xref: /linux/kernel/signal.c (revision 606d099cdd1080bbb50ea50dc52d98252f8f10a1)
1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/smp_lock.h>
16 #include <linux/init.h>
17 #include <linux/sched.h>
18 #include <linux/fs.h>
19 #include <linux/tty.h>
20 #include <linux/binfmts.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/capability.h>
26 #include <linux/freezer.h>
27 #include <linux/pid_namespace.h>
28 #include <linux/nsproxy.h>
29 
30 #include <asm/param.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include <asm/siginfo.h>
34 #include "audit.h"	/* audit_signal_info() */
35 
36 /*
37  * SLAB caches for signal bits.
38  */
39 
40 static struct kmem_cache *sigqueue_cachep;
41 
42 /*
43  * In POSIX a signal is sent either to a specific thread (Linux task)
44  * or to the process as a whole (Linux thread group).  How the signal
45  * is sent determines whether it's to one thread or the whole group,
46  * which determines which signal mask(s) are involved in blocking it
47  * from being delivered until later.  When the signal is delivered,
48  * either it's caught or ignored by a user handler or it has a default
49  * effect that applies to the whole thread group (POSIX process).
50  *
51  * The possible effects an unblocked signal set to SIG_DFL can have are:
52  *   ignore	- Nothing Happens
53  *   terminate	- kill the process, i.e. all threads in the group,
54  * 		  similar to exit_group.  The group leader (only) reports
55  *		  WIFSIGNALED status to its parent.
56  *   coredump	- write a core dump file describing all threads using
57  *		  the same mm and then kill all those threads
58  *   stop 	- stop all the threads in the group, i.e. TASK_STOPPED state
59  *
60  * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
61  * Other signals when not blocked and set to SIG_DFL behaves as follows.
62  * The job control signals also have other special effects.
63  *
64  *	+--------------------+------------------+
65  *	|  POSIX signal      |  default action  |
66  *	+--------------------+------------------+
67  *	|  SIGHUP            |  terminate	|
68  *	|  SIGINT            |	terminate	|
69  *	|  SIGQUIT           |	coredump 	|
70  *	|  SIGILL            |	coredump 	|
71  *	|  SIGTRAP           |	coredump 	|
72  *	|  SIGABRT/SIGIOT    |	coredump 	|
73  *	|  SIGBUS            |	coredump 	|
74  *	|  SIGFPE            |	coredump 	|
75  *	|  SIGKILL           |	terminate(+)	|
76  *	|  SIGUSR1           |	terminate	|
77  *	|  SIGSEGV           |	coredump 	|
78  *	|  SIGUSR2           |	terminate	|
79  *	|  SIGPIPE           |	terminate	|
80  *	|  SIGALRM           |	terminate	|
81  *	|  SIGTERM           |	terminate	|
82  *	|  SIGCHLD           |	ignore   	|
83  *	|  SIGCONT           |	ignore(*)	|
84  *	|  SIGSTOP           |	stop(*)(+)  	|
85  *	|  SIGTSTP           |	stop(*)  	|
86  *	|  SIGTTIN           |	stop(*)  	|
87  *	|  SIGTTOU           |	stop(*)  	|
88  *	|  SIGURG            |	ignore   	|
89  *	|  SIGXCPU           |	coredump 	|
90  *	|  SIGXFSZ           |	coredump 	|
91  *	|  SIGVTALRM         |	terminate	|
92  *	|  SIGPROF           |	terminate	|
93  *	|  SIGPOLL/SIGIO     |	terminate	|
94  *	|  SIGSYS/SIGUNUSED  |	coredump 	|
95  *	|  SIGSTKFLT         |	terminate	|
96  *	|  SIGWINCH          |	ignore   	|
97  *	|  SIGPWR            |	terminate	|
98  *	|  SIGRTMIN-SIGRTMAX |	terminate       |
99  *	+--------------------+------------------+
100  *	|  non-POSIX signal  |  default action  |
101  *	+--------------------+------------------+
102  *	|  SIGEMT            |  coredump	|
103  *	+--------------------+------------------+
104  *
105  * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
106  * (*) Special job control effects:
107  * When SIGCONT is sent, it resumes the process (all threads in the group)
108  * from TASK_STOPPED state and also clears any pending/queued stop signals
109  * (any of those marked with "stop(*)").  This happens regardless of blocking,
110  * catching, or ignoring SIGCONT.  When any stop signal is sent, it clears
111  * any pending/queued SIGCONT signals; this happens regardless of blocking,
112  * catching, or ignored the stop signal, though (except for SIGSTOP) the
113  * default action of stopping the process may happen later or never.
114  */
115 
116 #ifdef SIGEMT
117 #define M_SIGEMT	M(SIGEMT)
118 #else
119 #define M_SIGEMT	0
120 #endif
121 
122 #if SIGRTMIN > BITS_PER_LONG
123 #define M(sig) (1ULL << ((sig)-1))
124 #else
125 #define M(sig) (1UL << ((sig)-1))
126 #endif
127 #define T(sig, mask) (M(sig) & (mask))
128 
129 #define SIG_KERNEL_ONLY_MASK (\
130 	M(SIGKILL)   |  M(SIGSTOP)                                   )
131 
132 #define SIG_KERNEL_STOP_MASK (\
133 	M(SIGSTOP)   |  M(SIGTSTP)   |  M(SIGTTIN)   |  M(SIGTTOU)   )
134 
135 #define SIG_KERNEL_COREDUMP_MASK (\
136         M(SIGQUIT)   |  M(SIGILL)    |  M(SIGTRAP)   |  M(SIGABRT)   | \
137         M(SIGFPE)    |  M(SIGSEGV)   |  M(SIGBUS)    |  M(SIGSYS)    | \
138         M(SIGXCPU)   |  M(SIGXFSZ)   |  M_SIGEMT                     )
139 
140 #define SIG_KERNEL_IGNORE_MASK (\
141         M(SIGCONT)   |  M(SIGCHLD)   |  M(SIGWINCH)  |  M(SIGURG)    )
142 
143 #define sig_kernel_only(sig) \
144 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_ONLY_MASK))
145 #define sig_kernel_coredump(sig) \
146 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_COREDUMP_MASK))
147 #define sig_kernel_ignore(sig) \
148 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_IGNORE_MASK))
149 #define sig_kernel_stop(sig) \
150 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_STOP_MASK))
151 
152 #define sig_needs_tasklist(sig)	((sig) == SIGCONT)
153 
154 #define sig_user_defined(t, signr) \
155 	(((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) &&	\
156 	 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
157 
158 #define sig_fatal(t, signr) \
159 	(!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
160 	 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
161 
162 static int sig_ignored(struct task_struct *t, int sig)
163 {
164 	void __user * handler;
165 
166 	/*
167 	 * Tracers always want to know about signals..
168 	 */
169 	if (t->ptrace & PT_PTRACED)
170 		return 0;
171 
172 	/*
173 	 * Blocked signals are never ignored, since the
174 	 * signal handler may change by the time it is
175 	 * unblocked.
176 	 */
177 	if (sigismember(&t->blocked, sig))
178 		return 0;
179 
180 	/* Is it explicitly or implicitly ignored? */
181 	handler = t->sighand->action[sig-1].sa.sa_handler;
182 	return   handler == SIG_IGN ||
183 		(handler == SIG_DFL && sig_kernel_ignore(sig));
184 }
185 
186 /*
187  * Re-calculate pending state from the set of locally pending
188  * signals, globally pending signals, and blocked signals.
189  */
190 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
191 {
192 	unsigned long ready;
193 	long i;
194 
195 	switch (_NSIG_WORDS) {
196 	default:
197 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
198 			ready |= signal->sig[i] &~ blocked->sig[i];
199 		break;
200 
201 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
202 		ready |= signal->sig[2] &~ blocked->sig[2];
203 		ready |= signal->sig[1] &~ blocked->sig[1];
204 		ready |= signal->sig[0] &~ blocked->sig[0];
205 		break;
206 
207 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
208 		ready |= signal->sig[0] &~ blocked->sig[0];
209 		break;
210 
211 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
212 	}
213 	return ready !=	0;
214 }
215 
216 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
217 
218 fastcall void recalc_sigpending_tsk(struct task_struct *t)
219 {
220 	if (t->signal->group_stop_count > 0 ||
221 	    (freezing(t)) ||
222 	    PENDING(&t->pending, &t->blocked) ||
223 	    PENDING(&t->signal->shared_pending, &t->blocked))
224 		set_tsk_thread_flag(t, TIF_SIGPENDING);
225 	else
226 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
227 }
228 
229 void recalc_sigpending(void)
230 {
231 	recalc_sigpending_tsk(current);
232 }
233 
234 /* Given the mask, find the first available signal that should be serviced. */
235 
236 static int
237 next_signal(struct sigpending *pending, sigset_t *mask)
238 {
239 	unsigned long i, *s, *m, x;
240 	int sig = 0;
241 
242 	s = pending->signal.sig;
243 	m = mask->sig;
244 	switch (_NSIG_WORDS) {
245 	default:
246 		for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
247 			if ((x = *s &~ *m) != 0) {
248 				sig = ffz(~x) + i*_NSIG_BPW + 1;
249 				break;
250 			}
251 		break;
252 
253 	case 2: if ((x = s[0] &~ m[0]) != 0)
254 			sig = 1;
255 		else if ((x = s[1] &~ m[1]) != 0)
256 			sig = _NSIG_BPW + 1;
257 		else
258 			break;
259 		sig += ffz(~x);
260 		break;
261 
262 	case 1: if ((x = *s &~ *m) != 0)
263 			sig = ffz(~x) + 1;
264 		break;
265 	}
266 
267 	return sig;
268 }
269 
270 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
271 					 int override_rlimit)
272 {
273 	struct sigqueue *q = NULL;
274 	struct user_struct *user;
275 
276 	/*
277 	 * In order to avoid problems with "switch_user()", we want to make
278 	 * sure that the compiler doesn't re-load "t->user"
279 	 */
280 	user = t->user;
281 	barrier();
282 	atomic_inc(&user->sigpending);
283 	if (override_rlimit ||
284 	    atomic_read(&user->sigpending) <=
285 			t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
286 		q = kmem_cache_alloc(sigqueue_cachep, flags);
287 	if (unlikely(q == NULL)) {
288 		atomic_dec(&user->sigpending);
289 	} else {
290 		INIT_LIST_HEAD(&q->list);
291 		q->flags = 0;
292 		q->user = get_uid(user);
293 	}
294 	return(q);
295 }
296 
297 static void __sigqueue_free(struct sigqueue *q)
298 {
299 	if (q->flags & SIGQUEUE_PREALLOC)
300 		return;
301 	atomic_dec(&q->user->sigpending);
302 	free_uid(q->user);
303 	kmem_cache_free(sigqueue_cachep, q);
304 }
305 
306 void flush_sigqueue(struct sigpending *queue)
307 {
308 	struct sigqueue *q;
309 
310 	sigemptyset(&queue->signal);
311 	while (!list_empty(&queue->list)) {
312 		q = list_entry(queue->list.next, struct sigqueue , list);
313 		list_del_init(&q->list);
314 		__sigqueue_free(q);
315 	}
316 }
317 
318 /*
319  * Flush all pending signals for a task.
320  */
321 void flush_signals(struct task_struct *t)
322 {
323 	unsigned long flags;
324 
325 	spin_lock_irqsave(&t->sighand->siglock, flags);
326 	clear_tsk_thread_flag(t,TIF_SIGPENDING);
327 	flush_sigqueue(&t->pending);
328 	flush_sigqueue(&t->signal->shared_pending);
329 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
330 }
331 
332 /*
333  * Flush all handlers for a task.
334  */
335 
336 void
337 flush_signal_handlers(struct task_struct *t, int force_default)
338 {
339 	int i;
340 	struct k_sigaction *ka = &t->sighand->action[0];
341 	for (i = _NSIG ; i != 0 ; i--) {
342 		if (force_default || ka->sa.sa_handler != SIG_IGN)
343 			ka->sa.sa_handler = SIG_DFL;
344 		ka->sa.sa_flags = 0;
345 		sigemptyset(&ka->sa.sa_mask);
346 		ka++;
347 	}
348 }
349 
350 
351 /* Notify the system that a driver wants to block all signals for this
352  * process, and wants to be notified if any signals at all were to be
353  * sent/acted upon.  If the notifier routine returns non-zero, then the
354  * signal will be acted upon after all.  If the notifier routine returns 0,
355  * then then signal will be blocked.  Only one block per process is
356  * allowed.  priv is a pointer to private data that the notifier routine
357  * can use to determine if the signal should be blocked or not.  */
358 
359 void
360 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
361 {
362 	unsigned long flags;
363 
364 	spin_lock_irqsave(&current->sighand->siglock, flags);
365 	current->notifier_mask = mask;
366 	current->notifier_data = priv;
367 	current->notifier = notifier;
368 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
369 }
370 
371 /* Notify the system that blocking has ended. */
372 
373 void
374 unblock_all_signals(void)
375 {
376 	unsigned long flags;
377 
378 	spin_lock_irqsave(&current->sighand->siglock, flags);
379 	current->notifier = NULL;
380 	current->notifier_data = NULL;
381 	recalc_sigpending();
382 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
383 }
384 
385 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
386 {
387 	struct sigqueue *q, *first = NULL;
388 	int still_pending = 0;
389 
390 	if (unlikely(!sigismember(&list->signal, sig)))
391 		return 0;
392 
393 	/*
394 	 * Collect the siginfo appropriate to this signal.  Check if
395 	 * there is another siginfo for the same signal.
396 	*/
397 	list_for_each_entry(q, &list->list, list) {
398 		if (q->info.si_signo == sig) {
399 			if (first) {
400 				still_pending = 1;
401 				break;
402 			}
403 			first = q;
404 		}
405 	}
406 	if (first) {
407 		list_del_init(&first->list);
408 		copy_siginfo(info, &first->info);
409 		__sigqueue_free(first);
410 		if (!still_pending)
411 			sigdelset(&list->signal, sig);
412 	} else {
413 
414 		/* Ok, it wasn't in the queue.  This must be
415 		   a fast-pathed signal or we must have been
416 		   out of queue space.  So zero out the info.
417 		 */
418 		sigdelset(&list->signal, sig);
419 		info->si_signo = sig;
420 		info->si_errno = 0;
421 		info->si_code = 0;
422 		info->si_pid = 0;
423 		info->si_uid = 0;
424 	}
425 	return 1;
426 }
427 
428 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
429 			siginfo_t *info)
430 {
431 	int sig = next_signal(pending, mask);
432 
433 	if (sig) {
434 		if (current->notifier) {
435 			if (sigismember(current->notifier_mask, sig)) {
436 				if (!(current->notifier)(current->notifier_data)) {
437 					clear_thread_flag(TIF_SIGPENDING);
438 					return 0;
439 				}
440 			}
441 		}
442 
443 		if (!collect_signal(sig, pending, info))
444 			sig = 0;
445 	}
446 
447 	return sig;
448 }
449 
450 /*
451  * Dequeue a signal and return the element to the caller, which is
452  * expected to free it.
453  *
454  * All callers have to hold the siglock.
455  */
456 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
457 {
458 	int signr = __dequeue_signal(&tsk->pending, mask, info);
459 	if (!signr)
460 		signr = __dequeue_signal(&tsk->signal->shared_pending,
461 					 mask, info);
462 	recalc_sigpending_tsk(tsk);
463  	if (signr && unlikely(sig_kernel_stop(signr))) {
464  		/*
465  		 * Set a marker that we have dequeued a stop signal.  Our
466  		 * caller might release the siglock and then the pending
467  		 * stop signal it is about to process is no longer in the
468  		 * pending bitmasks, but must still be cleared by a SIGCONT
469  		 * (and overruled by a SIGKILL).  So those cases clear this
470  		 * shared flag after we've set it.  Note that this flag may
471  		 * remain set after the signal we return is ignored or
472  		 * handled.  That doesn't matter because its only purpose
473  		 * is to alert stop-signal processing code when another
474  		 * processor has come along and cleared the flag.
475  		 */
476  		if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
477  			tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
478  	}
479 	if ( signr &&
480 	     ((info->si_code & __SI_MASK) == __SI_TIMER) &&
481 	     info->si_sys_private){
482 		/*
483 		 * Release the siglock to ensure proper locking order
484 		 * of timer locks outside of siglocks.  Note, we leave
485 		 * irqs disabled here, since the posix-timers code is
486 		 * about to disable them again anyway.
487 		 */
488 		spin_unlock(&tsk->sighand->siglock);
489 		do_schedule_next_timer(info);
490 		spin_lock(&tsk->sighand->siglock);
491 	}
492 	return signr;
493 }
494 
495 /*
496  * Tell a process that it has a new active signal..
497  *
498  * NOTE! we rely on the previous spin_lock to
499  * lock interrupts for us! We can only be called with
500  * "siglock" held, and the local interrupt must
501  * have been disabled when that got acquired!
502  *
503  * No need to set need_resched since signal event passing
504  * goes through ->blocked
505  */
506 void signal_wake_up(struct task_struct *t, int resume)
507 {
508 	unsigned int mask;
509 
510 	set_tsk_thread_flag(t, TIF_SIGPENDING);
511 
512 	/*
513 	 * For SIGKILL, we want to wake it up in the stopped/traced case.
514 	 * We don't check t->state here because there is a race with it
515 	 * executing another processor and just now entering stopped state.
516 	 * By using wake_up_state, we ensure the process will wake up and
517 	 * handle its death signal.
518 	 */
519 	mask = TASK_INTERRUPTIBLE;
520 	if (resume)
521 		mask |= TASK_STOPPED | TASK_TRACED;
522 	if (!wake_up_state(t, mask))
523 		kick_process(t);
524 }
525 
526 /*
527  * Remove signals in mask from the pending set and queue.
528  * Returns 1 if any signals were found.
529  *
530  * All callers must be holding the siglock.
531  *
532  * This version takes a sigset mask and looks at all signals,
533  * not just those in the first mask word.
534  */
535 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
536 {
537 	struct sigqueue *q, *n;
538 	sigset_t m;
539 
540 	sigandsets(&m, mask, &s->signal);
541 	if (sigisemptyset(&m))
542 		return 0;
543 
544 	signandsets(&s->signal, &s->signal, mask);
545 	list_for_each_entry_safe(q, n, &s->list, list) {
546 		if (sigismember(mask, q->info.si_signo)) {
547 			list_del_init(&q->list);
548 			__sigqueue_free(q);
549 		}
550 	}
551 	return 1;
552 }
553 /*
554  * Remove signals in mask from the pending set and queue.
555  * Returns 1 if any signals were found.
556  *
557  * All callers must be holding the siglock.
558  */
559 static int rm_from_queue(unsigned long mask, struct sigpending *s)
560 {
561 	struct sigqueue *q, *n;
562 
563 	if (!sigtestsetmask(&s->signal, mask))
564 		return 0;
565 
566 	sigdelsetmask(&s->signal, mask);
567 	list_for_each_entry_safe(q, n, &s->list, list) {
568 		if (q->info.si_signo < SIGRTMIN &&
569 		    (mask & sigmask(q->info.si_signo))) {
570 			list_del_init(&q->list);
571 			__sigqueue_free(q);
572 		}
573 	}
574 	return 1;
575 }
576 
577 /*
578  * Bad permissions for sending the signal
579  */
580 static int check_kill_permission(int sig, struct siginfo *info,
581 				 struct task_struct *t)
582 {
583 	int error = -EINVAL;
584 	if (!valid_signal(sig))
585 		return error;
586 	error = -EPERM;
587 	if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
588 	    && ((sig != SIGCONT) ||
589 		(process_session(current) != process_session(t)))
590 	    && (current->euid ^ t->suid) && (current->euid ^ t->uid)
591 	    && (current->uid ^ t->suid) && (current->uid ^ t->uid)
592 	    && !capable(CAP_KILL))
593 		return error;
594 
595 	error = security_task_kill(t, info, sig, 0);
596 	if (!error)
597 		audit_signal_info(sig, t); /* Let audit system see the signal */
598 	return error;
599 }
600 
601 /* forward decl */
602 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
603 
604 /*
605  * Handle magic process-wide effects of stop/continue signals.
606  * Unlike the signal actions, these happen immediately at signal-generation
607  * time regardless of blocking, ignoring, or handling.  This does the
608  * actual continuing for SIGCONT, but not the actual stopping for stop
609  * signals.  The process stop is done as a signal action for SIG_DFL.
610  */
611 static void handle_stop_signal(int sig, struct task_struct *p)
612 {
613 	struct task_struct *t;
614 
615 	if (p->signal->flags & SIGNAL_GROUP_EXIT)
616 		/*
617 		 * The process is in the middle of dying already.
618 		 */
619 		return;
620 
621 	if (sig_kernel_stop(sig)) {
622 		/*
623 		 * This is a stop signal.  Remove SIGCONT from all queues.
624 		 */
625 		rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
626 		t = p;
627 		do {
628 			rm_from_queue(sigmask(SIGCONT), &t->pending);
629 			t = next_thread(t);
630 		} while (t != p);
631 	} else if (sig == SIGCONT) {
632 		/*
633 		 * Remove all stop signals from all queues,
634 		 * and wake all threads.
635 		 */
636 		if (unlikely(p->signal->group_stop_count > 0)) {
637 			/*
638 			 * There was a group stop in progress.  We'll
639 			 * pretend it finished before we got here.  We are
640 			 * obliged to report it to the parent: if the
641 			 * SIGSTOP happened "after" this SIGCONT, then it
642 			 * would have cleared this pending SIGCONT.  If it
643 			 * happened "before" this SIGCONT, then the parent
644 			 * got the SIGCHLD about the stop finishing before
645 			 * the continue happened.  We do the notification
646 			 * now, and it's as if the stop had finished and
647 			 * the SIGCHLD was pending on entry to this kill.
648 			 */
649 			p->signal->group_stop_count = 0;
650 			p->signal->flags = SIGNAL_STOP_CONTINUED;
651 			spin_unlock(&p->sighand->siglock);
652 			do_notify_parent_cldstop(p, CLD_STOPPED);
653 			spin_lock(&p->sighand->siglock);
654 		}
655 		rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
656 		t = p;
657 		do {
658 			unsigned int state;
659 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
660 
661 			/*
662 			 * If there is a handler for SIGCONT, we must make
663 			 * sure that no thread returns to user mode before
664 			 * we post the signal, in case it was the only
665 			 * thread eligible to run the signal handler--then
666 			 * it must not do anything between resuming and
667 			 * running the handler.  With the TIF_SIGPENDING
668 			 * flag set, the thread will pause and acquire the
669 			 * siglock that we hold now and until we've queued
670 			 * the pending signal.
671 			 *
672 			 * Wake up the stopped thread _after_ setting
673 			 * TIF_SIGPENDING
674 			 */
675 			state = TASK_STOPPED;
676 			if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
677 				set_tsk_thread_flag(t, TIF_SIGPENDING);
678 				state |= TASK_INTERRUPTIBLE;
679 			}
680 			wake_up_state(t, state);
681 
682 			t = next_thread(t);
683 		} while (t != p);
684 
685 		if (p->signal->flags & SIGNAL_STOP_STOPPED) {
686 			/*
687 			 * We were in fact stopped, and are now continued.
688 			 * Notify the parent with CLD_CONTINUED.
689 			 */
690 			p->signal->flags = SIGNAL_STOP_CONTINUED;
691 			p->signal->group_exit_code = 0;
692 			spin_unlock(&p->sighand->siglock);
693 			do_notify_parent_cldstop(p, CLD_CONTINUED);
694 			spin_lock(&p->sighand->siglock);
695 		} else {
696 			/*
697 			 * We are not stopped, but there could be a stop
698 			 * signal in the middle of being processed after
699 			 * being removed from the queue.  Clear that too.
700 			 */
701 			p->signal->flags = 0;
702 		}
703 	} else if (sig == SIGKILL) {
704 		/*
705 		 * Make sure that any pending stop signal already dequeued
706 		 * is undone by the wakeup for SIGKILL.
707 		 */
708 		p->signal->flags = 0;
709 	}
710 }
711 
712 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
713 			struct sigpending *signals)
714 {
715 	struct sigqueue * q = NULL;
716 	int ret = 0;
717 
718 	/*
719 	 * fast-pathed signals for kernel-internal things like SIGSTOP
720 	 * or SIGKILL.
721 	 */
722 	if (info == SEND_SIG_FORCED)
723 		goto out_set;
724 
725 	/* Real-time signals must be queued if sent by sigqueue, or
726 	   some other real-time mechanism.  It is implementation
727 	   defined whether kill() does so.  We attempt to do so, on
728 	   the principle of least surprise, but since kill is not
729 	   allowed to fail with EAGAIN when low on memory we just
730 	   make sure at least one signal gets delivered and don't
731 	   pass on the info struct.  */
732 
733 	q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
734 					     (is_si_special(info) ||
735 					      info->si_code >= 0)));
736 	if (q) {
737 		list_add_tail(&q->list, &signals->list);
738 		switch ((unsigned long) info) {
739 		case (unsigned long) SEND_SIG_NOINFO:
740 			q->info.si_signo = sig;
741 			q->info.si_errno = 0;
742 			q->info.si_code = SI_USER;
743 			q->info.si_pid = current->pid;
744 			q->info.si_uid = current->uid;
745 			break;
746 		case (unsigned long) SEND_SIG_PRIV:
747 			q->info.si_signo = sig;
748 			q->info.si_errno = 0;
749 			q->info.si_code = SI_KERNEL;
750 			q->info.si_pid = 0;
751 			q->info.si_uid = 0;
752 			break;
753 		default:
754 			copy_siginfo(&q->info, info);
755 			break;
756 		}
757 	} else if (!is_si_special(info)) {
758 		if (sig >= SIGRTMIN && info->si_code != SI_USER)
759 		/*
760 		 * Queue overflow, abort.  We may abort if the signal was rt
761 		 * and sent by user using something other than kill().
762 		 */
763 			return -EAGAIN;
764 	}
765 
766 out_set:
767 	sigaddset(&signals->signal, sig);
768 	return ret;
769 }
770 
771 #define LEGACY_QUEUE(sigptr, sig) \
772 	(((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
773 
774 
775 static int
776 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
777 {
778 	int ret = 0;
779 
780 	BUG_ON(!irqs_disabled());
781 	assert_spin_locked(&t->sighand->siglock);
782 
783 	/* Short-circuit ignored signals.  */
784 	if (sig_ignored(t, sig))
785 		goto out;
786 
787 	/* Support queueing exactly one non-rt signal, so that we
788 	   can get more detailed information about the cause of
789 	   the signal. */
790 	if (LEGACY_QUEUE(&t->pending, sig))
791 		goto out;
792 
793 	ret = send_signal(sig, info, t, &t->pending);
794 	if (!ret && !sigismember(&t->blocked, sig))
795 		signal_wake_up(t, sig == SIGKILL);
796 out:
797 	return ret;
798 }
799 
800 /*
801  * Force a signal that the process can't ignore: if necessary
802  * we unblock the signal and change any SIG_IGN to SIG_DFL.
803  *
804  * Note: If we unblock the signal, we always reset it to SIG_DFL,
805  * since we do not want to have a signal handler that was blocked
806  * be invoked when user space had explicitly blocked it.
807  *
808  * We don't want to have recursive SIGSEGV's etc, for example.
809  */
810 int
811 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
812 {
813 	unsigned long int flags;
814 	int ret, blocked, ignored;
815 	struct k_sigaction *action;
816 
817 	spin_lock_irqsave(&t->sighand->siglock, flags);
818 	action = &t->sighand->action[sig-1];
819 	ignored = action->sa.sa_handler == SIG_IGN;
820 	blocked = sigismember(&t->blocked, sig);
821 	if (blocked || ignored) {
822 		action->sa.sa_handler = SIG_DFL;
823 		if (blocked) {
824 			sigdelset(&t->blocked, sig);
825 			recalc_sigpending_tsk(t);
826 		}
827 	}
828 	ret = specific_send_sig_info(sig, info, t);
829 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
830 
831 	return ret;
832 }
833 
834 void
835 force_sig_specific(int sig, struct task_struct *t)
836 {
837 	force_sig_info(sig, SEND_SIG_FORCED, t);
838 }
839 
840 /*
841  * Test if P wants to take SIG.  After we've checked all threads with this,
842  * it's equivalent to finding no threads not blocking SIG.  Any threads not
843  * blocking SIG were ruled out because they are not running and already
844  * have pending signals.  Such threads will dequeue from the shared queue
845  * as soon as they're available, so putting the signal on the shared queue
846  * will be equivalent to sending it to one such thread.
847  */
848 static inline int wants_signal(int sig, struct task_struct *p)
849 {
850 	if (sigismember(&p->blocked, sig))
851 		return 0;
852 	if (p->flags & PF_EXITING)
853 		return 0;
854 	if (sig == SIGKILL)
855 		return 1;
856 	if (p->state & (TASK_STOPPED | TASK_TRACED))
857 		return 0;
858 	return task_curr(p) || !signal_pending(p);
859 }
860 
861 static void
862 __group_complete_signal(int sig, struct task_struct *p)
863 {
864 	struct task_struct *t;
865 
866 	/*
867 	 * Now find a thread we can wake up to take the signal off the queue.
868 	 *
869 	 * If the main thread wants the signal, it gets first crack.
870 	 * Probably the least surprising to the average bear.
871 	 */
872 	if (wants_signal(sig, p))
873 		t = p;
874 	else if (thread_group_empty(p))
875 		/*
876 		 * There is just one thread and it does not need to be woken.
877 		 * It will dequeue unblocked signals before it runs again.
878 		 */
879 		return;
880 	else {
881 		/*
882 		 * Otherwise try to find a suitable thread.
883 		 */
884 		t = p->signal->curr_target;
885 		if (t == NULL)
886 			/* restart balancing at this thread */
887 			t = p->signal->curr_target = p;
888 
889 		while (!wants_signal(sig, t)) {
890 			t = next_thread(t);
891 			if (t == p->signal->curr_target)
892 				/*
893 				 * No thread needs to be woken.
894 				 * Any eligible threads will see
895 				 * the signal in the queue soon.
896 				 */
897 				return;
898 		}
899 		p->signal->curr_target = t;
900 	}
901 
902 	/*
903 	 * Found a killable thread.  If the signal will be fatal,
904 	 * then start taking the whole group down immediately.
905 	 */
906 	if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
907 	    !sigismember(&t->real_blocked, sig) &&
908 	    (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
909 		/*
910 		 * This signal will be fatal to the whole group.
911 		 */
912 		if (!sig_kernel_coredump(sig)) {
913 			/*
914 			 * Start a group exit and wake everybody up.
915 			 * This way we don't have other threads
916 			 * running and doing things after a slower
917 			 * thread has the fatal signal pending.
918 			 */
919 			p->signal->flags = SIGNAL_GROUP_EXIT;
920 			p->signal->group_exit_code = sig;
921 			p->signal->group_stop_count = 0;
922 			t = p;
923 			do {
924 				sigaddset(&t->pending.signal, SIGKILL);
925 				signal_wake_up(t, 1);
926 				t = next_thread(t);
927 			} while (t != p);
928 			return;
929 		}
930 
931 		/*
932 		 * There will be a core dump.  We make all threads other
933 		 * than the chosen one go into a group stop so that nothing
934 		 * happens until it gets scheduled, takes the signal off
935 		 * the shared queue, and does the core dump.  This is a
936 		 * little more complicated than strictly necessary, but it
937 		 * keeps the signal state that winds up in the core dump
938 		 * unchanged from the death state, e.g. which thread had
939 		 * the core-dump signal unblocked.
940 		 */
941 		rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
942 		rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
943 		p->signal->group_stop_count = 0;
944 		p->signal->group_exit_task = t;
945 		t = p;
946 		do {
947 			p->signal->group_stop_count++;
948 			signal_wake_up(t, 0);
949 			t = next_thread(t);
950 		} while (t != p);
951 		wake_up_process(p->signal->group_exit_task);
952 		return;
953 	}
954 
955 	/*
956 	 * The signal is already in the shared-pending queue.
957 	 * Tell the chosen thread to wake up and dequeue it.
958 	 */
959 	signal_wake_up(t, sig == SIGKILL);
960 	return;
961 }
962 
963 int
964 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
965 {
966 	int ret = 0;
967 
968 	assert_spin_locked(&p->sighand->siglock);
969 	handle_stop_signal(sig, p);
970 
971 	/* Short-circuit ignored signals.  */
972 	if (sig_ignored(p, sig))
973 		return ret;
974 
975 	if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
976 		/* This is a non-RT signal and we already have one queued.  */
977 		return ret;
978 
979 	/*
980 	 * Put this signal on the shared-pending queue, or fail with EAGAIN.
981 	 * We always use the shared queue for process-wide signals,
982 	 * to avoid several races.
983 	 */
984 	ret = send_signal(sig, info, p, &p->signal->shared_pending);
985 	if (unlikely(ret))
986 		return ret;
987 
988 	__group_complete_signal(sig, p);
989 	return 0;
990 }
991 
992 /*
993  * Nuke all other threads in the group.
994  */
995 void zap_other_threads(struct task_struct *p)
996 {
997 	struct task_struct *t;
998 
999 	p->signal->flags = SIGNAL_GROUP_EXIT;
1000 	p->signal->group_stop_count = 0;
1001 
1002 	if (thread_group_empty(p))
1003 		return;
1004 
1005 	for (t = next_thread(p); t != p; t = next_thread(t)) {
1006 		/*
1007 		 * Don't bother with already dead threads
1008 		 */
1009 		if (t->exit_state)
1010 			continue;
1011 
1012 		/*
1013 		 * We don't want to notify the parent, since we are
1014 		 * killed as part of a thread group due to another
1015 		 * thread doing an execve() or similar. So set the
1016 		 * exit signal to -1 to allow immediate reaping of
1017 		 * the process.  But don't detach the thread group
1018 		 * leader.
1019 		 */
1020 		if (t != p->group_leader)
1021 			t->exit_signal = -1;
1022 
1023 		/* SIGKILL will be handled before any pending SIGSTOP */
1024 		sigaddset(&t->pending.signal, SIGKILL);
1025 		signal_wake_up(t, 1);
1026 	}
1027 }
1028 
1029 /*
1030  * Must be called under rcu_read_lock() or with tasklist_lock read-held.
1031  */
1032 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1033 {
1034 	struct sighand_struct *sighand;
1035 
1036 	for (;;) {
1037 		sighand = rcu_dereference(tsk->sighand);
1038 		if (unlikely(sighand == NULL))
1039 			break;
1040 
1041 		spin_lock_irqsave(&sighand->siglock, *flags);
1042 		if (likely(sighand == tsk->sighand))
1043 			break;
1044 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1045 	}
1046 
1047 	return sighand;
1048 }
1049 
1050 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1051 {
1052 	unsigned long flags;
1053 	int ret;
1054 
1055 	ret = check_kill_permission(sig, info, p);
1056 
1057 	if (!ret && sig) {
1058 		ret = -ESRCH;
1059 		if (lock_task_sighand(p, &flags)) {
1060 			ret = __group_send_sig_info(sig, info, p);
1061 			unlock_task_sighand(p, &flags);
1062 		}
1063 	}
1064 
1065 	return ret;
1066 }
1067 
1068 /*
1069  * kill_pgrp_info() sends a signal to a process group: this is what the tty
1070  * control characters do (^C, ^Z etc)
1071  */
1072 
1073 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1074 {
1075 	struct task_struct *p = NULL;
1076 	int retval, success;
1077 
1078 	success = 0;
1079 	retval = -ESRCH;
1080 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1081 		int err = group_send_sig_info(sig, info, p);
1082 		success |= !err;
1083 		retval = err;
1084 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1085 	return success ? 0 : retval;
1086 }
1087 
1088 int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1089 {
1090 	int retval;
1091 
1092 	read_lock(&tasklist_lock);
1093 	retval = __kill_pgrp_info(sig, info, pgrp);
1094 	read_unlock(&tasklist_lock);
1095 
1096 	return retval;
1097 }
1098 
1099 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1100 {
1101 	if (pgrp <= 0)
1102 		return -EINVAL;
1103 
1104 	return __kill_pgrp_info(sig, info, find_pid(pgrp));
1105 }
1106 
1107 int
1108 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1109 {
1110 	int retval;
1111 
1112 	read_lock(&tasklist_lock);
1113 	retval = __kill_pg_info(sig, info, pgrp);
1114 	read_unlock(&tasklist_lock);
1115 
1116 	return retval;
1117 }
1118 
1119 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1120 {
1121 	int error;
1122 	int acquired_tasklist_lock = 0;
1123 	struct task_struct *p;
1124 
1125 	rcu_read_lock();
1126 	if (unlikely(sig_needs_tasklist(sig))) {
1127 		read_lock(&tasklist_lock);
1128 		acquired_tasklist_lock = 1;
1129 	}
1130 	p = pid_task(pid, PIDTYPE_PID);
1131 	error = -ESRCH;
1132 	if (p)
1133 		error = group_send_sig_info(sig, info, p);
1134 	if (unlikely(acquired_tasklist_lock))
1135 		read_unlock(&tasklist_lock);
1136 	rcu_read_unlock();
1137 	return error;
1138 }
1139 
1140 static int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1141 {
1142 	int error;
1143 	rcu_read_lock();
1144 	error = kill_pid_info(sig, info, find_pid(pid));
1145 	rcu_read_unlock();
1146 	return error;
1147 }
1148 
1149 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1150 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1151 		      uid_t uid, uid_t euid, u32 secid)
1152 {
1153 	int ret = -EINVAL;
1154 	struct task_struct *p;
1155 
1156 	if (!valid_signal(sig))
1157 		return ret;
1158 
1159 	read_lock(&tasklist_lock);
1160 	p = pid_task(pid, PIDTYPE_PID);
1161 	if (!p) {
1162 		ret = -ESRCH;
1163 		goto out_unlock;
1164 	}
1165 	if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1166 	    && (euid != p->suid) && (euid != p->uid)
1167 	    && (uid != p->suid) && (uid != p->uid)) {
1168 		ret = -EPERM;
1169 		goto out_unlock;
1170 	}
1171 	ret = security_task_kill(p, info, sig, secid);
1172 	if (ret)
1173 		goto out_unlock;
1174 	if (sig && p->sighand) {
1175 		unsigned long flags;
1176 		spin_lock_irqsave(&p->sighand->siglock, flags);
1177 		ret = __group_send_sig_info(sig, info, p);
1178 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1179 	}
1180 out_unlock:
1181 	read_unlock(&tasklist_lock);
1182 	return ret;
1183 }
1184 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1185 
1186 /*
1187  * kill_something_info() interprets pid in interesting ways just like kill(2).
1188  *
1189  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1190  * is probably wrong.  Should make it like BSD or SYSV.
1191  */
1192 
1193 static int kill_something_info(int sig, struct siginfo *info, int pid)
1194 {
1195 	if (!pid) {
1196 		return kill_pg_info(sig, info, process_group(current));
1197 	} else if (pid == -1) {
1198 		int retval = 0, count = 0;
1199 		struct task_struct * p;
1200 
1201 		read_lock(&tasklist_lock);
1202 		for_each_process(p) {
1203 			if (p->pid > 1 && p->tgid != current->tgid) {
1204 				int err = group_send_sig_info(sig, info, p);
1205 				++count;
1206 				if (err != -EPERM)
1207 					retval = err;
1208 			}
1209 		}
1210 		read_unlock(&tasklist_lock);
1211 		return count ? retval : -ESRCH;
1212 	} else if (pid < 0) {
1213 		return kill_pg_info(sig, info, -pid);
1214 	} else {
1215 		return kill_proc_info(sig, info, pid);
1216 	}
1217 }
1218 
1219 /*
1220  * These are for backward compatibility with the rest of the kernel source.
1221  */
1222 
1223 /*
1224  * These two are the most common entry points.  They send a signal
1225  * just to the specific thread.
1226  */
1227 int
1228 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1229 {
1230 	int ret;
1231 	unsigned long flags;
1232 
1233 	/*
1234 	 * Make sure legacy kernel users don't send in bad values
1235 	 * (normal paths check this in check_kill_permission).
1236 	 */
1237 	if (!valid_signal(sig))
1238 		return -EINVAL;
1239 
1240 	/*
1241 	 * We need the tasklist lock even for the specific
1242 	 * thread case (when we don't need to follow the group
1243 	 * lists) in order to avoid races with "p->sighand"
1244 	 * going away or changing from under us.
1245 	 */
1246 	read_lock(&tasklist_lock);
1247 	spin_lock_irqsave(&p->sighand->siglock, flags);
1248 	ret = specific_send_sig_info(sig, info, p);
1249 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
1250 	read_unlock(&tasklist_lock);
1251 	return ret;
1252 }
1253 
1254 #define __si_special(priv) \
1255 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1256 
1257 int
1258 send_sig(int sig, struct task_struct *p, int priv)
1259 {
1260 	return send_sig_info(sig, __si_special(priv), p);
1261 }
1262 
1263 /*
1264  * This is the entry point for "process-wide" signals.
1265  * They will go to an appropriate thread in the thread group.
1266  */
1267 int
1268 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1269 {
1270 	int ret;
1271 	read_lock(&tasklist_lock);
1272 	ret = group_send_sig_info(sig, info, p);
1273 	read_unlock(&tasklist_lock);
1274 	return ret;
1275 }
1276 
1277 void
1278 force_sig(int sig, struct task_struct *p)
1279 {
1280 	force_sig_info(sig, SEND_SIG_PRIV, p);
1281 }
1282 
1283 /*
1284  * When things go south during signal handling, we
1285  * will force a SIGSEGV. And if the signal that caused
1286  * the problem was already a SIGSEGV, we'll want to
1287  * make sure we don't even try to deliver the signal..
1288  */
1289 int
1290 force_sigsegv(int sig, struct task_struct *p)
1291 {
1292 	if (sig == SIGSEGV) {
1293 		unsigned long flags;
1294 		spin_lock_irqsave(&p->sighand->siglock, flags);
1295 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1296 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1297 	}
1298 	force_sig(SIGSEGV, p);
1299 	return 0;
1300 }
1301 
1302 int kill_pgrp(struct pid *pid, int sig, int priv)
1303 {
1304 	return kill_pgrp_info(sig, __si_special(priv), pid);
1305 }
1306 EXPORT_SYMBOL(kill_pgrp);
1307 
1308 int kill_pid(struct pid *pid, int sig, int priv)
1309 {
1310 	return kill_pid_info(sig, __si_special(priv), pid);
1311 }
1312 EXPORT_SYMBOL(kill_pid);
1313 
1314 int
1315 kill_pg(pid_t pgrp, int sig, int priv)
1316 {
1317 	return kill_pg_info(sig, __si_special(priv), pgrp);
1318 }
1319 
1320 int
1321 kill_proc(pid_t pid, int sig, int priv)
1322 {
1323 	return kill_proc_info(sig, __si_special(priv), pid);
1324 }
1325 
1326 /*
1327  * These functions support sending signals using preallocated sigqueue
1328  * structures.  This is needed "because realtime applications cannot
1329  * afford to lose notifications of asynchronous events, like timer
1330  * expirations or I/O completions".  In the case of Posix Timers
1331  * we allocate the sigqueue structure from the timer_create.  If this
1332  * allocation fails we are able to report the failure to the application
1333  * with an EAGAIN error.
1334  */
1335 
1336 struct sigqueue *sigqueue_alloc(void)
1337 {
1338 	struct sigqueue *q;
1339 
1340 	if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1341 		q->flags |= SIGQUEUE_PREALLOC;
1342 	return(q);
1343 }
1344 
1345 void sigqueue_free(struct sigqueue *q)
1346 {
1347 	unsigned long flags;
1348 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1349 	/*
1350 	 * If the signal is still pending remove it from the
1351 	 * pending queue.
1352 	 */
1353 	if (unlikely(!list_empty(&q->list))) {
1354 		spinlock_t *lock = &current->sighand->siglock;
1355 		read_lock(&tasklist_lock);
1356 		spin_lock_irqsave(lock, flags);
1357 		if (!list_empty(&q->list))
1358 			list_del_init(&q->list);
1359 		spin_unlock_irqrestore(lock, flags);
1360 		read_unlock(&tasklist_lock);
1361 	}
1362 	q->flags &= ~SIGQUEUE_PREALLOC;
1363 	__sigqueue_free(q);
1364 }
1365 
1366 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1367 {
1368 	unsigned long flags;
1369 	int ret = 0;
1370 
1371 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1372 
1373 	/*
1374 	 * The rcu based delayed sighand destroy makes it possible to
1375 	 * run this without tasklist lock held. The task struct itself
1376 	 * cannot go away as create_timer did get_task_struct().
1377 	 *
1378 	 * We return -1, when the task is marked exiting, so
1379 	 * posix_timer_event can redirect it to the group leader
1380 	 */
1381 	rcu_read_lock();
1382 
1383 	if (!likely(lock_task_sighand(p, &flags))) {
1384 		ret = -1;
1385 		goto out_err;
1386 	}
1387 
1388 	if (unlikely(!list_empty(&q->list))) {
1389 		/*
1390 		 * If an SI_TIMER entry is already queue just increment
1391 		 * the overrun count.
1392 		 */
1393 		BUG_ON(q->info.si_code != SI_TIMER);
1394 		q->info.si_overrun++;
1395 		goto out;
1396 	}
1397 	/* Short-circuit ignored signals.  */
1398 	if (sig_ignored(p, sig)) {
1399 		ret = 1;
1400 		goto out;
1401 	}
1402 
1403 	list_add_tail(&q->list, &p->pending.list);
1404 	sigaddset(&p->pending.signal, sig);
1405 	if (!sigismember(&p->blocked, sig))
1406 		signal_wake_up(p, sig == SIGKILL);
1407 
1408 out:
1409 	unlock_task_sighand(p, &flags);
1410 out_err:
1411 	rcu_read_unlock();
1412 
1413 	return ret;
1414 }
1415 
1416 int
1417 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1418 {
1419 	unsigned long flags;
1420 	int ret = 0;
1421 
1422 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1423 
1424 	read_lock(&tasklist_lock);
1425 	/* Since it_lock is held, p->sighand cannot be NULL. */
1426 	spin_lock_irqsave(&p->sighand->siglock, flags);
1427 	handle_stop_signal(sig, p);
1428 
1429 	/* Short-circuit ignored signals.  */
1430 	if (sig_ignored(p, sig)) {
1431 		ret = 1;
1432 		goto out;
1433 	}
1434 
1435 	if (unlikely(!list_empty(&q->list))) {
1436 		/*
1437 		 * If an SI_TIMER entry is already queue just increment
1438 		 * the overrun count.  Other uses should not try to
1439 		 * send the signal multiple times.
1440 		 */
1441 		BUG_ON(q->info.si_code != SI_TIMER);
1442 		q->info.si_overrun++;
1443 		goto out;
1444 	}
1445 
1446 	/*
1447 	 * Put this signal on the shared-pending queue.
1448 	 * We always use the shared queue for process-wide signals,
1449 	 * to avoid several races.
1450 	 */
1451 	list_add_tail(&q->list, &p->signal->shared_pending.list);
1452 	sigaddset(&p->signal->shared_pending.signal, sig);
1453 
1454 	__group_complete_signal(sig, p);
1455 out:
1456 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
1457 	read_unlock(&tasklist_lock);
1458 	return ret;
1459 }
1460 
1461 /*
1462  * Wake up any threads in the parent blocked in wait* syscalls.
1463  */
1464 static inline void __wake_up_parent(struct task_struct *p,
1465 				    struct task_struct *parent)
1466 {
1467 	wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1468 }
1469 
1470 /*
1471  * Let a parent know about the death of a child.
1472  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1473  */
1474 
1475 void do_notify_parent(struct task_struct *tsk, int sig)
1476 {
1477 	struct siginfo info;
1478 	unsigned long flags;
1479 	struct sighand_struct *psig;
1480 
1481 	BUG_ON(sig == -1);
1482 
1483  	/* do_notify_parent_cldstop should have been called instead.  */
1484  	BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1485 
1486 	BUG_ON(!tsk->ptrace &&
1487 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1488 
1489 	info.si_signo = sig;
1490 	info.si_errno = 0;
1491 	info.si_pid = tsk->pid;
1492 	info.si_uid = tsk->uid;
1493 
1494 	/* FIXME: find out whether or not this is supposed to be c*time. */
1495 	info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1496 						       tsk->signal->utime));
1497 	info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1498 						       tsk->signal->stime));
1499 
1500 	info.si_status = tsk->exit_code & 0x7f;
1501 	if (tsk->exit_code & 0x80)
1502 		info.si_code = CLD_DUMPED;
1503 	else if (tsk->exit_code & 0x7f)
1504 		info.si_code = CLD_KILLED;
1505 	else {
1506 		info.si_code = CLD_EXITED;
1507 		info.si_status = tsk->exit_code >> 8;
1508 	}
1509 
1510 	psig = tsk->parent->sighand;
1511 	spin_lock_irqsave(&psig->siglock, flags);
1512 	if (!tsk->ptrace && sig == SIGCHLD &&
1513 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1514 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1515 		/*
1516 		 * We are exiting and our parent doesn't care.  POSIX.1
1517 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1518 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1519 		 * automatically and not left for our parent's wait4 call.
1520 		 * Rather than having the parent do it as a magic kind of
1521 		 * signal handler, we just set this to tell do_exit that we
1522 		 * can be cleaned up without becoming a zombie.  Note that
1523 		 * we still call __wake_up_parent in this case, because a
1524 		 * blocked sys_wait4 might now return -ECHILD.
1525 		 *
1526 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1527 		 * is implementation-defined: we do (if you don't want
1528 		 * it, just use SIG_IGN instead).
1529 		 */
1530 		tsk->exit_signal = -1;
1531 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1532 			sig = 0;
1533 	}
1534 	if (valid_signal(sig) && sig > 0)
1535 		__group_send_sig_info(sig, &info, tsk->parent);
1536 	__wake_up_parent(tsk, tsk->parent);
1537 	spin_unlock_irqrestore(&psig->siglock, flags);
1538 }
1539 
1540 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1541 {
1542 	struct siginfo info;
1543 	unsigned long flags;
1544 	struct task_struct *parent;
1545 	struct sighand_struct *sighand;
1546 
1547 	if (tsk->ptrace & PT_PTRACED)
1548 		parent = tsk->parent;
1549 	else {
1550 		tsk = tsk->group_leader;
1551 		parent = tsk->real_parent;
1552 	}
1553 
1554 	info.si_signo = SIGCHLD;
1555 	info.si_errno = 0;
1556 	info.si_pid = tsk->pid;
1557 	info.si_uid = tsk->uid;
1558 
1559 	/* FIXME: find out whether or not this is supposed to be c*time. */
1560 	info.si_utime = cputime_to_jiffies(tsk->utime);
1561 	info.si_stime = cputime_to_jiffies(tsk->stime);
1562 
1563  	info.si_code = why;
1564  	switch (why) {
1565  	case CLD_CONTINUED:
1566  		info.si_status = SIGCONT;
1567  		break;
1568  	case CLD_STOPPED:
1569  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1570  		break;
1571  	case CLD_TRAPPED:
1572  		info.si_status = tsk->exit_code & 0x7f;
1573  		break;
1574  	default:
1575  		BUG();
1576  	}
1577 
1578 	sighand = parent->sighand;
1579 	spin_lock_irqsave(&sighand->siglock, flags);
1580 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1581 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1582 		__group_send_sig_info(SIGCHLD, &info, parent);
1583 	/*
1584 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1585 	 */
1586 	__wake_up_parent(tsk, parent);
1587 	spin_unlock_irqrestore(&sighand->siglock, flags);
1588 }
1589 
1590 static inline int may_ptrace_stop(void)
1591 {
1592 	if (!likely(current->ptrace & PT_PTRACED))
1593 		return 0;
1594 
1595 	if (unlikely(current->parent == current->real_parent &&
1596 		    (current->ptrace & PT_ATTACHED)))
1597 		return 0;
1598 
1599 	if (unlikely(current->signal == current->parent->signal) &&
1600 	    unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))
1601 		return 0;
1602 
1603 	/*
1604 	 * Are we in the middle of do_coredump?
1605 	 * If so and our tracer is also part of the coredump stopping
1606 	 * is a deadlock situation, and pointless because our tracer
1607 	 * is dead so don't allow us to stop.
1608 	 * If SIGKILL was already sent before the caller unlocked
1609 	 * ->siglock we must see ->core_waiters != 0. Otherwise it
1610 	 * is safe to enter schedule().
1611 	 */
1612 	if (unlikely(current->mm->core_waiters) &&
1613 	    unlikely(current->mm == current->parent->mm))
1614 		return 0;
1615 
1616 	return 1;
1617 }
1618 
1619 /*
1620  * This must be called with current->sighand->siglock held.
1621  *
1622  * This should be the path for all ptrace stops.
1623  * We always set current->last_siginfo while stopped here.
1624  * That makes it a way to test a stopped process for
1625  * being ptrace-stopped vs being job-control-stopped.
1626  *
1627  * If we actually decide not to stop at all because the tracer is gone,
1628  * we leave nostop_code in current->exit_code.
1629  */
1630 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1631 {
1632 	/*
1633 	 * If there is a group stop in progress,
1634 	 * we must participate in the bookkeeping.
1635 	 */
1636 	if (current->signal->group_stop_count > 0)
1637 		--current->signal->group_stop_count;
1638 
1639 	current->last_siginfo = info;
1640 	current->exit_code = exit_code;
1641 
1642 	/* Let the debugger run.  */
1643 	set_current_state(TASK_TRACED);
1644 	spin_unlock_irq(&current->sighand->siglock);
1645 	try_to_freeze();
1646 	read_lock(&tasklist_lock);
1647 	if (may_ptrace_stop()) {
1648 		do_notify_parent_cldstop(current, CLD_TRAPPED);
1649 		read_unlock(&tasklist_lock);
1650 		schedule();
1651 	} else {
1652 		/*
1653 		 * By the time we got the lock, our tracer went away.
1654 		 * Don't stop here.
1655 		 */
1656 		read_unlock(&tasklist_lock);
1657 		set_current_state(TASK_RUNNING);
1658 		current->exit_code = nostop_code;
1659 	}
1660 
1661 	/*
1662 	 * We are back.  Now reacquire the siglock before touching
1663 	 * last_siginfo, so that we are sure to have synchronized with
1664 	 * any signal-sending on another CPU that wants to examine it.
1665 	 */
1666 	spin_lock_irq(&current->sighand->siglock);
1667 	current->last_siginfo = NULL;
1668 
1669 	/*
1670 	 * Queued signals ignored us while we were stopped for tracing.
1671 	 * So check for any that we should take before resuming user mode.
1672 	 */
1673 	recalc_sigpending();
1674 }
1675 
1676 void ptrace_notify(int exit_code)
1677 {
1678 	siginfo_t info;
1679 
1680 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1681 
1682 	memset(&info, 0, sizeof info);
1683 	info.si_signo = SIGTRAP;
1684 	info.si_code = exit_code;
1685 	info.si_pid = current->pid;
1686 	info.si_uid = current->uid;
1687 
1688 	/* Let the debugger run.  */
1689 	spin_lock_irq(&current->sighand->siglock);
1690 	ptrace_stop(exit_code, 0, &info);
1691 	spin_unlock_irq(&current->sighand->siglock);
1692 }
1693 
1694 static void
1695 finish_stop(int stop_count)
1696 {
1697 	/*
1698 	 * If there are no other threads in the group, or if there is
1699 	 * a group stop in progress and we are the last to stop,
1700 	 * report to the parent.  When ptraced, every thread reports itself.
1701 	 */
1702 	if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1703 		read_lock(&tasklist_lock);
1704 		do_notify_parent_cldstop(current, CLD_STOPPED);
1705 		read_unlock(&tasklist_lock);
1706 	}
1707 
1708 	schedule();
1709 	/*
1710 	 * Now we don't run again until continued.
1711 	 */
1712 	current->exit_code = 0;
1713 }
1714 
1715 /*
1716  * This performs the stopping for SIGSTOP and other stop signals.
1717  * We have to stop all threads in the thread group.
1718  * Returns nonzero if we've actually stopped and released the siglock.
1719  * Returns zero if we didn't stop and still hold the siglock.
1720  */
1721 static int do_signal_stop(int signr)
1722 {
1723 	struct signal_struct *sig = current->signal;
1724 	int stop_count;
1725 
1726 	if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1727 		return 0;
1728 
1729 	if (sig->group_stop_count > 0) {
1730 		/*
1731 		 * There is a group stop in progress.  We don't need to
1732 		 * start another one.
1733 		 */
1734 		stop_count = --sig->group_stop_count;
1735 	} else {
1736 		/*
1737 		 * There is no group stop already in progress.
1738 		 * We must initiate one now.
1739 		 */
1740 		struct task_struct *t;
1741 
1742 		sig->group_exit_code = signr;
1743 
1744 		stop_count = 0;
1745 		for (t = next_thread(current); t != current; t = next_thread(t))
1746 			/*
1747 			 * Setting state to TASK_STOPPED for a group
1748 			 * stop is always done with the siglock held,
1749 			 * so this check has no races.
1750 			 */
1751 			if (!t->exit_state &&
1752 			    !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1753 				stop_count++;
1754 				signal_wake_up(t, 0);
1755 			}
1756 		sig->group_stop_count = stop_count;
1757 	}
1758 
1759 	if (stop_count == 0)
1760 		sig->flags = SIGNAL_STOP_STOPPED;
1761 	current->exit_code = sig->group_exit_code;
1762 	__set_current_state(TASK_STOPPED);
1763 
1764 	spin_unlock_irq(&current->sighand->siglock);
1765 	finish_stop(stop_count);
1766 	return 1;
1767 }
1768 
1769 /*
1770  * Do appropriate magic when group_stop_count > 0.
1771  * We return nonzero if we stopped, after releasing the siglock.
1772  * We return zero if we still hold the siglock and should look
1773  * for another signal without checking group_stop_count again.
1774  */
1775 static int handle_group_stop(void)
1776 {
1777 	int stop_count;
1778 
1779 	if (current->signal->group_exit_task == current) {
1780 		/*
1781 		 * Group stop is so we can do a core dump,
1782 		 * We are the initiating thread, so get on with it.
1783 		 */
1784 		current->signal->group_exit_task = NULL;
1785 		return 0;
1786 	}
1787 
1788 	if (current->signal->flags & SIGNAL_GROUP_EXIT)
1789 		/*
1790 		 * Group stop is so another thread can do a core dump,
1791 		 * or else we are racing against a death signal.
1792 		 * Just punt the stop so we can get the next signal.
1793 		 */
1794 		return 0;
1795 
1796 	/*
1797 	 * There is a group stop in progress.  We stop
1798 	 * without any associated signal being in our queue.
1799 	 */
1800 	stop_count = --current->signal->group_stop_count;
1801 	if (stop_count == 0)
1802 		current->signal->flags = SIGNAL_STOP_STOPPED;
1803 	current->exit_code = current->signal->group_exit_code;
1804 	set_current_state(TASK_STOPPED);
1805 	spin_unlock_irq(&current->sighand->siglock);
1806 	finish_stop(stop_count);
1807 	return 1;
1808 }
1809 
1810 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1811 			  struct pt_regs *regs, void *cookie)
1812 {
1813 	sigset_t *mask = &current->blocked;
1814 	int signr = 0;
1815 
1816 	try_to_freeze();
1817 
1818 relock:
1819 	spin_lock_irq(&current->sighand->siglock);
1820 	for (;;) {
1821 		struct k_sigaction *ka;
1822 
1823 		if (unlikely(current->signal->group_stop_count > 0) &&
1824 		    handle_group_stop())
1825 			goto relock;
1826 
1827 		signr = dequeue_signal(current, mask, info);
1828 
1829 		if (!signr)
1830 			break; /* will return 0 */
1831 
1832 		if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1833 			ptrace_signal_deliver(regs, cookie);
1834 
1835 			/* Let the debugger run.  */
1836 			ptrace_stop(signr, signr, info);
1837 
1838 			/* We're back.  Did the debugger cancel the sig?  */
1839 			signr = current->exit_code;
1840 			if (signr == 0)
1841 				continue;
1842 
1843 			current->exit_code = 0;
1844 
1845 			/* Update the siginfo structure if the signal has
1846 			   changed.  If the debugger wanted something
1847 			   specific in the siginfo structure then it should
1848 			   have updated *info via PTRACE_SETSIGINFO.  */
1849 			if (signr != info->si_signo) {
1850 				info->si_signo = signr;
1851 				info->si_errno = 0;
1852 				info->si_code = SI_USER;
1853 				info->si_pid = current->parent->pid;
1854 				info->si_uid = current->parent->uid;
1855 			}
1856 
1857 			/* If the (new) signal is now blocked, requeue it.  */
1858 			if (sigismember(&current->blocked, signr)) {
1859 				specific_send_sig_info(signr, info, current);
1860 				continue;
1861 			}
1862 		}
1863 
1864 		ka = &current->sighand->action[signr-1];
1865 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
1866 			continue;
1867 		if (ka->sa.sa_handler != SIG_DFL) {
1868 			/* Run the handler.  */
1869 			*return_ka = *ka;
1870 
1871 			if (ka->sa.sa_flags & SA_ONESHOT)
1872 				ka->sa.sa_handler = SIG_DFL;
1873 
1874 			break; /* will return non-zero "signr" value */
1875 		}
1876 
1877 		/*
1878 		 * Now we are doing the default action for this signal.
1879 		 */
1880 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
1881 			continue;
1882 
1883 		/*
1884 		 * Init of a pid space gets no signals it doesn't want from
1885 		 * within that pid space. It can of course get signals from
1886 		 * its parent pid space.
1887 		 */
1888 		if (current == child_reaper(current))
1889 			continue;
1890 
1891 		if (sig_kernel_stop(signr)) {
1892 			/*
1893 			 * The default action is to stop all threads in
1894 			 * the thread group.  The job control signals
1895 			 * do nothing in an orphaned pgrp, but SIGSTOP
1896 			 * always works.  Note that siglock needs to be
1897 			 * dropped during the call to is_orphaned_pgrp()
1898 			 * because of lock ordering with tasklist_lock.
1899 			 * This allows an intervening SIGCONT to be posted.
1900 			 * We need to check for that and bail out if necessary.
1901 			 */
1902 			if (signr != SIGSTOP) {
1903 				spin_unlock_irq(&current->sighand->siglock);
1904 
1905 				/* signals can be posted during this window */
1906 
1907 				if (is_orphaned_pgrp(process_group(current)))
1908 					goto relock;
1909 
1910 				spin_lock_irq(&current->sighand->siglock);
1911 			}
1912 
1913 			if (likely(do_signal_stop(signr))) {
1914 				/* It released the siglock.  */
1915 				goto relock;
1916 			}
1917 
1918 			/*
1919 			 * We didn't actually stop, due to a race
1920 			 * with SIGCONT or something like that.
1921 			 */
1922 			continue;
1923 		}
1924 
1925 		spin_unlock_irq(&current->sighand->siglock);
1926 
1927 		/*
1928 		 * Anything else is fatal, maybe with a core dump.
1929 		 */
1930 		current->flags |= PF_SIGNALED;
1931 		if (sig_kernel_coredump(signr)) {
1932 			/*
1933 			 * If it was able to dump core, this kills all
1934 			 * other threads in the group and synchronizes with
1935 			 * their demise.  If we lost the race with another
1936 			 * thread getting here, it set group_exit_code
1937 			 * first and our do_group_exit call below will use
1938 			 * that value and ignore the one we pass it.
1939 			 */
1940 			do_coredump((long)signr, signr, regs);
1941 		}
1942 
1943 		/*
1944 		 * Death signals, no core dump.
1945 		 */
1946 		do_group_exit(signr);
1947 		/* NOTREACHED */
1948 	}
1949 	spin_unlock_irq(&current->sighand->siglock);
1950 	return signr;
1951 }
1952 
1953 EXPORT_SYMBOL(recalc_sigpending);
1954 EXPORT_SYMBOL_GPL(dequeue_signal);
1955 EXPORT_SYMBOL(flush_signals);
1956 EXPORT_SYMBOL(force_sig);
1957 EXPORT_SYMBOL(kill_pg);
1958 EXPORT_SYMBOL(kill_proc);
1959 EXPORT_SYMBOL(ptrace_notify);
1960 EXPORT_SYMBOL(send_sig);
1961 EXPORT_SYMBOL(send_sig_info);
1962 EXPORT_SYMBOL(sigprocmask);
1963 EXPORT_SYMBOL(block_all_signals);
1964 EXPORT_SYMBOL(unblock_all_signals);
1965 
1966 
1967 /*
1968  * System call entry points.
1969  */
1970 
1971 asmlinkage long sys_restart_syscall(void)
1972 {
1973 	struct restart_block *restart = &current_thread_info()->restart_block;
1974 	return restart->fn(restart);
1975 }
1976 
1977 long do_no_restart_syscall(struct restart_block *param)
1978 {
1979 	return -EINTR;
1980 }
1981 
1982 /*
1983  * We don't need to get the kernel lock - this is all local to this
1984  * particular thread.. (and that's good, because this is _heavily_
1985  * used by various programs)
1986  */
1987 
1988 /*
1989  * This is also useful for kernel threads that want to temporarily
1990  * (or permanently) block certain signals.
1991  *
1992  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1993  * interface happily blocks "unblockable" signals like SIGKILL
1994  * and friends.
1995  */
1996 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1997 {
1998 	int error;
1999 
2000 	spin_lock_irq(&current->sighand->siglock);
2001 	if (oldset)
2002 		*oldset = current->blocked;
2003 
2004 	error = 0;
2005 	switch (how) {
2006 	case SIG_BLOCK:
2007 		sigorsets(&current->blocked, &current->blocked, set);
2008 		break;
2009 	case SIG_UNBLOCK:
2010 		signandsets(&current->blocked, &current->blocked, set);
2011 		break;
2012 	case SIG_SETMASK:
2013 		current->blocked = *set;
2014 		break;
2015 	default:
2016 		error = -EINVAL;
2017 	}
2018 	recalc_sigpending();
2019 	spin_unlock_irq(&current->sighand->siglock);
2020 
2021 	return error;
2022 }
2023 
2024 asmlinkage long
2025 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2026 {
2027 	int error = -EINVAL;
2028 	sigset_t old_set, new_set;
2029 
2030 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2031 	if (sigsetsize != sizeof(sigset_t))
2032 		goto out;
2033 
2034 	if (set) {
2035 		error = -EFAULT;
2036 		if (copy_from_user(&new_set, set, sizeof(*set)))
2037 			goto out;
2038 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2039 
2040 		error = sigprocmask(how, &new_set, &old_set);
2041 		if (error)
2042 			goto out;
2043 		if (oset)
2044 			goto set_old;
2045 	} else if (oset) {
2046 		spin_lock_irq(&current->sighand->siglock);
2047 		old_set = current->blocked;
2048 		spin_unlock_irq(&current->sighand->siglock);
2049 
2050 	set_old:
2051 		error = -EFAULT;
2052 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
2053 			goto out;
2054 	}
2055 	error = 0;
2056 out:
2057 	return error;
2058 }
2059 
2060 long do_sigpending(void __user *set, unsigned long sigsetsize)
2061 {
2062 	long error = -EINVAL;
2063 	sigset_t pending;
2064 
2065 	if (sigsetsize > sizeof(sigset_t))
2066 		goto out;
2067 
2068 	spin_lock_irq(&current->sighand->siglock);
2069 	sigorsets(&pending, &current->pending.signal,
2070 		  &current->signal->shared_pending.signal);
2071 	spin_unlock_irq(&current->sighand->siglock);
2072 
2073 	/* Outside the lock because only this thread touches it.  */
2074 	sigandsets(&pending, &current->blocked, &pending);
2075 
2076 	error = -EFAULT;
2077 	if (!copy_to_user(set, &pending, sigsetsize))
2078 		error = 0;
2079 
2080 out:
2081 	return error;
2082 }
2083 
2084 asmlinkage long
2085 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2086 {
2087 	return do_sigpending(set, sigsetsize);
2088 }
2089 
2090 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2091 
2092 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2093 {
2094 	int err;
2095 
2096 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2097 		return -EFAULT;
2098 	if (from->si_code < 0)
2099 		return __copy_to_user(to, from, sizeof(siginfo_t))
2100 			? -EFAULT : 0;
2101 	/*
2102 	 * If you change siginfo_t structure, please be sure
2103 	 * this code is fixed accordingly.
2104 	 * It should never copy any pad contained in the structure
2105 	 * to avoid security leaks, but must copy the generic
2106 	 * 3 ints plus the relevant union member.
2107 	 */
2108 	err = __put_user(from->si_signo, &to->si_signo);
2109 	err |= __put_user(from->si_errno, &to->si_errno);
2110 	err |= __put_user((short)from->si_code, &to->si_code);
2111 	switch (from->si_code & __SI_MASK) {
2112 	case __SI_KILL:
2113 		err |= __put_user(from->si_pid, &to->si_pid);
2114 		err |= __put_user(from->si_uid, &to->si_uid);
2115 		break;
2116 	case __SI_TIMER:
2117 		 err |= __put_user(from->si_tid, &to->si_tid);
2118 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2119 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2120 		break;
2121 	case __SI_POLL:
2122 		err |= __put_user(from->si_band, &to->si_band);
2123 		err |= __put_user(from->si_fd, &to->si_fd);
2124 		break;
2125 	case __SI_FAULT:
2126 		err |= __put_user(from->si_addr, &to->si_addr);
2127 #ifdef __ARCH_SI_TRAPNO
2128 		err |= __put_user(from->si_trapno, &to->si_trapno);
2129 #endif
2130 		break;
2131 	case __SI_CHLD:
2132 		err |= __put_user(from->si_pid, &to->si_pid);
2133 		err |= __put_user(from->si_uid, &to->si_uid);
2134 		err |= __put_user(from->si_status, &to->si_status);
2135 		err |= __put_user(from->si_utime, &to->si_utime);
2136 		err |= __put_user(from->si_stime, &to->si_stime);
2137 		break;
2138 	case __SI_RT: /* This is not generated by the kernel as of now. */
2139 	case __SI_MESGQ: /* But this is */
2140 		err |= __put_user(from->si_pid, &to->si_pid);
2141 		err |= __put_user(from->si_uid, &to->si_uid);
2142 		err |= __put_user(from->si_ptr, &to->si_ptr);
2143 		break;
2144 	default: /* this is just in case for now ... */
2145 		err |= __put_user(from->si_pid, &to->si_pid);
2146 		err |= __put_user(from->si_uid, &to->si_uid);
2147 		break;
2148 	}
2149 	return err;
2150 }
2151 
2152 #endif
2153 
2154 asmlinkage long
2155 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2156 		    siginfo_t __user *uinfo,
2157 		    const struct timespec __user *uts,
2158 		    size_t sigsetsize)
2159 {
2160 	int ret, sig;
2161 	sigset_t these;
2162 	struct timespec ts;
2163 	siginfo_t info;
2164 	long timeout = 0;
2165 
2166 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2167 	if (sigsetsize != sizeof(sigset_t))
2168 		return -EINVAL;
2169 
2170 	if (copy_from_user(&these, uthese, sizeof(these)))
2171 		return -EFAULT;
2172 
2173 	/*
2174 	 * Invert the set of allowed signals to get those we
2175 	 * want to block.
2176 	 */
2177 	sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2178 	signotset(&these);
2179 
2180 	if (uts) {
2181 		if (copy_from_user(&ts, uts, sizeof(ts)))
2182 			return -EFAULT;
2183 		if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2184 		    || ts.tv_sec < 0)
2185 			return -EINVAL;
2186 	}
2187 
2188 	spin_lock_irq(&current->sighand->siglock);
2189 	sig = dequeue_signal(current, &these, &info);
2190 	if (!sig) {
2191 		timeout = MAX_SCHEDULE_TIMEOUT;
2192 		if (uts)
2193 			timeout = (timespec_to_jiffies(&ts)
2194 				   + (ts.tv_sec || ts.tv_nsec));
2195 
2196 		if (timeout) {
2197 			/* None ready -- temporarily unblock those we're
2198 			 * interested while we are sleeping in so that we'll
2199 			 * be awakened when they arrive.  */
2200 			current->real_blocked = current->blocked;
2201 			sigandsets(&current->blocked, &current->blocked, &these);
2202 			recalc_sigpending();
2203 			spin_unlock_irq(&current->sighand->siglock);
2204 
2205 			timeout = schedule_timeout_interruptible(timeout);
2206 
2207 			spin_lock_irq(&current->sighand->siglock);
2208 			sig = dequeue_signal(current, &these, &info);
2209 			current->blocked = current->real_blocked;
2210 			siginitset(&current->real_blocked, 0);
2211 			recalc_sigpending();
2212 		}
2213 	}
2214 	spin_unlock_irq(&current->sighand->siglock);
2215 
2216 	if (sig) {
2217 		ret = sig;
2218 		if (uinfo) {
2219 			if (copy_siginfo_to_user(uinfo, &info))
2220 				ret = -EFAULT;
2221 		}
2222 	} else {
2223 		ret = -EAGAIN;
2224 		if (timeout)
2225 			ret = -EINTR;
2226 	}
2227 
2228 	return ret;
2229 }
2230 
2231 asmlinkage long
2232 sys_kill(int pid, int sig)
2233 {
2234 	struct siginfo info;
2235 
2236 	info.si_signo = sig;
2237 	info.si_errno = 0;
2238 	info.si_code = SI_USER;
2239 	info.si_pid = current->tgid;
2240 	info.si_uid = current->uid;
2241 
2242 	return kill_something_info(sig, &info, pid);
2243 }
2244 
2245 static int do_tkill(int tgid, int pid, int sig)
2246 {
2247 	int error;
2248 	struct siginfo info;
2249 	struct task_struct *p;
2250 
2251 	error = -ESRCH;
2252 	info.si_signo = sig;
2253 	info.si_errno = 0;
2254 	info.si_code = SI_TKILL;
2255 	info.si_pid = current->tgid;
2256 	info.si_uid = current->uid;
2257 
2258 	read_lock(&tasklist_lock);
2259 	p = find_task_by_pid(pid);
2260 	if (p && (tgid <= 0 || p->tgid == tgid)) {
2261 		error = check_kill_permission(sig, &info, p);
2262 		/*
2263 		 * The null signal is a permissions and process existence
2264 		 * probe.  No signal is actually delivered.
2265 		 */
2266 		if (!error && sig && p->sighand) {
2267 			spin_lock_irq(&p->sighand->siglock);
2268 			handle_stop_signal(sig, p);
2269 			error = specific_send_sig_info(sig, &info, p);
2270 			spin_unlock_irq(&p->sighand->siglock);
2271 		}
2272 	}
2273 	read_unlock(&tasklist_lock);
2274 
2275 	return error;
2276 }
2277 
2278 /**
2279  *  sys_tgkill - send signal to one specific thread
2280  *  @tgid: the thread group ID of the thread
2281  *  @pid: the PID of the thread
2282  *  @sig: signal to be sent
2283  *
2284  *  This syscall also checks the tgid and returns -ESRCH even if the PID
2285  *  exists but it's not belonging to the target process anymore. This
2286  *  method solves the problem of threads exiting and PIDs getting reused.
2287  */
2288 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2289 {
2290 	/* This is only valid for single tasks */
2291 	if (pid <= 0 || tgid <= 0)
2292 		return -EINVAL;
2293 
2294 	return do_tkill(tgid, pid, sig);
2295 }
2296 
2297 /*
2298  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2299  */
2300 asmlinkage long
2301 sys_tkill(int pid, int sig)
2302 {
2303 	/* This is only valid for single tasks */
2304 	if (pid <= 0)
2305 		return -EINVAL;
2306 
2307 	return do_tkill(0, pid, sig);
2308 }
2309 
2310 asmlinkage long
2311 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2312 {
2313 	siginfo_t info;
2314 
2315 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2316 		return -EFAULT;
2317 
2318 	/* Not even root can pretend to send signals from the kernel.
2319 	   Nor can they impersonate a kill(), which adds source info.  */
2320 	if (info.si_code >= 0)
2321 		return -EPERM;
2322 	info.si_signo = sig;
2323 
2324 	/* POSIX.1b doesn't mention process groups.  */
2325 	return kill_proc_info(sig, &info, pid);
2326 }
2327 
2328 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2329 {
2330 	struct k_sigaction *k;
2331 	sigset_t mask;
2332 
2333 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2334 		return -EINVAL;
2335 
2336 	k = &current->sighand->action[sig-1];
2337 
2338 	spin_lock_irq(&current->sighand->siglock);
2339 	if (signal_pending(current)) {
2340 		/*
2341 		 * If there might be a fatal signal pending on multiple
2342 		 * threads, make sure we take it before changing the action.
2343 		 */
2344 		spin_unlock_irq(&current->sighand->siglock);
2345 		return -ERESTARTNOINTR;
2346 	}
2347 
2348 	if (oact)
2349 		*oact = *k;
2350 
2351 	if (act) {
2352 		sigdelsetmask(&act->sa.sa_mask,
2353 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
2354 		*k = *act;
2355 		/*
2356 		 * POSIX 3.3.1.3:
2357 		 *  "Setting a signal action to SIG_IGN for a signal that is
2358 		 *   pending shall cause the pending signal to be discarded,
2359 		 *   whether or not it is blocked."
2360 		 *
2361 		 *  "Setting a signal action to SIG_DFL for a signal that is
2362 		 *   pending and whose default action is to ignore the signal
2363 		 *   (for example, SIGCHLD), shall cause the pending signal to
2364 		 *   be discarded, whether or not it is blocked"
2365 		 */
2366 		if (act->sa.sa_handler == SIG_IGN ||
2367 		   (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2368 			struct task_struct *t = current;
2369 			sigemptyset(&mask);
2370 			sigaddset(&mask, sig);
2371 			rm_from_queue_full(&mask, &t->signal->shared_pending);
2372 			do {
2373 				rm_from_queue_full(&mask, &t->pending);
2374 				recalc_sigpending_tsk(t);
2375 				t = next_thread(t);
2376 			} while (t != current);
2377 		}
2378 	}
2379 
2380 	spin_unlock_irq(&current->sighand->siglock);
2381 	return 0;
2382 }
2383 
2384 int
2385 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2386 {
2387 	stack_t oss;
2388 	int error;
2389 
2390 	if (uoss) {
2391 		oss.ss_sp = (void __user *) current->sas_ss_sp;
2392 		oss.ss_size = current->sas_ss_size;
2393 		oss.ss_flags = sas_ss_flags(sp);
2394 	}
2395 
2396 	if (uss) {
2397 		void __user *ss_sp;
2398 		size_t ss_size;
2399 		int ss_flags;
2400 
2401 		error = -EFAULT;
2402 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2403 		    || __get_user(ss_sp, &uss->ss_sp)
2404 		    || __get_user(ss_flags, &uss->ss_flags)
2405 		    || __get_user(ss_size, &uss->ss_size))
2406 			goto out;
2407 
2408 		error = -EPERM;
2409 		if (on_sig_stack(sp))
2410 			goto out;
2411 
2412 		error = -EINVAL;
2413 		/*
2414 		 *
2415 		 * Note - this code used to test ss_flags incorrectly
2416 		 *  	  old code may have been written using ss_flags==0
2417 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
2418 		 *	  way that worked) - this fix preserves that older
2419 		 *	  mechanism
2420 		 */
2421 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2422 			goto out;
2423 
2424 		if (ss_flags == SS_DISABLE) {
2425 			ss_size = 0;
2426 			ss_sp = NULL;
2427 		} else {
2428 			error = -ENOMEM;
2429 			if (ss_size < MINSIGSTKSZ)
2430 				goto out;
2431 		}
2432 
2433 		current->sas_ss_sp = (unsigned long) ss_sp;
2434 		current->sas_ss_size = ss_size;
2435 	}
2436 
2437 	if (uoss) {
2438 		error = -EFAULT;
2439 		if (copy_to_user(uoss, &oss, sizeof(oss)))
2440 			goto out;
2441 	}
2442 
2443 	error = 0;
2444 out:
2445 	return error;
2446 }
2447 
2448 #ifdef __ARCH_WANT_SYS_SIGPENDING
2449 
2450 asmlinkage long
2451 sys_sigpending(old_sigset_t __user *set)
2452 {
2453 	return do_sigpending(set, sizeof(*set));
2454 }
2455 
2456 #endif
2457 
2458 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2459 /* Some platforms have their own version with special arguments others
2460    support only sys_rt_sigprocmask.  */
2461 
2462 asmlinkage long
2463 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2464 {
2465 	int error;
2466 	old_sigset_t old_set, new_set;
2467 
2468 	if (set) {
2469 		error = -EFAULT;
2470 		if (copy_from_user(&new_set, set, sizeof(*set)))
2471 			goto out;
2472 		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2473 
2474 		spin_lock_irq(&current->sighand->siglock);
2475 		old_set = current->blocked.sig[0];
2476 
2477 		error = 0;
2478 		switch (how) {
2479 		default:
2480 			error = -EINVAL;
2481 			break;
2482 		case SIG_BLOCK:
2483 			sigaddsetmask(&current->blocked, new_set);
2484 			break;
2485 		case SIG_UNBLOCK:
2486 			sigdelsetmask(&current->blocked, new_set);
2487 			break;
2488 		case SIG_SETMASK:
2489 			current->blocked.sig[0] = new_set;
2490 			break;
2491 		}
2492 
2493 		recalc_sigpending();
2494 		spin_unlock_irq(&current->sighand->siglock);
2495 		if (error)
2496 			goto out;
2497 		if (oset)
2498 			goto set_old;
2499 	} else if (oset) {
2500 		old_set = current->blocked.sig[0];
2501 	set_old:
2502 		error = -EFAULT;
2503 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
2504 			goto out;
2505 	}
2506 	error = 0;
2507 out:
2508 	return error;
2509 }
2510 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2511 
2512 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2513 asmlinkage long
2514 sys_rt_sigaction(int sig,
2515 		 const struct sigaction __user *act,
2516 		 struct sigaction __user *oact,
2517 		 size_t sigsetsize)
2518 {
2519 	struct k_sigaction new_sa, old_sa;
2520 	int ret = -EINVAL;
2521 
2522 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2523 	if (sigsetsize != sizeof(sigset_t))
2524 		goto out;
2525 
2526 	if (act) {
2527 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2528 			return -EFAULT;
2529 	}
2530 
2531 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2532 
2533 	if (!ret && oact) {
2534 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2535 			return -EFAULT;
2536 	}
2537 out:
2538 	return ret;
2539 }
2540 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2541 
2542 #ifdef __ARCH_WANT_SYS_SGETMASK
2543 
2544 /*
2545  * For backwards compatibility.  Functionality superseded by sigprocmask.
2546  */
2547 asmlinkage long
2548 sys_sgetmask(void)
2549 {
2550 	/* SMP safe */
2551 	return current->blocked.sig[0];
2552 }
2553 
2554 asmlinkage long
2555 sys_ssetmask(int newmask)
2556 {
2557 	int old;
2558 
2559 	spin_lock_irq(&current->sighand->siglock);
2560 	old = current->blocked.sig[0];
2561 
2562 	siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2563 						  sigmask(SIGSTOP)));
2564 	recalc_sigpending();
2565 	spin_unlock_irq(&current->sighand->siglock);
2566 
2567 	return old;
2568 }
2569 #endif /* __ARCH_WANT_SGETMASK */
2570 
2571 #ifdef __ARCH_WANT_SYS_SIGNAL
2572 /*
2573  * For backwards compatibility.  Functionality superseded by sigaction.
2574  */
2575 asmlinkage unsigned long
2576 sys_signal(int sig, __sighandler_t handler)
2577 {
2578 	struct k_sigaction new_sa, old_sa;
2579 	int ret;
2580 
2581 	new_sa.sa.sa_handler = handler;
2582 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2583 	sigemptyset(&new_sa.sa.sa_mask);
2584 
2585 	ret = do_sigaction(sig, &new_sa, &old_sa);
2586 
2587 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2588 }
2589 #endif /* __ARCH_WANT_SYS_SIGNAL */
2590 
2591 #ifdef __ARCH_WANT_SYS_PAUSE
2592 
2593 asmlinkage long
2594 sys_pause(void)
2595 {
2596 	current->state = TASK_INTERRUPTIBLE;
2597 	schedule();
2598 	return -ERESTARTNOHAND;
2599 }
2600 
2601 #endif
2602 
2603 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2604 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2605 {
2606 	sigset_t newset;
2607 
2608 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2609 	if (sigsetsize != sizeof(sigset_t))
2610 		return -EINVAL;
2611 
2612 	if (copy_from_user(&newset, unewset, sizeof(newset)))
2613 		return -EFAULT;
2614 	sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2615 
2616 	spin_lock_irq(&current->sighand->siglock);
2617 	current->saved_sigmask = current->blocked;
2618 	current->blocked = newset;
2619 	recalc_sigpending();
2620 	spin_unlock_irq(&current->sighand->siglock);
2621 
2622 	current->state = TASK_INTERRUPTIBLE;
2623 	schedule();
2624 	set_thread_flag(TIF_RESTORE_SIGMASK);
2625 	return -ERESTARTNOHAND;
2626 }
2627 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2628 
2629 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2630 {
2631 	return NULL;
2632 }
2633 
2634 void __init signals_init(void)
2635 {
2636 	sigqueue_cachep =
2637 		kmem_cache_create("sigqueue",
2638 				  sizeof(struct sigqueue),
2639 				  __alignof__(struct sigqueue),
2640 				  SLAB_PANIC, NULL, NULL);
2641 }
2642