1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/config.h> 14 #include <linux/slab.h> 15 #include <linux/module.h> 16 #include <linux/smp_lock.h> 17 #include <linux/init.h> 18 #include <linux/sched.h> 19 #include <linux/fs.h> 20 #include <linux/tty.h> 21 #include <linux/binfmts.h> 22 #include <linux/security.h> 23 #include <linux/syscalls.h> 24 #include <linux/ptrace.h> 25 #include <linux/signal.h> 26 #include <linux/capability.h> 27 #include <asm/param.h> 28 #include <asm/uaccess.h> 29 #include <asm/unistd.h> 30 #include <asm/siginfo.h> 31 #include "audit.h" /* audit_signal_info() */ 32 33 /* 34 * SLAB caches for signal bits. 35 */ 36 37 static kmem_cache_t *sigqueue_cachep; 38 39 /* 40 * In POSIX a signal is sent either to a specific thread (Linux task) 41 * or to the process as a whole (Linux thread group). How the signal 42 * is sent determines whether it's to one thread or the whole group, 43 * which determines which signal mask(s) are involved in blocking it 44 * from being delivered until later. When the signal is delivered, 45 * either it's caught or ignored by a user handler or it has a default 46 * effect that applies to the whole thread group (POSIX process). 47 * 48 * The possible effects an unblocked signal set to SIG_DFL can have are: 49 * ignore - Nothing Happens 50 * terminate - kill the process, i.e. all threads in the group, 51 * similar to exit_group. The group leader (only) reports 52 * WIFSIGNALED status to its parent. 53 * coredump - write a core dump file describing all threads using 54 * the same mm and then kill all those threads 55 * stop - stop all the threads in the group, i.e. TASK_STOPPED state 56 * 57 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored. 58 * Other signals when not blocked and set to SIG_DFL behaves as follows. 59 * The job control signals also have other special effects. 60 * 61 * +--------------------+------------------+ 62 * | POSIX signal | default action | 63 * +--------------------+------------------+ 64 * | SIGHUP | terminate | 65 * | SIGINT | terminate | 66 * | SIGQUIT | coredump | 67 * | SIGILL | coredump | 68 * | SIGTRAP | coredump | 69 * | SIGABRT/SIGIOT | coredump | 70 * | SIGBUS | coredump | 71 * | SIGFPE | coredump | 72 * | SIGKILL | terminate(+) | 73 * | SIGUSR1 | terminate | 74 * | SIGSEGV | coredump | 75 * | SIGUSR2 | terminate | 76 * | SIGPIPE | terminate | 77 * | SIGALRM | terminate | 78 * | SIGTERM | terminate | 79 * | SIGCHLD | ignore | 80 * | SIGCONT | ignore(*) | 81 * | SIGSTOP | stop(*)(+) | 82 * | SIGTSTP | stop(*) | 83 * | SIGTTIN | stop(*) | 84 * | SIGTTOU | stop(*) | 85 * | SIGURG | ignore | 86 * | SIGXCPU | coredump | 87 * | SIGXFSZ | coredump | 88 * | SIGVTALRM | terminate | 89 * | SIGPROF | terminate | 90 * | SIGPOLL/SIGIO | terminate | 91 * | SIGSYS/SIGUNUSED | coredump | 92 * | SIGSTKFLT | terminate | 93 * | SIGWINCH | ignore | 94 * | SIGPWR | terminate | 95 * | SIGRTMIN-SIGRTMAX | terminate | 96 * +--------------------+------------------+ 97 * | non-POSIX signal | default action | 98 * +--------------------+------------------+ 99 * | SIGEMT | coredump | 100 * +--------------------+------------------+ 101 * 102 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default". 103 * (*) Special job control effects: 104 * When SIGCONT is sent, it resumes the process (all threads in the group) 105 * from TASK_STOPPED state and also clears any pending/queued stop signals 106 * (any of those marked with "stop(*)"). This happens regardless of blocking, 107 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears 108 * any pending/queued SIGCONT signals; this happens regardless of blocking, 109 * catching, or ignored the stop signal, though (except for SIGSTOP) the 110 * default action of stopping the process may happen later or never. 111 */ 112 113 #ifdef SIGEMT 114 #define M_SIGEMT M(SIGEMT) 115 #else 116 #define M_SIGEMT 0 117 #endif 118 119 #if SIGRTMIN > BITS_PER_LONG 120 #define M(sig) (1ULL << ((sig)-1)) 121 #else 122 #define M(sig) (1UL << ((sig)-1)) 123 #endif 124 #define T(sig, mask) (M(sig) & (mask)) 125 126 #define SIG_KERNEL_ONLY_MASK (\ 127 M(SIGKILL) | M(SIGSTOP) ) 128 129 #define SIG_KERNEL_STOP_MASK (\ 130 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) ) 131 132 #define SIG_KERNEL_COREDUMP_MASK (\ 133 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \ 134 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \ 135 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT ) 136 137 #define SIG_KERNEL_IGNORE_MASK (\ 138 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) ) 139 140 #define sig_kernel_only(sig) \ 141 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK)) 142 #define sig_kernel_coredump(sig) \ 143 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK)) 144 #define sig_kernel_ignore(sig) \ 145 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK)) 146 #define sig_kernel_stop(sig) \ 147 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK)) 148 149 #define sig_needs_tasklist(sig) ((sig) == SIGCONT) 150 151 #define sig_user_defined(t, signr) \ 152 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \ 153 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN)) 154 155 #define sig_fatal(t, signr) \ 156 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \ 157 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL) 158 159 static int sig_ignored(struct task_struct *t, int sig) 160 { 161 void __user * handler; 162 163 /* 164 * Tracers always want to know about signals.. 165 */ 166 if (t->ptrace & PT_PTRACED) 167 return 0; 168 169 /* 170 * Blocked signals are never ignored, since the 171 * signal handler may change by the time it is 172 * unblocked. 173 */ 174 if (sigismember(&t->blocked, sig)) 175 return 0; 176 177 /* Is it explicitly or implicitly ignored? */ 178 handler = t->sighand->action[sig-1].sa.sa_handler; 179 return handler == SIG_IGN || 180 (handler == SIG_DFL && sig_kernel_ignore(sig)); 181 } 182 183 /* 184 * Re-calculate pending state from the set of locally pending 185 * signals, globally pending signals, and blocked signals. 186 */ 187 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 188 { 189 unsigned long ready; 190 long i; 191 192 switch (_NSIG_WORDS) { 193 default: 194 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 195 ready |= signal->sig[i] &~ blocked->sig[i]; 196 break; 197 198 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 199 ready |= signal->sig[2] &~ blocked->sig[2]; 200 ready |= signal->sig[1] &~ blocked->sig[1]; 201 ready |= signal->sig[0] &~ blocked->sig[0]; 202 break; 203 204 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 205 ready |= signal->sig[0] &~ blocked->sig[0]; 206 break; 207 208 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 209 } 210 return ready != 0; 211 } 212 213 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 214 215 fastcall void recalc_sigpending_tsk(struct task_struct *t) 216 { 217 if (t->signal->group_stop_count > 0 || 218 (freezing(t)) || 219 PENDING(&t->pending, &t->blocked) || 220 PENDING(&t->signal->shared_pending, &t->blocked)) 221 set_tsk_thread_flag(t, TIF_SIGPENDING); 222 else 223 clear_tsk_thread_flag(t, TIF_SIGPENDING); 224 } 225 226 void recalc_sigpending(void) 227 { 228 recalc_sigpending_tsk(current); 229 } 230 231 /* Given the mask, find the first available signal that should be serviced. */ 232 233 static int 234 next_signal(struct sigpending *pending, sigset_t *mask) 235 { 236 unsigned long i, *s, *m, x; 237 int sig = 0; 238 239 s = pending->signal.sig; 240 m = mask->sig; 241 switch (_NSIG_WORDS) { 242 default: 243 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m) 244 if ((x = *s &~ *m) != 0) { 245 sig = ffz(~x) + i*_NSIG_BPW + 1; 246 break; 247 } 248 break; 249 250 case 2: if ((x = s[0] &~ m[0]) != 0) 251 sig = 1; 252 else if ((x = s[1] &~ m[1]) != 0) 253 sig = _NSIG_BPW + 1; 254 else 255 break; 256 sig += ffz(~x); 257 break; 258 259 case 1: if ((x = *s &~ *m) != 0) 260 sig = ffz(~x) + 1; 261 break; 262 } 263 264 return sig; 265 } 266 267 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags, 268 int override_rlimit) 269 { 270 struct sigqueue *q = NULL; 271 272 atomic_inc(&t->user->sigpending); 273 if (override_rlimit || 274 atomic_read(&t->user->sigpending) <= 275 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur) 276 q = kmem_cache_alloc(sigqueue_cachep, flags); 277 if (unlikely(q == NULL)) { 278 atomic_dec(&t->user->sigpending); 279 } else { 280 INIT_LIST_HEAD(&q->list); 281 q->flags = 0; 282 q->user = get_uid(t->user); 283 } 284 return(q); 285 } 286 287 static void __sigqueue_free(struct sigqueue *q) 288 { 289 if (q->flags & SIGQUEUE_PREALLOC) 290 return; 291 atomic_dec(&q->user->sigpending); 292 free_uid(q->user); 293 kmem_cache_free(sigqueue_cachep, q); 294 } 295 296 void flush_sigqueue(struct sigpending *queue) 297 { 298 struct sigqueue *q; 299 300 sigemptyset(&queue->signal); 301 while (!list_empty(&queue->list)) { 302 q = list_entry(queue->list.next, struct sigqueue , list); 303 list_del_init(&q->list); 304 __sigqueue_free(q); 305 } 306 } 307 308 /* 309 * Flush all pending signals for a task. 310 */ 311 void flush_signals(struct task_struct *t) 312 { 313 unsigned long flags; 314 315 spin_lock_irqsave(&t->sighand->siglock, flags); 316 clear_tsk_thread_flag(t,TIF_SIGPENDING); 317 flush_sigqueue(&t->pending); 318 flush_sigqueue(&t->signal->shared_pending); 319 spin_unlock_irqrestore(&t->sighand->siglock, flags); 320 } 321 322 /* 323 * Flush all handlers for a task. 324 */ 325 326 void 327 flush_signal_handlers(struct task_struct *t, int force_default) 328 { 329 int i; 330 struct k_sigaction *ka = &t->sighand->action[0]; 331 for (i = _NSIG ; i != 0 ; i--) { 332 if (force_default || ka->sa.sa_handler != SIG_IGN) 333 ka->sa.sa_handler = SIG_DFL; 334 ka->sa.sa_flags = 0; 335 sigemptyset(&ka->sa.sa_mask); 336 ka++; 337 } 338 } 339 340 341 /* Notify the system that a driver wants to block all signals for this 342 * process, and wants to be notified if any signals at all were to be 343 * sent/acted upon. If the notifier routine returns non-zero, then the 344 * signal will be acted upon after all. If the notifier routine returns 0, 345 * then then signal will be blocked. Only one block per process is 346 * allowed. priv is a pointer to private data that the notifier routine 347 * can use to determine if the signal should be blocked or not. */ 348 349 void 350 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) 351 { 352 unsigned long flags; 353 354 spin_lock_irqsave(¤t->sighand->siglock, flags); 355 current->notifier_mask = mask; 356 current->notifier_data = priv; 357 current->notifier = notifier; 358 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 359 } 360 361 /* Notify the system that blocking has ended. */ 362 363 void 364 unblock_all_signals(void) 365 { 366 unsigned long flags; 367 368 spin_lock_irqsave(¤t->sighand->siglock, flags); 369 current->notifier = NULL; 370 current->notifier_data = NULL; 371 recalc_sigpending(); 372 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 373 } 374 375 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info) 376 { 377 struct sigqueue *q, *first = NULL; 378 int still_pending = 0; 379 380 if (unlikely(!sigismember(&list->signal, sig))) 381 return 0; 382 383 /* 384 * Collect the siginfo appropriate to this signal. Check if 385 * there is another siginfo for the same signal. 386 */ 387 list_for_each_entry(q, &list->list, list) { 388 if (q->info.si_signo == sig) { 389 if (first) { 390 still_pending = 1; 391 break; 392 } 393 first = q; 394 } 395 } 396 if (first) { 397 list_del_init(&first->list); 398 copy_siginfo(info, &first->info); 399 __sigqueue_free(first); 400 if (!still_pending) 401 sigdelset(&list->signal, sig); 402 } else { 403 404 /* Ok, it wasn't in the queue. This must be 405 a fast-pathed signal or we must have been 406 out of queue space. So zero out the info. 407 */ 408 sigdelset(&list->signal, sig); 409 info->si_signo = sig; 410 info->si_errno = 0; 411 info->si_code = 0; 412 info->si_pid = 0; 413 info->si_uid = 0; 414 } 415 return 1; 416 } 417 418 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 419 siginfo_t *info) 420 { 421 int sig = 0; 422 423 sig = next_signal(pending, mask); 424 if (sig) { 425 if (current->notifier) { 426 if (sigismember(current->notifier_mask, sig)) { 427 if (!(current->notifier)(current->notifier_data)) { 428 clear_thread_flag(TIF_SIGPENDING); 429 return 0; 430 } 431 } 432 } 433 434 if (!collect_signal(sig, pending, info)) 435 sig = 0; 436 437 } 438 recalc_sigpending(); 439 440 return sig; 441 } 442 443 /* 444 * Dequeue a signal and return the element to the caller, which is 445 * expected to free it. 446 * 447 * All callers have to hold the siglock. 448 */ 449 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 450 { 451 int signr = __dequeue_signal(&tsk->pending, mask, info); 452 if (!signr) 453 signr = __dequeue_signal(&tsk->signal->shared_pending, 454 mask, info); 455 if (signr && unlikely(sig_kernel_stop(signr))) { 456 /* 457 * Set a marker that we have dequeued a stop signal. Our 458 * caller might release the siglock and then the pending 459 * stop signal it is about to process is no longer in the 460 * pending bitmasks, but must still be cleared by a SIGCONT 461 * (and overruled by a SIGKILL). So those cases clear this 462 * shared flag after we've set it. Note that this flag may 463 * remain set after the signal we return is ignored or 464 * handled. That doesn't matter because its only purpose 465 * is to alert stop-signal processing code when another 466 * processor has come along and cleared the flag. 467 */ 468 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) 469 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED; 470 } 471 if ( signr && 472 ((info->si_code & __SI_MASK) == __SI_TIMER) && 473 info->si_sys_private){ 474 /* 475 * Release the siglock to ensure proper locking order 476 * of timer locks outside of siglocks. Note, we leave 477 * irqs disabled here, since the posix-timers code is 478 * about to disable them again anyway. 479 */ 480 spin_unlock(&tsk->sighand->siglock); 481 do_schedule_next_timer(info); 482 spin_lock(&tsk->sighand->siglock); 483 } 484 return signr; 485 } 486 487 /* 488 * Tell a process that it has a new active signal.. 489 * 490 * NOTE! we rely on the previous spin_lock to 491 * lock interrupts for us! We can only be called with 492 * "siglock" held, and the local interrupt must 493 * have been disabled when that got acquired! 494 * 495 * No need to set need_resched since signal event passing 496 * goes through ->blocked 497 */ 498 void signal_wake_up(struct task_struct *t, int resume) 499 { 500 unsigned int mask; 501 502 set_tsk_thread_flag(t, TIF_SIGPENDING); 503 504 /* 505 * For SIGKILL, we want to wake it up in the stopped/traced case. 506 * We don't check t->state here because there is a race with it 507 * executing another processor and just now entering stopped state. 508 * By using wake_up_state, we ensure the process will wake up and 509 * handle its death signal. 510 */ 511 mask = TASK_INTERRUPTIBLE; 512 if (resume) 513 mask |= TASK_STOPPED | TASK_TRACED; 514 if (!wake_up_state(t, mask)) 515 kick_process(t); 516 } 517 518 /* 519 * Remove signals in mask from the pending set and queue. 520 * Returns 1 if any signals were found. 521 * 522 * All callers must be holding the siglock. 523 * 524 * This version takes a sigset mask and looks at all signals, 525 * not just those in the first mask word. 526 */ 527 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s) 528 { 529 struct sigqueue *q, *n; 530 sigset_t m; 531 532 sigandsets(&m, mask, &s->signal); 533 if (sigisemptyset(&m)) 534 return 0; 535 536 signandsets(&s->signal, &s->signal, mask); 537 list_for_each_entry_safe(q, n, &s->list, list) { 538 if (sigismember(mask, q->info.si_signo)) { 539 list_del_init(&q->list); 540 __sigqueue_free(q); 541 } 542 } 543 return 1; 544 } 545 /* 546 * Remove signals in mask from the pending set and queue. 547 * Returns 1 if any signals were found. 548 * 549 * All callers must be holding the siglock. 550 */ 551 static int rm_from_queue(unsigned long mask, struct sigpending *s) 552 { 553 struct sigqueue *q, *n; 554 555 if (!sigtestsetmask(&s->signal, mask)) 556 return 0; 557 558 sigdelsetmask(&s->signal, mask); 559 list_for_each_entry_safe(q, n, &s->list, list) { 560 if (q->info.si_signo < SIGRTMIN && 561 (mask & sigmask(q->info.si_signo))) { 562 list_del_init(&q->list); 563 __sigqueue_free(q); 564 } 565 } 566 return 1; 567 } 568 569 /* 570 * Bad permissions for sending the signal 571 */ 572 static int check_kill_permission(int sig, struct siginfo *info, 573 struct task_struct *t) 574 { 575 int error = -EINVAL; 576 if (!valid_signal(sig)) 577 return error; 578 error = -EPERM; 579 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) 580 && ((sig != SIGCONT) || 581 (current->signal->session != t->signal->session)) 582 && (current->euid ^ t->suid) && (current->euid ^ t->uid) 583 && (current->uid ^ t->suid) && (current->uid ^ t->uid) 584 && !capable(CAP_KILL)) 585 return error; 586 587 error = security_task_kill(t, info, sig, 0); 588 if (!error) 589 audit_signal_info(sig, t); /* Let audit system see the signal */ 590 return error; 591 } 592 593 /* forward decl */ 594 static void do_notify_parent_cldstop(struct task_struct *tsk, int why); 595 596 /* 597 * Handle magic process-wide effects of stop/continue signals. 598 * Unlike the signal actions, these happen immediately at signal-generation 599 * time regardless of blocking, ignoring, or handling. This does the 600 * actual continuing for SIGCONT, but not the actual stopping for stop 601 * signals. The process stop is done as a signal action for SIG_DFL. 602 */ 603 static void handle_stop_signal(int sig, struct task_struct *p) 604 { 605 struct task_struct *t; 606 607 if (p->signal->flags & SIGNAL_GROUP_EXIT) 608 /* 609 * The process is in the middle of dying already. 610 */ 611 return; 612 613 if (sig_kernel_stop(sig)) { 614 /* 615 * This is a stop signal. Remove SIGCONT from all queues. 616 */ 617 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending); 618 t = p; 619 do { 620 rm_from_queue(sigmask(SIGCONT), &t->pending); 621 t = next_thread(t); 622 } while (t != p); 623 } else if (sig == SIGCONT) { 624 /* 625 * Remove all stop signals from all queues, 626 * and wake all threads. 627 */ 628 if (unlikely(p->signal->group_stop_count > 0)) { 629 /* 630 * There was a group stop in progress. We'll 631 * pretend it finished before we got here. We are 632 * obliged to report it to the parent: if the 633 * SIGSTOP happened "after" this SIGCONT, then it 634 * would have cleared this pending SIGCONT. If it 635 * happened "before" this SIGCONT, then the parent 636 * got the SIGCHLD about the stop finishing before 637 * the continue happened. We do the notification 638 * now, and it's as if the stop had finished and 639 * the SIGCHLD was pending on entry to this kill. 640 */ 641 p->signal->group_stop_count = 0; 642 p->signal->flags = SIGNAL_STOP_CONTINUED; 643 spin_unlock(&p->sighand->siglock); 644 do_notify_parent_cldstop(p, CLD_STOPPED); 645 spin_lock(&p->sighand->siglock); 646 } 647 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); 648 t = p; 649 do { 650 unsigned int state; 651 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 652 653 /* 654 * If there is a handler for SIGCONT, we must make 655 * sure that no thread returns to user mode before 656 * we post the signal, in case it was the only 657 * thread eligible to run the signal handler--then 658 * it must not do anything between resuming and 659 * running the handler. With the TIF_SIGPENDING 660 * flag set, the thread will pause and acquire the 661 * siglock that we hold now and until we've queued 662 * the pending signal. 663 * 664 * Wake up the stopped thread _after_ setting 665 * TIF_SIGPENDING 666 */ 667 state = TASK_STOPPED; 668 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) { 669 set_tsk_thread_flag(t, TIF_SIGPENDING); 670 state |= TASK_INTERRUPTIBLE; 671 } 672 wake_up_state(t, state); 673 674 t = next_thread(t); 675 } while (t != p); 676 677 if (p->signal->flags & SIGNAL_STOP_STOPPED) { 678 /* 679 * We were in fact stopped, and are now continued. 680 * Notify the parent with CLD_CONTINUED. 681 */ 682 p->signal->flags = SIGNAL_STOP_CONTINUED; 683 p->signal->group_exit_code = 0; 684 spin_unlock(&p->sighand->siglock); 685 do_notify_parent_cldstop(p, CLD_CONTINUED); 686 spin_lock(&p->sighand->siglock); 687 } else { 688 /* 689 * We are not stopped, but there could be a stop 690 * signal in the middle of being processed after 691 * being removed from the queue. Clear that too. 692 */ 693 p->signal->flags = 0; 694 } 695 } else if (sig == SIGKILL) { 696 /* 697 * Make sure that any pending stop signal already dequeued 698 * is undone by the wakeup for SIGKILL. 699 */ 700 p->signal->flags = 0; 701 } 702 } 703 704 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 705 struct sigpending *signals) 706 { 707 struct sigqueue * q = NULL; 708 int ret = 0; 709 710 /* 711 * fast-pathed signals for kernel-internal things like SIGSTOP 712 * or SIGKILL. 713 */ 714 if (info == SEND_SIG_FORCED) 715 goto out_set; 716 717 /* Real-time signals must be queued if sent by sigqueue, or 718 some other real-time mechanism. It is implementation 719 defined whether kill() does so. We attempt to do so, on 720 the principle of least surprise, but since kill is not 721 allowed to fail with EAGAIN when low on memory we just 722 make sure at least one signal gets delivered and don't 723 pass on the info struct. */ 724 725 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN && 726 (is_si_special(info) || 727 info->si_code >= 0))); 728 if (q) { 729 list_add_tail(&q->list, &signals->list); 730 switch ((unsigned long) info) { 731 case (unsigned long) SEND_SIG_NOINFO: 732 q->info.si_signo = sig; 733 q->info.si_errno = 0; 734 q->info.si_code = SI_USER; 735 q->info.si_pid = current->pid; 736 q->info.si_uid = current->uid; 737 break; 738 case (unsigned long) SEND_SIG_PRIV: 739 q->info.si_signo = sig; 740 q->info.si_errno = 0; 741 q->info.si_code = SI_KERNEL; 742 q->info.si_pid = 0; 743 q->info.si_uid = 0; 744 break; 745 default: 746 copy_siginfo(&q->info, info); 747 break; 748 } 749 } else if (!is_si_special(info)) { 750 if (sig >= SIGRTMIN && info->si_code != SI_USER) 751 /* 752 * Queue overflow, abort. We may abort if the signal was rt 753 * and sent by user using something other than kill(). 754 */ 755 return -EAGAIN; 756 } 757 758 out_set: 759 sigaddset(&signals->signal, sig); 760 return ret; 761 } 762 763 #define LEGACY_QUEUE(sigptr, sig) \ 764 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig))) 765 766 767 static int 768 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 769 { 770 int ret = 0; 771 772 BUG_ON(!irqs_disabled()); 773 assert_spin_locked(&t->sighand->siglock); 774 775 /* Short-circuit ignored signals. */ 776 if (sig_ignored(t, sig)) 777 goto out; 778 779 /* Support queueing exactly one non-rt signal, so that we 780 can get more detailed information about the cause of 781 the signal. */ 782 if (LEGACY_QUEUE(&t->pending, sig)) 783 goto out; 784 785 ret = send_signal(sig, info, t, &t->pending); 786 if (!ret && !sigismember(&t->blocked, sig)) 787 signal_wake_up(t, sig == SIGKILL); 788 out: 789 return ret; 790 } 791 792 /* 793 * Force a signal that the process can't ignore: if necessary 794 * we unblock the signal and change any SIG_IGN to SIG_DFL. 795 */ 796 797 int 798 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 799 { 800 unsigned long int flags; 801 int ret; 802 803 spin_lock_irqsave(&t->sighand->siglock, flags); 804 if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) { 805 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL; 806 } 807 if (sigismember(&t->blocked, sig)) { 808 sigdelset(&t->blocked, sig); 809 } 810 recalc_sigpending_tsk(t); 811 ret = specific_send_sig_info(sig, info, t); 812 spin_unlock_irqrestore(&t->sighand->siglock, flags); 813 814 return ret; 815 } 816 817 void 818 force_sig_specific(int sig, struct task_struct *t) 819 { 820 force_sig_info(sig, SEND_SIG_FORCED, t); 821 } 822 823 /* 824 * Test if P wants to take SIG. After we've checked all threads with this, 825 * it's equivalent to finding no threads not blocking SIG. Any threads not 826 * blocking SIG were ruled out because they are not running and already 827 * have pending signals. Such threads will dequeue from the shared queue 828 * as soon as they're available, so putting the signal on the shared queue 829 * will be equivalent to sending it to one such thread. 830 */ 831 static inline int wants_signal(int sig, struct task_struct *p) 832 { 833 if (sigismember(&p->blocked, sig)) 834 return 0; 835 if (p->flags & PF_EXITING) 836 return 0; 837 if (sig == SIGKILL) 838 return 1; 839 if (p->state & (TASK_STOPPED | TASK_TRACED)) 840 return 0; 841 return task_curr(p) || !signal_pending(p); 842 } 843 844 static void 845 __group_complete_signal(int sig, struct task_struct *p) 846 { 847 struct task_struct *t; 848 849 /* 850 * Now find a thread we can wake up to take the signal off the queue. 851 * 852 * If the main thread wants the signal, it gets first crack. 853 * Probably the least surprising to the average bear. 854 */ 855 if (wants_signal(sig, p)) 856 t = p; 857 else if (thread_group_empty(p)) 858 /* 859 * There is just one thread and it does not need to be woken. 860 * It will dequeue unblocked signals before it runs again. 861 */ 862 return; 863 else { 864 /* 865 * Otherwise try to find a suitable thread. 866 */ 867 t = p->signal->curr_target; 868 if (t == NULL) 869 /* restart balancing at this thread */ 870 t = p->signal->curr_target = p; 871 872 while (!wants_signal(sig, t)) { 873 t = next_thread(t); 874 if (t == p->signal->curr_target) 875 /* 876 * No thread needs to be woken. 877 * Any eligible threads will see 878 * the signal in the queue soon. 879 */ 880 return; 881 } 882 p->signal->curr_target = t; 883 } 884 885 /* 886 * Found a killable thread. If the signal will be fatal, 887 * then start taking the whole group down immediately. 888 */ 889 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) && 890 !sigismember(&t->real_blocked, sig) && 891 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) { 892 /* 893 * This signal will be fatal to the whole group. 894 */ 895 if (!sig_kernel_coredump(sig)) { 896 /* 897 * Start a group exit and wake everybody up. 898 * This way we don't have other threads 899 * running and doing things after a slower 900 * thread has the fatal signal pending. 901 */ 902 p->signal->flags = SIGNAL_GROUP_EXIT; 903 p->signal->group_exit_code = sig; 904 p->signal->group_stop_count = 0; 905 t = p; 906 do { 907 sigaddset(&t->pending.signal, SIGKILL); 908 signal_wake_up(t, 1); 909 t = next_thread(t); 910 } while (t != p); 911 return; 912 } 913 914 /* 915 * There will be a core dump. We make all threads other 916 * than the chosen one go into a group stop so that nothing 917 * happens until it gets scheduled, takes the signal off 918 * the shared queue, and does the core dump. This is a 919 * little more complicated than strictly necessary, but it 920 * keeps the signal state that winds up in the core dump 921 * unchanged from the death state, e.g. which thread had 922 * the core-dump signal unblocked. 923 */ 924 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 925 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); 926 p->signal->group_stop_count = 0; 927 p->signal->group_exit_task = t; 928 t = p; 929 do { 930 p->signal->group_stop_count++; 931 signal_wake_up(t, 0); 932 t = next_thread(t); 933 } while (t != p); 934 wake_up_process(p->signal->group_exit_task); 935 return; 936 } 937 938 /* 939 * The signal is already in the shared-pending queue. 940 * Tell the chosen thread to wake up and dequeue it. 941 */ 942 signal_wake_up(t, sig == SIGKILL); 943 return; 944 } 945 946 int 947 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 948 { 949 int ret = 0; 950 951 assert_spin_locked(&p->sighand->siglock); 952 handle_stop_signal(sig, p); 953 954 /* Short-circuit ignored signals. */ 955 if (sig_ignored(p, sig)) 956 return ret; 957 958 if (LEGACY_QUEUE(&p->signal->shared_pending, sig)) 959 /* This is a non-RT signal and we already have one queued. */ 960 return ret; 961 962 /* 963 * Put this signal on the shared-pending queue, or fail with EAGAIN. 964 * We always use the shared queue for process-wide signals, 965 * to avoid several races. 966 */ 967 ret = send_signal(sig, info, p, &p->signal->shared_pending); 968 if (unlikely(ret)) 969 return ret; 970 971 __group_complete_signal(sig, p); 972 return 0; 973 } 974 975 /* 976 * Nuke all other threads in the group. 977 */ 978 void zap_other_threads(struct task_struct *p) 979 { 980 struct task_struct *t; 981 982 p->signal->flags = SIGNAL_GROUP_EXIT; 983 p->signal->group_stop_count = 0; 984 985 if (thread_group_empty(p)) 986 return; 987 988 for (t = next_thread(p); t != p; t = next_thread(t)) { 989 /* 990 * Don't bother with already dead threads 991 */ 992 if (t->exit_state) 993 continue; 994 995 /* 996 * We don't want to notify the parent, since we are 997 * killed as part of a thread group due to another 998 * thread doing an execve() or similar. So set the 999 * exit signal to -1 to allow immediate reaping of 1000 * the process. But don't detach the thread group 1001 * leader. 1002 */ 1003 if (t != p->group_leader) 1004 t->exit_signal = -1; 1005 1006 /* SIGKILL will be handled before any pending SIGSTOP */ 1007 sigaddset(&t->pending.signal, SIGKILL); 1008 signal_wake_up(t, 1); 1009 } 1010 } 1011 1012 /* 1013 * Must be called under rcu_read_lock() or with tasklist_lock read-held. 1014 */ 1015 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags) 1016 { 1017 struct sighand_struct *sighand; 1018 1019 for (;;) { 1020 sighand = rcu_dereference(tsk->sighand); 1021 if (unlikely(sighand == NULL)) 1022 break; 1023 1024 spin_lock_irqsave(&sighand->siglock, *flags); 1025 if (likely(sighand == tsk->sighand)) 1026 break; 1027 spin_unlock_irqrestore(&sighand->siglock, *flags); 1028 } 1029 1030 return sighand; 1031 } 1032 1033 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1034 { 1035 unsigned long flags; 1036 int ret; 1037 1038 ret = check_kill_permission(sig, info, p); 1039 1040 if (!ret && sig) { 1041 ret = -ESRCH; 1042 if (lock_task_sighand(p, &flags)) { 1043 ret = __group_send_sig_info(sig, info, p); 1044 unlock_task_sighand(p, &flags); 1045 } 1046 } 1047 1048 return ret; 1049 } 1050 1051 /* 1052 * kill_pg_info() sends a signal to a process group: this is what the tty 1053 * control characters do (^C, ^Z etc) 1054 */ 1055 1056 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp) 1057 { 1058 struct task_struct *p = NULL; 1059 int retval, success; 1060 1061 if (pgrp <= 0) 1062 return -EINVAL; 1063 1064 success = 0; 1065 retval = -ESRCH; 1066 do_each_task_pid(pgrp, PIDTYPE_PGID, p) { 1067 int err = group_send_sig_info(sig, info, p); 1068 success |= !err; 1069 retval = err; 1070 } while_each_task_pid(pgrp, PIDTYPE_PGID, p); 1071 return success ? 0 : retval; 1072 } 1073 1074 int 1075 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp) 1076 { 1077 int retval; 1078 1079 read_lock(&tasklist_lock); 1080 retval = __kill_pg_info(sig, info, pgrp); 1081 read_unlock(&tasklist_lock); 1082 1083 return retval; 1084 } 1085 1086 int 1087 kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1088 { 1089 int error; 1090 int acquired_tasklist_lock = 0; 1091 struct task_struct *p; 1092 1093 rcu_read_lock(); 1094 if (unlikely(sig_needs_tasklist(sig))) { 1095 read_lock(&tasklist_lock); 1096 acquired_tasklist_lock = 1; 1097 } 1098 p = find_task_by_pid(pid); 1099 error = -ESRCH; 1100 if (p) 1101 error = group_send_sig_info(sig, info, p); 1102 if (unlikely(acquired_tasklist_lock)) 1103 read_unlock(&tasklist_lock); 1104 rcu_read_unlock(); 1105 return error; 1106 } 1107 1108 /* like kill_proc_info(), but doesn't use uid/euid of "current" */ 1109 int kill_proc_info_as_uid(int sig, struct siginfo *info, pid_t pid, 1110 uid_t uid, uid_t euid, u32 secid) 1111 { 1112 int ret = -EINVAL; 1113 struct task_struct *p; 1114 1115 if (!valid_signal(sig)) 1116 return ret; 1117 1118 read_lock(&tasklist_lock); 1119 p = find_task_by_pid(pid); 1120 if (!p) { 1121 ret = -ESRCH; 1122 goto out_unlock; 1123 } 1124 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) 1125 && (euid != p->suid) && (euid != p->uid) 1126 && (uid != p->suid) && (uid != p->uid)) { 1127 ret = -EPERM; 1128 goto out_unlock; 1129 } 1130 ret = security_task_kill(p, info, sig, secid); 1131 if (ret) 1132 goto out_unlock; 1133 if (sig && p->sighand) { 1134 unsigned long flags; 1135 spin_lock_irqsave(&p->sighand->siglock, flags); 1136 ret = __group_send_sig_info(sig, info, p); 1137 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1138 } 1139 out_unlock: 1140 read_unlock(&tasklist_lock); 1141 return ret; 1142 } 1143 EXPORT_SYMBOL_GPL(kill_proc_info_as_uid); 1144 1145 /* 1146 * kill_something_info() interprets pid in interesting ways just like kill(2). 1147 * 1148 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1149 * is probably wrong. Should make it like BSD or SYSV. 1150 */ 1151 1152 static int kill_something_info(int sig, struct siginfo *info, int pid) 1153 { 1154 if (!pid) { 1155 return kill_pg_info(sig, info, process_group(current)); 1156 } else if (pid == -1) { 1157 int retval = 0, count = 0; 1158 struct task_struct * p; 1159 1160 read_lock(&tasklist_lock); 1161 for_each_process(p) { 1162 if (p->pid > 1 && p->tgid != current->tgid) { 1163 int err = group_send_sig_info(sig, info, p); 1164 ++count; 1165 if (err != -EPERM) 1166 retval = err; 1167 } 1168 } 1169 read_unlock(&tasklist_lock); 1170 return count ? retval : -ESRCH; 1171 } else if (pid < 0) { 1172 return kill_pg_info(sig, info, -pid); 1173 } else { 1174 return kill_proc_info(sig, info, pid); 1175 } 1176 } 1177 1178 /* 1179 * These are for backward compatibility with the rest of the kernel source. 1180 */ 1181 1182 /* 1183 * These two are the most common entry points. They send a signal 1184 * just to the specific thread. 1185 */ 1186 int 1187 send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1188 { 1189 int ret; 1190 unsigned long flags; 1191 1192 /* 1193 * Make sure legacy kernel users don't send in bad values 1194 * (normal paths check this in check_kill_permission). 1195 */ 1196 if (!valid_signal(sig)) 1197 return -EINVAL; 1198 1199 /* 1200 * We need the tasklist lock even for the specific 1201 * thread case (when we don't need to follow the group 1202 * lists) in order to avoid races with "p->sighand" 1203 * going away or changing from under us. 1204 */ 1205 read_lock(&tasklist_lock); 1206 spin_lock_irqsave(&p->sighand->siglock, flags); 1207 ret = specific_send_sig_info(sig, info, p); 1208 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1209 read_unlock(&tasklist_lock); 1210 return ret; 1211 } 1212 1213 #define __si_special(priv) \ 1214 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1215 1216 int 1217 send_sig(int sig, struct task_struct *p, int priv) 1218 { 1219 return send_sig_info(sig, __si_special(priv), p); 1220 } 1221 1222 /* 1223 * This is the entry point for "process-wide" signals. 1224 * They will go to an appropriate thread in the thread group. 1225 */ 1226 int 1227 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1228 { 1229 int ret; 1230 read_lock(&tasklist_lock); 1231 ret = group_send_sig_info(sig, info, p); 1232 read_unlock(&tasklist_lock); 1233 return ret; 1234 } 1235 1236 void 1237 force_sig(int sig, struct task_struct *p) 1238 { 1239 force_sig_info(sig, SEND_SIG_PRIV, p); 1240 } 1241 1242 /* 1243 * When things go south during signal handling, we 1244 * will force a SIGSEGV. And if the signal that caused 1245 * the problem was already a SIGSEGV, we'll want to 1246 * make sure we don't even try to deliver the signal.. 1247 */ 1248 int 1249 force_sigsegv(int sig, struct task_struct *p) 1250 { 1251 if (sig == SIGSEGV) { 1252 unsigned long flags; 1253 spin_lock_irqsave(&p->sighand->siglock, flags); 1254 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1255 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1256 } 1257 force_sig(SIGSEGV, p); 1258 return 0; 1259 } 1260 1261 int 1262 kill_pg(pid_t pgrp, int sig, int priv) 1263 { 1264 return kill_pg_info(sig, __si_special(priv), pgrp); 1265 } 1266 1267 int 1268 kill_proc(pid_t pid, int sig, int priv) 1269 { 1270 return kill_proc_info(sig, __si_special(priv), pid); 1271 } 1272 1273 /* 1274 * These functions support sending signals using preallocated sigqueue 1275 * structures. This is needed "because realtime applications cannot 1276 * afford to lose notifications of asynchronous events, like timer 1277 * expirations or I/O completions". In the case of Posix Timers 1278 * we allocate the sigqueue structure from the timer_create. If this 1279 * allocation fails we are able to report the failure to the application 1280 * with an EAGAIN error. 1281 */ 1282 1283 struct sigqueue *sigqueue_alloc(void) 1284 { 1285 struct sigqueue *q; 1286 1287 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0))) 1288 q->flags |= SIGQUEUE_PREALLOC; 1289 return(q); 1290 } 1291 1292 void sigqueue_free(struct sigqueue *q) 1293 { 1294 unsigned long flags; 1295 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1296 /* 1297 * If the signal is still pending remove it from the 1298 * pending queue. 1299 */ 1300 if (unlikely(!list_empty(&q->list))) { 1301 spinlock_t *lock = ¤t->sighand->siglock; 1302 read_lock(&tasklist_lock); 1303 spin_lock_irqsave(lock, flags); 1304 if (!list_empty(&q->list)) 1305 list_del_init(&q->list); 1306 spin_unlock_irqrestore(lock, flags); 1307 read_unlock(&tasklist_lock); 1308 } 1309 q->flags &= ~SIGQUEUE_PREALLOC; 1310 __sigqueue_free(q); 1311 } 1312 1313 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) 1314 { 1315 unsigned long flags; 1316 int ret = 0; 1317 1318 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1319 1320 /* 1321 * The rcu based delayed sighand destroy makes it possible to 1322 * run this without tasklist lock held. The task struct itself 1323 * cannot go away as create_timer did get_task_struct(). 1324 * 1325 * We return -1, when the task is marked exiting, so 1326 * posix_timer_event can redirect it to the group leader 1327 */ 1328 rcu_read_lock(); 1329 1330 if (!likely(lock_task_sighand(p, &flags))) { 1331 ret = -1; 1332 goto out_err; 1333 } 1334 1335 if (unlikely(!list_empty(&q->list))) { 1336 /* 1337 * If an SI_TIMER entry is already queue just increment 1338 * the overrun count. 1339 */ 1340 BUG_ON(q->info.si_code != SI_TIMER); 1341 q->info.si_overrun++; 1342 goto out; 1343 } 1344 /* Short-circuit ignored signals. */ 1345 if (sig_ignored(p, sig)) { 1346 ret = 1; 1347 goto out; 1348 } 1349 1350 list_add_tail(&q->list, &p->pending.list); 1351 sigaddset(&p->pending.signal, sig); 1352 if (!sigismember(&p->blocked, sig)) 1353 signal_wake_up(p, sig == SIGKILL); 1354 1355 out: 1356 unlock_task_sighand(p, &flags); 1357 out_err: 1358 rcu_read_unlock(); 1359 1360 return ret; 1361 } 1362 1363 int 1364 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) 1365 { 1366 unsigned long flags; 1367 int ret = 0; 1368 1369 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1370 1371 read_lock(&tasklist_lock); 1372 /* Since it_lock is held, p->sighand cannot be NULL. */ 1373 spin_lock_irqsave(&p->sighand->siglock, flags); 1374 handle_stop_signal(sig, p); 1375 1376 /* Short-circuit ignored signals. */ 1377 if (sig_ignored(p, sig)) { 1378 ret = 1; 1379 goto out; 1380 } 1381 1382 if (unlikely(!list_empty(&q->list))) { 1383 /* 1384 * If an SI_TIMER entry is already queue just increment 1385 * the overrun count. Other uses should not try to 1386 * send the signal multiple times. 1387 */ 1388 BUG_ON(q->info.si_code != SI_TIMER); 1389 q->info.si_overrun++; 1390 goto out; 1391 } 1392 1393 /* 1394 * Put this signal on the shared-pending queue. 1395 * We always use the shared queue for process-wide signals, 1396 * to avoid several races. 1397 */ 1398 list_add_tail(&q->list, &p->signal->shared_pending.list); 1399 sigaddset(&p->signal->shared_pending.signal, sig); 1400 1401 __group_complete_signal(sig, p); 1402 out: 1403 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1404 read_unlock(&tasklist_lock); 1405 return ret; 1406 } 1407 1408 /* 1409 * Wake up any threads in the parent blocked in wait* syscalls. 1410 */ 1411 static inline void __wake_up_parent(struct task_struct *p, 1412 struct task_struct *parent) 1413 { 1414 wake_up_interruptible_sync(&parent->signal->wait_chldexit); 1415 } 1416 1417 /* 1418 * Let a parent know about the death of a child. 1419 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1420 */ 1421 1422 void do_notify_parent(struct task_struct *tsk, int sig) 1423 { 1424 struct siginfo info; 1425 unsigned long flags; 1426 struct sighand_struct *psig; 1427 1428 BUG_ON(sig == -1); 1429 1430 /* do_notify_parent_cldstop should have been called instead. */ 1431 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED)); 1432 1433 BUG_ON(!tsk->ptrace && 1434 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1435 1436 info.si_signo = sig; 1437 info.si_errno = 0; 1438 info.si_pid = tsk->pid; 1439 info.si_uid = tsk->uid; 1440 1441 /* FIXME: find out whether or not this is supposed to be c*time. */ 1442 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime, 1443 tsk->signal->utime)); 1444 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime, 1445 tsk->signal->stime)); 1446 1447 info.si_status = tsk->exit_code & 0x7f; 1448 if (tsk->exit_code & 0x80) 1449 info.si_code = CLD_DUMPED; 1450 else if (tsk->exit_code & 0x7f) 1451 info.si_code = CLD_KILLED; 1452 else { 1453 info.si_code = CLD_EXITED; 1454 info.si_status = tsk->exit_code >> 8; 1455 } 1456 1457 psig = tsk->parent->sighand; 1458 spin_lock_irqsave(&psig->siglock, flags); 1459 if (!tsk->ptrace && sig == SIGCHLD && 1460 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1461 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1462 /* 1463 * We are exiting and our parent doesn't care. POSIX.1 1464 * defines special semantics for setting SIGCHLD to SIG_IGN 1465 * or setting the SA_NOCLDWAIT flag: we should be reaped 1466 * automatically and not left for our parent's wait4 call. 1467 * Rather than having the parent do it as a magic kind of 1468 * signal handler, we just set this to tell do_exit that we 1469 * can be cleaned up without becoming a zombie. Note that 1470 * we still call __wake_up_parent in this case, because a 1471 * blocked sys_wait4 might now return -ECHILD. 1472 * 1473 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1474 * is implementation-defined: we do (if you don't want 1475 * it, just use SIG_IGN instead). 1476 */ 1477 tsk->exit_signal = -1; 1478 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1479 sig = 0; 1480 } 1481 if (valid_signal(sig) && sig > 0) 1482 __group_send_sig_info(sig, &info, tsk->parent); 1483 __wake_up_parent(tsk, tsk->parent); 1484 spin_unlock_irqrestore(&psig->siglock, flags); 1485 } 1486 1487 static void do_notify_parent_cldstop(struct task_struct *tsk, int why) 1488 { 1489 struct siginfo info; 1490 unsigned long flags; 1491 struct task_struct *parent; 1492 struct sighand_struct *sighand; 1493 1494 if (tsk->ptrace & PT_PTRACED) 1495 parent = tsk->parent; 1496 else { 1497 tsk = tsk->group_leader; 1498 parent = tsk->real_parent; 1499 } 1500 1501 info.si_signo = SIGCHLD; 1502 info.si_errno = 0; 1503 info.si_pid = tsk->pid; 1504 info.si_uid = tsk->uid; 1505 1506 /* FIXME: find out whether or not this is supposed to be c*time. */ 1507 info.si_utime = cputime_to_jiffies(tsk->utime); 1508 info.si_stime = cputime_to_jiffies(tsk->stime); 1509 1510 info.si_code = why; 1511 switch (why) { 1512 case CLD_CONTINUED: 1513 info.si_status = SIGCONT; 1514 break; 1515 case CLD_STOPPED: 1516 info.si_status = tsk->signal->group_exit_code & 0x7f; 1517 break; 1518 case CLD_TRAPPED: 1519 info.si_status = tsk->exit_code & 0x7f; 1520 break; 1521 default: 1522 BUG(); 1523 } 1524 1525 sighand = parent->sighand; 1526 spin_lock_irqsave(&sighand->siglock, flags); 1527 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1528 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1529 __group_send_sig_info(SIGCHLD, &info, parent); 1530 /* 1531 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1532 */ 1533 __wake_up_parent(tsk, parent); 1534 spin_unlock_irqrestore(&sighand->siglock, flags); 1535 } 1536 1537 static inline int may_ptrace_stop(void) 1538 { 1539 if (!likely(current->ptrace & PT_PTRACED)) 1540 return 0; 1541 1542 if (unlikely(current->parent == current->real_parent && 1543 (current->ptrace & PT_ATTACHED))) 1544 return 0; 1545 1546 if (unlikely(current->signal == current->parent->signal) && 1547 unlikely(current->signal->flags & SIGNAL_GROUP_EXIT)) 1548 return 0; 1549 1550 /* 1551 * Are we in the middle of do_coredump? 1552 * If so and our tracer is also part of the coredump stopping 1553 * is a deadlock situation, and pointless because our tracer 1554 * is dead so don't allow us to stop. 1555 * If SIGKILL was already sent before the caller unlocked 1556 * ->siglock we must see ->core_waiters != 0. Otherwise it 1557 * is safe to enter schedule(). 1558 */ 1559 if (unlikely(current->mm->core_waiters) && 1560 unlikely(current->mm == current->parent->mm)) 1561 return 0; 1562 1563 return 1; 1564 } 1565 1566 /* 1567 * This must be called with current->sighand->siglock held. 1568 * 1569 * This should be the path for all ptrace stops. 1570 * We always set current->last_siginfo while stopped here. 1571 * That makes it a way to test a stopped process for 1572 * being ptrace-stopped vs being job-control-stopped. 1573 * 1574 * If we actually decide not to stop at all because the tracer is gone, 1575 * we leave nostop_code in current->exit_code. 1576 */ 1577 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info) 1578 { 1579 /* 1580 * If there is a group stop in progress, 1581 * we must participate in the bookkeeping. 1582 */ 1583 if (current->signal->group_stop_count > 0) 1584 --current->signal->group_stop_count; 1585 1586 current->last_siginfo = info; 1587 current->exit_code = exit_code; 1588 1589 /* Let the debugger run. */ 1590 set_current_state(TASK_TRACED); 1591 spin_unlock_irq(¤t->sighand->siglock); 1592 try_to_freeze(); 1593 read_lock(&tasklist_lock); 1594 if (may_ptrace_stop()) { 1595 do_notify_parent_cldstop(current, CLD_TRAPPED); 1596 read_unlock(&tasklist_lock); 1597 schedule(); 1598 } else { 1599 /* 1600 * By the time we got the lock, our tracer went away. 1601 * Don't stop here. 1602 */ 1603 read_unlock(&tasklist_lock); 1604 set_current_state(TASK_RUNNING); 1605 current->exit_code = nostop_code; 1606 } 1607 1608 /* 1609 * We are back. Now reacquire the siglock before touching 1610 * last_siginfo, so that we are sure to have synchronized with 1611 * any signal-sending on another CPU that wants to examine it. 1612 */ 1613 spin_lock_irq(¤t->sighand->siglock); 1614 current->last_siginfo = NULL; 1615 1616 /* 1617 * Queued signals ignored us while we were stopped for tracing. 1618 * So check for any that we should take before resuming user mode. 1619 */ 1620 recalc_sigpending(); 1621 } 1622 1623 void ptrace_notify(int exit_code) 1624 { 1625 siginfo_t info; 1626 1627 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1628 1629 memset(&info, 0, sizeof info); 1630 info.si_signo = SIGTRAP; 1631 info.si_code = exit_code; 1632 info.si_pid = current->pid; 1633 info.si_uid = current->uid; 1634 1635 /* Let the debugger run. */ 1636 spin_lock_irq(¤t->sighand->siglock); 1637 ptrace_stop(exit_code, 0, &info); 1638 spin_unlock_irq(¤t->sighand->siglock); 1639 } 1640 1641 static void 1642 finish_stop(int stop_count) 1643 { 1644 /* 1645 * If there are no other threads in the group, or if there is 1646 * a group stop in progress and we are the last to stop, 1647 * report to the parent. When ptraced, every thread reports itself. 1648 */ 1649 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) { 1650 read_lock(&tasklist_lock); 1651 do_notify_parent_cldstop(current, CLD_STOPPED); 1652 read_unlock(&tasklist_lock); 1653 } 1654 1655 schedule(); 1656 /* 1657 * Now we don't run again until continued. 1658 */ 1659 current->exit_code = 0; 1660 } 1661 1662 /* 1663 * This performs the stopping for SIGSTOP and other stop signals. 1664 * We have to stop all threads in the thread group. 1665 * Returns nonzero if we've actually stopped and released the siglock. 1666 * Returns zero if we didn't stop and still hold the siglock. 1667 */ 1668 static int do_signal_stop(int signr) 1669 { 1670 struct signal_struct *sig = current->signal; 1671 int stop_count; 1672 1673 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) 1674 return 0; 1675 1676 if (sig->group_stop_count > 0) { 1677 /* 1678 * There is a group stop in progress. We don't need to 1679 * start another one. 1680 */ 1681 stop_count = --sig->group_stop_count; 1682 } else { 1683 /* 1684 * There is no group stop already in progress. 1685 * We must initiate one now. 1686 */ 1687 struct task_struct *t; 1688 1689 sig->group_exit_code = signr; 1690 1691 stop_count = 0; 1692 for (t = next_thread(current); t != current; t = next_thread(t)) 1693 /* 1694 * Setting state to TASK_STOPPED for a group 1695 * stop is always done with the siglock held, 1696 * so this check has no races. 1697 */ 1698 if (!t->exit_state && 1699 !(t->state & (TASK_STOPPED|TASK_TRACED))) { 1700 stop_count++; 1701 signal_wake_up(t, 0); 1702 } 1703 sig->group_stop_count = stop_count; 1704 } 1705 1706 if (stop_count == 0) 1707 sig->flags = SIGNAL_STOP_STOPPED; 1708 current->exit_code = sig->group_exit_code; 1709 __set_current_state(TASK_STOPPED); 1710 1711 spin_unlock_irq(¤t->sighand->siglock); 1712 finish_stop(stop_count); 1713 return 1; 1714 } 1715 1716 /* 1717 * Do appropriate magic when group_stop_count > 0. 1718 * We return nonzero if we stopped, after releasing the siglock. 1719 * We return zero if we still hold the siglock and should look 1720 * for another signal without checking group_stop_count again. 1721 */ 1722 static int handle_group_stop(void) 1723 { 1724 int stop_count; 1725 1726 if (current->signal->group_exit_task == current) { 1727 /* 1728 * Group stop is so we can do a core dump, 1729 * We are the initiating thread, so get on with it. 1730 */ 1731 current->signal->group_exit_task = NULL; 1732 return 0; 1733 } 1734 1735 if (current->signal->flags & SIGNAL_GROUP_EXIT) 1736 /* 1737 * Group stop is so another thread can do a core dump, 1738 * or else we are racing against a death signal. 1739 * Just punt the stop so we can get the next signal. 1740 */ 1741 return 0; 1742 1743 /* 1744 * There is a group stop in progress. We stop 1745 * without any associated signal being in our queue. 1746 */ 1747 stop_count = --current->signal->group_stop_count; 1748 if (stop_count == 0) 1749 current->signal->flags = SIGNAL_STOP_STOPPED; 1750 current->exit_code = current->signal->group_exit_code; 1751 set_current_state(TASK_STOPPED); 1752 spin_unlock_irq(¤t->sighand->siglock); 1753 finish_stop(stop_count); 1754 return 1; 1755 } 1756 1757 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, 1758 struct pt_regs *regs, void *cookie) 1759 { 1760 sigset_t *mask = ¤t->blocked; 1761 int signr = 0; 1762 1763 try_to_freeze(); 1764 1765 relock: 1766 spin_lock_irq(¤t->sighand->siglock); 1767 for (;;) { 1768 struct k_sigaction *ka; 1769 1770 if (unlikely(current->signal->group_stop_count > 0) && 1771 handle_group_stop()) 1772 goto relock; 1773 1774 signr = dequeue_signal(current, mask, info); 1775 1776 if (!signr) 1777 break; /* will return 0 */ 1778 1779 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) { 1780 ptrace_signal_deliver(regs, cookie); 1781 1782 /* Let the debugger run. */ 1783 ptrace_stop(signr, signr, info); 1784 1785 /* We're back. Did the debugger cancel the sig? */ 1786 signr = current->exit_code; 1787 if (signr == 0) 1788 continue; 1789 1790 current->exit_code = 0; 1791 1792 /* Update the siginfo structure if the signal has 1793 changed. If the debugger wanted something 1794 specific in the siginfo structure then it should 1795 have updated *info via PTRACE_SETSIGINFO. */ 1796 if (signr != info->si_signo) { 1797 info->si_signo = signr; 1798 info->si_errno = 0; 1799 info->si_code = SI_USER; 1800 info->si_pid = current->parent->pid; 1801 info->si_uid = current->parent->uid; 1802 } 1803 1804 /* If the (new) signal is now blocked, requeue it. */ 1805 if (sigismember(¤t->blocked, signr)) { 1806 specific_send_sig_info(signr, info, current); 1807 continue; 1808 } 1809 } 1810 1811 ka = ¤t->sighand->action[signr-1]; 1812 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 1813 continue; 1814 if (ka->sa.sa_handler != SIG_DFL) { 1815 /* Run the handler. */ 1816 *return_ka = *ka; 1817 1818 if (ka->sa.sa_flags & SA_ONESHOT) 1819 ka->sa.sa_handler = SIG_DFL; 1820 1821 break; /* will return non-zero "signr" value */ 1822 } 1823 1824 /* 1825 * Now we are doing the default action for this signal. 1826 */ 1827 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 1828 continue; 1829 1830 /* Init gets no signals it doesn't want. */ 1831 if (current == child_reaper) 1832 continue; 1833 1834 if (sig_kernel_stop(signr)) { 1835 /* 1836 * The default action is to stop all threads in 1837 * the thread group. The job control signals 1838 * do nothing in an orphaned pgrp, but SIGSTOP 1839 * always works. Note that siglock needs to be 1840 * dropped during the call to is_orphaned_pgrp() 1841 * because of lock ordering with tasklist_lock. 1842 * This allows an intervening SIGCONT to be posted. 1843 * We need to check for that and bail out if necessary. 1844 */ 1845 if (signr != SIGSTOP) { 1846 spin_unlock_irq(¤t->sighand->siglock); 1847 1848 /* signals can be posted during this window */ 1849 1850 if (is_orphaned_pgrp(process_group(current))) 1851 goto relock; 1852 1853 spin_lock_irq(¤t->sighand->siglock); 1854 } 1855 1856 if (likely(do_signal_stop(signr))) { 1857 /* It released the siglock. */ 1858 goto relock; 1859 } 1860 1861 /* 1862 * We didn't actually stop, due to a race 1863 * with SIGCONT or something like that. 1864 */ 1865 continue; 1866 } 1867 1868 spin_unlock_irq(¤t->sighand->siglock); 1869 1870 /* 1871 * Anything else is fatal, maybe with a core dump. 1872 */ 1873 current->flags |= PF_SIGNALED; 1874 if (sig_kernel_coredump(signr)) { 1875 /* 1876 * If it was able to dump core, this kills all 1877 * other threads in the group and synchronizes with 1878 * their demise. If we lost the race with another 1879 * thread getting here, it set group_exit_code 1880 * first and our do_group_exit call below will use 1881 * that value and ignore the one we pass it. 1882 */ 1883 do_coredump((long)signr, signr, regs); 1884 } 1885 1886 /* 1887 * Death signals, no core dump. 1888 */ 1889 do_group_exit(signr); 1890 /* NOTREACHED */ 1891 } 1892 spin_unlock_irq(¤t->sighand->siglock); 1893 return signr; 1894 } 1895 1896 EXPORT_SYMBOL(recalc_sigpending); 1897 EXPORT_SYMBOL_GPL(dequeue_signal); 1898 EXPORT_SYMBOL(flush_signals); 1899 EXPORT_SYMBOL(force_sig); 1900 EXPORT_SYMBOL(kill_pg); 1901 EXPORT_SYMBOL(kill_proc); 1902 EXPORT_SYMBOL(ptrace_notify); 1903 EXPORT_SYMBOL(send_sig); 1904 EXPORT_SYMBOL(send_sig_info); 1905 EXPORT_SYMBOL(sigprocmask); 1906 EXPORT_SYMBOL(block_all_signals); 1907 EXPORT_SYMBOL(unblock_all_signals); 1908 1909 1910 /* 1911 * System call entry points. 1912 */ 1913 1914 asmlinkage long sys_restart_syscall(void) 1915 { 1916 struct restart_block *restart = ¤t_thread_info()->restart_block; 1917 return restart->fn(restart); 1918 } 1919 1920 long do_no_restart_syscall(struct restart_block *param) 1921 { 1922 return -EINTR; 1923 } 1924 1925 /* 1926 * We don't need to get the kernel lock - this is all local to this 1927 * particular thread.. (and that's good, because this is _heavily_ 1928 * used by various programs) 1929 */ 1930 1931 /* 1932 * This is also useful for kernel threads that want to temporarily 1933 * (or permanently) block certain signals. 1934 * 1935 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 1936 * interface happily blocks "unblockable" signals like SIGKILL 1937 * and friends. 1938 */ 1939 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 1940 { 1941 int error; 1942 1943 spin_lock_irq(¤t->sighand->siglock); 1944 if (oldset) 1945 *oldset = current->blocked; 1946 1947 error = 0; 1948 switch (how) { 1949 case SIG_BLOCK: 1950 sigorsets(¤t->blocked, ¤t->blocked, set); 1951 break; 1952 case SIG_UNBLOCK: 1953 signandsets(¤t->blocked, ¤t->blocked, set); 1954 break; 1955 case SIG_SETMASK: 1956 current->blocked = *set; 1957 break; 1958 default: 1959 error = -EINVAL; 1960 } 1961 recalc_sigpending(); 1962 spin_unlock_irq(¤t->sighand->siglock); 1963 1964 return error; 1965 } 1966 1967 asmlinkage long 1968 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize) 1969 { 1970 int error = -EINVAL; 1971 sigset_t old_set, new_set; 1972 1973 /* XXX: Don't preclude handling different sized sigset_t's. */ 1974 if (sigsetsize != sizeof(sigset_t)) 1975 goto out; 1976 1977 if (set) { 1978 error = -EFAULT; 1979 if (copy_from_user(&new_set, set, sizeof(*set))) 1980 goto out; 1981 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 1982 1983 error = sigprocmask(how, &new_set, &old_set); 1984 if (error) 1985 goto out; 1986 if (oset) 1987 goto set_old; 1988 } else if (oset) { 1989 spin_lock_irq(¤t->sighand->siglock); 1990 old_set = current->blocked; 1991 spin_unlock_irq(¤t->sighand->siglock); 1992 1993 set_old: 1994 error = -EFAULT; 1995 if (copy_to_user(oset, &old_set, sizeof(*oset))) 1996 goto out; 1997 } 1998 error = 0; 1999 out: 2000 return error; 2001 } 2002 2003 long do_sigpending(void __user *set, unsigned long sigsetsize) 2004 { 2005 long error = -EINVAL; 2006 sigset_t pending; 2007 2008 if (sigsetsize > sizeof(sigset_t)) 2009 goto out; 2010 2011 spin_lock_irq(¤t->sighand->siglock); 2012 sigorsets(&pending, ¤t->pending.signal, 2013 ¤t->signal->shared_pending.signal); 2014 spin_unlock_irq(¤t->sighand->siglock); 2015 2016 /* Outside the lock because only this thread touches it. */ 2017 sigandsets(&pending, ¤t->blocked, &pending); 2018 2019 error = -EFAULT; 2020 if (!copy_to_user(set, &pending, sigsetsize)) 2021 error = 0; 2022 2023 out: 2024 return error; 2025 } 2026 2027 asmlinkage long 2028 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize) 2029 { 2030 return do_sigpending(set, sigsetsize); 2031 } 2032 2033 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2034 2035 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) 2036 { 2037 int err; 2038 2039 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2040 return -EFAULT; 2041 if (from->si_code < 0) 2042 return __copy_to_user(to, from, sizeof(siginfo_t)) 2043 ? -EFAULT : 0; 2044 /* 2045 * If you change siginfo_t structure, please be sure 2046 * this code is fixed accordingly. 2047 * It should never copy any pad contained in the structure 2048 * to avoid security leaks, but must copy the generic 2049 * 3 ints plus the relevant union member. 2050 */ 2051 err = __put_user(from->si_signo, &to->si_signo); 2052 err |= __put_user(from->si_errno, &to->si_errno); 2053 err |= __put_user((short)from->si_code, &to->si_code); 2054 switch (from->si_code & __SI_MASK) { 2055 case __SI_KILL: 2056 err |= __put_user(from->si_pid, &to->si_pid); 2057 err |= __put_user(from->si_uid, &to->si_uid); 2058 break; 2059 case __SI_TIMER: 2060 err |= __put_user(from->si_tid, &to->si_tid); 2061 err |= __put_user(from->si_overrun, &to->si_overrun); 2062 err |= __put_user(from->si_ptr, &to->si_ptr); 2063 break; 2064 case __SI_POLL: 2065 err |= __put_user(from->si_band, &to->si_band); 2066 err |= __put_user(from->si_fd, &to->si_fd); 2067 break; 2068 case __SI_FAULT: 2069 err |= __put_user(from->si_addr, &to->si_addr); 2070 #ifdef __ARCH_SI_TRAPNO 2071 err |= __put_user(from->si_trapno, &to->si_trapno); 2072 #endif 2073 break; 2074 case __SI_CHLD: 2075 err |= __put_user(from->si_pid, &to->si_pid); 2076 err |= __put_user(from->si_uid, &to->si_uid); 2077 err |= __put_user(from->si_status, &to->si_status); 2078 err |= __put_user(from->si_utime, &to->si_utime); 2079 err |= __put_user(from->si_stime, &to->si_stime); 2080 break; 2081 case __SI_RT: /* This is not generated by the kernel as of now. */ 2082 case __SI_MESGQ: /* But this is */ 2083 err |= __put_user(from->si_pid, &to->si_pid); 2084 err |= __put_user(from->si_uid, &to->si_uid); 2085 err |= __put_user(from->si_ptr, &to->si_ptr); 2086 break; 2087 default: /* this is just in case for now ... */ 2088 err |= __put_user(from->si_pid, &to->si_pid); 2089 err |= __put_user(from->si_uid, &to->si_uid); 2090 break; 2091 } 2092 return err; 2093 } 2094 2095 #endif 2096 2097 asmlinkage long 2098 sys_rt_sigtimedwait(const sigset_t __user *uthese, 2099 siginfo_t __user *uinfo, 2100 const struct timespec __user *uts, 2101 size_t sigsetsize) 2102 { 2103 int ret, sig; 2104 sigset_t these; 2105 struct timespec ts; 2106 siginfo_t info; 2107 long timeout = 0; 2108 2109 /* XXX: Don't preclude handling different sized sigset_t's. */ 2110 if (sigsetsize != sizeof(sigset_t)) 2111 return -EINVAL; 2112 2113 if (copy_from_user(&these, uthese, sizeof(these))) 2114 return -EFAULT; 2115 2116 /* 2117 * Invert the set of allowed signals to get those we 2118 * want to block. 2119 */ 2120 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2121 signotset(&these); 2122 2123 if (uts) { 2124 if (copy_from_user(&ts, uts, sizeof(ts))) 2125 return -EFAULT; 2126 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0 2127 || ts.tv_sec < 0) 2128 return -EINVAL; 2129 } 2130 2131 spin_lock_irq(¤t->sighand->siglock); 2132 sig = dequeue_signal(current, &these, &info); 2133 if (!sig) { 2134 timeout = MAX_SCHEDULE_TIMEOUT; 2135 if (uts) 2136 timeout = (timespec_to_jiffies(&ts) 2137 + (ts.tv_sec || ts.tv_nsec)); 2138 2139 if (timeout) { 2140 /* None ready -- temporarily unblock those we're 2141 * interested while we are sleeping in so that we'll 2142 * be awakened when they arrive. */ 2143 current->real_blocked = current->blocked; 2144 sigandsets(¤t->blocked, ¤t->blocked, &these); 2145 recalc_sigpending(); 2146 spin_unlock_irq(¤t->sighand->siglock); 2147 2148 timeout = schedule_timeout_interruptible(timeout); 2149 2150 spin_lock_irq(¤t->sighand->siglock); 2151 sig = dequeue_signal(current, &these, &info); 2152 current->blocked = current->real_blocked; 2153 siginitset(¤t->real_blocked, 0); 2154 recalc_sigpending(); 2155 } 2156 } 2157 spin_unlock_irq(¤t->sighand->siglock); 2158 2159 if (sig) { 2160 ret = sig; 2161 if (uinfo) { 2162 if (copy_siginfo_to_user(uinfo, &info)) 2163 ret = -EFAULT; 2164 } 2165 } else { 2166 ret = -EAGAIN; 2167 if (timeout) 2168 ret = -EINTR; 2169 } 2170 2171 return ret; 2172 } 2173 2174 asmlinkage long 2175 sys_kill(int pid, int sig) 2176 { 2177 struct siginfo info; 2178 2179 info.si_signo = sig; 2180 info.si_errno = 0; 2181 info.si_code = SI_USER; 2182 info.si_pid = current->tgid; 2183 info.si_uid = current->uid; 2184 2185 return kill_something_info(sig, &info, pid); 2186 } 2187 2188 static int do_tkill(int tgid, int pid, int sig) 2189 { 2190 int error; 2191 struct siginfo info; 2192 struct task_struct *p; 2193 2194 error = -ESRCH; 2195 info.si_signo = sig; 2196 info.si_errno = 0; 2197 info.si_code = SI_TKILL; 2198 info.si_pid = current->tgid; 2199 info.si_uid = current->uid; 2200 2201 read_lock(&tasklist_lock); 2202 p = find_task_by_pid(pid); 2203 if (p && (tgid <= 0 || p->tgid == tgid)) { 2204 error = check_kill_permission(sig, &info, p); 2205 /* 2206 * The null signal is a permissions and process existence 2207 * probe. No signal is actually delivered. 2208 */ 2209 if (!error && sig && p->sighand) { 2210 spin_lock_irq(&p->sighand->siglock); 2211 handle_stop_signal(sig, p); 2212 error = specific_send_sig_info(sig, &info, p); 2213 spin_unlock_irq(&p->sighand->siglock); 2214 } 2215 } 2216 read_unlock(&tasklist_lock); 2217 2218 return error; 2219 } 2220 2221 /** 2222 * sys_tgkill - send signal to one specific thread 2223 * @tgid: the thread group ID of the thread 2224 * @pid: the PID of the thread 2225 * @sig: signal to be sent 2226 * 2227 * This syscall also checks the tgid and returns -ESRCH even if the PID 2228 * exists but it's not belonging to the target process anymore. This 2229 * method solves the problem of threads exiting and PIDs getting reused. 2230 */ 2231 asmlinkage long sys_tgkill(int tgid, int pid, int sig) 2232 { 2233 /* This is only valid for single tasks */ 2234 if (pid <= 0 || tgid <= 0) 2235 return -EINVAL; 2236 2237 return do_tkill(tgid, pid, sig); 2238 } 2239 2240 /* 2241 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2242 */ 2243 asmlinkage long 2244 sys_tkill(int pid, int sig) 2245 { 2246 /* This is only valid for single tasks */ 2247 if (pid <= 0) 2248 return -EINVAL; 2249 2250 return do_tkill(0, pid, sig); 2251 } 2252 2253 asmlinkage long 2254 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo) 2255 { 2256 siginfo_t info; 2257 2258 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2259 return -EFAULT; 2260 2261 /* Not even root can pretend to send signals from the kernel. 2262 Nor can they impersonate a kill(), which adds source info. */ 2263 if (info.si_code >= 0) 2264 return -EPERM; 2265 info.si_signo = sig; 2266 2267 /* POSIX.1b doesn't mention process groups. */ 2268 return kill_proc_info(sig, &info, pid); 2269 } 2270 2271 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 2272 { 2273 struct k_sigaction *k; 2274 sigset_t mask; 2275 2276 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 2277 return -EINVAL; 2278 2279 k = ¤t->sighand->action[sig-1]; 2280 2281 spin_lock_irq(¤t->sighand->siglock); 2282 if (signal_pending(current)) { 2283 /* 2284 * If there might be a fatal signal pending on multiple 2285 * threads, make sure we take it before changing the action. 2286 */ 2287 spin_unlock_irq(¤t->sighand->siglock); 2288 return -ERESTARTNOINTR; 2289 } 2290 2291 if (oact) 2292 *oact = *k; 2293 2294 if (act) { 2295 sigdelsetmask(&act->sa.sa_mask, 2296 sigmask(SIGKILL) | sigmask(SIGSTOP)); 2297 *k = *act; 2298 /* 2299 * POSIX 3.3.1.3: 2300 * "Setting a signal action to SIG_IGN for a signal that is 2301 * pending shall cause the pending signal to be discarded, 2302 * whether or not it is blocked." 2303 * 2304 * "Setting a signal action to SIG_DFL for a signal that is 2305 * pending and whose default action is to ignore the signal 2306 * (for example, SIGCHLD), shall cause the pending signal to 2307 * be discarded, whether or not it is blocked" 2308 */ 2309 if (act->sa.sa_handler == SIG_IGN || 2310 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) { 2311 struct task_struct *t = current; 2312 sigemptyset(&mask); 2313 sigaddset(&mask, sig); 2314 rm_from_queue_full(&mask, &t->signal->shared_pending); 2315 do { 2316 rm_from_queue_full(&mask, &t->pending); 2317 recalc_sigpending_tsk(t); 2318 t = next_thread(t); 2319 } while (t != current); 2320 } 2321 } 2322 2323 spin_unlock_irq(¤t->sighand->siglock); 2324 return 0; 2325 } 2326 2327 int 2328 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 2329 { 2330 stack_t oss; 2331 int error; 2332 2333 if (uoss) { 2334 oss.ss_sp = (void __user *) current->sas_ss_sp; 2335 oss.ss_size = current->sas_ss_size; 2336 oss.ss_flags = sas_ss_flags(sp); 2337 } 2338 2339 if (uss) { 2340 void __user *ss_sp; 2341 size_t ss_size; 2342 int ss_flags; 2343 2344 error = -EFAULT; 2345 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)) 2346 || __get_user(ss_sp, &uss->ss_sp) 2347 || __get_user(ss_flags, &uss->ss_flags) 2348 || __get_user(ss_size, &uss->ss_size)) 2349 goto out; 2350 2351 error = -EPERM; 2352 if (on_sig_stack(sp)) 2353 goto out; 2354 2355 error = -EINVAL; 2356 /* 2357 * 2358 * Note - this code used to test ss_flags incorrectly 2359 * old code may have been written using ss_flags==0 2360 * to mean ss_flags==SS_ONSTACK (as this was the only 2361 * way that worked) - this fix preserves that older 2362 * mechanism 2363 */ 2364 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) 2365 goto out; 2366 2367 if (ss_flags == SS_DISABLE) { 2368 ss_size = 0; 2369 ss_sp = NULL; 2370 } else { 2371 error = -ENOMEM; 2372 if (ss_size < MINSIGSTKSZ) 2373 goto out; 2374 } 2375 2376 current->sas_ss_sp = (unsigned long) ss_sp; 2377 current->sas_ss_size = ss_size; 2378 } 2379 2380 if (uoss) { 2381 error = -EFAULT; 2382 if (copy_to_user(uoss, &oss, sizeof(oss))) 2383 goto out; 2384 } 2385 2386 error = 0; 2387 out: 2388 return error; 2389 } 2390 2391 #ifdef __ARCH_WANT_SYS_SIGPENDING 2392 2393 asmlinkage long 2394 sys_sigpending(old_sigset_t __user *set) 2395 { 2396 return do_sigpending(set, sizeof(*set)); 2397 } 2398 2399 #endif 2400 2401 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 2402 /* Some platforms have their own version with special arguments others 2403 support only sys_rt_sigprocmask. */ 2404 2405 asmlinkage long 2406 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset) 2407 { 2408 int error; 2409 old_sigset_t old_set, new_set; 2410 2411 if (set) { 2412 error = -EFAULT; 2413 if (copy_from_user(&new_set, set, sizeof(*set))) 2414 goto out; 2415 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP)); 2416 2417 spin_lock_irq(¤t->sighand->siglock); 2418 old_set = current->blocked.sig[0]; 2419 2420 error = 0; 2421 switch (how) { 2422 default: 2423 error = -EINVAL; 2424 break; 2425 case SIG_BLOCK: 2426 sigaddsetmask(¤t->blocked, new_set); 2427 break; 2428 case SIG_UNBLOCK: 2429 sigdelsetmask(¤t->blocked, new_set); 2430 break; 2431 case SIG_SETMASK: 2432 current->blocked.sig[0] = new_set; 2433 break; 2434 } 2435 2436 recalc_sigpending(); 2437 spin_unlock_irq(¤t->sighand->siglock); 2438 if (error) 2439 goto out; 2440 if (oset) 2441 goto set_old; 2442 } else if (oset) { 2443 old_set = current->blocked.sig[0]; 2444 set_old: 2445 error = -EFAULT; 2446 if (copy_to_user(oset, &old_set, sizeof(*oset))) 2447 goto out; 2448 } 2449 error = 0; 2450 out: 2451 return error; 2452 } 2453 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 2454 2455 #ifdef __ARCH_WANT_SYS_RT_SIGACTION 2456 asmlinkage long 2457 sys_rt_sigaction(int sig, 2458 const struct sigaction __user *act, 2459 struct sigaction __user *oact, 2460 size_t sigsetsize) 2461 { 2462 struct k_sigaction new_sa, old_sa; 2463 int ret = -EINVAL; 2464 2465 /* XXX: Don't preclude handling different sized sigset_t's. */ 2466 if (sigsetsize != sizeof(sigset_t)) 2467 goto out; 2468 2469 if (act) { 2470 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 2471 return -EFAULT; 2472 } 2473 2474 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 2475 2476 if (!ret && oact) { 2477 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 2478 return -EFAULT; 2479 } 2480 out: 2481 return ret; 2482 } 2483 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */ 2484 2485 #ifdef __ARCH_WANT_SYS_SGETMASK 2486 2487 /* 2488 * For backwards compatibility. Functionality superseded by sigprocmask. 2489 */ 2490 asmlinkage long 2491 sys_sgetmask(void) 2492 { 2493 /* SMP safe */ 2494 return current->blocked.sig[0]; 2495 } 2496 2497 asmlinkage long 2498 sys_ssetmask(int newmask) 2499 { 2500 int old; 2501 2502 spin_lock_irq(¤t->sighand->siglock); 2503 old = current->blocked.sig[0]; 2504 2505 siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)| 2506 sigmask(SIGSTOP))); 2507 recalc_sigpending(); 2508 spin_unlock_irq(¤t->sighand->siglock); 2509 2510 return old; 2511 } 2512 #endif /* __ARCH_WANT_SGETMASK */ 2513 2514 #ifdef __ARCH_WANT_SYS_SIGNAL 2515 /* 2516 * For backwards compatibility. Functionality superseded by sigaction. 2517 */ 2518 asmlinkage unsigned long 2519 sys_signal(int sig, __sighandler_t handler) 2520 { 2521 struct k_sigaction new_sa, old_sa; 2522 int ret; 2523 2524 new_sa.sa.sa_handler = handler; 2525 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 2526 sigemptyset(&new_sa.sa.sa_mask); 2527 2528 ret = do_sigaction(sig, &new_sa, &old_sa); 2529 2530 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 2531 } 2532 #endif /* __ARCH_WANT_SYS_SIGNAL */ 2533 2534 #ifdef __ARCH_WANT_SYS_PAUSE 2535 2536 asmlinkage long 2537 sys_pause(void) 2538 { 2539 current->state = TASK_INTERRUPTIBLE; 2540 schedule(); 2541 return -ERESTARTNOHAND; 2542 } 2543 2544 #endif 2545 2546 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND 2547 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize) 2548 { 2549 sigset_t newset; 2550 2551 /* XXX: Don't preclude handling different sized sigset_t's. */ 2552 if (sigsetsize != sizeof(sigset_t)) 2553 return -EINVAL; 2554 2555 if (copy_from_user(&newset, unewset, sizeof(newset))) 2556 return -EFAULT; 2557 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2558 2559 spin_lock_irq(¤t->sighand->siglock); 2560 current->saved_sigmask = current->blocked; 2561 current->blocked = newset; 2562 recalc_sigpending(); 2563 spin_unlock_irq(¤t->sighand->siglock); 2564 2565 current->state = TASK_INTERRUPTIBLE; 2566 schedule(); 2567 set_thread_flag(TIF_RESTORE_SIGMASK); 2568 return -ERESTARTNOHAND; 2569 } 2570 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */ 2571 2572 void __init signals_init(void) 2573 { 2574 sigqueue_cachep = 2575 kmem_cache_create("sigqueue", 2576 sizeof(struct sigqueue), 2577 __alignof__(struct sigqueue), 2578 SLAB_PANIC, NULL, NULL); 2579 } 2580