2119 WARN_ON_ONCE(!signr); 2120 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2121 CLD_STOPPED); 2122 } else { 2123 WARN_ON_ONCE(!signr); 2124 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2125 current->exit_code = 0; 2126 } 2127 } 2128 2129 static int ptrace_signal(int signr, siginfo_t *info, 2130 struct pt_regs *regs, void *cookie) 2131 { 2132 ptrace_signal_deliver(regs, cookie); 2133 /* 2134 * We do not check sig_kernel_stop(signr) but set this marker 2135 * unconditionally because we do not know whether debugger will 2136 * change signr. This flag has no meaning unless we are going 2137 * to stop after return from ptrace_stop(). In this case it will 2138 * be checked in do_signal_stop(), we should only stop if it was 2139 * not cleared by SIGCONT while we were sleeping. See also the 2140 * comment in dequeue_signal(). 2141 */ 2142 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2143 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2144 2145 /* We're back. Did the debugger cancel the sig? */ 2146 signr = current->exit_code; 2147 if (signr == 0) 2148 return signr; 2149 2150 current->exit_code = 0; 2151 2152 /* 2153 * Update the siginfo structure if the signal has 2154 * changed. If the debugger wanted something 2155 * specific in the siginfo structure then it should 2156 * have updated *info via PTRACE_SETSIGINFO. 2157 */ 2158 if (signr != info->si_signo) { 2159 info->si_signo = signr; 2160 info->si_errno = 0; 2161 info->si_code = SI_USER; 2162 rcu_read_lock(); 2163 info->si_pid = task_pid_vnr(current->parent); 2164 info->si_uid = map_cred_ns(__task_cred(current->parent), 2165 current_user_ns()); 2166 rcu_read_unlock(); 2167 } 2168 2169 /* If the (new) signal is now blocked, requeue it. */ 2170 if (sigismember(¤t->blocked, signr)) { 2171 specific_send_sig_info(signr, info, current); 2172 signr = 0; 2173 } 2174 2175 return signr; 2176 } 2177 2178 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, 2179 struct pt_regs *regs, void *cookie) 2180 { 2181 struct sighand_struct *sighand = current->sighand; 2182 struct signal_struct *signal = current->signal; 2183 int signr; 2184 2185 relock: 2186 /* 2187 * We'll jump back here after any time we were stopped in TASK_STOPPED. 2188 * While in TASK_STOPPED, we were considered "frozen enough". 2189 * Now that we woke up, it's crucial if we're supposed to be 2190 * frozen that we freeze now before running anything substantial. 2191 */ 2192 try_to_freeze(); 2193 2194 spin_lock_irq(&sighand->siglock); 2195 /* 2196 * Every stopped thread goes here after wakeup. Check to see if 2197 * we should notify the parent, prepare_signal(SIGCONT) encodes 2198 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2199 */ 2200 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2201 int why; 2202 2203 if (signal->flags & SIGNAL_CLD_CONTINUED) 2204 why = CLD_CONTINUED; 2205 else 2206 why = CLD_STOPPED; 2207 2208 signal->flags &= ~SIGNAL_CLD_MASK; 2209 2210 spin_unlock_irq(&sighand->siglock); 2211 2212 /* 2213 * Notify the parent that we're continuing. This event is 2214 * always per-process and doesn't make whole lot of sense 2215 * for ptracers, who shouldn't consume the state via 2216 * wait(2) either, but, for backward compatibility, notify 2217 * the ptracer of the group leader too unless it's gonna be 2218 * a duplicate. 2219 */ 2220 read_lock(&tasklist_lock); 2221 do_notify_parent_cldstop(current, false, why); 2222 2223 if (ptrace_reparented(current->group_leader)) 2224 do_notify_parent_cldstop(current->group_leader, 2225 true, why); 2226 read_unlock(&tasklist_lock); 2227 2228 goto relock; 2229 } 2230 2231 for (;;) { 2232 struct k_sigaction *ka; 2233 2234 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2235 do_signal_stop(0)) 2236 goto relock; 2237 2238 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) { 2239 do_jobctl_trap(); 2240 spin_unlock_irq(&sighand->siglock); 2241 goto relock; 2242 } 2243 2244 signr = dequeue_signal(current, ¤t->blocked, info); 2245 2246 if (!signr) 2247 break; /* will return 0 */ 2248 2249 if (unlikely(current->ptrace) && signr != SIGKILL) { 2250 signr = ptrace_signal(signr, info, 2251 regs, cookie); 2252 if (!signr) 2253 continue; 2254 } 2255 2256 ka = &sighand->action[signr-1]; 2257 2258 /* Trace actually delivered signals. */ 2259 trace_signal_deliver(signr, info, ka); 2260 2261 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2262 continue; 2263 if (ka->sa.sa_handler != SIG_DFL) { 2264 /* Run the handler. */ 2265 *return_ka = *ka; 2266 2267 if (ka->sa.sa_flags & SA_ONESHOT) 2268 ka->sa.sa_handler = SIG_DFL; 2269 2270 break; /* will return non-zero "signr" value */ 2271 } 2272 2273 /* 2274 * Now we are doing the default action for this signal. 2275 */ 2276 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2277 continue; 2278 2279 /* 2280 * Global init gets no signals it doesn't want. 2281 * Container-init gets no signals it doesn't want from same 2282 * container. 2283 * 2284 * Note that if global/container-init sees a sig_kernel_only() 2285 * signal here, the signal must have been generated internally 2286 * or must have come from an ancestor namespace. In either 2287 * case, the signal cannot be dropped. 2288 */ 2289 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2290 !sig_kernel_only(signr)) 2291 continue; 2292 2293 if (sig_kernel_stop(signr)) { 2294 /* 2295 * The default action is to stop all threads in 2296 * the thread group. The job control signals 2297 * do nothing in an orphaned pgrp, but SIGSTOP 2298 * always works. Note that siglock needs to be 2299 * dropped during the call to is_orphaned_pgrp() 2300 * because of lock ordering with tasklist_lock. 2301 * This allows an intervening SIGCONT to be posted. 2302 * We need to check for that and bail out if necessary. 2303 */ 2304 if (signr != SIGSTOP) { 2305 spin_unlock_irq(&sighand->siglock); 2306 2307 /* signals can be posted during this window */ 2308 2309 if (is_current_pgrp_orphaned()) 2310 goto relock; 2311 2312 spin_lock_irq(&sighand->siglock); 2313 } 2314 2315 if (likely(do_signal_stop(info->si_signo))) { 2316 /* It released the siglock. */ 2317 goto relock; 2318 } 2319 2320 /* 2321 * We didn't actually stop, due to a race 2322 * with SIGCONT or something like that. 2323 */ 2324 continue; 2325 } 2326 2327 spin_unlock_irq(&sighand->siglock); 2328 2329 /* 2330 * Anything else is fatal, maybe with a core dump. 2331 */ 2332 current->flags |= PF_SIGNALED; 2333 2334 if (sig_kernel_coredump(signr)) { 2335 if (print_fatal_signals) 2336 print_fatal_signal(regs, info->si_signo); 2337 /* 2338 * If it was able to dump core, this kills all 2339 * other threads in the group and synchronizes with 2340 * their demise. If we lost the race with another 2341 * thread getting here, it set group_exit_code 2342 * first and our do_group_exit call below will use 2343 * that value and ignore the one we pass it. 2344 */ 2345 do_coredump(info->si_signo, info->si_signo, regs); 2346 } 2347 2348 /* 2349 * Death signals, no core dump. 2350 */ 2351 do_group_exit(info->si_signo); 2352 /* NOTREACHED */ 2353 } 2354 spin_unlock_irq(&sighand->siglock); 2355 return signr; 2356 } 2357 2358 /** 2359 * block_sigmask - add @ka's signal mask to current->blocked 2360 * @ka: action for @signr 2361 * @signr: signal that has been successfully delivered 2362 * 2363 * This function should be called when a signal has succesfully been 2364 * delivered. It adds the mask of signals for @ka to current->blocked 2365 * so that they are blocked during the execution of the signal 2366 * handler. In addition, @signr will be blocked unless %SA_NODEFER is 2367 * set in @ka->sa.sa_flags. 2368 */ 2369 void block_sigmask(struct k_sigaction *ka, int signr) 2370 { 2371 sigset_t blocked; 2372 2373 sigorsets(&blocked, ¤t->blocked, &ka->sa.sa_mask); 2374 if (!(ka->sa.sa_flags & SA_NODEFER)) 2375 sigaddset(&blocked, signr); 2376 set_current_blocked(&blocked); 2377 } 2378 2379 /* 2380 * It could be that complete_signal() picked us to notify about the 2381 * group-wide signal. Other threads should be notified now to take 2382 * the shared signals in @which since we will not. 2383 */ 2384 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2385 { 2386 sigset_t retarget; 2387 struct task_struct *t; 2388 2389 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2390 if (sigisemptyset(&retarget)) 2391 return; 2392 2393 t = tsk; 2394 while_each_thread(tsk, t) { 2395 if (t->flags & PF_EXITING) 2396 continue; 2397 2398 if (!has_pending_signals(&retarget, &t->blocked)) 2399 continue; 2400 /* Remove the signals this thread can handle. */ 2401 sigandsets(&retarget, &retarget, &t->blocked); 2402 2403 if (!signal_pending(t)) 2404 signal_wake_up(t, 0); 2405 2406 if (sigisemptyset(&retarget)) 2407 break; 2408 } 2409 } 2410 2411 void exit_signals(struct task_struct *tsk) 2412 { 2413 int group_stop = 0; 2414 sigset_t unblocked; 2415 2416 /* 2417 * @tsk is about to have PF_EXITING set - lock out users which 2418 * expect stable threadgroup. 2419 */ 2420 threadgroup_change_begin(tsk); 2421 2422 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 2423 tsk->flags |= PF_EXITING; 2424 threadgroup_change_end(tsk); 2425 return; 2426 } 2427 2428 spin_lock_irq(&tsk->sighand->siglock); 2429 /* 2430 * From now this task is not visible for group-wide signals, 2431 * see wants_signal(), do_signal_stop(). 2432 */ 2433 tsk->flags |= PF_EXITING; 2434 2435 threadgroup_change_end(tsk); 2436 2437 if (!signal_pending(tsk)) 2438 goto out; 2439 2440 unblocked = tsk->blocked; 2441 signotset(&unblocked); 2442 retarget_shared_pending(tsk, &unblocked); 2443 2444 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2445 task_participate_group_stop(tsk)) 2446 group_stop = CLD_STOPPED; 2447 out: 2448 spin_unlock_irq(&tsk->sighand->siglock); 2449 2450 /* 2451 * If group stop has completed, deliver the notification. This 2452 * should always go to the real parent of the group leader. 2453 */ 2454 if (unlikely(group_stop)) { 2455 read_lock(&tasklist_lock); 2456 do_notify_parent_cldstop(tsk, false, group_stop); 2457 read_unlock(&tasklist_lock); 2458 } 2459 } 2460 2461 EXPORT_SYMBOL(recalc_sigpending); 2462 EXPORT_SYMBOL_GPL(dequeue_signal); 2463 EXPORT_SYMBOL(flush_signals); 2464 EXPORT_SYMBOL(force_sig); 2465 EXPORT_SYMBOL(send_sig); 2466 EXPORT_SYMBOL(send_sig_info); 2467 EXPORT_SYMBOL(sigprocmask); 2468 EXPORT_SYMBOL(block_all_signals); 2469 EXPORT_SYMBOL(unblock_all_signals); 2470 2471 2472 /* 2473 * System call entry points. 2474 */ 2475 2476 /** 2477 * sys_restart_syscall - restart a system call 2478 */ 2479 SYSCALL_DEFINE0(restart_syscall) 2480 { 2481 struct restart_block *restart = ¤t_thread_info()->restart_block; 2482 return restart->fn(restart); 2483 } 2484 2485 long do_no_restart_syscall(struct restart_block *param) 2486 { 2487 return -EINTR; 2488 } 2489 2490 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 2491 { 2492 if (signal_pending(tsk) && !thread_group_empty(tsk)) { 2493 sigset_t newblocked; 2494 /* A set of now blocked but previously unblocked signals. */ 2495 sigandnsets(&newblocked, newset, ¤t->blocked); 2496 retarget_shared_pending(tsk, &newblocked); 2497 } 2498 tsk->blocked = *newset; 2499 recalc_sigpending(); 2500 } 2501 2502 /** 2503 * set_current_blocked - change current->blocked mask 2504 * @newset: new mask 2505 * 2506 * It is wrong to change ->blocked directly, this helper should be used 2507 * to ensure the process can't miss a shared signal we are going to block. 2508 */ 2509 void set_current_blocked(const sigset_t *newset) 2510 { 2511 struct task_struct *tsk = current; 2512 2513 spin_lock_irq(&tsk->sighand->siglock); 2514 __set_task_blocked(tsk, newset); 2515 spin_unlock_irq(&tsk->sighand->siglock); 2516 } 2517 2518 /* 2519 * This is also useful for kernel threads that want to temporarily 2520 * (or permanently) block certain signals. 2521 * 2522 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2523 * interface happily blocks "unblockable" signals like SIGKILL 2524 * and friends. 2525 */ 2526 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2527 { 2528 struct task_struct *tsk = current; 2529 sigset_t newset; 2530 2531 /* Lockless, only current can change ->blocked, never from irq */ 2532 if (oldset) 2533 *oldset = tsk->blocked; 2534 2535 switch (how) { 2536 case SIG_BLOCK: 2537 sigorsets(&newset, &tsk->blocked, set); 2538 break; 2539 case SIG_UNBLOCK: 2540 sigandnsets(&newset, &tsk->blocked, set); 2541 break; 2542 case SIG_SETMASK: 2543 newset = *set; 2544 break; 2545 default: 2546 return -EINVAL; 2547 } 2548 2549 set_current_blocked(&newset); 2550 return 0; 2551 } 2552 2553 /** 2554 * sys_rt_sigprocmask - change the list of currently blocked signals 2555 * @how: whether to add, remove, or set signals 2556 * @nset: stores pending signals 2557 * @oset: previous value of signal mask if non-null 2558 * @sigsetsize: size of sigset_t type 2559 */ 2560 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 2561 sigset_t __user *, oset, size_t, sigsetsize) 2562 { 2563 sigset_t old_set, new_set; 2564 int error; 2565 2566 /* XXX: Don't preclude handling different sized sigset_t's. */ 2567 if (sigsetsize != sizeof(sigset_t)) 2568 return -EINVAL; 2569 2570 old_set = current->blocked; 2571 2572 if (nset) { 2573 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 2574 return -EFAULT; 2575 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2576 2577 error = sigprocmask(how, &new_set, NULL); 2578 if (error) 2579 return error; 2580 } 2581 2582 if (oset) { 2583 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 2584 return -EFAULT; 2585 } 2586 2587 return 0; 2588 } 2589 2590 long do_sigpending(void __user *set, unsigned long sigsetsize) 2591 { 2592 long error = -EINVAL; 2593 sigset_t pending; 2594 2595 if (sigsetsize > sizeof(sigset_t)) 2596 goto out; 2597 2598 spin_lock_irq(¤t->sighand->siglock); 2599 sigorsets(&pending, ¤t->pending.signal, 2600 ¤t->signal->shared_pending.signal); 2601 spin_unlock_irq(¤t->sighand->siglock); 2602 2603 /* Outside the lock because only this thread touches it. */ 2604 sigandsets(&pending, ¤t->blocked, &pending); 2605 2606 error = -EFAULT; 2607 if (!copy_to_user(set, &pending, sigsetsize)) 2608 error = 0; 2609 2610 out: 2611 return error; 2612 } 2613 2614 /** 2615 * sys_rt_sigpending - examine a pending signal that has been raised 2616 * while blocked 2617 * @set: stores pending signals 2618 * @sigsetsize: size of sigset_t type or larger 2619 */ 2620 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize) 2621 { 2622 return do_sigpending(set, sigsetsize); 2623 } 2624 2625 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2626 2627 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) 2628 { 2629 int err; 2630 2631 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2632 return -EFAULT; 2633 if (from->si_code < 0) 2634 return __copy_to_user(to, from, sizeof(siginfo_t)) 2635 ? -EFAULT : 0; 2636 /* 2637 * If you change siginfo_t structure, please be sure 2638 * this code is fixed accordingly. 2639 * Please remember to update the signalfd_copyinfo() function 2640 * inside fs/signalfd.c too, in case siginfo_t changes. 2641 * It should never copy any pad contained in the structure 2642 * to avoid security leaks, but must copy the generic 2643 * 3 ints plus the relevant union member. 2644 */ 2645 err = __put_user(from->si_signo, &to->si_signo); 2646 err |= __put_user(from->si_errno, &to->si_errno); 2647 err |= __put_user((short)from->si_code, &to->si_code); 2648 switch (from->si_code & __SI_MASK) { 2649 case __SI_KILL: 2650 err |= __put_user(from->si_pid, &to->si_pid); 2651 err |= __put_user(from->si_uid, &to->si_uid); 2652 break; 2653 case __SI_TIMER: 2654 err |= __put_user(from->si_tid, &to->si_tid); 2655 err |= __put_user(from->si_overrun, &to->si_overrun); 2656 err |= __put_user(from->si_ptr, &to->si_ptr); 2657 break; 2658 case __SI_POLL: 2659 err |= __put_user(from->si_band, &to->si_band); 2660 err |= __put_user(from->si_fd, &to->si_fd); 2661 break; 2662 case __SI_FAULT: 2663 err |= __put_user(from->si_addr, &to->si_addr); 2664 #ifdef __ARCH_SI_TRAPNO 2665 err |= __put_user(from->si_trapno, &to->si_trapno); 2666 #endif 2667 #ifdef BUS_MCEERR_AO 2668 /* 2669 * Other callers might not initialize the si_lsb field, 2670 * so check explicitly for the right codes here. 2671 */ 2672 if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO) 2673 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb); 2674 #endif 2675 break; 2676 case __SI_CHLD: 2677 err |= __put_user(from->si_pid, &to->si_pid); 2678 err |= __put_user(from->si_uid, &to->si_uid); 2679 err |= __put_user(from->si_status, &to->si_status); 2680 err |= __put_user(from->si_utime, &to->si_utime); 2681 err |= __put_user(from->si_stime, &to->si_stime); 2682 break; 2683 case __SI_RT: /* This is not generated by the kernel as of now. */ 2684 case __SI_MESGQ: /* But this is */ 2685 err |= __put_user(from->si_pid, &to->si_pid); 2686 err |= __put_user(from->si_uid, &to->si_uid); 2687 err |= __put_user(from->si_ptr, &to->si_ptr); 2688 break; 2689 default: /* this is just in case for now ... */ 2690 err |= __put_user(from->si_pid, &to->si_pid); 2691 err |= __put_user(from->si_uid, &to->si_uid); 2692 break; 2693 } 2694 return err; 2695 } 2696 2697 #endif 2698 2699 /** 2700 * do_sigtimedwait - wait for queued signals specified in @which 2701 * @which: queued signals to wait for 2702 * @info: if non-null, the signal's siginfo is returned here 2703 * @ts: upper bound on process time suspension 2704 */ 2705 int do_sigtimedwait(const sigset_t *which, siginfo_t *info, 2706 const struct timespec *ts) 2707 { 2708 struct task_struct *tsk = current; 2709 long timeout = MAX_SCHEDULE_TIMEOUT; 2710 sigset_t mask = *which; 2711 int sig; 2712 2713 if (ts) { 2714 if (!timespec_valid(ts)) 2715 return -EINVAL; 2716 timeout = timespec_to_jiffies(ts); 2717 /* 2718 * We can be close to the next tick, add another one 2719 * to ensure we will wait at least the time asked for. 2720 */ 2721 if (ts->tv_sec || ts->tv_nsec) 2722 timeout++; 2723 } 2724 2725 /* 2726 * Invert the set of allowed signals to get those we want to block. 2727 */ 2728 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2729 signotset(&mask); 2730 2731 spin_lock_irq(&tsk->sighand->siglock); 2732 sig = dequeue_signal(tsk, &mask, info); 2733 if (!sig && timeout) { 2734 /* 2735 * None ready, temporarily unblock those we're interested 2736 * while we are sleeping in so that we'll be awakened when 2737 * they arrive. Unblocking is always fine, we can avoid 2738 * set_current_blocked(). 2739 */ 2740 tsk->real_blocked = tsk->blocked; 2741 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 2742 recalc_sigpending(); 2743 spin_unlock_irq(&tsk->sighand->siglock); 2744 2745 timeout = schedule_timeout_interruptible(timeout); 2746 2747 spin_lock_irq(&tsk->sighand->siglock); 2748 __set_task_blocked(tsk, &tsk->real_blocked); 2749 siginitset(&tsk->real_blocked, 0); 2750 sig = dequeue_signal(tsk, &mask, info); 2751 } 2752 spin_unlock_irq(&tsk->sighand->siglock); 2753 2754 if (sig) 2755 return sig; 2756 return timeout ? -EINTR : -EAGAIN; 2757 } 2758 2759 /** 2760 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 2761 * in @uthese 2762 * @uthese: queued signals to wait for 2763 * @uinfo: if non-null, the signal's siginfo is returned here 2764 * @uts: upper bound on process time suspension 2765 * @sigsetsize: size of sigset_t type 2766 */ 2767 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 2768 siginfo_t __user *, uinfo, const struct timespec __user *, uts, 2769 size_t, sigsetsize) 2770 { 2771 sigset_t these; 2772 struct timespec ts; 2773 siginfo_t info; 2774 int ret; 2775 2776 /* XXX: Don't preclude handling different sized sigset_t's. */ 2777 if (sigsetsize != sizeof(sigset_t)) 2778 return -EINVAL; 2779 2780 if (copy_from_user(&these, uthese, sizeof(these))) 2781 return -EFAULT; 2782 2783 if (uts) { 2784 if (copy_from_user(&ts, uts, sizeof(ts))) 2785 return -EFAULT; 2786 } 2787 2788 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 2789 2790 if (ret > 0 && uinfo) { 2791 if (copy_siginfo_to_user(uinfo, &info)) 2792 ret = -EFAULT; 2793 } 2794 2795 return ret; 2796 } 2797 2798 /** 2799 * sys_kill - send a signal to a process 2800 * @pid: the PID of the process 2801 * @sig: signal to be sent 2802 */ 2803 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 2804 { 2805 struct siginfo info; 2806 2807 info.si_signo = sig; 2808 info.si_errno = 0; 2809 info.si_code = SI_USER; 2810 info.si_pid = task_tgid_vnr(current); 2811 info.si_uid = current_uid(); 2812 2813 return kill_something_info(sig, &info, pid); 2814 } 2815 2816 static int 2817 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) 2818 { 2819 struct task_struct *p; 2820 int error = -ESRCH; 2821 2822 rcu_read_lock(); 2823 p = find_task_by_vpid(pid); 2824 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 2825 error = check_kill_permission(sig, info, p); 2826 /* 2827 * The null signal is a permissions and process existence 2828 * probe. No signal is actually delivered. 2829 */ 2830 if (!error && sig) { 2831 error = do_send_sig_info(sig, info, p, false); 2832 /* 2833 * If lock_task_sighand() failed we pretend the task 2834 * dies after receiving the signal. The window is tiny, 2835 * and the signal is private anyway. 2836 */ 2837 if (unlikely(error == -ESRCH)) 2838 error = 0; 2839 } 2840 } 2841 rcu_read_unlock(); 2842 2843 return error; 2844 } 2845 2846 static int do_tkill(pid_t tgid, pid_t pid, int sig) 2847 { 2848 struct siginfo info; 2849 2850 info.si_signo = sig; 2851 info.si_errno = 0; 2852 info.si_code = SI_TKILL; 2853 info.si_pid = task_tgid_vnr(current); 2854 info.si_uid = current_uid(); 2855 2856 return do_send_specific(tgid, pid, sig, &info); 2857 } 2858 2859 /** 2860 * sys_tgkill - send signal to one specific thread 2861 * @tgid: the thread group ID of the thread 2862 * @pid: the PID of the thread 2863 * @sig: signal to be sent 2864 * 2865 * This syscall also checks the @tgid and returns -ESRCH even if the PID 2866 * exists but it's not belonging to the target process anymore. This 2867 * method solves the problem of threads exiting and PIDs getting reused. 2868 */ 2869 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 2870 { 2871 /* This is only valid for single tasks */ 2872 if (pid <= 0 || tgid <= 0) 2873 return -EINVAL; 2874 2875 return do_tkill(tgid, pid, sig); 2876 } 2877 2878 /** 2879 * sys_tkill - send signal to one specific task 2880 * @pid: the PID of the task 2881 * @sig: signal to be sent 2882 * 2883 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2884 */ 2885 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 2886 { 2887 /* This is only valid for single tasks */ 2888 if (pid <= 0) 2889 return -EINVAL; 2890 2891 return do_tkill(0, pid, sig); 2892 } 2893 2894 /** 2895 * sys_rt_sigqueueinfo - send signal information to a signal 2896 * @pid: the PID of the thread 2897 * @sig: signal to be sent 2898 * @uinfo: signal info to be sent 2899 */ 2900 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 2901 siginfo_t __user *, uinfo) 2902 { 2903 siginfo_t info; 2904 2905 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2906 return -EFAULT; 2907 2908 /* Not even root can pretend to send signals from the kernel. 2909 * Nor can they impersonate a kill()/tgkill(), which adds source info. 2910 */ 2911 if (info.si_code >= 0 || info.si_code == SI_TKILL) { 2912 /* We used to allow any < 0 si_code */ 2913 WARN_ON_ONCE(info.si_code < 0); 2914 return -EPERM; 2915 } 2916 info.si_signo = sig; 2917 2918 /* POSIX.1b doesn't mention process groups. */ 2919 return kill_proc_info(sig, &info, pid); 2920 } 2921 2922 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info) 2923 { 2924 /* This is only valid for single tasks */ 2925 if (pid <= 0 || tgid <= 0) 2926 return -EINVAL; 2927 2928 /* Not even root can pretend to send signals from the kernel. 2929 * Nor can they impersonate a kill()/tgkill(), which adds source info. 2930 */ 2931 if (info->si_code >= 0 || info->si_code == SI_TKILL) { 2932 /* We used to allow any < 0 si_code */ 2933 WARN_ON_ONCE(info->si_code < 0); 2934 return -EPERM; 2935 } 2936 info->si_signo = sig; 2937 2938 return do_send_specific(tgid, pid, sig, info); 2939 } 2940 2941 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 2942 siginfo_t __user *, uinfo) 2943 { 2944 siginfo_t info; 2945 2946 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2947 return -EFAULT; 2948 2949 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 2950 } 2951 2952 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 2953 { 2954 struct task_struct *t = current; 2955 struct k_sigaction *k; 2956 sigset_t mask; 2957 2958 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 2959 return -EINVAL; 2960 2961 k = &t->sighand->action[sig-1]; 2962 2963 spin_lock_irq(¤t->sighand->siglock); 2964 if (oact) 2965 *oact = *k; 2966 2967 if (act) { 2968 sigdelsetmask(&act->sa.sa_mask, 2969 sigmask(SIGKILL) | sigmask(SIGSTOP)); 2970 *k = *act; 2971 /* 2972 * POSIX 3.3.1.3: 2973 * "Setting a signal action to SIG_IGN for a signal that is 2974 * pending shall cause the pending signal to be discarded, 2975 * whether or not it is blocked." 2976 * 2977 * "Setting a signal action to SIG_DFL for a signal that is 2978 * pending and whose default action is to ignore the signal 2979 * (for example, SIGCHLD), shall cause the pending signal to 2980 * be discarded, whether or not it is blocked" 2981 */ 2982 if (sig_handler_ignored(sig_handler(t, sig), sig)) { 2983 sigemptyset(&mask); 2984 sigaddset(&mask, sig); 2985 rm_from_queue_full(&mask, &t->signal->shared_pending); 2986 do { 2987 rm_from_queue_full(&mask, &t->pending); 2988 t = next_thread(t); 2989 } while (t != current); 2990 } 2991 } 2992 2993 spin_unlock_irq(¤t->sighand->siglock); 2994 return 0; 2995 } 2996 2997 int 2998 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 2999 { 3000 stack_t oss; 3001 int error; 3002 3003 oss.ss_sp = (void __user *) current->sas_ss_sp; 3004 oss.ss_size = current->sas_ss_size; 3005 oss.ss_flags = sas_ss_flags(sp); 3006 3007 if (uss) { 3008 void __user *ss_sp; 3009 size_t ss_size; 3010 int ss_flags; 3011 3012 error = -EFAULT; 3013 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))) 3014 goto out; 3015 error = __get_user(ss_sp, &uss->ss_sp) | 3016 __get_user(ss_flags, &uss->ss_flags) | 3017 __get_user(ss_size, &uss->ss_size); 3018 if (error) 3019 goto out; 3020 3021 error = -EPERM; 3022 if (on_sig_stack(sp)) 3023 goto out; 3024 3025 error = -EINVAL; 3026 /* 3027 * Note - this code used to test ss_flags incorrectly: 3028 * old code may have been written using ss_flags==0 3029 * to mean ss_flags==SS_ONSTACK (as this was the only 3030 * way that worked) - this fix preserves that older 3031 * mechanism. 3032 */ 3033 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) 3034 goto out; 3035 3036 if (ss_flags == SS_DISABLE) { 3037 ss_size = 0; 3038 ss_sp = NULL; 3039 } else { 3040 error = -ENOMEM; 3041 if (ss_size < MINSIGSTKSZ) 3042 goto out; 3043 } 3044 3045 current->sas_ss_sp = (unsigned long) ss_sp; 3046 current->sas_ss_size = ss_size; 3047 } 3048 3049 error = 0; 3050 if (uoss) { 3051 error = -EFAULT; 3052 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss))) 3053 goto out; 3054 error = __put_user(oss.ss_sp, &uoss->ss_sp) | 3055 __put_user(oss.ss_size, &uoss->ss_size) | 3056 __put_user(oss.ss_flags, &uoss->ss_flags); 3057 } 3058 3059 out: 3060 return error; 3061 } 3062 3063 #ifdef __ARCH_WANT_SYS_SIGPENDING 3064 3065 /** 3066 * sys_sigpending - examine pending signals 3067 * @set: where mask of pending signal is returned 3068 */ 3069 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set) 3070 { 3071 return do_sigpending(set, sizeof(*set)); 3072 } 3073 3074 #endif 3075 3076 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 3077 /** 3078 * sys_sigprocmask - examine and change blocked signals 3079 * @how: whether to add, remove, or set signals 3080 * @nset: signals to add or remove (if non-null) 3081 * @oset: previous value of signal mask if non-null 3082 * 3083 * Some platforms have their own version with special arguments; 3084 * others support only sys_rt_sigprocmask. 3085 */ 3086 3087 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 3088 old_sigset_t __user *, oset) 3089 { 3090 old_sigset_t old_set, new_set; 3091 sigset_t new_blocked; 3092 3093 old_set = current->blocked.sig[0]; 3094 3095 if (nset) { 3096 if (copy_from_user(&new_set, nset, sizeof(*nset))) 3097 return -EFAULT; 3098 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP)); 3099 3100 new_blocked = current->blocked; 3101 3102 switch (how) { 3103 case SIG_BLOCK: 3104 sigaddsetmask(&new_blocked, new_set); 3105 break; 3106 case SIG_UNBLOCK: 3107 sigdelsetmask(&new_blocked, new_set); 3108 break; 3109 case SIG_SETMASK: 3110 new_blocked.sig[0] = new_set; 3111 break; 3112 default: 3113 return -EINVAL; 3114 } 3115 3116 set_current_blocked(&new_blocked); 3117 } 3118 3119 if (oset) { 3120 if (copy_to_user(oset, &old_set, sizeof(*oset))) 3121 return -EFAULT; 3122 } 3123 3124 return 0; 3125 } 3126 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 3127 3128 #ifdef __ARCH_WANT_SYS_RT_SIGACTION 3129 /** 3130 * sys_rt_sigaction - alter an action taken by a process 3131 * @sig: signal to be sent 3132 * @act: new sigaction 3133 * @oact: used to save the previous sigaction 3134 * @sigsetsize: size of sigset_t type 3135 */ 3136 SYSCALL_DEFINE4(rt_sigaction, int, sig, 3137 const struct sigaction __user *, act, 3138 struct sigaction __user *, oact, 3139 size_t, sigsetsize) 3140 { 3141 struct k_sigaction new_sa, old_sa; 3142 int ret = -EINVAL; 3143 3144 /* XXX: Don't preclude handling different sized sigset_t's. */ 3145 if (sigsetsize != sizeof(sigset_t)) 3146 goto out; 3147 3148 if (act) { 3149 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 3150 return -EFAULT; 3151 } 3152 3153 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 3154 3155 if (!ret && oact) { 3156 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 3157 return -EFAULT; 3158 } 3159 out: 3160 return ret; 3161 } 3162 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */ 3163 3164 #ifdef __ARCH_WANT_SYS_SGETMASK 3165 3166 /* 3167 * For backwards compatibility. Functionality superseded by sigprocmask. 3168 */ 3169 SYSCALL_DEFINE0(sgetmask) 3170 { 3171 /* SMP safe */ 3172 return current->blocked.sig[0]; 3173 } 3174 3175 SYSCALL_DEFINE1(ssetmask, int, newmask) 3176 { 3177 int old = current->blocked.sig[0]; 3178 sigset_t newset; 3179 3180 siginitset(&newset, newmask & ~(sigmask(SIGKILL) | sigmask(SIGSTOP))); 3181 set_current_blocked(&newset); 3182 3183 return old; 3184 } 3185 #endif /* __ARCH_WANT_SGETMASK */ 3186 3187 #ifdef __ARCH_WANT_SYS_SIGNAL 3188 /* 3189 * For backwards compatibility. Functionality superseded by sigaction. 3190 */ 3191 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 3192 { 3193 struct k_sigaction new_sa, old_sa; 3194 int ret; 3195 3196 new_sa.sa.sa_handler = handler; 3197 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 3198 sigemptyset(&new_sa.sa.sa_mask); 3199 3200 ret = do_sigaction(sig, &new_sa, &old_sa); 3201 3202 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 3203 } 3204 #endif /* __ARCH_WANT_SYS_SIGNAL */ 3205 3206 #ifdef __ARCH_WANT_SYS_PAUSE 3207 3208 SYSCALL_DEFINE0(pause) 3209 { 3210 while (!signal_pending(current)) { 3211 current->state = TASK_INTERRUPTIBLE; 3212 schedule(); 3213 } 3214 return -ERESTARTNOHAND; 3215 } 3216 3217 #endif 3218 3219 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND 3220 /** 3221 * sys_rt_sigsuspend - replace the signal mask for a value with the 3222 * @unewset value until a signal is received 3223 * @unewset: new signal mask value 3224 * @sigsetsize: size of sigset_t type 3225 */ 3226 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 3227 { 3228 sigset_t newset; 3229 3230 /* XXX: Don't preclude handling different sized sigset_t's. */ 3231 if (sigsetsize != sizeof(sigset_t)) 3232 return -EINVAL; 3233 3234 if (copy_from_user(&newset, unewset, sizeof(newset))) 3235 return -EFAULT; 3236 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3237 3238 current->saved_sigmask = current->blocked; 3239 set_current_blocked(&newset); 3240 3241 current->state = TASK_INTERRUPTIBLE; 3242 schedule(); 3243 set_restore_sigmask(); 3244 return -ERESTARTNOHAND; 3245 } 3246 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */ 3247 3248 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma) 3249 { 3250 return NULL; 3251 } 3252 3253 void __init signals_init(void) 3254 { 3255 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 3256 } 3257 3258 #ifdef CONFIG_KGDB_KDB 3259 #include <linux/kdb.h> 3260 /* 3261 * kdb_send_sig_info - Allows kdb to send signals without exposing 3262 * signal internals. This function checks if the required locks are 3263 * available before calling the main signal code, to avoid kdb 3264 * deadlocks. 3265 */ 3266 void 3267 kdb_send_sig_info(struct task_struct *t, struct siginfo *info) 3268 { 3269 static struct task_struct *kdb_prev_t; 3270 int sig, new_t; 3271 if (!spin_trylock(&t->sighand->siglock)) { 3272 kdb_printf("Can't do kill command now.\n" 3273 "The sigmask lock is held somewhere else in " 3274 "kernel, try again later\n"); 3275 return; 3276 } 3277 spin_unlock(&t->sighand->siglock); 3278 new_t = kdb_prev_t != t; 3279 kdb_prev_t = t; 3280 if (t->state != TASK_RUNNING && new_t) { 3281 kdb_printf("Process is not RUNNING, sending a signal from " 3282 "kdb risks deadlock\n" 3283 "on the run queue locks. " 3284 "The signal has _not_ been sent.\n" 3285 "Reissue the kill command if you want to risk " 3286 "the deadlock.\n"); 3287 return; 3288 } 3289 sig = info->si_signo; 3290 if (send_sig_info(sig, info, t)) 3291 kdb_printf("Fail to deliver Signal %d to process %d.\n", 3292 sig, t->pid); 3293 else 3294 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 3295 } 3296 #endif /* CONFIG_KGDB_KDB */ 3297