1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/signal.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 8 * 9 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 10 * Changes to use preallocated sigqueue structures 11 * to allow signals to be sent reliably. 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/user.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/sched/cputime.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/mm.h> 26 #include <linux/proc_fs.h> 27 #include <linux/tty.h> 28 #include <linux/binfmts.h> 29 #include <linux/coredump.h> 30 #include <linux/security.h> 31 #include <linux/syscalls.h> 32 #include <linux/ptrace.h> 33 #include <linux/signal.h> 34 #include <linux/signalfd.h> 35 #include <linux/ratelimit.h> 36 #include <linux/task_work.h> 37 #include <linux/capability.h> 38 #include <linux/freezer.h> 39 #include <linux/pid_namespace.h> 40 #include <linux/nsproxy.h> 41 #include <linux/user_namespace.h> 42 #include <linux/uprobes.h> 43 #include <linux/compat.h> 44 #include <linux/cn_proc.h> 45 #include <linux/compiler.h> 46 #include <linux/posix-timers.h> 47 #include <linux/cgroup.h> 48 #include <linux/audit.h> 49 #include <linux/sysctl.h> 50 51 #define CREATE_TRACE_POINTS 52 #include <trace/events/signal.h> 53 54 #include <asm/param.h> 55 #include <linux/uaccess.h> 56 #include <asm/unistd.h> 57 #include <asm/siginfo.h> 58 #include <asm/cacheflush.h> 59 #include <asm/syscall.h> /* for syscall_get_* */ 60 61 /* 62 * SLAB caches for signal bits. 63 */ 64 65 static struct kmem_cache *sigqueue_cachep; 66 67 int print_fatal_signals __read_mostly; 68 69 static void __user *sig_handler(struct task_struct *t, int sig) 70 { 71 return t->sighand->action[sig - 1].sa.sa_handler; 72 } 73 74 static inline bool sig_handler_ignored(void __user *handler, int sig) 75 { 76 /* Is it explicitly or implicitly ignored? */ 77 return handler == SIG_IGN || 78 (handler == SIG_DFL && sig_kernel_ignore(sig)); 79 } 80 81 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 82 { 83 void __user *handler; 84 85 handler = sig_handler(t, sig); 86 87 /* SIGKILL and SIGSTOP may not be sent to the global init */ 88 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 89 return true; 90 91 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 92 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 93 return true; 94 95 /* Only allow kernel generated signals to this kthread */ 96 if (unlikely((t->flags & PF_KTHREAD) && 97 (handler == SIG_KTHREAD_KERNEL) && !force)) 98 return true; 99 100 return sig_handler_ignored(handler, sig); 101 } 102 103 static bool sig_ignored(struct task_struct *t, int sig, bool force) 104 { 105 /* 106 * Blocked signals are never ignored, since the 107 * signal handler may change by the time it is 108 * unblocked. 109 */ 110 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 111 return false; 112 113 /* 114 * Tracers may want to know about even ignored signal unless it 115 * is SIGKILL which can't be reported anyway but can be ignored 116 * by SIGNAL_UNKILLABLE task. 117 */ 118 if (t->ptrace && sig != SIGKILL) 119 return false; 120 121 return sig_task_ignored(t, sig, force); 122 } 123 124 /* 125 * Re-calculate pending state from the set of locally pending 126 * signals, globally pending signals, and blocked signals. 127 */ 128 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 129 { 130 unsigned long ready; 131 long i; 132 133 switch (_NSIG_WORDS) { 134 default: 135 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 136 ready |= signal->sig[i] &~ blocked->sig[i]; 137 break; 138 139 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 140 ready |= signal->sig[2] &~ blocked->sig[2]; 141 ready |= signal->sig[1] &~ blocked->sig[1]; 142 ready |= signal->sig[0] &~ blocked->sig[0]; 143 break; 144 145 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 146 ready |= signal->sig[0] &~ blocked->sig[0]; 147 break; 148 149 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 150 } 151 return ready != 0; 152 } 153 154 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 155 156 static bool recalc_sigpending_tsk(struct task_struct *t) 157 { 158 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || 159 PENDING(&t->pending, &t->blocked) || 160 PENDING(&t->signal->shared_pending, &t->blocked) || 161 cgroup_task_frozen(t)) { 162 set_tsk_thread_flag(t, TIF_SIGPENDING); 163 return true; 164 } 165 166 /* 167 * We must never clear the flag in another thread, or in current 168 * when it's possible the current syscall is returning -ERESTART*. 169 * So we don't clear it here, and only callers who know they should do. 170 */ 171 return false; 172 } 173 174 /* 175 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 176 * This is superfluous when called on current, the wakeup is a harmless no-op. 177 */ 178 void recalc_sigpending_and_wake(struct task_struct *t) 179 { 180 if (recalc_sigpending_tsk(t)) 181 signal_wake_up(t, 0); 182 } 183 184 void recalc_sigpending(void) 185 { 186 if (!recalc_sigpending_tsk(current) && !freezing(current)) 187 clear_thread_flag(TIF_SIGPENDING); 188 189 } 190 EXPORT_SYMBOL(recalc_sigpending); 191 192 void calculate_sigpending(void) 193 { 194 /* Have any signals or users of TIF_SIGPENDING been delayed 195 * until after fork? 196 */ 197 spin_lock_irq(¤t->sighand->siglock); 198 set_tsk_thread_flag(current, TIF_SIGPENDING); 199 recalc_sigpending(); 200 spin_unlock_irq(¤t->sighand->siglock); 201 } 202 203 /* Given the mask, find the first available signal that should be serviced. */ 204 205 #define SYNCHRONOUS_MASK \ 206 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 207 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 208 209 int next_signal(struct sigpending *pending, sigset_t *mask) 210 { 211 unsigned long i, *s, *m, x; 212 int sig = 0; 213 214 s = pending->signal.sig; 215 m = mask->sig; 216 217 /* 218 * Handle the first word specially: it contains the 219 * synchronous signals that need to be dequeued first. 220 */ 221 x = *s &~ *m; 222 if (x) { 223 if (x & SYNCHRONOUS_MASK) 224 x &= SYNCHRONOUS_MASK; 225 sig = ffz(~x) + 1; 226 return sig; 227 } 228 229 switch (_NSIG_WORDS) { 230 default: 231 for (i = 1; i < _NSIG_WORDS; ++i) { 232 x = *++s &~ *++m; 233 if (!x) 234 continue; 235 sig = ffz(~x) + i*_NSIG_BPW + 1; 236 break; 237 } 238 break; 239 240 case 2: 241 x = s[1] &~ m[1]; 242 if (!x) 243 break; 244 sig = ffz(~x) + _NSIG_BPW + 1; 245 break; 246 247 case 1: 248 /* Nothing to do */ 249 break; 250 } 251 252 return sig; 253 } 254 255 static inline void print_dropped_signal(int sig) 256 { 257 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 258 259 if (!print_fatal_signals) 260 return; 261 262 if (!__ratelimit(&ratelimit_state)) 263 return; 264 265 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 266 current->comm, current->pid, sig); 267 } 268 269 /** 270 * task_set_jobctl_pending - set jobctl pending bits 271 * @task: target task 272 * @mask: pending bits to set 273 * 274 * Clear @mask from @task->jobctl. @mask must be subset of 275 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 276 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 277 * cleared. If @task is already being killed or exiting, this function 278 * becomes noop. 279 * 280 * CONTEXT: 281 * Must be called with @task->sighand->siglock held. 282 * 283 * RETURNS: 284 * %true if @mask is set, %false if made noop because @task was dying. 285 */ 286 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 287 { 288 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 289 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 290 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 291 292 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 293 return false; 294 295 if (mask & JOBCTL_STOP_SIGMASK) 296 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 297 298 task->jobctl |= mask; 299 return true; 300 } 301 302 /** 303 * task_clear_jobctl_trapping - clear jobctl trapping bit 304 * @task: target task 305 * 306 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 307 * Clear it and wake up the ptracer. Note that we don't need any further 308 * locking. @task->siglock guarantees that @task->parent points to the 309 * ptracer. 310 * 311 * CONTEXT: 312 * Must be called with @task->sighand->siglock held. 313 */ 314 void task_clear_jobctl_trapping(struct task_struct *task) 315 { 316 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 317 task->jobctl &= ~JOBCTL_TRAPPING; 318 smp_mb(); /* advised by wake_up_bit() */ 319 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 320 } 321 } 322 323 /** 324 * task_clear_jobctl_pending - clear jobctl pending bits 325 * @task: target task 326 * @mask: pending bits to clear 327 * 328 * Clear @mask from @task->jobctl. @mask must be subset of 329 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 330 * STOP bits are cleared together. 331 * 332 * If clearing of @mask leaves no stop or trap pending, this function calls 333 * task_clear_jobctl_trapping(). 334 * 335 * CONTEXT: 336 * Must be called with @task->sighand->siglock held. 337 */ 338 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 339 { 340 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 341 342 if (mask & JOBCTL_STOP_PENDING) 343 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 344 345 task->jobctl &= ~mask; 346 347 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 348 task_clear_jobctl_trapping(task); 349 } 350 351 /** 352 * task_participate_group_stop - participate in a group stop 353 * @task: task participating in a group stop 354 * 355 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 356 * Group stop states are cleared and the group stop count is consumed if 357 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 358 * stop, the appropriate `SIGNAL_*` flags are set. 359 * 360 * CONTEXT: 361 * Must be called with @task->sighand->siglock held. 362 * 363 * RETURNS: 364 * %true if group stop completion should be notified to the parent, %false 365 * otherwise. 366 */ 367 static bool task_participate_group_stop(struct task_struct *task) 368 { 369 struct signal_struct *sig = task->signal; 370 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 371 372 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 373 374 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 375 376 if (!consume) 377 return false; 378 379 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 380 sig->group_stop_count--; 381 382 /* 383 * Tell the caller to notify completion iff we are entering into a 384 * fresh group stop. Read comment in do_signal_stop() for details. 385 */ 386 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 387 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 388 return true; 389 } 390 return false; 391 } 392 393 void task_join_group_stop(struct task_struct *task) 394 { 395 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK; 396 struct signal_struct *sig = current->signal; 397 398 if (sig->group_stop_count) { 399 sig->group_stop_count++; 400 mask |= JOBCTL_STOP_CONSUME; 401 } else if (!(sig->flags & SIGNAL_STOP_STOPPED)) 402 return; 403 404 /* Have the new thread join an on-going signal group stop */ 405 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING); 406 } 407 408 /* 409 * allocate a new signal queue record 410 * - this may be called without locks if and only if t == current, otherwise an 411 * appropriate lock must be held to stop the target task from exiting 412 */ 413 static struct sigqueue * 414 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags, 415 int override_rlimit, const unsigned int sigqueue_flags) 416 { 417 struct sigqueue *q = NULL; 418 struct ucounts *ucounts = NULL; 419 long sigpending; 420 421 /* 422 * Protect access to @t credentials. This can go away when all 423 * callers hold rcu read lock. 424 * 425 * NOTE! A pending signal will hold on to the user refcount, 426 * and we get/put the refcount only when the sigpending count 427 * changes from/to zero. 428 */ 429 rcu_read_lock(); 430 ucounts = task_ucounts(t); 431 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 432 rcu_read_unlock(); 433 if (!sigpending) 434 return NULL; 435 436 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) { 437 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags); 438 } else { 439 print_dropped_signal(sig); 440 } 441 442 if (unlikely(q == NULL)) { 443 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 444 } else { 445 INIT_LIST_HEAD(&q->list); 446 q->flags = sigqueue_flags; 447 q->ucounts = ucounts; 448 } 449 return q; 450 } 451 452 static void __sigqueue_free(struct sigqueue *q) 453 { 454 if (q->flags & SIGQUEUE_PREALLOC) 455 return; 456 if (q->ucounts) { 457 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING); 458 q->ucounts = NULL; 459 } 460 kmem_cache_free(sigqueue_cachep, q); 461 } 462 463 void flush_sigqueue(struct sigpending *queue) 464 { 465 struct sigqueue *q; 466 467 sigemptyset(&queue->signal); 468 while (!list_empty(&queue->list)) { 469 q = list_entry(queue->list.next, struct sigqueue , list); 470 list_del_init(&q->list); 471 __sigqueue_free(q); 472 } 473 } 474 475 /* 476 * Flush all pending signals for this kthread. 477 */ 478 void flush_signals(struct task_struct *t) 479 { 480 unsigned long flags; 481 482 spin_lock_irqsave(&t->sighand->siglock, flags); 483 clear_tsk_thread_flag(t, TIF_SIGPENDING); 484 flush_sigqueue(&t->pending); 485 flush_sigqueue(&t->signal->shared_pending); 486 spin_unlock_irqrestore(&t->sighand->siglock, flags); 487 } 488 EXPORT_SYMBOL(flush_signals); 489 490 #ifdef CONFIG_POSIX_TIMERS 491 static void __flush_itimer_signals(struct sigpending *pending) 492 { 493 sigset_t signal, retain; 494 struct sigqueue *q, *n; 495 496 signal = pending->signal; 497 sigemptyset(&retain); 498 499 list_for_each_entry_safe(q, n, &pending->list, list) { 500 int sig = q->info.si_signo; 501 502 if (likely(q->info.si_code != SI_TIMER)) { 503 sigaddset(&retain, sig); 504 } else { 505 sigdelset(&signal, sig); 506 list_del_init(&q->list); 507 __sigqueue_free(q); 508 } 509 } 510 511 sigorsets(&pending->signal, &signal, &retain); 512 } 513 514 void flush_itimer_signals(void) 515 { 516 struct task_struct *tsk = current; 517 unsigned long flags; 518 519 spin_lock_irqsave(&tsk->sighand->siglock, flags); 520 __flush_itimer_signals(&tsk->pending); 521 __flush_itimer_signals(&tsk->signal->shared_pending); 522 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 523 } 524 #endif 525 526 void ignore_signals(struct task_struct *t) 527 { 528 int i; 529 530 for (i = 0; i < _NSIG; ++i) 531 t->sighand->action[i].sa.sa_handler = SIG_IGN; 532 533 flush_signals(t); 534 } 535 536 /* 537 * Flush all handlers for a task. 538 */ 539 540 void 541 flush_signal_handlers(struct task_struct *t, int force_default) 542 { 543 int i; 544 struct k_sigaction *ka = &t->sighand->action[0]; 545 for (i = _NSIG ; i != 0 ; i--) { 546 if (force_default || ka->sa.sa_handler != SIG_IGN) 547 ka->sa.sa_handler = SIG_DFL; 548 ka->sa.sa_flags = 0; 549 #ifdef __ARCH_HAS_SA_RESTORER 550 ka->sa.sa_restorer = NULL; 551 #endif 552 sigemptyset(&ka->sa.sa_mask); 553 ka++; 554 } 555 } 556 557 bool unhandled_signal(struct task_struct *tsk, int sig) 558 { 559 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 560 if (is_global_init(tsk)) 561 return true; 562 563 if (handler != SIG_IGN && handler != SIG_DFL) 564 return false; 565 566 /* If dying, we handle all new signals by ignoring them */ 567 if (fatal_signal_pending(tsk)) 568 return false; 569 570 /* if ptraced, let the tracer determine */ 571 return !tsk->ptrace; 572 } 573 574 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 575 bool *resched_timer) 576 { 577 struct sigqueue *q, *first = NULL; 578 579 /* 580 * Collect the siginfo appropriate to this signal. Check if 581 * there is another siginfo for the same signal. 582 */ 583 list_for_each_entry(q, &list->list, list) { 584 if (q->info.si_signo == sig) { 585 if (first) 586 goto still_pending; 587 first = q; 588 } 589 } 590 591 sigdelset(&list->signal, sig); 592 593 if (first) { 594 still_pending: 595 list_del_init(&first->list); 596 copy_siginfo(info, &first->info); 597 598 *resched_timer = 599 (first->flags & SIGQUEUE_PREALLOC) && 600 (info->si_code == SI_TIMER) && 601 (info->si_sys_private); 602 603 __sigqueue_free(first); 604 } else { 605 /* 606 * Ok, it wasn't in the queue. This must be 607 * a fast-pathed signal or we must have been 608 * out of queue space. So zero out the info. 609 */ 610 clear_siginfo(info); 611 info->si_signo = sig; 612 info->si_errno = 0; 613 info->si_code = SI_USER; 614 info->si_pid = 0; 615 info->si_uid = 0; 616 } 617 } 618 619 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 620 kernel_siginfo_t *info, bool *resched_timer) 621 { 622 int sig = next_signal(pending, mask); 623 624 if (sig) 625 collect_signal(sig, pending, info, resched_timer); 626 return sig; 627 } 628 629 /* 630 * Dequeue a signal and return the element to the caller, which is 631 * expected to free it. 632 * 633 * All callers have to hold the siglock. 634 */ 635 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, 636 kernel_siginfo_t *info, enum pid_type *type) 637 { 638 bool resched_timer = false; 639 int signr; 640 641 /* We only dequeue private signals from ourselves, we don't let 642 * signalfd steal them 643 */ 644 *type = PIDTYPE_PID; 645 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 646 if (!signr) { 647 *type = PIDTYPE_TGID; 648 signr = __dequeue_signal(&tsk->signal->shared_pending, 649 mask, info, &resched_timer); 650 #ifdef CONFIG_POSIX_TIMERS 651 /* 652 * itimer signal ? 653 * 654 * itimers are process shared and we restart periodic 655 * itimers in the signal delivery path to prevent DoS 656 * attacks in the high resolution timer case. This is 657 * compliant with the old way of self-restarting 658 * itimers, as the SIGALRM is a legacy signal and only 659 * queued once. Changing the restart behaviour to 660 * restart the timer in the signal dequeue path is 661 * reducing the timer noise on heavy loaded !highres 662 * systems too. 663 */ 664 if (unlikely(signr == SIGALRM)) { 665 struct hrtimer *tmr = &tsk->signal->real_timer; 666 667 if (!hrtimer_is_queued(tmr) && 668 tsk->signal->it_real_incr != 0) { 669 hrtimer_forward(tmr, tmr->base->get_time(), 670 tsk->signal->it_real_incr); 671 hrtimer_restart(tmr); 672 } 673 } 674 #endif 675 } 676 677 recalc_sigpending(); 678 if (!signr) 679 return 0; 680 681 if (unlikely(sig_kernel_stop(signr))) { 682 /* 683 * Set a marker that we have dequeued a stop signal. Our 684 * caller might release the siglock and then the pending 685 * stop signal it is about to process is no longer in the 686 * pending bitmasks, but must still be cleared by a SIGCONT 687 * (and overruled by a SIGKILL). So those cases clear this 688 * shared flag after we've set it. Note that this flag may 689 * remain set after the signal we return is ignored or 690 * handled. That doesn't matter because its only purpose 691 * is to alert stop-signal processing code when another 692 * processor has come along and cleared the flag. 693 */ 694 current->jobctl |= JOBCTL_STOP_DEQUEUED; 695 } 696 #ifdef CONFIG_POSIX_TIMERS 697 if (resched_timer) { 698 /* 699 * Release the siglock to ensure proper locking order 700 * of timer locks outside of siglocks. Note, we leave 701 * irqs disabled here, since the posix-timers code is 702 * about to disable them again anyway. 703 */ 704 spin_unlock(&tsk->sighand->siglock); 705 posixtimer_rearm(info); 706 spin_lock(&tsk->sighand->siglock); 707 708 /* Don't expose the si_sys_private value to userspace */ 709 info->si_sys_private = 0; 710 } 711 #endif 712 return signr; 713 } 714 EXPORT_SYMBOL_GPL(dequeue_signal); 715 716 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 717 { 718 struct task_struct *tsk = current; 719 struct sigpending *pending = &tsk->pending; 720 struct sigqueue *q, *sync = NULL; 721 722 /* 723 * Might a synchronous signal be in the queue? 724 */ 725 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 726 return 0; 727 728 /* 729 * Return the first synchronous signal in the queue. 730 */ 731 list_for_each_entry(q, &pending->list, list) { 732 /* Synchronous signals have a positive si_code */ 733 if ((q->info.si_code > SI_USER) && 734 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 735 sync = q; 736 goto next; 737 } 738 } 739 return 0; 740 next: 741 /* 742 * Check if there is another siginfo for the same signal. 743 */ 744 list_for_each_entry_continue(q, &pending->list, list) { 745 if (q->info.si_signo == sync->info.si_signo) 746 goto still_pending; 747 } 748 749 sigdelset(&pending->signal, sync->info.si_signo); 750 recalc_sigpending(); 751 still_pending: 752 list_del_init(&sync->list); 753 copy_siginfo(info, &sync->info); 754 __sigqueue_free(sync); 755 return info->si_signo; 756 } 757 758 /* 759 * Tell a process that it has a new active signal.. 760 * 761 * NOTE! we rely on the previous spin_lock to 762 * lock interrupts for us! We can only be called with 763 * "siglock" held, and the local interrupt must 764 * have been disabled when that got acquired! 765 * 766 * No need to set need_resched since signal event passing 767 * goes through ->blocked 768 */ 769 void signal_wake_up_state(struct task_struct *t, unsigned int state) 770 { 771 lockdep_assert_held(&t->sighand->siglock); 772 773 set_tsk_thread_flag(t, TIF_SIGPENDING); 774 775 /* 776 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 777 * case. We don't check t->state here because there is a race with it 778 * executing another processor and just now entering stopped state. 779 * By using wake_up_state, we ensure the process will wake up and 780 * handle its death signal. 781 */ 782 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 783 kick_process(t); 784 } 785 786 /* 787 * Remove signals in mask from the pending set and queue. 788 * Returns 1 if any signals were found. 789 * 790 * All callers must be holding the siglock. 791 */ 792 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 793 { 794 struct sigqueue *q, *n; 795 sigset_t m; 796 797 sigandsets(&m, mask, &s->signal); 798 if (sigisemptyset(&m)) 799 return; 800 801 sigandnsets(&s->signal, &s->signal, mask); 802 list_for_each_entry_safe(q, n, &s->list, list) { 803 if (sigismember(mask, q->info.si_signo)) { 804 list_del_init(&q->list); 805 __sigqueue_free(q); 806 } 807 } 808 } 809 810 static inline int is_si_special(const struct kernel_siginfo *info) 811 { 812 return info <= SEND_SIG_PRIV; 813 } 814 815 static inline bool si_fromuser(const struct kernel_siginfo *info) 816 { 817 return info == SEND_SIG_NOINFO || 818 (!is_si_special(info) && SI_FROMUSER(info)); 819 } 820 821 /* 822 * called with RCU read lock from check_kill_permission() 823 */ 824 static bool kill_ok_by_cred(struct task_struct *t) 825 { 826 const struct cred *cred = current_cred(); 827 const struct cred *tcred = __task_cred(t); 828 829 return uid_eq(cred->euid, tcred->suid) || 830 uid_eq(cred->euid, tcred->uid) || 831 uid_eq(cred->uid, tcred->suid) || 832 uid_eq(cred->uid, tcred->uid) || 833 ns_capable(tcred->user_ns, CAP_KILL); 834 } 835 836 /* 837 * Bad permissions for sending the signal 838 * - the caller must hold the RCU read lock 839 */ 840 static int check_kill_permission(int sig, struct kernel_siginfo *info, 841 struct task_struct *t) 842 { 843 struct pid *sid; 844 int error; 845 846 if (!valid_signal(sig)) 847 return -EINVAL; 848 849 if (!si_fromuser(info)) 850 return 0; 851 852 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 853 if (error) 854 return error; 855 856 if (!same_thread_group(current, t) && 857 !kill_ok_by_cred(t)) { 858 switch (sig) { 859 case SIGCONT: 860 sid = task_session(t); 861 /* 862 * We don't return the error if sid == NULL. The 863 * task was unhashed, the caller must notice this. 864 */ 865 if (!sid || sid == task_session(current)) 866 break; 867 fallthrough; 868 default: 869 return -EPERM; 870 } 871 } 872 873 return security_task_kill(t, info, sig, NULL); 874 } 875 876 /** 877 * ptrace_trap_notify - schedule trap to notify ptracer 878 * @t: tracee wanting to notify tracer 879 * 880 * This function schedules sticky ptrace trap which is cleared on the next 881 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 882 * ptracer. 883 * 884 * If @t is running, STOP trap will be taken. If trapped for STOP and 885 * ptracer is listening for events, tracee is woken up so that it can 886 * re-trap for the new event. If trapped otherwise, STOP trap will be 887 * eventually taken without returning to userland after the existing traps 888 * are finished by PTRACE_CONT. 889 * 890 * CONTEXT: 891 * Must be called with @task->sighand->siglock held. 892 */ 893 static void ptrace_trap_notify(struct task_struct *t) 894 { 895 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 896 lockdep_assert_held(&t->sighand->siglock); 897 898 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 899 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 900 } 901 902 /* 903 * Handle magic process-wide effects of stop/continue signals. Unlike 904 * the signal actions, these happen immediately at signal-generation 905 * time regardless of blocking, ignoring, or handling. This does the 906 * actual continuing for SIGCONT, but not the actual stopping for stop 907 * signals. The process stop is done as a signal action for SIG_DFL. 908 * 909 * Returns true if the signal should be actually delivered, otherwise 910 * it should be dropped. 911 */ 912 static bool prepare_signal(int sig, struct task_struct *p, bool force) 913 { 914 struct signal_struct *signal = p->signal; 915 struct task_struct *t; 916 sigset_t flush; 917 918 if (signal->flags & SIGNAL_GROUP_EXIT) { 919 if (signal->core_state) 920 return sig == SIGKILL; 921 /* 922 * The process is in the middle of dying, drop the signal. 923 */ 924 return false; 925 } else if (sig_kernel_stop(sig)) { 926 /* 927 * This is a stop signal. Remove SIGCONT from all queues. 928 */ 929 siginitset(&flush, sigmask(SIGCONT)); 930 flush_sigqueue_mask(&flush, &signal->shared_pending); 931 for_each_thread(p, t) 932 flush_sigqueue_mask(&flush, &t->pending); 933 } else if (sig == SIGCONT) { 934 unsigned int why; 935 /* 936 * Remove all stop signals from all queues, wake all threads. 937 */ 938 siginitset(&flush, SIG_KERNEL_STOP_MASK); 939 flush_sigqueue_mask(&flush, &signal->shared_pending); 940 for_each_thread(p, t) { 941 flush_sigqueue_mask(&flush, &t->pending); 942 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 943 if (likely(!(t->ptrace & PT_SEIZED))) { 944 t->jobctl &= ~JOBCTL_STOPPED; 945 wake_up_state(t, __TASK_STOPPED); 946 } else 947 ptrace_trap_notify(t); 948 } 949 950 /* 951 * Notify the parent with CLD_CONTINUED if we were stopped. 952 * 953 * If we were in the middle of a group stop, we pretend it 954 * was already finished, and then continued. Since SIGCHLD 955 * doesn't queue we report only CLD_STOPPED, as if the next 956 * CLD_CONTINUED was dropped. 957 */ 958 why = 0; 959 if (signal->flags & SIGNAL_STOP_STOPPED) 960 why |= SIGNAL_CLD_CONTINUED; 961 else if (signal->group_stop_count) 962 why |= SIGNAL_CLD_STOPPED; 963 964 if (why) { 965 /* 966 * The first thread which returns from do_signal_stop() 967 * will take ->siglock, notice SIGNAL_CLD_MASK, and 968 * notify its parent. See get_signal(). 969 */ 970 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 971 signal->group_stop_count = 0; 972 signal->group_exit_code = 0; 973 } 974 } 975 976 return !sig_ignored(p, sig, force); 977 } 978 979 /* 980 * Test if P wants to take SIG. After we've checked all threads with this, 981 * it's equivalent to finding no threads not blocking SIG. Any threads not 982 * blocking SIG were ruled out because they are not running and already 983 * have pending signals. Such threads will dequeue from the shared queue 984 * as soon as they're available, so putting the signal on the shared queue 985 * will be equivalent to sending it to one such thread. 986 */ 987 static inline bool wants_signal(int sig, struct task_struct *p) 988 { 989 if (sigismember(&p->blocked, sig)) 990 return false; 991 992 if (p->flags & PF_EXITING) 993 return false; 994 995 if (sig == SIGKILL) 996 return true; 997 998 if (task_is_stopped_or_traced(p)) 999 return false; 1000 1001 return task_curr(p) || !task_sigpending(p); 1002 } 1003 1004 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 1005 { 1006 struct signal_struct *signal = p->signal; 1007 struct task_struct *t; 1008 1009 /* 1010 * Now find a thread we can wake up to take the signal off the queue. 1011 * 1012 * Try the suggested task first (may or may not be the main thread). 1013 */ 1014 if (wants_signal(sig, p)) 1015 t = p; 1016 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 1017 /* 1018 * There is just one thread and it does not need to be woken. 1019 * It will dequeue unblocked signals before it runs again. 1020 */ 1021 return; 1022 else { 1023 /* 1024 * Otherwise try to find a suitable thread. 1025 */ 1026 t = signal->curr_target; 1027 while (!wants_signal(sig, t)) { 1028 t = next_thread(t); 1029 if (t == signal->curr_target) 1030 /* 1031 * No thread needs to be woken. 1032 * Any eligible threads will see 1033 * the signal in the queue soon. 1034 */ 1035 return; 1036 } 1037 signal->curr_target = t; 1038 } 1039 1040 /* 1041 * Found a killable thread. If the signal will be fatal, 1042 * then start taking the whole group down immediately. 1043 */ 1044 if (sig_fatal(p, sig) && 1045 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) && 1046 !sigismember(&t->real_blocked, sig) && 1047 (sig == SIGKILL || !p->ptrace)) { 1048 /* 1049 * This signal will be fatal to the whole group. 1050 */ 1051 if (!sig_kernel_coredump(sig)) { 1052 /* 1053 * Start a group exit and wake everybody up. 1054 * This way we don't have other threads 1055 * running and doing things after a slower 1056 * thread has the fatal signal pending. 1057 */ 1058 signal->flags = SIGNAL_GROUP_EXIT; 1059 signal->group_exit_code = sig; 1060 signal->group_stop_count = 0; 1061 t = p; 1062 do { 1063 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1064 sigaddset(&t->pending.signal, SIGKILL); 1065 signal_wake_up(t, 1); 1066 } while_each_thread(p, t); 1067 return; 1068 } 1069 } 1070 1071 /* 1072 * The signal is already in the shared-pending queue. 1073 * Tell the chosen thread to wake up and dequeue it. 1074 */ 1075 signal_wake_up(t, sig == SIGKILL); 1076 return; 1077 } 1078 1079 static inline bool legacy_queue(struct sigpending *signals, int sig) 1080 { 1081 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1082 } 1083 1084 static int __send_signal_locked(int sig, struct kernel_siginfo *info, 1085 struct task_struct *t, enum pid_type type, bool force) 1086 { 1087 struct sigpending *pending; 1088 struct sigqueue *q; 1089 int override_rlimit; 1090 int ret = 0, result; 1091 1092 lockdep_assert_held(&t->sighand->siglock); 1093 1094 result = TRACE_SIGNAL_IGNORED; 1095 if (!prepare_signal(sig, t, force)) 1096 goto ret; 1097 1098 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1099 /* 1100 * Short-circuit ignored signals and support queuing 1101 * exactly one non-rt signal, so that we can get more 1102 * detailed information about the cause of the signal. 1103 */ 1104 result = TRACE_SIGNAL_ALREADY_PENDING; 1105 if (legacy_queue(pending, sig)) 1106 goto ret; 1107 1108 result = TRACE_SIGNAL_DELIVERED; 1109 /* 1110 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1111 */ 1112 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1113 goto out_set; 1114 1115 /* 1116 * Real-time signals must be queued if sent by sigqueue, or 1117 * some other real-time mechanism. It is implementation 1118 * defined whether kill() does so. We attempt to do so, on 1119 * the principle of least surprise, but since kill is not 1120 * allowed to fail with EAGAIN when low on memory we just 1121 * make sure at least one signal gets delivered and don't 1122 * pass on the info struct. 1123 */ 1124 if (sig < SIGRTMIN) 1125 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1126 else 1127 override_rlimit = 0; 1128 1129 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0); 1130 1131 if (q) { 1132 list_add_tail(&q->list, &pending->list); 1133 switch ((unsigned long) info) { 1134 case (unsigned long) SEND_SIG_NOINFO: 1135 clear_siginfo(&q->info); 1136 q->info.si_signo = sig; 1137 q->info.si_errno = 0; 1138 q->info.si_code = SI_USER; 1139 q->info.si_pid = task_tgid_nr_ns(current, 1140 task_active_pid_ns(t)); 1141 rcu_read_lock(); 1142 q->info.si_uid = 1143 from_kuid_munged(task_cred_xxx(t, user_ns), 1144 current_uid()); 1145 rcu_read_unlock(); 1146 break; 1147 case (unsigned long) SEND_SIG_PRIV: 1148 clear_siginfo(&q->info); 1149 q->info.si_signo = sig; 1150 q->info.si_errno = 0; 1151 q->info.si_code = SI_KERNEL; 1152 q->info.si_pid = 0; 1153 q->info.si_uid = 0; 1154 break; 1155 default: 1156 copy_siginfo(&q->info, info); 1157 break; 1158 } 1159 } else if (!is_si_special(info) && 1160 sig >= SIGRTMIN && info->si_code != SI_USER) { 1161 /* 1162 * Queue overflow, abort. We may abort if the 1163 * signal was rt and sent by user using something 1164 * other than kill(). 1165 */ 1166 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1167 ret = -EAGAIN; 1168 goto ret; 1169 } else { 1170 /* 1171 * This is a silent loss of information. We still 1172 * send the signal, but the *info bits are lost. 1173 */ 1174 result = TRACE_SIGNAL_LOSE_INFO; 1175 } 1176 1177 out_set: 1178 signalfd_notify(t, sig); 1179 sigaddset(&pending->signal, sig); 1180 1181 /* Let multiprocess signals appear after on-going forks */ 1182 if (type > PIDTYPE_TGID) { 1183 struct multiprocess_signals *delayed; 1184 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1185 sigset_t *signal = &delayed->signal; 1186 /* Can't queue both a stop and a continue signal */ 1187 if (sig == SIGCONT) 1188 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1189 else if (sig_kernel_stop(sig)) 1190 sigdelset(signal, SIGCONT); 1191 sigaddset(signal, sig); 1192 } 1193 } 1194 1195 complete_signal(sig, t, type); 1196 ret: 1197 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1198 return ret; 1199 } 1200 1201 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) 1202 { 1203 bool ret = false; 1204 switch (siginfo_layout(info->si_signo, info->si_code)) { 1205 case SIL_KILL: 1206 case SIL_CHLD: 1207 case SIL_RT: 1208 ret = true; 1209 break; 1210 case SIL_TIMER: 1211 case SIL_POLL: 1212 case SIL_FAULT: 1213 case SIL_FAULT_TRAPNO: 1214 case SIL_FAULT_MCEERR: 1215 case SIL_FAULT_BNDERR: 1216 case SIL_FAULT_PKUERR: 1217 case SIL_FAULT_PERF_EVENT: 1218 case SIL_SYS: 1219 ret = false; 1220 break; 1221 } 1222 return ret; 1223 } 1224 1225 int send_signal_locked(int sig, struct kernel_siginfo *info, 1226 struct task_struct *t, enum pid_type type) 1227 { 1228 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ 1229 bool force = false; 1230 1231 if (info == SEND_SIG_NOINFO) { 1232 /* Force if sent from an ancestor pid namespace */ 1233 force = !task_pid_nr_ns(current, task_active_pid_ns(t)); 1234 } else if (info == SEND_SIG_PRIV) { 1235 /* Don't ignore kernel generated signals */ 1236 force = true; 1237 } else if (has_si_pid_and_uid(info)) { 1238 /* SIGKILL and SIGSTOP is special or has ids */ 1239 struct user_namespace *t_user_ns; 1240 1241 rcu_read_lock(); 1242 t_user_ns = task_cred_xxx(t, user_ns); 1243 if (current_user_ns() != t_user_ns) { 1244 kuid_t uid = make_kuid(current_user_ns(), info->si_uid); 1245 info->si_uid = from_kuid_munged(t_user_ns, uid); 1246 } 1247 rcu_read_unlock(); 1248 1249 /* A kernel generated signal? */ 1250 force = (info->si_code == SI_KERNEL); 1251 1252 /* From an ancestor pid namespace? */ 1253 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { 1254 info->si_pid = 0; 1255 force = true; 1256 } 1257 } 1258 return __send_signal_locked(sig, info, t, type, force); 1259 } 1260 1261 static void print_fatal_signal(int signr) 1262 { 1263 struct pt_regs *regs = task_pt_regs(current); 1264 struct file *exe_file; 1265 1266 exe_file = get_task_exe_file(current); 1267 if (exe_file) { 1268 pr_info("%pD: %s: potentially unexpected fatal signal %d.\n", 1269 exe_file, current->comm, signr); 1270 fput(exe_file); 1271 } else { 1272 pr_info("%s: potentially unexpected fatal signal %d.\n", 1273 current->comm, signr); 1274 } 1275 1276 #if defined(__i386__) && !defined(__arch_um__) 1277 pr_info("code at %08lx: ", regs->ip); 1278 { 1279 int i; 1280 for (i = 0; i < 16; i++) { 1281 unsigned char insn; 1282 1283 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1284 break; 1285 pr_cont("%02x ", insn); 1286 } 1287 } 1288 pr_cont("\n"); 1289 #endif 1290 preempt_disable(); 1291 show_regs(regs); 1292 preempt_enable(); 1293 } 1294 1295 static int __init setup_print_fatal_signals(char *str) 1296 { 1297 get_option (&str, &print_fatal_signals); 1298 1299 return 1; 1300 } 1301 1302 __setup("print-fatal-signals=", setup_print_fatal_signals); 1303 1304 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1305 enum pid_type type) 1306 { 1307 unsigned long flags; 1308 int ret = -ESRCH; 1309 1310 if (lock_task_sighand(p, &flags)) { 1311 ret = send_signal_locked(sig, info, p, type); 1312 unlock_task_sighand(p, &flags); 1313 } 1314 1315 return ret; 1316 } 1317 1318 enum sig_handler { 1319 HANDLER_CURRENT, /* If reachable use the current handler */ 1320 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */ 1321 HANDLER_EXIT, /* Only visible as the process exit code */ 1322 }; 1323 1324 /* 1325 * Force a signal that the process can't ignore: if necessary 1326 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1327 * 1328 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1329 * since we do not want to have a signal handler that was blocked 1330 * be invoked when user space had explicitly blocked it. 1331 * 1332 * We don't want to have recursive SIGSEGV's etc, for example, 1333 * that is why we also clear SIGNAL_UNKILLABLE. 1334 */ 1335 static int 1336 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t, 1337 enum sig_handler handler) 1338 { 1339 unsigned long int flags; 1340 int ret, blocked, ignored; 1341 struct k_sigaction *action; 1342 int sig = info->si_signo; 1343 1344 spin_lock_irqsave(&t->sighand->siglock, flags); 1345 action = &t->sighand->action[sig-1]; 1346 ignored = action->sa.sa_handler == SIG_IGN; 1347 blocked = sigismember(&t->blocked, sig); 1348 if (blocked || ignored || (handler != HANDLER_CURRENT)) { 1349 action->sa.sa_handler = SIG_DFL; 1350 if (handler == HANDLER_EXIT) 1351 action->sa.sa_flags |= SA_IMMUTABLE; 1352 if (blocked) { 1353 sigdelset(&t->blocked, sig); 1354 recalc_sigpending_and_wake(t); 1355 } 1356 } 1357 /* 1358 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1359 * debugging to leave init killable. But HANDLER_EXIT is always fatal. 1360 */ 1361 if (action->sa.sa_handler == SIG_DFL && 1362 (!t->ptrace || (handler == HANDLER_EXIT))) 1363 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1364 ret = send_signal_locked(sig, info, t, PIDTYPE_PID); 1365 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1366 1367 return ret; 1368 } 1369 1370 int force_sig_info(struct kernel_siginfo *info) 1371 { 1372 return force_sig_info_to_task(info, current, HANDLER_CURRENT); 1373 } 1374 1375 /* 1376 * Nuke all other threads in the group. 1377 */ 1378 int zap_other_threads(struct task_struct *p) 1379 { 1380 struct task_struct *t = p; 1381 int count = 0; 1382 1383 p->signal->group_stop_count = 0; 1384 1385 while_each_thread(p, t) { 1386 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1387 /* Don't require de_thread to wait for the vhost_worker */ 1388 if ((t->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER) 1389 count++; 1390 1391 /* Don't bother with already dead threads */ 1392 if (t->exit_state) 1393 continue; 1394 sigaddset(&t->pending.signal, SIGKILL); 1395 signal_wake_up(t, 1); 1396 } 1397 1398 return count; 1399 } 1400 1401 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1402 unsigned long *flags) 1403 { 1404 struct sighand_struct *sighand; 1405 1406 rcu_read_lock(); 1407 for (;;) { 1408 sighand = rcu_dereference(tsk->sighand); 1409 if (unlikely(sighand == NULL)) 1410 break; 1411 1412 /* 1413 * This sighand can be already freed and even reused, but 1414 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1415 * initializes ->siglock: this slab can't go away, it has 1416 * the same object type, ->siglock can't be reinitialized. 1417 * 1418 * We need to ensure that tsk->sighand is still the same 1419 * after we take the lock, we can race with de_thread() or 1420 * __exit_signal(). In the latter case the next iteration 1421 * must see ->sighand == NULL. 1422 */ 1423 spin_lock_irqsave(&sighand->siglock, *flags); 1424 if (likely(sighand == rcu_access_pointer(tsk->sighand))) 1425 break; 1426 spin_unlock_irqrestore(&sighand->siglock, *flags); 1427 } 1428 rcu_read_unlock(); 1429 1430 return sighand; 1431 } 1432 1433 #ifdef CONFIG_LOCKDEP 1434 void lockdep_assert_task_sighand_held(struct task_struct *task) 1435 { 1436 struct sighand_struct *sighand; 1437 1438 rcu_read_lock(); 1439 sighand = rcu_dereference(task->sighand); 1440 if (sighand) 1441 lockdep_assert_held(&sighand->siglock); 1442 else 1443 WARN_ON_ONCE(1); 1444 rcu_read_unlock(); 1445 } 1446 #endif 1447 1448 /* 1449 * send signal info to all the members of a group 1450 */ 1451 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1452 struct task_struct *p, enum pid_type type) 1453 { 1454 int ret; 1455 1456 rcu_read_lock(); 1457 ret = check_kill_permission(sig, info, p); 1458 rcu_read_unlock(); 1459 1460 if (!ret && sig) 1461 ret = do_send_sig_info(sig, info, p, type); 1462 1463 return ret; 1464 } 1465 1466 /* 1467 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1468 * control characters do (^C, ^Z etc) 1469 * - the caller must hold at least a readlock on tasklist_lock 1470 */ 1471 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1472 { 1473 struct task_struct *p = NULL; 1474 int retval, success; 1475 1476 success = 0; 1477 retval = -ESRCH; 1478 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1479 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1480 success |= !err; 1481 retval = err; 1482 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1483 return success ? 0 : retval; 1484 } 1485 1486 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1487 { 1488 int error = -ESRCH; 1489 struct task_struct *p; 1490 1491 for (;;) { 1492 rcu_read_lock(); 1493 p = pid_task(pid, PIDTYPE_PID); 1494 if (p) 1495 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID); 1496 rcu_read_unlock(); 1497 if (likely(!p || error != -ESRCH)) 1498 return error; 1499 1500 /* 1501 * The task was unhashed in between, try again. If it 1502 * is dead, pid_task() will return NULL, if we race with 1503 * de_thread() it will find the new leader. 1504 */ 1505 } 1506 } 1507 1508 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1509 { 1510 int error; 1511 rcu_read_lock(); 1512 error = kill_pid_info(sig, info, find_vpid(pid)); 1513 rcu_read_unlock(); 1514 return error; 1515 } 1516 1517 static inline bool kill_as_cred_perm(const struct cred *cred, 1518 struct task_struct *target) 1519 { 1520 const struct cred *pcred = __task_cred(target); 1521 1522 return uid_eq(cred->euid, pcred->suid) || 1523 uid_eq(cred->euid, pcred->uid) || 1524 uid_eq(cred->uid, pcred->suid) || 1525 uid_eq(cred->uid, pcred->uid); 1526 } 1527 1528 /* 1529 * The usb asyncio usage of siginfo is wrong. The glibc support 1530 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. 1531 * AKA after the generic fields: 1532 * kernel_pid_t si_pid; 1533 * kernel_uid32_t si_uid; 1534 * sigval_t si_value; 1535 * 1536 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout 1537 * after the generic fields is: 1538 * void __user *si_addr; 1539 * 1540 * This is a practical problem when there is a 64bit big endian kernel 1541 * and a 32bit userspace. As the 32bit address will encoded in the low 1542 * 32bits of the pointer. Those low 32bits will be stored at higher 1543 * address than appear in a 32 bit pointer. So userspace will not 1544 * see the address it was expecting for it's completions. 1545 * 1546 * There is nothing in the encoding that can allow 1547 * copy_siginfo_to_user32 to detect this confusion of formats, so 1548 * handle this by requiring the caller of kill_pid_usb_asyncio to 1549 * notice when this situration takes place and to store the 32bit 1550 * pointer in sival_int, instead of sival_addr of the sigval_t addr 1551 * parameter. 1552 */ 1553 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, 1554 struct pid *pid, const struct cred *cred) 1555 { 1556 struct kernel_siginfo info; 1557 struct task_struct *p; 1558 unsigned long flags; 1559 int ret = -EINVAL; 1560 1561 if (!valid_signal(sig)) 1562 return ret; 1563 1564 clear_siginfo(&info); 1565 info.si_signo = sig; 1566 info.si_errno = errno; 1567 info.si_code = SI_ASYNCIO; 1568 *((sigval_t *)&info.si_pid) = addr; 1569 1570 rcu_read_lock(); 1571 p = pid_task(pid, PIDTYPE_PID); 1572 if (!p) { 1573 ret = -ESRCH; 1574 goto out_unlock; 1575 } 1576 if (!kill_as_cred_perm(cred, p)) { 1577 ret = -EPERM; 1578 goto out_unlock; 1579 } 1580 ret = security_task_kill(p, &info, sig, cred); 1581 if (ret) 1582 goto out_unlock; 1583 1584 if (sig) { 1585 if (lock_task_sighand(p, &flags)) { 1586 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false); 1587 unlock_task_sighand(p, &flags); 1588 } else 1589 ret = -ESRCH; 1590 } 1591 out_unlock: 1592 rcu_read_unlock(); 1593 return ret; 1594 } 1595 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); 1596 1597 /* 1598 * kill_something_info() interprets pid in interesting ways just like kill(2). 1599 * 1600 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1601 * is probably wrong. Should make it like BSD or SYSV. 1602 */ 1603 1604 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1605 { 1606 int ret; 1607 1608 if (pid > 0) 1609 return kill_proc_info(sig, info, pid); 1610 1611 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1612 if (pid == INT_MIN) 1613 return -ESRCH; 1614 1615 read_lock(&tasklist_lock); 1616 if (pid != -1) { 1617 ret = __kill_pgrp_info(sig, info, 1618 pid ? find_vpid(-pid) : task_pgrp(current)); 1619 } else { 1620 int retval = 0, count = 0; 1621 struct task_struct * p; 1622 1623 for_each_process(p) { 1624 if (task_pid_vnr(p) > 1 && 1625 !same_thread_group(p, current)) { 1626 int err = group_send_sig_info(sig, info, p, 1627 PIDTYPE_MAX); 1628 ++count; 1629 if (err != -EPERM) 1630 retval = err; 1631 } 1632 } 1633 ret = count ? retval : -ESRCH; 1634 } 1635 read_unlock(&tasklist_lock); 1636 1637 return ret; 1638 } 1639 1640 /* 1641 * These are for backward compatibility with the rest of the kernel source. 1642 */ 1643 1644 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1645 { 1646 /* 1647 * Make sure legacy kernel users don't send in bad values 1648 * (normal paths check this in check_kill_permission). 1649 */ 1650 if (!valid_signal(sig)) 1651 return -EINVAL; 1652 1653 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1654 } 1655 EXPORT_SYMBOL(send_sig_info); 1656 1657 #define __si_special(priv) \ 1658 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1659 1660 int 1661 send_sig(int sig, struct task_struct *p, int priv) 1662 { 1663 return send_sig_info(sig, __si_special(priv), p); 1664 } 1665 EXPORT_SYMBOL(send_sig); 1666 1667 void force_sig(int sig) 1668 { 1669 struct kernel_siginfo info; 1670 1671 clear_siginfo(&info); 1672 info.si_signo = sig; 1673 info.si_errno = 0; 1674 info.si_code = SI_KERNEL; 1675 info.si_pid = 0; 1676 info.si_uid = 0; 1677 force_sig_info(&info); 1678 } 1679 EXPORT_SYMBOL(force_sig); 1680 1681 void force_fatal_sig(int sig) 1682 { 1683 struct kernel_siginfo info; 1684 1685 clear_siginfo(&info); 1686 info.si_signo = sig; 1687 info.si_errno = 0; 1688 info.si_code = SI_KERNEL; 1689 info.si_pid = 0; 1690 info.si_uid = 0; 1691 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL); 1692 } 1693 1694 void force_exit_sig(int sig) 1695 { 1696 struct kernel_siginfo info; 1697 1698 clear_siginfo(&info); 1699 info.si_signo = sig; 1700 info.si_errno = 0; 1701 info.si_code = SI_KERNEL; 1702 info.si_pid = 0; 1703 info.si_uid = 0; 1704 force_sig_info_to_task(&info, current, HANDLER_EXIT); 1705 } 1706 1707 /* 1708 * When things go south during signal handling, we 1709 * will force a SIGSEGV. And if the signal that caused 1710 * the problem was already a SIGSEGV, we'll want to 1711 * make sure we don't even try to deliver the signal.. 1712 */ 1713 void force_sigsegv(int sig) 1714 { 1715 if (sig == SIGSEGV) 1716 force_fatal_sig(SIGSEGV); 1717 else 1718 force_sig(SIGSEGV); 1719 } 1720 1721 int force_sig_fault_to_task(int sig, int code, void __user *addr 1722 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1723 , struct task_struct *t) 1724 { 1725 struct kernel_siginfo info; 1726 1727 clear_siginfo(&info); 1728 info.si_signo = sig; 1729 info.si_errno = 0; 1730 info.si_code = code; 1731 info.si_addr = addr; 1732 #ifdef __ia64__ 1733 info.si_imm = imm; 1734 info.si_flags = flags; 1735 info.si_isr = isr; 1736 #endif 1737 return force_sig_info_to_task(&info, t, HANDLER_CURRENT); 1738 } 1739 1740 int force_sig_fault(int sig, int code, void __user *addr 1741 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)) 1742 { 1743 return force_sig_fault_to_task(sig, code, addr 1744 ___ARCH_SI_IA64(imm, flags, isr), current); 1745 } 1746 1747 int send_sig_fault(int sig, int code, void __user *addr 1748 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1749 , struct task_struct *t) 1750 { 1751 struct kernel_siginfo info; 1752 1753 clear_siginfo(&info); 1754 info.si_signo = sig; 1755 info.si_errno = 0; 1756 info.si_code = code; 1757 info.si_addr = addr; 1758 #ifdef __ia64__ 1759 info.si_imm = imm; 1760 info.si_flags = flags; 1761 info.si_isr = isr; 1762 #endif 1763 return send_sig_info(info.si_signo, &info, t); 1764 } 1765 1766 int force_sig_mceerr(int code, void __user *addr, short lsb) 1767 { 1768 struct kernel_siginfo info; 1769 1770 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1771 clear_siginfo(&info); 1772 info.si_signo = SIGBUS; 1773 info.si_errno = 0; 1774 info.si_code = code; 1775 info.si_addr = addr; 1776 info.si_addr_lsb = lsb; 1777 return force_sig_info(&info); 1778 } 1779 1780 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1781 { 1782 struct kernel_siginfo info; 1783 1784 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1785 clear_siginfo(&info); 1786 info.si_signo = SIGBUS; 1787 info.si_errno = 0; 1788 info.si_code = code; 1789 info.si_addr = addr; 1790 info.si_addr_lsb = lsb; 1791 return send_sig_info(info.si_signo, &info, t); 1792 } 1793 EXPORT_SYMBOL(send_sig_mceerr); 1794 1795 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1796 { 1797 struct kernel_siginfo info; 1798 1799 clear_siginfo(&info); 1800 info.si_signo = SIGSEGV; 1801 info.si_errno = 0; 1802 info.si_code = SEGV_BNDERR; 1803 info.si_addr = addr; 1804 info.si_lower = lower; 1805 info.si_upper = upper; 1806 return force_sig_info(&info); 1807 } 1808 1809 #ifdef SEGV_PKUERR 1810 int force_sig_pkuerr(void __user *addr, u32 pkey) 1811 { 1812 struct kernel_siginfo info; 1813 1814 clear_siginfo(&info); 1815 info.si_signo = SIGSEGV; 1816 info.si_errno = 0; 1817 info.si_code = SEGV_PKUERR; 1818 info.si_addr = addr; 1819 info.si_pkey = pkey; 1820 return force_sig_info(&info); 1821 } 1822 #endif 1823 1824 int send_sig_perf(void __user *addr, u32 type, u64 sig_data) 1825 { 1826 struct kernel_siginfo info; 1827 1828 clear_siginfo(&info); 1829 info.si_signo = SIGTRAP; 1830 info.si_errno = 0; 1831 info.si_code = TRAP_PERF; 1832 info.si_addr = addr; 1833 info.si_perf_data = sig_data; 1834 info.si_perf_type = type; 1835 1836 /* 1837 * Signals generated by perf events should not terminate the whole 1838 * process if SIGTRAP is blocked, however, delivering the signal 1839 * asynchronously is better than not delivering at all. But tell user 1840 * space if the signal was asynchronous, so it can clearly be 1841 * distinguished from normal synchronous ones. 1842 */ 1843 info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ? 1844 TRAP_PERF_FLAG_ASYNC : 1845 0; 1846 1847 return send_sig_info(info.si_signo, &info, current); 1848 } 1849 1850 /** 1851 * force_sig_seccomp - signals the task to allow in-process syscall emulation 1852 * @syscall: syscall number to send to userland 1853 * @reason: filter-supplied reason code to send to userland (via si_errno) 1854 * @force_coredump: true to trigger a coredump 1855 * 1856 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. 1857 */ 1858 int force_sig_seccomp(int syscall, int reason, bool force_coredump) 1859 { 1860 struct kernel_siginfo info; 1861 1862 clear_siginfo(&info); 1863 info.si_signo = SIGSYS; 1864 info.si_code = SYS_SECCOMP; 1865 info.si_call_addr = (void __user *)KSTK_EIP(current); 1866 info.si_errno = reason; 1867 info.si_arch = syscall_get_arch(current); 1868 info.si_syscall = syscall; 1869 return force_sig_info_to_task(&info, current, 1870 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT); 1871 } 1872 1873 /* For the crazy architectures that include trap information in 1874 * the errno field, instead of an actual errno value. 1875 */ 1876 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1877 { 1878 struct kernel_siginfo info; 1879 1880 clear_siginfo(&info); 1881 info.si_signo = SIGTRAP; 1882 info.si_errno = errno; 1883 info.si_code = TRAP_HWBKPT; 1884 info.si_addr = addr; 1885 return force_sig_info(&info); 1886 } 1887 1888 /* For the rare architectures that include trap information using 1889 * si_trapno. 1890 */ 1891 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno) 1892 { 1893 struct kernel_siginfo info; 1894 1895 clear_siginfo(&info); 1896 info.si_signo = sig; 1897 info.si_errno = 0; 1898 info.si_code = code; 1899 info.si_addr = addr; 1900 info.si_trapno = trapno; 1901 return force_sig_info(&info); 1902 } 1903 1904 /* For the rare architectures that include trap information using 1905 * si_trapno. 1906 */ 1907 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, 1908 struct task_struct *t) 1909 { 1910 struct kernel_siginfo info; 1911 1912 clear_siginfo(&info); 1913 info.si_signo = sig; 1914 info.si_errno = 0; 1915 info.si_code = code; 1916 info.si_addr = addr; 1917 info.si_trapno = trapno; 1918 return send_sig_info(info.si_signo, &info, t); 1919 } 1920 1921 int kill_pgrp(struct pid *pid, int sig, int priv) 1922 { 1923 int ret; 1924 1925 read_lock(&tasklist_lock); 1926 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1927 read_unlock(&tasklist_lock); 1928 1929 return ret; 1930 } 1931 EXPORT_SYMBOL(kill_pgrp); 1932 1933 int kill_pid(struct pid *pid, int sig, int priv) 1934 { 1935 return kill_pid_info(sig, __si_special(priv), pid); 1936 } 1937 EXPORT_SYMBOL(kill_pid); 1938 1939 /* 1940 * These functions support sending signals using preallocated sigqueue 1941 * structures. This is needed "because realtime applications cannot 1942 * afford to lose notifications of asynchronous events, like timer 1943 * expirations or I/O completions". In the case of POSIX Timers 1944 * we allocate the sigqueue structure from the timer_create. If this 1945 * allocation fails we are able to report the failure to the application 1946 * with an EAGAIN error. 1947 */ 1948 struct sigqueue *sigqueue_alloc(void) 1949 { 1950 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC); 1951 } 1952 1953 void sigqueue_free(struct sigqueue *q) 1954 { 1955 unsigned long flags; 1956 spinlock_t *lock = ¤t->sighand->siglock; 1957 1958 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1959 /* 1960 * We must hold ->siglock while testing q->list 1961 * to serialize with collect_signal() or with 1962 * __exit_signal()->flush_sigqueue(). 1963 */ 1964 spin_lock_irqsave(lock, flags); 1965 q->flags &= ~SIGQUEUE_PREALLOC; 1966 /* 1967 * If it is queued it will be freed when dequeued, 1968 * like the "regular" sigqueue. 1969 */ 1970 if (!list_empty(&q->list)) 1971 q = NULL; 1972 spin_unlock_irqrestore(lock, flags); 1973 1974 if (q) 1975 __sigqueue_free(q); 1976 } 1977 1978 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) 1979 { 1980 int sig = q->info.si_signo; 1981 struct sigpending *pending; 1982 struct task_struct *t; 1983 unsigned long flags; 1984 int ret, result; 1985 1986 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1987 1988 ret = -1; 1989 rcu_read_lock(); 1990 1991 /* 1992 * This function is used by POSIX timers to deliver a timer signal. 1993 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID 1994 * set), the signal must be delivered to the specific thread (queues 1995 * into t->pending). 1996 * 1997 * Where type is not PIDTYPE_PID, signals must be delivered to the 1998 * process. In this case, prefer to deliver to current if it is in 1999 * the same thread group as the target process, which avoids 2000 * unnecessarily waking up a potentially idle task. 2001 */ 2002 t = pid_task(pid, type); 2003 if (!t) 2004 goto ret; 2005 if (type != PIDTYPE_PID && same_thread_group(t, current)) 2006 t = current; 2007 if (!likely(lock_task_sighand(t, &flags))) 2008 goto ret; 2009 2010 ret = 1; /* the signal is ignored */ 2011 result = TRACE_SIGNAL_IGNORED; 2012 if (!prepare_signal(sig, t, false)) 2013 goto out; 2014 2015 ret = 0; 2016 if (unlikely(!list_empty(&q->list))) { 2017 /* 2018 * If an SI_TIMER entry is already queue just increment 2019 * the overrun count. 2020 */ 2021 BUG_ON(q->info.si_code != SI_TIMER); 2022 q->info.si_overrun++; 2023 result = TRACE_SIGNAL_ALREADY_PENDING; 2024 goto out; 2025 } 2026 q->info.si_overrun = 0; 2027 2028 signalfd_notify(t, sig); 2029 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 2030 list_add_tail(&q->list, &pending->list); 2031 sigaddset(&pending->signal, sig); 2032 complete_signal(sig, t, type); 2033 result = TRACE_SIGNAL_DELIVERED; 2034 out: 2035 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result); 2036 unlock_task_sighand(t, &flags); 2037 ret: 2038 rcu_read_unlock(); 2039 return ret; 2040 } 2041 2042 static void do_notify_pidfd(struct task_struct *task) 2043 { 2044 struct pid *pid; 2045 2046 WARN_ON(task->exit_state == 0); 2047 pid = task_pid(task); 2048 wake_up_all(&pid->wait_pidfd); 2049 } 2050 2051 /* 2052 * Let a parent know about the death of a child. 2053 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 2054 * 2055 * Returns true if our parent ignored us and so we've switched to 2056 * self-reaping. 2057 */ 2058 bool do_notify_parent(struct task_struct *tsk, int sig) 2059 { 2060 struct kernel_siginfo info; 2061 unsigned long flags; 2062 struct sighand_struct *psig; 2063 bool autoreap = false; 2064 u64 utime, stime; 2065 2066 WARN_ON_ONCE(sig == -1); 2067 2068 /* do_notify_parent_cldstop should have been called instead. */ 2069 WARN_ON_ONCE(task_is_stopped_or_traced(tsk)); 2070 2071 WARN_ON_ONCE(!tsk->ptrace && 2072 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 2073 2074 /* Wake up all pidfd waiters */ 2075 do_notify_pidfd(tsk); 2076 2077 if (sig != SIGCHLD) { 2078 /* 2079 * This is only possible if parent == real_parent. 2080 * Check if it has changed security domain. 2081 */ 2082 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) 2083 sig = SIGCHLD; 2084 } 2085 2086 clear_siginfo(&info); 2087 info.si_signo = sig; 2088 info.si_errno = 0; 2089 /* 2090 * We are under tasklist_lock here so our parent is tied to 2091 * us and cannot change. 2092 * 2093 * task_active_pid_ns will always return the same pid namespace 2094 * until a task passes through release_task. 2095 * 2096 * write_lock() currently calls preempt_disable() which is the 2097 * same as rcu_read_lock(), but according to Oleg, this is not 2098 * correct to rely on this 2099 */ 2100 rcu_read_lock(); 2101 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 2102 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 2103 task_uid(tsk)); 2104 rcu_read_unlock(); 2105 2106 task_cputime(tsk, &utime, &stime); 2107 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 2108 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 2109 2110 info.si_status = tsk->exit_code & 0x7f; 2111 if (tsk->exit_code & 0x80) 2112 info.si_code = CLD_DUMPED; 2113 else if (tsk->exit_code & 0x7f) 2114 info.si_code = CLD_KILLED; 2115 else { 2116 info.si_code = CLD_EXITED; 2117 info.si_status = tsk->exit_code >> 8; 2118 } 2119 2120 psig = tsk->parent->sighand; 2121 spin_lock_irqsave(&psig->siglock, flags); 2122 if (!tsk->ptrace && sig == SIGCHLD && 2123 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 2124 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 2125 /* 2126 * We are exiting and our parent doesn't care. POSIX.1 2127 * defines special semantics for setting SIGCHLD to SIG_IGN 2128 * or setting the SA_NOCLDWAIT flag: we should be reaped 2129 * automatically and not left for our parent's wait4 call. 2130 * Rather than having the parent do it as a magic kind of 2131 * signal handler, we just set this to tell do_exit that we 2132 * can be cleaned up without becoming a zombie. Note that 2133 * we still call __wake_up_parent in this case, because a 2134 * blocked sys_wait4 might now return -ECHILD. 2135 * 2136 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 2137 * is implementation-defined: we do (if you don't want 2138 * it, just use SIG_IGN instead). 2139 */ 2140 autoreap = true; 2141 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 2142 sig = 0; 2143 } 2144 /* 2145 * Send with __send_signal as si_pid and si_uid are in the 2146 * parent's namespaces. 2147 */ 2148 if (valid_signal(sig) && sig) 2149 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false); 2150 __wake_up_parent(tsk, tsk->parent); 2151 spin_unlock_irqrestore(&psig->siglock, flags); 2152 2153 return autoreap; 2154 } 2155 2156 /** 2157 * do_notify_parent_cldstop - notify parent of stopped/continued state change 2158 * @tsk: task reporting the state change 2159 * @for_ptracer: the notification is for ptracer 2160 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 2161 * 2162 * Notify @tsk's parent that the stopped/continued state has changed. If 2163 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 2164 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 2165 * 2166 * CONTEXT: 2167 * Must be called with tasklist_lock at least read locked. 2168 */ 2169 static void do_notify_parent_cldstop(struct task_struct *tsk, 2170 bool for_ptracer, int why) 2171 { 2172 struct kernel_siginfo info; 2173 unsigned long flags; 2174 struct task_struct *parent; 2175 struct sighand_struct *sighand; 2176 u64 utime, stime; 2177 2178 if (for_ptracer) { 2179 parent = tsk->parent; 2180 } else { 2181 tsk = tsk->group_leader; 2182 parent = tsk->real_parent; 2183 } 2184 2185 clear_siginfo(&info); 2186 info.si_signo = SIGCHLD; 2187 info.si_errno = 0; 2188 /* 2189 * see comment in do_notify_parent() about the following 4 lines 2190 */ 2191 rcu_read_lock(); 2192 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 2193 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 2194 rcu_read_unlock(); 2195 2196 task_cputime(tsk, &utime, &stime); 2197 info.si_utime = nsec_to_clock_t(utime); 2198 info.si_stime = nsec_to_clock_t(stime); 2199 2200 info.si_code = why; 2201 switch (why) { 2202 case CLD_CONTINUED: 2203 info.si_status = SIGCONT; 2204 break; 2205 case CLD_STOPPED: 2206 info.si_status = tsk->signal->group_exit_code & 0x7f; 2207 break; 2208 case CLD_TRAPPED: 2209 info.si_status = tsk->exit_code & 0x7f; 2210 break; 2211 default: 2212 BUG(); 2213 } 2214 2215 sighand = parent->sighand; 2216 spin_lock_irqsave(&sighand->siglock, flags); 2217 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 2218 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 2219 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID); 2220 /* 2221 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 2222 */ 2223 __wake_up_parent(tsk, parent); 2224 spin_unlock_irqrestore(&sighand->siglock, flags); 2225 } 2226 2227 /* 2228 * This must be called with current->sighand->siglock held. 2229 * 2230 * This should be the path for all ptrace stops. 2231 * We always set current->last_siginfo while stopped here. 2232 * That makes it a way to test a stopped process for 2233 * being ptrace-stopped vs being job-control-stopped. 2234 * 2235 * Returns the signal the ptracer requested the code resume 2236 * with. If the code did not stop because the tracer is gone, 2237 * the stop signal remains unchanged unless clear_code. 2238 */ 2239 static int ptrace_stop(int exit_code, int why, unsigned long message, 2240 kernel_siginfo_t *info) 2241 __releases(¤t->sighand->siglock) 2242 __acquires(¤t->sighand->siglock) 2243 { 2244 bool gstop_done = false; 2245 2246 if (arch_ptrace_stop_needed()) { 2247 /* 2248 * The arch code has something special to do before a 2249 * ptrace stop. This is allowed to block, e.g. for faults 2250 * on user stack pages. We can't keep the siglock while 2251 * calling arch_ptrace_stop, so we must release it now. 2252 * To preserve proper semantics, we must do this before 2253 * any signal bookkeeping like checking group_stop_count. 2254 */ 2255 spin_unlock_irq(¤t->sighand->siglock); 2256 arch_ptrace_stop(); 2257 spin_lock_irq(¤t->sighand->siglock); 2258 } 2259 2260 /* 2261 * After this point ptrace_signal_wake_up or signal_wake_up 2262 * will clear TASK_TRACED if ptrace_unlink happens or a fatal 2263 * signal comes in. Handle previous ptrace_unlinks and fatal 2264 * signals here to prevent ptrace_stop sleeping in schedule. 2265 */ 2266 if (!current->ptrace || __fatal_signal_pending(current)) 2267 return exit_code; 2268 2269 set_special_state(TASK_TRACED); 2270 current->jobctl |= JOBCTL_TRACED; 2271 2272 /* 2273 * We're committing to trapping. TRACED should be visible before 2274 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2275 * Also, transition to TRACED and updates to ->jobctl should be 2276 * atomic with respect to siglock and should be done after the arch 2277 * hook as siglock is released and regrabbed across it. 2278 * 2279 * TRACER TRACEE 2280 * 2281 * ptrace_attach() 2282 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2283 * do_wait() 2284 * set_current_state() smp_wmb(); 2285 * ptrace_do_wait() 2286 * wait_task_stopped() 2287 * task_stopped_code() 2288 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2289 */ 2290 smp_wmb(); 2291 2292 current->ptrace_message = message; 2293 current->last_siginfo = info; 2294 current->exit_code = exit_code; 2295 2296 /* 2297 * If @why is CLD_STOPPED, we're trapping to participate in a group 2298 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2299 * across siglock relocks since INTERRUPT was scheduled, PENDING 2300 * could be clear now. We act as if SIGCONT is received after 2301 * TASK_TRACED is entered - ignore it. 2302 */ 2303 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2304 gstop_done = task_participate_group_stop(current); 2305 2306 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2307 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2308 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2309 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2310 2311 /* entering a trap, clear TRAPPING */ 2312 task_clear_jobctl_trapping(current); 2313 2314 spin_unlock_irq(¤t->sighand->siglock); 2315 read_lock(&tasklist_lock); 2316 /* 2317 * Notify parents of the stop. 2318 * 2319 * While ptraced, there are two parents - the ptracer and 2320 * the real_parent of the group_leader. The ptracer should 2321 * know about every stop while the real parent is only 2322 * interested in the completion of group stop. The states 2323 * for the two don't interact with each other. Notify 2324 * separately unless they're gonna be duplicates. 2325 */ 2326 if (current->ptrace) 2327 do_notify_parent_cldstop(current, true, why); 2328 if (gstop_done && (!current->ptrace || ptrace_reparented(current))) 2329 do_notify_parent_cldstop(current, false, why); 2330 2331 /* 2332 * The previous do_notify_parent_cldstop() invocation woke ptracer. 2333 * One a PREEMPTION kernel this can result in preemption requirement 2334 * which will be fulfilled after read_unlock() and the ptracer will be 2335 * put on the CPU. 2336 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for 2337 * this task wait in schedule(). If this task gets preempted then it 2338 * remains enqueued on the runqueue. The ptracer will observe this and 2339 * then sleep for a delay of one HZ tick. In the meantime this task 2340 * gets scheduled, enters schedule() and will wait for the ptracer. 2341 * 2342 * This preemption point is not bad from a correctness point of 2343 * view but extends the runtime by one HZ tick time due to the 2344 * ptracer's sleep. The preempt-disable section ensures that there 2345 * will be no preemption between unlock and schedule() and so 2346 * improving the performance since the ptracer will observe that 2347 * the tracee is scheduled out once it gets on the CPU. 2348 * 2349 * On PREEMPT_RT locking tasklist_lock does not disable preemption. 2350 * Therefore the task can be preempted after do_notify_parent_cldstop() 2351 * before unlocking tasklist_lock so there is no benefit in doing this. 2352 * 2353 * In fact disabling preemption is harmful on PREEMPT_RT because 2354 * the spinlock_t in cgroup_enter_frozen() must not be acquired 2355 * with preemption disabled due to the 'sleeping' spinlock 2356 * substitution of RT. 2357 */ 2358 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 2359 preempt_disable(); 2360 read_unlock(&tasklist_lock); 2361 cgroup_enter_frozen(); 2362 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 2363 preempt_enable_no_resched(); 2364 schedule(); 2365 cgroup_leave_frozen(true); 2366 2367 /* 2368 * We are back. Now reacquire the siglock before touching 2369 * last_siginfo, so that we are sure to have synchronized with 2370 * any signal-sending on another CPU that wants to examine it. 2371 */ 2372 spin_lock_irq(¤t->sighand->siglock); 2373 exit_code = current->exit_code; 2374 current->last_siginfo = NULL; 2375 current->ptrace_message = 0; 2376 current->exit_code = 0; 2377 2378 /* LISTENING can be set only during STOP traps, clear it */ 2379 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN); 2380 2381 /* 2382 * Queued signals ignored us while we were stopped for tracing. 2383 * So check for any that we should take before resuming user mode. 2384 * This sets TIF_SIGPENDING, but never clears it. 2385 */ 2386 recalc_sigpending_tsk(current); 2387 return exit_code; 2388 } 2389 2390 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message) 2391 { 2392 kernel_siginfo_t info; 2393 2394 clear_siginfo(&info); 2395 info.si_signo = signr; 2396 info.si_code = exit_code; 2397 info.si_pid = task_pid_vnr(current); 2398 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2399 2400 /* Let the debugger run. */ 2401 return ptrace_stop(exit_code, why, message, &info); 2402 } 2403 2404 int ptrace_notify(int exit_code, unsigned long message) 2405 { 2406 int signr; 2407 2408 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2409 if (unlikely(task_work_pending(current))) 2410 task_work_run(); 2411 2412 spin_lock_irq(¤t->sighand->siglock); 2413 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message); 2414 spin_unlock_irq(¤t->sighand->siglock); 2415 return signr; 2416 } 2417 2418 /** 2419 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2420 * @signr: signr causing group stop if initiating 2421 * 2422 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2423 * and participate in it. If already set, participate in the existing 2424 * group stop. If participated in a group stop (and thus slept), %true is 2425 * returned with siglock released. 2426 * 2427 * If ptraced, this function doesn't handle stop itself. Instead, 2428 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2429 * untouched. The caller must ensure that INTERRUPT trap handling takes 2430 * places afterwards. 2431 * 2432 * CONTEXT: 2433 * Must be called with @current->sighand->siglock held, which is released 2434 * on %true return. 2435 * 2436 * RETURNS: 2437 * %false if group stop is already cancelled or ptrace trap is scheduled. 2438 * %true if participated in group stop. 2439 */ 2440 static bool do_signal_stop(int signr) 2441 __releases(¤t->sighand->siglock) 2442 { 2443 struct signal_struct *sig = current->signal; 2444 2445 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2446 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2447 struct task_struct *t; 2448 2449 /* signr will be recorded in task->jobctl for retries */ 2450 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2451 2452 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2453 unlikely(sig->flags & SIGNAL_GROUP_EXIT) || 2454 unlikely(sig->group_exec_task)) 2455 return false; 2456 /* 2457 * There is no group stop already in progress. We must 2458 * initiate one now. 2459 * 2460 * While ptraced, a task may be resumed while group stop is 2461 * still in effect and then receive a stop signal and 2462 * initiate another group stop. This deviates from the 2463 * usual behavior as two consecutive stop signals can't 2464 * cause two group stops when !ptraced. That is why we 2465 * also check !task_is_stopped(t) below. 2466 * 2467 * The condition can be distinguished by testing whether 2468 * SIGNAL_STOP_STOPPED is already set. Don't generate 2469 * group_exit_code in such case. 2470 * 2471 * This is not necessary for SIGNAL_STOP_CONTINUED because 2472 * an intervening stop signal is required to cause two 2473 * continued events regardless of ptrace. 2474 */ 2475 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2476 sig->group_exit_code = signr; 2477 2478 sig->group_stop_count = 0; 2479 2480 if (task_set_jobctl_pending(current, signr | gstop)) 2481 sig->group_stop_count++; 2482 2483 t = current; 2484 while_each_thread(current, t) { 2485 /* 2486 * Setting state to TASK_STOPPED for a group 2487 * stop is always done with the siglock held, 2488 * so this check has no races. 2489 */ 2490 if (!task_is_stopped(t) && 2491 task_set_jobctl_pending(t, signr | gstop)) { 2492 sig->group_stop_count++; 2493 if (likely(!(t->ptrace & PT_SEIZED))) 2494 signal_wake_up(t, 0); 2495 else 2496 ptrace_trap_notify(t); 2497 } 2498 } 2499 } 2500 2501 if (likely(!current->ptrace)) { 2502 int notify = 0; 2503 2504 /* 2505 * If there are no other threads in the group, or if there 2506 * is a group stop in progress and we are the last to stop, 2507 * report to the parent. 2508 */ 2509 if (task_participate_group_stop(current)) 2510 notify = CLD_STOPPED; 2511 2512 current->jobctl |= JOBCTL_STOPPED; 2513 set_special_state(TASK_STOPPED); 2514 spin_unlock_irq(¤t->sighand->siglock); 2515 2516 /* 2517 * Notify the parent of the group stop completion. Because 2518 * we're not holding either the siglock or tasklist_lock 2519 * here, ptracer may attach inbetween; however, this is for 2520 * group stop and should always be delivered to the real 2521 * parent of the group leader. The new ptracer will get 2522 * its notification when this task transitions into 2523 * TASK_TRACED. 2524 */ 2525 if (notify) { 2526 read_lock(&tasklist_lock); 2527 do_notify_parent_cldstop(current, false, notify); 2528 read_unlock(&tasklist_lock); 2529 } 2530 2531 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2532 cgroup_enter_frozen(); 2533 schedule(); 2534 return true; 2535 } else { 2536 /* 2537 * While ptraced, group stop is handled by STOP trap. 2538 * Schedule it and let the caller deal with it. 2539 */ 2540 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2541 return false; 2542 } 2543 } 2544 2545 /** 2546 * do_jobctl_trap - take care of ptrace jobctl traps 2547 * 2548 * When PT_SEIZED, it's used for both group stop and explicit 2549 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2550 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2551 * the stop signal; otherwise, %SIGTRAP. 2552 * 2553 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2554 * number as exit_code and no siginfo. 2555 * 2556 * CONTEXT: 2557 * Must be called with @current->sighand->siglock held, which may be 2558 * released and re-acquired before returning with intervening sleep. 2559 */ 2560 static void do_jobctl_trap(void) 2561 { 2562 struct signal_struct *signal = current->signal; 2563 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2564 2565 if (current->ptrace & PT_SEIZED) { 2566 if (!signal->group_stop_count && 2567 !(signal->flags & SIGNAL_STOP_STOPPED)) 2568 signr = SIGTRAP; 2569 WARN_ON_ONCE(!signr); 2570 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2571 CLD_STOPPED, 0); 2572 } else { 2573 WARN_ON_ONCE(!signr); 2574 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2575 } 2576 } 2577 2578 /** 2579 * do_freezer_trap - handle the freezer jobctl trap 2580 * 2581 * Puts the task into frozen state, if only the task is not about to quit. 2582 * In this case it drops JOBCTL_TRAP_FREEZE. 2583 * 2584 * CONTEXT: 2585 * Must be called with @current->sighand->siglock held, 2586 * which is always released before returning. 2587 */ 2588 static void do_freezer_trap(void) 2589 __releases(¤t->sighand->siglock) 2590 { 2591 /* 2592 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, 2593 * let's make another loop to give it a chance to be handled. 2594 * In any case, we'll return back. 2595 */ 2596 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != 2597 JOBCTL_TRAP_FREEZE) { 2598 spin_unlock_irq(¤t->sighand->siglock); 2599 return; 2600 } 2601 2602 /* 2603 * Now we're sure that there is no pending fatal signal and no 2604 * pending traps. Clear TIF_SIGPENDING to not get out of schedule() 2605 * immediately (if there is a non-fatal signal pending), and 2606 * put the task into sleep. 2607 */ 2608 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 2609 clear_thread_flag(TIF_SIGPENDING); 2610 spin_unlock_irq(¤t->sighand->siglock); 2611 cgroup_enter_frozen(); 2612 schedule(); 2613 } 2614 2615 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type) 2616 { 2617 /* 2618 * We do not check sig_kernel_stop(signr) but set this marker 2619 * unconditionally because we do not know whether debugger will 2620 * change signr. This flag has no meaning unless we are going 2621 * to stop after return from ptrace_stop(). In this case it will 2622 * be checked in do_signal_stop(), we should only stop if it was 2623 * not cleared by SIGCONT while we were sleeping. See also the 2624 * comment in dequeue_signal(). 2625 */ 2626 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2627 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info); 2628 2629 /* We're back. Did the debugger cancel the sig? */ 2630 if (signr == 0) 2631 return signr; 2632 2633 /* 2634 * Update the siginfo structure if the signal has 2635 * changed. If the debugger wanted something 2636 * specific in the siginfo structure then it should 2637 * have updated *info via PTRACE_SETSIGINFO. 2638 */ 2639 if (signr != info->si_signo) { 2640 clear_siginfo(info); 2641 info->si_signo = signr; 2642 info->si_errno = 0; 2643 info->si_code = SI_USER; 2644 rcu_read_lock(); 2645 info->si_pid = task_pid_vnr(current->parent); 2646 info->si_uid = from_kuid_munged(current_user_ns(), 2647 task_uid(current->parent)); 2648 rcu_read_unlock(); 2649 } 2650 2651 /* If the (new) signal is now blocked, requeue it. */ 2652 if (sigismember(¤t->blocked, signr) || 2653 fatal_signal_pending(current)) { 2654 send_signal_locked(signr, info, current, type); 2655 signr = 0; 2656 } 2657 2658 return signr; 2659 } 2660 2661 static void hide_si_addr_tag_bits(struct ksignal *ksig) 2662 { 2663 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) { 2664 case SIL_FAULT: 2665 case SIL_FAULT_TRAPNO: 2666 case SIL_FAULT_MCEERR: 2667 case SIL_FAULT_BNDERR: 2668 case SIL_FAULT_PKUERR: 2669 case SIL_FAULT_PERF_EVENT: 2670 ksig->info.si_addr = arch_untagged_si_addr( 2671 ksig->info.si_addr, ksig->sig, ksig->info.si_code); 2672 break; 2673 case SIL_KILL: 2674 case SIL_TIMER: 2675 case SIL_POLL: 2676 case SIL_CHLD: 2677 case SIL_RT: 2678 case SIL_SYS: 2679 break; 2680 } 2681 } 2682 2683 bool get_signal(struct ksignal *ksig) 2684 { 2685 struct sighand_struct *sighand = current->sighand; 2686 struct signal_struct *signal = current->signal; 2687 int signr; 2688 2689 clear_notify_signal(); 2690 if (unlikely(task_work_pending(current))) 2691 task_work_run(); 2692 2693 if (!task_sigpending(current)) 2694 return false; 2695 2696 if (unlikely(uprobe_deny_signal())) 2697 return false; 2698 2699 /* 2700 * Do this once, we can't return to user-mode if freezing() == T. 2701 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2702 * thus do not need another check after return. 2703 */ 2704 try_to_freeze(); 2705 2706 relock: 2707 spin_lock_irq(&sighand->siglock); 2708 2709 /* 2710 * Every stopped thread goes here after wakeup. Check to see if 2711 * we should notify the parent, prepare_signal(SIGCONT) encodes 2712 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2713 */ 2714 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2715 int why; 2716 2717 if (signal->flags & SIGNAL_CLD_CONTINUED) 2718 why = CLD_CONTINUED; 2719 else 2720 why = CLD_STOPPED; 2721 2722 signal->flags &= ~SIGNAL_CLD_MASK; 2723 2724 spin_unlock_irq(&sighand->siglock); 2725 2726 /* 2727 * Notify the parent that we're continuing. This event is 2728 * always per-process and doesn't make whole lot of sense 2729 * for ptracers, who shouldn't consume the state via 2730 * wait(2) either, but, for backward compatibility, notify 2731 * the ptracer of the group leader too unless it's gonna be 2732 * a duplicate. 2733 */ 2734 read_lock(&tasklist_lock); 2735 do_notify_parent_cldstop(current, false, why); 2736 2737 if (ptrace_reparented(current->group_leader)) 2738 do_notify_parent_cldstop(current->group_leader, 2739 true, why); 2740 read_unlock(&tasklist_lock); 2741 2742 goto relock; 2743 } 2744 2745 for (;;) { 2746 struct k_sigaction *ka; 2747 enum pid_type type; 2748 2749 /* Has this task already been marked for death? */ 2750 if ((signal->flags & SIGNAL_GROUP_EXIT) || 2751 signal->group_exec_task) { 2752 clear_siginfo(&ksig->info); 2753 ksig->info.si_signo = signr = SIGKILL; 2754 sigdelset(¤t->pending.signal, SIGKILL); 2755 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, 2756 &sighand->action[SIGKILL - 1]); 2757 recalc_sigpending(); 2758 goto fatal; 2759 } 2760 2761 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2762 do_signal_stop(0)) 2763 goto relock; 2764 2765 if (unlikely(current->jobctl & 2766 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { 2767 if (current->jobctl & JOBCTL_TRAP_MASK) { 2768 do_jobctl_trap(); 2769 spin_unlock_irq(&sighand->siglock); 2770 } else if (current->jobctl & JOBCTL_TRAP_FREEZE) 2771 do_freezer_trap(); 2772 2773 goto relock; 2774 } 2775 2776 /* 2777 * If the task is leaving the frozen state, let's update 2778 * cgroup counters and reset the frozen bit. 2779 */ 2780 if (unlikely(cgroup_task_frozen(current))) { 2781 spin_unlock_irq(&sighand->siglock); 2782 cgroup_leave_frozen(false); 2783 goto relock; 2784 } 2785 2786 /* 2787 * Signals generated by the execution of an instruction 2788 * need to be delivered before any other pending signals 2789 * so that the instruction pointer in the signal stack 2790 * frame points to the faulting instruction. 2791 */ 2792 type = PIDTYPE_PID; 2793 signr = dequeue_synchronous_signal(&ksig->info); 2794 if (!signr) 2795 signr = dequeue_signal(current, ¤t->blocked, 2796 &ksig->info, &type); 2797 2798 if (!signr) 2799 break; /* will return 0 */ 2800 2801 if (unlikely(current->ptrace) && (signr != SIGKILL) && 2802 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) { 2803 signr = ptrace_signal(signr, &ksig->info, type); 2804 if (!signr) 2805 continue; 2806 } 2807 2808 ka = &sighand->action[signr-1]; 2809 2810 /* Trace actually delivered signals. */ 2811 trace_signal_deliver(signr, &ksig->info, ka); 2812 2813 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2814 continue; 2815 if (ka->sa.sa_handler != SIG_DFL) { 2816 /* Run the handler. */ 2817 ksig->ka = *ka; 2818 2819 if (ka->sa.sa_flags & SA_ONESHOT) 2820 ka->sa.sa_handler = SIG_DFL; 2821 2822 break; /* will return non-zero "signr" value */ 2823 } 2824 2825 /* 2826 * Now we are doing the default action for this signal. 2827 */ 2828 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2829 continue; 2830 2831 /* 2832 * Global init gets no signals it doesn't want. 2833 * Container-init gets no signals it doesn't want from same 2834 * container. 2835 * 2836 * Note that if global/container-init sees a sig_kernel_only() 2837 * signal here, the signal must have been generated internally 2838 * or must have come from an ancestor namespace. In either 2839 * case, the signal cannot be dropped. 2840 */ 2841 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2842 !sig_kernel_only(signr)) 2843 continue; 2844 2845 if (sig_kernel_stop(signr)) { 2846 /* 2847 * The default action is to stop all threads in 2848 * the thread group. The job control signals 2849 * do nothing in an orphaned pgrp, but SIGSTOP 2850 * always works. Note that siglock needs to be 2851 * dropped during the call to is_orphaned_pgrp() 2852 * because of lock ordering with tasklist_lock. 2853 * This allows an intervening SIGCONT to be posted. 2854 * We need to check for that and bail out if necessary. 2855 */ 2856 if (signr != SIGSTOP) { 2857 spin_unlock_irq(&sighand->siglock); 2858 2859 /* signals can be posted during this window */ 2860 2861 if (is_current_pgrp_orphaned()) 2862 goto relock; 2863 2864 spin_lock_irq(&sighand->siglock); 2865 } 2866 2867 if (likely(do_signal_stop(ksig->info.si_signo))) { 2868 /* It released the siglock. */ 2869 goto relock; 2870 } 2871 2872 /* 2873 * We didn't actually stop, due to a race 2874 * with SIGCONT or something like that. 2875 */ 2876 continue; 2877 } 2878 2879 fatal: 2880 spin_unlock_irq(&sighand->siglock); 2881 if (unlikely(cgroup_task_frozen(current))) 2882 cgroup_leave_frozen(true); 2883 2884 /* 2885 * Anything else is fatal, maybe with a core dump. 2886 */ 2887 current->flags |= PF_SIGNALED; 2888 2889 if (sig_kernel_coredump(signr)) { 2890 if (print_fatal_signals) 2891 print_fatal_signal(ksig->info.si_signo); 2892 proc_coredump_connector(current); 2893 /* 2894 * If it was able to dump core, this kills all 2895 * other threads in the group and synchronizes with 2896 * their demise. If we lost the race with another 2897 * thread getting here, it set group_exit_code 2898 * first and our do_group_exit call below will use 2899 * that value and ignore the one we pass it. 2900 */ 2901 do_coredump(&ksig->info); 2902 } 2903 2904 /* 2905 * PF_USER_WORKER threads will catch and exit on fatal signals 2906 * themselves. They have cleanup that must be performed, so 2907 * we cannot call do_exit() on their behalf. 2908 */ 2909 if (current->flags & PF_USER_WORKER) 2910 goto out; 2911 2912 /* 2913 * Death signals, no core dump. 2914 */ 2915 do_group_exit(ksig->info.si_signo); 2916 /* NOTREACHED */ 2917 } 2918 spin_unlock_irq(&sighand->siglock); 2919 out: 2920 ksig->sig = signr; 2921 2922 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS)) 2923 hide_si_addr_tag_bits(ksig); 2924 2925 return ksig->sig > 0; 2926 } 2927 2928 /** 2929 * signal_delivered - called after signal delivery to update blocked signals 2930 * @ksig: kernel signal struct 2931 * @stepping: nonzero if debugger single-step or block-step in use 2932 * 2933 * This function should be called when a signal has successfully been 2934 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2935 * is always blocked), and the signal itself is blocked unless %SA_NODEFER 2936 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2937 */ 2938 static void signal_delivered(struct ksignal *ksig, int stepping) 2939 { 2940 sigset_t blocked; 2941 2942 /* A signal was successfully delivered, and the 2943 saved sigmask was stored on the signal frame, 2944 and will be restored by sigreturn. So we can 2945 simply clear the restore sigmask flag. */ 2946 clear_restore_sigmask(); 2947 2948 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2949 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2950 sigaddset(&blocked, ksig->sig); 2951 set_current_blocked(&blocked); 2952 if (current->sas_ss_flags & SS_AUTODISARM) 2953 sas_ss_reset(current); 2954 if (stepping) 2955 ptrace_notify(SIGTRAP, 0); 2956 } 2957 2958 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2959 { 2960 if (failed) 2961 force_sigsegv(ksig->sig); 2962 else 2963 signal_delivered(ksig, stepping); 2964 } 2965 2966 /* 2967 * It could be that complete_signal() picked us to notify about the 2968 * group-wide signal. Other threads should be notified now to take 2969 * the shared signals in @which since we will not. 2970 */ 2971 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2972 { 2973 sigset_t retarget; 2974 struct task_struct *t; 2975 2976 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2977 if (sigisemptyset(&retarget)) 2978 return; 2979 2980 t = tsk; 2981 while_each_thread(tsk, t) { 2982 if (t->flags & PF_EXITING) 2983 continue; 2984 2985 if (!has_pending_signals(&retarget, &t->blocked)) 2986 continue; 2987 /* Remove the signals this thread can handle. */ 2988 sigandsets(&retarget, &retarget, &t->blocked); 2989 2990 if (!task_sigpending(t)) 2991 signal_wake_up(t, 0); 2992 2993 if (sigisemptyset(&retarget)) 2994 break; 2995 } 2996 } 2997 2998 void exit_signals(struct task_struct *tsk) 2999 { 3000 int group_stop = 0; 3001 sigset_t unblocked; 3002 3003 /* 3004 * @tsk is about to have PF_EXITING set - lock out users which 3005 * expect stable threadgroup. 3006 */ 3007 cgroup_threadgroup_change_begin(tsk); 3008 3009 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) { 3010 sched_mm_cid_exit_signals(tsk); 3011 tsk->flags |= PF_EXITING; 3012 cgroup_threadgroup_change_end(tsk); 3013 return; 3014 } 3015 3016 spin_lock_irq(&tsk->sighand->siglock); 3017 /* 3018 * From now this task is not visible for group-wide signals, 3019 * see wants_signal(), do_signal_stop(). 3020 */ 3021 sched_mm_cid_exit_signals(tsk); 3022 tsk->flags |= PF_EXITING; 3023 3024 cgroup_threadgroup_change_end(tsk); 3025 3026 if (!task_sigpending(tsk)) 3027 goto out; 3028 3029 unblocked = tsk->blocked; 3030 signotset(&unblocked); 3031 retarget_shared_pending(tsk, &unblocked); 3032 3033 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 3034 task_participate_group_stop(tsk)) 3035 group_stop = CLD_STOPPED; 3036 out: 3037 spin_unlock_irq(&tsk->sighand->siglock); 3038 3039 /* 3040 * If group stop has completed, deliver the notification. This 3041 * should always go to the real parent of the group leader. 3042 */ 3043 if (unlikely(group_stop)) { 3044 read_lock(&tasklist_lock); 3045 do_notify_parent_cldstop(tsk, false, group_stop); 3046 read_unlock(&tasklist_lock); 3047 } 3048 } 3049 3050 /* 3051 * System call entry points. 3052 */ 3053 3054 /** 3055 * sys_restart_syscall - restart a system call 3056 */ 3057 SYSCALL_DEFINE0(restart_syscall) 3058 { 3059 struct restart_block *restart = ¤t->restart_block; 3060 return restart->fn(restart); 3061 } 3062 3063 long do_no_restart_syscall(struct restart_block *param) 3064 { 3065 return -EINTR; 3066 } 3067 3068 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 3069 { 3070 if (task_sigpending(tsk) && !thread_group_empty(tsk)) { 3071 sigset_t newblocked; 3072 /* A set of now blocked but previously unblocked signals. */ 3073 sigandnsets(&newblocked, newset, ¤t->blocked); 3074 retarget_shared_pending(tsk, &newblocked); 3075 } 3076 tsk->blocked = *newset; 3077 recalc_sigpending(); 3078 } 3079 3080 /** 3081 * set_current_blocked - change current->blocked mask 3082 * @newset: new mask 3083 * 3084 * It is wrong to change ->blocked directly, this helper should be used 3085 * to ensure the process can't miss a shared signal we are going to block. 3086 */ 3087 void set_current_blocked(sigset_t *newset) 3088 { 3089 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3090 __set_current_blocked(newset); 3091 } 3092 3093 void __set_current_blocked(const sigset_t *newset) 3094 { 3095 struct task_struct *tsk = current; 3096 3097 /* 3098 * In case the signal mask hasn't changed, there is nothing we need 3099 * to do. The current->blocked shouldn't be modified by other task. 3100 */ 3101 if (sigequalsets(&tsk->blocked, newset)) 3102 return; 3103 3104 spin_lock_irq(&tsk->sighand->siglock); 3105 __set_task_blocked(tsk, newset); 3106 spin_unlock_irq(&tsk->sighand->siglock); 3107 } 3108 3109 /* 3110 * This is also useful for kernel threads that want to temporarily 3111 * (or permanently) block certain signals. 3112 * 3113 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 3114 * interface happily blocks "unblockable" signals like SIGKILL 3115 * and friends. 3116 */ 3117 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 3118 { 3119 struct task_struct *tsk = current; 3120 sigset_t newset; 3121 3122 /* Lockless, only current can change ->blocked, never from irq */ 3123 if (oldset) 3124 *oldset = tsk->blocked; 3125 3126 switch (how) { 3127 case SIG_BLOCK: 3128 sigorsets(&newset, &tsk->blocked, set); 3129 break; 3130 case SIG_UNBLOCK: 3131 sigandnsets(&newset, &tsk->blocked, set); 3132 break; 3133 case SIG_SETMASK: 3134 newset = *set; 3135 break; 3136 default: 3137 return -EINVAL; 3138 } 3139 3140 __set_current_blocked(&newset); 3141 return 0; 3142 } 3143 EXPORT_SYMBOL(sigprocmask); 3144 3145 /* 3146 * The api helps set app-provided sigmasks. 3147 * 3148 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 3149 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 3150 * 3151 * Note that it does set_restore_sigmask() in advance, so it must be always 3152 * paired with restore_saved_sigmask_unless() before return from syscall. 3153 */ 3154 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) 3155 { 3156 sigset_t kmask; 3157 3158 if (!umask) 3159 return 0; 3160 if (sigsetsize != sizeof(sigset_t)) 3161 return -EINVAL; 3162 if (copy_from_user(&kmask, umask, sizeof(sigset_t))) 3163 return -EFAULT; 3164 3165 set_restore_sigmask(); 3166 current->saved_sigmask = current->blocked; 3167 set_current_blocked(&kmask); 3168 3169 return 0; 3170 } 3171 3172 #ifdef CONFIG_COMPAT 3173 int set_compat_user_sigmask(const compat_sigset_t __user *umask, 3174 size_t sigsetsize) 3175 { 3176 sigset_t kmask; 3177 3178 if (!umask) 3179 return 0; 3180 if (sigsetsize != sizeof(compat_sigset_t)) 3181 return -EINVAL; 3182 if (get_compat_sigset(&kmask, umask)) 3183 return -EFAULT; 3184 3185 set_restore_sigmask(); 3186 current->saved_sigmask = current->blocked; 3187 set_current_blocked(&kmask); 3188 3189 return 0; 3190 } 3191 #endif 3192 3193 /** 3194 * sys_rt_sigprocmask - change the list of currently blocked signals 3195 * @how: whether to add, remove, or set signals 3196 * @nset: stores pending signals 3197 * @oset: previous value of signal mask if non-null 3198 * @sigsetsize: size of sigset_t type 3199 */ 3200 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 3201 sigset_t __user *, oset, size_t, sigsetsize) 3202 { 3203 sigset_t old_set, new_set; 3204 int error; 3205 3206 /* XXX: Don't preclude handling different sized sigset_t's. */ 3207 if (sigsetsize != sizeof(sigset_t)) 3208 return -EINVAL; 3209 3210 old_set = current->blocked; 3211 3212 if (nset) { 3213 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 3214 return -EFAULT; 3215 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3216 3217 error = sigprocmask(how, &new_set, NULL); 3218 if (error) 3219 return error; 3220 } 3221 3222 if (oset) { 3223 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 3224 return -EFAULT; 3225 } 3226 3227 return 0; 3228 } 3229 3230 #ifdef CONFIG_COMPAT 3231 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 3232 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 3233 { 3234 sigset_t old_set = current->blocked; 3235 3236 /* XXX: Don't preclude handling different sized sigset_t's. */ 3237 if (sigsetsize != sizeof(sigset_t)) 3238 return -EINVAL; 3239 3240 if (nset) { 3241 sigset_t new_set; 3242 int error; 3243 if (get_compat_sigset(&new_set, nset)) 3244 return -EFAULT; 3245 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3246 3247 error = sigprocmask(how, &new_set, NULL); 3248 if (error) 3249 return error; 3250 } 3251 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 3252 } 3253 #endif 3254 3255 static void do_sigpending(sigset_t *set) 3256 { 3257 spin_lock_irq(¤t->sighand->siglock); 3258 sigorsets(set, ¤t->pending.signal, 3259 ¤t->signal->shared_pending.signal); 3260 spin_unlock_irq(¤t->sighand->siglock); 3261 3262 /* Outside the lock because only this thread touches it. */ 3263 sigandsets(set, ¤t->blocked, set); 3264 } 3265 3266 /** 3267 * sys_rt_sigpending - examine a pending signal that has been raised 3268 * while blocked 3269 * @uset: stores pending signals 3270 * @sigsetsize: size of sigset_t type or larger 3271 */ 3272 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 3273 { 3274 sigset_t set; 3275 3276 if (sigsetsize > sizeof(*uset)) 3277 return -EINVAL; 3278 3279 do_sigpending(&set); 3280 3281 if (copy_to_user(uset, &set, sigsetsize)) 3282 return -EFAULT; 3283 3284 return 0; 3285 } 3286 3287 #ifdef CONFIG_COMPAT 3288 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 3289 compat_size_t, sigsetsize) 3290 { 3291 sigset_t set; 3292 3293 if (sigsetsize > sizeof(*uset)) 3294 return -EINVAL; 3295 3296 do_sigpending(&set); 3297 3298 return put_compat_sigset(uset, &set, sigsetsize); 3299 } 3300 #endif 3301 3302 static const struct { 3303 unsigned char limit, layout; 3304 } sig_sicodes[] = { 3305 [SIGILL] = { NSIGILL, SIL_FAULT }, 3306 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 3307 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 3308 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 3309 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 3310 #if defined(SIGEMT) 3311 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 3312 #endif 3313 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 3314 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 3315 [SIGSYS] = { NSIGSYS, SIL_SYS }, 3316 }; 3317 3318 static bool known_siginfo_layout(unsigned sig, int si_code) 3319 { 3320 if (si_code == SI_KERNEL) 3321 return true; 3322 else if ((si_code > SI_USER)) { 3323 if (sig_specific_sicodes(sig)) { 3324 if (si_code <= sig_sicodes[sig].limit) 3325 return true; 3326 } 3327 else if (si_code <= NSIGPOLL) 3328 return true; 3329 } 3330 else if (si_code >= SI_DETHREAD) 3331 return true; 3332 else if (si_code == SI_ASYNCNL) 3333 return true; 3334 return false; 3335 } 3336 3337 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3338 { 3339 enum siginfo_layout layout = SIL_KILL; 3340 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3341 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3342 (si_code <= sig_sicodes[sig].limit)) { 3343 layout = sig_sicodes[sig].layout; 3344 /* Handle the exceptions */ 3345 if ((sig == SIGBUS) && 3346 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3347 layout = SIL_FAULT_MCEERR; 3348 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3349 layout = SIL_FAULT_BNDERR; 3350 #ifdef SEGV_PKUERR 3351 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3352 layout = SIL_FAULT_PKUERR; 3353 #endif 3354 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF)) 3355 layout = SIL_FAULT_PERF_EVENT; 3356 else if (IS_ENABLED(CONFIG_SPARC) && 3357 (sig == SIGILL) && (si_code == ILL_ILLTRP)) 3358 layout = SIL_FAULT_TRAPNO; 3359 else if (IS_ENABLED(CONFIG_ALPHA) && 3360 ((sig == SIGFPE) || 3361 ((sig == SIGTRAP) && (si_code == TRAP_UNK)))) 3362 layout = SIL_FAULT_TRAPNO; 3363 } 3364 else if (si_code <= NSIGPOLL) 3365 layout = SIL_POLL; 3366 } else { 3367 if (si_code == SI_TIMER) 3368 layout = SIL_TIMER; 3369 else if (si_code == SI_SIGIO) 3370 layout = SIL_POLL; 3371 else if (si_code < 0) 3372 layout = SIL_RT; 3373 } 3374 return layout; 3375 } 3376 3377 static inline char __user *si_expansion(const siginfo_t __user *info) 3378 { 3379 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3380 } 3381 3382 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3383 { 3384 char __user *expansion = si_expansion(to); 3385 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3386 return -EFAULT; 3387 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3388 return -EFAULT; 3389 return 0; 3390 } 3391 3392 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3393 const siginfo_t __user *from) 3394 { 3395 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3396 char __user *expansion = si_expansion(from); 3397 char buf[SI_EXPANSION_SIZE]; 3398 int i; 3399 /* 3400 * An unknown si_code might need more than 3401 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3402 * extra bytes are 0. This guarantees copy_siginfo_to_user 3403 * will return this data to userspace exactly. 3404 */ 3405 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3406 return -EFAULT; 3407 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3408 if (buf[i] != 0) 3409 return -E2BIG; 3410 } 3411 } 3412 return 0; 3413 } 3414 3415 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3416 const siginfo_t __user *from) 3417 { 3418 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3419 return -EFAULT; 3420 to->si_signo = signo; 3421 return post_copy_siginfo_from_user(to, from); 3422 } 3423 3424 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3425 { 3426 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3427 return -EFAULT; 3428 return post_copy_siginfo_from_user(to, from); 3429 } 3430 3431 #ifdef CONFIG_COMPAT 3432 /** 3433 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo 3434 * @to: compat siginfo destination 3435 * @from: kernel siginfo source 3436 * 3437 * Note: This function does not work properly for the SIGCHLD on x32, but 3438 * fortunately it doesn't have to. The only valid callers for this function are 3439 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. 3440 * The latter does not care because SIGCHLD will never cause a coredump. 3441 */ 3442 void copy_siginfo_to_external32(struct compat_siginfo *to, 3443 const struct kernel_siginfo *from) 3444 { 3445 memset(to, 0, sizeof(*to)); 3446 3447 to->si_signo = from->si_signo; 3448 to->si_errno = from->si_errno; 3449 to->si_code = from->si_code; 3450 switch(siginfo_layout(from->si_signo, from->si_code)) { 3451 case SIL_KILL: 3452 to->si_pid = from->si_pid; 3453 to->si_uid = from->si_uid; 3454 break; 3455 case SIL_TIMER: 3456 to->si_tid = from->si_tid; 3457 to->si_overrun = from->si_overrun; 3458 to->si_int = from->si_int; 3459 break; 3460 case SIL_POLL: 3461 to->si_band = from->si_band; 3462 to->si_fd = from->si_fd; 3463 break; 3464 case SIL_FAULT: 3465 to->si_addr = ptr_to_compat(from->si_addr); 3466 break; 3467 case SIL_FAULT_TRAPNO: 3468 to->si_addr = ptr_to_compat(from->si_addr); 3469 to->si_trapno = from->si_trapno; 3470 break; 3471 case SIL_FAULT_MCEERR: 3472 to->si_addr = ptr_to_compat(from->si_addr); 3473 to->si_addr_lsb = from->si_addr_lsb; 3474 break; 3475 case SIL_FAULT_BNDERR: 3476 to->si_addr = ptr_to_compat(from->si_addr); 3477 to->si_lower = ptr_to_compat(from->si_lower); 3478 to->si_upper = ptr_to_compat(from->si_upper); 3479 break; 3480 case SIL_FAULT_PKUERR: 3481 to->si_addr = ptr_to_compat(from->si_addr); 3482 to->si_pkey = from->si_pkey; 3483 break; 3484 case SIL_FAULT_PERF_EVENT: 3485 to->si_addr = ptr_to_compat(from->si_addr); 3486 to->si_perf_data = from->si_perf_data; 3487 to->si_perf_type = from->si_perf_type; 3488 to->si_perf_flags = from->si_perf_flags; 3489 break; 3490 case SIL_CHLD: 3491 to->si_pid = from->si_pid; 3492 to->si_uid = from->si_uid; 3493 to->si_status = from->si_status; 3494 to->si_utime = from->si_utime; 3495 to->si_stime = from->si_stime; 3496 break; 3497 case SIL_RT: 3498 to->si_pid = from->si_pid; 3499 to->si_uid = from->si_uid; 3500 to->si_int = from->si_int; 3501 break; 3502 case SIL_SYS: 3503 to->si_call_addr = ptr_to_compat(from->si_call_addr); 3504 to->si_syscall = from->si_syscall; 3505 to->si_arch = from->si_arch; 3506 break; 3507 } 3508 } 3509 3510 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3511 const struct kernel_siginfo *from) 3512 { 3513 struct compat_siginfo new; 3514 3515 copy_siginfo_to_external32(&new, from); 3516 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3517 return -EFAULT; 3518 return 0; 3519 } 3520 3521 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3522 const struct compat_siginfo *from) 3523 { 3524 clear_siginfo(to); 3525 to->si_signo = from->si_signo; 3526 to->si_errno = from->si_errno; 3527 to->si_code = from->si_code; 3528 switch(siginfo_layout(from->si_signo, from->si_code)) { 3529 case SIL_KILL: 3530 to->si_pid = from->si_pid; 3531 to->si_uid = from->si_uid; 3532 break; 3533 case SIL_TIMER: 3534 to->si_tid = from->si_tid; 3535 to->si_overrun = from->si_overrun; 3536 to->si_int = from->si_int; 3537 break; 3538 case SIL_POLL: 3539 to->si_band = from->si_band; 3540 to->si_fd = from->si_fd; 3541 break; 3542 case SIL_FAULT: 3543 to->si_addr = compat_ptr(from->si_addr); 3544 break; 3545 case SIL_FAULT_TRAPNO: 3546 to->si_addr = compat_ptr(from->si_addr); 3547 to->si_trapno = from->si_trapno; 3548 break; 3549 case SIL_FAULT_MCEERR: 3550 to->si_addr = compat_ptr(from->si_addr); 3551 to->si_addr_lsb = from->si_addr_lsb; 3552 break; 3553 case SIL_FAULT_BNDERR: 3554 to->si_addr = compat_ptr(from->si_addr); 3555 to->si_lower = compat_ptr(from->si_lower); 3556 to->si_upper = compat_ptr(from->si_upper); 3557 break; 3558 case SIL_FAULT_PKUERR: 3559 to->si_addr = compat_ptr(from->si_addr); 3560 to->si_pkey = from->si_pkey; 3561 break; 3562 case SIL_FAULT_PERF_EVENT: 3563 to->si_addr = compat_ptr(from->si_addr); 3564 to->si_perf_data = from->si_perf_data; 3565 to->si_perf_type = from->si_perf_type; 3566 to->si_perf_flags = from->si_perf_flags; 3567 break; 3568 case SIL_CHLD: 3569 to->si_pid = from->si_pid; 3570 to->si_uid = from->si_uid; 3571 to->si_status = from->si_status; 3572 #ifdef CONFIG_X86_X32_ABI 3573 if (in_x32_syscall()) { 3574 to->si_utime = from->_sifields._sigchld_x32._utime; 3575 to->si_stime = from->_sifields._sigchld_x32._stime; 3576 } else 3577 #endif 3578 { 3579 to->si_utime = from->si_utime; 3580 to->si_stime = from->si_stime; 3581 } 3582 break; 3583 case SIL_RT: 3584 to->si_pid = from->si_pid; 3585 to->si_uid = from->si_uid; 3586 to->si_int = from->si_int; 3587 break; 3588 case SIL_SYS: 3589 to->si_call_addr = compat_ptr(from->si_call_addr); 3590 to->si_syscall = from->si_syscall; 3591 to->si_arch = from->si_arch; 3592 break; 3593 } 3594 return 0; 3595 } 3596 3597 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3598 const struct compat_siginfo __user *ufrom) 3599 { 3600 struct compat_siginfo from; 3601 3602 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3603 return -EFAULT; 3604 3605 from.si_signo = signo; 3606 return post_copy_siginfo_from_user32(to, &from); 3607 } 3608 3609 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3610 const struct compat_siginfo __user *ufrom) 3611 { 3612 struct compat_siginfo from; 3613 3614 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3615 return -EFAULT; 3616 3617 return post_copy_siginfo_from_user32(to, &from); 3618 } 3619 #endif /* CONFIG_COMPAT */ 3620 3621 /** 3622 * do_sigtimedwait - wait for queued signals specified in @which 3623 * @which: queued signals to wait for 3624 * @info: if non-null, the signal's siginfo is returned here 3625 * @ts: upper bound on process time suspension 3626 */ 3627 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3628 const struct timespec64 *ts) 3629 { 3630 ktime_t *to = NULL, timeout = KTIME_MAX; 3631 struct task_struct *tsk = current; 3632 sigset_t mask = *which; 3633 enum pid_type type; 3634 int sig, ret = 0; 3635 3636 if (ts) { 3637 if (!timespec64_valid(ts)) 3638 return -EINVAL; 3639 timeout = timespec64_to_ktime(*ts); 3640 to = &timeout; 3641 } 3642 3643 /* 3644 * Invert the set of allowed signals to get those we want to block. 3645 */ 3646 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3647 signotset(&mask); 3648 3649 spin_lock_irq(&tsk->sighand->siglock); 3650 sig = dequeue_signal(tsk, &mask, info, &type); 3651 if (!sig && timeout) { 3652 /* 3653 * None ready, temporarily unblock those we're interested 3654 * while we are sleeping in so that we'll be awakened when 3655 * they arrive. Unblocking is always fine, we can avoid 3656 * set_current_blocked(). 3657 */ 3658 tsk->real_blocked = tsk->blocked; 3659 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3660 recalc_sigpending(); 3661 spin_unlock_irq(&tsk->sighand->siglock); 3662 3663 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 3664 ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3665 HRTIMER_MODE_REL); 3666 spin_lock_irq(&tsk->sighand->siglock); 3667 __set_task_blocked(tsk, &tsk->real_blocked); 3668 sigemptyset(&tsk->real_blocked); 3669 sig = dequeue_signal(tsk, &mask, info, &type); 3670 } 3671 spin_unlock_irq(&tsk->sighand->siglock); 3672 3673 if (sig) 3674 return sig; 3675 return ret ? -EINTR : -EAGAIN; 3676 } 3677 3678 /** 3679 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3680 * in @uthese 3681 * @uthese: queued signals to wait for 3682 * @uinfo: if non-null, the signal's siginfo is returned here 3683 * @uts: upper bound on process time suspension 3684 * @sigsetsize: size of sigset_t type 3685 */ 3686 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3687 siginfo_t __user *, uinfo, 3688 const struct __kernel_timespec __user *, uts, 3689 size_t, sigsetsize) 3690 { 3691 sigset_t these; 3692 struct timespec64 ts; 3693 kernel_siginfo_t info; 3694 int ret; 3695 3696 /* XXX: Don't preclude handling different sized sigset_t's. */ 3697 if (sigsetsize != sizeof(sigset_t)) 3698 return -EINVAL; 3699 3700 if (copy_from_user(&these, uthese, sizeof(these))) 3701 return -EFAULT; 3702 3703 if (uts) { 3704 if (get_timespec64(&ts, uts)) 3705 return -EFAULT; 3706 } 3707 3708 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3709 3710 if (ret > 0 && uinfo) { 3711 if (copy_siginfo_to_user(uinfo, &info)) 3712 ret = -EFAULT; 3713 } 3714 3715 return ret; 3716 } 3717 3718 #ifdef CONFIG_COMPAT_32BIT_TIME 3719 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3720 siginfo_t __user *, uinfo, 3721 const struct old_timespec32 __user *, uts, 3722 size_t, sigsetsize) 3723 { 3724 sigset_t these; 3725 struct timespec64 ts; 3726 kernel_siginfo_t info; 3727 int ret; 3728 3729 if (sigsetsize != sizeof(sigset_t)) 3730 return -EINVAL; 3731 3732 if (copy_from_user(&these, uthese, sizeof(these))) 3733 return -EFAULT; 3734 3735 if (uts) { 3736 if (get_old_timespec32(&ts, uts)) 3737 return -EFAULT; 3738 } 3739 3740 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3741 3742 if (ret > 0 && uinfo) { 3743 if (copy_siginfo_to_user(uinfo, &info)) 3744 ret = -EFAULT; 3745 } 3746 3747 return ret; 3748 } 3749 #endif 3750 3751 #ifdef CONFIG_COMPAT 3752 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3753 struct compat_siginfo __user *, uinfo, 3754 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3755 { 3756 sigset_t s; 3757 struct timespec64 t; 3758 kernel_siginfo_t info; 3759 long ret; 3760 3761 if (sigsetsize != sizeof(sigset_t)) 3762 return -EINVAL; 3763 3764 if (get_compat_sigset(&s, uthese)) 3765 return -EFAULT; 3766 3767 if (uts) { 3768 if (get_timespec64(&t, uts)) 3769 return -EFAULT; 3770 } 3771 3772 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3773 3774 if (ret > 0 && uinfo) { 3775 if (copy_siginfo_to_user32(uinfo, &info)) 3776 ret = -EFAULT; 3777 } 3778 3779 return ret; 3780 } 3781 3782 #ifdef CONFIG_COMPAT_32BIT_TIME 3783 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3784 struct compat_siginfo __user *, uinfo, 3785 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3786 { 3787 sigset_t s; 3788 struct timespec64 t; 3789 kernel_siginfo_t info; 3790 long ret; 3791 3792 if (sigsetsize != sizeof(sigset_t)) 3793 return -EINVAL; 3794 3795 if (get_compat_sigset(&s, uthese)) 3796 return -EFAULT; 3797 3798 if (uts) { 3799 if (get_old_timespec32(&t, uts)) 3800 return -EFAULT; 3801 } 3802 3803 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3804 3805 if (ret > 0 && uinfo) { 3806 if (copy_siginfo_to_user32(uinfo, &info)) 3807 ret = -EFAULT; 3808 } 3809 3810 return ret; 3811 } 3812 #endif 3813 #endif 3814 3815 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info) 3816 { 3817 clear_siginfo(info); 3818 info->si_signo = sig; 3819 info->si_errno = 0; 3820 info->si_code = SI_USER; 3821 info->si_pid = task_tgid_vnr(current); 3822 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3823 } 3824 3825 /** 3826 * sys_kill - send a signal to a process 3827 * @pid: the PID of the process 3828 * @sig: signal to be sent 3829 */ 3830 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3831 { 3832 struct kernel_siginfo info; 3833 3834 prepare_kill_siginfo(sig, &info); 3835 3836 return kill_something_info(sig, &info, pid); 3837 } 3838 3839 /* 3840 * Verify that the signaler and signalee either are in the same pid namespace 3841 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3842 * namespace. 3843 */ 3844 static bool access_pidfd_pidns(struct pid *pid) 3845 { 3846 struct pid_namespace *active = task_active_pid_ns(current); 3847 struct pid_namespace *p = ns_of_pid(pid); 3848 3849 for (;;) { 3850 if (!p) 3851 return false; 3852 if (p == active) 3853 break; 3854 p = p->parent; 3855 } 3856 3857 return true; 3858 } 3859 3860 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, 3861 siginfo_t __user *info) 3862 { 3863 #ifdef CONFIG_COMPAT 3864 /* 3865 * Avoid hooking up compat syscalls and instead handle necessary 3866 * conversions here. Note, this is a stop-gap measure and should not be 3867 * considered a generic solution. 3868 */ 3869 if (in_compat_syscall()) 3870 return copy_siginfo_from_user32( 3871 kinfo, (struct compat_siginfo __user *)info); 3872 #endif 3873 return copy_siginfo_from_user(kinfo, info); 3874 } 3875 3876 static struct pid *pidfd_to_pid(const struct file *file) 3877 { 3878 struct pid *pid; 3879 3880 pid = pidfd_pid(file); 3881 if (!IS_ERR(pid)) 3882 return pid; 3883 3884 return tgid_pidfd_to_pid(file); 3885 } 3886 3887 /** 3888 * sys_pidfd_send_signal - Signal a process through a pidfd 3889 * @pidfd: file descriptor of the process 3890 * @sig: signal to send 3891 * @info: signal info 3892 * @flags: future flags 3893 * 3894 * The syscall currently only signals via PIDTYPE_PID which covers 3895 * kill(<positive-pid>, <signal>. It does not signal threads or process 3896 * groups. 3897 * In order to extend the syscall to threads and process groups the @flags 3898 * argument should be used. In essence, the @flags argument will determine 3899 * what is signaled and not the file descriptor itself. Put in other words, 3900 * grouping is a property of the flags argument not a property of the file 3901 * descriptor. 3902 * 3903 * Return: 0 on success, negative errno on failure 3904 */ 3905 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 3906 siginfo_t __user *, info, unsigned int, flags) 3907 { 3908 int ret; 3909 struct fd f; 3910 struct pid *pid; 3911 kernel_siginfo_t kinfo; 3912 3913 /* Enforce flags be set to 0 until we add an extension. */ 3914 if (flags) 3915 return -EINVAL; 3916 3917 f = fdget(pidfd); 3918 if (!f.file) 3919 return -EBADF; 3920 3921 /* Is this a pidfd? */ 3922 pid = pidfd_to_pid(f.file); 3923 if (IS_ERR(pid)) { 3924 ret = PTR_ERR(pid); 3925 goto err; 3926 } 3927 3928 ret = -EINVAL; 3929 if (!access_pidfd_pidns(pid)) 3930 goto err; 3931 3932 if (info) { 3933 ret = copy_siginfo_from_user_any(&kinfo, info); 3934 if (unlikely(ret)) 3935 goto err; 3936 3937 ret = -EINVAL; 3938 if (unlikely(sig != kinfo.si_signo)) 3939 goto err; 3940 3941 /* Only allow sending arbitrary signals to yourself. */ 3942 ret = -EPERM; 3943 if ((task_pid(current) != pid) && 3944 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) 3945 goto err; 3946 } else { 3947 prepare_kill_siginfo(sig, &kinfo); 3948 } 3949 3950 ret = kill_pid_info(sig, &kinfo, pid); 3951 3952 err: 3953 fdput(f); 3954 return ret; 3955 } 3956 3957 static int 3958 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 3959 { 3960 struct task_struct *p; 3961 int error = -ESRCH; 3962 3963 rcu_read_lock(); 3964 p = find_task_by_vpid(pid); 3965 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 3966 error = check_kill_permission(sig, info, p); 3967 /* 3968 * The null signal is a permissions and process existence 3969 * probe. No signal is actually delivered. 3970 */ 3971 if (!error && sig) { 3972 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 3973 /* 3974 * If lock_task_sighand() failed we pretend the task 3975 * dies after receiving the signal. The window is tiny, 3976 * and the signal is private anyway. 3977 */ 3978 if (unlikely(error == -ESRCH)) 3979 error = 0; 3980 } 3981 } 3982 rcu_read_unlock(); 3983 3984 return error; 3985 } 3986 3987 static int do_tkill(pid_t tgid, pid_t pid, int sig) 3988 { 3989 struct kernel_siginfo info; 3990 3991 clear_siginfo(&info); 3992 info.si_signo = sig; 3993 info.si_errno = 0; 3994 info.si_code = SI_TKILL; 3995 info.si_pid = task_tgid_vnr(current); 3996 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3997 3998 return do_send_specific(tgid, pid, sig, &info); 3999 } 4000 4001 /** 4002 * sys_tgkill - send signal to one specific thread 4003 * @tgid: the thread group ID of the thread 4004 * @pid: the PID of the thread 4005 * @sig: signal to be sent 4006 * 4007 * This syscall also checks the @tgid and returns -ESRCH even if the PID 4008 * exists but it's not belonging to the target process anymore. This 4009 * method solves the problem of threads exiting and PIDs getting reused. 4010 */ 4011 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 4012 { 4013 /* This is only valid for single tasks */ 4014 if (pid <= 0 || tgid <= 0) 4015 return -EINVAL; 4016 4017 return do_tkill(tgid, pid, sig); 4018 } 4019 4020 /** 4021 * sys_tkill - send signal to one specific task 4022 * @pid: the PID of the task 4023 * @sig: signal to be sent 4024 * 4025 * Send a signal to only one task, even if it's a CLONE_THREAD task. 4026 */ 4027 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 4028 { 4029 /* This is only valid for single tasks */ 4030 if (pid <= 0) 4031 return -EINVAL; 4032 4033 return do_tkill(0, pid, sig); 4034 } 4035 4036 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 4037 { 4038 /* Not even root can pretend to send signals from the kernel. 4039 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4040 */ 4041 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4042 (task_pid_vnr(current) != pid)) 4043 return -EPERM; 4044 4045 /* POSIX.1b doesn't mention process groups. */ 4046 return kill_proc_info(sig, info, pid); 4047 } 4048 4049 /** 4050 * sys_rt_sigqueueinfo - send signal information to a signal 4051 * @pid: the PID of the thread 4052 * @sig: signal to be sent 4053 * @uinfo: signal info to be sent 4054 */ 4055 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 4056 siginfo_t __user *, uinfo) 4057 { 4058 kernel_siginfo_t info; 4059 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4060 if (unlikely(ret)) 4061 return ret; 4062 return do_rt_sigqueueinfo(pid, sig, &info); 4063 } 4064 4065 #ifdef CONFIG_COMPAT 4066 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 4067 compat_pid_t, pid, 4068 int, sig, 4069 struct compat_siginfo __user *, uinfo) 4070 { 4071 kernel_siginfo_t info; 4072 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4073 if (unlikely(ret)) 4074 return ret; 4075 return do_rt_sigqueueinfo(pid, sig, &info); 4076 } 4077 #endif 4078 4079 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 4080 { 4081 /* This is only valid for single tasks */ 4082 if (pid <= 0 || tgid <= 0) 4083 return -EINVAL; 4084 4085 /* Not even root can pretend to send signals from the kernel. 4086 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4087 */ 4088 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4089 (task_pid_vnr(current) != pid)) 4090 return -EPERM; 4091 4092 return do_send_specific(tgid, pid, sig, info); 4093 } 4094 4095 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 4096 siginfo_t __user *, uinfo) 4097 { 4098 kernel_siginfo_t info; 4099 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4100 if (unlikely(ret)) 4101 return ret; 4102 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4103 } 4104 4105 #ifdef CONFIG_COMPAT 4106 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 4107 compat_pid_t, tgid, 4108 compat_pid_t, pid, 4109 int, sig, 4110 struct compat_siginfo __user *, uinfo) 4111 { 4112 kernel_siginfo_t info; 4113 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4114 if (unlikely(ret)) 4115 return ret; 4116 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4117 } 4118 #endif 4119 4120 /* 4121 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 4122 */ 4123 void kernel_sigaction(int sig, __sighandler_t action) 4124 { 4125 spin_lock_irq(¤t->sighand->siglock); 4126 current->sighand->action[sig - 1].sa.sa_handler = action; 4127 if (action == SIG_IGN) { 4128 sigset_t mask; 4129 4130 sigemptyset(&mask); 4131 sigaddset(&mask, sig); 4132 4133 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 4134 flush_sigqueue_mask(&mask, ¤t->pending); 4135 recalc_sigpending(); 4136 } 4137 spin_unlock_irq(¤t->sighand->siglock); 4138 } 4139 EXPORT_SYMBOL(kernel_sigaction); 4140 4141 void __weak sigaction_compat_abi(struct k_sigaction *act, 4142 struct k_sigaction *oact) 4143 { 4144 } 4145 4146 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 4147 { 4148 struct task_struct *p = current, *t; 4149 struct k_sigaction *k; 4150 sigset_t mask; 4151 4152 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 4153 return -EINVAL; 4154 4155 k = &p->sighand->action[sig-1]; 4156 4157 spin_lock_irq(&p->sighand->siglock); 4158 if (k->sa.sa_flags & SA_IMMUTABLE) { 4159 spin_unlock_irq(&p->sighand->siglock); 4160 return -EINVAL; 4161 } 4162 if (oact) 4163 *oact = *k; 4164 4165 /* 4166 * Make sure that we never accidentally claim to support SA_UNSUPPORTED, 4167 * e.g. by having an architecture use the bit in their uapi. 4168 */ 4169 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED); 4170 4171 /* 4172 * Clear unknown flag bits in order to allow userspace to detect missing 4173 * support for flag bits and to allow the kernel to use non-uapi bits 4174 * internally. 4175 */ 4176 if (act) 4177 act->sa.sa_flags &= UAPI_SA_FLAGS; 4178 if (oact) 4179 oact->sa.sa_flags &= UAPI_SA_FLAGS; 4180 4181 sigaction_compat_abi(act, oact); 4182 4183 if (act) { 4184 sigdelsetmask(&act->sa.sa_mask, 4185 sigmask(SIGKILL) | sigmask(SIGSTOP)); 4186 *k = *act; 4187 /* 4188 * POSIX 3.3.1.3: 4189 * "Setting a signal action to SIG_IGN for a signal that is 4190 * pending shall cause the pending signal to be discarded, 4191 * whether or not it is blocked." 4192 * 4193 * "Setting a signal action to SIG_DFL for a signal that is 4194 * pending and whose default action is to ignore the signal 4195 * (for example, SIGCHLD), shall cause the pending signal to 4196 * be discarded, whether or not it is blocked" 4197 */ 4198 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 4199 sigemptyset(&mask); 4200 sigaddset(&mask, sig); 4201 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 4202 for_each_thread(p, t) 4203 flush_sigqueue_mask(&mask, &t->pending); 4204 } 4205 } 4206 4207 spin_unlock_irq(&p->sighand->siglock); 4208 return 0; 4209 } 4210 4211 #ifdef CONFIG_DYNAMIC_SIGFRAME 4212 static inline void sigaltstack_lock(void) 4213 __acquires(¤t->sighand->siglock) 4214 { 4215 spin_lock_irq(¤t->sighand->siglock); 4216 } 4217 4218 static inline void sigaltstack_unlock(void) 4219 __releases(¤t->sighand->siglock) 4220 { 4221 spin_unlock_irq(¤t->sighand->siglock); 4222 } 4223 #else 4224 static inline void sigaltstack_lock(void) { } 4225 static inline void sigaltstack_unlock(void) { } 4226 #endif 4227 4228 static int 4229 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 4230 size_t min_ss_size) 4231 { 4232 struct task_struct *t = current; 4233 int ret = 0; 4234 4235 if (oss) { 4236 memset(oss, 0, sizeof(stack_t)); 4237 oss->ss_sp = (void __user *) t->sas_ss_sp; 4238 oss->ss_size = t->sas_ss_size; 4239 oss->ss_flags = sas_ss_flags(sp) | 4240 (current->sas_ss_flags & SS_FLAG_BITS); 4241 } 4242 4243 if (ss) { 4244 void __user *ss_sp = ss->ss_sp; 4245 size_t ss_size = ss->ss_size; 4246 unsigned ss_flags = ss->ss_flags; 4247 int ss_mode; 4248 4249 if (unlikely(on_sig_stack(sp))) 4250 return -EPERM; 4251 4252 ss_mode = ss_flags & ~SS_FLAG_BITS; 4253 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 4254 ss_mode != 0)) 4255 return -EINVAL; 4256 4257 /* 4258 * Return before taking any locks if no actual 4259 * sigaltstack changes were requested. 4260 */ 4261 if (t->sas_ss_sp == (unsigned long)ss_sp && 4262 t->sas_ss_size == ss_size && 4263 t->sas_ss_flags == ss_flags) 4264 return 0; 4265 4266 sigaltstack_lock(); 4267 if (ss_mode == SS_DISABLE) { 4268 ss_size = 0; 4269 ss_sp = NULL; 4270 } else { 4271 if (unlikely(ss_size < min_ss_size)) 4272 ret = -ENOMEM; 4273 if (!sigaltstack_size_valid(ss_size)) 4274 ret = -ENOMEM; 4275 } 4276 if (!ret) { 4277 t->sas_ss_sp = (unsigned long) ss_sp; 4278 t->sas_ss_size = ss_size; 4279 t->sas_ss_flags = ss_flags; 4280 } 4281 sigaltstack_unlock(); 4282 } 4283 return ret; 4284 } 4285 4286 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 4287 { 4288 stack_t new, old; 4289 int err; 4290 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 4291 return -EFAULT; 4292 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 4293 current_user_stack_pointer(), 4294 MINSIGSTKSZ); 4295 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 4296 err = -EFAULT; 4297 return err; 4298 } 4299 4300 int restore_altstack(const stack_t __user *uss) 4301 { 4302 stack_t new; 4303 if (copy_from_user(&new, uss, sizeof(stack_t))) 4304 return -EFAULT; 4305 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 4306 MINSIGSTKSZ); 4307 /* squash all but EFAULT for now */ 4308 return 0; 4309 } 4310 4311 int __save_altstack(stack_t __user *uss, unsigned long sp) 4312 { 4313 struct task_struct *t = current; 4314 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 4315 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4316 __put_user(t->sas_ss_size, &uss->ss_size); 4317 return err; 4318 } 4319 4320 #ifdef CONFIG_COMPAT 4321 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 4322 compat_stack_t __user *uoss_ptr) 4323 { 4324 stack_t uss, uoss; 4325 int ret; 4326 4327 if (uss_ptr) { 4328 compat_stack_t uss32; 4329 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 4330 return -EFAULT; 4331 uss.ss_sp = compat_ptr(uss32.ss_sp); 4332 uss.ss_flags = uss32.ss_flags; 4333 uss.ss_size = uss32.ss_size; 4334 } 4335 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 4336 compat_user_stack_pointer(), 4337 COMPAT_MINSIGSTKSZ); 4338 if (ret >= 0 && uoss_ptr) { 4339 compat_stack_t old; 4340 memset(&old, 0, sizeof(old)); 4341 old.ss_sp = ptr_to_compat(uoss.ss_sp); 4342 old.ss_flags = uoss.ss_flags; 4343 old.ss_size = uoss.ss_size; 4344 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 4345 ret = -EFAULT; 4346 } 4347 return ret; 4348 } 4349 4350 COMPAT_SYSCALL_DEFINE2(sigaltstack, 4351 const compat_stack_t __user *, uss_ptr, 4352 compat_stack_t __user *, uoss_ptr) 4353 { 4354 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 4355 } 4356 4357 int compat_restore_altstack(const compat_stack_t __user *uss) 4358 { 4359 int err = do_compat_sigaltstack(uss, NULL); 4360 /* squash all but -EFAULT for now */ 4361 return err == -EFAULT ? err : 0; 4362 } 4363 4364 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 4365 { 4366 int err; 4367 struct task_struct *t = current; 4368 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 4369 &uss->ss_sp) | 4370 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4371 __put_user(t->sas_ss_size, &uss->ss_size); 4372 return err; 4373 } 4374 #endif 4375 4376 #ifdef __ARCH_WANT_SYS_SIGPENDING 4377 4378 /** 4379 * sys_sigpending - examine pending signals 4380 * @uset: where mask of pending signal is returned 4381 */ 4382 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4383 { 4384 sigset_t set; 4385 4386 if (sizeof(old_sigset_t) > sizeof(*uset)) 4387 return -EINVAL; 4388 4389 do_sigpending(&set); 4390 4391 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4392 return -EFAULT; 4393 4394 return 0; 4395 } 4396 4397 #ifdef CONFIG_COMPAT 4398 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4399 { 4400 sigset_t set; 4401 4402 do_sigpending(&set); 4403 4404 return put_user(set.sig[0], set32); 4405 } 4406 #endif 4407 4408 #endif 4409 4410 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 4411 /** 4412 * sys_sigprocmask - examine and change blocked signals 4413 * @how: whether to add, remove, or set signals 4414 * @nset: signals to add or remove (if non-null) 4415 * @oset: previous value of signal mask if non-null 4416 * 4417 * Some platforms have their own version with special arguments; 4418 * others support only sys_rt_sigprocmask. 4419 */ 4420 4421 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4422 old_sigset_t __user *, oset) 4423 { 4424 old_sigset_t old_set, new_set; 4425 sigset_t new_blocked; 4426 4427 old_set = current->blocked.sig[0]; 4428 4429 if (nset) { 4430 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4431 return -EFAULT; 4432 4433 new_blocked = current->blocked; 4434 4435 switch (how) { 4436 case SIG_BLOCK: 4437 sigaddsetmask(&new_blocked, new_set); 4438 break; 4439 case SIG_UNBLOCK: 4440 sigdelsetmask(&new_blocked, new_set); 4441 break; 4442 case SIG_SETMASK: 4443 new_blocked.sig[0] = new_set; 4444 break; 4445 default: 4446 return -EINVAL; 4447 } 4448 4449 set_current_blocked(&new_blocked); 4450 } 4451 4452 if (oset) { 4453 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4454 return -EFAULT; 4455 } 4456 4457 return 0; 4458 } 4459 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4460 4461 #ifndef CONFIG_ODD_RT_SIGACTION 4462 /** 4463 * sys_rt_sigaction - alter an action taken by a process 4464 * @sig: signal to be sent 4465 * @act: new sigaction 4466 * @oact: used to save the previous sigaction 4467 * @sigsetsize: size of sigset_t type 4468 */ 4469 SYSCALL_DEFINE4(rt_sigaction, int, sig, 4470 const struct sigaction __user *, act, 4471 struct sigaction __user *, oact, 4472 size_t, sigsetsize) 4473 { 4474 struct k_sigaction new_sa, old_sa; 4475 int ret; 4476 4477 /* XXX: Don't preclude handling different sized sigset_t's. */ 4478 if (sigsetsize != sizeof(sigset_t)) 4479 return -EINVAL; 4480 4481 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4482 return -EFAULT; 4483 4484 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4485 if (ret) 4486 return ret; 4487 4488 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4489 return -EFAULT; 4490 4491 return 0; 4492 } 4493 #ifdef CONFIG_COMPAT 4494 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4495 const struct compat_sigaction __user *, act, 4496 struct compat_sigaction __user *, oact, 4497 compat_size_t, sigsetsize) 4498 { 4499 struct k_sigaction new_ka, old_ka; 4500 #ifdef __ARCH_HAS_SA_RESTORER 4501 compat_uptr_t restorer; 4502 #endif 4503 int ret; 4504 4505 /* XXX: Don't preclude handling different sized sigset_t's. */ 4506 if (sigsetsize != sizeof(compat_sigset_t)) 4507 return -EINVAL; 4508 4509 if (act) { 4510 compat_uptr_t handler; 4511 ret = get_user(handler, &act->sa_handler); 4512 new_ka.sa.sa_handler = compat_ptr(handler); 4513 #ifdef __ARCH_HAS_SA_RESTORER 4514 ret |= get_user(restorer, &act->sa_restorer); 4515 new_ka.sa.sa_restorer = compat_ptr(restorer); 4516 #endif 4517 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4518 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4519 if (ret) 4520 return -EFAULT; 4521 } 4522 4523 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4524 if (!ret && oact) { 4525 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4526 &oact->sa_handler); 4527 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4528 sizeof(oact->sa_mask)); 4529 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4530 #ifdef __ARCH_HAS_SA_RESTORER 4531 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4532 &oact->sa_restorer); 4533 #endif 4534 } 4535 return ret; 4536 } 4537 #endif 4538 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4539 4540 #ifdef CONFIG_OLD_SIGACTION 4541 SYSCALL_DEFINE3(sigaction, int, sig, 4542 const struct old_sigaction __user *, act, 4543 struct old_sigaction __user *, oact) 4544 { 4545 struct k_sigaction new_ka, old_ka; 4546 int ret; 4547 4548 if (act) { 4549 old_sigset_t mask; 4550 if (!access_ok(act, sizeof(*act)) || 4551 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4552 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4553 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4554 __get_user(mask, &act->sa_mask)) 4555 return -EFAULT; 4556 #ifdef __ARCH_HAS_KA_RESTORER 4557 new_ka.ka_restorer = NULL; 4558 #endif 4559 siginitset(&new_ka.sa.sa_mask, mask); 4560 } 4561 4562 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4563 4564 if (!ret && oact) { 4565 if (!access_ok(oact, sizeof(*oact)) || 4566 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4567 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4568 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4569 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4570 return -EFAULT; 4571 } 4572 4573 return ret; 4574 } 4575 #endif 4576 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4577 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4578 const struct compat_old_sigaction __user *, act, 4579 struct compat_old_sigaction __user *, oact) 4580 { 4581 struct k_sigaction new_ka, old_ka; 4582 int ret; 4583 compat_old_sigset_t mask; 4584 compat_uptr_t handler, restorer; 4585 4586 if (act) { 4587 if (!access_ok(act, sizeof(*act)) || 4588 __get_user(handler, &act->sa_handler) || 4589 __get_user(restorer, &act->sa_restorer) || 4590 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4591 __get_user(mask, &act->sa_mask)) 4592 return -EFAULT; 4593 4594 #ifdef __ARCH_HAS_KA_RESTORER 4595 new_ka.ka_restorer = NULL; 4596 #endif 4597 new_ka.sa.sa_handler = compat_ptr(handler); 4598 new_ka.sa.sa_restorer = compat_ptr(restorer); 4599 siginitset(&new_ka.sa.sa_mask, mask); 4600 } 4601 4602 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4603 4604 if (!ret && oact) { 4605 if (!access_ok(oact, sizeof(*oact)) || 4606 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4607 &oact->sa_handler) || 4608 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4609 &oact->sa_restorer) || 4610 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4611 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4612 return -EFAULT; 4613 } 4614 return ret; 4615 } 4616 #endif 4617 4618 #ifdef CONFIG_SGETMASK_SYSCALL 4619 4620 /* 4621 * For backwards compatibility. Functionality superseded by sigprocmask. 4622 */ 4623 SYSCALL_DEFINE0(sgetmask) 4624 { 4625 /* SMP safe */ 4626 return current->blocked.sig[0]; 4627 } 4628 4629 SYSCALL_DEFINE1(ssetmask, int, newmask) 4630 { 4631 int old = current->blocked.sig[0]; 4632 sigset_t newset; 4633 4634 siginitset(&newset, newmask); 4635 set_current_blocked(&newset); 4636 4637 return old; 4638 } 4639 #endif /* CONFIG_SGETMASK_SYSCALL */ 4640 4641 #ifdef __ARCH_WANT_SYS_SIGNAL 4642 /* 4643 * For backwards compatibility. Functionality superseded by sigaction. 4644 */ 4645 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4646 { 4647 struct k_sigaction new_sa, old_sa; 4648 int ret; 4649 4650 new_sa.sa.sa_handler = handler; 4651 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4652 sigemptyset(&new_sa.sa.sa_mask); 4653 4654 ret = do_sigaction(sig, &new_sa, &old_sa); 4655 4656 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4657 } 4658 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4659 4660 #ifdef __ARCH_WANT_SYS_PAUSE 4661 4662 SYSCALL_DEFINE0(pause) 4663 { 4664 while (!signal_pending(current)) { 4665 __set_current_state(TASK_INTERRUPTIBLE); 4666 schedule(); 4667 } 4668 return -ERESTARTNOHAND; 4669 } 4670 4671 #endif 4672 4673 static int sigsuspend(sigset_t *set) 4674 { 4675 current->saved_sigmask = current->blocked; 4676 set_current_blocked(set); 4677 4678 while (!signal_pending(current)) { 4679 __set_current_state(TASK_INTERRUPTIBLE); 4680 schedule(); 4681 } 4682 set_restore_sigmask(); 4683 return -ERESTARTNOHAND; 4684 } 4685 4686 /** 4687 * sys_rt_sigsuspend - replace the signal mask for a value with the 4688 * @unewset value until a signal is received 4689 * @unewset: new signal mask value 4690 * @sigsetsize: size of sigset_t type 4691 */ 4692 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4693 { 4694 sigset_t newset; 4695 4696 /* XXX: Don't preclude handling different sized sigset_t's. */ 4697 if (sigsetsize != sizeof(sigset_t)) 4698 return -EINVAL; 4699 4700 if (copy_from_user(&newset, unewset, sizeof(newset))) 4701 return -EFAULT; 4702 return sigsuspend(&newset); 4703 } 4704 4705 #ifdef CONFIG_COMPAT 4706 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4707 { 4708 sigset_t newset; 4709 4710 /* XXX: Don't preclude handling different sized sigset_t's. */ 4711 if (sigsetsize != sizeof(sigset_t)) 4712 return -EINVAL; 4713 4714 if (get_compat_sigset(&newset, unewset)) 4715 return -EFAULT; 4716 return sigsuspend(&newset); 4717 } 4718 #endif 4719 4720 #ifdef CONFIG_OLD_SIGSUSPEND 4721 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4722 { 4723 sigset_t blocked; 4724 siginitset(&blocked, mask); 4725 return sigsuspend(&blocked); 4726 } 4727 #endif 4728 #ifdef CONFIG_OLD_SIGSUSPEND3 4729 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4730 { 4731 sigset_t blocked; 4732 siginitset(&blocked, mask); 4733 return sigsuspend(&blocked); 4734 } 4735 #endif 4736 4737 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4738 { 4739 return NULL; 4740 } 4741 4742 static inline void siginfo_buildtime_checks(void) 4743 { 4744 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4745 4746 /* Verify the offsets in the two siginfos match */ 4747 #define CHECK_OFFSET(field) \ 4748 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4749 4750 /* kill */ 4751 CHECK_OFFSET(si_pid); 4752 CHECK_OFFSET(si_uid); 4753 4754 /* timer */ 4755 CHECK_OFFSET(si_tid); 4756 CHECK_OFFSET(si_overrun); 4757 CHECK_OFFSET(si_value); 4758 4759 /* rt */ 4760 CHECK_OFFSET(si_pid); 4761 CHECK_OFFSET(si_uid); 4762 CHECK_OFFSET(si_value); 4763 4764 /* sigchld */ 4765 CHECK_OFFSET(si_pid); 4766 CHECK_OFFSET(si_uid); 4767 CHECK_OFFSET(si_status); 4768 CHECK_OFFSET(si_utime); 4769 CHECK_OFFSET(si_stime); 4770 4771 /* sigfault */ 4772 CHECK_OFFSET(si_addr); 4773 CHECK_OFFSET(si_trapno); 4774 CHECK_OFFSET(si_addr_lsb); 4775 CHECK_OFFSET(si_lower); 4776 CHECK_OFFSET(si_upper); 4777 CHECK_OFFSET(si_pkey); 4778 CHECK_OFFSET(si_perf_data); 4779 CHECK_OFFSET(si_perf_type); 4780 CHECK_OFFSET(si_perf_flags); 4781 4782 /* sigpoll */ 4783 CHECK_OFFSET(si_band); 4784 CHECK_OFFSET(si_fd); 4785 4786 /* sigsys */ 4787 CHECK_OFFSET(si_call_addr); 4788 CHECK_OFFSET(si_syscall); 4789 CHECK_OFFSET(si_arch); 4790 #undef CHECK_OFFSET 4791 4792 /* usb asyncio */ 4793 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != 4794 offsetof(struct siginfo, si_addr)); 4795 if (sizeof(int) == sizeof(void __user *)) { 4796 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != 4797 sizeof(void __user *)); 4798 } else { 4799 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + 4800 sizeof_field(struct siginfo, si_uid)) != 4801 sizeof(void __user *)); 4802 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != 4803 offsetof(struct siginfo, si_uid)); 4804 } 4805 #ifdef CONFIG_COMPAT 4806 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != 4807 offsetof(struct compat_siginfo, si_addr)); 4808 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4809 sizeof(compat_uptr_t)); 4810 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4811 sizeof_field(struct siginfo, si_pid)); 4812 #endif 4813 } 4814 4815 #if defined(CONFIG_SYSCTL) 4816 static struct ctl_table signal_debug_table[] = { 4817 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE 4818 { 4819 .procname = "exception-trace", 4820 .data = &show_unhandled_signals, 4821 .maxlen = sizeof(int), 4822 .mode = 0644, 4823 .proc_handler = proc_dointvec 4824 }, 4825 #endif 4826 { } 4827 }; 4828 4829 static int __init init_signal_sysctls(void) 4830 { 4831 register_sysctl_init("debug", signal_debug_table); 4832 return 0; 4833 } 4834 early_initcall(init_signal_sysctls); 4835 #endif /* CONFIG_SYSCTL */ 4836 4837 void __init signals_init(void) 4838 { 4839 siginfo_buildtime_checks(); 4840 4841 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT); 4842 } 4843 4844 #ifdef CONFIG_KGDB_KDB 4845 #include <linux/kdb.h> 4846 /* 4847 * kdb_send_sig - Allows kdb to send signals without exposing 4848 * signal internals. This function checks if the required locks are 4849 * available before calling the main signal code, to avoid kdb 4850 * deadlocks. 4851 */ 4852 void kdb_send_sig(struct task_struct *t, int sig) 4853 { 4854 static struct task_struct *kdb_prev_t; 4855 int new_t, ret; 4856 if (!spin_trylock(&t->sighand->siglock)) { 4857 kdb_printf("Can't do kill command now.\n" 4858 "The sigmask lock is held somewhere else in " 4859 "kernel, try again later\n"); 4860 return; 4861 } 4862 new_t = kdb_prev_t != t; 4863 kdb_prev_t = t; 4864 if (!task_is_running(t) && new_t) { 4865 spin_unlock(&t->sighand->siglock); 4866 kdb_printf("Process is not RUNNING, sending a signal from " 4867 "kdb risks deadlock\n" 4868 "on the run queue locks. " 4869 "The signal has _not_ been sent.\n" 4870 "Reissue the kill command if you want to risk " 4871 "the deadlock.\n"); 4872 return; 4873 } 4874 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 4875 spin_unlock(&t->sighand->siglock); 4876 if (ret) 4877 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4878 sig, t->pid); 4879 else 4880 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4881 } 4882 #endif /* CONFIG_KGDB_KDB */ 4883