xref: /linux/kernel/signal.c (revision 59fff63cc2b75dcfe08f9eeb4b2187d73e53843d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/mm.h>
26 #include <linux/proc_fs.h>
27 #include <linux/tty.h>
28 #include <linux/binfmts.h>
29 #include <linux/coredump.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/ptrace.h>
33 #include <linux/signal.h>
34 #include <linux/signalfd.h>
35 #include <linux/ratelimit.h>
36 #include <linux/task_work.h>
37 #include <linux/capability.h>
38 #include <linux/freezer.h>
39 #include <linux/pid_namespace.h>
40 #include <linux/nsproxy.h>
41 #include <linux/user_namespace.h>
42 #include <linux/uprobes.h>
43 #include <linux/compat.h>
44 #include <linux/cn_proc.h>
45 #include <linux/compiler.h>
46 #include <linux/posix-timers.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49 #include <linux/sysctl.h>
50 
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/signal.h>
53 
54 #include <asm/param.h>
55 #include <linux/uaccess.h>
56 #include <asm/unistd.h>
57 #include <asm/siginfo.h>
58 #include <asm/cacheflush.h>
59 #include <asm/syscall.h>	/* for syscall_get_* */
60 
61 /*
62  * SLAB caches for signal bits.
63  */
64 
65 static struct kmem_cache *sigqueue_cachep;
66 
67 int print_fatal_signals __read_mostly;
68 
69 static void __user *sig_handler(struct task_struct *t, int sig)
70 {
71 	return t->sighand->action[sig - 1].sa.sa_handler;
72 }
73 
74 static inline bool sig_handler_ignored(void __user *handler, int sig)
75 {
76 	/* Is it explicitly or implicitly ignored? */
77 	return handler == SIG_IGN ||
78 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
79 }
80 
81 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
82 {
83 	void __user *handler;
84 
85 	handler = sig_handler(t, sig);
86 
87 	/* SIGKILL and SIGSTOP may not be sent to the global init */
88 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
89 		return true;
90 
91 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
92 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
93 		return true;
94 
95 	/* Only allow kernel generated signals to this kthread */
96 	if (unlikely((t->flags & PF_KTHREAD) &&
97 		     (handler == SIG_KTHREAD_KERNEL) && !force))
98 		return true;
99 
100 	return sig_handler_ignored(handler, sig);
101 }
102 
103 static bool sig_ignored(struct task_struct *t, int sig, bool force)
104 {
105 	/*
106 	 * Blocked signals are never ignored, since the
107 	 * signal handler may change by the time it is
108 	 * unblocked.
109 	 */
110 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
111 		return false;
112 
113 	/*
114 	 * Tracers may want to know about even ignored signal unless it
115 	 * is SIGKILL which can't be reported anyway but can be ignored
116 	 * by SIGNAL_UNKILLABLE task.
117 	 */
118 	if (t->ptrace && sig != SIGKILL)
119 		return false;
120 
121 	return sig_task_ignored(t, sig, force);
122 }
123 
124 /*
125  * Re-calculate pending state from the set of locally pending
126  * signals, globally pending signals, and blocked signals.
127  */
128 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
129 {
130 	unsigned long ready;
131 	long i;
132 
133 	switch (_NSIG_WORDS) {
134 	default:
135 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
136 			ready |= signal->sig[i] &~ blocked->sig[i];
137 		break;
138 
139 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
140 		ready |= signal->sig[2] &~ blocked->sig[2];
141 		ready |= signal->sig[1] &~ blocked->sig[1];
142 		ready |= signal->sig[0] &~ blocked->sig[0];
143 		break;
144 
145 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
146 		ready |= signal->sig[0] &~ blocked->sig[0];
147 		break;
148 
149 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
150 	}
151 	return ready !=	0;
152 }
153 
154 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
155 
156 static bool recalc_sigpending_tsk(struct task_struct *t)
157 {
158 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
159 	    PENDING(&t->pending, &t->blocked) ||
160 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
161 	    cgroup_task_frozen(t)) {
162 		set_tsk_thread_flag(t, TIF_SIGPENDING);
163 		return true;
164 	}
165 
166 	/*
167 	 * We must never clear the flag in another thread, or in current
168 	 * when it's possible the current syscall is returning -ERESTART*.
169 	 * So we don't clear it here, and only callers who know they should do.
170 	 */
171 	return false;
172 }
173 
174 /*
175  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
176  * This is superfluous when called on current, the wakeup is a harmless no-op.
177  */
178 void recalc_sigpending_and_wake(struct task_struct *t)
179 {
180 	if (recalc_sigpending_tsk(t))
181 		signal_wake_up(t, 0);
182 }
183 
184 void recalc_sigpending(void)
185 {
186 	if (!recalc_sigpending_tsk(current) && !freezing(current))
187 		clear_thread_flag(TIF_SIGPENDING);
188 
189 }
190 EXPORT_SYMBOL(recalc_sigpending);
191 
192 void calculate_sigpending(void)
193 {
194 	/* Have any signals or users of TIF_SIGPENDING been delayed
195 	 * until after fork?
196 	 */
197 	spin_lock_irq(&current->sighand->siglock);
198 	set_tsk_thread_flag(current, TIF_SIGPENDING);
199 	recalc_sigpending();
200 	spin_unlock_irq(&current->sighand->siglock);
201 }
202 
203 /* Given the mask, find the first available signal that should be serviced. */
204 
205 #define SYNCHRONOUS_MASK \
206 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
207 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
208 
209 int next_signal(struct sigpending *pending, sigset_t *mask)
210 {
211 	unsigned long i, *s, *m, x;
212 	int sig = 0;
213 
214 	s = pending->signal.sig;
215 	m = mask->sig;
216 
217 	/*
218 	 * Handle the first word specially: it contains the
219 	 * synchronous signals that need to be dequeued first.
220 	 */
221 	x = *s &~ *m;
222 	if (x) {
223 		if (x & SYNCHRONOUS_MASK)
224 			x &= SYNCHRONOUS_MASK;
225 		sig = ffz(~x) + 1;
226 		return sig;
227 	}
228 
229 	switch (_NSIG_WORDS) {
230 	default:
231 		for (i = 1; i < _NSIG_WORDS; ++i) {
232 			x = *++s &~ *++m;
233 			if (!x)
234 				continue;
235 			sig = ffz(~x) + i*_NSIG_BPW + 1;
236 			break;
237 		}
238 		break;
239 
240 	case 2:
241 		x = s[1] &~ m[1];
242 		if (!x)
243 			break;
244 		sig = ffz(~x) + _NSIG_BPW + 1;
245 		break;
246 
247 	case 1:
248 		/* Nothing to do */
249 		break;
250 	}
251 
252 	return sig;
253 }
254 
255 static inline void print_dropped_signal(int sig)
256 {
257 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
258 
259 	if (!print_fatal_signals)
260 		return;
261 
262 	if (!__ratelimit(&ratelimit_state))
263 		return;
264 
265 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
266 				current->comm, current->pid, sig);
267 }
268 
269 /**
270  * task_set_jobctl_pending - set jobctl pending bits
271  * @task: target task
272  * @mask: pending bits to set
273  *
274  * Clear @mask from @task->jobctl.  @mask must be subset of
275  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
276  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
277  * cleared.  If @task is already being killed or exiting, this function
278  * becomes noop.
279  *
280  * CONTEXT:
281  * Must be called with @task->sighand->siglock held.
282  *
283  * RETURNS:
284  * %true if @mask is set, %false if made noop because @task was dying.
285  */
286 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
287 {
288 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
289 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
290 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
291 
292 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
293 		return false;
294 
295 	if (mask & JOBCTL_STOP_SIGMASK)
296 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
297 
298 	task->jobctl |= mask;
299 	return true;
300 }
301 
302 /**
303  * task_clear_jobctl_trapping - clear jobctl trapping bit
304  * @task: target task
305  *
306  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
307  * Clear it and wake up the ptracer.  Note that we don't need any further
308  * locking.  @task->siglock guarantees that @task->parent points to the
309  * ptracer.
310  *
311  * CONTEXT:
312  * Must be called with @task->sighand->siglock held.
313  */
314 void task_clear_jobctl_trapping(struct task_struct *task)
315 {
316 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
317 		task->jobctl &= ~JOBCTL_TRAPPING;
318 		smp_mb();	/* advised by wake_up_bit() */
319 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
320 	}
321 }
322 
323 /**
324  * task_clear_jobctl_pending - clear jobctl pending bits
325  * @task: target task
326  * @mask: pending bits to clear
327  *
328  * Clear @mask from @task->jobctl.  @mask must be subset of
329  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
330  * STOP bits are cleared together.
331  *
332  * If clearing of @mask leaves no stop or trap pending, this function calls
333  * task_clear_jobctl_trapping().
334  *
335  * CONTEXT:
336  * Must be called with @task->sighand->siglock held.
337  */
338 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
339 {
340 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
341 
342 	if (mask & JOBCTL_STOP_PENDING)
343 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
344 
345 	task->jobctl &= ~mask;
346 
347 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
348 		task_clear_jobctl_trapping(task);
349 }
350 
351 /**
352  * task_participate_group_stop - participate in a group stop
353  * @task: task participating in a group stop
354  *
355  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
356  * Group stop states are cleared and the group stop count is consumed if
357  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
358  * stop, the appropriate `SIGNAL_*` flags are set.
359  *
360  * CONTEXT:
361  * Must be called with @task->sighand->siglock held.
362  *
363  * RETURNS:
364  * %true if group stop completion should be notified to the parent, %false
365  * otherwise.
366  */
367 static bool task_participate_group_stop(struct task_struct *task)
368 {
369 	struct signal_struct *sig = task->signal;
370 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
371 
372 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
373 
374 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
375 
376 	if (!consume)
377 		return false;
378 
379 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
380 		sig->group_stop_count--;
381 
382 	/*
383 	 * Tell the caller to notify completion iff we are entering into a
384 	 * fresh group stop.  Read comment in do_signal_stop() for details.
385 	 */
386 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
387 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
388 		return true;
389 	}
390 	return false;
391 }
392 
393 void task_join_group_stop(struct task_struct *task)
394 {
395 	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
396 	struct signal_struct *sig = current->signal;
397 
398 	if (sig->group_stop_count) {
399 		sig->group_stop_count++;
400 		mask |= JOBCTL_STOP_CONSUME;
401 	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
402 		return;
403 
404 	/* Have the new thread join an on-going signal group stop */
405 	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
406 }
407 
408 /*
409  * allocate a new signal queue record
410  * - this may be called without locks if and only if t == current, otherwise an
411  *   appropriate lock must be held to stop the target task from exiting
412  */
413 static struct sigqueue *
414 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
415 		 int override_rlimit, const unsigned int sigqueue_flags)
416 {
417 	struct sigqueue *q = NULL;
418 	struct ucounts *ucounts = NULL;
419 	long sigpending;
420 
421 	/*
422 	 * Protect access to @t credentials. This can go away when all
423 	 * callers hold rcu read lock.
424 	 *
425 	 * NOTE! A pending signal will hold on to the user refcount,
426 	 * and we get/put the refcount only when the sigpending count
427 	 * changes from/to zero.
428 	 */
429 	rcu_read_lock();
430 	ucounts = task_ucounts(t);
431 	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
432 	rcu_read_unlock();
433 	if (!sigpending)
434 		return NULL;
435 
436 	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
437 		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
438 	} else {
439 		print_dropped_signal(sig);
440 	}
441 
442 	if (unlikely(q == NULL)) {
443 		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
444 	} else {
445 		INIT_LIST_HEAD(&q->list);
446 		q->flags = sigqueue_flags;
447 		q->ucounts = ucounts;
448 	}
449 	return q;
450 }
451 
452 static void __sigqueue_free(struct sigqueue *q)
453 {
454 	if (q->flags & SIGQUEUE_PREALLOC)
455 		return;
456 	if (q->ucounts) {
457 		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
458 		q->ucounts = NULL;
459 	}
460 	kmem_cache_free(sigqueue_cachep, q);
461 }
462 
463 void flush_sigqueue(struct sigpending *queue)
464 {
465 	struct sigqueue *q;
466 
467 	sigemptyset(&queue->signal);
468 	while (!list_empty(&queue->list)) {
469 		q = list_entry(queue->list.next, struct sigqueue , list);
470 		list_del_init(&q->list);
471 		__sigqueue_free(q);
472 	}
473 }
474 
475 /*
476  * Flush all pending signals for this kthread.
477  */
478 void flush_signals(struct task_struct *t)
479 {
480 	unsigned long flags;
481 
482 	spin_lock_irqsave(&t->sighand->siglock, flags);
483 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
484 	flush_sigqueue(&t->pending);
485 	flush_sigqueue(&t->signal->shared_pending);
486 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
487 }
488 EXPORT_SYMBOL(flush_signals);
489 
490 #ifdef CONFIG_POSIX_TIMERS
491 static void __flush_itimer_signals(struct sigpending *pending)
492 {
493 	sigset_t signal, retain;
494 	struct sigqueue *q, *n;
495 
496 	signal = pending->signal;
497 	sigemptyset(&retain);
498 
499 	list_for_each_entry_safe(q, n, &pending->list, list) {
500 		int sig = q->info.si_signo;
501 
502 		if (likely(q->info.si_code != SI_TIMER)) {
503 			sigaddset(&retain, sig);
504 		} else {
505 			sigdelset(&signal, sig);
506 			list_del_init(&q->list);
507 			__sigqueue_free(q);
508 		}
509 	}
510 
511 	sigorsets(&pending->signal, &signal, &retain);
512 }
513 
514 void flush_itimer_signals(void)
515 {
516 	struct task_struct *tsk = current;
517 	unsigned long flags;
518 
519 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
520 	__flush_itimer_signals(&tsk->pending);
521 	__flush_itimer_signals(&tsk->signal->shared_pending);
522 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
523 }
524 #endif
525 
526 void ignore_signals(struct task_struct *t)
527 {
528 	int i;
529 
530 	for (i = 0; i < _NSIG; ++i)
531 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
532 
533 	flush_signals(t);
534 }
535 
536 /*
537  * Flush all handlers for a task.
538  */
539 
540 void
541 flush_signal_handlers(struct task_struct *t, int force_default)
542 {
543 	int i;
544 	struct k_sigaction *ka = &t->sighand->action[0];
545 	for (i = _NSIG ; i != 0 ; i--) {
546 		if (force_default || ka->sa.sa_handler != SIG_IGN)
547 			ka->sa.sa_handler = SIG_DFL;
548 		ka->sa.sa_flags = 0;
549 #ifdef __ARCH_HAS_SA_RESTORER
550 		ka->sa.sa_restorer = NULL;
551 #endif
552 		sigemptyset(&ka->sa.sa_mask);
553 		ka++;
554 	}
555 }
556 
557 bool unhandled_signal(struct task_struct *tsk, int sig)
558 {
559 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
560 	if (is_global_init(tsk))
561 		return true;
562 
563 	if (handler != SIG_IGN && handler != SIG_DFL)
564 		return false;
565 
566 	/* If dying, we handle all new signals by ignoring them */
567 	if (fatal_signal_pending(tsk))
568 		return false;
569 
570 	/* if ptraced, let the tracer determine */
571 	return !tsk->ptrace;
572 }
573 
574 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
575 			   bool *resched_timer)
576 {
577 	struct sigqueue *q, *first = NULL;
578 
579 	/*
580 	 * Collect the siginfo appropriate to this signal.  Check if
581 	 * there is another siginfo for the same signal.
582 	*/
583 	list_for_each_entry(q, &list->list, list) {
584 		if (q->info.si_signo == sig) {
585 			if (first)
586 				goto still_pending;
587 			first = q;
588 		}
589 	}
590 
591 	sigdelset(&list->signal, sig);
592 
593 	if (first) {
594 still_pending:
595 		list_del_init(&first->list);
596 		copy_siginfo(info, &first->info);
597 
598 		*resched_timer =
599 			(first->flags & SIGQUEUE_PREALLOC) &&
600 			(info->si_code == SI_TIMER) &&
601 			(info->si_sys_private);
602 
603 		__sigqueue_free(first);
604 	} else {
605 		/*
606 		 * Ok, it wasn't in the queue.  This must be
607 		 * a fast-pathed signal or we must have been
608 		 * out of queue space.  So zero out the info.
609 		 */
610 		clear_siginfo(info);
611 		info->si_signo = sig;
612 		info->si_errno = 0;
613 		info->si_code = SI_USER;
614 		info->si_pid = 0;
615 		info->si_uid = 0;
616 	}
617 }
618 
619 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
620 			kernel_siginfo_t *info, bool *resched_timer)
621 {
622 	int sig = next_signal(pending, mask);
623 
624 	if (sig)
625 		collect_signal(sig, pending, info, resched_timer);
626 	return sig;
627 }
628 
629 /*
630  * Dequeue a signal and return the element to the caller, which is
631  * expected to free it.
632  *
633  * All callers have to hold the siglock.
634  */
635 int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
636 		   kernel_siginfo_t *info, enum pid_type *type)
637 {
638 	bool resched_timer = false;
639 	int signr;
640 
641 	/* We only dequeue private signals from ourselves, we don't let
642 	 * signalfd steal them
643 	 */
644 	*type = PIDTYPE_PID;
645 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
646 	if (!signr) {
647 		*type = PIDTYPE_TGID;
648 		signr = __dequeue_signal(&tsk->signal->shared_pending,
649 					 mask, info, &resched_timer);
650 #ifdef CONFIG_POSIX_TIMERS
651 		/*
652 		 * itimer signal ?
653 		 *
654 		 * itimers are process shared and we restart periodic
655 		 * itimers in the signal delivery path to prevent DoS
656 		 * attacks in the high resolution timer case. This is
657 		 * compliant with the old way of self-restarting
658 		 * itimers, as the SIGALRM is a legacy signal and only
659 		 * queued once. Changing the restart behaviour to
660 		 * restart the timer in the signal dequeue path is
661 		 * reducing the timer noise on heavy loaded !highres
662 		 * systems too.
663 		 */
664 		if (unlikely(signr == SIGALRM)) {
665 			struct hrtimer *tmr = &tsk->signal->real_timer;
666 
667 			if (!hrtimer_is_queued(tmr) &&
668 			    tsk->signal->it_real_incr != 0) {
669 				hrtimer_forward(tmr, tmr->base->get_time(),
670 						tsk->signal->it_real_incr);
671 				hrtimer_restart(tmr);
672 			}
673 		}
674 #endif
675 	}
676 
677 	recalc_sigpending();
678 	if (!signr)
679 		return 0;
680 
681 	if (unlikely(sig_kernel_stop(signr))) {
682 		/*
683 		 * Set a marker that we have dequeued a stop signal.  Our
684 		 * caller might release the siglock and then the pending
685 		 * stop signal it is about to process is no longer in the
686 		 * pending bitmasks, but must still be cleared by a SIGCONT
687 		 * (and overruled by a SIGKILL).  So those cases clear this
688 		 * shared flag after we've set it.  Note that this flag may
689 		 * remain set after the signal we return is ignored or
690 		 * handled.  That doesn't matter because its only purpose
691 		 * is to alert stop-signal processing code when another
692 		 * processor has come along and cleared the flag.
693 		 */
694 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
695 	}
696 #ifdef CONFIG_POSIX_TIMERS
697 	if (resched_timer) {
698 		/*
699 		 * Release the siglock to ensure proper locking order
700 		 * of timer locks outside of siglocks.  Note, we leave
701 		 * irqs disabled here, since the posix-timers code is
702 		 * about to disable them again anyway.
703 		 */
704 		spin_unlock(&tsk->sighand->siglock);
705 		posixtimer_rearm(info);
706 		spin_lock(&tsk->sighand->siglock);
707 
708 		/* Don't expose the si_sys_private value to userspace */
709 		info->si_sys_private = 0;
710 	}
711 #endif
712 	return signr;
713 }
714 EXPORT_SYMBOL_GPL(dequeue_signal);
715 
716 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
717 {
718 	struct task_struct *tsk = current;
719 	struct sigpending *pending = &tsk->pending;
720 	struct sigqueue *q, *sync = NULL;
721 
722 	/*
723 	 * Might a synchronous signal be in the queue?
724 	 */
725 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
726 		return 0;
727 
728 	/*
729 	 * Return the first synchronous signal in the queue.
730 	 */
731 	list_for_each_entry(q, &pending->list, list) {
732 		/* Synchronous signals have a positive si_code */
733 		if ((q->info.si_code > SI_USER) &&
734 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
735 			sync = q;
736 			goto next;
737 		}
738 	}
739 	return 0;
740 next:
741 	/*
742 	 * Check if there is another siginfo for the same signal.
743 	 */
744 	list_for_each_entry_continue(q, &pending->list, list) {
745 		if (q->info.si_signo == sync->info.si_signo)
746 			goto still_pending;
747 	}
748 
749 	sigdelset(&pending->signal, sync->info.si_signo);
750 	recalc_sigpending();
751 still_pending:
752 	list_del_init(&sync->list);
753 	copy_siginfo(info, &sync->info);
754 	__sigqueue_free(sync);
755 	return info->si_signo;
756 }
757 
758 /*
759  * Tell a process that it has a new active signal..
760  *
761  * NOTE! we rely on the previous spin_lock to
762  * lock interrupts for us! We can only be called with
763  * "siglock" held, and the local interrupt must
764  * have been disabled when that got acquired!
765  *
766  * No need to set need_resched since signal event passing
767  * goes through ->blocked
768  */
769 void signal_wake_up_state(struct task_struct *t, unsigned int state)
770 {
771 	lockdep_assert_held(&t->sighand->siglock);
772 
773 	set_tsk_thread_flag(t, TIF_SIGPENDING);
774 
775 	/*
776 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
777 	 * case. We don't check t->state here because there is a race with it
778 	 * executing another processor and just now entering stopped state.
779 	 * By using wake_up_state, we ensure the process will wake up and
780 	 * handle its death signal.
781 	 */
782 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
783 		kick_process(t);
784 }
785 
786 /*
787  * Remove signals in mask from the pending set and queue.
788  * Returns 1 if any signals were found.
789  *
790  * All callers must be holding the siglock.
791  */
792 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
793 {
794 	struct sigqueue *q, *n;
795 	sigset_t m;
796 
797 	sigandsets(&m, mask, &s->signal);
798 	if (sigisemptyset(&m))
799 		return;
800 
801 	sigandnsets(&s->signal, &s->signal, mask);
802 	list_for_each_entry_safe(q, n, &s->list, list) {
803 		if (sigismember(mask, q->info.si_signo)) {
804 			list_del_init(&q->list);
805 			__sigqueue_free(q);
806 		}
807 	}
808 }
809 
810 static inline int is_si_special(const struct kernel_siginfo *info)
811 {
812 	return info <= SEND_SIG_PRIV;
813 }
814 
815 static inline bool si_fromuser(const struct kernel_siginfo *info)
816 {
817 	return info == SEND_SIG_NOINFO ||
818 		(!is_si_special(info) && SI_FROMUSER(info));
819 }
820 
821 /*
822  * called with RCU read lock from check_kill_permission()
823  */
824 static bool kill_ok_by_cred(struct task_struct *t)
825 {
826 	const struct cred *cred = current_cred();
827 	const struct cred *tcred = __task_cred(t);
828 
829 	return uid_eq(cred->euid, tcred->suid) ||
830 	       uid_eq(cred->euid, tcred->uid) ||
831 	       uid_eq(cred->uid, tcred->suid) ||
832 	       uid_eq(cred->uid, tcred->uid) ||
833 	       ns_capable(tcred->user_ns, CAP_KILL);
834 }
835 
836 /*
837  * Bad permissions for sending the signal
838  * - the caller must hold the RCU read lock
839  */
840 static int check_kill_permission(int sig, struct kernel_siginfo *info,
841 				 struct task_struct *t)
842 {
843 	struct pid *sid;
844 	int error;
845 
846 	if (!valid_signal(sig))
847 		return -EINVAL;
848 
849 	if (!si_fromuser(info))
850 		return 0;
851 
852 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
853 	if (error)
854 		return error;
855 
856 	if (!same_thread_group(current, t) &&
857 	    !kill_ok_by_cred(t)) {
858 		switch (sig) {
859 		case SIGCONT:
860 			sid = task_session(t);
861 			/*
862 			 * We don't return the error if sid == NULL. The
863 			 * task was unhashed, the caller must notice this.
864 			 */
865 			if (!sid || sid == task_session(current))
866 				break;
867 			fallthrough;
868 		default:
869 			return -EPERM;
870 		}
871 	}
872 
873 	return security_task_kill(t, info, sig, NULL);
874 }
875 
876 /**
877  * ptrace_trap_notify - schedule trap to notify ptracer
878  * @t: tracee wanting to notify tracer
879  *
880  * This function schedules sticky ptrace trap which is cleared on the next
881  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
882  * ptracer.
883  *
884  * If @t is running, STOP trap will be taken.  If trapped for STOP and
885  * ptracer is listening for events, tracee is woken up so that it can
886  * re-trap for the new event.  If trapped otherwise, STOP trap will be
887  * eventually taken without returning to userland after the existing traps
888  * are finished by PTRACE_CONT.
889  *
890  * CONTEXT:
891  * Must be called with @task->sighand->siglock held.
892  */
893 static void ptrace_trap_notify(struct task_struct *t)
894 {
895 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
896 	lockdep_assert_held(&t->sighand->siglock);
897 
898 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
899 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
900 }
901 
902 /*
903  * Handle magic process-wide effects of stop/continue signals. Unlike
904  * the signal actions, these happen immediately at signal-generation
905  * time regardless of blocking, ignoring, or handling.  This does the
906  * actual continuing for SIGCONT, but not the actual stopping for stop
907  * signals. The process stop is done as a signal action for SIG_DFL.
908  *
909  * Returns true if the signal should be actually delivered, otherwise
910  * it should be dropped.
911  */
912 static bool prepare_signal(int sig, struct task_struct *p, bool force)
913 {
914 	struct signal_struct *signal = p->signal;
915 	struct task_struct *t;
916 	sigset_t flush;
917 
918 	if (signal->flags & SIGNAL_GROUP_EXIT) {
919 		if (signal->core_state)
920 			return sig == SIGKILL;
921 		/*
922 		 * The process is in the middle of dying, drop the signal.
923 		 */
924 		return false;
925 	} else if (sig_kernel_stop(sig)) {
926 		/*
927 		 * This is a stop signal.  Remove SIGCONT from all queues.
928 		 */
929 		siginitset(&flush, sigmask(SIGCONT));
930 		flush_sigqueue_mask(&flush, &signal->shared_pending);
931 		for_each_thread(p, t)
932 			flush_sigqueue_mask(&flush, &t->pending);
933 	} else if (sig == SIGCONT) {
934 		unsigned int why;
935 		/*
936 		 * Remove all stop signals from all queues, wake all threads.
937 		 */
938 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
939 		flush_sigqueue_mask(&flush, &signal->shared_pending);
940 		for_each_thread(p, t) {
941 			flush_sigqueue_mask(&flush, &t->pending);
942 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
943 			if (likely(!(t->ptrace & PT_SEIZED))) {
944 				t->jobctl &= ~JOBCTL_STOPPED;
945 				wake_up_state(t, __TASK_STOPPED);
946 			} else
947 				ptrace_trap_notify(t);
948 		}
949 
950 		/*
951 		 * Notify the parent with CLD_CONTINUED if we were stopped.
952 		 *
953 		 * If we were in the middle of a group stop, we pretend it
954 		 * was already finished, and then continued. Since SIGCHLD
955 		 * doesn't queue we report only CLD_STOPPED, as if the next
956 		 * CLD_CONTINUED was dropped.
957 		 */
958 		why = 0;
959 		if (signal->flags & SIGNAL_STOP_STOPPED)
960 			why |= SIGNAL_CLD_CONTINUED;
961 		else if (signal->group_stop_count)
962 			why |= SIGNAL_CLD_STOPPED;
963 
964 		if (why) {
965 			/*
966 			 * The first thread which returns from do_signal_stop()
967 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
968 			 * notify its parent. See get_signal().
969 			 */
970 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
971 			signal->group_stop_count = 0;
972 			signal->group_exit_code = 0;
973 		}
974 	}
975 
976 	return !sig_ignored(p, sig, force);
977 }
978 
979 /*
980  * Test if P wants to take SIG.  After we've checked all threads with this,
981  * it's equivalent to finding no threads not blocking SIG.  Any threads not
982  * blocking SIG were ruled out because they are not running and already
983  * have pending signals.  Such threads will dequeue from the shared queue
984  * as soon as they're available, so putting the signal on the shared queue
985  * will be equivalent to sending it to one such thread.
986  */
987 static inline bool wants_signal(int sig, struct task_struct *p)
988 {
989 	if (sigismember(&p->blocked, sig))
990 		return false;
991 
992 	if (p->flags & PF_EXITING)
993 		return false;
994 
995 	if (sig == SIGKILL)
996 		return true;
997 
998 	if (task_is_stopped_or_traced(p))
999 		return false;
1000 
1001 	return task_curr(p) || !task_sigpending(p);
1002 }
1003 
1004 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
1005 {
1006 	struct signal_struct *signal = p->signal;
1007 	struct task_struct *t;
1008 
1009 	/*
1010 	 * Now find a thread we can wake up to take the signal off the queue.
1011 	 *
1012 	 * Try the suggested task first (may or may not be the main thread).
1013 	 */
1014 	if (wants_signal(sig, p))
1015 		t = p;
1016 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1017 		/*
1018 		 * There is just one thread and it does not need to be woken.
1019 		 * It will dequeue unblocked signals before it runs again.
1020 		 */
1021 		return;
1022 	else {
1023 		/*
1024 		 * Otherwise try to find a suitable thread.
1025 		 */
1026 		t = signal->curr_target;
1027 		while (!wants_signal(sig, t)) {
1028 			t = next_thread(t);
1029 			if (t == signal->curr_target)
1030 				/*
1031 				 * No thread needs to be woken.
1032 				 * Any eligible threads will see
1033 				 * the signal in the queue soon.
1034 				 */
1035 				return;
1036 		}
1037 		signal->curr_target = t;
1038 	}
1039 
1040 	/*
1041 	 * Found a killable thread.  If the signal will be fatal,
1042 	 * then start taking the whole group down immediately.
1043 	 */
1044 	if (sig_fatal(p, sig) &&
1045 	    (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1046 	    !sigismember(&t->real_blocked, sig) &&
1047 	    (sig == SIGKILL || !p->ptrace)) {
1048 		/*
1049 		 * This signal will be fatal to the whole group.
1050 		 */
1051 		if (!sig_kernel_coredump(sig)) {
1052 			/*
1053 			 * Start a group exit and wake everybody up.
1054 			 * This way we don't have other threads
1055 			 * running and doing things after a slower
1056 			 * thread has the fatal signal pending.
1057 			 */
1058 			signal->flags = SIGNAL_GROUP_EXIT;
1059 			signal->group_exit_code = sig;
1060 			signal->group_stop_count = 0;
1061 			t = p;
1062 			do {
1063 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1064 				sigaddset(&t->pending.signal, SIGKILL);
1065 				signal_wake_up(t, 1);
1066 			} while_each_thread(p, t);
1067 			return;
1068 		}
1069 	}
1070 
1071 	/*
1072 	 * The signal is already in the shared-pending queue.
1073 	 * Tell the chosen thread to wake up and dequeue it.
1074 	 */
1075 	signal_wake_up(t, sig == SIGKILL);
1076 	return;
1077 }
1078 
1079 static inline bool legacy_queue(struct sigpending *signals, int sig)
1080 {
1081 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1082 }
1083 
1084 static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1085 				struct task_struct *t, enum pid_type type, bool force)
1086 {
1087 	struct sigpending *pending;
1088 	struct sigqueue *q;
1089 	int override_rlimit;
1090 	int ret = 0, result;
1091 
1092 	lockdep_assert_held(&t->sighand->siglock);
1093 
1094 	result = TRACE_SIGNAL_IGNORED;
1095 	if (!prepare_signal(sig, t, force))
1096 		goto ret;
1097 
1098 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1099 	/*
1100 	 * Short-circuit ignored signals and support queuing
1101 	 * exactly one non-rt signal, so that we can get more
1102 	 * detailed information about the cause of the signal.
1103 	 */
1104 	result = TRACE_SIGNAL_ALREADY_PENDING;
1105 	if (legacy_queue(pending, sig))
1106 		goto ret;
1107 
1108 	result = TRACE_SIGNAL_DELIVERED;
1109 	/*
1110 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1111 	 */
1112 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1113 		goto out_set;
1114 
1115 	/*
1116 	 * Real-time signals must be queued if sent by sigqueue, or
1117 	 * some other real-time mechanism.  It is implementation
1118 	 * defined whether kill() does so.  We attempt to do so, on
1119 	 * the principle of least surprise, but since kill is not
1120 	 * allowed to fail with EAGAIN when low on memory we just
1121 	 * make sure at least one signal gets delivered and don't
1122 	 * pass on the info struct.
1123 	 */
1124 	if (sig < SIGRTMIN)
1125 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1126 	else
1127 		override_rlimit = 0;
1128 
1129 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1130 
1131 	if (q) {
1132 		list_add_tail(&q->list, &pending->list);
1133 		switch ((unsigned long) info) {
1134 		case (unsigned long) SEND_SIG_NOINFO:
1135 			clear_siginfo(&q->info);
1136 			q->info.si_signo = sig;
1137 			q->info.si_errno = 0;
1138 			q->info.si_code = SI_USER;
1139 			q->info.si_pid = task_tgid_nr_ns(current,
1140 							task_active_pid_ns(t));
1141 			rcu_read_lock();
1142 			q->info.si_uid =
1143 				from_kuid_munged(task_cred_xxx(t, user_ns),
1144 						 current_uid());
1145 			rcu_read_unlock();
1146 			break;
1147 		case (unsigned long) SEND_SIG_PRIV:
1148 			clear_siginfo(&q->info);
1149 			q->info.si_signo = sig;
1150 			q->info.si_errno = 0;
1151 			q->info.si_code = SI_KERNEL;
1152 			q->info.si_pid = 0;
1153 			q->info.si_uid = 0;
1154 			break;
1155 		default:
1156 			copy_siginfo(&q->info, info);
1157 			break;
1158 		}
1159 	} else if (!is_si_special(info) &&
1160 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1161 		/*
1162 		 * Queue overflow, abort.  We may abort if the
1163 		 * signal was rt and sent by user using something
1164 		 * other than kill().
1165 		 */
1166 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1167 		ret = -EAGAIN;
1168 		goto ret;
1169 	} else {
1170 		/*
1171 		 * This is a silent loss of information.  We still
1172 		 * send the signal, but the *info bits are lost.
1173 		 */
1174 		result = TRACE_SIGNAL_LOSE_INFO;
1175 	}
1176 
1177 out_set:
1178 	signalfd_notify(t, sig);
1179 	sigaddset(&pending->signal, sig);
1180 
1181 	/* Let multiprocess signals appear after on-going forks */
1182 	if (type > PIDTYPE_TGID) {
1183 		struct multiprocess_signals *delayed;
1184 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1185 			sigset_t *signal = &delayed->signal;
1186 			/* Can't queue both a stop and a continue signal */
1187 			if (sig == SIGCONT)
1188 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1189 			else if (sig_kernel_stop(sig))
1190 				sigdelset(signal, SIGCONT);
1191 			sigaddset(signal, sig);
1192 		}
1193 	}
1194 
1195 	complete_signal(sig, t, type);
1196 ret:
1197 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1198 	return ret;
1199 }
1200 
1201 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1202 {
1203 	bool ret = false;
1204 	switch (siginfo_layout(info->si_signo, info->si_code)) {
1205 	case SIL_KILL:
1206 	case SIL_CHLD:
1207 	case SIL_RT:
1208 		ret = true;
1209 		break;
1210 	case SIL_TIMER:
1211 	case SIL_POLL:
1212 	case SIL_FAULT:
1213 	case SIL_FAULT_TRAPNO:
1214 	case SIL_FAULT_MCEERR:
1215 	case SIL_FAULT_BNDERR:
1216 	case SIL_FAULT_PKUERR:
1217 	case SIL_FAULT_PERF_EVENT:
1218 	case SIL_SYS:
1219 		ret = false;
1220 		break;
1221 	}
1222 	return ret;
1223 }
1224 
1225 int send_signal_locked(int sig, struct kernel_siginfo *info,
1226 		       struct task_struct *t, enum pid_type type)
1227 {
1228 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1229 	bool force = false;
1230 
1231 	if (info == SEND_SIG_NOINFO) {
1232 		/* Force if sent from an ancestor pid namespace */
1233 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1234 	} else if (info == SEND_SIG_PRIV) {
1235 		/* Don't ignore kernel generated signals */
1236 		force = true;
1237 	} else if (has_si_pid_and_uid(info)) {
1238 		/* SIGKILL and SIGSTOP is special or has ids */
1239 		struct user_namespace *t_user_ns;
1240 
1241 		rcu_read_lock();
1242 		t_user_ns = task_cred_xxx(t, user_ns);
1243 		if (current_user_ns() != t_user_ns) {
1244 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1245 			info->si_uid = from_kuid_munged(t_user_ns, uid);
1246 		}
1247 		rcu_read_unlock();
1248 
1249 		/* A kernel generated signal? */
1250 		force = (info->si_code == SI_KERNEL);
1251 
1252 		/* From an ancestor pid namespace? */
1253 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1254 			info->si_pid = 0;
1255 			force = true;
1256 		}
1257 	}
1258 	return __send_signal_locked(sig, info, t, type, force);
1259 }
1260 
1261 static void print_fatal_signal(int signr)
1262 {
1263 	struct pt_regs *regs = task_pt_regs(current);
1264 	struct file *exe_file;
1265 
1266 	exe_file = get_task_exe_file(current);
1267 	if (exe_file) {
1268 		pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
1269 			exe_file, current->comm, signr);
1270 		fput(exe_file);
1271 	} else {
1272 		pr_info("%s: potentially unexpected fatal signal %d.\n",
1273 			current->comm, signr);
1274 	}
1275 
1276 #if defined(__i386__) && !defined(__arch_um__)
1277 	pr_info("code at %08lx: ", regs->ip);
1278 	{
1279 		int i;
1280 		for (i = 0; i < 16; i++) {
1281 			unsigned char insn;
1282 
1283 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1284 				break;
1285 			pr_cont("%02x ", insn);
1286 		}
1287 	}
1288 	pr_cont("\n");
1289 #endif
1290 	preempt_disable();
1291 	show_regs(regs);
1292 	preempt_enable();
1293 }
1294 
1295 static int __init setup_print_fatal_signals(char *str)
1296 {
1297 	get_option (&str, &print_fatal_signals);
1298 
1299 	return 1;
1300 }
1301 
1302 __setup("print-fatal-signals=", setup_print_fatal_signals);
1303 
1304 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1305 			enum pid_type type)
1306 {
1307 	unsigned long flags;
1308 	int ret = -ESRCH;
1309 
1310 	if (lock_task_sighand(p, &flags)) {
1311 		ret = send_signal_locked(sig, info, p, type);
1312 		unlock_task_sighand(p, &flags);
1313 	}
1314 
1315 	return ret;
1316 }
1317 
1318 enum sig_handler {
1319 	HANDLER_CURRENT, /* If reachable use the current handler */
1320 	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1321 	HANDLER_EXIT,	 /* Only visible as the process exit code */
1322 };
1323 
1324 /*
1325  * Force a signal that the process can't ignore: if necessary
1326  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1327  *
1328  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1329  * since we do not want to have a signal handler that was blocked
1330  * be invoked when user space had explicitly blocked it.
1331  *
1332  * We don't want to have recursive SIGSEGV's etc, for example,
1333  * that is why we also clear SIGNAL_UNKILLABLE.
1334  */
1335 static int
1336 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1337 	enum sig_handler handler)
1338 {
1339 	unsigned long int flags;
1340 	int ret, blocked, ignored;
1341 	struct k_sigaction *action;
1342 	int sig = info->si_signo;
1343 
1344 	spin_lock_irqsave(&t->sighand->siglock, flags);
1345 	action = &t->sighand->action[sig-1];
1346 	ignored = action->sa.sa_handler == SIG_IGN;
1347 	blocked = sigismember(&t->blocked, sig);
1348 	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1349 		action->sa.sa_handler = SIG_DFL;
1350 		if (handler == HANDLER_EXIT)
1351 			action->sa.sa_flags |= SA_IMMUTABLE;
1352 		if (blocked) {
1353 			sigdelset(&t->blocked, sig);
1354 			recalc_sigpending_and_wake(t);
1355 		}
1356 	}
1357 	/*
1358 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1359 	 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1360 	 */
1361 	if (action->sa.sa_handler == SIG_DFL &&
1362 	    (!t->ptrace || (handler == HANDLER_EXIT)))
1363 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1364 	ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1365 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1366 
1367 	return ret;
1368 }
1369 
1370 int force_sig_info(struct kernel_siginfo *info)
1371 {
1372 	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1373 }
1374 
1375 /*
1376  * Nuke all other threads in the group.
1377  */
1378 int zap_other_threads(struct task_struct *p)
1379 {
1380 	struct task_struct *t = p;
1381 	int count = 0;
1382 
1383 	p->signal->group_stop_count = 0;
1384 
1385 	while_each_thread(p, t) {
1386 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1387 		/* Don't require de_thread to wait for the vhost_worker */
1388 		if ((t->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)
1389 			count++;
1390 
1391 		/* Don't bother with already dead threads */
1392 		if (t->exit_state)
1393 			continue;
1394 		sigaddset(&t->pending.signal, SIGKILL);
1395 		signal_wake_up(t, 1);
1396 	}
1397 
1398 	return count;
1399 }
1400 
1401 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1402 					   unsigned long *flags)
1403 {
1404 	struct sighand_struct *sighand;
1405 
1406 	rcu_read_lock();
1407 	for (;;) {
1408 		sighand = rcu_dereference(tsk->sighand);
1409 		if (unlikely(sighand == NULL))
1410 			break;
1411 
1412 		/*
1413 		 * This sighand can be already freed and even reused, but
1414 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1415 		 * initializes ->siglock: this slab can't go away, it has
1416 		 * the same object type, ->siglock can't be reinitialized.
1417 		 *
1418 		 * We need to ensure that tsk->sighand is still the same
1419 		 * after we take the lock, we can race with de_thread() or
1420 		 * __exit_signal(). In the latter case the next iteration
1421 		 * must see ->sighand == NULL.
1422 		 */
1423 		spin_lock_irqsave(&sighand->siglock, *flags);
1424 		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1425 			break;
1426 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1427 	}
1428 	rcu_read_unlock();
1429 
1430 	return sighand;
1431 }
1432 
1433 #ifdef CONFIG_LOCKDEP
1434 void lockdep_assert_task_sighand_held(struct task_struct *task)
1435 {
1436 	struct sighand_struct *sighand;
1437 
1438 	rcu_read_lock();
1439 	sighand = rcu_dereference(task->sighand);
1440 	if (sighand)
1441 		lockdep_assert_held(&sighand->siglock);
1442 	else
1443 		WARN_ON_ONCE(1);
1444 	rcu_read_unlock();
1445 }
1446 #endif
1447 
1448 /*
1449  * send signal info to all the members of a group
1450  */
1451 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1452 			struct task_struct *p, enum pid_type type)
1453 {
1454 	int ret;
1455 
1456 	rcu_read_lock();
1457 	ret = check_kill_permission(sig, info, p);
1458 	rcu_read_unlock();
1459 
1460 	if (!ret && sig)
1461 		ret = do_send_sig_info(sig, info, p, type);
1462 
1463 	return ret;
1464 }
1465 
1466 /*
1467  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1468  * control characters do (^C, ^Z etc)
1469  * - the caller must hold at least a readlock on tasklist_lock
1470  */
1471 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1472 {
1473 	struct task_struct *p = NULL;
1474 	int retval, success;
1475 
1476 	success = 0;
1477 	retval = -ESRCH;
1478 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1479 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1480 		success |= !err;
1481 		retval = err;
1482 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1483 	return success ? 0 : retval;
1484 }
1485 
1486 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1487 {
1488 	int error = -ESRCH;
1489 	struct task_struct *p;
1490 
1491 	for (;;) {
1492 		rcu_read_lock();
1493 		p = pid_task(pid, PIDTYPE_PID);
1494 		if (p)
1495 			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1496 		rcu_read_unlock();
1497 		if (likely(!p || error != -ESRCH))
1498 			return error;
1499 
1500 		/*
1501 		 * The task was unhashed in between, try again.  If it
1502 		 * is dead, pid_task() will return NULL, if we race with
1503 		 * de_thread() it will find the new leader.
1504 		 */
1505 	}
1506 }
1507 
1508 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1509 {
1510 	int error;
1511 	rcu_read_lock();
1512 	error = kill_pid_info(sig, info, find_vpid(pid));
1513 	rcu_read_unlock();
1514 	return error;
1515 }
1516 
1517 static inline bool kill_as_cred_perm(const struct cred *cred,
1518 				     struct task_struct *target)
1519 {
1520 	const struct cred *pcred = __task_cred(target);
1521 
1522 	return uid_eq(cred->euid, pcred->suid) ||
1523 	       uid_eq(cred->euid, pcred->uid) ||
1524 	       uid_eq(cred->uid, pcred->suid) ||
1525 	       uid_eq(cred->uid, pcred->uid);
1526 }
1527 
1528 /*
1529  * The usb asyncio usage of siginfo is wrong.  The glibc support
1530  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1531  * AKA after the generic fields:
1532  *	kernel_pid_t	si_pid;
1533  *	kernel_uid32_t	si_uid;
1534  *	sigval_t	si_value;
1535  *
1536  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1537  * after the generic fields is:
1538  *	void __user 	*si_addr;
1539  *
1540  * This is a practical problem when there is a 64bit big endian kernel
1541  * and a 32bit userspace.  As the 32bit address will encoded in the low
1542  * 32bits of the pointer.  Those low 32bits will be stored at higher
1543  * address than appear in a 32 bit pointer.  So userspace will not
1544  * see the address it was expecting for it's completions.
1545  *
1546  * There is nothing in the encoding that can allow
1547  * copy_siginfo_to_user32 to detect this confusion of formats, so
1548  * handle this by requiring the caller of kill_pid_usb_asyncio to
1549  * notice when this situration takes place and to store the 32bit
1550  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1551  * parameter.
1552  */
1553 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1554 			 struct pid *pid, const struct cred *cred)
1555 {
1556 	struct kernel_siginfo info;
1557 	struct task_struct *p;
1558 	unsigned long flags;
1559 	int ret = -EINVAL;
1560 
1561 	if (!valid_signal(sig))
1562 		return ret;
1563 
1564 	clear_siginfo(&info);
1565 	info.si_signo = sig;
1566 	info.si_errno = errno;
1567 	info.si_code = SI_ASYNCIO;
1568 	*((sigval_t *)&info.si_pid) = addr;
1569 
1570 	rcu_read_lock();
1571 	p = pid_task(pid, PIDTYPE_PID);
1572 	if (!p) {
1573 		ret = -ESRCH;
1574 		goto out_unlock;
1575 	}
1576 	if (!kill_as_cred_perm(cred, p)) {
1577 		ret = -EPERM;
1578 		goto out_unlock;
1579 	}
1580 	ret = security_task_kill(p, &info, sig, cred);
1581 	if (ret)
1582 		goto out_unlock;
1583 
1584 	if (sig) {
1585 		if (lock_task_sighand(p, &flags)) {
1586 			ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1587 			unlock_task_sighand(p, &flags);
1588 		} else
1589 			ret = -ESRCH;
1590 	}
1591 out_unlock:
1592 	rcu_read_unlock();
1593 	return ret;
1594 }
1595 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1596 
1597 /*
1598  * kill_something_info() interprets pid in interesting ways just like kill(2).
1599  *
1600  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1601  * is probably wrong.  Should make it like BSD or SYSV.
1602  */
1603 
1604 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1605 {
1606 	int ret;
1607 
1608 	if (pid > 0)
1609 		return kill_proc_info(sig, info, pid);
1610 
1611 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1612 	if (pid == INT_MIN)
1613 		return -ESRCH;
1614 
1615 	read_lock(&tasklist_lock);
1616 	if (pid != -1) {
1617 		ret = __kill_pgrp_info(sig, info,
1618 				pid ? find_vpid(-pid) : task_pgrp(current));
1619 	} else {
1620 		int retval = 0, count = 0;
1621 		struct task_struct * p;
1622 
1623 		for_each_process(p) {
1624 			if (task_pid_vnr(p) > 1 &&
1625 					!same_thread_group(p, current)) {
1626 				int err = group_send_sig_info(sig, info, p,
1627 							      PIDTYPE_MAX);
1628 				++count;
1629 				if (err != -EPERM)
1630 					retval = err;
1631 			}
1632 		}
1633 		ret = count ? retval : -ESRCH;
1634 	}
1635 	read_unlock(&tasklist_lock);
1636 
1637 	return ret;
1638 }
1639 
1640 /*
1641  * These are for backward compatibility with the rest of the kernel source.
1642  */
1643 
1644 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1645 {
1646 	/*
1647 	 * Make sure legacy kernel users don't send in bad values
1648 	 * (normal paths check this in check_kill_permission).
1649 	 */
1650 	if (!valid_signal(sig))
1651 		return -EINVAL;
1652 
1653 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1654 }
1655 EXPORT_SYMBOL(send_sig_info);
1656 
1657 #define __si_special(priv) \
1658 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1659 
1660 int
1661 send_sig(int sig, struct task_struct *p, int priv)
1662 {
1663 	return send_sig_info(sig, __si_special(priv), p);
1664 }
1665 EXPORT_SYMBOL(send_sig);
1666 
1667 void force_sig(int sig)
1668 {
1669 	struct kernel_siginfo info;
1670 
1671 	clear_siginfo(&info);
1672 	info.si_signo = sig;
1673 	info.si_errno = 0;
1674 	info.si_code = SI_KERNEL;
1675 	info.si_pid = 0;
1676 	info.si_uid = 0;
1677 	force_sig_info(&info);
1678 }
1679 EXPORT_SYMBOL(force_sig);
1680 
1681 void force_fatal_sig(int sig)
1682 {
1683 	struct kernel_siginfo info;
1684 
1685 	clear_siginfo(&info);
1686 	info.si_signo = sig;
1687 	info.si_errno = 0;
1688 	info.si_code = SI_KERNEL;
1689 	info.si_pid = 0;
1690 	info.si_uid = 0;
1691 	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1692 }
1693 
1694 void force_exit_sig(int sig)
1695 {
1696 	struct kernel_siginfo info;
1697 
1698 	clear_siginfo(&info);
1699 	info.si_signo = sig;
1700 	info.si_errno = 0;
1701 	info.si_code = SI_KERNEL;
1702 	info.si_pid = 0;
1703 	info.si_uid = 0;
1704 	force_sig_info_to_task(&info, current, HANDLER_EXIT);
1705 }
1706 
1707 /*
1708  * When things go south during signal handling, we
1709  * will force a SIGSEGV. And if the signal that caused
1710  * the problem was already a SIGSEGV, we'll want to
1711  * make sure we don't even try to deliver the signal..
1712  */
1713 void force_sigsegv(int sig)
1714 {
1715 	if (sig == SIGSEGV)
1716 		force_fatal_sig(SIGSEGV);
1717 	else
1718 		force_sig(SIGSEGV);
1719 }
1720 
1721 int force_sig_fault_to_task(int sig, int code, void __user *addr
1722 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1723 	, struct task_struct *t)
1724 {
1725 	struct kernel_siginfo info;
1726 
1727 	clear_siginfo(&info);
1728 	info.si_signo = sig;
1729 	info.si_errno = 0;
1730 	info.si_code  = code;
1731 	info.si_addr  = addr;
1732 #ifdef __ia64__
1733 	info.si_imm = imm;
1734 	info.si_flags = flags;
1735 	info.si_isr = isr;
1736 #endif
1737 	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1738 }
1739 
1740 int force_sig_fault(int sig, int code, void __user *addr
1741 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1742 {
1743 	return force_sig_fault_to_task(sig, code, addr
1744 				       ___ARCH_SI_IA64(imm, flags, isr), current);
1745 }
1746 
1747 int send_sig_fault(int sig, int code, void __user *addr
1748 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1749 	, struct task_struct *t)
1750 {
1751 	struct kernel_siginfo info;
1752 
1753 	clear_siginfo(&info);
1754 	info.si_signo = sig;
1755 	info.si_errno = 0;
1756 	info.si_code  = code;
1757 	info.si_addr  = addr;
1758 #ifdef __ia64__
1759 	info.si_imm = imm;
1760 	info.si_flags = flags;
1761 	info.si_isr = isr;
1762 #endif
1763 	return send_sig_info(info.si_signo, &info, t);
1764 }
1765 
1766 int force_sig_mceerr(int code, void __user *addr, short lsb)
1767 {
1768 	struct kernel_siginfo info;
1769 
1770 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1771 	clear_siginfo(&info);
1772 	info.si_signo = SIGBUS;
1773 	info.si_errno = 0;
1774 	info.si_code = code;
1775 	info.si_addr = addr;
1776 	info.si_addr_lsb = lsb;
1777 	return force_sig_info(&info);
1778 }
1779 
1780 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1781 {
1782 	struct kernel_siginfo info;
1783 
1784 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1785 	clear_siginfo(&info);
1786 	info.si_signo = SIGBUS;
1787 	info.si_errno = 0;
1788 	info.si_code = code;
1789 	info.si_addr = addr;
1790 	info.si_addr_lsb = lsb;
1791 	return send_sig_info(info.si_signo, &info, t);
1792 }
1793 EXPORT_SYMBOL(send_sig_mceerr);
1794 
1795 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1796 {
1797 	struct kernel_siginfo info;
1798 
1799 	clear_siginfo(&info);
1800 	info.si_signo = SIGSEGV;
1801 	info.si_errno = 0;
1802 	info.si_code  = SEGV_BNDERR;
1803 	info.si_addr  = addr;
1804 	info.si_lower = lower;
1805 	info.si_upper = upper;
1806 	return force_sig_info(&info);
1807 }
1808 
1809 #ifdef SEGV_PKUERR
1810 int force_sig_pkuerr(void __user *addr, u32 pkey)
1811 {
1812 	struct kernel_siginfo info;
1813 
1814 	clear_siginfo(&info);
1815 	info.si_signo = SIGSEGV;
1816 	info.si_errno = 0;
1817 	info.si_code  = SEGV_PKUERR;
1818 	info.si_addr  = addr;
1819 	info.si_pkey  = pkey;
1820 	return force_sig_info(&info);
1821 }
1822 #endif
1823 
1824 int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1825 {
1826 	struct kernel_siginfo info;
1827 
1828 	clear_siginfo(&info);
1829 	info.si_signo     = SIGTRAP;
1830 	info.si_errno     = 0;
1831 	info.si_code      = TRAP_PERF;
1832 	info.si_addr      = addr;
1833 	info.si_perf_data = sig_data;
1834 	info.si_perf_type = type;
1835 
1836 	/*
1837 	 * Signals generated by perf events should not terminate the whole
1838 	 * process if SIGTRAP is blocked, however, delivering the signal
1839 	 * asynchronously is better than not delivering at all. But tell user
1840 	 * space if the signal was asynchronous, so it can clearly be
1841 	 * distinguished from normal synchronous ones.
1842 	 */
1843 	info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
1844 				     TRAP_PERF_FLAG_ASYNC :
1845 				     0;
1846 
1847 	return send_sig_info(info.si_signo, &info, current);
1848 }
1849 
1850 /**
1851  * force_sig_seccomp - signals the task to allow in-process syscall emulation
1852  * @syscall: syscall number to send to userland
1853  * @reason: filter-supplied reason code to send to userland (via si_errno)
1854  * @force_coredump: true to trigger a coredump
1855  *
1856  * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1857  */
1858 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1859 {
1860 	struct kernel_siginfo info;
1861 
1862 	clear_siginfo(&info);
1863 	info.si_signo = SIGSYS;
1864 	info.si_code = SYS_SECCOMP;
1865 	info.si_call_addr = (void __user *)KSTK_EIP(current);
1866 	info.si_errno = reason;
1867 	info.si_arch = syscall_get_arch(current);
1868 	info.si_syscall = syscall;
1869 	return force_sig_info_to_task(&info, current,
1870 		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1871 }
1872 
1873 /* For the crazy architectures that include trap information in
1874  * the errno field, instead of an actual errno value.
1875  */
1876 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1877 {
1878 	struct kernel_siginfo info;
1879 
1880 	clear_siginfo(&info);
1881 	info.si_signo = SIGTRAP;
1882 	info.si_errno = errno;
1883 	info.si_code  = TRAP_HWBKPT;
1884 	info.si_addr  = addr;
1885 	return force_sig_info(&info);
1886 }
1887 
1888 /* For the rare architectures that include trap information using
1889  * si_trapno.
1890  */
1891 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1892 {
1893 	struct kernel_siginfo info;
1894 
1895 	clear_siginfo(&info);
1896 	info.si_signo = sig;
1897 	info.si_errno = 0;
1898 	info.si_code  = code;
1899 	info.si_addr  = addr;
1900 	info.si_trapno = trapno;
1901 	return force_sig_info(&info);
1902 }
1903 
1904 /* For the rare architectures that include trap information using
1905  * si_trapno.
1906  */
1907 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1908 			  struct task_struct *t)
1909 {
1910 	struct kernel_siginfo info;
1911 
1912 	clear_siginfo(&info);
1913 	info.si_signo = sig;
1914 	info.si_errno = 0;
1915 	info.si_code  = code;
1916 	info.si_addr  = addr;
1917 	info.si_trapno = trapno;
1918 	return send_sig_info(info.si_signo, &info, t);
1919 }
1920 
1921 int kill_pgrp(struct pid *pid, int sig, int priv)
1922 {
1923 	int ret;
1924 
1925 	read_lock(&tasklist_lock);
1926 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1927 	read_unlock(&tasklist_lock);
1928 
1929 	return ret;
1930 }
1931 EXPORT_SYMBOL(kill_pgrp);
1932 
1933 int kill_pid(struct pid *pid, int sig, int priv)
1934 {
1935 	return kill_pid_info(sig, __si_special(priv), pid);
1936 }
1937 EXPORT_SYMBOL(kill_pid);
1938 
1939 /*
1940  * These functions support sending signals using preallocated sigqueue
1941  * structures.  This is needed "because realtime applications cannot
1942  * afford to lose notifications of asynchronous events, like timer
1943  * expirations or I/O completions".  In the case of POSIX Timers
1944  * we allocate the sigqueue structure from the timer_create.  If this
1945  * allocation fails we are able to report the failure to the application
1946  * with an EAGAIN error.
1947  */
1948 struct sigqueue *sigqueue_alloc(void)
1949 {
1950 	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1951 }
1952 
1953 void sigqueue_free(struct sigqueue *q)
1954 {
1955 	unsigned long flags;
1956 	spinlock_t *lock = &current->sighand->siglock;
1957 
1958 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1959 	/*
1960 	 * We must hold ->siglock while testing q->list
1961 	 * to serialize with collect_signal() or with
1962 	 * __exit_signal()->flush_sigqueue().
1963 	 */
1964 	spin_lock_irqsave(lock, flags);
1965 	q->flags &= ~SIGQUEUE_PREALLOC;
1966 	/*
1967 	 * If it is queued it will be freed when dequeued,
1968 	 * like the "regular" sigqueue.
1969 	 */
1970 	if (!list_empty(&q->list))
1971 		q = NULL;
1972 	spin_unlock_irqrestore(lock, flags);
1973 
1974 	if (q)
1975 		__sigqueue_free(q);
1976 }
1977 
1978 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1979 {
1980 	int sig = q->info.si_signo;
1981 	struct sigpending *pending;
1982 	struct task_struct *t;
1983 	unsigned long flags;
1984 	int ret, result;
1985 
1986 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1987 
1988 	ret = -1;
1989 	rcu_read_lock();
1990 
1991 	/*
1992 	 * This function is used by POSIX timers to deliver a timer signal.
1993 	 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1994 	 * set), the signal must be delivered to the specific thread (queues
1995 	 * into t->pending).
1996 	 *
1997 	 * Where type is not PIDTYPE_PID, signals must be delivered to the
1998 	 * process. In this case, prefer to deliver to current if it is in
1999 	 * the same thread group as the target process, which avoids
2000 	 * unnecessarily waking up a potentially idle task.
2001 	 */
2002 	t = pid_task(pid, type);
2003 	if (!t)
2004 		goto ret;
2005 	if (type != PIDTYPE_PID && same_thread_group(t, current))
2006 		t = current;
2007 	if (!likely(lock_task_sighand(t, &flags)))
2008 		goto ret;
2009 
2010 	ret = 1; /* the signal is ignored */
2011 	result = TRACE_SIGNAL_IGNORED;
2012 	if (!prepare_signal(sig, t, false))
2013 		goto out;
2014 
2015 	ret = 0;
2016 	if (unlikely(!list_empty(&q->list))) {
2017 		/*
2018 		 * If an SI_TIMER entry is already queue just increment
2019 		 * the overrun count.
2020 		 */
2021 		BUG_ON(q->info.si_code != SI_TIMER);
2022 		q->info.si_overrun++;
2023 		result = TRACE_SIGNAL_ALREADY_PENDING;
2024 		goto out;
2025 	}
2026 	q->info.si_overrun = 0;
2027 
2028 	signalfd_notify(t, sig);
2029 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
2030 	list_add_tail(&q->list, &pending->list);
2031 	sigaddset(&pending->signal, sig);
2032 	complete_signal(sig, t, type);
2033 	result = TRACE_SIGNAL_DELIVERED;
2034 out:
2035 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2036 	unlock_task_sighand(t, &flags);
2037 ret:
2038 	rcu_read_unlock();
2039 	return ret;
2040 }
2041 
2042 static void do_notify_pidfd(struct task_struct *task)
2043 {
2044 	struct pid *pid;
2045 
2046 	WARN_ON(task->exit_state == 0);
2047 	pid = task_pid(task);
2048 	wake_up_all(&pid->wait_pidfd);
2049 }
2050 
2051 /*
2052  * Let a parent know about the death of a child.
2053  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2054  *
2055  * Returns true if our parent ignored us and so we've switched to
2056  * self-reaping.
2057  */
2058 bool do_notify_parent(struct task_struct *tsk, int sig)
2059 {
2060 	struct kernel_siginfo info;
2061 	unsigned long flags;
2062 	struct sighand_struct *psig;
2063 	bool autoreap = false;
2064 	u64 utime, stime;
2065 
2066 	WARN_ON_ONCE(sig == -1);
2067 
2068 	/* do_notify_parent_cldstop should have been called instead.  */
2069 	WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2070 
2071 	WARN_ON_ONCE(!tsk->ptrace &&
2072 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2073 
2074 	/* Wake up all pidfd waiters */
2075 	do_notify_pidfd(tsk);
2076 
2077 	if (sig != SIGCHLD) {
2078 		/*
2079 		 * This is only possible if parent == real_parent.
2080 		 * Check if it has changed security domain.
2081 		 */
2082 		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2083 			sig = SIGCHLD;
2084 	}
2085 
2086 	clear_siginfo(&info);
2087 	info.si_signo = sig;
2088 	info.si_errno = 0;
2089 	/*
2090 	 * We are under tasklist_lock here so our parent is tied to
2091 	 * us and cannot change.
2092 	 *
2093 	 * task_active_pid_ns will always return the same pid namespace
2094 	 * until a task passes through release_task.
2095 	 *
2096 	 * write_lock() currently calls preempt_disable() which is the
2097 	 * same as rcu_read_lock(), but according to Oleg, this is not
2098 	 * correct to rely on this
2099 	 */
2100 	rcu_read_lock();
2101 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2102 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2103 				       task_uid(tsk));
2104 	rcu_read_unlock();
2105 
2106 	task_cputime(tsk, &utime, &stime);
2107 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2108 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2109 
2110 	info.si_status = tsk->exit_code & 0x7f;
2111 	if (tsk->exit_code & 0x80)
2112 		info.si_code = CLD_DUMPED;
2113 	else if (tsk->exit_code & 0x7f)
2114 		info.si_code = CLD_KILLED;
2115 	else {
2116 		info.si_code = CLD_EXITED;
2117 		info.si_status = tsk->exit_code >> 8;
2118 	}
2119 
2120 	psig = tsk->parent->sighand;
2121 	spin_lock_irqsave(&psig->siglock, flags);
2122 	if (!tsk->ptrace && sig == SIGCHLD &&
2123 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2124 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2125 		/*
2126 		 * We are exiting and our parent doesn't care.  POSIX.1
2127 		 * defines special semantics for setting SIGCHLD to SIG_IGN
2128 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2129 		 * automatically and not left for our parent's wait4 call.
2130 		 * Rather than having the parent do it as a magic kind of
2131 		 * signal handler, we just set this to tell do_exit that we
2132 		 * can be cleaned up without becoming a zombie.  Note that
2133 		 * we still call __wake_up_parent in this case, because a
2134 		 * blocked sys_wait4 might now return -ECHILD.
2135 		 *
2136 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2137 		 * is implementation-defined: we do (if you don't want
2138 		 * it, just use SIG_IGN instead).
2139 		 */
2140 		autoreap = true;
2141 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2142 			sig = 0;
2143 	}
2144 	/*
2145 	 * Send with __send_signal as si_pid and si_uid are in the
2146 	 * parent's namespaces.
2147 	 */
2148 	if (valid_signal(sig) && sig)
2149 		__send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2150 	__wake_up_parent(tsk, tsk->parent);
2151 	spin_unlock_irqrestore(&psig->siglock, flags);
2152 
2153 	return autoreap;
2154 }
2155 
2156 /**
2157  * do_notify_parent_cldstop - notify parent of stopped/continued state change
2158  * @tsk: task reporting the state change
2159  * @for_ptracer: the notification is for ptracer
2160  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2161  *
2162  * Notify @tsk's parent that the stopped/continued state has changed.  If
2163  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2164  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2165  *
2166  * CONTEXT:
2167  * Must be called with tasklist_lock at least read locked.
2168  */
2169 static void do_notify_parent_cldstop(struct task_struct *tsk,
2170 				     bool for_ptracer, int why)
2171 {
2172 	struct kernel_siginfo info;
2173 	unsigned long flags;
2174 	struct task_struct *parent;
2175 	struct sighand_struct *sighand;
2176 	u64 utime, stime;
2177 
2178 	if (for_ptracer) {
2179 		parent = tsk->parent;
2180 	} else {
2181 		tsk = tsk->group_leader;
2182 		parent = tsk->real_parent;
2183 	}
2184 
2185 	clear_siginfo(&info);
2186 	info.si_signo = SIGCHLD;
2187 	info.si_errno = 0;
2188 	/*
2189 	 * see comment in do_notify_parent() about the following 4 lines
2190 	 */
2191 	rcu_read_lock();
2192 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2193 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2194 	rcu_read_unlock();
2195 
2196 	task_cputime(tsk, &utime, &stime);
2197 	info.si_utime = nsec_to_clock_t(utime);
2198 	info.si_stime = nsec_to_clock_t(stime);
2199 
2200  	info.si_code = why;
2201  	switch (why) {
2202  	case CLD_CONTINUED:
2203  		info.si_status = SIGCONT;
2204  		break;
2205  	case CLD_STOPPED:
2206  		info.si_status = tsk->signal->group_exit_code & 0x7f;
2207  		break;
2208  	case CLD_TRAPPED:
2209  		info.si_status = tsk->exit_code & 0x7f;
2210  		break;
2211  	default:
2212  		BUG();
2213  	}
2214 
2215 	sighand = parent->sighand;
2216 	spin_lock_irqsave(&sighand->siglock, flags);
2217 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2218 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2219 		send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2220 	/*
2221 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2222 	 */
2223 	__wake_up_parent(tsk, parent);
2224 	spin_unlock_irqrestore(&sighand->siglock, flags);
2225 }
2226 
2227 /*
2228  * This must be called with current->sighand->siglock held.
2229  *
2230  * This should be the path for all ptrace stops.
2231  * We always set current->last_siginfo while stopped here.
2232  * That makes it a way to test a stopped process for
2233  * being ptrace-stopped vs being job-control-stopped.
2234  *
2235  * Returns the signal the ptracer requested the code resume
2236  * with.  If the code did not stop because the tracer is gone,
2237  * the stop signal remains unchanged unless clear_code.
2238  */
2239 static int ptrace_stop(int exit_code, int why, unsigned long message,
2240 		       kernel_siginfo_t *info)
2241 	__releases(&current->sighand->siglock)
2242 	__acquires(&current->sighand->siglock)
2243 {
2244 	bool gstop_done = false;
2245 
2246 	if (arch_ptrace_stop_needed()) {
2247 		/*
2248 		 * The arch code has something special to do before a
2249 		 * ptrace stop.  This is allowed to block, e.g. for faults
2250 		 * on user stack pages.  We can't keep the siglock while
2251 		 * calling arch_ptrace_stop, so we must release it now.
2252 		 * To preserve proper semantics, we must do this before
2253 		 * any signal bookkeeping like checking group_stop_count.
2254 		 */
2255 		spin_unlock_irq(&current->sighand->siglock);
2256 		arch_ptrace_stop();
2257 		spin_lock_irq(&current->sighand->siglock);
2258 	}
2259 
2260 	/*
2261 	 * After this point ptrace_signal_wake_up or signal_wake_up
2262 	 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2263 	 * signal comes in.  Handle previous ptrace_unlinks and fatal
2264 	 * signals here to prevent ptrace_stop sleeping in schedule.
2265 	 */
2266 	if (!current->ptrace || __fatal_signal_pending(current))
2267 		return exit_code;
2268 
2269 	set_special_state(TASK_TRACED);
2270 	current->jobctl |= JOBCTL_TRACED;
2271 
2272 	/*
2273 	 * We're committing to trapping.  TRACED should be visible before
2274 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2275 	 * Also, transition to TRACED and updates to ->jobctl should be
2276 	 * atomic with respect to siglock and should be done after the arch
2277 	 * hook as siglock is released and regrabbed across it.
2278 	 *
2279 	 *     TRACER				    TRACEE
2280 	 *
2281 	 *     ptrace_attach()
2282 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2283 	 *     do_wait()
2284 	 *       set_current_state()                smp_wmb();
2285 	 *       ptrace_do_wait()
2286 	 *         wait_task_stopped()
2287 	 *           task_stopped_code()
2288 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2289 	 */
2290 	smp_wmb();
2291 
2292 	current->ptrace_message = message;
2293 	current->last_siginfo = info;
2294 	current->exit_code = exit_code;
2295 
2296 	/*
2297 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2298 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2299 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2300 	 * could be clear now.  We act as if SIGCONT is received after
2301 	 * TASK_TRACED is entered - ignore it.
2302 	 */
2303 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2304 		gstop_done = task_participate_group_stop(current);
2305 
2306 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2307 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2308 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2309 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2310 
2311 	/* entering a trap, clear TRAPPING */
2312 	task_clear_jobctl_trapping(current);
2313 
2314 	spin_unlock_irq(&current->sighand->siglock);
2315 	read_lock(&tasklist_lock);
2316 	/*
2317 	 * Notify parents of the stop.
2318 	 *
2319 	 * While ptraced, there are two parents - the ptracer and
2320 	 * the real_parent of the group_leader.  The ptracer should
2321 	 * know about every stop while the real parent is only
2322 	 * interested in the completion of group stop.  The states
2323 	 * for the two don't interact with each other.  Notify
2324 	 * separately unless they're gonna be duplicates.
2325 	 */
2326 	if (current->ptrace)
2327 		do_notify_parent_cldstop(current, true, why);
2328 	if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2329 		do_notify_parent_cldstop(current, false, why);
2330 
2331 	/*
2332 	 * The previous do_notify_parent_cldstop() invocation woke ptracer.
2333 	 * One a PREEMPTION kernel this can result in preemption requirement
2334 	 * which will be fulfilled after read_unlock() and the ptracer will be
2335 	 * put on the CPU.
2336 	 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for
2337 	 * this task wait in schedule(). If this task gets preempted then it
2338 	 * remains enqueued on the runqueue. The ptracer will observe this and
2339 	 * then sleep for a delay of one HZ tick. In the meantime this task
2340 	 * gets scheduled, enters schedule() and will wait for the ptracer.
2341 	 *
2342 	 * This preemption point is not bad from a correctness point of
2343 	 * view but extends the runtime by one HZ tick time due to the
2344 	 * ptracer's sleep.  The preempt-disable section ensures that there
2345 	 * will be no preemption between unlock and schedule() and so
2346 	 * improving the performance since the ptracer will observe that
2347 	 * the tracee is scheduled out once it gets on the CPU.
2348 	 *
2349 	 * On PREEMPT_RT locking tasklist_lock does not disable preemption.
2350 	 * Therefore the task can be preempted after do_notify_parent_cldstop()
2351 	 * before unlocking tasklist_lock so there is no benefit in doing this.
2352 	 *
2353 	 * In fact disabling preemption is harmful on PREEMPT_RT because
2354 	 * the spinlock_t in cgroup_enter_frozen() must not be acquired
2355 	 * with preemption disabled due to the 'sleeping' spinlock
2356 	 * substitution of RT.
2357 	 */
2358 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2359 		preempt_disable();
2360 	read_unlock(&tasklist_lock);
2361 	cgroup_enter_frozen();
2362 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2363 		preempt_enable_no_resched();
2364 	schedule();
2365 	cgroup_leave_frozen(true);
2366 
2367 	/*
2368 	 * We are back.  Now reacquire the siglock before touching
2369 	 * last_siginfo, so that we are sure to have synchronized with
2370 	 * any signal-sending on another CPU that wants to examine it.
2371 	 */
2372 	spin_lock_irq(&current->sighand->siglock);
2373 	exit_code = current->exit_code;
2374 	current->last_siginfo = NULL;
2375 	current->ptrace_message = 0;
2376 	current->exit_code = 0;
2377 
2378 	/* LISTENING can be set only during STOP traps, clear it */
2379 	current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2380 
2381 	/*
2382 	 * Queued signals ignored us while we were stopped for tracing.
2383 	 * So check for any that we should take before resuming user mode.
2384 	 * This sets TIF_SIGPENDING, but never clears it.
2385 	 */
2386 	recalc_sigpending_tsk(current);
2387 	return exit_code;
2388 }
2389 
2390 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2391 {
2392 	kernel_siginfo_t info;
2393 
2394 	clear_siginfo(&info);
2395 	info.si_signo = signr;
2396 	info.si_code = exit_code;
2397 	info.si_pid = task_pid_vnr(current);
2398 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2399 
2400 	/* Let the debugger run.  */
2401 	return ptrace_stop(exit_code, why, message, &info);
2402 }
2403 
2404 int ptrace_notify(int exit_code, unsigned long message)
2405 {
2406 	int signr;
2407 
2408 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2409 	if (unlikely(task_work_pending(current)))
2410 		task_work_run();
2411 
2412 	spin_lock_irq(&current->sighand->siglock);
2413 	signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2414 	spin_unlock_irq(&current->sighand->siglock);
2415 	return signr;
2416 }
2417 
2418 /**
2419  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2420  * @signr: signr causing group stop if initiating
2421  *
2422  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2423  * and participate in it.  If already set, participate in the existing
2424  * group stop.  If participated in a group stop (and thus slept), %true is
2425  * returned with siglock released.
2426  *
2427  * If ptraced, this function doesn't handle stop itself.  Instead,
2428  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2429  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2430  * places afterwards.
2431  *
2432  * CONTEXT:
2433  * Must be called with @current->sighand->siglock held, which is released
2434  * on %true return.
2435  *
2436  * RETURNS:
2437  * %false if group stop is already cancelled or ptrace trap is scheduled.
2438  * %true if participated in group stop.
2439  */
2440 static bool do_signal_stop(int signr)
2441 	__releases(&current->sighand->siglock)
2442 {
2443 	struct signal_struct *sig = current->signal;
2444 
2445 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2446 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2447 		struct task_struct *t;
2448 
2449 		/* signr will be recorded in task->jobctl for retries */
2450 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2451 
2452 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2453 		    unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2454 		    unlikely(sig->group_exec_task))
2455 			return false;
2456 		/*
2457 		 * There is no group stop already in progress.  We must
2458 		 * initiate one now.
2459 		 *
2460 		 * While ptraced, a task may be resumed while group stop is
2461 		 * still in effect and then receive a stop signal and
2462 		 * initiate another group stop.  This deviates from the
2463 		 * usual behavior as two consecutive stop signals can't
2464 		 * cause two group stops when !ptraced.  That is why we
2465 		 * also check !task_is_stopped(t) below.
2466 		 *
2467 		 * The condition can be distinguished by testing whether
2468 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2469 		 * group_exit_code in such case.
2470 		 *
2471 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2472 		 * an intervening stop signal is required to cause two
2473 		 * continued events regardless of ptrace.
2474 		 */
2475 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2476 			sig->group_exit_code = signr;
2477 
2478 		sig->group_stop_count = 0;
2479 
2480 		if (task_set_jobctl_pending(current, signr | gstop))
2481 			sig->group_stop_count++;
2482 
2483 		t = current;
2484 		while_each_thread(current, t) {
2485 			/*
2486 			 * Setting state to TASK_STOPPED for a group
2487 			 * stop is always done with the siglock held,
2488 			 * so this check has no races.
2489 			 */
2490 			if (!task_is_stopped(t) &&
2491 			    task_set_jobctl_pending(t, signr | gstop)) {
2492 				sig->group_stop_count++;
2493 				if (likely(!(t->ptrace & PT_SEIZED)))
2494 					signal_wake_up(t, 0);
2495 				else
2496 					ptrace_trap_notify(t);
2497 			}
2498 		}
2499 	}
2500 
2501 	if (likely(!current->ptrace)) {
2502 		int notify = 0;
2503 
2504 		/*
2505 		 * If there are no other threads in the group, or if there
2506 		 * is a group stop in progress and we are the last to stop,
2507 		 * report to the parent.
2508 		 */
2509 		if (task_participate_group_stop(current))
2510 			notify = CLD_STOPPED;
2511 
2512 		current->jobctl |= JOBCTL_STOPPED;
2513 		set_special_state(TASK_STOPPED);
2514 		spin_unlock_irq(&current->sighand->siglock);
2515 
2516 		/*
2517 		 * Notify the parent of the group stop completion.  Because
2518 		 * we're not holding either the siglock or tasklist_lock
2519 		 * here, ptracer may attach inbetween; however, this is for
2520 		 * group stop and should always be delivered to the real
2521 		 * parent of the group leader.  The new ptracer will get
2522 		 * its notification when this task transitions into
2523 		 * TASK_TRACED.
2524 		 */
2525 		if (notify) {
2526 			read_lock(&tasklist_lock);
2527 			do_notify_parent_cldstop(current, false, notify);
2528 			read_unlock(&tasklist_lock);
2529 		}
2530 
2531 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2532 		cgroup_enter_frozen();
2533 		schedule();
2534 		return true;
2535 	} else {
2536 		/*
2537 		 * While ptraced, group stop is handled by STOP trap.
2538 		 * Schedule it and let the caller deal with it.
2539 		 */
2540 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2541 		return false;
2542 	}
2543 }
2544 
2545 /**
2546  * do_jobctl_trap - take care of ptrace jobctl traps
2547  *
2548  * When PT_SEIZED, it's used for both group stop and explicit
2549  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2550  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2551  * the stop signal; otherwise, %SIGTRAP.
2552  *
2553  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2554  * number as exit_code and no siginfo.
2555  *
2556  * CONTEXT:
2557  * Must be called with @current->sighand->siglock held, which may be
2558  * released and re-acquired before returning with intervening sleep.
2559  */
2560 static void do_jobctl_trap(void)
2561 {
2562 	struct signal_struct *signal = current->signal;
2563 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2564 
2565 	if (current->ptrace & PT_SEIZED) {
2566 		if (!signal->group_stop_count &&
2567 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2568 			signr = SIGTRAP;
2569 		WARN_ON_ONCE(!signr);
2570 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2571 				 CLD_STOPPED, 0);
2572 	} else {
2573 		WARN_ON_ONCE(!signr);
2574 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2575 	}
2576 }
2577 
2578 /**
2579  * do_freezer_trap - handle the freezer jobctl trap
2580  *
2581  * Puts the task into frozen state, if only the task is not about to quit.
2582  * In this case it drops JOBCTL_TRAP_FREEZE.
2583  *
2584  * CONTEXT:
2585  * Must be called with @current->sighand->siglock held,
2586  * which is always released before returning.
2587  */
2588 static void do_freezer_trap(void)
2589 	__releases(&current->sighand->siglock)
2590 {
2591 	/*
2592 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2593 	 * let's make another loop to give it a chance to be handled.
2594 	 * In any case, we'll return back.
2595 	 */
2596 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2597 	     JOBCTL_TRAP_FREEZE) {
2598 		spin_unlock_irq(&current->sighand->siglock);
2599 		return;
2600 	}
2601 
2602 	/*
2603 	 * Now we're sure that there is no pending fatal signal and no
2604 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2605 	 * immediately (if there is a non-fatal signal pending), and
2606 	 * put the task into sleep.
2607 	 */
2608 	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2609 	clear_thread_flag(TIF_SIGPENDING);
2610 	spin_unlock_irq(&current->sighand->siglock);
2611 	cgroup_enter_frozen();
2612 	schedule();
2613 }
2614 
2615 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2616 {
2617 	/*
2618 	 * We do not check sig_kernel_stop(signr) but set this marker
2619 	 * unconditionally because we do not know whether debugger will
2620 	 * change signr. This flag has no meaning unless we are going
2621 	 * to stop after return from ptrace_stop(). In this case it will
2622 	 * be checked in do_signal_stop(), we should only stop if it was
2623 	 * not cleared by SIGCONT while we were sleeping. See also the
2624 	 * comment in dequeue_signal().
2625 	 */
2626 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2627 	signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2628 
2629 	/* We're back.  Did the debugger cancel the sig?  */
2630 	if (signr == 0)
2631 		return signr;
2632 
2633 	/*
2634 	 * Update the siginfo structure if the signal has
2635 	 * changed.  If the debugger wanted something
2636 	 * specific in the siginfo structure then it should
2637 	 * have updated *info via PTRACE_SETSIGINFO.
2638 	 */
2639 	if (signr != info->si_signo) {
2640 		clear_siginfo(info);
2641 		info->si_signo = signr;
2642 		info->si_errno = 0;
2643 		info->si_code = SI_USER;
2644 		rcu_read_lock();
2645 		info->si_pid = task_pid_vnr(current->parent);
2646 		info->si_uid = from_kuid_munged(current_user_ns(),
2647 						task_uid(current->parent));
2648 		rcu_read_unlock();
2649 	}
2650 
2651 	/* If the (new) signal is now blocked, requeue it.  */
2652 	if (sigismember(&current->blocked, signr) ||
2653 	    fatal_signal_pending(current)) {
2654 		send_signal_locked(signr, info, current, type);
2655 		signr = 0;
2656 	}
2657 
2658 	return signr;
2659 }
2660 
2661 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2662 {
2663 	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2664 	case SIL_FAULT:
2665 	case SIL_FAULT_TRAPNO:
2666 	case SIL_FAULT_MCEERR:
2667 	case SIL_FAULT_BNDERR:
2668 	case SIL_FAULT_PKUERR:
2669 	case SIL_FAULT_PERF_EVENT:
2670 		ksig->info.si_addr = arch_untagged_si_addr(
2671 			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2672 		break;
2673 	case SIL_KILL:
2674 	case SIL_TIMER:
2675 	case SIL_POLL:
2676 	case SIL_CHLD:
2677 	case SIL_RT:
2678 	case SIL_SYS:
2679 		break;
2680 	}
2681 }
2682 
2683 bool get_signal(struct ksignal *ksig)
2684 {
2685 	struct sighand_struct *sighand = current->sighand;
2686 	struct signal_struct *signal = current->signal;
2687 	int signr;
2688 
2689 	clear_notify_signal();
2690 	if (unlikely(task_work_pending(current)))
2691 		task_work_run();
2692 
2693 	if (!task_sigpending(current))
2694 		return false;
2695 
2696 	if (unlikely(uprobe_deny_signal()))
2697 		return false;
2698 
2699 	/*
2700 	 * Do this once, we can't return to user-mode if freezing() == T.
2701 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2702 	 * thus do not need another check after return.
2703 	 */
2704 	try_to_freeze();
2705 
2706 relock:
2707 	spin_lock_irq(&sighand->siglock);
2708 
2709 	/*
2710 	 * Every stopped thread goes here after wakeup. Check to see if
2711 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2712 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2713 	 */
2714 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2715 		int why;
2716 
2717 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2718 			why = CLD_CONTINUED;
2719 		else
2720 			why = CLD_STOPPED;
2721 
2722 		signal->flags &= ~SIGNAL_CLD_MASK;
2723 
2724 		spin_unlock_irq(&sighand->siglock);
2725 
2726 		/*
2727 		 * Notify the parent that we're continuing.  This event is
2728 		 * always per-process and doesn't make whole lot of sense
2729 		 * for ptracers, who shouldn't consume the state via
2730 		 * wait(2) either, but, for backward compatibility, notify
2731 		 * the ptracer of the group leader too unless it's gonna be
2732 		 * a duplicate.
2733 		 */
2734 		read_lock(&tasklist_lock);
2735 		do_notify_parent_cldstop(current, false, why);
2736 
2737 		if (ptrace_reparented(current->group_leader))
2738 			do_notify_parent_cldstop(current->group_leader,
2739 						true, why);
2740 		read_unlock(&tasklist_lock);
2741 
2742 		goto relock;
2743 	}
2744 
2745 	for (;;) {
2746 		struct k_sigaction *ka;
2747 		enum pid_type type;
2748 
2749 		/* Has this task already been marked for death? */
2750 		if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2751 		     signal->group_exec_task) {
2752 			clear_siginfo(&ksig->info);
2753 			ksig->info.si_signo = signr = SIGKILL;
2754 			sigdelset(&current->pending.signal, SIGKILL);
2755 			trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2756 				&sighand->action[SIGKILL - 1]);
2757 			recalc_sigpending();
2758 			goto fatal;
2759 		}
2760 
2761 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2762 		    do_signal_stop(0))
2763 			goto relock;
2764 
2765 		if (unlikely(current->jobctl &
2766 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2767 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2768 				do_jobctl_trap();
2769 				spin_unlock_irq(&sighand->siglock);
2770 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2771 				do_freezer_trap();
2772 
2773 			goto relock;
2774 		}
2775 
2776 		/*
2777 		 * If the task is leaving the frozen state, let's update
2778 		 * cgroup counters and reset the frozen bit.
2779 		 */
2780 		if (unlikely(cgroup_task_frozen(current))) {
2781 			spin_unlock_irq(&sighand->siglock);
2782 			cgroup_leave_frozen(false);
2783 			goto relock;
2784 		}
2785 
2786 		/*
2787 		 * Signals generated by the execution of an instruction
2788 		 * need to be delivered before any other pending signals
2789 		 * so that the instruction pointer in the signal stack
2790 		 * frame points to the faulting instruction.
2791 		 */
2792 		type = PIDTYPE_PID;
2793 		signr = dequeue_synchronous_signal(&ksig->info);
2794 		if (!signr)
2795 			signr = dequeue_signal(current, &current->blocked,
2796 					       &ksig->info, &type);
2797 
2798 		if (!signr)
2799 			break; /* will return 0 */
2800 
2801 		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2802 		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2803 			signr = ptrace_signal(signr, &ksig->info, type);
2804 			if (!signr)
2805 				continue;
2806 		}
2807 
2808 		ka = &sighand->action[signr-1];
2809 
2810 		/* Trace actually delivered signals. */
2811 		trace_signal_deliver(signr, &ksig->info, ka);
2812 
2813 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2814 			continue;
2815 		if (ka->sa.sa_handler != SIG_DFL) {
2816 			/* Run the handler.  */
2817 			ksig->ka = *ka;
2818 
2819 			if (ka->sa.sa_flags & SA_ONESHOT)
2820 				ka->sa.sa_handler = SIG_DFL;
2821 
2822 			break; /* will return non-zero "signr" value */
2823 		}
2824 
2825 		/*
2826 		 * Now we are doing the default action for this signal.
2827 		 */
2828 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2829 			continue;
2830 
2831 		/*
2832 		 * Global init gets no signals it doesn't want.
2833 		 * Container-init gets no signals it doesn't want from same
2834 		 * container.
2835 		 *
2836 		 * Note that if global/container-init sees a sig_kernel_only()
2837 		 * signal here, the signal must have been generated internally
2838 		 * or must have come from an ancestor namespace. In either
2839 		 * case, the signal cannot be dropped.
2840 		 */
2841 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2842 				!sig_kernel_only(signr))
2843 			continue;
2844 
2845 		if (sig_kernel_stop(signr)) {
2846 			/*
2847 			 * The default action is to stop all threads in
2848 			 * the thread group.  The job control signals
2849 			 * do nothing in an orphaned pgrp, but SIGSTOP
2850 			 * always works.  Note that siglock needs to be
2851 			 * dropped during the call to is_orphaned_pgrp()
2852 			 * because of lock ordering with tasklist_lock.
2853 			 * This allows an intervening SIGCONT to be posted.
2854 			 * We need to check for that and bail out if necessary.
2855 			 */
2856 			if (signr != SIGSTOP) {
2857 				spin_unlock_irq(&sighand->siglock);
2858 
2859 				/* signals can be posted during this window */
2860 
2861 				if (is_current_pgrp_orphaned())
2862 					goto relock;
2863 
2864 				spin_lock_irq(&sighand->siglock);
2865 			}
2866 
2867 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2868 				/* It released the siglock.  */
2869 				goto relock;
2870 			}
2871 
2872 			/*
2873 			 * We didn't actually stop, due to a race
2874 			 * with SIGCONT or something like that.
2875 			 */
2876 			continue;
2877 		}
2878 
2879 	fatal:
2880 		spin_unlock_irq(&sighand->siglock);
2881 		if (unlikely(cgroup_task_frozen(current)))
2882 			cgroup_leave_frozen(true);
2883 
2884 		/*
2885 		 * Anything else is fatal, maybe with a core dump.
2886 		 */
2887 		current->flags |= PF_SIGNALED;
2888 
2889 		if (sig_kernel_coredump(signr)) {
2890 			if (print_fatal_signals)
2891 				print_fatal_signal(ksig->info.si_signo);
2892 			proc_coredump_connector(current);
2893 			/*
2894 			 * If it was able to dump core, this kills all
2895 			 * other threads in the group and synchronizes with
2896 			 * their demise.  If we lost the race with another
2897 			 * thread getting here, it set group_exit_code
2898 			 * first and our do_group_exit call below will use
2899 			 * that value and ignore the one we pass it.
2900 			 */
2901 			do_coredump(&ksig->info);
2902 		}
2903 
2904 		/*
2905 		 * PF_USER_WORKER threads will catch and exit on fatal signals
2906 		 * themselves. They have cleanup that must be performed, so
2907 		 * we cannot call do_exit() on their behalf.
2908 		 */
2909 		if (current->flags & PF_USER_WORKER)
2910 			goto out;
2911 
2912 		/*
2913 		 * Death signals, no core dump.
2914 		 */
2915 		do_group_exit(ksig->info.si_signo);
2916 		/* NOTREACHED */
2917 	}
2918 	spin_unlock_irq(&sighand->siglock);
2919 out:
2920 	ksig->sig = signr;
2921 
2922 	if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2923 		hide_si_addr_tag_bits(ksig);
2924 
2925 	return ksig->sig > 0;
2926 }
2927 
2928 /**
2929  * signal_delivered - called after signal delivery to update blocked signals
2930  * @ksig:		kernel signal struct
2931  * @stepping:		nonzero if debugger single-step or block-step in use
2932  *
2933  * This function should be called when a signal has successfully been
2934  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2935  * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2936  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2937  */
2938 static void signal_delivered(struct ksignal *ksig, int stepping)
2939 {
2940 	sigset_t blocked;
2941 
2942 	/* A signal was successfully delivered, and the
2943 	   saved sigmask was stored on the signal frame,
2944 	   and will be restored by sigreturn.  So we can
2945 	   simply clear the restore sigmask flag.  */
2946 	clear_restore_sigmask();
2947 
2948 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2949 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2950 		sigaddset(&blocked, ksig->sig);
2951 	set_current_blocked(&blocked);
2952 	if (current->sas_ss_flags & SS_AUTODISARM)
2953 		sas_ss_reset(current);
2954 	if (stepping)
2955 		ptrace_notify(SIGTRAP, 0);
2956 }
2957 
2958 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2959 {
2960 	if (failed)
2961 		force_sigsegv(ksig->sig);
2962 	else
2963 		signal_delivered(ksig, stepping);
2964 }
2965 
2966 /*
2967  * It could be that complete_signal() picked us to notify about the
2968  * group-wide signal. Other threads should be notified now to take
2969  * the shared signals in @which since we will not.
2970  */
2971 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2972 {
2973 	sigset_t retarget;
2974 	struct task_struct *t;
2975 
2976 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2977 	if (sigisemptyset(&retarget))
2978 		return;
2979 
2980 	t = tsk;
2981 	while_each_thread(tsk, t) {
2982 		if (t->flags & PF_EXITING)
2983 			continue;
2984 
2985 		if (!has_pending_signals(&retarget, &t->blocked))
2986 			continue;
2987 		/* Remove the signals this thread can handle. */
2988 		sigandsets(&retarget, &retarget, &t->blocked);
2989 
2990 		if (!task_sigpending(t))
2991 			signal_wake_up(t, 0);
2992 
2993 		if (sigisemptyset(&retarget))
2994 			break;
2995 	}
2996 }
2997 
2998 void exit_signals(struct task_struct *tsk)
2999 {
3000 	int group_stop = 0;
3001 	sigset_t unblocked;
3002 
3003 	/*
3004 	 * @tsk is about to have PF_EXITING set - lock out users which
3005 	 * expect stable threadgroup.
3006 	 */
3007 	cgroup_threadgroup_change_begin(tsk);
3008 
3009 	if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
3010 		sched_mm_cid_exit_signals(tsk);
3011 		tsk->flags |= PF_EXITING;
3012 		cgroup_threadgroup_change_end(tsk);
3013 		return;
3014 	}
3015 
3016 	spin_lock_irq(&tsk->sighand->siglock);
3017 	/*
3018 	 * From now this task is not visible for group-wide signals,
3019 	 * see wants_signal(), do_signal_stop().
3020 	 */
3021 	sched_mm_cid_exit_signals(tsk);
3022 	tsk->flags |= PF_EXITING;
3023 
3024 	cgroup_threadgroup_change_end(tsk);
3025 
3026 	if (!task_sigpending(tsk))
3027 		goto out;
3028 
3029 	unblocked = tsk->blocked;
3030 	signotset(&unblocked);
3031 	retarget_shared_pending(tsk, &unblocked);
3032 
3033 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3034 	    task_participate_group_stop(tsk))
3035 		group_stop = CLD_STOPPED;
3036 out:
3037 	spin_unlock_irq(&tsk->sighand->siglock);
3038 
3039 	/*
3040 	 * If group stop has completed, deliver the notification.  This
3041 	 * should always go to the real parent of the group leader.
3042 	 */
3043 	if (unlikely(group_stop)) {
3044 		read_lock(&tasklist_lock);
3045 		do_notify_parent_cldstop(tsk, false, group_stop);
3046 		read_unlock(&tasklist_lock);
3047 	}
3048 }
3049 
3050 /*
3051  * System call entry points.
3052  */
3053 
3054 /**
3055  *  sys_restart_syscall - restart a system call
3056  */
3057 SYSCALL_DEFINE0(restart_syscall)
3058 {
3059 	struct restart_block *restart = &current->restart_block;
3060 	return restart->fn(restart);
3061 }
3062 
3063 long do_no_restart_syscall(struct restart_block *param)
3064 {
3065 	return -EINTR;
3066 }
3067 
3068 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3069 {
3070 	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3071 		sigset_t newblocked;
3072 		/* A set of now blocked but previously unblocked signals. */
3073 		sigandnsets(&newblocked, newset, &current->blocked);
3074 		retarget_shared_pending(tsk, &newblocked);
3075 	}
3076 	tsk->blocked = *newset;
3077 	recalc_sigpending();
3078 }
3079 
3080 /**
3081  * set_current_blocked - change current->blocked mask
3082  * @newset: new mask
3083  *
3084  * It is wrong to change ->blocked directly, this helper should be used
3085  * to ensure the process can't miss a shared signal we are going to block.
3086  */
3087 void set_current_blocked(sigset_t *newset)
3088 {
3089 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3090 	__set_current_blocked(newset);
3091 }
3092 
3093 void __set_current_blocked(const sigset_t *newset)
3094 {
3095 	struct task_struct *tsk = current;
3096 
3097 	/*
3098 	 * In case the signal mask hasn't changed, there is nothing we need
3099 	 * to do. The current->blocked shouldn't be modified by other task.
3100 	 */
3101 	if (sigequalsets(&tsk->blocked, newset))
3102 		return;
3103 
3104 	spin_lock_irq(&tsk->sighand->siglock);
3105 	__set_task_blocked(tsk, newset);
3106 	spin_unlock_irq(&tsk->sighand->siglock);
3107 }
3108 
3109 /*
3110  * This is also useful for kernel threads that want to temporarily
3111  * (or permanently) block certain signals.
3112  *
3113  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3114  * interface happily blocks "unblockable" signals like SIGKILL
3115  * and friends.
3116  */
3117 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3118 {
3119 	struct task_struct *tsk = current;
3120 	sigset_t newset;
3121 
3122 	/* Lockless, only current can change ->blocked, never from irq */
3123 	if (oldset)
3124 		*oldset = tsk->blocked;
3125 
3126 	switch (how) {
3127 	case SIG_BLOCK:
3128 		sigorsets(&newset, &tsk->blocked, set);
3129 		break;
3130 	case SIG_UNBLOCK:
3131 		sigandnsets(&newset, &tsk->blocked, set);
3132 		break;
3133 	case SIG_SETMASK:
3134 		newset = *set;
3135 		break;
3136 	default:
3137 		return -EINVAL;
3138 	}
3139 
3140 	__set_current_blocked(&newset);
3141 	return 0;
3142 }
3143 EXPORT_SYMBOL(sigprocmask);
3144 
3145 /*
3146  * The api helps set app-provided sigmasks.
3147  *
3148  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3149  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3150  *
3151  * Note that it does set_restore_sigmask() in advance, so it must be always
3152  * paired with restore_saved_sigmask_unless() before return from syscall.
3153  */
3154 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3155 {
3156 	sigset_t kmask;
3157 
3158 	if (!umask)
3159 		return 0;
3160 	if (sigsetsize != sizeof(sigset_t))
3161 		return -EINVAL;
3162 	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3163 		return -EFAULT;
3164 
3165 	set_restore_sigmask();
3166 	current->saved_sigmask = current->blocked;
3167 	set_current_blocked(&kmask);
3168 
3169 	return 0;
3170 }
3171 
3172 #ifdef CONFIG_COMPAT
3173 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3174 			    size_t sigsetsize)
3175 {
3176 	sigset_t kmask;
3177 
3178 	if (!umask)
3179 		return 0;
3180 	if (sigsetsize != sizeof(compat_sigset_t))
3181 		return -EINVAL;
3182 	if (get_compat_sigset(&kmask, umask))
3183 		return -EFAULT;
3184 
3185 	set_restore_sigmask();
3186 	current->saved_sigmask = current->blocked;
3187 	set_current_blocked(&kmask);
3188 
3189 	return 0;
3190 }
3191 #endif
3192 
3193 /**
3194  *  sys_rt_sigprocmask - change the list of currently blocked signals
3195  *  @how: whether to add, remove, or set signals
3196  *  @nset: stores pending signals
3197  *  @oset: previous value of signal mask if non-null
3198  *  @sigsetsize: size of sigset_t type
3199  */
3200 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3201 		sigset_t __user *, oset, size_t, sigsetsize)
3202 {
3203 	sigset_t old_set, new_set;
3204 	int error;
3205 
3206 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3207 	if (sigsetsize != sizeof(sigset_t))
3208 		return -EINVAL;
3209 
3210 	old_set = current->blocked;
3211 
3212 	if (nset) {
3213 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3214 			return -EFAULT;
3215 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3216 
3217 		error = sigprocmask(how, &new_set, NULL);
3218 		if (error)
3219 			return error;
3220 	}
3221 
3222 	if (oset) {
3223 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3224 			return -EFAULT;
3225 	}
3226 
3227 	return 0;
3228 }
3229 
3230 #ifdef CONFIG_COMPAT
3231 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3232 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3233 {
3234 	sigset_t old_set = current->blocked;
3235 
3236 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3237 	if (sigsetsize != sizeof(sigset_t))
3238 		return -EINVAL;
3239 
3240 	if (nset) {
3241 		sigset_t new_set;
3242 		int error;
3243 		if (get_compat_sigset(&new_set, nset))
3244 			return -EFAULT;
3245 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3246 
3247 		error = sigprocmask(how, &new_set, NULL);
3248 		if (error)
3249 			return error;
3250 	}
3251 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3252 }
3253 #endif
3254 
3255 static void do_sigpending(sigset_t *set)
3256 {
3257 	spin_lock_irq(&current->sighand->siglock);
3258 	sigorsets(set, &current->pending.signal,
3259 		  &current->signal->shared_pending.signal);
3260 	spin_unlock_irq(&current->sighand->siglock);
3261 
3262 	/* Outside the lock because only this thread touches it.  */
3263 	sigandsets(set, &current->blocked, set);
3264 }
3265 
3266 /**
3267  *  sys_rt_sigpending - examine a pending signal that has been raised
3268  *			while blocked
3269  *  @uset: stores pending signals
3270  *  @sigsetsize: size of sigset_t type or larger
3271  */
3272 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3273 {
3274 	sigset_t set;
3275 
3276 	if (sigsetsize > sizeof(*uset))
3277 		return -EINVAL;
3278 
3279 	do_sigpending(&set);
3280 
3281 	if (copy_to_user(uset, &set, sigsetsize))
3282 		return -EFAULT;
3283 
3284 	return 0;
3285 }
3286 
3287 #ifdef CONFIG_COMPAT
3288 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3289 		compat_size_t, sigsetsize)
3290 {
3291 	sigset_t set;
3292 
3293 	if (sigsetsize > sizeof(*uset))
3294 		return -EINVAL;
3295 
3296 	do_sigpending(&set);
3297 
3298 	return put_compat_sigset(uset, &set, sigsetsize);
3299 }
3300 #endif
3301 
3302 static const struct {
3303 	unsigned char limit, layout;
3304 } sig_sicodes[] = {
3305 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3306 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3307 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3308 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3309 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3310 #if defined(SIGEMT)
3311 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3312 #endif
3313 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3314 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3315 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3316 };
3317 
3318 static bool known_siginfo_layout(unsigned sig, int si_code)
3319 {
3320 	if (si_code == SI_KERNEL)
3321 		return true;
3322 	else if ((si_code > SI_USER)) {
3323 		if (sig_specific_sicodes(sig)) {
3324 			if (si_code <= sig_sicodes[sig].limit)
3325 				return true;
3326 		}
3327 		else if (si_code <= NSIGPOLL)
3328 			return true;
3329 	}
3330 	else if (si_code >= SI_DETHREAD)
3331 		return true;
3332 	else if (si_code == SI_ASYNCNL)
3333 		return true;
3334 	return false;
3335 }
3336 
3337 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3338 {
3339 	enum siginfo_layout layout = SIL_KILL;
3340 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3341 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3342 		    (si_code <= sig_sicodes[sig].limit)) {
3343 			layout = sig_sicodes[sig].layout;
3344 			/* Handle the exceptions */
3345 			if ((sig == SIGBUS) &&
3346 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3347 				layout = SIL_FAULT_MCEERR;
3348 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3349 				layout = SIL_FAULT_BNDERR;
3350 #ifdef SEGV_PKUERR
3351 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3352 				layout = SIL_FAULT_PKUERR;
3353 #endif
3354 			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3355 				layout = SIL_FAULT_PERF_EVENT;
3356 			else if (IS_ENABLED(CONFIG_SPARC) &&
3357 				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3358 				layout = SIL_FAULT_TRAPNO;
3359 			else if (IS_ENABLED(CONFIG_ALPHA) &&
3360 				 ((sig == SIGFPE) ||
3361 				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3362 				layout = SIL_FAULT_TRAPNO;
3363 		}
3364 		else if (si_code <= NSIGPOLL)
3365 			layout = SIL_POLL;
3366 	} else {
3367 		if (si_code == SI_TIMER)
3368 			layout = SIL_TIMER;
3369 		else if (si_code == SI_SIGIO)
3370 			layout = SIL_POLL;
3371 		else if (si_code < 0)
3372 			layout = SIL_RT;
3373 	}
3374 	return layout;
3375 }
3376 
3377 static inline char __user *si_expansion(const siginfo_t __user *info)
3378 {
3379 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3380 }
3381 
3382 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3383 {
3384 	char __user *expansion = si_expansion(to);
3385 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3386 		return -EFAULT;
3387 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3388 		return -EFAULT;
3389 	return 0;
3390 }
3391 
3392 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3393 				       const siginfo_t __user *from)
3394 {
3395 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3396 		char __user *expansion = si_expansion(from);
3397 		char buf[SI_EXPANSION_SIZE];
3398 		int i;
3399 		/*
3400 		 * An unknown si_code might need more than
3401 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3402 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3403 		 * will return this data to userspace exactly.
3404 		 */
3405 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3406 			return -EFAULT;
3407 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3408 			if (buf[i] != 0)
3409 				return -E2BIG;
3410 		}
3411 	}
3412 	return 0;
3413 }
3414 
3415 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3416 				    const siginfo_t __user *from)
3417 {
3418 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3419 		return -EFAULT;
3420 	to->si_signo = signo;
3421 	return post_copy_siginfo_from_user(to, from);
3422 }
3423 
3424 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3425 {
3426 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3427 		return -EFAULT;
3428 	return post_copy_siginfo_from_user(to, from);
3429 }
3430 
3431 #ifdef CONFIG_COMPAT
3432 /**
3433  * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3434  * @to: compat siginfo destination
3435  * @from: kernel siginfo source
3436  *
3437  * Note: This function does not work properly for the SIGCHLD on x32, but
3438  * fortunately it doesn't have to.  The only valid callers for this function are
3439  * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3440  * The latter does not care because SIGCHLD will never cause a coredump.
3441  */
3442 void copy_siginfo_to_external32(struct compat_siginfo *to,
3443 		const struct kernel_siginfo *from)
3444 {
3445 	memset(to, 0, sizeof(*to));
3446 
3447 	to->si_signo = from->si_signo;
3448 	to->si_errno = from->si_errno;
3449 	to->si_code  = from->si_code;
3450 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3451 	case SIL_KILL:
3452 		to->si_pid = from->si_pid;
3453 		to->si_uid = from->si_uid;
3454 		break;
3455 	case SIL_TIMER:
3456 		to->si_tid     = from->si_tid;
3457 		to->si_overrun = from->si_overrun;
3458 		to->si_int     = from->si_int;
3459 		break;
3460 	case SIL_POLL:
3461 		to->si_band = from->si_band;
3462 		to->si_fd   = from->si_fd;
3463 		break;
3464 	case SIL_FAULT:
3465 		to->si_addr = ptr_to_compat(from->si_addr);
3466 		break;
3467 	case SIL_FAULT_TRAPNO:
3468 		to->si_addr = ptr_to_compat(from->si_addr);
3469 		to->si_trapno = from->si_trapno;
3470 		break;
3471 	case SIL_FAULT_MCEERR:
3472 		to->si_addr = ptr_to_compat(from->si_addr);
3473 		to->si_addr_lsb = from->si_addr_lsb;
3474 		break;
3475 	case SIL_FAULT_BNDERR:
3476 		to->si_addr = ptr_to_compat(from->si_addr);
3477 		to->si_lower = ptr_to_compat(from->si_lower);
3478 		to->si_upper = ptr_to_compat(from->si_upper);
3479 		break;
3480 	case SIL_FAULT_PKUERR:
3481 		to->si_addr = ptr_to_compat(from->si_addr);
3482 		to->si_pkey = from->si_pkey;
3483 		break;
3484 	case SIL_FAULT_PERF_EVENT:
3485 		to->si_addr = ptr_to_compat(from->si_addr);
3486 		to->si_perf_data = from->si_perf_data;
3487 		to->si_perf_type = from->si_perf_type;
3488 		to->si_perf_flags = from->si_perf_flags;
3489 		break;
3490 	case SIL_CHLD:
3491 		to->si_pid = from->si_pid;
3492 		to->si_uid = from->si_uid;
3493 		to->si_status = from->si_status;
3494 		to->si_utime = from->si_utime;
3495 		to->si_stime = from->si_stime;
3496 		break;
3497 	case SIL_RT:
3498 		to->si_pid = from->si_pid;
3499 		to->si_uid = from->si_uid;
3500 		to->si_int = from->si_int;
3501 		break;
3502 	case SIL_SYS:
3503 		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3504 		to->si_syscall   = from->si_syscall;
3505 		to->si_arch      = from->si_arch;
3506 		break;
3507 	}
3508 }
3509 
3510 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3511 			   const struct kernel_siginfo *from)
3512 {
3513 	struct compat_siginfo new;
3514 
3515 	copy_siginfo_to_external32(&new, from);
3516 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3517 		return -EFAULT;
3518 	return 0;
3519 }
3520 
3521 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3522 					 const struct compat_siginfo *from)
3523 {
3524 	clear_siginfo(to);
3525 	to->si_signo = from->si_signo;
3526 	to->si_errno = from->si_errno;
3527 	to->si_code  = from->si_code;
3528 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3529 	case SIL_KILL:
3530 		to->si_pid = from->si_pid;
3531 		to->si_uid = from->si_uid;
3532 		break;
3533 	case SIL_TIMER:
3534 		to->si_tid     = from->si_tid;
3535 		to->si_overrun = from->si_overrun;
3536 		to->si_int     = from->si_int;
3537 		break;
3538 	case SIL_POLL:
3539 		to->si_band = from->si_band;
3540 		to->si_fd   = from->si_fd;
3541 		break;
3542 	case SIL_FAULT:
3543 		to->si_addr = compat_ptr(from->si_addr);
3544 		break;
3545 	case SIL_FAULT_TRAPNO:
3546 		to->si_addr = compat_ptr(from->si_addr);
3547 		to->si_trapno = from->si_trapno;
3548 		break;
3549 	case SIL_FAULT_MCEERR:
3550 		to->si_addr = compat_ptr(from->si_addr);
3551 		to->si_addr_lsb = from->si_addr_lsb;
3552 		break;
3553 	case SIL_FAULT_BNDERR:
3554 		to->si_addr = compat_ptr(from->si_addr);
3555 		to->si_lower = compat_ptr(from->si_lower);
3556 		to->si_upper = compat_ptr(from->si_upper);
3557 		break;
3558 	case SIL_FAULT_PKUERR:
3559 		to->si_addr = compat_ptr(from->si_addr);
3560 		to->si_pkey = from->si_pkey;
3561 		break;
3562 	case SIL_FAULT_PERF_EVENT:
3563 		to->si_addr = compat_ptr(from->si_addr);
3564 		to->si_perf_data = from->si_perf_data;
3565 		to->si_perf_type = from->si_perf_type;
3566 		to->si_perf_flags = from->si_perf_flags;
3567 		break;
3568 	case SIL_CHLD:
3569 		to->si_pid    = from->si_pid;
3570 		to->si_uid    = from->si_uid;
3571 		to->si_status = from->si_status;
3572 #ifdef CONFIG_X86_X32_ABI
3573 		if (in_x32_syscall()) {
3574 			to->si_utime = from->_sifields._sigchld_x32._utime;
3575 			to->si_stime = from->_sifields._sigchld_x32._stime;
3576 		} else
3577 #endif
3578 		{
3579 			to->si_utime = from->si_utime;
3580 			to->si_stime = from->si_stime;
3581 		}
3582 		break;
3583 	case SIL_RT:
3584 		to->si_pid = from->si_pid;
3585 		to->si_uid = from->si_uid;
3586 		to->si_int = from->si_int;
3587 		break;
3588 	case SIL_SYS:
3589 		to->si_call_addr = compat_ptr(from->si_call_addr);
3590 		to->si_syscall   = from->si_syscall;
3591 		to->si_arch      = from->si_arch;
3592 		break;
3593 	}
3594 	return 0;
3595 }
3596 
3597 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3598 				      const struct compat_siginfo __user *ufrom)
3599 {
3600 	struct compat_siginfo from;
3601 
3602 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3603 		return -EFAULT;
3604 
3605 	from.si_signo = signo;
3606 	return post_copy_siginfo_from_user32(to, &from);
3607 }
3608 
3609 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3610 			     const struct compat_siginfo __user *ufrom)
3611 {
3612 	struct compat_siginfo from;
3613 
3614 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3615 		return -EFAULT;
3616 
3617 	return post_copy_siginfo_from_user32(to, &from);
3618 }
3619 #endif /* CONFIG_COMPAT */
3620 
3621 /**
3622  *  do_sigtimedwait - wait for queued signals specified in @which
3623  *  @which: queued signals to wait for
3624  *  @info: if non-null, the signal's siginfo is returned here
3625  *  @ts: upper bound on process time suspension
3626  */
3627 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3628 		    const struct timespec64 *ts)
3629 {
3630 	ktime_t *to = NULL, timeout = KTIME_MAX;
3631 	struct task_struct *tsk = current;
3632 	sigset_t mask = *which;
3633 	enum pid_type type;
3634 	int sig, ret = 0;
3635 
3636 	if (ts) {
3637 		if (!timespec64_valid(ts))
3638 			return -EINVAL;
3639 		timeout = timespec64_to_ktime(*ts);
3640 		to = &timeout;
3641 	}
3642 
3643 	/*
3644 	 * Invert the set of allowed signals to get those we want to block.
3645 	 */
3646 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3647 	signotset(&mask);
3648 
3649 	spin_lock_irq(&tsk->sighand->siglock);
3650 	sig = dequeue_signal(tsk, &mask, info, &type);
3651 	if (!sig && timeout) {
3652 		/*
3653 		 * None ready, temporarily unblock those we're interested
3654 		 * while we are sleeping in so that we'll be awakened when
3655 		 * they arrive. Unblocking is always fine, we can avoid
3656 		 * set_current_blocked().
3657 		 */
3658 		tsk->real_blocked = tsk->blocked;
3659 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3660 		recalc_sigpending();
3661 		spin_unlock_irq(&tsk->sighand->siglock);
3662 
3663 		__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3664 		ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3665 					       HRTIMER_MODE_REL);
3666 		spin_lock_irq(&tsk->sighand->siglock);
3667 		__set_task_blocked(tsk, &tsk->real_blocked);
3668 		sigemptyset(&tsk->real_blocked);
3669 		sig = dequeue_signal(tsk, &mask, info, &type);
3670 	}
3671 	spin_unlock_irq(&tsk->sighand->siglock);
3672 
3673 	if (sig)
3674 		return sig;
3675 	return ret ? -EINTR : -EAGAIN;
3676 }
3677 
3678 /**
3679  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3680  *			in @uthese
3681  *  @uthese: queued signals to wait for
3682  *  @uinfo: if non-null, the signal's siginfo is returned here
3683  *  @uts: upper bound on process time suspension
3684  *  @sigsetsize: size of sigset_t type
3685  */
3686 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3687 		siginfo_t __user *, uinfo,
3688 		const struct __kernel_timespec __user *, uts,
3689 		size_t, sigsetsize)
3690 {
3691 	sigset_t these;
3692 	struct timespec64 ts;
3693 	kernel_siginfo_t info;
3694 	int ret;
3695 
3696 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3697 	if (sigsetsize != sizeof(sigset_t))
3698 		return -EINVAL;
3699 
3700 	if (copy_from_user(&these, uthese, sizeof(these)))
3701 		return -EFAULT;
3702 
3703 	if (uts) {
3704 		if (get_timespec64(&ts, uts))
3705 			return -EFAULT;
3706 	}
3707 
3708 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3709 
3710 	if (ret > 0 && uinfo) {
3711 		if (copy_siginfo_to_user(uinfo, &info))
3712 			ret = -EFAULT;
3713 	}
3714 
3715 	return ret;
3716 }
3717 
3718 #ifdef CONFIG_COMPAT_32BIT_TIME
3719 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3720 		siginfo_t __user *, uinfo,
3721 		const struct old_timespec32 __user *, uts,
3722 		size_t, sigsetsize)
3723 {
3724 	sigset_t these;
3725 	struct timespec64 ts;
3726 	kernel_siginfo_t info;
3727 	int ret;
3728 
3729 	if (sigsetsize != sizeof(sigset_t))
3730 		return -EINVAL;
3731 
3732 	if (copy_from_user(&these, uthese, sizeof(these)))
3733 		return -EFAULT;
3734 
3735 	if (uts) {
3736 		if (get_old_timespec32(&ts, uts))
3737 			return -EFAULT;
3738 	}
3739 
3740 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3741 
3742 	if (ret > 0 && uinfo) {
3743 		if (copy_siginfo_to_user(uinfo, &info))
3744 			ret = -EFAULT;
3745 	}
3746 
3747 	return ret;
3748 }
3749 #endif
3750 
3751 #ifdef CONFIG_COMPAT
3752 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3753 		struct compat_siginfo __user *, uinfo,
3754 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3755 {
3756 	sigset_t s;
3757 	struct timespec64 t;
3758 	kernel_siginfo_t info;
3759 	long ret;
3760 
3761 	if (sigsetsize != sizeof(sigset_t))
3762 		return -EINVAL;
3763 
3764 	if (get_compat_sigset(&s, uthese))
3765 		return -EFAULT;
3766 
3767 	if (uts) {
3768 		if (get_timespec64(&t, uts))
3769 			return -EFAULT;
3770 	}
3771 
3772 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3773 
3774 	if (ret > 0 && uinfo) {
3775 		if (copy_siginfo_to_user32(uinfo, &info))
3776 			ret = -EFAULT;
3777 	}
3778 
3779 	return ret;
3780 }
3781 
3782 #ifdef CONFIG_COMPAT_32BIT_TIME
3783 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3784 		struct compat_siginfo __user *, uinfo,
3785 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3786 {
3787 	sigset_t s;
3788 	struct timespec64 t;
3789 	kernel_siginfo_t info;
3790 	long ret;
3791 
3792 	if (sigsetsize != sizeof(sigset_t))
3793 		return -EINVAL;
3794 
3795 	if (get_compat_sigset(&s, uthese))
3796 		return -EFAULT;
3797 
3798 	if (uts) {
3799 		if (get_old_timespec32(&t, uts))
3800 			return -EFAULT;
3801 	}
3802 
3803 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3804 
3805 	if (ret > 0 && uinfo) {
3806 		if (copy_siginfo_to_user32(uinfo, &info))
3807 			ret = -EFAULT;
3808 	}
3809 
3810 	return ret;
3811 }
3812 #endif
3813 #endif
3814 
3815 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3816 {
3817 	clear_siginfo(info);
3818 	info->si_signo = sig;
3819 	info->si_errno = 0;
3820 	info->si_code = SI_USER;
3821 	info->si_pid = task_tgid_vnr(current);
3822 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3823 }
3824 
3825 /**
3826  *  sys_kill - send a signal to a process
3827  *  @pid: the PID of the process
3828  *  @sig: signal to be sent
3829  */
3830 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3831 {
3832 	struct kernel_siginfo info;
3833 
3834 	prepare_kill_siginfo(sig, &info);
3835 
3836 	return kill_something_info(sig, &info, pid);
3837 }
3838 
3839 /*
3840  * Verify that the signaler and signalee either are in the same pid namespace
3841  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3842  * namespace.
3843  */
3844 static bool access_pidfd_pidns(struct pid *pid)
3845 {
3846 	struct pid_namespace *active = task_active_pid_ns(current);
3847 	struct pid_namespace *p = ns_of_pid(pid);
3848 
3849 	for (;;) {
3850 		if (!p)
3851 			return false;
3852 		if (p == active)
3853 			break;
3854 		p = p->parent;
3855 	}
3856 
3857 	return true;
3858 }
3859 
3860 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3861 		siginfo_t __user *info)
3862 {
3863 #ifdef CONFIG_COMPAT
3864 	/*
3865 	 * Avoid hooking up compat syscalls and instead handle necessary
3866 	 * conversions here. Note, this is a stop-gap measure and should not be
3867 	 * considered a generic solution.
3868 	 */
3869 	if (in_compat_syscall())
3870 		return copy_siginfo_from_user32(
3871 			kinfo, (struct compat_siginfo __user *)info);
3872 #endif
3873 	return copy_siginfo_from_user(kinfo, info);
3874 }
3875 
3876 static struct pid *pidfd_to_pid(const struct file *file)
3877 {
3878 	struct pid *pid;
3879 
3880 	pid = pidfd_pid(file);
3881 	if (!IS_ERR(pid))
3882 		return pid;
3883 
3884 	return tgid_pidfd_to_pid(file);
3885 }
3886 
3887 /**
3888  * sys_pidfd_send_signal - Signal a process through a pidfd
3889  * @pidfd:  file descriptor of the process
3890  * @sig:    signal to send
3891  * @info:   signal info
3892  * @flags:  future flags
3893  *
3894  * The syscall currently only signals via PIDTYPE_PID which covers
3895  * kill(<positive-pid>, <signal>. It does not signal threads or process
3896  * groups.
3897  * In order to extend the syscall to threads and process groups the @flags
3898  * argument should be used. In essence, the @flags argument will determine
3899  * what is signaled and not the file descriptor itself. Put in other words,
3900  * grouping is a property of the flags argument not a property of the file
3901  * descriptor.
3902  *
3903  * Return: 0 on success, negative errno on failure
3904  */
3905 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3906 		siginfo_t __user *, info, unsigned int, flags)
3907 {
3908 	int ret;
3909 	struct fd f;
3910 	struct pid *pid;
3911 	kernel_siginfo_t kinfo;
3912 
3913 	/* Enforce flags be set to 0 until we add an extension. */
3914 	if (flags)
3915 		return -EINVAL;
3916 
3917 	f = fdget(pidfd);
3918 	if (!f.file)
3919 		return -EBADF;
3920 
3921 	/* Is this a pidfd? */
3922 	pid = pidfd_to_pid(f.file);
3923 	if (IS_ERR(pid)) {
3924 		ret = PTR_ERR(pid);
3925 		goto err;
3926 	}
3927 
3928 	ret = -EINVAL;
3929 	if (!access_pidfd_pidns(pid))
3930 		goto err;
3931 
3932 	if (info) {
3933 		ret = copy_siginfo_from_user_any(&kinfo, info);
3934 		if (unlikely(ret))
3935 			goto err;
3936 
3937 		ret = -EINVAL;
3938 		if (unlikely(sig != kinfo.si_signo))
3939 			goto err;
3940 
3941 		/* Only allow sending arbitrary signals to yourself. */
3942 		ret = -EPERM;
3943 		if ((task_pid(current) != pid) &&
3944 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3945 			goto err;
3946 	} else {
3947 		prepare_kill_siginfo(sig, &kinfo);
3948 	}
3949 
3950 	ret = kill_pid_info(sig, &kinfo, pid);
3951 
3952 err:
3953 	fdput(f);
3954 	return ret;
3955 }
3956 
3957 static int
3958 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3959 {
3960 	struct task_struct *p;
3961 	int error = -ESRCH;
3962 
3963 	rcu_read_lock();
3964 	p = find_task_by_vpid(pid);
3965 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3966 		error = check_kill_permission(sig, info, p);
3967 		/*
3968 		 * The null signal is a permissions and process existence
3969 		 * probe.  No signal is actually delivered.
3970 		 */
3971 		if (!error && sig) {
3972 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3973 			/*
3974 			 * If lock_task_sighand() failed we pretend the task
3975 			 * dies after receiving the signal. The window is tiny,
3976 			 * and the signal is private anyway.
3977 			 */
3978 			if (unlikely(error == -ESRCH))
3979 				error = 0;
3980 		}
3981 	}
3982 	rcu_read_unlock();
3983 
3984 	return error;
3985 }
3986 
3987 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3988 {
3989 	struct kernel_siginfo info;
3990 
3991 	clear_siginfo(&info);
3992 	info.si_signo = sig;
3993 	info.si_errno = 0;
3994 	info.si_code = SI_TKILL;
3995 	info.si_pid = task_tgid_vnr(current);
3996 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3997 
3998 	return do_send_specific(tgid, pid, sig, &info);
3999 }
4000 
4001 /**
4002  *  sys_tgkill - send signal to one specific thread
4003  *  @tgid: the thread group ID of the thread
4004  *  @pid: the PID of the thread
4005  *  @sig: signal to be sent
4006  *
4007  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
4008  *  exists but it's not belonging to the target process anymore. This
4009  *  method solves the problem of threads exiting and PIDs getting reused.
4010  */
4011 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
4012 {
4013 	/* This is only valid for single tasks */
4014 	if (pid <= 0 || tgid <= 0)
4015 		return -EINVAL;
4016 
4017 	return do_tkill(tgid, pid, sig);
4018 }
4019 
4020 /**
4021  *  sys_tkill - send signal to one specific task
4022  *  @pid: the PID of the task
4023  *  @sig: signal to be sent
4024  *
4025  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
4026  */
4027 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4028 {
4029 	/* This is only valid for single tasks */
4030 	if (pid <= 0)
4031 		return -EINVAL;
4032 
4033 	return do_tkill(0, pid, sig);
4034 }
4035 
4036 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4037 {
4038 	/* Not even root can pretend to send signals from the kernel.
4039 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4040 	 */
4041 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4042 	    (task_pid_vnr(current) != pid))
4043 		return -EPERM;
4044 
4045 	/* POSIX.1b doesn't mention process groups.  */
4046 	return kill_proc_info(sig, info, pid);
4047 }
4048 
4049 /**
4050  *  sys_rt_sigqueueinfo - send signal information to a signal
4051  *  @pid: the PID of the thread
4052  *  @sig: signal to be sent
4053  *  @uinfo: signal info to be sent
4054  */
4055 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4056 		siginfo_t __user *, uinfo)
4057 {
4058 	kernel_siginfo_t info;
4059 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4060 	if (unlikely(ret))
4061 		return ret;
4062 	return do_rt_sigqueueinfo(pid, sig, &info);
4063 }
4064 
4065 #ifdef CONFIG_COMPAT
4066 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4067 			compat_pid_t, pid,
4068 			int, sig,
4069 			struct compat_siginfo __user *, uinfo)
4070 {
4071 	kernel_siginfo_t info;
4072 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4073 	if (unlikely(ret))
4074 		return ret;
4075 	return do_rt_sigqueueinfo(pid, sig, &info);
4076 }
4077 #endif
4078 
4079 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4080 {
4081 	/* This is only valid for single tasks */
4082 	if (pid <= 0 || tgid <= 0)
4083 		return -EINVAL;
4084 
4085 	/* Not even root can pretend to send signals from the kernel.
4086 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4087 	 */
4088 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4089 	    (task_pid_vnr(current) != pid))
4090 		return -EPERM;
4091 
4092 	return do_send_specific(tgid, pid, sig, info);
4093 }
4094 
4095 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4096 		siginfo_t __user *, uinfo)
4097 {
4098 	kernel_siginfo_t info;
4099 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4100 	if (unlikely(ret))
4101 		return ret;
4102 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4103 }
4104 
4105 #ifdef CONFIG_COMPAT
4106 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4107 			compat_pid_t, tgid,
4108 			compat_pid_t, pid,
4109 			int, sig,
4110 			struct compat_siginfo __user *, uinfo)
4111 {
4112 	kernel_siginfo_t info;
4113 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4114 	if (unlikely(ret))
4115 		return ret;
4116 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4117 }
4118 #endif
4119 
4120 /*
4121  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4122  */
4123 void kernel_sigaction(int sig, __sighandler_t action)
4124 {
4125 	spin_lock_irq(&current->sighand->siglock);
4126 	current->sighand->action[sig - 1].sa.sa_handler = action;
4127 	if (action == SIG_IGN) {
4128 		sigset_t mask;
4129 
4130 		sigemptyset(&mask);
4131 		sigaddset(&mask, sig);
4132 
4133 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4134 		flush_sigqueue_mask(&mask, &current->pending);
4135 		recalc_sigpending();
4136 	}
4137 	spin_unlock_irq(&current->sighand->siglock);
4138 }
4139 EXPORT_SYMBOL(kernel_sigaction);
4140 
4141 void __weak sigaction_compat_abi(struct k_sigaction *act,
4142 		struct k_sigaction *oact)
4143 {
4144 }
4145 
4146 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4147 {
4148 	struct task_struct *p = current, *t;
4149 	struct k_sigaction *k;
4150 	sigset_t mask;
4151 
4152 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4153 		return -EINVAL;
4154 
4155 	k = &p->sighand->action[sig-1];
4156 
4157 	spin_lock_irq(&p->sighand->siglock);
4158 	if (k->sa.sa_flags & SA_IMMUTABLE) {
4159 		spin_unlock_irq(&p->sighand->siglock);
4160 		return -EINVAL;
4161 	}
4162 	if (oact)
4163 		*oact = *k;
4164 
4165 	/*
4166 	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4167 	 * e.g. by having an architecture use the bit in their uapi.
4168 	 */
4169 	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4170 
4171 	/*
4172 	 * Clear unknown flag bits in order to allow userspace to detect missing
4173 	 * support for flag bits and to allow the kernel to use non-uapi bits
4174 	 * internally.
4175 	 */
4176 	if (act)
4177 		act->sa.sa_flags &= UAPI_SA_FLAGS;
4178 	if (oact)
4179 		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4180 
4181 	sigaction_compat_abi(act, oact);
4182 
4183 	if (act) {
4184 		sigdelsetmask(&act->sa.sa_mask,
4185 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4186 		*k = *act;
4187 		/*
4188 		 * POSIX 3.3.1.3:
4189 		 *  "Setting a signal action to SIG_IGN for a signal that is
4190 		 *   pending shall cause the pending signal to be discarded,
4191 		 *   whether or not it is blocked."
4192 		 *
4193 		 *  "Setting a signal action to SIG_DFL for a signal that is
4194 		 *   pending and whose default action is to ignore the signal
4195 		 *   (for example, SIGCHLD), shall cause the pending signal to
4196 		 *   be discarded, whether or not it is blocked"
4197 		 */
4198 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4199 			sigemptyset(&mask);
4200 			sigaddset(&mask, sig);
4201 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4202 			for_each_thread(p, t)
4203 				flush_sigqueue_mask(&mask, &t->pending);
4204 		}
4205 	}
4206 
4207 	spin_unlock_irq(&p->sighand->siglock);
4208 	return 0;
4209 }
4210 
4211 #ifdef CONFIG_DYNAMIC_SIGFRAME
4212 static inline void sigaltstack_lock(void)
4213 	__acquires(&current->sighand->siglock)
4214 {
4215 	spin_lock_irq(&current->sighand->siglock);
4216 }
4217 
4218 static inline void sigaltstack_unlock(void)
4219 	__releases(&current->sighand->siglock)
4220 {
4221 	spin_unlock_irq(&current->sighand->siglock);
4222 }
4223 #else
4224 static inline void sigaltstack_lock(void) { }
4225 static inline void sigaltstack_unlock(void) { }
4226 #endif
4227 
4228 static int
4229 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4230 		size_t min_ss_size)
4231 {
4232 	struct task_struct *t = current;
4233 	int ret = 0;
4234 
4235 	if (oss) {
4236 		memset(oss, 0, sizeof(stack_t));
4237 		oss->ss_sp = (void __user *) t->sas_ss_sp;
4238 		oss->ss_size = t->sas_ss_size;
4239 		oss->ss_flags = sas_ss_flags(sp) |
4240 			(current->sas_ss_flags & SS_FLAG_BITS);
4241 	}
4242 
4243 	if (ss) {
4244 		void __user *ss_sp = ss->ss_sp;
4245 		size_t ss_size = ss->ss_size;
4246 		unsigned ss_flags = ss->ss_flags;
4247 		int ss_mode;
4248 
4249 		if (unlikely(on_sig_stack(sp)))
4250 			return -EPERM;
4251 
4252 		ss_mode = ss_flags & ~SS_FLAG_BITS;
4253 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4254 				ss_mode != 0))
4255 			return -EINVAL;
4256 
4257 		/*
4258 		 * Return before taking any locks if no actual
4259 		 * sigaltstack changes were requested.
4260 		 */
4261 		if (t->sas_ss_sp == (unsigned long)ss_sp &&
4262 		    t->sas_ss_size == ss_size &&
4263 		    t->sas_ss_flags == ss_flags)
4264 			return 0;
4265 
4266 		sigaltstack_lock();
4267 		if (ss_mode == SS_DISABLE) {
4268 			ss_size = 0;
4269 			ss_sp = NULL;
4270 		} else {
4271 			if (unlikely(ss_size < min_ss_size))
4272 				ret = -ENOMEM;
4273 			if (!sigaltstack_size_valid(ss_size))
4274 				ret = -ENOMEM;
4275 		}
4276 		if (!ret) {
4277 			t->sas_ss_sp = (unsigned long) ss_sp;
4278 			t->sas_ss_size = ss_size;
4279 			t->sas_ss_flags = ss_flags;
4280 		}
4281 		sigaltstack_unlock();
4282 	}
4283 	return ret;
4284 }
4285 
4286 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4287 {
4288 	stack_t new, old;
4289 	int err;
4290 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4291 		return -EFAULT;
4292 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4293 			      current_user_stack_pointer(),
4294 			      MINSIGSTKSZ);
4295 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4296 		err = -EFAULT;
4297 	return err;
4298 }
4299 
4300 int restore_altstack(const stack_t __user *uss)
4301 {
4302 	stack_t new;
4303 	if (copy_from_user(&new, uss, sizeof(stack_t)))
4304 		return -EFAULT;
4305 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4306 			     MINSIGSTKSZ);
4307 	/* squash all but EFAULT for now */
4308 	return 0;
4309 }
4310 
4311 int __save_altstack(stack_t __user *uss, unsigned long sp)
4312 {
4313 	struct task_struct *t = current;
4314 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4315 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4316 		__put_user(t->sas_ss_size, &uss->ss_size);
4317 	return err;
4318 }
4319 
4320 #ifdef CONFIG_COMPAT
4321 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4322 				 compat_stack_t __user *uoss_ptr)
4323 {
4324 	stack_t uss, uoss;
4325 	int ret;
4326 
4327 	if (uss_ptr) {
4328 		compat_stack_t uss32;
4329 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4330 			return -EFAULT;
4331 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4332 		uss.ss_flags = uss32.ss_flags;
4333 		uss.ss_size = uss32.ss_size;
4334 	}
4335 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4336 			     compat_user_stack_pointer(),
4337 			     COMPAT_MINSIGSTKSZ);
4338 	if (ret >= 0 && uoss_ptr)  {
4339 		compat_stack_t old;
4340 		memset(&old, 0, sizeof(old));
4341 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4342 		old.ss_flags = uoss.ss_flags;
4343 		old.ss_size = uoss.ss_size;
4344 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4345 			ret = -EFAULT;
4346 	}
4347 	return ret;
4348 }
4349 
4350 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4351 			const compat_stack_t __user *, uss_ptr,
4352 			compat_stack_t __user *, uoss_ptr)
4353 {
4354 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4355 }
4356 
4357 int compat_restore_altstack(const compat_stack_t __user *uss)
4358 {
4359 	int err = do_compat_sigaltstack(uss, NULL);
4360 	/* squash all but -EFAULT for now */
4361 	return err == -EFAULT ? err : 0;
4362 }
4363 
4364 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4365 {
4366 	int err;
4367 	struct task_struct *t = current;
4368 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4369 			 &uss->ss_sp) |
4370 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4371 		__put_user(t->sas_ss_size, &uss->ss_size);
4372 	return err;
4373 }
4374 #endif
4375 
4376 #ifdef __ARCH_WANT_SYS_SIGPENDING
4377 
4378 /**
4379  *  sys_sigpending - examine pending signals
4380  *  @uset: where mask of pending signal is returned
4381  */
4382 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4383 {
4384 	sigset_t set;
4385 
4386 	if (sizeof(old_sigset_t) > sizeof(*uset))
4387 		return -EINVAL;
4388 
4389 	do_sigpending(&set);
4390 
4391 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4392 		return -EFAULT;
4393 
4394 	return 0;
4395 }
4396 
4397 #ifdef CONFIG_COMPAT
4398 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4399 {
4400 	sigset_t set;
4401 
4402 	do_sigpending(&set);
4403 
4404 	return put_user(set.sig[0], set32);
4405 }
4406 #endif
4407 
4408 #endif
4409 
4410 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4411 /**
4412  *  sys_sigprocmask - examine and change blocked signals
4413  *  @how: whether to add, remove, or set signals
4414  *  @nset: signals to add or remove (if non-null)
4415  *  @oset: previous value of signal mask if non-null
4416  *
4417  * Some platforms have their own version with special arguments;
4418  * others support only sys_rt_sigprocmask.
4419  */
4420 
4421 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4422 		old_sigset_t __user *, oset)
4423 {
4424 	old_sigset_t old_set, new_set;
4425 	sigset_t new_blocked;
4426 
4427 	old_set = current->blocked.sig[0];
4428 
4429 	if (nset) {
4430 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4431 			return -EFAULT;
4432 
4433 		new_blocked = current->blocked;
4434 
4435 		switch (how) {
4436 		case SIG_BLOCK:
4437 			sigaddsetmask(&new_blocked, new_set);
4438 			break;
4439 		case SIG_UNBLOCK:
4440 			sigdelsetmask(&new_blocked, new_set);
4441 			break;
4442 		case SIG_SETMASK:
4443 			new_blocked.sig[0] = new_set;
4444 			break;
4445 		default:
4446 			return -EINVAL;
4447 		}
4448 
4449 		set_current_blocked(&new_blocked);
4450 	}
4451 
4452 	if (oset) {
4453 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4454 			return -EFAULT;
4455 	}
4456 
4457 	return 0;
4458 }
4459 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4460 
4461 #ifndef CONFIG_ODD_RT_SIGACTION
4462 /**
4463  *  sys_rt_sigaction - alter an action taken by a process
4464  *  @sig: signal to be sent
4465  *  @act: new sigaction
4466  *  @oact: used to save the previous sigaction
4467  *  @sigsetsize: size of sigset_t type
4468  */
4469 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4470 		const struct sigaction __user *, act,
4471 		struct sigaction __user *, oact,
4472 		size_t, sigsetsize)
4473 {
4474 	struct k_sigaction new_sa, old_sa;
4475 	int ret;
4476 
4477 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4478 	if (sigsetsize != sizeof(sigset_t))
4479 		return -EINVAL;
4480 
4481 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4482 		return -EFAULT;
4483 
4484 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4485 	if (ret)
4486 		return ret;
4487 
4488 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4489 		return -EFAULT;
4490 
4491 	return 0;
4492 }
4493 #ifdef CONFIG_COMPAT
4494 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4495 		const struct compat_sigaction __user *, act,
4496 		struct compat_sigaction __user *, oact,
4497 		compat_size_t, sigsetsize)
4498 {
4499 	struct k_sigaction new_ka, old_ka;
4500 #ifdef __ARCH_HAS_SA_RESTORER
4501 	compat_uptr_t restorer;
4502 #endif
4503 	int ret;
4504 
4505 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4506 	if (sigsetsize != sizeof(compat_sigset_t))
4507 		return -EINVAL;
4508 
4509 	if (act) {
4510 		compat_uptr_t handler;
4511 		ret = get_user(handler, &act->sa_handler);
4512 		new_ka.sa.sa_handler = compat_ptr(handler);
4513 #ifdef __ARCH_HAS_SA_RESTORER
4514 		ret |= get_user(restorer, &act->sa_restorer);
4515 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4516 #endif
4517 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4518 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4519 		if (ret)
4520 			return -EFAULT;
4521 	}
4522 
4523 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4524 	if (!ret && oact) {
4525 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4526 			       &oact->sa_handler);
4527 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4528 					 sizeof(oact->sa_mask));
4529 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4530 #ifdef __ARCH_HAS_SA_RESTORER
4531 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4532 				&oact->sa_restorer);
4533 #endif
4534 	}
4535 	return ret;
4536 }
4537 #endif
4538 #endif /* !CONFIG_ODD_RT_SIGACTION */
4539 
4540 #ifdef CONFIG_OLD_SIGACTION
4541 SYSCALL_DEFINE3(sigaction, int, sig,
4542 		const struct old_sigaction __user *, act,
4543 	        struct old_sigaction __user *, oact)
4544 {
4545 	struct k_sigaction new_ka, old_ka;
4546 	int ret;
4547 
4548 	if (act) {
4549 		old_sigset_t mask;
4550 		if (!access_ok(act, sizeof(*act)) ||
4551 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4552 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4553 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4554 		    __get_user(mask, &act->sa_mask))
4555 			return -EFAULT;
4556 #ifdef __ARCH_HAS_KA_RESTORER
4557 		new_ka.ka_restorer = NULL;
4558 #endif
4559 		siginitset(&new_ka.sa.sa_mask, mask);
4560 	}
4561 
4562 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4563 
4564 	if (!ret && oact) {
4565 		if (!access_ok(oact, sizeof(*oact)) ||
4566 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4567 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4568 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4569 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4570 			return -EFAULT;
4571 	}
4572 
4573 	return ret;
4574 }
4575 #endif
4576 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4577 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4578 		const struct compat_old_sigaction __user *, act,
4579 	        struct compat_old_sigaction __user *, oact)
4580 {
4581 	struct k_sigaction new_ka, old_ka;
4582 	int ret;
4583 	compat_old_sigset_t mask;
4584 	compat_uptr_t handler, restorer;
4585 
4586 	if (act) {
4587 		if (!access_ok(act, sizeof(*act)) ||
4588 		    __get_user(handler, &act->sa_handler) ||
4589 		    __get_user(restorer, &act->sa_restorer) ||
4590 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4591 		    __get_user(mask, &act->sa_mask))
4592 			return -EFAULT;
4593 
4594 #ifdef __ARCH_HAS_KA_RESTORER
4595 		new_ka.ka_restorer = NULL;
4596 #endif
4597 		new_ka.sa.sa_handler = compat_ptr(handler);
4598 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4599 		siginitset(&new_ka.sa.sa_mask, mask);
4600 	}
4601 
4602 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4603 
4604 	if (!ret && oact) {
4605 		if (!access_ok(oact, sizeof(*oact)) ||
4606 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4607 			       &oact->sa_handler) ||
4608 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4609 			       &oact->sa_restorer) ||
4610 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4611 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4612 			return -EFAULT;
4613 	}
4614 	return ret;
4615 }
4616 #endif
4617 
4618 #ifdef CONFIG_SGETMASK_SYSCALL
4619 
4620 /*
4621  * For backwards compatibility.  Functionality superseded by sigprocmask.
4622  */
4623 SYSCALL_DEFINE0(sgetmask)
4624 {
4625 	/* SMP safe */
4626 	return current->blocked.sig[0];
4627 }
4628 
4629 SYSCALL_DEFINE1(ssetmask, int, newmask)
4630 {
4631 	int old = current->blocked.sig[0];
4632 	sigset_t newset;
4633 
4634 	siginitset(&newset, newmask);
4635 	set_current_blocked(&newset);
4636 
4637 	return old;
4638 }
4639 #endif /* CONFIG_SGETMASK_SYSCALL */
4640 
4641 #ifdef __ARCH_WANT_SYS_SIGNAL
4642 /*
4643  * For backwards compatibility.  Functionality superseded by sigaction.
4644  */
4645 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4646 {
4647 	struct k_sigaction new_sa, old_sa;
4648 	int ret;
4649 
4650 	new_sa.sa.sa_handler = handler;
4651 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4652 	sigemptyset(&new_sa.sa.sa_mask);
4653 
4654 	ret = do_sigaction(sig, &new_sa, &old_sa);
4655 
4656 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4657 }
4658 #endif /* __ARCH_WANT_SYS_SIGNAL */
4659 
4660 #ifdef __ARCH_WANT_SYS_PAUSE
4661 
4662 SYSCALL_DEFINE0(pause)
4663 {
4664 	while (!signal_pending(current)) {
4665 		__set_current_state(TASK_INTERRUPTIBLE);
4666 		schedule();
4667 	}
4668 	return -ERESTARTNOHAND;
4669 }
4670 
4671 #endif
4672 
4673 static int sigsuspend(sigset_t *set)
4674 {
4675 	current->saved_sigmask = current->blocked;
4676 	set_current_blocked(set);
4677 
4678 	while (!signal_pending(current)) {
4679 		__set_current_state(TASK_INTERRUPTIBLE);
4680 		schedule();
4681 	}
4682 	set_restore_sigmask();
4683 	return -ERESTARTNOHAND;
4684 }
4685 
4686 /**
4687  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4688  *	@unewset value until a signal is received
4689  *  @unewset: new signal mask value
4690  *  @sigsetsize: size of sigset_t type
4691  */
4692 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4693 {
4694 	sigset_t newset;
4695 
4696 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4697 	if (sigsetsize != sizeof(sigset_t))
4698 		return -EINVAL;
4699 
4700 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4701 		return -EFAULT;
4702 	return sigsuspend(&newset);
4703 }
4704 
4705 #ifdef CONFIG_COMPAT
4706 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4707 {
4708 	sigset_t newset;
4709 
4710 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4711 	if (sigsetsize != sizeof(sigset_t))
4712 		return -EINVAL;
4713 
4714 	if (get_compat_sigset(&newset, unewset))
4715 		return -EFAULT;
4716 	return sigsuspend(&newset);
4717 }
4718 #endif
4719 
4720 #ifdef CONFIG_OLD_SIGSUSPEND
4721 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4722 {
4723 	sigset_t blocked;
4724 	siginitset(&blocked, mask);
4725 	return sigsuspend(&blocked);
4726 }
4727 #endif
4728 #ifdef CONFIG_OLD_SIGSUSPEND3
4729 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4730 {
4731 	sigset_t blocked;
4732 	siginitset(&blocked, mask);
4733 	return sigsuspend(&blocked);
4734 }
4735 #endif
4736 
4737 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4738 {
4739 	return NULL;
4740 }
4741 
4742 static inline void siginfo_buildtime_checks(void)
4743 {
4744 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4745 
4746 	/* Verify the offsets in the two siginfos match */
4747 #define CHECK_OFFSET(field) \
4748 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4749 
4750 	/* kill */
4751 	CHECK_OFFSET(si_pid);
4752 	CHECK_OFFSET(si_uid);
4753 
4754 	/* timer */
4755 	CHECK_OFFSET(si_tid);
4756 	CHECK_OFFSET(si_overrun);
4757 	CHECK_OFFSET(si_value);
4758 
4759 	/* rt */
4760 	CHECK_OFFSET(si_pid);
4761 	CHECK_OFFSET(si_uid);
4762 	CHECK_OFFSET(si_value);
4763 
4764 	/* sigchld */
4765 	CHECK_OFFSET(si_pid);
4766 	CHECK_OFFSET(si_uid);
4767 	CHECK_OFFSET(si_status);
4768 	CHECK_OFFSET(si_utime);
4769 	CHECK_OFFSET(si_stime);
4770 
4771 	/* sigfault */
4772 	CHECK_OFFSET(si_addr);
4773 	CHECK_OFFSET(si_trapno);
4774 	CHECK_OFFSET(si_addr_lsb);
4775 	CHECK_OFFSET(si_lower);
4776 	CHECK_OFFSET(si_upper);
4777 	CHECK_OFFSET(si_pkey);
4778 	CHECK_OFFSET(si_perf_data);
4779 	CHECK_OFFSET(si_perf_type);
4780 	CHECK_OFFSET(si_perf_flags);
4781 
4782 	/* sigpoll */
4783 	CHECK_OFFSET(si_band);
4784 	CHECK_OFFSET(si_fd);
4785 
4786 	/* sigsys */
4787 	CHECK_OFFSET(si_call_addr);
4788 	CHECK_OFFSET(si_syscall);
4789 	CHECK_OFFSET(si_arch);
4790 #undef CHECK_OFFSET
4791 
4792 	/* usb asyncio */
4793 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4794 		     offsetof(struct siginfo, si_addr));
4795 	if (sizeof(int) == sizeof(void __user *)) {
4796 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4797 			     sizeof(void __user *));
4798 	} else {
4799 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4800 			      sizeof_field(struct siginfo, si_uid)) !=
4801 			     sizeof(void __user *));
4802 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4803 			     offsetof(struct siginfo, si_uid));
4804 	}
4805 #ifdef CONFIG_COMPAT
4806 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4807 		     offsetof(struct compat_siginfo, si_addr));
4808 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4809 		     sizeof(compat_uptr_t));
4810 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4811 		     sizeof_field(struct siginfo, si_pid));
4812 #endif
4813 }
4814 
4815 #if defined(CONFIG_SYSCTL)
4816 static struct ctl_table signal_debug_table[] = {
4817 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4818 	{
4819 		.procname	= "exception-trace",
4820 		.data		= &show_unhandled_signals,
4821 		.maxlen		= sizeof(int),
4822 		.mode		= 0644,
4823 		.proc_handler	= proc_dointvec
4824 	},
4825 #endif
4826 	{ }
4827 };
4828 
4829 static int __init init_signal_sysctls(void)
4830 {
4831 	register_sysctl_init("debug", signal_debug_table);
4832 	return 0;
4833 }
4834 early_initcall(init_signal_sysctls);
4835 #endif /* CONFIG_SYSCTL */
4836 
4837 void __init signals_init(void)
4838 {
4839 	siginfo_buildtime_checks();
4840 
4841 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4842 }
4843 
4844 #ifdef CONFIG_KGDB_KDB
4845 #include <linux/kdb.h>
4846 /*
4847  * kdb_send_sig - Allows kdb to send signals without exposing
4848  * signal internals.  This function checks if the required locks are
4849  * available before calling the main signal code, to avoid kdb
4850  * deadlocks.
4851  */
4852 void kdb_send_sig(struct task_struct *t, int sig)
4853 {
4854 	static struct task_struct *kdb_prev_t;
4855 	int new_t, ret;
4856 	if (!spin_trylock(&t->sighand->siglock)) {
4857 		kdb_printf("Can't do kill command now.\n"
4858 			   "The sigmask lock is held somewhere else in "
4859 			   "kernel, try again later\n");
4860 		return;
4861 	}
4862 	new_t = kdb_prev_t != t;
4863 	kdb_prev_t = t;
4864 	if (!task_is_running(t) && new_t) {
4865 		spin_unlock(&t->sighand->siglock);
4866 		kdb_printf("Process is not RUNNING, sending a signal from "
4867 			   "kdb risks deadlock\n"
4868 			   "on the run queue locks. "
4869 			   "The signal has _not_ been sent.\n"
4870 			   "Reissue the kill command if you want to risk "
4871 			   "the deadlock.\n");
4872 		return;
4873 	}
4874 	ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4875 	spin_unlock(&t->sighand->siglock);
4876 	if (ret)
4877 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4878 			   sig, t->pid);
4879 	else
4880 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4881 }
4882 #endif	/* CONFIG_KGDB_KDB */
4883