1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/signal.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 8 * 9 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 10 * Changes to use preallocated sigqueue structures 11 * to allow signals to be sent reliably. 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/user.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/sched/cputime.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/proc_fs.h> 26 #include <linux/tty.h> 27 #include <linux/binfmts.h> 28 #include <linux/coredump.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include <linux/ptrace.h> 32 #include <linux/signal.h> 33 #include <linux/signalfd.h> 34 #include <linux/ratelimit.h> 35 #include <linux/task_work.h> 36 #include <linux/capability.h> 37 #include <linux/freezer.h> 38 #include <linux/pid_namespace.h> 39 #include <linux/nsproxy.h> 40 #include <linux/user_namespace.h> 41 #include <linux/uprobes.h> 42 #include <linux/compat.h> 43 #include <linux/cn_proc.h> 44 #include <linux/compiler.h> 45 #include <linux/posix-timers.h> 46 #include <linux/cgroup.h> 47 #include <linux/audit.h> 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/signal.h> 51 52 #include <asm/param.h> 53 #include <linux/uaccess.h> 54 #include <asm/unistd.h> 55 #include <asm/siginfo.h> 56 #include <asm/cacheflush.h> 57 #include <asm/syscall.h> /* for syscall_get_* */ 58 59 /* 60 * SLAB caches for signal bits. 61 */ 62 63 static struct kmem_cache *sigqueue_cachep; 64 65 int print_fatal_signals __read_mostly; 66 67 static void __user *sig_handler(struct task_struct *t, int sig) 68 { 69 return t->sighand->action[sig - 1].sa.sa_handler; 70 } 71 72 static inline bool sig_handler_ignored(void __user *handler, int sig) 73 { 74 /* Is it explicitly or implicitly ignored? */ 75 return handler == SIG_IGN || 76 (handler == SIG_DFL && sig_kernel_ignore(sig)); 77 } 78 79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 80 { 81 void __user *handler; 82 83 handler = sig_handler(t, sig); 84 85 /* SIGKILL and SIGSTOP may not be sent to the global init */ 86 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 87 return true; 88 89 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 90 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 91 return true; 92 93 /* Only allow kernel generated signals to this kthread */ 94 if (unlikely((t->flags & PF_KTHREAD) && 95 (handler == SIG_KTHREAD_KERNEL) && !force)) 96 return true; 97 98 return sig_handler_ignored(handler, sig); 99 } 100 101 static bool sig_ignored(struct task_struct *t, int sig, bool force) 102 { 103 /* 104 * Blocked signals are never ignored, since the 105 * signal handler may change by the time it is 106 * unblocked. 107 */ 108 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 109 return false; 110 111 /* 112 * Tracers may want to know about even ignored signal unless it 113 * is SIGKILL which can't be reported anyway but can be ignored 114 * by SIGNAL_UNKILLABLE task. 115 */ 116 if (t->ptrace && sig != SIGKILL) 117 return false; 118 119 return sig_task_ignored(t, sig, force); 120 } 121 122 /* 123 * Re-calculate pending state from the set of locally pending 124 * signals, globally pending signals, and blocked signals. 125 */ 126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 127 { 128 unsigned long ready; 129 long i; 130 131 switch (_NSIG_WORDS) { 132 default: 133 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 134 ready |= signal->sig[i] &~ blocked->sig[i]; 135 break; 136 137 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 138 ready |= signal->sig[2] &~ blocked->sig[2]; 139 ready |= signal->sig[1] &~ blocked->sig[1]; 140 ready |= signal->sig[0] &~ blocked->sig[0]; 141 break; 142 143 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 144 ready |= signal->sig[0] &~ blocked->sig[0]; 145 break; 146 147 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 148 } 149 return ready != 0; 150 } 151 152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 153 154 static bool recalc_sigpending_tsk(struct task_struct *t) 155 { 156 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || 157 PENDING(&t->pending, &t->blocked) || 158 PENDING(&t->signal->shared_pending, &t->blocked) || 159 cgroup_task_frozen(t)) { 160 set_tsk_thread_flag(t, TIF_SIGPENDING); 161 return true; 162 } 163 164 /* 165 * We must never clear the flag in another thread, or in current 166 * when it's possible the current syscall is returning -ERESTART*. 167 * So we don't clear it here, and only callers who know they should do. 168 */ 169 return false; 170 } 171 172 /* 173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 174 * This is superfluous when called on current, the wakeup is a harmless no-op. 175 */ 176 void recalc_sigpending_and_wake(struct task_struct *t) 177 { 178 if (recalc_sigpending_tsk(t)) 179 signal_wake_up(t, 0); 180 } 181 182 void recalc_sigpending(void) 183 { 184 if (!recalc_sigpending_tsk(current) && !freezing(current)) 185 clear_thread_flag(TIF_SIGPENDING); 186 187 } 188 EXPORT_SYMBOL(recalc_sigpending); 189 190 void calculate_sigpending(void) 191 { 192 /* Have any signals or users of TIF_SIGPENDING been delayed 193 * until after fork? 194 */ 195 spin_lock_irq(¤t->sighand->siglock); 196 set_tsk_thread_flag(current, TIF_SIGPENDING); 197 recalc_sigpending(); 198 spin_unlock_irq(¤t->sighand->siglock); 199 } 200 201 /* Given the mask, find the first available signal that should be serviced. */ 202 203 #define SYNCHRONOUS_MASK \ 204 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 205 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 206 207 int next_signal(struct sigpending *pending, sigset_t *mask) 208 { 209 unsigned long i, *s, *m, x; 210 int sig = 0; 211 212 s = pending->signal.sig; 213 m = mask->sig; 214 215 /* 216 * Handle the first word specially: it contains the 217 * synchronous signals that need to be dequeued first. 218 */ 219 x = *s &~ *m; 220 if (x) { 221 if (x & SYNCHRONOUS_MASK) 222 x &= SYNCHRONOUS_MASK; 223 sig = ffz(~x) + 1; 224 return sig; 225 } 226 227 switch (_NSIG_WORDS) { 228 default: 229 for (i = 1; i < _NSIG_WORDS; ++i) { 230 x = *++s &~ *++m; 231 if (!x) 232 continue; 233 sig = ffz(~x) + i*_NSIG_BPW + 1; 234 break; 235 } 236 break; 237 238 case 2: 239 x = s[1] &~ m[1]; 240 if (!x) 241 break; 242 sig = ffz(~x) + _NSIG_BPW + 1; 243 break; 244 245 case 1: 246 /* Nothing to do */ 247 break; 248 } 249 250 return sig; 251 } 252 253 static inline void print_dropped_signal(int sig) 254 { 255 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 256 257 if (!print_fatal_signals) 258 return; 259 260 if (!__ratelimit(&ratelimit_state)) 261 return; 262 263 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 264 current->comm, current->pid, sig); 265 } 266 267 /** 268 * task_set_jobctl_pending - set jobctl pending bits 269 * @task: target task 270 * @mask: pending bits to set 271 * 272 * Clear @mask from @task->jobctl. @mask must be subset of 273 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 274 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 275 * cleared. If @task is already being killed or exiting, this function 276 * becomes noop. 277 * 278 * CONTEXT: 279 * Must be called with @task->sighand->siglock held. 280 * 281 * RETURNS: 282 * %true if @mask is set, %false if made noop because @task was dying. 283 */ 284 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 285 { 286 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 287 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 288 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 289 290 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 291 return false; 292 293 if (mask & JOBCTL_STOP_SIGMASK) 294 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 295 296 task->jobctl |= mask; 297 return true; 298 } 299 300 /** 301 * task_clear_jobctl_trapping - clear jobctl trapping bit 302 * @task: target task 303 * 304 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 305 * Clear it and wake up the ptracer. Note that we don't need any further 306 * locking. @task->siglock guarantees that @task->parent points to the 307 * ptracer. 308 * 309 * CONTEXT: 310 * Must be called with @task->sighand->siglock held. 311 */ 312 void task_clear_jobctl_trapping(struct task_struct *task) 313 { 314 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 315 task->jobctl &= ~JOBCTL_TRAPPING; 316 smp_mb(); /* advised by wake_up_bit() */ 317 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 318 } 319 } 320 321 /** 322 * task_clear_jobctl_pending - clear jobctl pending bits 323 * @task: target task 324 * @mask: pending bits to clear 325 * 326 * Clear @mask from @task->jobctl. @mask must be subset of 327 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 328 * STOP bits are cleared together. 329 * 330 * If clearing of @mask leaves no stop or trap pending, this function calls 331 * task_clear_jobctl_trapping(). 332 * 333 * CONTEXT: 334 * Must be called with @task->sighand->siglock held. 335 */ 336 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 337 { 338 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 339 340 if (mask & JOBCTL_STOP_PENDING) 341 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 342 343 task->jobctl &= ~mask; 344 345 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 346 task_clear_jobctl_trapping(task); 347 } 348 349 /** 350 * task_participate_group_stop - participate in a group stop 351 * @task: task participating in a group stop 352 * 353 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 354 * Group stop states are cleared and the group stop count is consumed if 355 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 356 * stop, the appropriate `SIGNAL_*` flags are set. 357 * 358 * CONTEXT: 359 * Must be called with @task->sighand->siglock held. 360 * 361 * RETURNS: 362 * %true if group stop completion should be notified to the parent, %false 363 * otherwise. 364 */ 365 static bool task_participate_group_stop(struct task_struct *task) 366 { 367 struct signal_struct *sig = task->signal; 368 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 369 370 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 371 372 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 373 374 if (!consume) 375 return false; 376 377 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 378 sig->group_stop_count--; 379 380 /* 381 * Tell the caller to notify completion iff we are entering into a 382 * fresh group stop. Read comment in do_signal_stop() for details. 383 */ 384 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 385 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 386 return true; 387 } 388 return false; 389 } 390 391 void task_join_group_stop(struct task_struct *task) 392 { 393 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK; 394 struct signal_struct *sig = current->signal; 395 396 if (sig->group_stop_count) { 397 sig->group_stop_count++; 398 mask |= JOBCTL_STOP_CONSUME; 399 } else if (!(sig->flags & SIGNAL_STOP_STOPPED)) 400 return; 401 402 /* Have the new thread join an on-going signal group stop */ 403 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING); 404 } 405 406 /* 407 * allocate a new signal queue record 408 * - this may be called without locks if and only if t == current, otherwise an 409 * appropriate lock must be held to stop the target task from exiting 410 */ 411 static struct sigqueue * 412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags, 413 int override_rlimit, const unsigned int sigqueue_flags) 414 { 415 struct sigqueue *q = NULL; 416 struct ucounts *ucounts = NULL; 417 long sigpending; 418 419 /* 420 * Protect access to @t credentials. This can go away when all 421 * callers hold rcu read lock. 422 * 423 * NOTE! A pending signal will hold on to the user refcount, 424 * and we get/put the refcount only when the sigpending count 425 * changes from/to zero. 426 */ 427 rcu_read_lock(); 428 ucounts = task_ucounts(t); 429 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 430 rcu_read_unlock(); 431 if (!sigpending) 432 return NULL; 433 434 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) { 435 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags); 436 } else { 437 print_dropped_signal(sig); 438 } 439 440 if (unlikely(q == NULL)) { 441 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 442 } else { 443 INIT_LIST_HEAD(&q->list); 444 q->flags = sigqueue_flags; 445 q->ucounts = ucounts; 446 } 447 return q; 448 } 449 450 static void __sigqueue_free(struct sigqueue *q) 451 { 452 if (q->flags & SIGQUEUE_PREALLOC) 453 return; 454 if (q->ucounts) { 455 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING); 456 q->ucounts = NULL; 457 } 458 kmem_cache_free(sigqueue_cachep, q); 459 } 460 461 void flush_sigqueue(struct sigpending *queue) 462 { 463 struct sigqueue *q; 464 465 sigemptyset(&queue->signal); 466 while (!list_empty(&queue->list)) { 467 q = list_entry(queue->list.next, struct sigqueue , list); 468 list_del_init(&q->list); 469 __sigqueue_free(q); 470 } 471 } 472 473 /* 474 * Flush all pending signals for this kthread. 475 */ 476 void flush_signals(struct task_struct *t) 477 { 478 unsigned long flags; 479 480 spin_lock_irqsave(&t->sighand->siglock, flags); 481 clear_tsk_thread_flag(t, TIF_SIGPENDING); 482 flush_sigqueue(&t->pending); 483 flush_sigqueue(&t->signal->shared_pending); 484 spin_unlock_irqrestore(&t->sighand->siglock, flags); 485 } 486 EXPORT_SYMBOL(flush_signals); 487 488 #ifdef CONFIG_POSIX_TIMERS 489 static void __flush_itimer_signals(struct sigpending *pending) 490 { 491 sigset_t signal, retain; 492 struct sigqueue *q, *n; 493 494 signal = pending->signal; 495 sigemptyset(&retain); 496 497 list_for_each_entry_safe(q, n, &pending->list, list) { 498 int sig = q->info.si_signo; 499 500 if (likely(q->info.si_code != SI_TIMER)) { 501 sigaddset(&retain, sig); 502 } else { 503 sigdelset(&signal, sig); 504 list_del_init(&q->list); 505 __sigqueue_free(q); 506 } 507 } 508 509 sigorsets(&pending->signal, &signal, &retain); 510 } 511 512 void flush_itimer_signals(void) 513 { 514 struct task_struct *tsk = current; 515 unsigned long flags; 516 517 spin_lock_irqsave(&tsk->sighand->siglock, flags); 518 __flush_itimer_signals(&tsk->pending); 519 __flush_itimer_signals(&tsk->signal->shared_pending); 520 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 521 } 522 #endif 523 524 void ignore_signals(struct task_struct *t) 525 { 526 int i; 527 528 for (i = 0; i < _NSIG; ++i) 529 t->sighand->action[i].sa.sa_handler = SIG_IGN; 530 531 flush_signals(t); 532 } 533 534 /* 535 * Flush all handlers for a task. 536 */ 537 538 void 539 flush_signal_handlers(struct task_struct *t, int force_default) 540 { 541 int i; 542 struct k_sigaction *ka = &t->sighand->action[0]; 543 for (i = _NSIG ; i != 0 ; i--) { 544 if (force_default || ka->sa.sa_handler != SIG_IGN) 545 ka->sa.sa_handler = SIG_DFL; 546 ka->sa.sa_flags = 0; 547 #ifdef __ARCH_HAS_SA_RESTORER 548 ka->sa.sa_restorer = NULL; 549 #endif 550 sigemptyset(&ka->sa.sa_mask); 551 ka++; 552 } 553 } 554 555 bool unhandled_signal(struct task_struct *tsk, int sig) 556 { 557 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 558 if (is_global_init(tsk)) 559 return true; 560 561 if (handler != SIG_IGN && handler != SIG_DFL) 562 return false; 563 564 /* if ptraced, let the tracer determine */ 565 return !tsk->ptrace; 566 } 567 568 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 569 bool *resched_timer) 570 { 571 struct sigqueue *q, *first = NULL; 572 573 /* 574 * Collect the siginfo appropriate to this signal. Check if 575 * there is another siginfo for the same signal. 576 */ 577 list_for_each_entry(q, &list->list, list) { 578 if (q->info.si_signo == sig) { 579 if (first) 580 goto still_pending; 581 first = q; 582 } 583 } 584 585 sigdelset(&list->signal, sig); 586 587 if (first) { 588 still_pending: 589 list_del_init(&first->list); 590 copy_siginfo(info, &first->info); 591 592 *resched_timer = 593 (first->flags & SIGQUEUE_PREALLOC) && 594 (info->si_code == SI_TIMER) && 595 (info->si_sys_private); 596 597 __sigqueue_free(first); 598 } else { 599 /* 600 * Ok, it wasn't in the queue. This must be 601 * a fast-pathed signal or we must have been 602 * out of queue space. So zero out the info. 603 */ 604 clear_siginfo(info); 605 info->si_signo = sig; 606 info->si_errno = 0; 607 info->si_code = SI_USER; 608 info->si_pid = 0; 609 info->si_uid = 0; 610 } 611 } 612 613 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 614 kernel_siginfo_t *info, bool *resched_timer) 615 { 616 int sig = next_signal(pending, mask); 617 618 if (sig) 619 collect_signal(sig, pending, info, resched_timer); 620 return sig; 621 } 622 623 /* 624 * Dequeue a signal and return the element to the caller, which is 625 * expected to free it. 626 * 627 * All callers have to hold the siglock. 628 */ 629 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, 630 kernel_siginfo_t *info, enum pid_type *type) 631 { 632 bool resched_timer = false; 633 int signr; 634 635 /* We only dequeue private signals from ourselves, we don't let 636 * signalfd steal them 637 */ 638 *type = PIDTYPE_PID; 639 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 640 if (!signr) { 641 *type = PIDTYPE_TGID; 642 signr = __dequeue_signal(&tsk->signal->shared_pending, 643 mask, info, &resched_timer); 644 #ifdef CONFIG_POSIX_TIMERS 645 /* 646 * itimer signal ? 647 * 648 * itimers are process shared and we restart periodic 649 * itimers in the signal delivery path to prevent DoS 650 * attacks in the high resolution timer case. This is 651 * compliant with the old way of self-restarting 652 * itimers, as the SIGALRM is a legacy signal and only 653 * queued once. Changing the restart behaviour to 654 * restart the timer in the signal dequeue path is 655 * reducing the timer noise on heavy loaded !highres 656 * systems too. 657 */ 658 if (unlikely(signr == SIGALRM)) { 659 struct hrtimer *tmr = &tsk->signal->real_timer; 660 661 if (!hrtimer_is_queued(tmr) && 662 tsk->signal->it_real_incr != 0) { 663 hrtimer_forward(tmr, tmr->base->get_time(), 664 tsk->signal->it_real_incr); 665 hrtimer_restart(tmr); 666 } 667 } 668 #endif 669 } 670 671 recalc_sigpending(); 672 if (!signr) 673 return 0; 674 675 if (unlikely(sig_kernel_stop(signr))) { 676 /* 677 * Set a marker that we have dequeued a stop signal. Our 678 * caller might release the siglock and then the pending 679 * stop signal it is about to process is no longer in the 680 * pending bitmasks, but must still be cleared by a SIGCONT 681 * (and overruled by a SIGKILL). So those cases clear this 682 * shared flag after we've set it. Note that this flag may 683 * remain set after the signal we return is ignored or 684 * handled. That doesn't matter because its only purpose 685 * is to alert stop-signal processing code when another 686 * processor has come along and cleared the flag. 687 */ 688 current->jobctl |= JOBCTL_STOP_DEQUEUED; 689 } 690 #ifdef CONFIG_POSIX_TIMERS 691 if (resched_timer) { 692 /* 693 * Release the siglock to ensure proper locking order 694 * of timer locks outside of siglocks. Note, we leave 695 * irqs disabled here, since the posix-timers code is 696 * about to disable them again anyway. 697 */ 698 spin_unlock(&tsk->sighand->siglock); 699 posixtimer_rearm(info); 700 spin_lock(&tsk->sighand->siglock); 701 702 /* Don't expose the si_sys_private value to userspace */ 703 info->si_sys_private = 0; 704 } 705 #endif 706 return signr; 707 } 708 EXPORT_SYMBOL_GPL(dequeue_signal); 709 710 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 711 { 712 struct task_struct *tsk = current; 713 struct sigpending *pending = &tsk->pending; 714 struct sigqueue *q, *sync = NULL; 715 716 /* 717 * Might a synchronous signal be in the queue? 718 */ 719 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 720 return 0; 721 722 /* 723 * Return the first synchronous signal in the queue. 724 */ 725 list_for_each_entry(q, &pending->list, list) { 726 /* Synchronous signals have a positive si_code */ 727 if ((q->info.si_code > SI_USER) && 728 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 729 sync = q; 730 goto next; 731 } 732 } 733 return 0; 734 next: 735 /* 736 * Check if there is another siginfo for the same signal. 737 */ 738 list_for_each_entry_continue(q, &pending->list, list) { 739 if (q->info.si_signo == sync->info.si_signo) 740 goto still_pending; 741 } 742 743 sigdelset(&pending->signal, sync->info.si_signo); 744 recalc_sigpending(); 745 still_pending: 746 list_del_init(&sync->list); 747 copy_siginfo(info, &sync->info); 748 __sigqueue_free(sync); 749 return info->si_signo; 750 } 751 752 /* 753 * Tell a process that it has a new active signal.. 754 * 755 * NOTE! we rely on the previous spin_lock to 756 * lock interrupts for us! We can only be called with 757 * "siglock" held, and the local interrupt must 758 * have been disabled when that got acquired! 759 * 760 * No need to set need_resched since signal event passing 761 * goes through ->blocked 762 */ 763 void signal_wake_up_state(struct task_struct *t, unsigned int state) 764 { 765 set_tsk_thread_flag(t, TIF_SIGPENDING); 766 /* 767 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 768 * case. We don't check t->state here because there is a race with it 769 * executing another processor and just now entering stopped state. 770 * By using wake_up_state, we ensure the process will wake up and 771 * handle its death signal. 772 */ 773 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 774 kick_process(t); 775 } 776 777 /* 778 * Remove signals in mask from the pending set and queue. 779 * Returns 1 if any signals were found. 780 * 781 * All callers must be holding the siglock. 782 */ 783 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 784 { 785 struct sigqueue *q, *n; 786 sigset_t m; 787 788 sigandsets(&m, mask, &s->signal); 789 if (sigisemptyset(&m)) 790 return; 791 792 sigandnsets(&s->signal, &s->signal, mask); 793 list_for_each_entry_safe(q, n, &s->list, list) { 794 if (sigismember(mask, q->info.si_signo)) { 795 list_del_init(&q->list); 796 __sigqueue_free(q); 797 } 798 } 799 } 800 801 static inline int is_si_special(const struct kernel_siginfo *info) 802 { 803 return info <= SEND_SIG_PRIV; 804 } 805 806 static inline bool si_fromuser(const struct kernel_siginfo *info) 807 { 808 return info == SEND_SIG_NOINFO || 809 (!is_si_special(info) && SI_FROMUSER(info)); 810 } 811 812 /* 813 * called with RCU read lock from check_kill_permission() 814 */ 815 static bool kill_ok_by_cred(struct task_struct *t) 816 { 817 const struct cred *cred = current_cred(); 818 const struct cred *tcred = __task_cred(t); 819 820 return uid_eq(cred->euid, tcred->suid) || 821 uid_eq(cred->euid, tcred->uid) || 822 uid_eq(cred->uid, tcred->suid) || 823 uid_eq(cred->uid, tcred->uid) || 824 ns_capable(tcred->user_ns, CAP_KILL); 825 } 826 827 /* 828 * Bad permissions for sending the signal 829 * - the caller must hold the RCU read lock 830 */ 831 static int check_kill_permission(int sig, struct kernel_siginfo *info, 832 struct task_struct *t) 833 { 834 struct pid *sid; 835 int error; 836 837 if (!valid_signal(sig)) 838 return -EINVAL; 839 840 if (!si_fromuser(info)) 841 return 0; 842 843 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 844 if (error) 845 return error; 846 847 if (!same_thread_group(current, t) && 848 !kill_ok_by_cred(t)) { 849 switch (sig) { 850 case SIGCONT: 851 sid = task_session(t); 852 /* 853 * We don't return the error if sid == NULL. The 854 * task was unhashed, the caller must notice this. 855 */ 856 if (!sid || sid == task_session(current)) 857 break; 858 fallthrough; 859 default: 860 return -EPERM; 861 } 862 } 863 864 return security_task_kill(t, info, sig, NULL); 865 } 866 867 /** 868 * ptrace_trap_notify - schedule trap to notify ptracer 869 * @t: tracee wanting to notify tracer 870 * 871 * This function schedules sticky ptrace trap which is cleared on the next 872 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 873 * ptracer. 874 * 875 * If @t is running, STOP trap will be taken. If trapped for STOP and 876 * ptracer is listening for events, tracee is woken up so that it can 877 * re-trap for the new event. If trapped otherwise, STOP trap will be 878 * eventually taken without returning to userland after the existing traps 879 * are finished by PTRACE_CONT. 880 * 881 * CONTEXT: 882 * Must be called with @task->sighand->siglock held. 883 */ 884 static void ptrace_trap_notify(struct task_struct *t) 885 { 886 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 887 assert_spin_locked(&t->sighand->siglock); 888 889 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 890 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 891 } 892 893 /* 894 * Handle magic process-wide effects of stop/continue signals. Unlike 895 * the signal actions, these happen immediately at signal-generation 896 * time regardless of blocking, ignoring, or handling. This does the 897 * actual continuing for SIGCONT, but not the actual stopping for stop 898 * signals. The process stop is done as a signal action for SIG_DFL. 899 * 900 * Returns true if the signal should be actually delivered, otherwise 901 * it should be dropped. 902 */ 903 static bool prepare_signal(int sig, struct task_struct *p, bool force) 904 { 905 struct signal_struct *signal = p->signal; 906 struct task_struct *t; 907 sigset_t flush; 908 909 if (signal->flags & SIGNAL_GROUP_EXIT) { 910 if (signal->core_state) 911 return sig == SIGKILL; 912 /* 913 * The process is in the middle of dying, nothing to do. 914 */ 915 } else if (sig_kernel_stop(sig)) { 916 /* 917 * This is a stop signal. Remove SIGCONT from all queues. 918 */ 919 siginitset(&flush, sigmask(SIGCONT)); 920 flush_sigqueue_mask(&flush, &signal->shared_pending); 921 for_each_thread(p, t) 922 flush_sigqueue_mask(&flush, &t->pending); 923 } else if (sig == SIGCONT) { 924 unsigned int why; 925 /* 926 * Remove all stop signals from all queues, wake all threads. 927 */ 928 siginitset(&flush, SIG_KERNEL_STOP_MASK); 929 flush_sigqueue_mask(&flush, &signal->shared_pending); 930 for_each_thread(p, t) { 931 flush_sigqueue_mask(&flush, &t->pending); 932 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 933 if (likely(!(t->ptrace & PT_SEIZED))) 934 wake_up_state(t, __TASK_STOPPED); 935 else 936 ptrace_trap_notify(t); 937 } 938 939 /* 940 * Notify the parent with CLD_CONTINUED if we were stopped. 941 * 942 * If we were in the middle of a group stop, we pretend it 943 * was already finished, and then continued. Since SIGCHLD 944 * doesn't queue we report only CLD_STOPPED, as if the next 945 * CLD_CONTINUED was dropped. 946 */ 947 why = 0; 948 if (signal->flags & SIGNAL_STOP_STOPPED) 949 why |= SIGNAL_CLD_CONTINUED; 950 else if (signal->group_stop_count) 951 why |= SIGNAL_CLD_STOPPED; 952 953 if (why) { 954 /* 955 * The first thread which returns from do_signal_stop() 956 * will take ->siglock, notice SIGNAL_CLD_MASK, and 957 * notify its parent. See get_signal(). 958 */ 959 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 960 signal->group_stop_count = 0; 961 signal->group_exit_code = 0; 962 } 963 } 964 965 return !sig_ignored(p, sig, force); 966 } 967 968 /* 969 * Test if P wants to take SIG. After we've checked all threads with this, 970 * it's equivalent to finding no threads not blocking SIG. Any threads not 971 * blocking SIG were ruled out because they are not running and already 972 * have pending signals. Such threads will dequeue from the shared queue 973 * as soon as they're available, so putting the signal on the shared queue 974 * will be equivalent to sending it to one such thread. 975 */ 976 static inline bool wants_signal(int sig, struct task_struct *p) 977 { 978 if (sigismember(&p->blocked, sig)) 979 return false; 980 981 if (p->flags & PF_EXITING) 982 return false; 983 984 if (sig == SIGKILL) 985 return true; 986 987 if (task_is_stopped_or_traced(p)) 988 return false; 989 990 return task_curr(p) || !task_sigpending(p); 991 } 992 993 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 994 { 995 struct signal_struct *signal = p->signal; 996 struct task_struct *t; 997 998 /* 999 * Now find a thread we can wake up to take the signal off the queue. 1000 * 1001 * If the main thread wants the signal, it gets first crack. 1002 * Probably the least surprising to the average bear. 1003 */ 1004 if (wants_signal(sig, p)) 1005 t = p; 1006 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 1007 /* 1008 * There is just one thread and it does not need to be woken. 1009 * It will dequeue unblocked signals before it runs again. 1010 */ 1011 return; 1012 else { 1013 /* 1014 * Otherwise try to find a suitable thread. 1015 */ 1016 t = signal->curr_target; 1017 while (!wants_signal(sig, t)) { 1018 t = next_thread(t); 1019 if (t == signal->curr_target) 1020 /* 1021 * No thread needs to be woken. 1022 * Any eligible threads will see 1023 * the signal in the queue soon. 1024 */ 1025 return; 1026 } 1027 signal->curr_target = t; 1028 } 1029 1030 /* 1031 * Found a killable thread. If the signal will be fatal, 1032 * then start taking the whole group down immediately. 1033 */ 1034 if (sig_fatal(p, sig) && 1035 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) && 1036 !sigismember(&t->real_blocked, sig) && 1037 (sig == SIGKILL || !p->ptrace)) { 1038 /* 1039 * This signal will be fatal to the whole group. 1040 */ 1041 if (!sig_kernel_coredump(sig)) { 1042 /* 1043 * Start a group exit and wake everybody up. 1044 * This way we don't have other threads 1045 * running and doing things after a slower 1046 * thread has the fatal signal pending. 1047 */ 1048 signal->flags = SIGNAL_GROUP_EXIT; 1049 signal->group_exit_code = sig; 1050 signal->group_stop_count = 0; 1051 t = p; 1052 do { 1053 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1054 sigaddset(&t->pending.signal, SIGKILL); 1055 signal_wake_up(t, 1); 1056 } while_each_thread(p, t); 1057 return; 1058 } 1059 } 1060 1061 /* 1062 * The signal is already in the shared-pending queue. 1063 * Tell the chosen thread to wake up and dequeue it. 1064 */ 1065 signal_wake_up(t, sig == SIGKILL); 1066 return; 1067 } 1068 1069 static inline bool legacy_queue(struct sigpending *signals, int sig) 1070 { 1071 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1072 } 1073 1074 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1075 enum pid_type type, bool force) 1076 { 1077 struct sigpending *pending; 1078 struct sigqueue *q; 1079 int override_rlimit; 1080 int ret = 0, result; 1081 1082 assert_spin_locked(&t->sighand->siglock); 1083 1084 result = TRACE_SIGNAL_IGNORED; 1085 if (!prepare_signal(sig, t, force)) 1086 goto ret; 1087 1088 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1089 /* 1090 * Short-circuit ignored signals and support queuing 1091 * exactly one non-rt signal, so that we can get more 1092 * detailed information about the cause of the signal. 1093 */ 1094 result = TRACE_SIGNAL_ALREADY_PENDING; 1095 if (legacy_queue(pending, sig)) 1096 goto ret; 1097 1098 result = TRACE_SIGNAL_DELIVERED; 1099 /* 1100 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1101 */ 1102 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1103 goto out_set; 1104 1105 /* 1106 * Real-time signals must be queued if sent by sigqueue, or 1107 * some other real-time mechanism. It is implementation 1108 * defined whether kill() does so. We attempt to do so, on 1109 * the principle of least surprise, but since kill is not 1110 * allowed to fail with EAGAIN when low on memory we just 1111 * make sure at least one signal gets delivered and don't 1112 * pass on the info struct. 1113 */ 1114 if (sig < SIGRTMIN) 1115 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1116 else 1117 override_rlimit = 0; 1118 1119 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0); 1120 1121 if (q) { 1122 list_add_tail(&q->list, &pending->list); 1123 switch ((unsigned long) info) { 1124 case (unsigned long) SEND_SIG_NOINFO: 1125 clear_siginfo(&q->info); 1126 q->info.si_signo = sig; 1127 q->info.si_errno = 0; 1128 q->info.si_code = SI_USER; 1129 q->info.si_pid = task_tgid_nr_ns(current, 1130 task_active_pid_ns(t)); 1131 rcu_read_lock(); 1132 q->info.si_uid = 1133 from_kuid_munged(task_cred_xxx(t, user_ns), 1134 current_uid()); 1135 rcu_read_unlock(); 1136 break; 1137 case (unsigned long) SEND_SIG_PRIV: 1138 clear_siginfo(&q->info); 1139 q->info.si_signo = sig; 1140 q->info.si_errno = 0; 1141 q->info.si_code = SI_KERNEL; 1142 q->info.si_pid = 0; 1143 q->info.si_uid = 0; 1144 break; 1145 default: 1146 copy_siginfo(&q->info, info); 1147 break; 1148 } 1149 } else if (!is_si_special(info) && 1150 sig >= SIGRTMIN && info->si_code != SI_USER) { 1151 /* 1152 * Queue overflow, abort. We may abort if the 1153 * signal was rt and sent by user using something 1154 * other than kill(). 1155 */ 1156 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1157 ret = -EAGAIN; 1158 goto ret; 1159 } else { 1160 /* 1161 * This is a silent loss of information. We still 1162 * send the signal, but the *info bits are lost. 1163 */ 1164 result = TRACE_SIGNAL_LOSE_INFO; 1165 } 1166 1167 out_set: 1168 signalfd_notify(t, sig); 1169 sigaddset(&pending->signal, sig); 1170 1171 /* Let multiprocess signals appear after on-going forks */ 1172 if (type > PIDTYPE_TGID) { 1173 struct multiprocess_signals *delayed; 1174 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1175 sigset_t *signal = &delayed->signal; 1176 /* Can't queue both a stop and a continue signal */ 1177 if (sig == SIGCONT) 1178 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1179 else if (sig_kernel_stop(sig)) 1180 sigdelset(signal, SIGCONT); 1181 sigaddset(signal, sig); 1182 } 1183 } 1184 1185 complete_signal(sig, t, type); 1186 ret: 1187 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1188 return ret; 1189 } 1190 1191 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) 1192 { 1193 bool ret = false; 1194 switch (siginfo_layout(info->si_signo, info->si_code)) { 1195 case SIL_KILL: 1196 case SIL_CHLD: 1197 case SIL_RT: 1198 ret = true; 1199 break; 1200 case SIL_TIMER: 1201 case SIL_POLL: 1202 case SIL_FAULT: 1203 case SIL_FAULT_TRAPNO: 1204 case SIL_FAULT_MCEERR: 1205 case SIL_FAULT_BNDERR: 1206 case SIL_FAULT_PKUERR: 1207 case SIL_FAULT_PERF_EVENT: 1208 case SIL_SYS: 1209 ret = false; 1210 break; 1211 } 1212 return ret; 1213 } 1214 1215 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1216 enum pid_type type) 1217 { 1218 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ 1219 bool force = false; 1220 1221 if (info == SEND_SIG_NOINFO) { 1222 /* Force if sent from an ancestor pid namespace */ 1223 force = !task_pid_nr_ns(current, task_active_pid_ns(t)); 1224 } else if (info == SEND_SIG_PRIV) { 1225 /* Don't ignore kernel generated signals */ 1226 force = true; 1227 } else if (has_si_pid_and_uid(info)) { 1228 /* SIGKILL and SIGSTOP is special or has ids */ 1229 struct user_namespace *t_user_ns; 1230 1231 rcu_read_lock(); 1232 t_user_ns = task_cred_xxx(t, user_ns); 1233 if (current_user_ns() != t_user_ns) { 1234 kuid_t uid = make_kuid(current_user_ns(), info->si_uid); 1235 info->si_uid = from_kuid_munged(t_user_ns, uid); 1236 } 1237 rcu_read_unlock(); 1238 1239 /* A kernel generated signal? */ 1240 force = (info->si_code == SI_KERNEL); 1241 1242 /* From an ancestor pid namespace? */ 1243 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { 1244 info->si_pid = 0; 1245 force = true; 1246 } 1247 } 1248 return __send_signal(sig, info, t, type, force); 1249 } 1250 1251 static void print_fatal_signal(int signr) 1252 { 1253 struct pt_regs *regs = signal_pt_regs(); 1254 pr_info("potentially unexpected fatal signal %d.\n", signr); 1255 1256 #if defined(__i386__) && !defined(__arch_um__) 1257 pr_info("code at %08lx: ", regs->ip); 1258 { 1259 int i; 1260 for (i = 0; i < 16; i++) { 1261 unsigned char insn; 1262 1263 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1264 break; 1265 pr_cont("%02x ", insn); 1266 } 1267 } 1268 pr_cont("\n"); 1269 #endif 1270 preempt_disable(); 1271 show_regs(regs); 1272 preempt_enable(); 1273 } 1274 1275 static int __init setup_print_fatal_signals(char *str) 1276 { 1277 get_option (&str, &print_fatal_signals); 1278 1279 return 1; 1280 } 1281 1282 __setup("print-fatal-signals=", setup_print_fatal_signals); 1283 1284 int 1285 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1286 { 1287 return send_signal(sig, info, p, PIDTYPE_TGID); 1288 } 1289 1290 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1291 enum pid_type type) 1292 { 1293 unsigned long flags; 1294 int ret = -ESRCH; 1295 1296 if (lock_task_sighand(p, &flags)) { 1297 ret = send_signal(sig, info, p, type); 1298 unlock_task_sighand(p, &flags); 1299 } 1300 1301 return ret; 1302 } 1303 1304 enum sig_handler { 1305 HANDLER_CURRENT, /* If reachable use the current handler */ 1306 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */ 1307 HANDLER_EXIT, /* Only visible as the process exit code */ 1308 }; 1309 1310 /* 1311 * On some archictectures, PREEMPT_RT has to delay sending a signal from a 1312 * trap since it cannot enable preemption, and the signal code's 1313 * spin_locks turn into mutexes. Instead, it must set TIF_NOTIFY_RESUME 1314 * which will send the signal on exit of the trap. 1315 */ 1316 #ifdef CONFIG_RT_DELAYED_SIGNALS 1317 static inline bool force_sig_delayed(struct kernel_siginfo *info, 1318 struct task_struct *t) 1319 { 1320 if (!in_atomic()) 1321 return false; 1322 1323 if (WARN_ON_ONCE(t->forced_info.si_signo)) 1324 return true; 1325 1326 if (is_si_special(info)) { 1327 WARN_ON_ONCE(info != SEND_SIG_PRIV); 1328 t->forced_info.si_signo = info->si_signo; 1329 t->forced_info.si_errno = 0; 1330 t->forced_info.si_code = SI_KERNEL; 1331 t->forced_info.si_pid = 0; 1332 t->forced_info.si_uid = 0; 1333 } else { 1334 t->forced_info = *info; 1335 } 1336 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); 1337 return true; 1338 } 1339 #else 1340 static inline bool force_sig_delayed(struct kernel_siginfo *info, 1341 struct task_struct *t) 1342 { 1343 return false; 1344 } 1345 #endif 1346 1347 /* 1348 * Force a signal that the process can't ignore: if necessary 1349 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1350 * 1351 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1352 * since we do not want to have a signal handler that was blocked 1353 * be invoked when user space had explicitly blocked it. 1354 * 1355 * We don't want to have recursive SIGSEGV's etc, for example, 1356 * that is why we also clear SIGNAL_UNKILLABLE. 1357 */ 1358 static int 1359 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t, 1360 enum sig_handler handler) 1361 { 1362 unsigned long int flags; 1363 int ret, blocked, ignored; 1364 struct k_sigaction *action; 1365 int sig = info->si_signo; 1366 1367 if (force_sig_delayed(info, t)) 1368 return 0; 1369 1370 spin_lock_irqsave(&t->sighand->siglock, flags); 1371 action = &t->sighand->action[sig-1]; 1372 ignored = action->sa.sa_handler == SIG_IGN; 1373 blocked = sigismember(&t->blocked, sig); 1374 if (blocked || ignored || (handler != HANDLER_CURRENT)) { 1375 action->sa.sa_handler = SIG_DFL; 1376 if (handler == HANDLER_EXIT) 1377 action->sa.sa_flags |= SA_IMMUTABLE; 1378 if (blocked) { 1379 sigdelset(&t->blocked, sig); 1380 recalc_sigpending_and_wake(t); 1381 } 1382 } 1383 /* 1384 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1385 * debugging to leave init killable. But HANDLER_EXIT is always fatal. 1386 */ 1387 if (action->sa.sa_handler == SIG_DFL && 1388 (!t->ptrace || (handler == HANDLER_EXIT))) 1389 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1390 ret = send_signal(sig, info, t, PIDTYPE_PID); 1391 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1392 1393 return ret; 1394 } 1395 1396 int force_sig_info(struct kernel_siginfo *info) 1397 { 1398 return force_sig_info_to_task(info, current, HANDLER_CURRENT); 1399 } 1400 1401 /* 1402 * Nuke all other threads in the group. 1403 */ 1404 int zap_other_threads(struct task_struct *p) 1405 { 1406 struct task_struct *t = p; 1407 int count = 0; 1408 1409 p->signal->group_stop_count = 0; 1410 1411 while_each_thread(p, t) { 1412 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1413 count++; 1414 1415 /* Don't bother with already dead threads */ 1416 if (t->exit_state) 1417 continue; 1418 sigaddset(&t->pending.signal, SIGKILL); 1419 signal_wake_up(t, 1); 1420 } 1421 1422 return count; 1423 } 1424 1425 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1426 unsigned long *flags) 1427 { 1428 struct sighand_struct *sighand; 1429 1430 rcu_read_lock(); 1431 for (;;) { 1432 sighand = rcu_dereference(tsk->sighand); 1433 if (unlikely(sighand == NULL)) 1434 break; 1435 1436 /* 1437 * This sighand can be already freed and even reused, but 1438 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1439 * initializes ->siglock: this slab can't go away, it has 1440 * the same object type, ->siglock can't be reinitialized. 1441 * 1442 * We need to ensure that tsk->sighand is still the same 1443 * after we take the lock, we can race with de_thread() or 1444 * __exit_signal(). In the latter case the next iteration 1445 * must see ->sighand == NULL. 1446 */ 1447 spin_lock_irqsave(&sighand->siglock, *flags); 1448 if (likely(sighand == rcu_access_pointer(tsk->sighand))) 1449 break; 1450 spin_unlock_irqrestore(&sighand->siglock, *flags); 1451 } 1452 rcu_read_unlock(); 1453 1454 return sighand; 1455 } 1456 1457 #ifdef CONFIG_LOCKDEP 1458 void lockdep_assert_task_sighand_held(struct task_struct *task) 1459 { 1460 struct sighand_struct *sighand; 1461 1462 rcu_read_lock(); 1463 sighand = rcu_dereference(task->sighand); 1464 if (sighand) 1465 lockdep_assert_held(&sighand->siglock); 1466 else 1467 WARN_ON_ONCE(1); 1468 rcu_read_unlock(); 1469 } 1470 #endif 1471 1472 /* 1473 * send signal info to all the members of a group 1474 */ 1475 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1476 struct task_struct *p, enum pid_type type) 1477 { 1478 int ret; 1479 1480 rcu_read_lock(); 1481 ret = check_kill_permission(sig, info, p); 1482 rcu_read_unlock(); 1483 1484 if (!ret && sig) 1485 ret = do_send_sig_info(sig, info, p, type); 1486 1487 return ret; 1488 } 1489 1490 /* 1491 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1492 * control characters do (^C, ^Z etc) 1493 * - the caller must hold at least a readlock on tasklist_lock 1494 */ 1495 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1496 { 1497 struct task_struct *p = NULL; 1498 int retval, success; 1499 1500 success = 0; 1501 retval = -ESRCH; 1502 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1503 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1504 success |= !err; 1505 retval = err; 1506 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1507 return success ? 0 : retval; 1508 } 1509 1510 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1511 { 1512 int error = -ESRCH; 1513 struct task_struct *p; 1514 1515 for (;;) { 1516 rcu_read_lock(); 1517 p = pid_task(pid, PIDTYPE_PID); 1518 if (p) 1519 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID); 1520 rcu_read_unlock(); 1521 if (likely(!p || error != -ESRCH)) 1522 return error; 1523 1524 /* 1525 * The task was unhashed in between, try again. If it 1526 * is dead, pid_task() will return NULL, if we race with 1527 * de_thread() it will find the new leader. 1528 */ 1529 } 1530 } 1531 1532 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1533 { 1534 int error; 1535 rcu_read_lock(); 1536 error = kill_pid_info(sig, info, find_vpid(pid)); 1537 rcu_read_unlock(); 1538 return error; 1539 } 1540 1541 static inline bool kill_as_cred_perm(const struct cred *cred, 1542 struct task_struct *target) 1543 { 1544 const struct cred *pcred = __task_cred(target); 1545 1546 return uid_eq(cred->euid, pcred->suid) || 1547 uid_eq(cred->euid, pcred->uid) || 1548 uid_eq(cred->uid, pcred->suid) || 1549 uid_eq(cred->uid, pcred->uid); 1550 } 1551 1552 /* 1553 * The usb asyncio usage of siginfo is wrong. The glibc support 1554 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. 1555 * AKA after the generic fields: 1556 * kernel_pid_t si_pid; 1557 * kernel_uid32_t si_uid; 1558 * sigval_t si_value; 1559 * 1560 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout 1561 * after the generic fields is: 1562 * void __user *si_addr; 1563 * 1564 * This is a practical problem when there is a 64bit big endian kernel 1565 * and a 32bit userspace. As the 32bit address will encoded in the low 1566 * 32bits of the pointer. Those low 32bits will be stored at higher 1567 * address than appear in a 32 bit pointer. So userspace will not 1568 * see the address it was expecting for it's completions. 1569 * 1570 * There is nothing in the encoding that can allow 1571 * copy_siginfo_to_user32 to detect this confusion of formats, so 1572 * handle this by requiring the caller of kill_pid_usb_asyncio to 1573 * notice when this situration takes place and to store the 32bit 1574 * pointer in sival_int, instead of sival_addr of the sigval_t addr 1575 * parameter. 1576 */ 1577 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, 1578 struct pid *pid, const struct cred *cred) 1579 { 1580 struct kernel_siginfo info; 1581 struct task_struct *p; 1582 unsigned long flags; 1583 int ret = -EINVAL; 1584 1585 if (!valid_signal(sig)) 1586 return ret; 1587 1588 clear_siginfo(&info); 1589 info.si_signo = sig; 1590 info.si_errno = errno; 1591 info.si_code = SI_ASYNCIO; 1592 *((sigval_t *)&info.si_pid) = addr; 1593 1594 rcu_read_lock(); 1595 p = pid_task(pid, PIDTYPE_PID); 1596 if (!p) { 1597 ret = -ESRCH; 1598 goto out_unlock; 1599 } 1600 if (!kill_as_cred_perm(cred, p)) { 1601 ret = -EPERM; 1602 goto out_unlock; 1603 } 1604 ret = security_task_kill(p, &info, sig, cred); 1605 if (ret) 1606 goto out_unlock; 1607 1608 if (sig) { 1609 if (lock_task_sighand(p, &flags)) { 1610 ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false); 1611 unlock_task_sighand(p, &flags); 1612 } else 1613 ret = -ESRCH; 1614 } 1615 out_unlock: 1616 rcu_read_unlock(); 1617 return ret; 1618 } 1619 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); 1620 1621 /* 1622 * kill_something_info() interprets pid in interesting ways just like kill(2). 1623 * 1624 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1625 * is probably wrong. Should make it like BSD or SYSV. 1626 */ 1627 1628 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1629 { 1630 int ret; 1631 1632 if (pid > 0) 1633 return kill_proc_info(sig, info, pid); 1634 1635 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1636 if (pid == INT_MIN) 1637 return -ESRCH; 1638 1639 read_lock(&tasklist_lock); 1640 if (pid != -1) { 1641 ret = __kill_pgrp_info(sig, info, 1642 pid ? find_vpid(-pid) : task_pgrp(current)); 1643 } else { 1644 int retval = 0, count = 0; 1645 struct task_struct * p; 1646 1647 for_each_process(p) { 1648 if (task_pid_vnr(p) > 1 && 1649 !same_thread_group(p, current)) { 1650 int err = group_send_sig_info(sig, info, p, 1651 PIDTYPE_MAX); 1652 ++count; 1653 if (err != -EPERM) 1654 retval = err; 1655 } 1656 } 1657 ret = count ? retval : -ESRCH; 1658 } 1659 read_unlock(&tasklist_lock); 1660 1661 return ret; 1662 } 1663 1664 /* 1665 * These are for backward compatibility with the rest of the kernel source. 1666 */ 1667 1668 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1669 { 1670 /* 1671 * Make sure legacy kernel users don't send in bad values 1672 * (normal paths check this in check_kill_permission). 1673 */ 1674 if (!valid_signal(sig)) 1675 return -EINVAL; 1676 1677 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1678 } 1679 EXPORT_SYMBOL(send_sig_info); 1680 1681 #define __si_special(priv) \ 1682 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1683 1684 int 1685 send_sig(int sig, struct task_struct *p, int priv) 1686 { 1687 return send_sig_info(sig, __si_special(priv), p); 1688 } 1689 EXPORT_SYMBOL(send_sig); 1690 1691 void force_sig(int sig) 1692 { 1693 struct kernel_siginfo info; 1694 1695 clear_siginfo(&info); 1696 info.si_signo = sig; 1697 info.si_errno = 0; 1698 info.si_code = SI_KERNEL; 1699 info.si_pid = 0; 1700 info.si_uid = 0; 1701 force_sig_info(&info); 1702 } 1703 EXPORT_SYMBOL(force_sig); 1704 1705 void force_fatal_sig(int sig) 1706 { 1707 struct kernel_siginfo info; 1708 1709 clear_siginfo(&info); 1710 info.si_signo = sig; 1711 info.si_errno = 0; 1712 info.si_code = SI_KERNEL; 1713 info.si_pid = 0; 1714 info.si_uid = 0; 1715 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL); 1716 } 1717 1718 void force_exit_sig(int sig) 1719 { 1720 struct kernel_siginfo info; 1721 1722 clear_siginfo(&info); 1723 info.si_signo = sig; 1724 info.si_errno = 0; 1725 info.si_code = SI_KERNEL; 1726 info.si_pid = 0; 1727 info.si_uid = 0; 1728 force_sig_info_to_task(&info, current, HANDLER_EXIT); 1729 } 1730 1731 /* 1732 * When things go south during signal handling, we 1733 * will force a SIGSEGV. And if the signal that caused 1734 * the problem was already a SIGSEGV, we'll want to 1735 * make sure we don't even try to deliver the signal.. 1736 */ 1737 void force_sigsegv(int sig) 1738 { 1739 if (sig == SIGSEGV) 1740 force_fatal_sig(SIGSEGV); 1741 else 1742 force_sig(SIGSEGV); 1743 } 1744 1745 int force_sig_fault_to_task(int sig, int code, void __user *addr 1746 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1747 , struct task_struct *t) 1748 { 1749 struct kernel_siginfo info; 1750 1751 clear_siginfo(&info); 1752 info.si_signo = sig; 1753 info.si_errno = 0; 1754 info.si_code = code; 1755 info.si_addr = addr; 1756 #ifdef __ia64__ 1757 info.si_imm = imm; 1758 info.si_flags = flags; 1759 info.si_isr = isr; 1760 #endif 1761 return force_sig_info_to_task(&info, t, HANDLER_CURRENT); 1762 } 1763 1764 int force_sig_fault(int sig, int code, void __user *addr 1765 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)) 1766 { 1767 return force_sig_fault_to_task(sig, code, addr 1768 ___ARCH_SI_IA64(imm, flags, isr), current); 1769 } 1770 1771 int send_sig_fault(int sig, int code, void __user *addr 1772 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1773 , struct task_struct *t) 1774 { 1775 struct kernel_siginfo info; 1776 1777 clear_siginfo(&info); 1778 info.si_signo = sig; 1779 info.si_errno = 0; 1780 info.si_code = code; 1781 info.si_addr = addr; 1782 #ifdef __ia64__ 1783 info.si_imm = imm; 1784 info.si_flags = flags; 1785 info.si_isr = isr; 1786 #endif 1787 return send_sig_info(info.si_signo, &info, t); 1788 } 1789 1790 int force_sig_mceerr(int code, void __user *addr, short lsb) 1791 { 1792 struct kernel_siginfo info; 1793 1794 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1795 clear_siginfo(&info); 1796 info.si_signo = SIGBUS; 1797 info.si_errno = 0; 1798 info.si_code = code; 1799 info.si_addr = addr; 1800 info.si_addr_lsb = lsb; 1801 return force_sig_info(&info); 1802 } 1803 1804 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1805 { 1806 struct kernel_siginfo info; 1807 1808 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1809 clear_siginfo(&info); 1810 info.si_signo = SIGBUS; 1811 info.si_errno = 0; 1812 info.si_code = code; 1813 info.si_addr = addr; 1814 info.si_addr_lsb = lsb; 1815 return send_sig_info(info.si_signo, &info, t); 1816 } 1817 EXPORT_SYMBOL(send_sig_mceerr); 1818 1819 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1820 { 1821 struct kernel_siginfo info; 1822 1823 clear_siginfo(&info); 1824 info.si_signo = SIGSEGV; 1825 info.si_errno = 0; 1826 info.si_code = SEGV_BNDERR; 1827 info.si_addr = addr; 1828 info.si_lower = lower; 1829 info.si_upper = upper; 1830 return force_sig_info(&info); 1831 } 1832 1833 #ifdef SEGV_PKUERR 1834 int force_sig_pkuerr(void __user *addr, u32 pkey) 1835 { 1836 struct kernel_siginfo info; 1837 1838 clear_siginfo(&info); 1839 info.si_signo = SIGSEGV; 1840 info.si_errno = 0; 1841 info.si_code = SEGV_PKUERR; 1842 info.si_addr = addr; 1843 info.si_pkey = pkey; 1844 return force_sig_info(&info); 1845 } 1846 #endif 1847 1848 int force_sig_perf(void __user *addr, u32 type, u64 sig_data) 1849 { 1850 struct kernel_siginfo info; 1851 1852 clear_siginfo(&info); 1853 info.si_signo = SIGTRAP; 1854 info.si_errno = 0; 1855 info.si_code = TRAP_PERF; 1856 info.si_addr = addr; 1857 info.si_perf_data = sig_data; 1858 info.si_perf_type = type; 1859 1860 return force_sig_info(&info); 1861 } 1862 1863 /** 1864 * force_sig_seccomp - signals the task to allow in-process syscall emulation 1865 * @syscall: syscall number to send to userland 1866 * @reason: filter-supplied reason code to send to userland (via si_errno) 1867 * @force_coredump: true to trigger a coredump 1868 * 1869 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. 1870 */ 1871 int force_sig_seccomp(int syscall, int reason, bool force_coredump) 1872 { 1873 struct kernel_siginfo info; 1874 1875 clear_siginfo(&info); 1876 info.si_signo = SIGSYS; 1877 info.si_code = SYS_SECCOMP; 1878 info.si_call_addr = (void __user *)KSTK_EIP(current); 1879 info.si_errno = reason; 1880 info.si_arch = syscall_get_arch(current); 1881 info.si_syscall = syscall; 1882 return force_sig_info_to_task(&info, current, 1883 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT); 1884 } 1885 1886 /* For the crazy architectures that include trap information in 1887 * the errno field, instead of an actual errno value. 1888 */ 1889 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1890 { 1891 struct kernel_siginfo info; 1892 1893 clear_siginfo(&info); 1894 info.si_signo = SIGTRAP; 1895 info.si_errno = errno; 1896 info.si_code = TRAP_HWBKPT; 1897 info.si_addr = addr; 1898 return force_sig_info(&info); 1899 } 1900 1901 /* For the rare architectures that include trap information using 1902 * si_trapno. 1903 */ 1904 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno) 1905 { 1906 struct kernel_siginfo info; 1907 1908 clear_siginfo(&info); 1909 info.si_signo = sig; 1910 info.si_errno = 0; 1911 info.si_code = code; 1912 info.si_addr = addr; 1913 info.si_trapno = trapno; 1914 return force_sig_info(&info); 1915 } 1916 1917 /* For the rare architectures that include trap information using 1918 * si_trapno. 1919 */ 1920 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, 1921 struct task_struct *t) 1922 { 1923 struct kernel_siginfo info; 1924 1925 clear_siginfo(&info); 1926 info.si_signo = sig; 1927 info.si_errno = 0; 1928 info.si_code = code; 1929 info.si_addr = addr; 1930 info.si_trapno = trapno; 1931 return send_sig_info(info.si_signo, &info, t); 1932 } 1933 1934 int kill_pgrp(struct pid *pid, int sig, int priv) 1935 { 1936 int ret; 1937 1938 read_lock(&tasklist_lock); 1939 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1940 read_unlock(&tasklist_lock); 1941 1942 return ret; 1943 } 1944 EXPORT_SYMBOL(kill_pgrp); 1945 1946 int kill_pid(struct pid *pid, int sig, int priv) 1947 { 1948 return kill_pid_info(sig, __si_special(priv), pid); 1949 } 1950 EXPORT_SYMBOL(kill_pid); 1951 1952 /* 1953 * These functions support sending signals using preallocated sigqueue 1954 * structures. This is needed "because realtime applications cannot 1955 * afford to lose notifications of asynchronous events, like timer 1956 * expirations or I/O completions". In the case of POSIX Timers 1957 * we allocate the sigqueue structure from the timer_create. If this 1958 * allocation fails we are able to report the failure to the application 1959 * with an EAGAIN error. 1960 */ 1961 struct sigqueue *sigqueue_alloc(void) 1962 { 1963 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC); 1964 } 1965 1966 void sigqueue_free(struct sigqueue *q) 1967 { 1968 unsigned long flags; 1969 spinlock_t *lock = ¤t->sighand->siglock; 1970 1971 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1972 /* 1973 * We must hold ->siglock while testing q->list 1974 * to serialize with collect_signal() or with 1975 * __exit_signal()->flush_sigqueue(). 1976 */ 1977 spin_lock_irqsave(lock, flags); 1978 q->flags &= ~SIGQUEUE_PREALLOC; 1979 /* 1980 * If it is queued it will be freed when dequeued, 1981 * like the "regular" sigqueue. 1982 */ 1983 if (!list_empty(&q->list)) 1984 q = NULL; 1985 spin_unlock_irqrestore(lock, flags); 1986 1987 if (q) 1988 __sigqueue_free(q); 1989 } 1990 1991 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) 1992 { 1993 int sig = q->info.si_signo; 1994 struct sigpending *pending; 1995 struct task_struct *t; 1996 unsigned long flags; 1997 int ret, result; 1998 1999 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 2000 2001 ret = -1; 2002 rcu_read_lock(); 2003 t = pid_task(pid, type); 2004 if (!t || !likely(lock_task_sighand(t, &flags))) 2005 goto ret; 2006 2007 ret = 1; /* the signal is ignored */ 2008 result = TRACE_SIGNAL_IGNORED; 2009 if (!prepare_signal(sig, t, false)) 2010 goto out; 2011 2012 ret = 0; 2013 if (unlikely(!list_empty(&q->list))) { 2014 /* 2015 * If an SI_TIMER entry is already queue just increment 2016 * the overrun count. 2017 */ 2018 BUG_ON(q->info.si_code != SI_TIMER); 2019 q->info.si_overrun++; 2020 result = TRACE_SIGNAL_ALREADY_PENDING; 2021 goto out; 2022 } 2023 q->info.si_overrun = 0; 2024 2025 signalfd_notify(t, sig); 2026 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 2027 list_add_tail(&q->list, &pending->list); 2028 sigaddset(&pending->signal, sig); 2029 complete_signal(sig, t, type); 2030 result = TRACE_SIGNAL_DELIVERED; 2031 out: 2032 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result); 2033 unlock_task_sighand(t, &flags); 2034 ret: 2035 rcu_read_unlock(); 2036 return ret; 2037 } 2038 2039 static void do_notify_pidfd(struct task_struct *task) 2040 { 2041 struct pid *pid; 2042 2043 WARN_ON(task->exit_state == 0); 2044 pid = task_pid(task); 2045 wake_up_all(&pid->wait_pidfd); 2046 } 2047 2048 /* 2049 * Let a parent know about the death of a child. 2050 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 2051 * 2052 * Returns true if our parent ignored us and so we've switched to 2053 * self-reaping. 2054 */ 2055 bool do_notify_parent(struct task_struct *tsk, int sig) 2056 { 2057 struct kernel_siginfo info; 2058 unsigned long flags; 2059 struct sighand_struct *psig; 2060 bool autoreap = false; 2061 u64 utime, stime; 2062 2063 BUG_ON(sig == -1); 2064 2065 /* do_notify_parent_cldstop should have been called instead. */ 2066 BUG_ON(task_is_stopped_or_traced(tsk)); 2067 2068 BUG_ON(!tsk->ptrace && 2069 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 2070 2071 /* Wake up all pidfd waiters */ 2072 do_notify_pidfd(tsk); 2073 2074 if (sig != SIGCHLD) { 2075 /* 2076 * This is only possible if parent == real_parent. 2077 * Check if it has changed security domain. 2078 */ 2079 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) 2080 sig = SIGCHLD; 2081 } 2082 2083 clear_siginfo(&info); 2084 info.si_signo = sig; 2085 info.si_errno = 0; 2086 /* 2087 * We are under tasklist_lock here so our parent is tied to 2088 * us and cannot change. 2089 * 2090 * task_active_pid_ns will always return the same pid namespace 2091 * until a task passes through release_task. 2092 * 2093 * write_lock() currently calls preempt_disable() which is the 2094 * same as rcu_read_lock(), but according to Oleg, this is not 2095 * correct to rely on this 2096 */ 2097 rcu_read_lock(); 2098 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 2099 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 2100 task_uid(tsk)); 2101 rcu_read_unlock(); 2102 2103 task_cputime(tsk, &utime, &stime); 2104 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 2105 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 2106 2107 info.si_status = tsk->exit_code & 0x7f; 2108 if (tsk->exit_code & 0x80) 2109 info.si_code = CLD_DUMPED; 2110 else if (tsk->exit_code & 0x7f) 2111 info.si_code = CLD_KILLED; 2112 else { 2113 info.si_code = CLD_EXITED; 2114 info.si_status = tsk->exit_code >> 8; 2115 } 2116 2117 psig = tsk->parent->sighand; 2118 spin_lock_irqsave(&psig->siglock, flags); 2119 if (!tsk->ptrace && sig == SIGCHLD && 2120 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 2121 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 2122 /* 2123 * We are exiting and our parent doesn't care. POSIX.1 2124 * defines special semantics for setting SIGCHLD to SIG_IGN 2125 * or setting the SA_NOCLDWAIT flag: we should be reaped 2126 * automatically and not left for our parent's wait4 call. 2127 * Rather than having the parent do it as a magic kind of 2128 * signal handler, we just set this to tell do_exit that we 2129 * can be cleaned up without becoming a zombie. Note that 2130 * we still call __wake_up_parent in this case, because a 2131 * blocked sys_wait4 might now return -ECHILD. 2132 * 2133 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 2134 * is implementation-defined: we do (if you don't want 2135 * it, just use SIG_IGN instead). 2136 */ 2137 autoreap = true; 2138 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 2139 sig = 0; 2140 } 2141 /* 2142 * Send with __send_signal as si_pid and si_uid are in the 2143 * parent's namespaces. 2144 */ 2145 if (valid_signal(sig) && sig) 2146 __send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false); 2147 __wake_up_parent(tsk, tsk->parent); 2148 spin_unlock_irqrestore(&psig->siglock, flags); 2149 2150 return autoreap; 2151 } 2152 2153 /** 2154 * do_notify_parent_cldstop - notify parent of stopped/continued state change 2155 * @tsk: task reporting the state change 2156 * @for_ptracer: the notification is for ptracer 2157 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 2158 * 2159 * Notify @tsk's parent that the stopped/continued state has changed. If 2160 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 2161 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 2162 * 2163 * CONTEXT: 2164 * Must be called with tasklist_lock at least read locked. 2165 */ 2166 static void do_notify_parent_cldstop(struct task_struct *tsk, 2167 bool for_ptracer, int why) 2168 { 2169 struct kernel_siginfo info; 2170 unsigned long flags; 2171 struct task_struct *parent; 2172 struct sighand_struct *sighand; 2173 u64 utime, stime; 2174 2175 if (for_ptracer) { 2176 parent = tsk->parent; 2177 } else { 2178 tsk = tsk->group_leader; 2179 parent = tsk->real_parent; 2180 } 2181 2182 clear_siginfo(&info); 2183 info.si_signo = SIGCHLD; 2184 info.si_errno = 0; 2185 /* 2186 * see comment in do_notify_parent() about the following 4 lines 2187 */ 2188 rcu_read_lock(); 2189 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 2190 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 2191 rcu_read_unlock(); 2192 2193 task_cputime(tsk, &utime, &stime); 2194 info.si_utime = nsec_to_clock_t(utime); 2195 info.si_stime = nsec_to_clock_t(stime); 2196 2197 info.si_code = why; 2198 switch (why) { 2199 case CLD_CONTINUED: 2200 info.si_status = SIGCONT; 2201 break; 2202 case CLD_STOPPED: 2203 info.si_status = tsk->signal->group_exit_code & 0x7f; 2204 break; 2205 case CLD_TRAPPED: 2206 info.si_status = tsk->exit_code & 0x7f; 2207 break; 2208 default: 2209 BUG(); 2210 } 2211 2212 sighand = parent->sighand; 2213 spin_lock_irqsave(&sighand->siglock, flags); 2214 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 2215 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 2216 __group_send_sig_info(SIGCHLD, &info, parent); 2217 /* 2218 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 2219 */ 2220 __wake_up_parent(tsk, parent); 2221 spin_unlock_irqrestore(&sighand->siglock, flags); 2222 } 2223 2224 /* 2225 * This must be called with current->sighand->siglock held. 2226 * 2227 * This should be the path for all ptrace stops. 2228 * We always set current->last_siginfo while stopped here. 2229 * That makes it a way to test a stopped process for 2230 * being ptrace-stopped vs being job-control-stopped. 2231 * 2232 * Returns the signal the ptracer requested the code resume 2233 * with. If the code did not stop because the tracer is gone, 2234 * the stop signal remains unchanged unless clear_code. 2235 */ 2236 static int ptrace_stop(int exit_code, int why, int clear_code, 2237 unsigned long message, kernel_siginfo_t *info) 2238 __releases(¤t->sighand->siglock) 2239 __acquires(¤t->sighand->siglock) 2240 { 2241 bool gstop_done = false; 2242 bool read_code = true; 2243 2244 if (arch_ptrace_stop_needed()) { 2245 /* 2246 * The arch code has something special to do before a 2247 * ptrace stop. This is allowed to block, e.g. for faults 2248 * on user stack pages. We can't keep the siglock while 2249 * calling arch_ptrace_stop, so we must release it now. 2250 * To preserve proper semantics, we must do this before 2251 * any signal bookkeeping like checking group_stop_count. 2252 */ 2253 spin_unlock_irq(¤t->sighand->siglock); 2254 arch_ptrace_stop(); 2255 spin_lock_irq(¤t->sighand->siglock); 2256 } 2257 2258 /* 2259 * schedule() will not sleep if there is a pending signal that 2260 * can awaken the task. 2261 */ 2262 set_special_state(TASK_TRACED); 2263 2264 /* 2265 * We're committing to trapping. TRACED should be visible before 2266 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2267 * Also, transition to TRACED and updates to ->jobctl should be 2268 * atomic with respect to siglock and should be done after the arch 2269 * hook as siglock is released and regrabbed across it. 2270 * 2271 * TRACER TRACEE 2272 * 2273 * ptrace_attach() 2274 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2275 * do_wait() 2276 * set_current_state() smp_wmb(); 2277 * ptrace_do_wait() 2278 * wait_task_stopped() 2279 * task_stopped_code() 2280 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2281 */ 2282 smp_wmb(); 2283 2284 current->ptrace_message = message; 2285 current->last_siginfo = info; 2286 current->exit_code = exit_code; 2287 2288 /* 2289 * If @why is CLD_STOPPED, we're trapping to participate in a group 2290 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2291 * across siglock relocks since INTERRUPT was scheduled, PENDING 2292 * could be clear now. We act as if SIGCONT is received after 2293 * TASK_TRACED is entered - ignore it. 2294 */ 2295 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2296 gstop_done = task_participate_group_stop(current); 2297 2298 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2299 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2300 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2301 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2302 2303 /* entering a trap, clear TRAPPING */ 2304 task_clear_jobctl_trapping(current); 2305 2306 spin_unlock_irq(¤t->sighand->siglock); 2307 read_lock(&tasklist_lock); 2308 if (likely(current->ptrace)) { 2309 /* 2310 * Notify parents of the stop. 2311 * 2312 * While ptraced, there are two parents - the ptracer and 2313 * the real_parent of the group_leader. The ptracer should 2314 * know about every stop while the real parent is only 2315 * interested in the completion of group stop. The states 2316 * for the two don't interact with each other. Notify 2317 * separately unless they're gonna be duplicates. 2318 */ 2319 do_notify_parent_cldstop(current, true, why); 2320 if (gstop_done && ptrace_reparented(current)) 2321 do_notify_parent_cldstop(current, false, why); 2322 2323 /* 2324 * Don't want to allow preemption here, because 2325 * sys_ptrace() needs this task to be inactive. 2326 * 2327 * XXX: implement read_unlock_no_resched(). 2328 */ 2329 preempt_disable(); 2330 read_unlock(&tasklist_lock); 2331 cgroup_enter_frozen(); 2332 preempt_enable_no_resched(); 2333 freezable_schedule(); 2334 cgroup_leave_frozen(true); 2335 } else { 2336 /* 2337 * By the time we got the lock, our tracer went away. 2338 * Don't drop the lock yet, another tracer may come. 2339 * 2340 * If @gstop_done, the ptracer went away between group stop 2341 * completion and here. During detach, it would have set 2342 * JOBCTL_STOP_PENDING on us and we'll re-enter 2343 * TASK_STOPPED in do_signal_stop() on return, so notifying 2344 * the real parent of the group stop completion is enough. 2345 */ 2346 if (gstop_done) 2347 do_notify_parent_cldstop(current, false, why); 2348 2349 /* tasklist protects us from ptrace_freeze_traced() */ 2350 __set_current_state(TASK_RUNNING); 2351 read_code = false; 2352 if (clear_code) 2353 exit_code = 0; 2354 read_unlock(&tasklist_lock); 2355 } 2356 2357 /* 2358 * We are back. Now reacquire the siglock before touching 2359 * last_siginfo, so that we are sure to have synchronized with 2360 * any signal-sending on another CPU that wants to examine it. 2361 */ 2362 spin_lock_irq(¤t->sighand->siglock); 2363 if (read_code) 2364 exit_code = current->exit_code; 2365 current->last_siginfo = NULL; 2366 current->ptrace_message = 0; 2367 current->exit_code = 0; 2368 2369 /* LISTENING can be set only during STOP traps, clear it */ 2370 current->jobctl &= ~JOBCTL_LISTENING; 2371 2372 /* 2373 * Queued signals ignored us while we were stopped for tracing. 2374 * So check for any that we should take before resuming user mode. 2375 * This sets TIF_SIGPENDING, but never clears it. 2376 */ 2377 recalc_sigpending_tsk(current); 2378 return exit_code; 2379 } 2380 2381 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message) 2382 { 2383 kernel_siginfo_t info; 2384 2385 clear_siginfo(&info); 2386 info.si_signo = signr; 2387 info.si_code = exit_code; 2388 info.si_pid = task_pid_vnr(current); 2389 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2390 2391 /* Let the debugger run. */ 2392 return ptrace_stop(exit_code, why, 1, message, &info); 2393 } 2394 2395 int ptrace_notify(int exit_code, unsigned long message) 2396 { 2397 int signr; 2398 2399 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2400 if (unlikely(task_work_pending(current))) 2401 task_work_run(); 2402 2403 spin_lock_irq(¤t->sighand->siglock); 2404 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message); 2405 spin_unlock_irq(¤t->sighand->siglock); 2406 return signr; 2407 } 2408 2409 /** 2410 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2411 * @signr: signr causing group stop if initiating 2412 * 2413 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2414 * and participate in it. If already set, participate in the existing 2415 * group stop. If participated in a group stop (and thus slept), %true is 2416 * returned with siglock released. 2417 * 2418 * If ptraced, this function doesn't handle stop itself. Instead, 2419 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2420 * untouched. The caller must ensure that INTERRUPT trap handling takes 2421 * places afterwards. 2422 * 2423 * CONTEXT: 2424 * Must be called with @current->sighand->siglock held, which is released 2425 * on %true return. 2426 * 2427 * RETURNS: 2428 * %false if group stop is already cancelled or ptrace trap is scheduled. 2429 * %true if participated in group stop. 2430 */ 2431 static bool do_signal_stop(int signr) 2432 __releases(¤t->sighand->siglock) 2433 { 2434 struct signal_struct *sig = current->signal; 2435 2436 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2437 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2438 struct task_struct *t; 2439 2440 /* signr will be recorded in task->jobctl for retries */ 2441 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2442 2443 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2444 unlikely(sig->flags & SIGNAL_GROUP_EXIT) || 2445 unlikely(sig->group_exec_task)) 2446 return false; 2447 /* 2448 * There is no group stop already in progress. We must 2449 * initiate one now. 2450 * 2451 * While ptraced, a task may be resumed while group stop is 2452 * still in effect and then receive a stop signal and 2453 * initiate another group stop. This deviates from the 2454 * usual behavior as two consecutive stop signals can't 2455 * cause two group stops when !ptraced. That is why we 2456 * also check !task_is_stopped(t) below. 2457 * 2458 * The condition can be distinguished by testing whether 2459 * SIGNAL_STOP_STOPPED is already set. Don't generate 2460 * group_exit_code in such case. 2461 * 2462 * This is not necessary for SIGNAL_STOP_CONTINUED because 2463 * an intervening stop signal is required to cause two 2464 * continued events regardless of ptrace. 2465 */ 2466 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2467 sig->group_exit_code = signr; 2468 2469 sig->group_stop_count = 0; 2470 2471 if (task_set_jobctl_pending(current, signr | gstop)) 2472 sig->group_stop_count++; 2473 2474 t = current; 2475 while_each_thread(current, t) { 2476 /* 2477 * Setting state to TASK_STOPPED for a group 2478 * stop is always done with the siglock held, 2479 * so this check has no races. 2480 */ 2481 if (!task_is_stopped(t) && 2482 task_set_jobctl_pending(t, signr | gstop)) { 2483 sig->group_stop_count++; 2484 if (likely(!(t->ptrace & PT_SEIZED))) 2485 signal_wake_up(t, 0); 2486 else 2487 ptrace_trap_notify(t); 2488 } 2489 } 2490 } 2491 2492 if (likely(!current->ptrace)) { 2493 int notify = 0; 2494 2495 /* 2496 * If there are no other threads in the group, or if there 2497 * is a group stop in progress and we are the last to stop, 2498 * report to the parent. 2499 */ 2500 if (task_participate_group_stop(current)) 2501 notify = CLD_STOPPED; 2502 2503 set_special_state(TASK_STOPPED); 2504 spin_unlock_irq(¤t->sighand->siglock); 2505 2506 /* 2507 * Notify the parent of the group stop completion. Because 2508 * we're not holding either the siglock or tasklist_lock 2509 * here, ptracer may attach inbetween; however, this is for 2510 * group stop and should always be delivered to the real 2511 * parent of the group leader. The new ptracer will get 2512 * its notification when this task transitions into 2513 * TASK_TRACED. 2514 */ 2515 if (notify) { 2516 read_lock(&tasklist_lock); 2517 do_notify_parent_cldstop(current, false, notify); 2518 read_unlock(&tasklist_lock); 2519 } 2520 2521 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2522 cgroup_enter_frozen(); 2523 freezable_schedule(); 2524 return true; 2525 } else { 2526 /* 2527 * While ptraced, group stop is handled by STOP trap. 2528 * Schedule it and let the caller deal with it. 2529 */ 2530 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2531 return false; 2532 } 2533 } 2534 2535 /** 2536 * do_jobctl_trap - take care of ptrace jobctl traps 2537 * 2538 * When PT_SEIZED, it's used for both group stop and explicit 2539 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2540 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2541 * the stop signal; otherwise, %SIGTRAP. 2542 * 2543 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2544 * number as exit_code and no siginfo. 2545 * 2546 * CONTEXT: 2547 * Must be called with @current->sighand->siglock held, which may be 2548 * released and re-acquired before returning with intervening sleep. 2549 */ 2550 static void do_jobctl_trap(void) 2551 { 2552 struct signal_struct *signal = current->signal; 2553 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2554 2555 if (current->ptrace & PT_SEIZED) { 2556 if (!signal->group_stop_count && 2557 !(signal->flags & SIGNAL_STOP_STOPPED)) 2558 signr = SIGTRAP; 2559 WARN_ON_ONCE(!signr); 2560 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2561 CLD_STOPPED, 0); 2562 } else { 2563 WARN_ON_ONCE(!signr); 2564 ptrace_stop(signr, CLD_STOPPED, 0, 0, NULL); 2565 } 2566 } 2567 2568 /** 2569 * do_freezer_trap - handle the freezer jobctl trap 2570 * 2571 * Puts the task into frozen state, if only the task is not about to quit. 2572 * In this case it drops JOBCTL_TRAP_FREEZE. 2573 * 2574 * CONTEXT: 2575 * Must be called with @current->sighand->siglock held, 2576 * which is always released before returning. 2577 */ 2578 static void do_freezer_trap(void) 2579 __releases(¤t->sighand->siglock) 2580 { 2581 /* 2582 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, 2583 * let's make another loop to give it a chance to be handled. 2584 * In any case, we'll return back. 2585 */ 2586 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != 2587 JOBCTL_TRAP_FREEZE) { 2588 spin_unlock_irq(¤t->sighand->siglock); 2589 return; 2590 } 2591 2592 /* 2593 * Now we're sure that there is no pending fatal signal and no 2594 * pending traps. Clear TIF_SIGPENDING to not get out of schedule() 2595 * immediately (if there is a non-fatal signal pending), and 2596 * put the task into sleep. 2597 */ 2598 __set_current_state(TASK_INTERRUPTIBLE); 2599 clear_thread_flag(TIF_SIGPENDING); 2600 spin_unlock_irq(¤t->sighand->siglock); 2601 cgroup_enter_frozen(); 2602 freezable_schedule(); 2603 } 2604 2605 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type) 2606 { 2607 /* 2608 * We do not check sig_kernel_stop(signr) but set this marker 2609 * unconditionally because we do not know whether debugger will 2610 * change signr. This flag has no meaning unless we are going 2611 * to stop after return from ptrace_stop(). In this case it will 2612 * be checked in do_signal_stop(), we should only stop if it was 2613 * not cleared by SIGCONT while we were sleeping. See also the 2614 * comment in dequeue_signal(). 2615 */ 2616 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2617 signr = ptrace_stop(signr, CLD_TRAPPED, 0, 0, info); 2618 2619 /* We're back. Did the debugger cancel the sig? */ 2620 if (signr == 0) 2621 return signr; 2622 2623 /* 2624 * Update the siginfo structure if the signal has 2625 * changed. If the debugger wanted something 2626 * specific in the siginfo structure then it should 2627 * have updated *info via PTRACE_SETSIGINFO. 2628 */ 2629 if (signr != info->si_signo) { 2630 clear_siginfo(info); 2631 info->si_signo = signr; 2632 info->si_errno = 0; 2633 info->si_code = SI_USER; 2634 rcu_read_lock(); 2635 info->si_pid = task_pid_vnr(current->parent); 2636 info->si_uid = from_kuid_munged(current_user_ns(), 2637 task_uid(current->parent)); 2638 rcu_read_unlock(); 2639 } 2640 2641 /* If the (new) signal is now blocked, requeue it. */ 2642 if (sigismember(¤t->blocked, signr) || 2643 fatal_signal_pending(current)) { 2644 send_signal(signr, info, current, type); 2645 signr = 0; 2646 } 2647 2648 return signr; 2649 } 2650 2651 static void hide_si_addr_tag_bits(struct ksignal *ksig) 2652 { 2653 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) { 2654 case SIL_FAULT: 2655 case SIL_FAULT_TRAPNO: 2656 case SIL_FAULT_MCEERR: 2657 case SIL_FAULT_BNDERR: 2658 case SIL_FAULT_PKUERR: 2659 case SIL_FAULT_PERF_EVENT: 2660 ksig->info.si_addr = arch_untagged_si_addr( 2661 ksig->info.si_addr, ksig->sig, ksig->info.si_code); 2662 break; 2663 case SIL_KILL: 2664 case SIL_TIMER: 2665 case SIL_POLL: 2666 case SIL_CHLD: 2667 case SIL_RT: 2668 case SIL_SYS: 2669 break; 2670 } 2671 } 2672 2673 bool get_signal(struct ksignal *ksig) 2674 { 2675 struct sighand_struct *sighand = current->sighand; 2676 struct signal_struct *signal = current->signal; 2677 int signr; 2678 2679 clear_notify_signal(); 2680 if (unlikely(task_work_pending(current))) 2681 task_work_run(); 2682 2683 if (!task_sigpending(current)) 2684 return false; 2685 2686 if (unlikely(uprobe_deny_signal())) 2687 return false; 2688 2689 /* 2690 * Do this once, we can't return to user-mode if freezing() == T. 2691 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2692 * thus do not need another check after return. 2693 */ 2694 try_to_freeze(); 2695 2696 relock: 2697 spin_lock_irq(&sighand->siglock); 2698 2699 /* 2700 * Every stopped thread goes here after wakeup. Check to see if 2701 * we should notify the parent, prepare_signal(SIGCONT) encodes 2702 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2703 */ 2704 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2705 int why; 2706 2707 if (signal->flags & SIGNAL_CLD_CONTINUED) 2708 why = CLD_CONTINUED; 2709 else 2710 why = CLD_STOPPED; 2711 2712 signal->flags &= ~SIGNAL_CLD_MASK; 2713 2714 spin_unlock_irq(&sighand->siglock); 2715 2716 /* 2717 * Notify the parent that we're continuing. This event is 2718 * always per-process and doesn't make whole lot of sense 2719 * for ptracers, who shouldn't consume the state via 2720 * wait(2) either, but, for backward compatibility, notify 2721 * the ptracer of the group leader too unless it's gonna be 2722 * a duplicate. 2723 */ 2724 read_lock(&tasklist_lock); 2725 do_notify_parent_cldstop(current, false, why); 2726 2727 if (ptrace_reparented(current->group_leader)) 2728 do_notify_parent_cldstop(current->group_leader, 2729 true, why); 2730 read_unlock(&tasklist_lock); 2731 2732 goto relock; 2733 } 2734 2735 for (;;) { 2736 struct k_sigaction *ka; 2737 enum pid_type type; 2738 2739 /* Has this task already been marked for death? */ 2740 if ((signal->flags & SIGNAL_GROUP_EXIT) || 2741 signal->group_exec_task) { 2742 ksig->info.si_signo = signr = SIGKILL; 2743 sigdelset(¤t->pending.signal, SIGKILL); 2744 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, 2745 &sighand->action[SIGKILL - 1]); 2746 recalc_sigpending(); 2747 goto fatal; 2748 } 2749 2750 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2751 do_signal_stop(0)) 2752 goto relock; 2753 2754 if (unlikely(current->jobctl & 2755 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { 2756 if (current->jobctl & JOBCTL_TRAP_MASK) { 2757 do_jobctl_trap(); 2758 spin_unlock_irq(&sighand->siglock); 2759 } else if (current->jobctl & JOBCTL_TRAP_FREEZE) 2760 do_freezer_trap(); 2761 2762 goto relock; 2763 } 2764 2765 /* 2766 * If the task is leaving the frozen state, let's update 2767 * cgroup counters and reset the frozen bit. 2768 */ 2769 if (unlikely(cgroup_task_frozen(current))) { 2770 spin_unlock_irq(&sighand->siglock); 2771 cgroup_leave_frozen(false); 2772 goto relock; 2773 } 2774 2775 /* 2776 * Signals generated by the execution of an instruction 2777 * need to be delivered before any other pending signals 2778 * so that the instruction pointer in the signal stack 2779 * frame points to the faulting instruction. 2780 */ 2781 type = PIDTYPE_PID; 2782 signr = dequeue_synchronous_signal(&ksig->info); 2783 if (!signr) 2784 signr = dequeue_signal(current, ¤t->blocked, 2785 &ksig->info, &type); 2786 2787 if (!signr) 2788 break; /* will return 0 */ 2789 2790 if (unlikely(current->ptrace) && (signr != SIGKILL) && 2791 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) { 2792 signr = ptrace_signal(signr, &ksig->info, type); 2793 if (!signr) 2794 continue; 2795 } 2796 2797 ka = &sighand->action[signr-1]; 2798 2799 /* Trace actually delivered signals. */ 2800 trace_signal_deliver(signr, &ksig->info, ka); 2801 2802 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2803 continue; 2804 if (ka->sa.sa_handler != SIG_DFL) { 2805 /* Run the handler. */ 2806 ksig->ka = *ka; 2807 2808 if (ka->sa.sa_flags & SA_ONESHOT) 2809 ka->sa.sa_handler = SIG_DFL; 2810 2811 break; /* will return non-zero "signr" value */ 2812 } 2813 2814 /* 2815 * Now we are doing the default action for this signal. 2816 */ 2817 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2818 continue; 2819 2820 /* 2821 * Global init gets no signals it doesn't want. 2822 * Container-init gets no signals it doesn't want from same 2823 * container. 2824 * 2825 * Note that if global/container-init sees a sig_kernel_only() 2826 * signal here, the signal must have been generated internally 2827 * or must have come from an ancestor namespace. In either 2828 * case, the signal cannot be dropped. 2829 */ 2830 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2831 !sig_kernel_only(signr)) 2832 continue; 2833 2834 if (sig_kernel_stop(signr)) { 2835 /* 2836 * The default action is to stop all threads in 2837 * the thread group. The job control signals 2838 * do nothing in an orphaned pgrp, but SIGSTOP 2839 * always works. Note that siglock needs to be 2840 * dropped during the call to is_orphaned_pgrp() 2841 * because of lock ordering with tasklist_lock. 2842 * This allows an intervening SIGCONT to be posted. 2843 * We need to check for that and bail out if necessary. 2844 */ 2845 if (signr != SIGSTOP) { 2846 spin_unlock_irq(&sighand->siglock); 2847 2848 /* signals can be posted during this window */ 2849 2850 if (is_current_pgrp_orphaned()) 2851 goto relock; 2852 2853 spin_lock_irq(&sighand->siglock); 2854 } 2855 2856 if (likely(do_signal_stop(ksig->info.si_signo))) { 2857 /* It released the siglock. */ 2858 goto relock; 2859 } 2860 2861 /* 2862 * We didn't actually stop, due to a race 2863 * with SIGCONT or something like that. 2864 */ 2865 continue; 2866 } 2867 2868 fatal: 2869 spin_unlock_irq(&sighand->siglock); 2870 if (unlikely(cgroup_task_frozen(current))) 2871 cgroup_leave_frozen(true); 2872 2873 /* 2874 * Anything else is fatal, maybe with a core dump. 2875 */ 2876 current->flags |= PF_SIGNALED; 2877 2878 if (sig_kernel_coredump(signr)) { 2879 if (print_fatal_signals) 2880 print_fatal_signal(ksig->info.si_signo); 2881 proc_coredump_connector(current); 2882 /* 2883 * If it was able to dump core, this kills all 2884 * other threads in the group and synchronizes with 2885 * their demise. If we lost the race with another 2886 * thread getting here, it set group_exit_code 2887 * first and our do_group_exit call below will use 2888 * that value and ignore the one we pass it. 2889 */ 2890 do_coredump(&ksig->info); 2891 } 2892 2893 /* 2894 * PF_IO_WORKER threads will catch and exit on fatal signals 2895 * themselves. They have cleanup that must be performed, so 2896 * we cannot call do_exit() on their behalf. 2897 */ 2898 if (current->flags & PF_IO_WORKER) 2899 goto out; 2900 2901 /* 2902 * Death signals, no core dump. 2903 */ 2904 do_group_exit(ksig->info.si_signo); 2905 /* NOTREACHED */ 2906 } 2907 spin_unlock_irq(&sighand->siglock); 2908 out: 2909 ksig->sig = signr; 2910 2911 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS)) 2912 hide_si_addr_tag_bits(ksig); 2913 2914 return ksig->sig > 0; 2915 } 2916 2917 /** 2918 * signal_delivered - called after signal delivery to update blocked signals 2919 * @ksig: kernel signal struct 2920 * @stepping: nonzero if debugger single-step or block-step in use 2921 * 2922 * This function should be called when a signal has successfully been 2923 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2924 * is always blocked), and the signal itself is blocked unless %SA_NODEFER 2925 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2926 */ 2927 static void signal_delivered(struct ksignal *ksig, int stepping) 2928 { 2929 sigset_t blocked; 2930 2931 /* A signal was successfully delivered, and the 2932 saved sigmask was stored on the signal frame, 2933 and will be restored by sigreturn. So we can 2934 simply clear the restore sigmask flag. */ 2935 clear_restore_sigmask(); 2936 2937 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2938 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2939 sigaddset(&blocked, ksig->sig); 2940 set_current_blocked(&blocked); 2941 if (current->sas_ss_flags & SS_AUTODISARM) 2942 sas_ss_reset(current); 2943 if (stepping) 2944 ptrace_notify(SIGTRAP, 0); 2945 } 2946 2947 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2948 { 2949 if (failed) 2950 force_sigsegv(ksig->sig); 2951 else 2952 signal_delivered(ksig, stepping); 2953 } 2954 2955 /* 2956 * It could be that complete_signal() picked us to notify about the 2957 * group-wide signal. Other threads should be notified now to take 2958 * the shared signals in @which since we will not. 2959 */ 2960 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2961 { 2962 sigset_t retarget; 2963 struct task_struct *t; 2964 2965 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2966 if (sigisemptyset(&retarget)) 2967 return; 2968 2969 t = tsk; 2970 while_each_thread(tsk, t) { 2971 if (t->flags & PF_EXITING) 2972 continue; 2973 2974 if (!has_pending_signals(&retarget, &t->blocked)) 2975 continue; 2976 /* Remove the signals this thread can handle. */ 2977 sigandsets(&retarget, &retarget, &t->blocked); 2978 2979 if (!task_sigpending(t)) 2980 signal_wake_up(t, 0); 2981 2982 if (sigisemptyset(&retarget)) 2983 break; 2984 } 2985 } 2986 2987 void exit_signals(struct task_struct *tsk) 2988 { 2989 int group_stop = 0; 2990 sigset_t unblocked; 2991 2992 /* 2993 * @tsk is about to have PF_EXITING set - lock out users which 2994 * expect stable threadgroup. 2995 */ 2996 cgroup_threadgroup_change_begin(tsk); 2997 2998 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) { 2999 tsk->flags |= PF_EXITING; 3000 cgroup_threadgroup_change_end(tsk); 3001 return; 3002 } 3003 3004 spin_lock_irq(&tsk->sighand->siglock); 3005 /* 3006 * From now this task is not visible for group-wide signals, 3007 * see wants_signal(), do_signal_stop(). 3008 */ 3009 tsk->flags |= PF_EXITING; 3010 3011 cgroup_threadgroup_change_end(tsk); 3012 3013 if (!task_sigpending(tsk)) 3014 goto out; 3015 3016 unblocked = tsk->blocked; 3017 signotset(&unblocked); 3018 retarget_shared_pending(tsk, &unblocked); 3019 3020 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 3021 task_participate_group_stop(tsk)) 3022 group_stop = CLD_STOPPED; 3023 out: 3024 spin_unlock_irq(&tsk->sighand->siglock); 3025 3026 /* 3027 * If group stop has completed, deliver the notification. This 3028 * should always go to the real parent of the group leader. 3029 */ 3030 if (unlikely(group_stop)) { 3031 read_lock(&tasklist_lock); 3032 do_notify_parent_cldstop(tsk, false, group_stop); 3033 read_unlock(&tasklist_lock); 3034 } 3035 } 3036 3037 /* 3038 * System call entry points. 3039 */ 3040 3041 /** 3042 * sys_restart_syscall - restart a system call 3043 */ 3044 SYSCALL_DEFINE0(restart_syscall) 3045 { 3046 struct restart_block *restart = ¤t->restart_block; 3047 return restart->fn(restart); 3048 } 3049 3050 long do_no_restart_syscall(struct restart_block *param) 3051 { 3052 return -EINTR; 3053 } 3054 3055 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 3056 { 3057 if (task_sigpending(tsk) && !thread_group_empty(tsk)) { 3058 sigset_t newblocked; 3059 /* A set of now blocked but previously unblocked signals. */ 3060 sigandnsets(&newblocked, newset, ¤t->blocked); 3061 retarget_shared_pending(tsk, &newblocked); 3062 } 3063 tsk->blocked = *newset; 3064 recalc_sigpending(); 3065 } 3066 3067 /** 3068 * set_current_blocked - change current->blocked mask 3069 * @newset: new mask 3070 * 3071 * It is wrong to change ->blocked directly, this helper should be used 3072 * to ensure the process can't miss a shared signal we are going to block. 3073 */ 3074 void set_current_blocked(sigset_t *newset) 3075 { 3076 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3077 __set_current_blocked(newset); 3078 } 3079 3080 void __set_current_blocked(const sigset_t *newset) 3081 { 3082 struct task_struct *tsk = current; 3083 3084 /* 3085 * In case the signal mask hasn't changed, there is nothing we need 3086 * to do. The current->blocked shouldn't be modified by other task. 3087 */ 3088 if (sigequalsets(&tsk->blocked, newset)) 3089 return; 3090 3091 spin_lock_irq(&tsk->sighand->siglock); 3092 __set_task_blocked(tsk, newset); 3093 spin_unlock_irq(&tsk->sighand->siglock); 3094 } 3095 3096 /* 3097 * This is also useful for kernel threads that want to temporarily 3098 * (or permanently) block certain signals. 3099 * 3100 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 3101 * interface happily blocks "unblockable" signals like SIGKILL 3102 * and friends. 3103 */ 3104 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 3105 { 3106 struct task_struct *tsk = current; 3107 sigset_t newset; 3108 3109 /* Lockless, only current can change ->blocked, never from irq */ 3110 if (oldset) 3111 *oldset = tsk->blocked; 3112 3113 switch (how) { 3114 case SIG_BLOCK: 3115 sigorsets(&newset, &tsk->blocked, set); 3116 break; 3117 case SIG_UNBLOCK: 3118 sigandnsets(&newset, &tsk->blocked, set); 3119 break; 3120 case SIG_SETMASK: 3121 newset = *set; 3122 break; 3123 default: 3124 return -EINVAL; 3125 } 3126 3127 __set_current_blocked(&newset); 3128 return 0; 3129 } 3130 EXPORT_SYMBOL(sigprocmask); 3131 3132 /* 3133 * The api helps set app-provided sigmasks. 3134 * 3135 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 3136 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 3137 * 3138 * Note that it does set_restore_sigmask() in advance, so it must be always 3139 * paired with restore_saved_sigmask_unless() before return from syscall. 3140 */ 3141 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) 3142 { 3143 sigset_t kmask; 3144 3145 if (!umask) 3146 return 0; 3147 if (sigsetsize != sizeof(sigset_t)) 3148 return -EINVAL; 3149 if (copy_from_user(&kmask, umask, sizeof(sigset_t))) 3150 return -EFAULT; 3151 3152 set_restore_sigmask(); 3153 current->saved_sigmask = current->blocked; 3154 set_current_blocked(&kmask); 3155 3156 return 0; 3157 } 3158 3159 #ifdef CONFIG_COMPAT 3160 int set_compat_user_sigmask(const compat_sigset_t __user *umask, 3161 size_t sigsetsize) 3162 { 3163 sigset_t kmask; 3164 3165 if (!umask) 3166 return 0; 3167 if (sigsetsize != sizeof(compat_sigset_t)) 3168 return -EINVAL; 3169 if (get_compat_sigset(&kmask, umask)) 3170 return -EFAULT; 3171 3172 set_restore_sigmask(); 3173 current->saved_sigmask = current->blocked; 3174 set_current_blocked(&kmask); 3175 3176 return 0; 3177 } 3178 #endif 3179 3180 /** 3181 * sys_rt_sigprocmask - change the list of currently blocked signals 3182 * @how: whether to add, remove, or set signals 3183 * @nset: stores pending signals 3184 * @oset: previous value of signal mask if non-null 3185 * @sigsetsize: size of sigset_t type 3186 */ 3187 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 3188 sigset_t __user *, oset, size_t, sigsetsize) 3189 { 3190 sigset_t old_set, new_set; 3191 int error; 3192 3193 /* XXX: Don't preclude handling different sized sigset_t's. */ 3194 if (sigsetsize != sizeof(sigset_t)) 3195 return -EINVAL; 3196 3197 old_set = current->blocked; 3198 3199 if (nset) { 3200 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 3201 return -EFAULT; 3202 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3203 3204 error = sigprocmask(how, &new_set, NULL); 3205 if (error) 3206 return error; 3207 } 3208 3209 if (oset) { 3210 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 3211 return -EFAULT; 3212 } 3213 3214 return 0; 3215 } 3216 3217 #ifdef CONFIG_COMPAT 3218 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 3219 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 3220 { 3221 sigset_t old_set = current->blocked; 3222 3223 /* XXX: Don't preclude handling different sized sigset_t's. */ 3224 if (sigsetsize != sizeof(sigset_t)) 3225 return -EINVAL; 3226 3227 if (nset) { 3228 sigset_t new_set; 3229 int error; 3230 if (get_compat_sigset(&new_set, nset)) 3231 return -EFAULT; 3232 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3233 3234 error = sigprocmask(how, &new_set, NULL); 3235 if (error) 3236 return error; 3237 } 3238 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 3239 } 3240 #endif 3241 3242 static void do_sigpending(sigset_t *set) 3243 { 3244 spin_lock_irq(¤t->sighand->siglock); 3245 sigorsets(set, ¤t->pending.signal, 3246 ¤t->signal->shared_pending.signal); 3247 spin_unlock_irq(¤t->sighand->siglock); 3248 3249 /* Outside the lock because only this thread touches it. */ 3250 sigandsets(set, ¤t->blocked, set); 3251 } 3252 3253 /** 3254 * sys_rt_sigpending - examine a pending signal that has been raised 3255 * while blocked 3256 * @uset: stores pending signals 3257 * @sigsetsize: size of sigset_t type or larger 3258 */ 3259 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 3260 { 3261 sigset_t set; 3262 3263 if (sigsetsize > sizeof(*uset)) 3264 return -EINVAL; 3265 3266 do_sigpending(&set); 3267 3268 if (copy_to_user(uset, &set, sigsetsize)) 3269 return -EFAULT; 3270 3271 return 0; 3272 } 3273 3274 #ifdef CONFIG_COMPAT 3275 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 3276 compat_size_t, sigsetsize) 3277 { 3278 sigset_t set; 3279 3280 if (sigsetsize > sizeof(*uset)) 3281 return -EINVAL; 3282 3283 do_sigpending(&set); 3284 3285 return put_compat_sigset(uset, &set, sigsetsize); 3286 } 3287 #endif 3288 3289 static const struct { 3290 unsigned char limit, layout; 3291 } sig_sicodes[] = { 3292 [SIGILL] = { NSIGILL, SIL_FAULT }, 3293 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 3294 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 3295 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 3296 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 3297 #if defined(SIGEMT) 3298 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 3299 #endif 3300 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 3301 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 3302 [SIGSYS] = { NSIGSYS, SIL_SYS }, 3303 }; 3304 3305 static bool known_siginfo_layout(unsigned sig, int si_code) 3306 { 3307 if (si_code == SI_KERNEL) 3308 return true; 3309 else if ((si_code > SI_USER)) { 3310 if (sig_specific_sicodes(sig)) { 3311 if (si_code <= sig_sicodes[sig].limit) 3312 return true; 3313 } 3314 else if (si_code <= NSIGPOLL) 3315 return true; 3316 } 3317 else if (si_code >= SI_DETHREAD) 3318 return true; 3319 else if (si_code == SI_ASYNCNL) 3320 return true; 3321 return false; 3322 } 3323 3324 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3325 { 3326 enum siginfo_layout layout = SIL_KILL; 3327 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3328 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3329 (si_code <= sig_sicodes[sig].limit)) { 3330 layout = sig_sicodes[sig].layout; 3331 /* Handle the exceptions */ 3332 if ((sig == SIGBUS) && 3333 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3334 layout = SIL_FAULT_MCEERR; 3335 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3336 layout = SIL_FAULT_BNDERR; 3337 #ifdef SEGV_PKUERR 3338 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3339 layout = SIL_FAULT_PKUERR; 3340 #endif 3341 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF)) 3342 layout = SIL_FAULT_PERF_EVENT; 3343 else if (IS_ENABLED(CONFIG_SPARC) && 3344 (sig == SIGILL) && (si_code == ILL_ILLTRP)) 3345 layout = SIL_FAULT_TRAPNO; 3346 else if (IS_ENABLED(CONFIG_ALPHA) && 3347 ((sig == SIGFPE) || 3348 ((sig == SIGTRAP) && (si_code == TRAP_UNK)))) 3349 layout = SIL_FAULT_TRAPNO; 3350 } 3351 else if (si_code <= NSIGPOLL) 3352 layout = SIL_POLL; 3353 } else { 3354 if (si_code == SI_TIMER) 3355 layout = SIL_TIMER; 3356 else if (si_code == SI_SIGIO) 3357 layout = SIL_POLL; 3358 else if (si_code < 0) 3359 layout = SIL_RT; 3360 } 3361 return layout; 3362 } 3363 3364 static inline char __user *si_expansion(const siginfo_t __user *info) 3365 { 3366 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3367 } 3368 3369 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3370 { 3371 char __user *expansion = si_expansion(to); 3372 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3373 return -EFAULT; 3374 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3375 return -EFAULT; 3376 return 0; 3377 } 3378 3379 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3380 const siginfo_t __user *from) 3381 { 3382 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3383 char __user *expansion = si_expansion(from); 3384 char buf[SI_EXPANSION_SIZE]; 3385 int i; 3386 /* 3387 * An unknown si_code might need more than 3388 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3389 * extra bytes are 0. This guarantees copy_siginfo_to_user 3390 * will return this data to userspace exactly. 3391 */ 3392 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3393 return -EFAULT; 3394 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3395 if (buf[i] != 0) 3396 return -E2BIG; 3397 } 3398 } 3399 return 0; 3400 } 3401 3402 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3403 const siginfo_t __user *from) 3404 { 3405 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3406 return -EFAULT; 3407 to->si_signo = signo; 3408 return post_copy_siginfo_from_user(to, from); 3409 } 3410 3411 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3412 { 3413 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3414 return -EFAULT; 3415 return post_copy_siginfo_from_user(to, from); 3416 } 3417 3418 #ifdef CONFIG_COMPAT 3419 /** 3420 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo 3421 * @to: compat siginfo destination 3422 * @from: kernel siginfo source 3423 * 3424 * Note: This function does not work properly for the SIGCHLD on x32, but 3425 * fortunately it doesn't have to. The only valid callers for this function are 3426 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. 3427 * The latter does not care because SIGCHLD will never cause a coredump. 3428 */ 3429 void copy_siginfo_to_external32(struct compat_siginfo *to, 3430 const struct kernel_siginfo *from) 3431 { 3432 memset(to, 0, sizeof(*to)); 3433 3434 to->si_signo = from->si_signo; 3435 to->si_errno = from->si_errno; 3436 to->si_code = from->si_code; 3437 switch(siginfo_layout(from->si_signo, from->si_code)) { 3438 case SIL_KILL: 3439 to->si_pid = from->si_pid; 3440 to->si_uid = from->si_uid; 3441 break; 3442 case SIL_TIMER: 3443 to->si_tid = from->si_tid; 3444 to->si_overrun = from->si_overrun; 3445 to->si_int = from->si_int; 3446 break; 3447 case SIL_POLL: 3448 to->si_band = from->si_band; 3449 to->si_fd = from->si_fd; 3450 break; 3451 case SIL_FAULT: 3452 to->si_addr = ptr_to_compat(from->si_addr); 3453 break; 3454 case SIL_FAULT_TRAPNO: 3455 to->si_addr = ptr_to_compat(from->si_addr); 3456 to->si_trapno = from->si_trapno; 3457 break; 3458 case SIL_FAULT_MCEERR: 3459 to->si_addr = ptr_to_compat(from->si_addr); 3460 to->si_addr_lsb = from->si_addr_lsb; 3461 break; 3462 case SIL_FAULT_BNDERR: 3463 to->si_addr = ptr_to_compat(from->si_addr); 3464 to->si_lower = ptr_to_compat(from->si_lower); 3465 to->si_upper = ptr_to_compat(from->si_upper); 3466 break; 3467 case SIL_FAULT_PKUERR: 3468 to->si_addr = ptr_to_compat(from->si_addr); 3469 to->si_pkey = from->si_pkey; 3470 break; 3471 case SIL_FAULT_PERF_EVENT: 3472 to->si_addr = ptr_to_compat(from->si_addr); 3473 to->si_perf_data = from->si_perf_data; 3474 to->si_perf_type = from->si_perf_type; 3475 break; 3476 case SIL_CHLD: 3477 to->si_pid = from->si_pid; 3478 to->si_uid = from->si_uid; 3479 to->si_status = from->si_status; 3480 to->si_utime = from->si_utime; 3481 to->si_stime = from->si_stime; 3482 break; 3483 case SIL_RT: 3484 to->si_pid = from->si_pid; 3485 to->si_uid = from->si_uid; 3486 to->si_int = from->si_int; 3487 break; 3488 case SIL_SYS: 3489 to->si_call_addr = ptr_to_compat(from->si_call_addr); 3490 to->si_syscall = from->si_syscall; 3491 to->si_arch = from->si_arch; 3492 break; 3493 } 3494 } 3495 3496 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3497 const struct kernel_siginfo *from) 3498 { 3499 struct compat_siginfo new; 3500 3501 copy_siginfo_to_external32(&new, from); 3502 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3503 return -EFAULT; 3504 return 0; 3505 } 3506 3507 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3508 const struct compat_siginfo *from) 3509 { 3510 clear_siginfo(to); 3511 to->si_signo = from->si_signo; 3512 to->si_errno = from->si_errno; 3513 to->si_code = from->si_code; 3514 switch(siginfo_layout(from->si_signo, from->si_code)) { 3515 case SIL_KILL: 3516 to->si_pid = from->si_pid; 3517 to->si_uid = from->si_uid; 3518 break; 3519 case SIL_TIMER: 3520 to->si_tid = from->si_tid; 3521 to->si_overrun = from->si_overrun; 3522 to->si_int = from->si_int; 3523 break; 3524 case SIL_POLL: 3525 to->si_band = from->si_band; 3526 to->si_fd = from->si_fd; 3527 break; 3528 case SIL_FAULT: 3529 to->si_addr = compat_ptr(from->si_addr); 3530 break; 3531 case SIL_FAULT_TRAPNO: 3532 to->si_addr = compat_ptr(from->si_addr); 3533 to->si_trapno = from->si_trapno; 3534 break; 3535 case SIL_FAULT_MCEERR: 3536 to->si_addr = compat_ptr(from->si_addr); 3537 to->si_addr_lsb = from->si_addr_lsb; 3538 break; 3539 case SIL_FAULT_BNDERR: 3540 to->si_addr = compat_ptr(from->si_addr); 3541 to->si_lower = compat_ptr(from->si_lower); 3542 to->si_upper = compat_ptr(from->si_upper); 3543 break; 3544 case SIL_FAULT_PKUERR: 3545 to->si_addr = compat_ptr(from->si_addr); 3546 to->si_pkey = from->si_pkey; 3547 break; 3548 case SIL_FAULT_PERF_EVENT: 3549 to->si_addr = compat_ptr(from->si_addr); 3550 to->si_perf_data = from->si_perf_data; 3551 to->si_perf_type = from->si_perf_type; 3552 break; 3553 case SIL_CHLD: 3554 to->si_pid = from->si_pid; 3555 to->si_uid = from->si_uid; 3556 to->si_status = from->si_status; 3557 #ifdef CONFIG_X86_X32_ABI 3558 if (in_x32_syscall()) { 3559 to->si_utime = from->_sifields._sigchld_x32._utime; 3560 to->si_stime = from->_sifields._sigchld_x32._stime; 3561 } else 3562 #endif 3563 { 3564 to->si_utime = from->si_utime; 3565 to->si_stime = from->si_stime; 3566 } 3567 break; 3568 case SIL_RT: 3569 to->si_pid = from->si_pid; 3570 to->si_uid = from->si_uid; 3571 to->si_int = from->si_int; 3572 break; 3573 case SIL_SYS: 3574 to->si_call_addr = compat_ptr(from->si_call_addr); 3575 to->si_syscall = from->si_syscall; 3576 to->si_arch = from->si_arch; 3577 break; 3578 } 3579 return 0; 3580 } 3581 3582 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3583 const struct compat_siginfo __user *ufrom) 3584 { 3585 struct compat_siginfo from; 3586 3587 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3588 return -EFAULT; 3589 3590 from.si_signo = signo; 3591 return post_copy_siginfo_from_user32(to, &from); 3592 } 3593 3594 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3595 const struct compat_siginfo __user *ufrom) 3596 { 3597 struct compat_siginfo from; 3598 3599 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3600 return -EFAULT; 3601 3602 return post_copy_siginfo_from_user32(to, &from); 3603 } 3604 #endif /* CONFIG_COMPAT */ 3605 3606 /** 3607 * do_sigtimedwait - wait for queued signals specified in @which 3608 * @which: queued signals to wait for 3609 * @info: if non-null, the signal's siginfo is returned here 3610 * @ts: upper bound on process time suspension 3611 */ 3612 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3613 const struct timespec64 *ts) 3614 { 3615 ktime_t *to = NULL, timeout = KTIME_MAX; 3616 struct task_struct *tsk = current; 3617 sigset_t mask = *which; 3618 enum pid_type type; 3619 int sig, ret = 0; 3620 3621 if (ts) { 3622 if (!timespec64_valid(ts)) 3623 return -EINVAL; 3624 timeout = timespec64_to_ktime(*ts); 3625 to = &timeout; 3626 } 3627 3628 /* 3629 * Invert the set of allowed signals to get those we want to block. 3630 */ 3631 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3632 signotset(&mask); 3633 3634 spin_lock_irq(&tsk->sighand->siglock); 3635 sig = dequeue_signal(tsk, &mask, info, &type); 3636 if (!sig && timeout) { 3637 /* 3638 * None ready, temporarily unblock those we're interested 3639 * while we are sleeping in so that we'll be awakened when 3640 * they arrive. Unblocking is always fine, we can avoid 3641 * set_current_blocked(). 3642 */ 3643 tsk->real_blocked = tsk->blocked; 3644 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3645 recalc_sigpending(); 3646 spin_unlock_irq(&tsk->sighand->siglock); 3647 3648 __set_current_state(TASK_INTERRUPTIBLE); 3649 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3650 HRTIMER_MODE_REL); 3651 spin_lock_irq(&tsk->sighand->siglock); 3652 __set_task_blocked(tsk, &tsk->real_blocked); 3653 sigemptyset(&tsk->real_blocked); 3654 sig = dequeue_signal(tsk, &mask, info, &type); 3655 } 3656 spin_unlock_irq(&tsk->sighand->siglock); 3657 3658 if (sig) 3659 return sig; 3660 return ret ? -EINTR : -EAGAIN; 3661 } 3662 3663 /** 3664 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3665 * in @uthese 3666 * @uthese: queued signals to wait for 3667 * @uinfo: if non-null, the signal's siginfo is returned here 3668 * @uts: upper bound on process time suspension 3669 * @sigsetsize: size of sigset_t type 3670 */ 3671 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3672 siginfo_t __user *, uinfo, 3673 const struct __kernel_timespec __user *, uts, 3674 size_t, sigsetsize) 3675 { 3676 sigset_t these; 3677 struct timespec64 ts; 3678 kernel_siginfo_t info; 3679 int ret; 3680 3681 /* XXX: Don't preclude handling different sized sigset_t's. */ 3682 if (sigsetsize != sizeof(sigset_t)) 3683 return -EINVAL; 3684 3685 if (copy_from_user(&these, uthese, sizeof(these))) 3686 return -EFAULT; 3687 3688 if (uts) { 3689 if (get_timespec64(&ts, uts)) 3690 return -EFAULT; 3691 } 3692 3693 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3694 3695 if (ret > 0 && uinfo) { 3696 if (copy_siginfo_to_user(uinfo, &info)) 3697 ret = -EFAULT; 3698 } 3699 3700 return ret; 3701 } 3702 3703 #ifdef CONFIG_COMPAT_32BIT_TIME 3704 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3705 siginfo_t __user *, uinfo, 3706 const struct old_timespec32 __user *, uts, 3707 size_t, sigsetsize) 3708 { 3709 sigset_t these; 3710 struct timespec64 ts; 3711 kernel_siginfo_t info; 3712 int ret; 3713 3714 if (sigsetsize != sizeof(sigset_t)) 3715 return -EINVAL; 3716 3717 if (copy_from_user(&these, uthese, sizeof(these))) 3718 return -EFAULT; 3719 3720 if (uts) { 3721 if (get_old_timespec32(&ts, uts)) 3722 return -EFAULT; 3723 } 3724 3725 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3726 3727 if (ret > 0 && uinfo) { 3728 if (copy_siginfo_to_user(uinfo, &info)) 3729 ret = -EFAULT; 3730 } 3731 3732 return ret; 3733 } 3734 #endif 3735 3736 #ifdef CONFIG_COMPAT 3737 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3738 struct compat_siginfo __user *, uinfo, 3739 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3740 { 3741 sigset_t s; 3742 struct timespec64 t; 3743 kernel_siginfo_t info; 3744 long ret; 3745 3746 if (sigsetsize != sizeof(sigset_t)) 3747 return -EINVAL; 3748 3749 if (get_compat_sigset(&s, uthese)) 3750 return -EFAULT; 3751 3752 if (uts) { 3753 if (get_timespec64(&t, uts)) 3754 return -EFAULT; 3755 } 3756 3757 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3758 3759 if (ret > 0 && uinfo) { 3760 if (copy_siginfo_to_user32(uinfo, &info)) 3761 ret = -EFAULT; 3762 } 3763 3764 return ret; 3765 } 3766 3767 #ifdef CONFIG_COMPAT_32BIT_TIME 3768 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3769 struct compat_siginfo __user *, uinfo, 3770 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3771 { 3772 sigset_t s; 3773 struct timespec64 t; 3774 kernel_siginfo_t info; 3775 long ret; 3776 3777 if (sigsetsize != sizeof(sigset_t)) 3778 return -EINVAL; 3779 3780 if (get_compat_sigset(&s, uthese)) 3781 return -EFAULT; 3782 3783 if (uts) { 3784 if (get_old_timespec32(&t, uts)) 3785 return -EFAULT; 3786 } 3787 3788 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3789 3790 if (ret > 0 && uinfo) { 3791 if (copy_siginfo_to_user32(uinfo, &info)) 3792 ret = -EFAULT; 3793 } 3794 3795 return ret; 3796 } 3797 #endif 3798 #endif 3799 3800 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info) 3801 { 3802 clear_siginfo(info); 3803 info->si_signo = sig; 3804 info->si_errno = 0; 3805 info->si_code = SI_USER; 3806 info->si_pid = task_tgid_vnr(current); 3807 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3808 } 3809 3810 /** 3811 * sys_kill - send a signal to a process 3812 * @pid: the PID of the process 3813 * @sig: signal to be sent 3814 */ 3815 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3816 { 3817 struct kernel_siginfo info; 3818 3819 prepare_kill_siginfo(sig, &info); 3820 3821 return kill_something_info(sig, &info, pid); 3822 } 3823 3824 /* 3825 * Verify that the signaler and signalee either are in the same pid namespace 3826 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3827 * namespace. 3828 */ 3829 static bool access_pidfd_pidns(struct pid *pid) 3830 { 3831 struct pid_namespace *active = task_active_pid_ns(current); 3832 struct pid_namespace *p = ns_of_pid(pid); 3833 3834 for (;;) { 3835 if (!p) 3836 return false; 3837 if (p == active) 3838 break; 3839 p = p->parent; 3840 } 3841 3842 return true; 3843 } 3844 3845 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, 3846 siginfo_t __user *info) 3847 { 3848 #ifdef CONFIG_COMPAT 3849 /* 3850 * Avoid hooking up compat syscalls and instead handle necessary 3851 * conversions here. Note, this is a stop-gap measure and should not be 3852 * considered a generic solution. 3853 */ 3854 if (in_compat_syscall()) 3855 return copy_siginfo_from_user32( 3856 kinfo, (struct compat_siginfo __user *)info); 3857 #endif 3858 return copy_siginfo_from_user(kinfo, info); 3859 } 3860 3861 static struct pid *pidfd_to_pid(const struct file *file) 3862 { 3863 struct pid *pid; 3864 3865 pid = pidfd_pid(file); 3866 if (!IS_ERR(pid)) 3867 return pid; 3868 3869 return tgid_pidfd_to_pid(file); 3870 } 3871 3872 /** 3873 * sys_pidfd_send_signal - Signal a process through a pidfd 3874 * @pidfd: file descriptor of the process 3875 * @sig: signal to send 3876 * @info: signal info 3877 * @flags: future flags 3878 * 3879 * The syscall currently only signals via PIDTYPE_PID which covers 3880 * kill(<positive-pid>, <signal>. It does not signal threads or process 3881 * groups. 3882 * In order to extend the syscall to threads and process groups the @flags 3883 * argument should be used. In essence, the @flags argument will determine 3884 * what is signaled and not the file descriptor itself. Put in other words, 3885 * grouping is a property of the flags argument not a property of the file 3886 * descriptor. 3887 * 3888 * Return: 0 on success, negative errno on failure 3889 */ 3890 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 3891 siginfo_t __user *, info, unsigned int, flags) 3892 { 3893 int ret; 3894 struct fd f; 3895 struct pid *pid; 3896 kernel_siginfo_t kinfo; 3897 3898 /* Enforce flags be set to 0 until we add an extension. */ 3899 if (flags) 3900 return -EINVAL; 3901 3902 f = fdget(pidfd); 3903 if (!f.file) 3904 return -EBADF; 3905 3906 /* Is this a pidfd? */ 3907 pid = pidfd_to_pid(f.file); 3908 if (IS_ERR(pid)) { 3909 ret = PTR_ERR(pid); 3910 goto err; 3911 } 3912 3913 ret = -EINVAL; 3914 if (!access_pidfd_pidns(pid)) 3915 goto err; 3916 3917 if (info) { 3918 ret = copy_siginfo_from_user_any(&kinfo, info); 3919 if (unlikely(ret)) 3920 goto err; 3921 3922 ret = -EINVAL; 3923 if (unlikely(sig != kinfo.si_signo)) 3924 goto err; 3925 3926 /* Only allow sending arbitrary signals to yourself. */ 3927 ret = -EPERM; 3928 if ((task_pid(current) != pid) && 3929 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) 3930 goto err; 3931 } else { 3932 prepare_kill_siginfo(sig, &kinfo); 3933 } 3934 3935 ret = kill_pid_info(sig, &kinfo, pid); 3936 3937 err: 3938 fdput(f); 3939 return ret; 3940 } 3941 3942 static int 3943 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 3944 { 3945 struct task_struct *p; 3946 int error = -ESRCH; 3947 3948 rcu_read_lock(); 3949 p = find_task_by_vpid(pid); 3950 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 3951 error = check_kill_permission(sig, info, p); 3952 /* 3953 * The null signal is a permissions and process existence 3954 * probe. No signal is actually delivered. 3955 */ 3956 if (!error && sig) { 3957 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 3958 /* 3959 * If lock_task_sighand() failed we pretend the task 3960 * dies after receiving the signal. The window is tiny, 3961 * and the signal is private anyway. 3962 */ 3963 if (unlikely(error == -ESRCH)) 3964 error = 0; 3965 } 3966 } 3967 rcu_read_unlock(); 3968 3969 return error; 3970 } 3971 3972 static int do_tkill(pid_t tgid, pid_t pid, int sig) 3973 { 3974 struct kernel_siginfo info; 3975 3976 clear_siginfo(&info); 3977 info.si_signo = sig; 3978 info.si_errno = 0; 3979 info.si_code = SI_TKILL; 3980 info.si_pid = task_tgid_vnr(current); 3981 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3982 3983 return do_send_specific(tgid, pid, sig, &info); 3984 } 3985 3986 /** 3987 * sys_tgkill - send signal to one specific thread 3988 * @tgid: the thread group ID of the thread 3989 * @pid: the PID of the thread 3990 * @sig: signal to be sent 3991 * 3992 * This syscall also checks the @tgid and returns -ESRCH even if the PID 3993 * exists but it's not belonging to the target process anymore. This 3994 * method solves the problem of threads exiting and PIDs getting reused. 3995 */ 3996 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 3997 { 3998 /* This is only valid for single tasks */ 3999 if (pid <= 0 || tgid <= 0) 4000 return -EINVAL; 4001 4002 return do_tkill(tgid, pid, sig); 4003 } 4004 4005 /** 4006 * sys_tkill - send signal to one specific task 4007 * @pid: the PID of the task 4008 * @sig: signal to be sent 4009 * 4010 * Send a signal to only one task, even if it's a CLONE_THREAD task. 4011 */ 4012 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 4013 { 4014 /* This is only valid for single tasks */ 4015 if (pid <= 0) 4016 return -EINVAL; 4017 4018 return do_tkill(0, pid, sig); 4019 } 4020 4021 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 4022 { 4023 /* Not even root can pretend to send signals from the kernel. 4024 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4025 */ 4026 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4027 (task_pid_vnr(current) != pid)) 4028 return -EPERM; 4029 4030 /* POSIX.1b doesn't mention process groups. */ 4031 return kill_proc_info(sig, info, pid); 4032 } 4033 4034 /** 4035 * sys_rt_sigqueueinfo - send signal information to a signal 4036 * @pid: the PID of the thread 4037 * @sig: signal to be sent 4038 * @uinfo: signal info to be sent 4039 */ 4040 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 4041 siginfo_t __user *, uinfo) 4042 { 4043 kernel_siginfo_t info; 4044 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4045 if (unlikely(ret)) 4046 return ret; 4047 return do_rt_sigqueueinfo(pid, sig, &info); 4048 } 4049 4050 #ifdef CONFIG_COMPAT 4051 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 4052 compat_pid_t, pid, 4053 int, sig, 4054 struct compat_siginfo __user *, uinfo) 4055 { 4056 kernel_siginfo_t info; 4057 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4058 if (unlikely(ret)) 4059 return ret; 4060 return do_rt_sigqueueinfo(pid, sig, &info); 4061 } 4062 #endif 4063 4064 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 4065 { 4066 /* This is only valid for single tasks */ 4067 if (pid <= 0 || tgid <= 0) 4068 return -EINVAL; 4069 4070 /* Not even root can pretend to send signals from the kernel. 4071 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4072 */ 4073 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4074 (task_pid_vnr(current) != pid)) 4075 return -EPERM; 4076 4077 return do_send_specific(tgid, pid, sig, info); 4078 } 4079 4080 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 4081 siginfo_t __user *, uinfo) 4082 { 4083 kernel_siginfo_t info; 4084 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4085 if (unlikely(ret)) 4086 return ret; 4087 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4088 } 4089 4090 #ifdef CONFIG_COMPAT 4091 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 4092 compat_pid_t, tgid, 4093 compat_pid_t, pid, 4094 int, sig, 4095 struct compat_siginfo __user *, uinfo) 4096 { 4097 kernel_siginfo_t info; 4098 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4099 if (unlikely(ret)) 4100 return ret; 4101 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4102 } 4103 #endif 4104 4105 /* 4106 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 4107 */ 4108 void kernel_sigaction(int sig, __sighandler_t action) 4109 { 4110 spin_lock_irq(¤t->sighand->siglock); 4111 current->sighand->action[sig - 1].sa.sa_handler = action; 4112 if (action == SIG_IGN) { 4113 sigset_t mask; 4114 4115 sigemptyset(&mask); 4116 sigaddset(&mask, sig); 4117 4118 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 4119 flush_sigqueue_mask(&mask, ¤t->pending); 4120 recalc_sigpending(); 4121 } 4122 spin_unlock_irq(¤t->sighand->siglock); 4123 } 4124 EXPORT_SYMBOL(kernel_sigaction); 4125 4126 void __weak sigaction_compat_abi(struct k_sigaction *act, 4127 struct k_sigaction *oact) 4128 { 4129 } 4130 4131 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 4132 { 4133 struct task_struct *p = current, *t; 4134 struct k_sigaction *k; 4135 sigset_t mask; 4136 4137 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 4138 return -EINVAL; 4139 4140 k = &p->sighand->action[sig-1]; 4141 4142 spin_lock_irq(&p->sighand->siglock); 4143 if (k->sa.sa_flags & SA_IMMUTABLE) { 4144 spin_unlock_irq(&p->sighand->siglock); 4145 return -EINVAL; 4146 } 4147 if (oact) 4148 *oact = *k; 4149 4150 /* 4151 * Make sure that we never accidentally claim to support SA_UNSUPPORTED, 4152 * e.g. by having an architecture use the bit in their uapi. 4153 */ 4154 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED); 4155 4156 /* 4157 * Clear unknown flag bits in order to allow userspace to detect missing 4158 * support for flag bits and to allow the kernel to use non-uapi bits 4159 * internally. 4160 */ 4161 if (act) 4162 act->sa.sa_flags &= UAPI_SA_FLAGS; 4163 if (oact) 4164 oact->sa.sa_flags &= UAPI_SA_FLAGS; 4165 4166 sigaction_compat_abi(act, oact); 4167 4168 if (act) { 4169 sigdelsetmask(&act->sa.sa_mask, 4170 sigmask(SIGKILL) | sigmask(SIGSTOP)); 4171 *k = *act; 4172 /* 4173 * POSIX 3.3.1.3: 4174 * "Setting a signal action to SIG_IGN for a signal that is 4175 * pending shall cause the pending signal to be discarded, 4176 * whether or not it is blocked." 4177 * 4178 * "Setting a signal action to SIG_DFL for a signal that is 4179 * pending and whose default action is to ignore the signal 4180 * (for example, SIGCHLD), shall cause the pending signal to 4181 * be discarded, whether or not it is blocked" 4182 */ 4183 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 4184 sigemptyset(&mask); 4185 sigaddset(&mask, sig); 4186 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 4187 for_each_thread(p, t) 4188 flush_sigqueue_mask(&mask, &t->pending); 4189 } 4190 } 4191 4192 spin_unlock_irq(&p->sighand->siglock); 4193 return 0; 4194 } 4195 4196 #ifdef CONFIG_DYNAMIC_SIGFRAME 4197 static inline void sigaltstack_lock(void) 4198 __acquires(¤t->sighand->siglock) 4199 { 4200 spin_lock_irq(¤t->sighand->siglock); 4201 } 4202 4203 static inline void sigaltstack_unlock(void) 4204 __releases(¤t->sighand->siglock) 4205 { 4206 spin_unlock_irq(¤t->sighand->siglock); 4207 } 4208 #else 4209 static inline void sigaltstack_lock(void) { } 4210 static inline void sigaltstack_unlock(void) { } 4211 #endif 4212 4213 static int 4214 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 4215 size_t min_ss_size) 4216 { 4217 struct task_struct *t = current; 4218 int ret = 0; 4219 4220 if (oss) { 4221 memset(oss, 0, sizeof(stack_t)); 4222 oss->ss_sp = (void __user *) t->sas_ss_sp; 4223 oss->ss_size = t->sas_ss_size; 4224 oss->ss_flags = sas_ss_flags(sp) | 4225 (current->sas_ss_flags & SS_FLAG_BITS); 4226 } 4227 4228 if (ss) { 4229 void __user *ss_sp = ss->ss_sp; 4230 size_t ss_size = ss->ss_size; 4231 unsigned ss_flags = ss->ss_flags; 4232 int ss_mode; 4233 4234 if (unlikely(on_sig_stack(sp))) 4235 return -EPERM; 4236 4237 ss_mode = ss_flags & ~SS_FLAG_BITS; 4238 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 4239 ss_mode != 0)) 4240 return -EINVAL; 4241 4242 /* 4243 * Return before taking any locks if no actual 4244 * sigaltstack changes were requested. 4245 */ 4246 if (t->sas_ss_sp == (unsigned long)ss_sp && 4247 t->sas_ss_size == ss_size && 4248 t->sas_ss_flags == ss_flags) 4249 return 0; 4250 4251 sigaltstack_lock(); 4252 if (ss_mode == SS_DISABLE) { 4253 ss_size = 0; 4254 ss_sp = NULL; 4255 } else { 4256 if (unlikely(ss_size < min_ss_size)) 4257 ret = -ENOMEM; 4258 if (!sigaltstack_size_valid(ss_size)) 4259 ret = -ENOMEM; 4260 } 4261 if (!ret) { 4262 t->sas_ss_sp = (unsigned long) ss_sp; 4263 t->sas_ss_size = ss_size; 4264 t->sas_ss_flags = ss_flags; 4265 } 4266 sigaltstack_unlock(); 4267 } 4268 return ret; 4269 } 4270 4271 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 4272 { 4273 stack_t new, old; 4274 int err; 4275 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 4276 return -EFAULT; 4277 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 4278 current_user_stack_pointer(), 4279 MINSIGSTKSZ); 4280 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 4281 err = -EFAULT; 4282 return err; 4283 } 4284 4285 int restore_altstack(const stack_t __user *uss) 4286 { 4287 stack_t new; 4288 if (copy_from_user(&new, uss, sizeof(stack_t))) 4289 return -EFAULT; 4290 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 4291 MINSIGSTKSZ); 4292 /* squash all but EFAULT for now */ 4293 return 0; 4294 } 4295 4296 int __save_altstack(stack_t __user *uss, unsigned long sp) 4297 { 4298 struct task_struct *t = current; 4299 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 4300 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4301 __put_user(t->sas_ss_size, &uss->ss_size); 4302 return err; 4303 } 4304 4305 #ifdef CONFIG_COMPAT 4306 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 4307 compat_stack_t __user *uoss_ptr) 4308 { 4309 stack_t uss, uoss; 4310 int ret; 4311 4312 if (uss_ptr) { 4313 compat_stack_t uss32; 4314 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 4315 return -EFAULT; 4316 uss.ss_sp = compat_ptr(uss32.ss_sp); 4317 uss.ss_flags = uss32.ss_flags; 4318 uss.ss_size = uss32.ss_size; 4319 } 4320 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 4321 compat_user_stack_pointer(), 4322 COMPAT_MINSIGSTKSZ); 4323 if (ret >= 0 && uoss_ptr) { 4324 compat_stack_t old; 4325 memset(&old, 0, sizeof(old)); 4326 old.ss_sp = ptr_to_compat(uoss.ss_sp); 4327 old.ss_flags = uoss.ss_flags; 4328 old.ss_size = uoss.ss_size; 4329 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 4330 ret = -EFAULT; 4331 } 4332 return ret; 4333 } 4334 4335 COMPAT_SYSCALL_DEFINE2(sigaltstack, 4336 const compat_stack_t __user *, uss_ptr, 4337 compat_stack_t __user *, uoss_ptr) 4338 { 4339 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 4340 } 4341 4342 int compat_restore_altstack(const compat_stack_t __user *uss) 4343 { 4344 int err = do_compat_sigaltstack(uss, NULL); 4345 /* squash all but -EFAULT for now */ 4346 return err == -EFAULT ? err : 0; 4347 } 4348 4349 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 4350 { 4351 int err; 4352 struct task_struct *t = current; 4353 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 4354 &uss->ss_sp) | 4355 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4356 __put_user(t->sas_ss_size, &uss->ss_size); 4357 return err; 4358 } 4359 #endif 4360 4361 #ifdef __ARCH_WANT_SYS_SIGPENDING 4362 4363 /** 4364 * sys_sigpending - examine pending signals 4365 * @uset: where mask of pending signal is returned 4366 */ 4367 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4368 { 4369 sigset_t set; 4370 4371 if (sizeof(old_sigset_t) > sizeof(*uset)) 4372 return -EINVAL; 4373 4374 do_sigpending(&set); 4375 4376 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4377 return -EFAULT; 4378 4379 return 0; 4380 } 4381 4382 #ifdef CONFIG_COMPAT 4383 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4384 { 4385 sigset_t set; 4386 4387 do_sigpending(&set); 4388 4389 return put_user(set.sig[0], set32); 4390 } 4391 #endif 4392 4393 #endif 4394 4395 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 4396 /** 4397 * sys_sigprocmask - examine and change blocked signals 4398 * @how: whether to add, remove, or set signals 4399 * @nset: signals to add or remove (if non-null) 4400 * @oset: previous value of signal mask if non-null 4401 * 4402 * Some platforms have their own version with special arguments; 4403 * others support only sys_rt_sigprocmask. 4404 */ 4405 4406 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4407 old_sigset_t __user *, oset) 4408 { 4409 old_sigset_t old_set, new_set; 4410 sigset_t new_blocked; 4411 4412 old_set = current->blocked.sig[0]; 4413 4414 if (nset) { 4415 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4416 return -EFAULT; 4417 4418 new_blocked = current->blocked; 4419 4420 switch (how) { 4421 case SIG_BLOCK: 4422 sigaddsetmask(&new_blocked, new_set); 4423 break; 4424 case SIG_UNBLOCK: 4425 sigdelsetmask(&new_blocked, new_set); 4426 break; 4427 case SIG_SETMASK: 4428 new_blocked.sig[0] = new_set; 4429 break; 4430 default: 4431 return -EINVAL; 4432 } 4433 4434 set_current_blocked(&new_blocked); 4435 } 4436 4437 if (oset) { 4438 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4439 return -EFAULT; 4440 } 4441 4442 return 0; 4443 } 4444 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4445 4446 #ifndef CONFIG_ODD_RT_SIGACTION 4447 /** 4448 * sys_rt_sigaction - alter an action taken by a process 4449 * @sig: signal to be sent 4450 * @act: new sigaction 4451 * @oact: used to save the previous sigaction 4452 * @sigsetsize: size of sigset_t type 4453 */ 4454 SYSCALL_DEFINE4(rt_sigaction, int, sig, 4455 const struct sigaction __user *, act, 4456 struct sigaction __user *, oact, 4457 size_t, sigsetsize) 4458 { 4459 struct k_sigaction new_sa, old_sa; 4460 int ret; 4461 4462 /* XXX: Don't preclude handling different sized sigset_t's. */ 4463 if (sigsetsize != sizeof(sigset_t)) 4464 return -EINVAL; 4465 4466 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4467 return -EFAULT; 4468 4469 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4470 if (ret) 4471 return ret; 4472 4473 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4474 return -EFAULT; 4475 4476 return 0; 4477 } 4478 #ifdef CONFIG_COMPAT 4479 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4480 const struct compat_sigaction __user *, act, 4481 struct compat_sigaction __user *, oact, 4482 compat_size_t, sigsetsize) 4483 { 4484 struct k_sigaction new_ka, old_ka; 4485 #ifdef __ARCH_HAS_SA_RESTORER 4486 compat_uptr_t restorer; 4487 #endif 4488 int ret; 4489 4490 /* XXX: Don't preclude handling different sized sigset_t's. */ 4491 if (sigsetsize != sizeof(compat_sigset_t)) 4492 return -EINVAL; 4493 4494 if (act) { 4495 compat_uptr_t handler; 4496 ret = get_user(handler, &act->sa_handler); 4497 new_ka.sa.sa_handler = compat_ptr(handler); 4498 #ifdef __ARCH_HAS_SA_RESTORER 4499 ret |= get_user(restorer, &act->sa_restorer); 4500 new_ka.sa.sa_restorer = compat_ptr(restorer); 4501 #endif 4502 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4503 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4504 if (ret) 4505 return -EFAULT; 4506 } 4507 4508 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4509 if (!ret && oact) { 4510 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4511 &oact->sa_handler); 4512 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4513 sizeof(oact->sa_mask)); 4514 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4515 #ifdef __ARCH_HAS_SA_RESTORER 4516 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4517 &oact->sa_restorer); 4518 #endif 4519 } 4520 return ret; 4521 } 4522 #endif 4523 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4524 4525 #ifdef CONFIG_OLD_SIGACTION 4526 SYSCALL_DEFINE3(sigaction, int, sig, 4527 const struct old_sigaction __user *, act, 4528 struct old_sigaction __user *, oact) 4529 { 4530 struct k_sigaction new_ka, old_ka; 4531 int ret; 4532 4533 if (act) { 4534 old_sigset_t mask; 4535 if (!access_ok(act, sizeof(*act)) || 4536 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4537 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4538 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4539 __get_user(mask, &act->sa_mask)) 4540 return -EFAULT; 4541 #ifdef __ARCH_HAS_KA_RESTORER 4542 new_ka.ka_restorer = NULL; 4543 #endif 4544 siginitset(&new_ka.sa.sa_mask, mask); 4545 } 4546 4547 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4548 4549 if (!ret && oact) { 4550 if (!access_ok(oact, sizeof(*oact)) || 4551 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4552 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4553 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4554 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4555 return -EFAULT; 4556 } 4557 4558 return ret; 4559 } 4560 #endif 4561 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4562 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4563 const struct compat_old_sigaction __user *, act, 4564 struct compat_old_sigaction __user *, oact) 4565 { 4566 struct k_sigaction new_ka, old_ka; 4567 int ret; 4568 compat_old_sigset_t mask; 4569 compat_uptr_t handler, restorer; 4570 4571 if (act) { 4572 if (!access_ok(act, sizeof(*act)) || 4573 __get_user(handler, &act->sa_handler) || 4574 __get_user(restorer, &act->sa_restorer) || 4575 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4576 __get_user(mask, &act->sa_mask)) 4577 return -EFAULT; 4578 4579 #ifdef __ARCH_HAS_KA_RESTORER 4580 new_ka.ka_restorer = NULL; 4581 #endif 4582 new_ka.sa.sa_handler = compat_ptr(handler); 4583 new_ka.sa.sa_restorer = compat_ptr(restorer); 4584 siginitset(&new_ka.sa.sa_mask, mask); 4585 } 4586 4587 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4588 4589 if (!ret && oact) { 4590 if (!access_ok(oact, sizeof(*oact)) || 4591 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4592 &oact->sa_handler) || 4593 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4594 &oact->sa_restorer) || 4595 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4596 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4597 return -EFAULT; 4598 } 4599 return ret; 4600 } 4601 #endif 4602 4603 #ifdef CONFIG_SGETMASK_SYSCALL 4604 4605 /* 4606 * For backwards compatibility. Functionality superseded by sigprocmask. 4607 */ 4608 SYSCALL_DEFINE0(sgetmask) 4609 { 4610 /* SMP safe */ 4611 return current->blocked.sig[0]; 4612 } 4613 4614 SYSCALL_DEFINE1(ssetmask, int, newmask) 4615 { 4616 int old = current->blocked.sig[0]; 4617 sigset_t newset; 4618 4619 siginitset(&newset, newmask); 4620 set_current_blocked(&newset); 4621 4622 return old; 4623 } 4624 #endif /* CONFIG_SGETMASK_SYSCALL */ 4625 4626 #ifdef __ARCH_WANT_SYS_SIGNAL 4627 /* 4628 * For backwards compatibility. Functionality superseded by sigaction. 4629 */ 4630 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4631 { 4632 struct k_sigaction new_sa, old_sa; 4633 int ret; 4634 4635 new_sa.sa.sa_handler = handler; 4636 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4637 sigemptyset(&new_sa.sa.sa_mask); 4638 4639 ret = do_sigaction(sig, &new_sa, &old_sa); 4640 4641 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4642 } 4643 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4644 4645 #ifdef __ARCH_WANT_SYS_PAUSE 4646 4647 SYSCALL_DEFINE0(pause) 4648 { 4649 while (!signal_pending(current)) { 4650 __set_current_state(TASK_INTERRUPTIBLE); 4651 schedule(); 4652 } 4653 return -ERESTARTNOHAND; 4654 } 4655 4656 #endif 4657 4658 static int sigsuspend(sigset_t *set) 4659 { 4660 current->saved_sigmask = current->blocked; 4661 set_current_blocked(set); 4662 4663 while (!signal_pending(current)) { 4664 __set_current_state(TASK_INTERRUPTIBLE); 4665 schedule(); 4666 } 4667 set_restore_sigmask(); 4668 return -ERESTARTNOHAND; 4669 } 4670 4671 /** 4672 * sys_rt_sigsuspend - replace the signal mask for a value with the 4673 * @unewset value until a signal is received 4674 * @unewset: new signal mask value 4675 * @sigsetsize: size of sigset_t type 4676 */ 4677 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4678 { 4679 sigset_t newset; 4680 4681 /* XXX: Don't preclude handling different sized sigset_t's. */ 4682 if (sigsetsize != sizeof(sigset_t)) 4683 return -EINVAL; 4684 4685 if (copy_from_user(&newset, unewset, sizeof(newset))) 4686 return -EFAULT; 4687 return sigsuspend(&newset); 4688 } 4689 4690 #ifdef CONFIG_COMPAT 4691 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4692 { 4693 sigset_t newset; 4694 4695 /* XXX: Don't preclude handling different sized sigset_t's. */ 4696 if (sigsetsize != sizeof(sigset_t)) 4697 return -EINVAL; 4698 4699 if (get_compat_sigset(&newset, unewset)) 4700 return -EFAULT; 4701 return sigsuspend(&newset); 4702 } 4703 #endif 4704 4705 #ifdef CONFIG_OLD_SIGSUSPEND 4706 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4707 { 4708 sigset_t blocked; 4709 siginitset(&blocked, mask); 4710 return sigsuspend(&blocked); 4711 } 4712 #endif 4713 #ifdef CONFIG_OLD_SIGSUSPEND3 4714 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4715 { 4716 sigset_t blocked; 4717 siginitset(&blocked, mask); 4718 return sigsuspend(&blocked); 4719 } 4720 #endif 4721 4722 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4723 { 4724 return NULL; 4725 } 4726 4727 static inline void siginfo_buildtime_checks(void) 4728 { 4729 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4730 4731 /* Verify the offsets in the two siginfos match */ 4732 #define CHECK_OFFSET(field) \ 4733 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4734 4735 /* kill */ 4736 CHECK_OFFSET(si_pid); 4737 CHECK_OFFSET(si_uid); 4738 4739 /* timer */ 4740 CHECK_OFFSET(si_tid); 4741 CHECK_OFFSET(si_overrun); 4742 CHECK_OFFSET(si_value); 4743 4744 /* rt */ 4745 CHECK_OFFSET(si_pid); 4746 CHECK_OFFSET(si_uid); 4747 CHECK_OFFSET(si_value); 4748 4749 /* sigchld */ 4750 CHECK_OFFSET(si_pid); 4751 CHECK_OFFSET(si_uid); 4752 CHECK_OFFSET(si_status); 4753 CHECK_OFFSET(si_utime); 4754 CHECK_OFFSET(si_stime); 4755 4756 /* sigfault */ 4757 CHECK_OFFSET(si_addr); 4758 CHECK_OFFSET(si_trapno); 4759 CHECK_OFFSET(si_addr_lsb); 4760 CHECK_OFFSET(si_lower); 4761 CHECK_OFFSET(si_upper); 4762 CHECK_OFFSET(si_pkey); 4763 CHECK_OFFSET(si_perf_data); 4764 CHECK_OFFSET(si_perf_type); 4765 4766 /* sigpoll */ 4767 CHECK_OFFSET(si_band); 4768 CHECK_OFFSET(si_fd); 4769 4770 /* sigsys */ 4771 CHECK_OFFSET(si_call_addr); 4772 CHECK_OFFSET(si_syscall); 4773 CHECK_OFFSET(si_arch); 4774 #undef CHECK_OFFSET 4775 4776 /* usb asyncio */ 4777 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != 4778 offsetof(struct siginfo, si_addr)); 4779 if (sizeof(int) == sizeof(void __user *)) { 4780 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != 4781 sizeof(void __user *)); 4782 } else { 4783 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + 4784 sizeof_field(struct siginfo, si_uid)) != 4785 sizeof(void __user *)); 4786 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != 4787 offsetof(struct siginfo, si_uid)); 4788 } 4789 #ifdef CONFIG_COMPAT 4790 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != 4791 offsetof(struct compat_siginfo, si_addr)); 4792 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4793 sizeof(compat_uptr_t)); 4794 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4795 sizeof_field(struct siginfo, si_pid)); 4796 #endif 4797 } 4798 4799 void __init signals_init(void) 4800 { 4801 siginfo_buildtime_checks(); 4802 4803 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT); 4804 } 4805 4806 #ifdef CONFIG_KGDB_KDB 4807 #include <linux/kdb.h> 4808 /* 4809 * kdb_send_sig - Allows kdb to send signals without exposing 4810 * signal internals. This function checks if the required locks are 4811 * available before calling the main signal code, to avoid kdb 4812 * deadlocks. 4813 */ 4814 void kdb_send_sig(struct task_struct *t, int sig) 4815 { 4816 static struct task_struct *kdb_prev_t; 4817 int new_t, ret; 4818 if (!spin_trylock(&t->sighand->siglock)) { 4819 kdb_printf("Can't do kill command now.\n" 4820 "The sigmask lock is held somewhere else in " 4821 "kernel, try again later\n"); 4822 return; 4823 } 4824 new_t = kdb_prev_t != t; 4825 kdb_prev_t = t; 4826 if (!task_is_running(t) && new_t) { 4827 spin_unlock(&t->sighand->siglock); 4828 kdb_printf("Process is not RUNNING, sending a signal from " 4829 "kdb risks deadlock\n" 4830 "on the run queue locks. " 4831 "The signal has _not_ been sent.\n" 4832 "Reissue the kill command if you want to risk " 4833 "the deadlock.\n"); 4834 return; 4835 } 4836 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 4837 spin_unlock(&t->sighand->siglock); 4838 if (ret) 4839 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4840 sig, t->pid); 4841 else 4842 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4843 } 4844 #endif /* CONFIG_KGDB_KDB */ 4845