xref: /linux/kernel/signal.c (revision 58100c34f7827ddf64309c5a7c8c4e5bd6415b95)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/signal.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
8  *
9  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
10  *		Changes to use preallocated sigqueue structures
11  *		to allow signals to be sent reliably.
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/tracehook.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/cgroup.h>
47 #include <linux/audit.h>
48 
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/signal.h>
51 
52 #include <asm/param.h>
53 #include <linux/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/siginfo.h>
56 #include <asm/cacheflush.h>
57 
58 /*
59  * SLAB caches for signal bits.
60  */
61 
62 static struct kmem_cache *sigqueue_cachep;
63 
64 int print_fatal_signals __read_mostly;
65 
66 static void __user *sig_handler(struct task_struct *t, int sig)
67 {
68 	return t->sighand->action[sig - 1].sa.sa_handler;
69 }
70 
71 static inline bool sig_handler_ignored(void __user *handler, int sig)
72 {
73 	/* Is it explicitly or implicitly ignored? */
74 	return handler == SIG_IGN ||
75 	       (handler == SIG_DFL && sig_kernel_ignore(sig));
76 }
77 
78 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
79 {
80 	void __user *handler;
81 
82 	handler = sig_handler(t, sig);
83 
84 	/* SIGKILL and SIGSTOP may not be sent to the global init */
85 	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
86 		return true;
87 
88 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
89 	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
90 		return true;
91 
92 	/* Only allow kernel generated signals to this kthread */
93 	if (unlikely((t->flags & PF_KTHREAD) &&
94 		     (handler == SIG_KTHREAD_KERNEL) && !force))
95 		return true;
96 
97 	return sig_handler_ignored(handler, sig);
98 }
99 
100 static bool sig_ignored(struct task_struct *t, int sig, bool force)
101 {
102 	/*
103 	 * Blocked signals are never ignored, since the
104 	 * signal handler may change by the time it is
105 	 * unblocked.
106 	 */
107 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
108 		return false;
109 
110 	/*
111 	 * Tracers may want to know about even ignored signal unless it
112 	 * is SIGKILL which can't be reported anyway but can be ignored
113 	 * by SIGNAL_UNKILLABLE task.
114 	 */
115 	if (t->ptrace && sig != SIGKILL)
116 		return false;
117 
118 	return sig_task_ignored(t, sig, force);
119 }
120 
121 /*
122  * Re-calculate pending state from the set of locally pending
123  * signals, globally pending signals, and blocked signals.
124  */
125 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
126 {
127 	unsigned long ready;
128 	long i;
129 
130 	switch (_NSIG_WORDS) {
131 	default:
132 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
133 			ready |= signal->sig[i] &~ blocked->sig[i];
134 		break;
135 
136 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
137 		ready |= signal->sig[2] &~ blocked->sig[2];
138 		ready |= signal->sig[1] &~ blocked->sig[1];
139 		ready |= signal->sig[0] &~ blocked->sig[0];
140 		break;
141 
142 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
143 		ready |= signal->sig[0] &~ blocked->sig[0];
144 		break;
145 
146 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
147 	}
148 	return ready !=	0;
149 }
150 
151 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
152 
153 static bool recalc_sigpending_tsk(struct task_struct *t)
154 {
155 	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
156 	    PENDING(&t->pending, &t->blocked) ||
157 	    PENDING(&t->signal->shared_pending, &t->blocked) ||
158 	    cgroup_task_frozen(t)) {
159 		set_tsk_thread_flag(t, TIF_SIGPENDING);
160 		return true;
161 	}
162 
163 	/*
164 	 * We must never clear the flag in another thread, or in current
165 	 * when it's possible the current syscall is returning -ERESTART*.
166 	 * So we don't clear it here, and only callers who know they should do.
167 	 */
168 	return false;
169 }
170 
171 /*
172  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
173  * This is superfluous when called on current, the wakeup is a harmless no-op.
174  */
175 void recalc_sigpending_and_wake(struct task_struct *t)
176 {
177 	if (recalc_sigpending_tsk(t))
178 		signal_wake_up(t, 0);
179 }
180 
181 void recalc_sigpending(void)
182 {
183 	if (!recalc_sigpending_tsk(current) && !freezing(current))
184 		clear_thread_flag(TIF_SIGPENDING);
185 
186 }
187 EXPORT_SYMBOL(recalc_sigpending);
188 
189 void calculate_sigpending(void)
190 {
191 	/* Have any signals or users of TIF_SIGPENDING been delayed
192 	 * until after fork?
193 	 */
194 	spin_lock_irq(&current->sighand->siglock);
195 	set_tsk_thread_flag(current, TIF_SIGPENDING);
196 	recalc_sigpending();
197 	spin_unlock_irq(&current->sighand->siglock);
198 }
199 
200 /* Given the mask, find the first available signal that should be serviced. */
201 
202 #define SYNCHRONOUS_MASK \
203 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
204 	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
205 
206 int next_signal(struct sigpending *pending, sigset_t *mask)
207 {
208 	unsigned long i, *s, *m, x;
209 	int sig = 0;
210 
211 	s = pending->signal.sig;
212 	m = mask->sig;
213 
214 	/*
215 	 * Handle the first word specially: it contains the
216 	 * synchronous signals that need to be dequeued first.
217 	 */
218 	x = *s &~ *m;
219 	if (x) {
220 		if (x & SYNCHRONOUS_MASK)
221 			x &= SYNCHRONOUS_MASK;
222 		sig = ffz(~x) + 1;
223 		return sig;
224 	}
225 
226 	switch (_NSIG_WORDS) {
227 	default:
228 		for (i = 1; i < _NSIG_WORDS; ++i) {
229 			x = *++s &~ *++m;
230 			if (!x)
231 				continue;
232 			sig = ffz(~x) + i*_NSIG_BPW + 1;
233 			break;
234 		}
235 		break;
236 
237 	case 2:
238 		x = s[1] &~ m[1];
239 		if (!x)
240 			break;
241 		sig = ffz(~x) + _NSIG_BPW + 1;
242 		break;
243 
244 	case 1:
245 		/* Nothing to do */
246 		break;
247 	}
248 
249 	return sig;
250 }
251 
252 static inline void print_dropped_signal(int sig)
253 {
254 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
255 
256 	if (!print_fatal_signals)
257 		return;
258 
259 	if (!__ratelimit(&ratelimit_state))
260 		return;
261 
262 	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
263 				current->comm, current->pid, sig);
264 }
265 
266 /**
267  * task_set_jobctl_pending - set jobctl pending bits
268  * @task: target task
269  * @mask: pending bits to set
270  *
271  * Clear @mask from @task->jobctl.  @mask must be subset of
272  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
273  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
274  * cleared.  If @task is already being killed or exiting, this function
275  * becomes noop.
276  *
277  * CONTEXT:
278  * Must be called with @task->sighand->siglock held.
279  *
280  * RETURNS:
281  * %true if @mask is set, %false if made noop because @task was dying.
282  */
283 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
284 {
285 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
286 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
287 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
288 
289 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
290 		return false;
291 
292 	if (mask & JOBCTL_STOP_SIGMASK)
293 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
294 
295 	task->jobctl |= mask;
296 	return true;
297 }
298 
299 /**
300  * task_clear_jobctl_trapping - clear jobctl trapping bit
301  * @task: target task
302  *
303  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
304  * Clear it and wake up the ptracer.  Note that we don't need any further
305  * locking.  @task->siglock guarantees that @task->parent points to the
306  * ptracer.
307  *
308  * CONTEXT:
309  * Must be called with @task->sighand->siglock held.
310  */
311 void task_clear_jobctl_trapping(struct task_struct *task)
312 {
313 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
314 		task->jobctl &= ~JOBCTL_TRAPPING;
315 		smp_mb();	/* advised by wake_up_bit() */
316 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
317 	}
318 }
319 
320 /**
321  * task_clear_jobctl_pending - clear jobctl pending bits
322  * @task: target task
323  * @mask: pending bits to clear
324  *
325  * Clear @mask from @task->jobctl.  @mask must be subset of
326  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
327  * STOP bits are cleared together.
328  *
329  * If clearing of @mask leaves no stop or trap pending, this function calls
330  * task_clear_jobctl_trapping().
331  *
332  * CONTEXT:
333  * Must be called with @task->sighand->siglock held.
334  */
335 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
336 {
337 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
338 
339 	if (mask & JOBCTL_STOP_PENDING)
340 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
341 
342 	task->jobctl &= ~mask;
343 
344 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
345 		task_clear_jobctl_trapping(task);
346 }
347 
348 /**
349  * task_participate_group_stop - participate in a group stop
350  * @task: task participating in a group stop
351  *
352  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
353  * Group stop states are cleared and the group stop count is consumed if
354  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
355  * stop, the appropriate `SIGNAL_*` flags are set.
356  *
357  * CONTEXT:
358  * Must be called with @task->sighand->siglock held.
359  *
360  * RETURNS:
361  * %true if group stop completion should be notified to the parent, %false
362  * otherwise.
363  */
364 static bool task_participate_group_stop(struct task_struct *task)
365 {
366 	struct signal_struct *sig = task->signal;
367 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
368 
369 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
370 
371 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
372 
373 	if (!consume)
374 		return false;
375 
376 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
377 		sig->group_stop_count--;
378 
379 	/*
380 	 * Tell the caller to notify completion iff we are entering into a
381 	 * fresh group stop.  Read comment in do_signal_stop() for details.
382 	 */
383 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
384 		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
385 		return true;
386 	}
387 	return false;
388 }
389 
390 void task_join_group_stop(struct task_struct *task)
391 {
392 	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
393 	struct signal_struct *sig = current->signal;
394 
395 	if (sig->group_stop_count) {
396 		sig->group_stop_count++;
397 		mask |= JOBCTL_STOP_CONSUME;
398 	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
399 		return;
400 
401 	/* Have the new thread join an on-going signal group stop */
402 	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
403 }
404 
405 /*
406  * allocate a new signal queue record
407  * - this may be called without locks if and only if t == current, otherwise an
408  *   appropriate lock must be held to stop the target task from exiting
409  */
410 static struct sigqueue *
411 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
412 		 int override_rlimit, const unsigned int sigqueue_flags)
413 {
414 	struct sigqueue *q = NULL;
415 	struct ucounts *ucounts = NULL;
416 	long sigpending;
417 
418 	/*
419 	 * Protect access to @t credentials. This can go away when all
420 	 * callers hold rcu read lock.
421 	 *
422 	 * NOTE! A pending signal will hold on to the user refcount,
423 	 * and we get/put the refcount only when the sigpending count
424 	 * changes from/to zero.
425 	 */
426 	rcu_read_lock();
427 	ucounts = task_ucounts(t);
428 	sigpending = inc_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING, 1);
429 	switch (sigpending) {
430 	case 1:
431 		if (likely(get_ucounts(ucounts)))
432 			break;
433 		fallthrough;
434 	case LONG_MAX:
435 		/*
436 		 * we need to decrease the ucount in the userns tree on any
437 		 * failure to avoid counts leaking.
438 		 */
439 		dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING, 1);
440 		rcu_read_unlock();
441 		return NULL;
442 	}
443 	rcu_read_unlock();
444 
445 	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
446 		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
447 	} else {
448 		print_dropped_signal(sig);
449 	}
450 
451 	if (unlikely(q == NULL)) {
452 		if (dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING, 1))
453 			put_ucounts(ucounts);
454 	} else {
455 		INIT_LIST_HEAD(&q->list);
456 		q->flags = sigqueue_flags;
457 		q->ucounts = ucounts;
458 	}
459 	return q;
460 }
461 
462 static void __sigqueue_free(struct sigqueue *q)
463 {
464 	if (q->flags & SIGQUEUE_PREALLOC)
465 		return;
466 	if (q->ucounts && dec_rlimit_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING, 1)) {
467 		put_ucounts(q->ucounts);
468 		q->ucounts = NULL;
469 	}
470 	kmem_cache_free(sigqueue_cachep, q);
471 }
472 
473 void flush_sigqueue(struct sigpending *queue)
474 {
475 	struct sigqueue *q;
476 
477 	sigemptyset(&queue->signal);
478 	while (!list_empty(&queue->list)) {
479 		q = list_entry(queue->list.next, struct sigqueue , list);
480 		list_del_init(&q->list);
481 		__sigqueue_free(q);
482 	}
483 }
484 
485 /*
486  * Flush all pending signals for this kthread.
487  */
488 void flush_signals(struct task_struct *t)
489 {
490 	unsigned long flags;
491 
492 	spin_lock_irqsave(&t->sighand->siglock, flags);
493 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
494 	flush_sigqueue(&t->pending);
495 	flush_sigqueue(&t->signal->shared_pending);
496 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
497 }
498 EXPORT_SYMBOL(flush_signals);
499 
500 #ifdef CONFIG_POSIX_TIMERS
501 static void __flush_itimer_signals(struct sigpending *pending)
502 {
503 	sigset_t signal, retain;
504 	struct sigqueue *q, *n;
505 
506 	signal = pending->signal;
507 	sigemptyset(&retain);
508 
509 	list_for_each_entry_safe(q, n, &pending->list, list) {
510 		int sig = q->info.si_signo;
511 
512 		if (likely(q->info.si_code != SI_TIMER)) {
513 			sigaddset(&retain, sig);
514 		} else {
515 			sigdelset(&signal, sig);
516 			list_del_init(&q->list);
517 			__sigqueue_free(q);
518 		}
519 	}
520 
521 	sigorsets(&pending->signal, &signal, &retain);
522 }
523 
524 void flush_itimer_signals(void)
525 {
526 	struct task_struct *tsk = current;
527 	unsigned long flags;
528 
529 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
530 	__flush_itimer_signals(&tsk->pending);
531 	__flush_itimer_signals(&tsk->signal->shared_pending);
532 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
533 }
534 #endif
535 
536 void ignore_signals(struct task_struct *t)
537 {
538 	int i;
539 
540 	for (i = 0; i < _NSIG; ++i)
541 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
542 
543 	flush_signals(t);
544 }
545 
546 /*
547  * Flush all handlers for a task.
548  */
549 
550 void
551 flush_signal_handlers(struct task_struct *t, int force_default)
552 {
553 	int i;
554 	struct k_sigaction *ka = &t->sighand->action[0];
555 	for (i = _NSIG ; i != 0 ; i--) {
556 		if (force_default || ka->sa.sa_handler != SIG_IGN)
557 			ka->sa.sa_handler = SIG_DFL;
558 		ka->sa.sa_flags = 0;
559 #ifdef __ARCH_HAS_SA_RESTORER
560 		ka->sa.sa_restorer = NULL;
561 #endif
562 		sigemptyset(&ka->sa.sa_mask);
563 		ka++;
564 	}
565 }
566 
567 bool unhandled_signal(struct task_struct *tsk, int sig)
568 {
569 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
570 	if (is_global_init(tsk))
571 		return true;
572 
573 	if (handler != SIG_IGN && handler != SIG_DFL)
574 		return false;
575 
576 	/* if ptraced, let the tracer determine */
577 	return !tsk->ptrace;
578 }
579 
580 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
581 			   bool *resched_timer)
582 {
583 	struct sigqueue *q, *first = NULL;
584 
585 	/*
586 	 * Collect the siginfo appropriate to this signal.  Check if
587 	 * there is another siginfo for the same signal.
588 	*/
589 	list_for_each_entry(q, &list->list, list) {
590 		if (q->info.si_signo == sig) {
591 			if (first)
592 				goto still_pending;
593 			first = q;
594 		}
595 	}
596 
597 	sigdelset(&list->signal, sig);
598 
599 	if (first) {
600 still_pending:
601 		list_del_init(&first->list);
602 		copy_siginfo(info, &first->info);
603 
604 		*resched_timer =
605 			(first->flags & SIGQUEUE_PREALLOC) &&
606 			(info->si_code == SI_TIMER) &&
607 			(info->si_sys_private);
608 
609 		__sigqueue_free(first);
610 	} else {
611 		/*
612 		 * Ok, it wasn't in the queue.  This must be
613 		 * a fast-pathed signal or we must have been
614 		 * out of queue space.  So zero out the info.
615 		 */
616 		clear_siginfo(info);
617 		info->si_signo = sig;
618 		info->si_errno = 0;
619 		info->si_code = SI_USER;
620 		info->si_pid = 0;
621 		info->si_uid = 0;
622 	}
623 }
624 
625 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
626 			kernel_siginfo_t *info, bool *resched_timer)
627 {
628 	int sig = next_signal(pending, mask);
629 
630 	if (sig)
631 		collect_signal(sig, pending, info, resched_timer);
632 	return sig;
633 }
634 
635 /*
636  * Dequeue a signal and return the element to the caller, which is
637  * expected to free it.
638  *
639  * All callers have to hold the siglock.
640  */
641 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
642 {
643 	bool resched_timer = false;
644 	int signr;
645 
646 	/* We only dequeue private signals from ourselves, we don't let
647 	 * signalfd steal them
648 	 */
649 	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
650 	if (!signr) {
651 		signr = __dequeue_signal(&tsk->signal->shared_pending,
652 					 mask, info, &resched_timer);
653 #ifdef CONFIG_POSIX_TIMERS
654 		/*
655 		 * itimer signal ?
656 		 *
657 		 * itimers are process shared and we restart periodic
658 		 * itimers in the signal delivery path to prevent DoS
659 		 * attacks in the high resolution timer case. This is
660 		 * compliant with the old way of self-restarting
661 		 * itimers, as the SIGALRM is a legacy signal and only
662 		 * queued once. Changing the restart behaviour to
663 		 * restart the timer in the signal dequeue path is
664 		 * reducing the timer noise on heavy loaded !highres
665 		 * systems too.
666 		 */
667 		if (unlikely(signr == SIGALRM)) {
668 			struct hrtimer *tmr = &tsk->signal->real_timer;
669 
670 			if (!hrtimer_is_queued(tmr) &&
671 			    tsk->signal->it_real_incr != 0) {
672 				hrtimer_forward(tmr, tmr->base->get_time(),
673 						tsk->signal->it_real_incr);
674 				hrtimer_restart(tmr);
675 			}
676 		}
677 #endif
678 	}
679 
680 	recalc_sigpending();
681 	if (!signr)
682 		return 0;
683 
684 	if (unlikely(sig_kernel_stop(signr))) {
685 		/*
686 		 * Set a marker that we have dequeued a stop signal.  Our
687 		 * caller might release the siglock and then the pending
688 		 * stop signal it is about to process is no longer in the
689 		 * pending bitmasks, but must still be cleared by a SIGCONT
690 		 * (and overruled by a SIGKILL).  So those cases clear this
691 		 * shared flag after we've set it.  Note that this flag may
692 		 * remain set after the signal we return is ignored or
693 		 * handled.  That doesn't matter because its only purpose
694 		 * is to alert stop-signal processing code when another
695 		 * processor has come along and cleared the flag.
696 		 */
697 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
698 	}
699 #ifdef CONFIG_POSIX_TIMERS
700 	if (resched_timer) {
701 		/*
702 		 * Release the siglock to ensure proper locking order
703 		 * of timer locks outside of siglocks.  Note, we leave
704 		 * irqs disabled here, since the posix-timers code is
705 		 * about to disable them again anyway.
706 		 */
707 		spin_unlock(&tsk->sighand->siglock);
708 		posixtimer_rearm(info);
709 		spin_lock(&tsk->sighand->siglock);
710 
711 		/* Don't expose the si_sys_private value to userspace */
712 		info->si_sys_private = 0;
713 	}
714 #endif
715 	return signr;
716 }
717 EXPORT_SYMBOL_GPL(dequeue_signal);
718 
719 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
720 {
721 	struct task_struct *tsk = current;
722 	struct sigpending *pending = &tsk->pending;
723 	struct sigqueue *q, *sync = NULL;
724 
725 	/*
726 	 * Might a synchronous signal be in the queue?
727 	 */
728 	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
729 		return 0;
730 
731 	/*
732 	 * Return the first synchronous signal in the queue.
733 	 */
734 	list_for_each_entry(q, &pending->list, list) {
735 		/* Synchronous signals have a positive si_code */
736 		if ((q->info.si_code > SI_USER) &&
737 		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
738 			sync = q;
739 			goto next;
740 		}
741 	}
742 	return 0;
743 next:
744 	/*
745 	 * Check if there is another siginfo for the same signal.
746 	 */
747 	list_for_each_entry_continue(q, &pending->list, list) {
748 		if (q->info.si_signo == sync->info.si_signo)
749 			goto still_pending;
750 	}
751 
752 	sigdelset(&pending->signal, sync->info.si_signo);
753 	recalc_sigpending();
754 still_pending:
755 	list_del_init(&sync->list);
756 	copy_siginfo(info, &sync->info);
757 	__sigqueue_free(sync);
758 	return info->si_signo;
759 }
760 
761 /*
762  * Tell a process that it has a new active signal..
763  *
764  * NOTE! we rely on the previous spin_lock to
765  * lock interrupts for us! We can only be called with
766  * "siglock" held, and the local interrupt must
767  * have been disabled when that got acquired!
768  *
769  * No need to set need_resched since signal event passing
770  * goes through ->blocked
771  */
772 void signal_wake_up_state(struct task_struct *t, unsigned int state)
773 {
774 	set_tsk_thread_flag(t, TIF_SIGPENDING);
775 	/*
776 	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
777 	 * case. We don't check t->state here because there is a race with it
778 	 * executing another processor and just now entering stopped state.
779 	 * By using wake_up_state, we ensure the process will wake up and
780 	 * handle its death signal.
781 	 */
782 	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
783 		kick_process(t);
784 }
785 
786 /*
787  * Remove signals in mask from the pending set and queue.
788  * Returns 1 if any signals were found.
789  *
790  * All callers must be holding the siglock.
791  */
792 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
793 {
794 	struct sigqueue *q, *n;
795 	sigset_t m;
796 
797 	sigandsets(&m, mask, &s->signal);
798 	if (sigisemptyset(&m))
799 		return;
800 
801 	sigandnsets(&s->signal, &s->signal, mask);
802 	list_for_each_entry_safe(q, n, &s->list, list) {
803 		if (sigismember(mask, q->info.si_signo)) {
804 			list_del_init(&q->list);
805 			__sigqueue_free(q);
806 		}
807 	}
808 }
809 
810 static inline int is_si_special(const struct kernel_siginfo *info)
811 {
812 	return info <= SEND_SIG_PRIV;
813 }
814 
815 static inline bool si_fromuser(const struct kernel_siginfo *info)
816 {
817 	return info == SEND_SIG_NOINFO ||
818 		(!is_si_special(info) && SI_FROMUSER(info));
819 }
820 
821 /*
822  * called with RCU read lock from check_kill_permission()
823  */
824 static bool kill_ok_by_cred(struct task_struct *t)
825 {
826 	const struct cred *cred = current_cred();
827 	const struct cred *tcred = __task_cred(t);
828 
829 	return uid_eq(cred->euid, tcred->suid) ||
830 	       uid_eq(cred->euid, tcred->uid) ||
831 	       uid_eq(cred->uid, tcred->suid) ||
832 	       uid_eq(cred->uid, tcred->uid) ||
833 	       ns_capable(tcred->user_ns, CAP_KILL);
834 }
835 
836 /*
837  * Bad permissions for sending the signal
838  * - the caller must hold the RCU read lock
839  */
840 static int check_kill_permission(int sig, struct kernel_siginfo *info,
841 				 struct task_struct *t)
842 {
843 	struct pid *sid;
844 	int error;
845 
846 	if (!valid_signal(sig))
847 		return -EINVAL;
848 
849 	if (!si_fromuser(info))
850 		return 0;
851 
852 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
853 	if (error)
854 		return error;
855 
856 	if (!same_thread_group(current, t) &&
857 	    !kill_ok_by_cred(t)) {
858 		switch (sig) {
859 		case SIGCONT:
860 			sid = task_session(t);
861 			/*
862 			 * We don't return the error if sid == NULL. The
863 			 * task was unhashed, the caller must notice this.
864 			 */
865 			if (!sid || sid == task_session(current))
866 				break;
867 			fallthrough;
868 		default:
869 			return -EPERM;
870 		}
871 	}
872 
873 	return security_task_kill(t, info, sig, NULL);
874 }
875 
876 /**
877  * ptrace_trap_notify - schedule trap to notify ptracer
878  * @t: tracee wanting to notify tracer
879  *
880  * This function schedules sticky ptrace trap which is cleared on the next
881  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
882  * ptracer.
883  *
884  * If @t is running, STOP trap will be taken.  If trapped for STOP and
885  * ptracer is listening for events, tracee is woken up so that it can
886  * re-trap for the new event.  If trapped otherwise, STOP trap will be
887  * eventually taken without returning to userland after the existing traps
888  * are finished by PTRACE_CONT.
889  *
890  * CONTEXT:
891  * Must be called with @task->sighand->siglock held.
892  */
893 static void ptrace_trap_notify(struct task_struct *t)
894 {
895 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
896 	assert_spin_locked(&t->sighand->siglock);
897 
898 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
899 	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
900 }
901 
902 /*
903  * Handle magic process-wide effects of stop/continue signals. Unlike
904  * the signal actions, these happen immediately at signal-generation
905  * time regardless of blocking, ignoring, or handling.  This does the
906  * actual continuing for SIGCONT, but not the actual stopping for stop
907  * signals. The process stop is done as a signal action for SIG_DFL.
908  *
909  * Returns true if the signal should be actually delivered, otherwise
910  * it should be dropped.
911  */
912 static bool prepare_signal(int sig, struct task_struct *p, bool force)
913 {
914 	struct signal_struct *signal = p->signal;
915 	struct task_struct *t;
916 	sigset_t flush;
917 
918 	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
919 		if (!(signal->flags & SIGNAL_GROUP_EXIT))
920 			return sig == SIGKILL;
921 		/*
922 		 * The process is in the middle of dying, nothing to do.
923 		 */
924 	} else if (sig_kernel_stop(sig)) {
925 		/*
926 		 * This is a stop signal.  Remove SIGCONT from all queues.
927 		 */
928 		siginitset(&flush, sigmask(SIGCONT));
929 		flush_sigqueue_mask(&flush, &signal->shared_pending);
930 		for_each_thread(p, t)
931 			flush_sigqueue_mask(&flush, &t->pending);
932 	} else if (sig == SIGCONT) {
933 		unsigned int why;
934 		/*
935 		 * Remove all stop signals from all queues, wake all threads.
936 		 */
937 		siginitset(&flush, SIG_KERNEL_STOP_MASK);
938 		flush_sigqueue_mask(&flush, &signal->shared_pending);
939 		for_each_thread(p, t) {
940 			flush_sigqueue_mask(&flush, &t->pending);
941 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
942 			if (likely(!(t->ptrace & PT_SEIZED)))
943 				wake_up_state(t, __TASK_STOPPED);
944 			else
945 				ptrace_trap_notify(t);
946 		}
947 
948 		/*
949 		 * Notify the parent with CLD_CONTINUED if we were stopped.
950 		 *
951 		 * If we were in the middle of a group stop, we pretend it
952 		 * was already finished, and then continued. Since SIGCHLD
953 		 * doesn't queue we report only CLD_STOPPED, as if the next
954 		 * CLD_CONTINUED was dropped.
955 		 */
956 		why = 0;
957 		if (signal->flags & SIGNAL_STOP_STOPPED)
958 			why |= SIGNAL_CLD_CONTINUED;
959 		else if (signal->group_stop_count)
960 			why |= SIGNAL_CLD_STOPPED;
961 
962 		if (why) {
963 			/*
964 			 * The first thread which returns from do_signal_stop()
965 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
966 			 * notify its parent. See get_signal().
967 			 */
968 			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
969 			signal->group_stop_count = 0;
970 			signal->group_exit_code = 0;
971 		}
972 	}
973 
974 	return !sig_ignored(p, sig, force);
975 }
976 
977 /*
978  * Test if P wants to take SIG.  After we've checked all threads with this,
979  * it's equivalent to finding no threads not blocking SIG.  Any threads not
980  * blocking SIG were ruled out because they are not running and already
981  * have pending signals.  Such threads will dequeue from the shared queue
982  * as soon as they're available, so putting the signal on the shared queue
983  * will be equivalent to sending it to one such thread.
984  */
985 static inline bool wants_signal(int sig, struct task_struct *p)
986 {
987 	if (sigismember(&p->blocked, sig))
988 		return false;
989 
990 	if (p->flags & PF_EXITING)
991 		return false;
992 
993 	if (sig == SIGKILL)
994 		return true;
995 
996 	if (task_is_stopped_or_traced(p))
997 		return false;
998 
999 	return task_curr(p) || !task_sigpending(p);
1000 }
1001 
1002 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
1003 {
1004 	struct signal_struct *signal = p->signal;
1005 	struct task_struct *t;
1006 
1007 	/*
1008 	 * Now find a thread we can wake up to take the signal off the queue.
1009 	 *
1010 	 * If the main thread wants the signal, it gets first crack.
1011 	 * Probably the least surprising to the average bear.
1012 	 */
1013 	if (wants_signal(sig, p))
1014 		t = p;
1015 	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1016 		/*
1017 		 * There is just one thread and it does not need to be woken.
1018 		 * It will dequeue unblocked signals before it runs again.
1019 		 */
1020 		return;
1021 	else {
1022 		/*
1023 		 * Otherwise try to find a suitable thread.
1024 		 */
1025 		t = signal->curr_target;
1026 		while (!wants_signal(sig, t)) {
1027 			t = next_thread(t);
1028 			if (t == signal->curr_target)
1029 				/*
1030 				 * No thread needs to be woken.
1031 				 * Any eligible threads will see
1032 				 * the signal in the queue soon.
1033 				 */
1034 				return;
1035 		}
1036 		signal->curr_target = t;
1037 	}
1038 
1039 	/*
1040 	 * Found a killable thread.  If the signal will be fatal,
1041 	 * then start taking the whole group down immediately.
1042 	 */
1043 	if (sig_fatal(p, sig) &&
1044 	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1045 	    !sigismember(&t->real_blocked, sig) &&
1046 	    (sig == SIGKILL || !p->ptrace)) {
1047 		/*
1048 		 * This signal will be fatal to the whole group.
1049 		 */
1050 		if (!sig_kernel_coredump(sig)) {
1051 			/*
1052 			 * Start a group exit and wake everybody up.
1053 			 * This way we don't have other threads
1054 			 * running and doing things after a slower
1055 			 * thread has the fatal signal pending.
1056 			 */
1057 			signal->flags = SIGNAL_GROUP_EXIT;
1058 			signal->group_exit_code = sig;
1059 			signal->group_stop_count = 0;
1060 			t = p;
1061 			do {
1062 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1063 				sigaddset(&t->pending.signal, SIGKILL);
1064 				signal_wake_up(t, 1);
1065 			} while_each_thread(p, t);
1066 			return;
1067 		}
1068 	}
1069 
1070 	/*
1071 	 * The signal is already in the shared-pending queue.
1072 	 * Tell the chosen thread to wake up and dequeue it.
1073 	 */
1074 	signal_wake_up(t, sig == SIGKILL);
1075 	return;
1076 }
1077 
1078 static inline bool legacy_queue(struct sigpending *signals, int sig)
1079 {
1080 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1081 }
1082 
1083 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1084 			enum pid_type type, bool force)
1085 {
1086 	struct sigpending *pending;
1087 	struct sigqueue *q;
1088 	int override_rlimit;
1089 	int ret = 0, result;
1090 
1091 	assert_spin_locked(&t->sighand->siglock);
1092 
1093 	result = TRACE_SIGNAL_IGNORED;
1094 	if (!prepare_signal(sig, t, force))
1095 		goto ret;
1096 
1097 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1098 	/*
1099 	 * Short-circuit ignored signals and support queuing
1100 	 * exactly one non-rt signal, so that we can get more
1101 	 * detailed information about the cause of the signal.
1102 	 */
1103 	result = TRACE_SIGNAL_ALREADY_PENDING;
1104 	if (legacy_queue(pending, sig))
1105 		goto ret;
1106 
1107 	result = TRACE_SIGNAL_DELIVERED;
1108 	/*
1109 	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1110 	 */
1111 	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1112 		goto out_set;
1113 
1114 	/*
1115 	 * Real-time signals must be queued if sent by sigqueue, or
1116 	 * some other real-time mechanism.  It is implementation
1117 	 * defined whether kill() does so.  We attempt to do so, on
1118 	 * the principle of least surprise, but since kill is not
1119 	 * allowed to fail with EAGAIN when low on memory we just
1120 	 * make sure at least one signal gets delivered and don't
1121 	 * pass on the info struct.
1122 	 */
1123 	if (sig < SIGRTMIN)
1124 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1125 	else
1126 		override_rlimit = 0;
1127 
1128 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1129 
1130 	if (q) {
1131 		list_add_tail(&q->list, &pending->list);
1132 		switch ((unsigned long) info) {
1133 		case (unsigned long) SEND_SIG_NOINFO:
1134 			clear_siginfo(&q->info);
1135 			q->info.si_signo = sig;
1136 			q->info.si_errno = 0;
1137 			q->info.si_code = SI_USER;
1138 			q->info.si_pid = task_tgid_nr_ns(current,
1139 							task_active_pid_ns(t));
1140 			rcu_read_lock();
1141 			q->info.si_uid =
1142 				from_kuid_munged(task_cred_xxx(t, user_ns),
1143 						 current_uid());
1144 			rcu_read_unlock();
1145 			break;
1146 		case (unsigned long) SEND_SIG_PRIV:
1147 			clear_siginfo(&q->info);
1148 			q->info.si_signo = sig;
1149 			q->info.si_errno = 0;
1150 			q->info.si_code = SI_KERNEL;
1151 			q->info.si_pid = 0;
1152 			q->info.si_uid = 0;
1153 			break;
1154 		default:
1155 			copy_siginfo(&q->info, info);
1156 			break;
1157 		}
1158 	} else if (!is_si_special(info) &&
1159 		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1160 		/*
1161 		 * Queue overflow, abort.  We may abort if the
1162 		 * signal was rt and sent by user using something
1163 		 * other than kill().
1164 		 */
1165 		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1166 		ret = -EAGAIN;
1167 		goto ret;
1168 	} else {
1169 		/*
1170 		 * This is a silent loss of information.  We still
1171 		 * send the signal, but the *info bits are lost.
1172 		 */
1173 		result = TRACE_SIGNAL_LOSE_INFO;
1174 	}
1175 
1176 out_set:
1177 	signalfd_notify(t, sig);
1178 	sigaddset(&pending->signal, sig);
1179 
1180 	/* Let multiprocess signals appear after on-going forks */
1181 	if (type > PIDTYPE_TGID) {
1182 		struct multiprocess_signals *delayed;
1183 		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1184 			sigset_t *signal = &delayed->signal;
1185 			/* Can't queue both a stop and a continue signal */
1186 			if (sig == SIGCONT)
1187 				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1188 			else if (sig_kernel_stop(sig))
1189 				sigdelset(signal, SIGCONT);
1190 			sigaddset(signal, sig);
1191 		}
1192 	}
1193 
1194 	complete_signal(sig, t, type);
1195 ret:
1196 	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1197 	return ret;
1198 }
1199 
1200 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1201 {
1202 	bool ret = false;
1203 	switch (siginfo_layout(info->si_signo, info->si_code)) {
1204 	case SIL_KILL:
1205 	case SIL_CHLD:
1206 	case SIL_RT:
1207 		ret = true;
1208 		break;
1209 	case SIL_TIMER:
1210 	case SIL_POLL:
1211 	case SIL_FAULT:
1212 	case SIL_FAULT_TRAPNO:
1213 	case SIL_FAULT_MCEERR:
1214 	case SIL_FAULT_BNDERR:
1215 	case SIL_FAULT_PKUERR:
1216 	case SIL_PERF_EVENT:
1217 	case SIL_SYS:
1218 		ret = false;
1219 		break;
1220 	}
1221 	return ret;
1222 }
1223 
1224 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1225 			enum pid_type type)
1226 {
1227 	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1228 	bool force = false;
1229 
1230 	if (info == SEND_SIG_NOINFO) {
1231 		/* Force if sent from an ancestor pid namespace */
1232 		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1233 	} else if (info == SEND_SIG_PRIV) {
1234 		/* Don't ignore kernel generated signals */
1235 		force = true;
1236 	} else if (has_si_pid_and_uid(info)) {
1237 		/* SIGKILL and SIGSTOP is special or has ids */
1238 		struct user_namespace *t_user_ns;
1239 
1240 		rcu_read_lock();
1241 		t_user_ns = task_cred_xxx(t, user_ns);
1242 		if (current_user_ns() != t_user_ns) {
1243 			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1244 			info->si_uid = from_kuid_munged(t_user_ns, uid);
1245 		}
1246 		rcu_read_unlock();
1247 
1248 		/* A kernel generated signal? */
1249 		force = (info->si_code == SI_KERNEL);
1250 
1251 		/* From an ancestor pid namespace? */
1252 		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1253 			info->si_pid = 0;
1254 			force = true;
1255 		}
1256 	}
1257 	return __send_signal(sig, info, t, type, force);
1258 }
1259 
1260 static void print_fatal_signal(int signr)
1261 {
1262 	struct pt_regs *regs = signal_pt_regs();
1263 	pr_info("potentially unexpected fatal signal %d.\n", signr);
1264 
1265 #if defined(__i386__) && !defined(__arch_um__)
1266 	pr_info("code at %08lx: ", regs->ip);
1267 	{
1268 		int i;
1269 		for (i = 0; i < 16; i++) {
1270 			unsigned char insn;
1271 
1272 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1273 				break;
1274 			pr_cont("%02x ", insn);
1275 		}
1276 	}
1277 	pr_cont("\n");
1278 #endif
1279 	preempt_disable();
1280 	show_regs(regs);
1281 	preempt_enable();
1282 }
1283 
1284 static int __init setup_print_fatal_signals(char *str)
1285 {
1286 	get_option (&str, &print_fatal_signals);
1287 
1288 	return 1;
1289 }
1290 
1291 __setup("print-fatal-signals=", setup_print_fatal_signals);
1292 
1293 int
1294 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1295 {
1296 	return send_signal(sig, info, p, PIDTYPE_TGID);
1297 }
1298 
1299 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1300 			enum pid_type type)
1301 {
1302 	unsigned long flags;
1303 	int ret = -ESRCH;
1304 
1305 	if (lock_task_sighand(p, &flags)) {
1306 		ret = send_signal(sig, info, p, type);
1307 		unlock_task_sighand(p, &flags);
1308 	}
1309 
1310 	return ret;
1311 }
1312 
1313 /*
1314  * Force a signal that the process can't ignore: if necessary
1315  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1316  *
1317  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1318  * since we do not want to have a signal handler that was blocked
1319  * be invoked when user space had explicitly blocked it.
1320  *
1321  * We don't want to have recursive SIGSEGV's etc, for example,
1322  * that is why we also clear SIGNAL_UNKILLABLE.
1323  */
1324 static int
1325 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
1326 {
1327 	unsigned long int flags;
1328 	int ret, blocked, ignored;
1329 	struct k_sigaction *action;
1330 	int sig = info->si_signo;
1331 
1332 	spin_lock_irqsave(&t->sighand->siglock, flags);
1333 	action = &t->sighand->action[sig-1];
1334 	ignored = action->sa.sa_handler == SIG_IGN;
1335 	blocked = sigismember(&t->blocked, sig);
1336 	if (blocked || ignored) {
1337 		action->sa.sa_handler = SIG_DFL;
1338 		if (blocked) {
1339 			sigdelset(&t->blocked, sig);
1340 			recalc_sigpending_and_wake(t);
1341 		}
1342 	}
1343 	/*
1344 	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1345 	 * debugging to leave init killable.
1346 	 */
1347 	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1348 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1349 	ret = send_signal(sig, info, t, PIDTYPE_PID);
1350 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1351 
1352 	return ret;
1353 }
1354 
1355 int force_sig_info(struct kernel_siginfo *info)
1356 {
1357 	return force_sig_info_to_task(info, current);
1358 }
1359 
1360 /*
1361  * Nuke all other threads in the group.
1362  */
1363 int zap_other_threads(struct task_struct *p)
1364 {
1365 	struct task_struct *t = p;
1366 	int count = 0;
1367 
1368 	p->signal->group_stop_count = 0;
1369 
1370 	while_each_thread(p, t) {
1371 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1372 		count++;
1373 
1374 		/* Don't bother with already dead threads */
1375 		if (t->exit_state)
1376 			continue;
1377 		sigaddset(&t->pending.signal, SIGKILL);
1378 		signal_wake_up(t, 1);
1379 	}
1380 
1381 	return count;
1382 }
1383 
1384 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1385 					   unsigned long *flags)
1386 {
1387 	struct sighand_struct *sighand;
1388 
1389 	rcu_read_lock();
1390 	for (;;) {
1391 		sighand = rcu_dereference(tsk->sighand);
1392 		if (unlikely(sighand == NULL))
1393 			break;
1394 
1395 		/*
1396 		 * This sighand can be already freed and even reused, but
1397 		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1398 		 * initializes ->siglock: this slab can't go away, it has
1399 		 * the same object type, ->siglock can't be reinitialized.
1400 		 *
1401 		 * We need to ensure that tsk->sighand is still the same
1402 		 * after we take the lock, we can race with de_thread() or
1403 		 * __exit_signal(). In the latter case the next iteration
1404 		 * must see ->sighand == NULL.
1405 		 */
1406 		spin_lock_irqsave(&sighand->siglock, *flags);
1407 		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1408 			break;
1409 		spin_unlock_irqrestore(&sighand->siglock, *flags);
1410 	}
1411 	rcu_read_unlock();
1412 
1413 	return sighand;
1414 }
1415 
1416 #ifdef CONFIG_LOCKDEP
1417 void lockdep_assert_task_sighand_held(struct task_struct *task)
1418 {
1419 	struct sighand_struct *sighand;
1420 
1421 	rcu_read_lock();
1422 	sighand = rcu_dereference(task->sighand);
1423 	if (sighand)
1424 		lockdep_assert_held(&sighand->siglock);
1425 	else
1426 		WARN_ON_ONCE(1);
1427 	rcu_read_unlock();
1428 }
1429 #endif
1430 
1431 /*
1432  * send signal info to all the members of a group
1433  */
1434 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1435 			struct task_struct *p, enum pid_type type)
1436 {
1437 	int ret;
1438 
1439 	rcu_read_lock();
1440 	ret = check_kill_permission(sig, info, p);
1441 	rcu_read_unlock();
1442 
1443 	if (!ret && sig)
1444 		ret = do_send_sig_info(sig, info, p, type);
1445 
1446 	return ret;
1447 }
1448 
1449 /*
1450  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1451  * control characters do (^C, ^Z etc)
1452  * - the caller must hold at least a readlock on tasklist_lock
1453  */
1454 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1455 {
1456 	struct task_struct *p = NULL;
1457 	int retval, success;
1458 
1459 	success = 0;
1460 	retval = -ESRCH;
1461 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1462 		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1463 		success |= !err;
1464 		retval = err;
1465 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1466 	return success ? 0 : retval;
1467 }
1468 
1469 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1470 {
1471 	int error = -ESRCH;
1472 	struct task_struct *p;
1473 
1474 	for (;;) {
1475 		rcu_read_lock();
1476 		p = pid_task(pid, PIDTYPE_PID);
1477 		if (p)
1478 			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1479 		rcu_read_unlock();
1480 		if (likely(!p || error != -ESRCH))
1481 			return error;
1482 
1483 		/*
1484 		 * The task was unhashed in between, try again.  If it
1485 		 * is dead, pid_task() will return NULL, if we race with
1486 		 * de_thread() it will find the new leader.
1487 		 */
1488 	}
1489 }
1490 
1491 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1492 {
1493 	int error;
1494 	rcu_read_lock();
1495 	error = kill_pid_info(sig, info, find_vpid(pid));
1496 	rcu_read_unlock();
1497 	return error;
1498 }
1499 
1500 static inline bool kill_as_cred_perm(const struct cred *cred,
1501 				     struct task_struct *target)
1502 {
1503 	const struct cred *pcred = __task_cred(target);
1504 
1505 	return uid_eq(cred->euid, pcred->suid) ||
1506 	       uid_eq(cred->euid, pcred->uid) ||
1507 	       uid_eq(cred->uid, pcred->suid) ||
1508 	       uid_eq(cred->uid, pcred->uid);
1509 }
1510 
1511 /*
1512  * The usb asyncio usage of siginfo is wrong.  The glibc support
1513  * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1514  * AKA after the generic fields:
1515  *	kernel_pid_t	si_pid;
1516  *	kernel_uid32_t	si_uid;
1517  *	sigval_t	si_value;
1518  *
1519  * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1520  * after the generic fields is:
1521  *	void __user 	*si_addr;
1522  *
1523  * This is a practical problem when there is a 64bit big endian kernel
1524  * and a 32bit userspace.  As the 32bit address will encoded in the low
1525  * 32bits of the pointer.  Those low 32bits will be stored at higher
1526  * address than appear in a 32 bit pointer.  So userspace will not
1527  * see the address it was expecting for it's completions.
1528  *
1529  * There is nothing in the encoding that can allow
1530  * copy_siginfo_to_user32 to detect this confusion of formats, so
1531  * handle this by requiring the caller of kill_pid_usb_asyncio to
1532  * notice when this situration takes place and to store the 32bit
1533  * pointer in sival_int, instead of sival_addr of the sigval_t addr
1534  * parameter.
1535  */
1536 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1537 			 struct pid *pid, const struct cred *cred)
1538 {
1539 	struct kernel_siginfo info;
1540 	struct task_struct *p;
1541 	unsigned long flags;
1542 	int ret = -EINVAL;
1543 
1544 	if (!valid_signal(sig))
1545 		return ret;
1546 
1547 	clear_siginfo(&info);
1548 	info.si_signo = sig;
1549 	info.si_errno = errno;
1550 	info.si_code = SI_ASYNCIO;
1551 	*((sigval_t *)&info.si_pid) = addr;
1552 
1553 	rcu_read_lock();
1554 	p = pid_task(pid, PIDTYPE_PID);
1555 	if (!p) {
1556 		ret = -ESRCH;
1557 		goto out_unlock;
1558 	}
1559 	if (!kill_as_cred_perm(cred, p)) {
1560 		ret = -EPERM;
1561 		goto out_unlock;
1562 	}
1563 	ret = security_task_kill(p, &info, sig, cred);
1564 	if (ret)
1565 		goto out_unlock;
1566 
1567 	if (sig) {
1568 		if (lock_task_sighand(p, &flags)) {
1569 			ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1570 			unlock_task_sighand(p, &flags);
1571 		} else
1572 			ret = -ESRCH;
1573 	}
1574 out_unlock:
1575 	rcu_read_unlock();
1576 	return ret;
1577 }
1578 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1579 
1580 /*
1581  * kill_something_info() interprets pid in interesting ways just like kill(2).
1582  *
1583  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1584  * is probably wrong.  Should make it like BSD or SYSV.
1585  */
1586 
1587 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1588 {
1589 	int ret;
1590 
1591 	if (pid > 0)
1592 		return kill_proc_info(sig, info, pid);
1593 
1594 	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1595 	if (pid == INT_MIN)
1596 		return -ESRCH;
1597 
1598 	read_lock(&tasklist_lock);
1599 	if (pid != -1) {
1600 		ret = __kill_pgrp_info(sig, info,
1601 				pid ? find_vpid(-pid) : task_pgrp(current));
1602 	} else {
1603 		int retval = 0, count = 0;
1604 		struct task_struct * p;
1605 
1606 		for_each_process(p) {
1607 			if (task_pid_vnr(p) > 1 &&
1608 					!same_thread_group(p, current)) {
1609 				int err = group_send_sig_info(sig, info, p,
1610 							      PIDTYPE_MAX);
1611 				++count;
1612 				if (err != -EPERM)
1613 					retval = err;
1614 			}
1615 		}
1616 		ret = count ? retval : -ESRCH;
1617 	}
1618 	read_unlock(&tasklist_lock);
1619 
1620 	return ret;
1621 }
1622 
1623 /*
1624  * These are for backward compatibility with the rest of the kernel source.
1625  */
1626 
1627 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1628 {
1629 	/*
1630 	 * Make sure legacy kernel users don't send in bad values
1631 	 * (normal paths check this in check_kill_permission).
1632 	 */
1633 	if (!valid_signal(sig))
1634 		return -EINVAL;
1635 
1636 	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1637 }
1638 EXPORT_SYMBOL(send_sig_info);
1639 
1640 #define __si_special(priv) \
1641 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1642 
1643 int
1644 send_sig(int sig, struct task_struct *p, int priv)
1645 {
1646 	return send_sig_info(sig, __si_special(priv), p);
1647 }
1648 EXPORT_SYMBOL(send_sig);
1649 
1650 void force_sig(int sig)
1651 {
1652 	struct kernel_siginfo info;
1653 
1654 	clear_siginfo(&info);
1655 	info.si_signo = sig;
1656 	info.si_errno = 0;
1657 	info.si_code = SI_KERNEL;
1658 	info.si_pid = 0;
1659 	info.si_uid = 0;
1660 	force_sig_info(&info);
1661 }
1662 EXPORT_SYMBOL(force_sig);
1663 
1664 /*
1665  * When things go south during signal handling, we
1666  * will force a SIGSEGV. And if the signal that caused
1667  * the problem was already a SIGSEGV, we'll want to
1668  * make sure we don't even try to deliver the signal..
1669  */
1670 void force_sigsegv(int sig)
1671 {
1672 	struct task_struct *p = current;
1673 
1674 	if (sig == SIGSEGV) {
1675 		unsigned long flags;
1676 		spin_lock_irqsave(&p->sighand->siglock, flags);
1677 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1678 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1679 	}
1680 	force_sig(SIGSEGV);
1681 }
1682 
1683 int force_sig_fault_to_task(int sig, int code, void __user *addr
1684 	___ARCH_SI_TRAPNO(int trapno)
1685 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1686 	, struct task_struct *t)
1687 {
1688 	struct kernel_siginfo info;
1689 
1690 	clear_siginfo(&info);
1691 	info.si_signo = sig;
1692 	info.si_errno = 0;
1693 	info.si_code  = code;
1694 	info.si_addr  = addr;
1695 #ifdef __ARCH_SI_TRAPNO
1696 	info.si_trapno = trapno;
1697 #endif
1698 #ifdef __ia64__
1699 	info.si_imm = imm;
1700 	info.si_flags = flags;
1701 	info.si_isr = isr;
1702 #endif
1703 	return force_sig_info_to_task(&info, t);
1704 }
1705 
1706 int force_sig_fault(int sig, int code, void __user *addr
1707 	___ARCH_SI_TRAPNO(int trapno)
1708 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1709 {
1710 	return force_sig_fault_to_task(sig, code, addr
1711 				       ___ARCH_SI_TRAPNO(trapno)
1712 				       ___ARCH_SI_IA64(imm, flags, isr), current);
1713 }
1714 
1715 int send_sig_fault(int sig, int code, void __user *addr
1716 	___ARCH_SI_TRAPNO(int trapno)
1717 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1718 	, struct task_struct *t)
1719 {
1720 	struct kernel_siginfo info;
1721 
1722 	clear_siginfo(&info);
1723 	info.si_signo = sig;
1724 	info.si_errno = 0;
1725 	info.si_code  = code;
1726 	info.si_addr  = addr;
1727 #ifdef __ARCH_SI_TRAPNO
1728 	info.si_trapno = trapno;
1729 #endif
1730 #ifdef __ia64__
1731 	info.si_imm = imm;
1732 	info.si_flags = flags;
1733 	info.si_isr = isr;
1734 #endif
1735 	return send_sig_info(info.si_signo, &info, t);
1736 }
1737 
1738 int force_sig_mceerr(int code, void __user *addr, short lsb)
1739 {
1740 	struct kernel_siginfo info;
1741 
1742 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1743 	clear_siginfo(&info);
1744 	info.si_signo = SIGBUS;
1745 	info.si_errno = 0;
1746 	info.si_code = code;
1747 	info.si_addr = addr;
1748 	info.si_addr_lsb = lsb;
1749 	return force_sig_info(&info);
1750 }
1751 
1752 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1753 {
1754 	struct kernel_siginfo info;
1755 
1756 	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1757 	clear_siginfo(&info);
1758 	info.si_signo = SIGBUS;
1759 	info.si_errno = 0;
1760 	info.si_code = code;
1761 	info.si_addr = addr;
1762 	info.si_addr_lsb = lsb;
1763 	return send_sig_info(info.si_signo, &info, t);
1764 }
1765 EXPORT_SYMBOL(send_sig_mceerr);
1766 
1767 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1768 {
1769 	struct kernel_siginfo info;
1770 
1771 	clear_siginfo(&info);
1772 	info.si_signo = SIGSEGV;
1773 	info.si_errno = 0;
1774 	info.si_code  = SEGV_BNDERR;
1775 	info.si_addr  = addr;
1776 	info.si_lower = lower;
1777 	info.si_upper = upper;
1778 	return force_sig_info(&info);
1779 }
1780 
1781 #ifdef SEGV_PKUERR
1782 int force_sig_pkuerr(void __user *addr, u32 pkey)
1783 {
1784 	struct kernel_siginfo info;
1785 
1786 	clear_siginfo(&info);
1787 	info.si_signo = SIGSEGV;
1788 	info.si_errno = 0;
1789 	info.si_code  = SEGV_PKUERR;
1790 	info.si_addr  = addr;
1791 	info.si_pkey  = pkey;
1792 	return force_sig_info(&info);
1793 }
1794 #endif
1795 
1796 int force_sig_perf(void __user *addr, u32 type, u64 sig_data)
1797 {
1798 	struct kernel_siginfo info;
1799 
1800 	clear_siginfo(&info);
1801 	info.si_signo     = SIGTRAP;
1802 	info.si_errno     = 0;
1803 	info.si_code      = TRAP_PERF;
1804 	info.si_addr      = addr;
1805 	info.si_perf_data = sig_data;
1806 	info.si_perf_type = type;
1807 
1808 	return force_sig_info(&info);
1809 }
1810 
1811 /* For the crazy architectures that include trap information in
1812  * the errno field, instead of an actual errno value.
1813  */
1814 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1815 {
1816 	struct kernel_siginfo info;
1817 
1818 	clear_siginfo(&info);
1819 	info.si_signo = SIGTRAP;
1820 	info.si_errno = errno;
1821 	info.si_code  = TRAP_HWBKPT;
1822 	info.si_addr  = addr;
1823 	return force_sig_info(&info);
1824 }
1825 
1826 int kill_pgrp(struct pid *pid, int sig, int priv)
1827 {
1828 	int ret;
1829 
1830 	read_lock(&tasklist_lock);
1831 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1832 	read_unlock(&tasklist_lock);
1833 
1834 	return ret;
1835 }
1836 EXPORT_SYMBOL(kill_pgrp);
1837 
1838 int kill_pid(struct pid *pid, int sig, int priv)
1839 {
1840 	return kill_pid_info(sig, __si_special(priv), pid);
1841 }
1842 EXPORT_SYMBOL(kill_pid);
1843 
1844 /*
1845  * These functions support sending signals using preallocated sigqueue
1846  * structures.  This is needed "because realtime applications cannot
1847  * afford to lose notifications of asynchronous events, like timer
1848  * expirations or I/O completions".  In the case of POSIX Timers
1849  * we allocate the sigqueue structure from the timer_create.  If this
1850  * allocation fails we are able to report the failure to the application
1851  * with an EAGAIN error.
1852  */
1853 struct sigqueue *sigqueue_alloc(void)
1854 {
1855 	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1856 }
1857 
1858 void sigqueue_free(struct sigqueue *q)
1859 {
1860 	unsigned long flags;
1861 	spinlock_t *lock = &current->sighand->siglock;
1862 
1863 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1864 	/*
1865 	 * We must hold ->siglock while testing q->list
1866 	 * to serialize with collect_signal() or with
1867 	 * __exit_signal()->flush_sigqueue().
1868 	 */
1869 	spin_lock_irqsave(lock, flags);
1870 	q->flags &= ~SIGQUEUE_PREALLOC;
1871 	/*
1872 	 * If it is queued it will be freed when dequeued,
1873 	 * like the "regular" sigqueue.
1874 	 */
1875 	if (!list_empty(&q->list))
1876 		q = NULL;
1877 	spin_unlock_irqrestore(lock, flags);
1878 
1879 	if (q)
1880 		__sigqueue_free(q);
1881 }
1882 
1883 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1884 {
1885 	int sig = q->info.si_signo;
1886 	struct sigpending *pending;
1887 	struct task_struct *t;
1888 	unsigned long flags;
1889 	int ret, result;
1890 
1891 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1892 
1893 	ret = -1;
1894 	rcu_read_lock();
1895 	t = pid_task(pid, type);
1896 	if (!t || !likely(lock_task_sighand(t, &flags)))
1897 		goto ret;
1898 
1899 	ret = 1; /* the signal is ignored */
1900 	result = TRACE_SIGNAL_IGNORED;
1901 	if (!prepare_signal(sig, t, false))
1902 		goto out;
1903 
1904 	ret = 0;
1905 	if (unlikely(!list_empty(&q->list))) {
1906 		/*
1907 		 * If an SI_TIMER entry is already queue just increment
1908 		 * the overrun count.
1909 		 */
1910 		BUG_ON(q->info.si_code != SI_TIMER);
1911 		q->info.si_overrun++;
1912 		result = TRACE_SIGNAL_ALREADY_PENDING;
1913 		goto out;
1914 	}
1915 	q->info.si_overrun = 0;
1916 
1917 	signalfd_notify(t, sig);
1918 	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1919 	list_add_tail(&q->list, &pending->list);
1920 	sigaddset(&pending->signal, sig);
1921 	complete_signal(sig, t, type);
1922 	result = TRACE_SIGNAL_DELIVERED;
1923 out:
1924 	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1925 	unlock_task_sighand(t, &flags);
1926 ret:
1927 	rcu_read_unlock();
1928 	return ret;
1929 }
1930 
1931 static void do_notify_pidfd(struct task_struct *task)
1932 {
1933 	struct pid *pid;
1934 
1935 	WARN_ON(task->exit_state == 0);
1936 	pid = task_pid(task);
1937 	wake_up_all(&pid->wait_pidfd);
1938 }
1939 
1940 /*
1941  * Let a parent know about the death of a child.
1942  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1943  *
1944  * Returns true if our parent ignored us and so we've switched to
1945  * self-reaping.
1946  */
1947 bool do_notify_parent(struct task_struct *tsk, int sig)
1948 {
1949 	struct kernel_siginfo info;
1950 	unsigned long flags;
1951 	struct sighand_struct *psig;
1952 	bool autoreap = false;
1953 	u64 utime, stime;
1954 
1955 	BUG_ON(sig == -1);
1956 
1957  	/* do_notify_parent_cldstop should have been called instead.  */
1958  	BUG_ON(task_is_stopped_or_traced(tsk));
1959 
1960 	BUG_ON(!tsk->ptrace &&
1961 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1962 
1963 	/* Wake up all pidfd waiters */
1964 	do_notify_pidfd(tsk);
1965 
1966 	if (sig != SIGCHLD) {
1967 		/*
1968 		 * This is only possible if parent == real_parent.
1969 		 * Check if it has changed security domain.
1970 		 */
1971 		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
1972 			sig = SIGCHLD;
1973 	}
1974 
1975 	clear_siginfo(&info);
1976 	info.si_signo = sig;
1977 	info.si_errno = 0;
1978 	/*
1979 	 * We are under tasklist_lock here so our parent is tied to
1980 	 * us and cannot change.
1981 	 *
1982 	 * task_active_pid_ns will always return the same pid namespace
1983 	 * until a task passes through release_task.
1984 	 *
1985 	 * write_lock() currently calls preempt_disable() which is the
1986 	 * same as rcu_read_lock(), but according to Oleg, this is not
1987 	 * correct to rely on this
1988 	 */
1989 	rcu_read_lock();
1990 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1991 	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1992 				       task_uid(tsk));
1993 	rcu_read_unlock();
1994 
1995 	task_cputime(tsk, &utime, &stime);
1996 	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1997 	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1998 
1999 	info.si_status = tsk->exit_code & 0x7f;
2000 	if (tsk->exit_code & 0x80)
2001 		info.si_code = CLD_DUMPED;
2002 	else if (tsk->exit_code & 0x7f)
2003 		info.si_code = CLD_KILLED;
2004 	else {
2005 		info.si_code = CLD_EXITED;
2006 		info.si_status = tsk->exit_code >> 8;
2007 	}
2008 
2009 	psig = tsk->parent->sighand;
2010 	spin_lock_irqsave(&psig->siglock, flags);
2011 	if (!tsk->ptrace && sig == SIGCHLD &&
2012 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2013 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2014 		/*
2015 		 * We are exiting and our parent doesn't care.  POSIX.1
2016 		 * defines special semantics for setting SIGCHLD to SIG_IGN
2017 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2018 		 * automatically and not left for our parent's wait4 call.
2019 		 * Rather than having the parent do it as a magic kind of
2020 		 * signal handler, we just set this to tell do_exit that we
2021 		 * can be cleaned up without becoming a zombie.  Note that
2022 		 * we still call __wake_up_parent in this case, because a
2023 		 * blocked sys_wait4 might now return -ECHILD.
2024 		 *
2025 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2026 		 * is implementation-defined: we do (if you don't want
2027 		 * it, just use SIG_IGN instead).
2028 		 */
2029 		autoreap = true;
2030 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2031 			sig = 0;
2032 	}
2033 	/*
2034 	 * Send with __send_signal as si_pid and si_uid are in the
2035 	 * parent's namespaces.
2036 	 */
2037 	if (valid_signal(sig) && sig)
2038 		__send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2039 	__wake_up_parent(tsk, tsk->parent);
2040 	spin_unlock_irqrestore(&psig->siglock, flags);
2041 
2042 	return autoreap;
2043 }
2044 
2045 /**
2046  * do_notify_parent_cldstop - notify parent of stopped/continued state change
2047  * @tsk: task reporting the state change
2048  * @for_ptracer: the notification is for ptracer
2049  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2050  *
2051  * Notify @tsk's parent that the stopped/continued state has changed.  If
2052  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2053  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2054  *
2055  * CONTEXT:
2056  * Must be called with tasklist_lock at least read locked.
2057  */
2058 static void do_notify_parent_cldstop(struct task_struct *tsk,
2059 				     bool for_ptracer, int why)
2060 {
2061 	struct kernel_siginfo info;
2062 	unsigned long flags;
2063 	struct task_struct *parent;
2064 	struct sighand_struct *sighand;
2065 	u64 utime, stime;
2066 
2067 	if (for_ptracer) {
2068 		parent = tsk->parent;
2069 	} else {
2070 		tsk = tsk->group_leader;
2071 		parent = tsk->real_parent;
2072 	}
2073 
2074 	clear_siginfo(&info);
2075 	info.si_signo = SIGCHLD;
2076 	info.si_errno = 0;
2077 	/*
2078 	 * see comment in do_notify_parent() about the following 4 lines
2079 	 */
2080 	rcu_read_lock();
2081 	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2082 	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2083 	rcu_read_unlock();
2084 
2085 	task_cputime(tsk, &utime, &stime);
2086 	info.si_utime = nsec_to_clock_t(utime);
2087 	info.si_stime = nsec_to_clock_t(stime);
2088 
2089  	info.si_code = why;
2090  	switch (why) {
2091  	case CLD_CONTINUED:
2092  		info.si_status = SIGCONT;
2093  		break;
2094  	case CLD_STOPPED:
2095  		info.si_status = tsk->signal->group_exit_code & 0x7f;
2096  		break;
2097  	case CLD_TRAPPED:
2098  		info.si_status = tsk->exit_code & 0x7f;
2099  		break;
2100  	default:
2101  		BUG();
2102  	}
2103 
2104 	sighand = parent->sighand;
2105 	spin_lock_irqsave(&sighand->siglock, flags);
2106 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2107 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2108 		__group_send_sig_info(SIGCHLD, &info, parent);
2109 	/*
2110 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2111 	 */
2112 	__wake_up_parent(tsk, parent);
2113 	spin_unlock_irqrestore(&sighand->siglock, flags);
2114 }
2115 
2116 static inline bool may_ptrace_stop(void)
2117 {
2118 	if (!likely(current->ptrace))
2119 		return false;
2120 	/*
2121 	 * Are we in the middle of do_coredump?
2122 	 * If so and our tracer is also part of the coredump stopping
2123 	 * is a deadlock situation, and pointless because our tracer
2124 	 * is dead so don't allow us to stop.
2125 	 * If SIGKILL was already sent before the caller unlocked
2126 	 * ->siglock we must see ->core_state != NULL. Otherwise it
2127 	 * is safe to enter schedule().
2128 	 *
2129 	 * This is almost outdated, a task with the pending SIGKILL can't
2130 	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2131 	 * after SIGKILL was already dequeued.
2132 	 */
2133 	if (unlikely(current->mm->core_state) &&
2134 	    unlikely(current->mm == current->parent->mm))
2135 		return false;
2136 
2137 	return true;
2138 }
2139 
2140 /*
2141  * Return non-zero if there is a SIGKILL that should be waking us up.
2142  * Called with the siglock held.
2143  */
2144 static bool sigkill_pending(struct task_struct *tsk)
2145 {
2146 	return sigismember(&tsk->pending.signal, SIGKILL) ||
2147 	       sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2148 }
2149 
2150 /*
2151  * This must be called with current->sighand->siglock held.
2152  *
2153  * This should be the path for all ptrace stops.
2154  * We always set current->last_siginfo while stopped here.
2155  * That makes it a way to test a stopped process for
2156  * being ptrace-stopped vs being job-control-stopped.
2157  *
2158  * If we actually decide not to stop at all because the tracer
2159  * is gone, we keep current->exit_code unless clear_code.
2160  */
2161 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2162 	__releases(&current->sighand->siglock)
2163 	__acquires(&current->sighand->siglock)
2164 {
2165 	bool gstop_done = false;
2166 
2167 	if (arch_ptrace_stop_needed(exit_code, info)) {
2168 		/*
2169 		 * The arch code has something special to do before a
2170 		 * ptrace stop.  This is allowed to block, e.g. for faults
2171 		 * on user stack pages.  We can't keep the siglock while
2172 		 * calling arch_ptrace_stop, so we must release it now.
2173 		 * To preserve proper semantics, we must do this before
2174 		 * any signal bookkeeping like checking group_stop_count.
2175 		 * Meanwhile, a SIGKILL could come in before we retake the
2176 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
2177 		 * So after regaining the lock, we must check for SIGKILL.
2178 		 */
2179 		spin_unlock_irq(&current->sighand->siglock);
2180 		arch_ptrace_stop(exit_code, info);
2181 		spin_lock_irq(&current->sighand->siglock);
2182 		if (sigkill_pending(current))
2183 			return;
2184 	}
2185 
2186 	set_special_state(TASK_TRACED);
2187 
2188 	/*
2189 	 * We're committing to trapping.  TRACED should be visible before
2190 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2191 	 * Also, transition to TRACED and updates to ->jobctl should be
2192 	 * atomic with respect to siglock and should be done after the arch
2193 	 * hook as siglock is released and regrabbed across it.
2194 	 *
2195 	 *     TRACER				    TRACEE
2196 	 *
2197 	 *     ptrace_attach()
2198 	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2199 	 *     do_wait()
2200 	 *       set_current_state()                smp_wmb();
2201 	 *       ptrace_do_wait()
2202 	 *         wait_task_stopped()
2203 	 *           task_stopped_code()
2204 	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2205 	 */
2206 	smp_wmb();
2207 
2208 	current->last_siginfo = info;
2209 	current->exit_code = exit_code;
2210 
2211 	/*
2212 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2213 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2214 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2215 	 * could be clear now.  We act as if SIGCONT is received after
2216 	 * TASK_TRACED is entered - ignore it.
2217 	 */
2218 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2219 		gstop_done = task_participate_group_stop(current);
2220 
2221 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2222 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2223 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2224 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2225 
2226 	/* entering a trap, clear TRAPPING */
2227 	task_clear_jobctl_trapping(current);
2228 
2229 	spin_unlock_irq(&current->sighand->siglock);
2230 	read_lock(&tasklist_lock);
2231 	if (may_ptrace_stop()) {
2232 		/*
2233 		 * Notify parents of the stop.
2234 		 *
2235 		 * While ptraced, there are two parents - the ptracer and
2236 		 * the real_parent of the group_leader.  The ptracer should
2237 		 * know about every stop while the real parent is only
2238 		 * interested in the completion of group stop.  The states
2239 		 * for the two don't interact with each other.  Notify
2240 		 * separately unless they're gonna be duplicates.
2241 		 */
2242 		do_notify_parent_cldstop(current, true, why);
2243 		if (gstop_done && ptrace_reparented(current))
2244 			do_notify_parent_cldstop(current, false, why);
2245 
2246 		/*
2247 		 * Don't want to allow preemption here, because
2248 		 * sys_ptrace() needs this task to be inactive.
2249 		 *
2250 		 * XXX: implement read_unlock_no_resched().
2251 		 */
2252 		preempt_disable();
2253 		read_unlock(&tasklist_lock);
2254 		cgroup_enter_frozen();
2255 		preempt_enable_no_resched();
2256 		freezable_schedule();
2257 		cgroup_leave_frozen(true);
2258 	} else {
2259 		/*
2260 		 * By the time we got the lock, our tracer went away.
2261 		 * Don't drop the lock yet, another tracer may come.
2262 		 *
2263 		 * If @gstop_done, the ptracer went away between group stop
2264 		 * completion and here.  During detach, it would have set
2265 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2266 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2267 		 * the real parent of the group stop completion is enough.
2268 		 */
2269 		if (gstop_done)
2270 			do_notify_parent_cldstop(current, false, why);
2271 
2272 		/* tasklist protects us from ptrace_freeze_traced() */
2273 		__set_current_state(TASK_RUNNING);
2274 		if (clear_code)
2275 			current->exit_code = 0;
2276 		read_unlock(&tasklist_lock);
2277 	}
2278 
2279 	/*
2280 	 * We are back.  Now reacquire the siglock before touching
2281 	 * last_siginfo, so that we are sure to have synchronized with
2282 	 * any signal-sending on another CPU that wants to examine it.
2283 	 */
2284 	spin_lock_irq(&current->sighand->siglock);
2285 	current->last_siginfo = NULL;
2286 
2287 	/* LISTENING can be set only during STOP traps, clear it */
2288 	current->jobctl &= ~JOBCTL_LISTENING;
2289 
2290 	/*
2291 	 * Queued signals ignored us while we were stopped for tracing.
2292 	 * So check for any that we should take before resuming user mode.
2293 	 * This sets TIF_SIGPENDING, but never clears it.
2294 	 */
2295 	recalc_sigpending_tsk(current);
2296 }
2297 
2298 static void ptrace_do_notify(int signr, int exit_code, int why)
2299 {
2300 	kernel_siginfo_t info;
2301 
2302 	clear_siginfo(&info);
2303 	info.si_signo = signr;
2304 	info.si_code = exit_code;
2305 	info.si_pid = task_pid_vnr(current);
2306 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2307 
2308 	/* Let the debugger run.  */
2309 	ptrace_stop(exit_code, why, 1, &info);
2310 }
2311 
2312 void ptrace_notify(int exit_code)
2313 {
2314 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2315 	if (unlikely(current->task_works))
2316 		task_work_run();
2317 
2318 	spin_lock_irq(&current->sighand->siglock);
2319 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2320 	spin_unlock_irq(&current->sighand->siglock);
2321 }
2322 
2323 /**
2324  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2325  * @signr: signr causing group stop if initiating
2326  *
2327  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2328  * and participate in it.  If already set, participate in the existing
2329  * group stop.  If participated in a group stop (and thus slept), %true is
2330  * returned with siglock released.
2331  *
2332  * If ptraced, this function doesn't handle stop itself.  Instead,
2333  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2334  * untouched.  The caller must ensure that INTERRUPT trap handling takes
2335  * places afterwards.
2336  *
2337  * CONTEXT:
2338  * Must be called with @current->sighand->siglock held, which is released
2339  * on %true return.
2340  *
2341  * RETURNS:
2342  * %false if group stop is already cancelled or ptrace trap is scheduled.
2343  * %true if participated in group stop.
2344  */
2345 static bool do_signal_stop(int signr)
2346 	__releases(&current->sighand->siglock)
2347 {
2348 	struct signal_struct *sig = current->signal;
2349 
2350 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2351 		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2352 		struct task_struct *t;
2353 
2354 		/* signr will be recorded in task->jobctl for retries */
2355 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2356 
2357 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2358 		    unlikely(signal_group_exit(sig)))
2359 			return false;
2360 		/*
2361 		 * There is no group stop already in progress.  We must
2362 		 * initiate one now.
2363 		 *
2364 		 * While ptraced, a task may be resumed while group stop is
2365 		 * still in effect and then receive a stop signal and
2366 		 * initiate another group stop.  This deviates from the
2367 		 * usual behavior as two consecutive stop signals can't
2368 		 * cause two group stops when !ptraced.  That is why we
2369 		 * also check !task_is_stopped(t) below.
2370 		 *
2371 		 * The condition can be distinguished by testing whether
2372 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2373 		 * group_exit_code in such case.
2374 		 *
2375 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2376 		 * an intervening stop signal is required to cause two
2377 		 * continued events regardless of ptrace.
2378 		 */
2379 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2380 			sig->group_exit_code = signr;
2381 
2382 		sig->group_stop_count = 0;
2383 
2384 		if (task_set_jobctl_pending(current, signr | gstop))
2385 			sig->group_stop_count++;
2386 
2387 		t = current;
2388 		while_each_thread(current, t) {
2389 			/*
2390 			 * Setting state to TASK_STOPPED for a group
2391 			 * stop is always done with the siglock held,
2392 			 * so this check has no races.
2393 			 */
2394 			if (!task_is_stopped(t) &&
2395 			    task_set_jobctl_pending(t, signr | gstop)) {
2396 				sig->group_stop_count++;
2397 				if (likely(!(t->ptrace & PT_SEIZED)))
2398 					signal_wake_up(t, 0);
2399 				else
2400 					ptrace_trap_notify(t);
2401 			}
2402 		}
2403 	}
2404 
2405 	if (likely(!current->ptrace)) {
2406 		int notify = 0;
2407 
2408 		/*
2409 		 * If there are no other threads in the group, or if there
2410 		 * is a group stop in progress and we are the last to stop,
2411 		 * report to the parent.
2412 		 */
2413 		if (task_participate_group_stop(current))
2414 			notify = CLD_STOPPED;
2415 
2416 		set_special_state(TASK_STOPPED);
2417 		spin_unlock_irq(&current->sighand->siglock);
2418 
2419 		/*
2420 		 * Notify the parent of the group stop completion.  Because
2421 		 * we're not holding either the siglock or tasklist_lock
2422 		 * here, ptracer may attach inbetween; however, this is for
2423 		 * group stop and should always be delivered to the real
2424 		 * parent of the group leader.  The new ptracer will get
2425 		 * its notification when this task transitions into
2426 		 * TASK_TRACED.
2427 		 */
2428 		if (notify) {
2429 			read_lock(&tasklist_lock);
2430 			do_notify_parent_cldstop(current, false, notify);
2431 			read_unlock(&tasklist_lock);
2432 		}
2433 
2434 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2435 		cgroup_enter_frozen();
2436 		freezable_schedule();
2437 		return true;
2438 	} else {
2439 		/*
2440 		 * While ptraced, group stop is handled by STOP trap.
2441 		 * Schedule it and let the caller deal with it.
2442 		 */
2443 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2444 		return false;
2445 	}
2446 }
2447 
2448 /**
2449  * do_jobctl_trap - take care of ptrace jobctl traps
2450  *
2451  * When PT_SEIZED, it's used for both group stop and explicit
2452  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2453  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2454  * the stop signal; otherwise, %SIGTRAP.
2455  *
2456  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2457  * number as exit_code and no siginfo.
2458  *
2459  * CONTEXT:
2460  * Must be called with @current->sighand->siglock held, which may be
2461  * released and re-acquired before returning with intervening sleep.
2462  */
2463 static void do_jobctl_trap(void)
2464 {
2465 	struct signal_struct *signal = current->signal;
2466 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2467 
2468 	if (current->ptrace & PT_SEIZED) {
2469 		if (!signal->group_stop_count &&
2470 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2471 			signr = SIGTRAP;
2472 		WARN_ON_ONCE(!signr);
2473 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2474 				 CLD_STOPPED);
2475 	} else {
2476 		WARN_ON_ONCE(!signr);
2477 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2478 		current->exit_code = 0;
2479 	}
2480 }
2481 
2482 /**
2483  * do_freezer_trap - handle the freezer jobctl trap
2484  *
2485  * Puts the task into frozen state, if only the task is not about to quit.
2486  * In this case it drops JOBCTL_TRAP_FREEZE.
2487  *
2488  * CONTEXT:
2489  * Must be called with @current->sighand->siglock held,
2490  * which is always released before returning.
2491  */
2492 static void do_freezer_trap(void)
2493 	__releases(&current->sighand->siglock)
2494 {
2495 	/*
2496 	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2497 	 * let's make another loop to give it a chance to be handled.
2498 	 * In any case, we'll return back.
2499 	 */
2500 	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2501 	     JOBCTL_TRAP_FREEZE) {
2502 		spin_unlock_irq(&current->sighand->siglock);
2503 		return;
2504 	}
2505 
2506 	/*
2507 	 * Now we're sure that there is no pending fatal signal and no
2508 	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2509 	 * immediately (if there is a non-fatal signal pending), and
2510 	 * put the task into sleep.
2511 	 */
2512 	__set_current_state(TASK_INTERRUPTIBLE);
2513 	clear_thread_flag(TIF_SIGPENDING);
2514 	spin_unlock_irq(&current->sighand->siglock);
2515 	cgroup_enter_frozen();
2516 	freezable_schedule();
2517 }
2518 
2519 static int ptrace_signal(int signr, kernel_siginfo_t *info)
2520 {
2521 	/*
2522 	 * We do not check sig_kernel_stop(signr) but set this marker
2523 	 * unconditionally because we do not know whether debugger will
2524 	 * change signr. This flag has no meaning unless we are going
2525 	 * to stop after return from ptrace_stop(). In this case it will
2526 	 * be checked in do_signal_stop(), we should only stop if it was
2527 	 * not cleared by SIGCONT while we were sleeping. See also the
2528 	 * comment in dequeue_signal().
2529 	 */
2530 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2531 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2532 
2533 	/* We're back.  Did the debugger cancel the sig?  */
2534 	signr = current->exit_code;
2535 	if (signr == 0)
2536 		return signr;
2537 
2538 	current->exit_code = 0;
2539 
2540 	/*
2541 	 * Update the siginfo structure if the signal has
2542 	 * changed.  If the debugger wanted something
2543 	 * specific in the siginfo structure then it should
2544 	 * have updated *info via PTRACE_SETSIGINFO.
2545 	 */
2546 	if (signr != info->si_signo) {
2547 		clear_siginfo(info);
2548 		info->si_signo = signr;
2549 		info->si_errno = 0;
2550 		info->si_code = SI_USER;
2551 		rcu_read_lock();
2552 		info->si_pid = task_pid_vnr(current->parent);
2553 		info->si_uid = from_kuid_munged(current_user_ns(),
2554 						task_uid(current->parent));
2555 		rcu_read_unlock();
2556 	}
2557 
2558 	/* If the (new) signal is now blocked, requeue it.  */
2559 	if (sigismember(&current->blocked, signr)) {
2560 		send_signal(signr, info, current, PIDTYPE_PID);
2561 		signr = 0;
2562 	}
2563 
2564 	return signr;
2565 }
2566 
2567 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2568 {
2569 	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2570 	case SIL_FAULT:
2571 	case SIL_FAULT_TRAPNO:
2572 	case SIL_FAULT_MCEERR:
2573 	case SIL_FAULT_BNDERR:
2574 	case SIL_FAULT_PKUERR:
2575 	case SIL_PERF_EVENT:
2576 		ksig->info.si_addr = arch_untagged_si_addr(
2577 			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2578 		break;
2579 	case SIL_KILL:
2580 	case SIL_TIMER:
2581 	case SIL_POLL:
2582 	case SIL_CHLD:
2583 	case SIL_RT:
2584 	case SIL_SYS:
2585 		break;
2586 	}
2587 }
2588 
2589 bool get_signal(struct ksignal *ksig)
2590 {
2591 	struct sighand_struct *sighand = current->sighand;
2592 	struct signal_struct *signal = current->signal;
2593 	int signr;
2594 
2595 	if (unlikely(current->task_works))
2596 		task_work_run();
2597 
2598 	/*
2599 	 * For non-generic architectures, check for TIF_NOTIFY_SIGNAL so
2600 	 * that the arch handlers don't all have to do it. If we get here
2601 	 * without TIF_SIGPENDING, just exit after running signal work.
2602 	 */
2603 	if (!IS_ENABLED(CONFIG_GENERIC_ENTRY)) {
2604 		if (test_thread_flag(TIF_NOTIFY_SIGNAL))
2605 			tracehook_notify_signal();
2606 		if (!task_sigpending(current))
2607 			return false;
2608 	}
2609 
2610 	if (unlikely(uprobe_deny_signal()))
2611 		return false;
2612 
2613 	/*
2614 	 * Do this once, we can't return to user-mode if freezing() == T.
2615 	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2616 	 * thus do not need another check after return.
2617 	 */
2618 	try_to_freeze();
2619 
2620 relock:
2621 	spin_lock_irq(&sighand->siglock);
2622 
2623 	/*
2624 	 * Every stopped thread goes here after wakeup. Check to see if
2625 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2626 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2627 	 */
2628 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2629 		int why;
2630 
2631 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2632 			why = CLD_CONTINUED;
2633 		else
2634 			why = CLD_STOPPED;
2635 
2636 		signal->flags &= ~SIGNAL_CLD_MASK;
2637 
2638 		spin_unlock_irq(&sighand->siglock);
2639 
2640 		/*
2641 		 * Notify the parent that we're continuing.  This event is
2642 		 * always per-process and doesn't make whole lot of sense
2643 		 * for ptracers, who shouldn't consume the state via
2644 		 * wait(2) either, but, for backward compatibility, notify
2645 		 * the ptracer of the group leader too unless it's gonna be
2646 		 * a duplicate.
2647 		 */
2648 		read_lock(&tasklist_lock);
2649 		do_notify_parent_cldstop(current, false, why);
2650 
2651 		if (ptrace_reparented(current->group_leader))
2652 			do_notify_parent_cldstop(current->group_leader,
2653 						true, why);
2654 		read_unlock(&tasklist_lock);
2655 
2656 		goto relock;
2657 	}
2658 
2659 	/* Has this task already been marked for death? */
2660 	if (signal_group_exit(signal)) {
2661 		ksig->info.si_signo = signr = SIGKILL;
2662 		sigdelset(&current->pending.signal, SIGKILL);
2663 		trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2664 				&sighand->action[SIGKILL - 1]);
2665 		recalc_sigpending();
2666 		goto fatal;
2667 	}
2668 
2669 	for (;;) {
2670 		struct k_sigaction *ka;
2671 
2672 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2673 		    do_signal_stop(0))
2674 			goto relock;
2675 
2676 		if (unlikely(current->jobctl &
2677 			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2678 			if (current->jobctl & JOBCTL_TRAP_MASK) {
2679 				do_jobctl_trap();
2680 				spin_unlock_irq(&sighand->siglock);
2681 			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2682 				do_freezer_trap();
2683 
2684 			goto relock;
2685 		}
2686 
2687 		/*
2688 		 * If the task is leaving the frozen state, let's update
2689 		 * cgroup counters and reset the frozen bit.
2690 		 */
2691 		if (unlikely(cgroup_task_frozen(current))) {
2692 			spin_unlock_irq(&sighand->siglock);
2693 			cgroup_leave_frozen(false);
2694 			goto relock;
2695 		}
2696 
2697 		/*
2698 		 * Signals generated by the execution of an instruction
2699 		 * need to be delivered before any other pending signals
2700 		 * so that the instruction pointer in the signal stack
2701 		 * frame points to the faulting instruction.
2702 		 */
2703 		signr = dequeue_synchronous_signal(&ksig->info);
2704 		if (!signr)
2705 			signr = dequeue_signal(current, &current->blocked, &ksig->info);
2706 
2707 		if (!signr)
2708 			break; /* will return 0 */
2709 
2710 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2711 			signr = ptrace_signal(signr, &ksig->info);
2712 			if (!signr)
2713 				continue;
2714 		}
2715 
2716 		ka = &sighand->action[signr-1];
2717 
2718 		/* Trace actually delivered signals. */
2719 		trace_signal_deliver(signr, &ksig->info, ka);
2720 
2721 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2722 			continue;
2723 		if (ka->sa.sa_handler != SIG_DFL) {
2724 			/* Run the handler.  */
2725 			ksig->ka = *ka;
2726 
2727 			if (ka->sa.sa_flags & SA_ONESHOT)
2728 				ka->sa.sa_handler = SIG_DFL;
2729 
2730 			break; /* will return non-zero "signr" value */
2731 		}
2732 
2733 		/*
2734 		 * Now we are doing the default action for this signal.
2735 		 */
2736 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2737 			continue;
2738 
2739 		/*
2740 		 * Global init gets no signals it doesn't want.
2741 		 * Container-init gets no signals it doesn't want from same
2742 		 * container.
2743 		 *
2744 		 * Note that if global/container-init sees a sig_kernel_only()
2745 		 * signal here, the signal must have been generated internally
2746 		 * or must have come from an ancestor namespace. In either
2747 		 * case, the signal cannot be dropped.
2748 		 */
2749 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2750 				!sig_kernel_only(signr))
2751 			continue;
2752 
2753 		if (sig_kernel_stop(signr)) {
2754 			/*
2755 			 * The default action is to stop all threads in
2756 			 * the thread group.  The job control signals
2757 			 * do nothing in an orphaned pgrp, but SIGSTOP
2758 			 * always works.  Note that siglock needs to be
2759 			 * dropped during the call to is_orphaned_pgrp()
2760 			 * because of lock ordering with tasklist_lock.
2761 			 * This allows an intervening SIGCONT to be posted.
2762 			 * We need to check for that and bail out if necessary.
2763 			 */
2764 			if (signr != SIGSTOP) {
2765 				spin_unlock_irq(&sighand->siglock);
2766 
2767 				/* signals can be posted during this window */
2768 
2769 				if (is_current_pgrp_orphaned())
2770 					goto relock;
2771 
2772 				spin_lock_irq(&sighand->siglock);
2773 			}
2774 
2775 			if (likely(do_signal_stop(ksig->info.si_signo))) {
2776 				/* It released the siglock.  */
2777 				goto relock;
2778 			}
2779 
2780 			/*
2781 			 * We didn't actually stop, due to a race
2782 			 * with SIGCONT or something like that.
2783 			 */
2784 			continue;
2785 		}
2786 
2787 	fatal:
2788 		spin_unlock_irq(&sighand->siglock);
2789 		if (unlikely(cgroup_task_frozen(current)))
2790 			cgroup_leave_frozen(true);
2791 
2792 		/*
2793 		 * Anything else is fatal, maybe with a core dump.
2794 		 */
2795 		current->flags |= PF_SIGNALED;
2796 
2797 		if (sig_kernel_coredump(signr)) {
2798 			if (print_fatal_signals)
2799 				print_fatal_signal(ksig->info.si_signo);
2800 			proc_coredump_connector(current);
2801 			/*
2802 			 * If it was able to dump core, this kills all
2803 			 * other threads in the group and synchronizes with
2804 			 * their demise.  If we lost the race with another
2805 			 * thread getting here, it set group_exit_code
2806 			 * first and our do_group_exit call below will use
2807 			 * that value and ignore the one we pass it.
2808 			 */
2809 			do_coredump(&ksig->info);
2810 		}
2811 
2812 		/*
2813 		 * PF_IO_WORKER threads will catch and exit on fatal signals
2814 		 * themselves. They have cleanup that must be performed, so
2815 		 * we cannot call do_exit() on their behalf.
2816 		 */
2817 		if (current->flags & PF_IO_WORKER)
2818 			goto out;
2819 
2820 		/*
2821 		 * Death signals, no core dump.
2822 		 */
2823 		do_group_exit(ksig->info.si_signo);
2824 		/* NOTREACHED */
2825 	}
2826 	spin_unlock_irq(&sighand->siglock);
2827 out:
2828 	ksig->sig = signr;
2829 
2830 	if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2831 		hide_si_addr_tag_bits(ksig);
2832 
2833 	return ksig->sig > 0;
2834 }
2835 
2836 /**
2837  * signal_delivered -
2838  * @ksig:		kernel signal struct
2839  * @stepping:		nonzero if debugger single-step or block-step in use
2840  *
2841  * This function should be called when a signal has successfully been
2842  * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2843  * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2844  * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2845  */
2846 static void signal_delivered(struct ksignal *ksig, int stepping)
2847 {
2848 	sigset_t blocked;
2849 
2850 	/* A signal was successfully delivered, and the
2851 	   saved sigmask was stored on the signal frame,
2852 	   and will be restored by sigreturn.  So we can
2853 	   simply clear the restore sigmask flag.  */
2854 	clear_restore_sigmask();
2855 
2856 	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2857 	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2858 		sigaddset(&blocked, ksig->sig);
2859 	set_current_blocked(&blocked);
2860 	if (current->sas_ss_flags & SS_AUTODISARM)
2861 		sas_ss_reset(current);
2862 	tracehook_signal_handler(stepping);
2863 }
2864 
2865 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2866 {
2867 	if (failed)
2868 		force_sigsegv(ksig->sig);
2869 	else
2870 		signal_delivered(ksig, stepping);
2871 }
2872 
2873 /*
2874  * It could be that complete_signal() picked us to notify about the
2875  * group-wide signal. Other threads should be notified now to take
2876  * the shared signals in @which since we will not.
2877  */
2878 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2879 {
2880 	sigset_t retarget;
2881 	struct task_struct *t;
2882 
2883 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2884 	if (sigisemptyset(&retarget))
2885 		return;
2886 
2887 	t = tsk;
2888 	while_each_thread(tsk, t) {
2889 		if (t->flags & PF_EXITING)
2890 			continue;
2891 
2892 		if (!has_pending_signals(&retarget, &t->blocked))
2893 			continue;
2894 		/* Remove the signals this thread can handle. */
2895 		sigandsets(&retarget, &retarget, &t->blocked);
2896 
2897 		if (!task_sigpending(t))
2898 			signal_wake_up(t, 0);
2899 
2900 		if (sigisemptyset(&retarget))
2901 			break;
2902 	}
2903 }
2904 
2905 void exit_signals(struct task_struct *tsk)
2906 {
2907 	int group_stop = 0;
2908 	sigset_t unblocked;
2909 
2910 	/*
2911 	 * @tsk is about to have PF_EXITING set - lock out users which
2912 	 * expect stable threadgroup.
2913 	 */
2914 	cgroup_threadgroup_change_begin(tsk);
2915 
2916 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2917 		tsk->flags |= PF_EXITING;
2918 		cgroup_threadgroup_change_end(tsk);
2919 		return;
2920 	}
2921 
2922 	spin_lock_irq(&tsk->sighand->siglock);
2923 	/*
2924 	 * From now this task is not visible for group-wide signals,
2925 	 * see wants_signal(), do_signal_stop().
2926 	 */
2927 	tsk->flags |= PF_EXITING;
2928 
2929 	cgroup_threadgroup_change_end(tsk);
2930 
2931 	if (!task_sigpending(tsk))
2932 		goto out;
2933 
2934 	unblocked = tsk->blocked;
2935 	signotset(&unblocked);
2936 	retarget_shared_pending(tsk, &unblocked);
2937 
2938 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2939 	    task_participate_group_stop(tsk))
2940 		group_stop = CLD_STOPPED;
2941 out:
2942 	spin_unlock_irq(&tsk->sighand->siglock);
2943 
2944 	/*
2945 	 * If group stop has completed, deliver the notification.  This
2946 	 * should always go to the real parent of the group leader.
2947 	 */
2948 	if (unlikely(group_stop)) {
2949 		read_lock(&tasklist_lock);
2950 		do_notify_parent_cldstop(tsk, false, group_stop);
2951 		read_unlock(&tasklist_lock);
2952 	}
2953 }
2954 
2955 /*
2956  * System call entry points.
2957  */
2958 
2959 /**
2960  *  sys_restart_syscall - restart a system call
2961  */
2962 SYSCALL_DEFINE0(restart_syscall)
2963 {
2964 	struct restart_block *restart = &current->restart_block;
2965 	return restart->fn(restart);
2966 }
2967 
2968 long do_no_restart_syscall(struct restart_block *param)
2969 {
2970 	return -EINTR;
2971 }
2972 
2973 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2974 {
2975 	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
2976 		sigset_t newblocked;
2977 		/* A set of now blocked but previously unblocked signals. */
2978 		sigandnsets(&newblocked, newset, &current->blocked);
2979 		retarget_shared_pending(tsk, &newblocked);
2980 	}
2981 	tsk->blocked = *newset;
2982 	recalc_sigpending();
2983 }
2984 
2985 /**
2986  * set_current_blocked - change current->blocked mask
2987  * @newset: new mask
2988  *
2989  * It is wrong to change ->blocked directly, this helper should be used
2990  * to ensure the process can't miss a shared signal we are going to block.
2991  */
2992 void set_current_blocked(sigset_t *newset)
2993 {
2994 	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2995 	__set_current_blocked(newset);
2996 }
2997 
2998 void __set_current_blocked(const sigset_t *newset)
2999 {
3000 	struct task_struct *tsk = current;
3001 
3002 	/*
3003 	 * In case the signal mask hasn't changed, there is nothing we need
3004 	 * to do. The current->blocked shouldn't be modified by other task.
3005 	 */
3006 	if (sigequalsets(&tsk->blocked, newset))
3007 		return;
3008 
3009 	spin_lock_irq(&tsk->sighand->siglock);
3010 	__set_task_blocked(tsk, newset);
3011 	spin_unlock_irq(&tsk->sighand->siglock);
3012 }
3013 
3014 /*
3015  * This is also useful for kernel threads that want to temporarily
3016  * (or permanently) block certain signals.
3017  *
3018  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3019  * interface happily blocks "unblockable" signals like SIGKILL
3020  * and friends.
3021  */
3022 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3023 {
3024 	struct task_struct *tsk = current;
3025 	sigset_t newset;
3026 
3027 	/* Lockless, only current can change ->blocked, never from irq */
3028 	if (oldset)
3029 		*oldset = tsk->blocked;
3030 
3031 	switch (how) {
3032 	case SIG_BLOCK:
3033 		sigorsets(&newset, &tsk->blocked, set);
3034 		break;
3035 	case SIG_UNBLOCK:
3036 		sigandnsets(&newset, &tsk->blocked, set);
3037 		break;
3038 	case SIG_SETMASK:
3039 		newset = *set;
3040 		break;
3041 	default:
3042 		return -EINVAL;
3043 	}
3044 
3045 	__set_current_blocked(&newset);
3046 	return 0;
3047 }
3048 EXPORT_SYMBOL(sigprocmask);
3049 
3050 /*
3051  * The api helps set app-provided sigmasks.
3052  *
3053  * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3054  * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3055  *
3056  * Note that it does set_restore_sigmask() in advance, so it must be always
3057  * paired with restore_saved_sigmask_unless() before return from syscall.
3058  */
3059 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3060 {
3061 	sigset_t kmask;
3062 
3063 	if (!umask)
3064 		return 0;
3065 	if (sigsetsize != sizeof(sigset_t))
3066 		return -EINVAL;
3067 	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3068 		return -EFAULT;
3069 
3070 	set_restore_sigmask();
3071 	current->saved_sigmask = current->blocked;
3072 	set_current_blocked(&kmask);
3073 
3074 	return 0;
3075 }
3076 
3077 #ifdef CONFIG_COMPAT
3078 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3079 			    size_t sigsetsize)
3080 {
3081 	sigset_t kmask;
3082 
3083 	if (!umask)
3084 		return 0;
3085 	if (sigsetsize != sizeof(compat_sigset_t))
3086 		return -EINVAL;
3087 	if (get_compat_sigset(&kmask, umask))
3088 		return -EFAULT;
3089 
3090 	set_restore_sigmask();
3091 	current->saved_sigmask = current->blocked;
3092 	set_current_blocked(&kmask);
3093 
3094 	return 0;
3095 }
3096 #endif
3097 
3098 /**
3099  *  sys_rt_sigprocmask - change the list of currently blocked signals
3100  *  @how: whether to add, remove, or set signals
3101  *  @nset: stores pending signals
3102  *  @oset: previous value of signal mask if non-null
3103  *  @sigsetsize: size of sigset_t type
3104  */
3105 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3106 		sigset_t __user *, oset, size_t, sigsetsize)
3107 {
3108 	sigset_t old_set, new_set;
3109 	int error;
3110 
3111 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3112 	if (sigsetsize != sizeof(sigset_t))
3113 		return -EINVAL;
3114 
3115 	old_set = current->blocked;
3116 
3117 	if (nset) {
3118 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3119 			return -EFAULT;
3120 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3121 
3122 		error = sigprocmask(how, &new_set, NULL);
3123 		if (error)
3124 			return error;
3125 	}
3126 
3127 	if (oset) {
3128 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3129 			return -EFAULT;
3130 	}
3131 
3132 	return 0;
3133 }
3134 
3135 #ifdef CONFIG_COMPAT
3136 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3137 		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3138 {
3139 	sigset_t old_set = current->blocked;
3140 
3141 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3142 	if (sigsetsize != sizeof(sigset_t))
3143 		return -EINVAL;
3144 
3145 	if (nset) {
3146 		sigset_t new_set;
3147 		int error;
3148 		if (get_compat_sigset(&new_set, nset))
3149 			return -EFAULT;
3150 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3151 
3152 		error = sigprocmask(how, &new_set, NULL);
3153 		if (error)
3154 			return error;
3155 	}
3156 	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3157 }
3158 #endif
3159 
3160 static void do_sigpending(sigset_t *set)
3161 {
3162 	spin_lock_irq(&current->sighand->siglock);
3163 	sigorsets(set, &current->pending.signal,
3164 		  &current->signal->shared_pending.signal);
3165 	spin_unlock_irq(&current->sighand->siglock);
3166 
3167 	/* Outside the lock because only this thread touches it.  */
3168 	sigandsets(set, &current->blocked, set);
3169 }
3170 
3171 /**
3172  *  sys_rt_sigpending - examine a pending signal that has been raised
3173  *			while blocked
3174  *  @uset: stores pending signals
3175  *  @sigsetsize: size of sigset_t type or larger
3176  */
3177 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3178 {
3179 	sigset_t set;
3180 
3181 	if (sigsetsize > sizeof(*uset))
3182 		return -EINVAL;
3183 
3184 	do_sigpending(&set);
3185 
3186 	if (copy_to_user(uset, &set, sigsetsize))
3187 		return -EFAULT;
3188 
3189 	return 0;
3190 }
3191 
3192 #ifdef CONFIG_COMPAT
3193 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3194 		compat_size_t, sigsetsize)
3195 {
3196 	sigset_t set;
3197 
3198 	if (sigsetsize > sizeof(*uset))
3199 		return -EINVAL;
3200 
3201 	do_sigpending(&set);
3202 
3203 	return put_compat_sigset(uset, &set, sigsetsize);
3204 }
3205 #endif
3206 
3207 static const struct {
3208 	unsigned char limit, layout;
3209 } sig_sicodes[] = {
3210 	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3211 	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3212 	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3213 	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3214 	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3215 #if defined(SIGEMT)
3216 	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3217 #endif
3218 	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3219 	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3220 	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3221 };
3222 
3223 static bool known_siginfo_layout(unsigned sig, int si_code)
3224 {
3225 	if (si_code == SI_KERNEL)
3226 		return true;
3227 	else if ((si_code > SI_USER)) {
3228 		if (sig_specific_sicodes(sig)) {
3229 			if (si_code <= sig_sicodes[sig].limit)
3230 				return true;
3231 		}
3232 		else if (si_code <= NSIGPOLL)
3233 			return true;
3234 	}
3235 	else if (si_code >= SI_DETHREAD)
3236 		return true;
3237 	else if (si_code == SI_ASYNCNL)
3238 		return true;
3239 	return false;
3240 }
3241 
3242 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3243 {
3244 	enum siginfo_layout layout = SIL_KILL;
3245 	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3246 		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3247 		    (si_code <= sig_sicodes[sig].limit)) {
3248 			layout = sig_sicodes[sig].layout;
3249 			/* Handle the exceptions */
3250 			if ((sig == SIGBUS) &&
3251 			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3252 				layout = SIL_FAULT_MCEERR;
3253 			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3254 				layout = SIL_FAULT_BNDERR;
3255 #ifdef SEGV_PKUERR
3256 			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3257 				layout = SIL_FAULT_PKUERR;
3258 #endif
3259 			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3260 				layout = SIL_PERF_EVENT;
3261 #ifdef __ARCH_SI_TRAPNO
3262 			else if (layout == SIL_FAULT)
3263 				layout = SIL_FAULT_TRAPNO;
3264 #endif
3265 		}
3266 		else if (si_code <= NSIGPOLL)
3267 			layout = SIL_POLL;
3268 	} else {
3269 		if (si_code == SI_TIMER)
3270 			layout = SIL_TIMER;
3271 		else if (si_code == SI_SIGIO)
3272 			layout = SIL_POLL;
3273 		else if (si_code < 0)
3274 			layout = SIL_RT;
3275 	}
3276 	return layout;
3277 }
3278 
3279 static inline char __user *si_expansion(const siginfo_t __user *info)
3280 {
3281 	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3282 }
3283 
3284 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3285 {
3286 	char __user *expansion = si_expansion(to);
3287 	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3288 		return -EFAULT;
3289 	if (clear_user(expansion, SI_EXPANSION_SIZE))
3290 		return -EFAULT;
3291 	return 0;
3292 }
3293 
3294 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3295 				       const siginfo_t __user *from)
3296 {
3297 	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3298 		char __user *expansion = si_expansion(from);
3299 		char buf[SI_EXPANSION_SIZE];
3300 		int i;
3301 		/*
3302 		 * An unknown si_code might need more than
3303 		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3304 		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3305 		 * will return this data to userspace exactly.
3306 		 */
3307 		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3308 			return -EFAULT;
3309 		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3310 			if (buf[i] != 0)
3311 				return -E2BIG;
3312 		}
3313 	}
3314 	return 0;
3315 }
3316 
3317 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3318 				    const siginfo_t __user *from)
3319 {
3320 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3321 		return -EFAULT;
3322 	to->si_signo = signo;
3323 	return post_copy_siginfo_from_user(to, from);
3324 }
3325 
3326 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3327 {
3328 	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3329 		return -EFAULT;
3330 	return post_copy_siginfo_from_user(to, from);
3331 }
3332 
3333 #ifdef CONFIG_COMPAT
3334 /**
3335  * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3336  * @to: compat siginfo destination
3337  * @from: kernel siginfo source
3338  *
3339  * Note: This function does not work properly for the SIGCHLD on x32, but
3340  * fortunately it doesn't have to.  The only valid callers for this function are
3341  * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3342  * The latter does not care because SIGCHLD will never cause a coredump.
3343  */
3344 void copy_siginfo_to_external32(struct compat_siginfo *to,
3345 		const struct kernel_siginfo *from)
3346 {
3347 	memset(to, 0, sizeof(*to));
3348 
3349 	to->si_signo = from->si_signo;
3350 	to->si_errno = from->si_errno;
3351 	to->si_code  = from->si_code;
3352 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3353 	case SIL_KILL:
3354 		to->si_pid = from->si_pid;
3355 		to->si_uid = from->si_uid;
3356 		break;
3357 	case SIL_TIMER:
3358 		to->si_tid     = from->si_tid;
3359 		to->si_overrun = from->si_overrun;
3360 		to->si_int     = from->si_int;
3361 		break;
3362 	case SIL_POLL:
3363 		to->si_band = from->si_band;
3364 		to->si_fd   = from->si_fd;
3365 		break;
3366 	case SIL_FAULT:
3367 		to->si_addr = ptr_to_compat(from->si_addr);
3368 		break;
3369 	case SIL_FAULT_TRAPNO:
3370 		to->si_addr = ptr_to_compat(from->si_addr);
3371 		to->si_trapno = from->si_trapno;
3372 		break;
3373 	case SIL_FAULT_MCEERR:
3374 		to->si_addr = ptr_to_compat(from->si_addr);
3375 		to->si_addr_lsb = from->si_addr_lsb;
3376 		break;
3377 	case SIL_FAULT_BNDERR:
3378 		to->si_addr = ptr_to_compat(from->si_addr);
3379 		to->si_lower = ptr_to_compat(from->si_lower);
3380 		to->si_upper = ptr_to_compat(from->si_upper);
3381 		break;
3382 	case SIL_FAULT_PKUERR:
3383 		to->si_addr = ptr_to_compat(from->si_addr);
3384 		to->si_pkey = from->si_pkey;
3385 		break;
3386 	case SIL_PERF_EVENT:
3387 		to->si_addr = ptr_to_compat(from->si_addr);
3388 		to->si_perf_data = from->si_perf_data;
3389 		to->si_perf_type = from->si_perf_type;
3390 		break;
3391 	case SIL_CHLD:
3392 		to->si_pid = from->si_pid;
3393 		to->si_uid = from->si_uid;
3394 		to->si_status = from->si_status;
3395 		to->si_utime = from->si_utime;
3396 		to->si_stime = from->si_stime;
3397 		break;
3398 	case SIL_RT:
3399 		to->si_pid = from->si_pid;
3400 		to->si_uid = from->si_uid;
3401 		to->si_int = from->si_int;
3402 		break;
3403 	case SIL_SYS:
3404 		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3405 		to->si_syscall   = from->si_syscall;
3406 		to->si_arch      = from->si_arch;
3407 		break;
3408 	}
3409 }
3410 
3411 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3412 			   const struct kernel_siginfo *from)
3413 {
3414 	struct compat_siginfo new;
3415 
3416 	copy_siginfo_to_external32(&new, from);
3417 	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3418 		return -EFAULT;
3419 	return 0;
3420 }
3421 
3422 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3423 					 const struct compat_siginfo *from)
3424 {
3425 	clear_siginfo(to);
3426 	to->si_signo = from->si_signo;
3427 	to->si_errno = from->si_errno;
3428 	to->si_code  = from->si_code;
3429 	switch(siginfo_layout(from->si_signo, from->si_code)) {
3430 	case SIL_KILL:
3431 		to->si_pid = from->si_pid;
3432 		to->si_uid = from->si_uid;
3433 		break;
3434 	case SIL_TIMER:
3435 		to->si_tid     = from->si_tid;
3436 		to->si_overrun = from->si_overrun;
3437 		to->si_int     = from->si_int;
3438 		break;
3439 	case SIL_POLL:
3440 		to->si_band = from->si_band;
3441 		to->si_fd   = from->si_fd;
3442 		break;
3443 	case SIL_FAULT:
3444 		to->si_addr = compat_ptr(from->si_addr);
3445 		break;
3446 	case SIL_FAULT_TRAPNO:
3447 		to->si_addr = compat_ptr(from->si_addr);
3448 		to->si_trapno = from->si_trapno;
3449 		break;
3450 	case SIL_FAULT_MCEERR:
3451 		to->si_addr = compat_ptr(from->si_addr);
3452 		to->si_addr_lsb = from->si_addr_lsb;
3453 		break;
3454 	case SIL_FAULT_BNDERR:
3455 		to->si_addr = compat_ptr(from->si_addr);
3456 		to->si_lower = compat_ptr(from->si_lower);
3457 		to->si_upper = compat_ptr(from->si_upper);
3458 		break;
3459 	case SIL_FAULT_PKUERR:
3460 		to->si_addr = compat_ptr(from->si_addr);
3461 		to->si_pkey = from->si_pkey;
3462 		break;
3463 	case SIL_PERF_EVENT:
3464 		to->si_addr = compat_ptr(from->si_addr);
3465 		to->si_perf_data = from->si_perf_data;
3466 		to->si_perf_type = from->si_perf_type;
3467 		break;
3468 	case SIL_CHLD:
3469 		to->si_pid    = from->si_pid;
3470 		to->si_uid    = from->si_uid;
3471 		to->si_status = from->si_status;
3472 #ifdef CONFIG_X86_X32_ABI
3473 		if (in_x32_syscall()) {
3474 			to->si_utime = from->_sifields._sigchld_x32._utime;
3475 			to->si_stime = from->_sifields._sigchld_x32._stime;
3476 		} else
3477 #endif
3478 		{
3479 			to->si_utime = from->si_utime;
3480 			to->si_stime = from->si_stime;
3481 		}
3482 		break;
3483 	case SIL_RT:
3484 		to->si_pid = from->si_pid;
3485 		to->si_uid = from->si_uid;
3486 		to->si_int = from->si_int;
3487 		break;
3488 	case SIL_SYS:
3489 		to->si_call_addr = compat_ptr(from->si_call_addr);
3490 		to->si_syscall   = from->si_syscall;
3491 		to->si_arch      = from->si_arch;
3492 		break;
3493 	}
3494 	return 0;
3495 }
3496 
3497 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3498 				      const struct compat_siginfo __user *ufrom)
3499 {
3500 	struct compat_siginfo from;
3501 
3502 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3503 		return -EFAULT;
3504 
3505 	from.si_signo = signo;
3506 	return post_copy_siginfo_from_user32(to, &from);
3507 }
3508 
3509 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3510 			     const struct compat_siginfo __user *ufrom)
3511 {
3512 	struct compat_siginfo from;
3513 
3514 	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3515 		return -EFAULT;
3516 
3517 	return post_copy_siginfo_from_user32(to, &from);
3518 }
3519 #endif /* CONFIG_COMPAT */
3520 
3521 /**
3522  *  do_sigtimedwait - wait for queued signals specified in @which
3523  *  @which: queued signals to wait for
3524  *  @info: if non-null, the signal's siginfo is returned here
3525  *  @ts: upper bound on process time suspension
3526  */
3527 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3528 		    const struct timespec64 *ts)
3529 {
3530 	ktime_t *to = NULL, timeout = KTIME_MAX;
3531 	struct task_struct *tsk = current;
3532 	sigset_t mask = *which;
3533 	int sig, ret = 0;
3534 
3535 	if (ts) {
3536 		if (!timespec64_valid(ts))
3537 			return -EINVAL;
3538 		timeout = timespec64_to_ktime(*ts);
3539 		to = &timeout;
3540 	}
3541 
3542 	/*
3543 	 * Invert the set of allowed signals to get those we want to block.
3544 	 */
3545 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3546 	signotset(&mask);
3547 
3548 	spin_lock_irq(&tsk->sighand->siglock);
3549 	sig = dequeue_signal(tsk, &mask, info);
3550 	if (!sig && timeout) {
3551 		/*
3552 		 * None ready, temporarily unblock those we're interested
3553 		 * while we are sleeping in so that we'll be awakened when
3554 		 * they arrive. Unblocking is always fine, we can avoid
3555 		 * set_current_blocked().
3556 		 */
3557 		tsk->real_blocked = tsk->blocked;
3558 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3559 		recalc_sigpending();
3560 		spin_unlock_irq(&tsk->sighand->siglock);
3561 
3562 		__set_current_state(TASK_INTERRUPTIBLE);
3563 		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3564 							 HRTIMER_MODE_REL);
3565 		spin_lock_irq(&tsk->sighand->siglock);
3566 		__set_task_blocked(tsk, &tsk->real_blocked);
3567 		sigemptyset(&tsk->real_blocked);
3568 		sig = dequeue_signal(tsk, &mask, info);
3569 	}
3570 	spin_unlock_irq(&tsk->sighand->siglock);
3571 
3572 	if (sig)
3573 		return sig;
3574 	return ret ? -EINTR : -EAGAIN;
3575 }
3576 
3577 /**
3578  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3579  *			in @uthese
3580  *  @uthese: queued signals to wait for
3581  *  @uinfo: if non-null, the signal's siginfo is returned here
3582  *  @uts: upper bound on process time suspension
3583  *  @sigsetsize: size of sigset_t type
3584  */
3585 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3586 		siginfo_t __user *, uinfo,
3587 		const struct __kernel_timespec __user *, uts,
3588 		size_t, sigsetsize)
3589 {
3590 	sigset_t these;
3591 	struct timespec64 ts;
3592 	kernel_siginfo_t info;
3593 	int ret;
3594 
3595 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3596 	if (sigsetsize != sizeof(sigset_t))
3597 		return -EINVAL;
3598 
3599 	if (copy_from_user(&these, uthese, sizeof(these)))
3600 		return -EFAULT;
3601 
3602 	if (uts) {
3603 		if (get_timespec64(&ts, uts))
3604 			return -EFAULT;
3605 	}
3606 
3607 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3608 
3609 	if (ret > 0 && uinfo) {
3610 		if (copy_siginfo_to_user(uinfo, &info))
3611 			ret = -EFAULT;
3612 	}
3613 
3614 	return ret;
3615 }
3616 
3617 #ifdef CONFIG_COMPAT_32BIT_TIME
3618 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3619 		siginfo_t __user *, uinfo,
3620 		const struct old_timespec32 __user *, uts,
3621 		size_t, sigsetsize)
3622 {
3623 	sigset_t these;
3624 	struct timespec64 ts;
3625 	kernel_siginfo_t info;
3626 	int ret;
3627 
3628 	if (sigsetsize != sizeof(sigset_t))
3629 		return -EINVAL;
3630 
3631 	if (copy_from_user(&these, uthese, sizeof(these)))
3632 		return -EFAULT;
3633 
3634 	if (uts) {
3635 		if (get_old_timespec32(&ts, uts))
3636 			return -EFAULT;
3637 	}
3638 
3639 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3640 
3641 	if (ret > 0 && uinfo) {
3642 		if (copy_siginfo_to_user(uinfo, &info))
3643 			ret = -EFAULT;
3644 	}
3645 
3646 	return ret;
3647 }
3648 #endif
3649 
3650 #ifdef CONFIG_COMPAT
3651 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3652 		struct compat_siginfo __user *, uinfo,
3653 		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3654 {
3655 	sigset_t s;
3656 	struct timespec64 t;
3657 	kernel_siginfo_t info;
3658 	long ret;
3659 
3660 	if (sigsetsize != sizeof(sigset_t))
3661 		return -EINVAL;
3662 
3663 	if (get_compat_sigset(&s, uthese))
3664 		return -EFAULT;
3665 
3666 	if (uts) {
3667 		if (get_timespec64(&t, uts))
3668 			return -EFAULT;
3669 	}
3670 
3671 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3672 
3673 	if (ret > 0 && uinfo) {
3674 		if (copy_siginfo_to_user32(uinfo, &info))
3675 			ret = -EFAULT;
3676 	}
3677 
3678 	return ret;
3679 }
3680 
3681 #ifdef CONFIG_COMPAT_32BIT_TIME
3682 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3683 		struct compat_siginfo __user *, uinfo,
3684 		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3685 {
3686 	sigset_t s;
3687 	struct timespec64 t;
3688 	kernel_siginfo_t info;
3689 	long ret;
3690 
3691 	if (sigsetsize != sizeof(sigset_t))
3692 		return -EINVAL;
3693 
3694 	if (get_compat_sigset(&s, uthese))
3695 		return -EFAULT;
3696 
3697 	if (uts) {
3698 		if (get_old_timespec32(&t, uts))
3699 			return -EFAULT;
3700 	}
3701 
3702 	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3703 
3704 	if (ret > 0 && uinfo) {
3705 		if (copy_siginfo_to_user32(uinfo, &info))
3706 			ret = -EFAULT;
3707 	}
3708 
3709 	return ret;
3710 }
3711 #endif
3712 #endif
3713 
3714 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3715 {
3716 	clear_siginfo(info);
3717 	info->si_signo = sig;
3718 	info->si_errno = 0;
3719 	info->si_code = SI_USER;
3720 	info->si_pid = task_tgid_vnr(current);
3721 	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3722 }
3723 
3724 /**
3725  *  sys_kill - send a signal to a process
3726  *  @pid: the PID of the process
3727  *  @sig: signal to be sent
3728  */
3729 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3730 {
3731 	struct kernel_siginfo info;
3732 
3733 	prepare_kill_siginfo(sig, &info);
3734 
3735 	return kill_something_info(sig, &info, pid);
3736 }
3737 
3738 /*
3739  * Verify that the signaler and signalee either are in the same pid namespace
3740  * or that the signaler's pid namespace is an ancestor of the signalee's pid
3741  * namespace.
3742  */
3743 static bool access_pidfd_pidns(struct pid *pid)
3744 {
3745 	struct pid_namespace *active = task_active_pid_ns(current);
3746 	struct pid_namespace *p = ns_of_pid(pid);
3747 
3748 	for (;;) {
3749 		if (!p)
3750 			return false;
3751 		if (p == active)
3752 			break;
3753 		p = p->parent;
3754 	}
3755 
3756 	return true;
3757 }
3758 
3759 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3760 		siginfo_t __user *info)
3761 {
3762 #ifdef CONFIG_COMPAT
3763 	/*
3764 	 * Avoid hooking up compat syscalls and instead handle necessary
3765 	 * conversions here. Note, this is a stop-gap measure and should not be
3766 	 * considered a generic solution.
3767 	 */
3768 	if (in_compat_syscall())
3769 		return copy_siginfo_from_user32(
3770 			kinfo, (struct compat_siginfo __user *)info);
3771 #endif
3772 	return copy_siginfo_from_user(kinfo, info);
3773 }
3774 
3775 static struct pid *pidfd_to_pid(const struct file *file)
3776 {
3777 	struct pid *pid;
3778 
3779 	pid = pidfd_pid(file);
3780 	if (!IS_ERR(pid))
3781 		return pid;
3782 
3783 	return tgid_pidfd_to_pid(file);
3784 }
3785 
3786 /**
3787  * sys_pidfd_send_signal - Signal a process through a pidfd
3788  * @pidfd:  file descriptor of the process
3789  * @sig:    signal to send
3790  * @info:   signal info
3791  * @flags:  future flags
3792  *
3793  * The syscall currently only signals via PIDTYPE_PID which covers
3794  * kill(<positive-pid>, <signal>. It does not signal threads or process
3795  * groups.
3796  * In order to extend the syscall to threads and process groups the @flags
3797  * argument should be used. In essence, the @flags argument will determine
3798  * what is signaled and not the file descriptor itself. Put in other words,
3799  * grouping is a property of the flags argument not a property of the file
3800  * descriptor.
3801  *
3802  * Return: 0 on success, negative errno on failure
3803  */
3804 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3805 		siginfo_t __user *, info, unsigned int, flags)
3806 {
3807 	int ret;
3808 	struct fd f;
3809 	struct pid *pid;
3810 	kernel_siginfo_t kinfo;
3811 
3812 	/* Enforce flags be set to 0 until we add an extension. */
3813 	if (flags)
3814 		return -EINVAL;
3815 
3816 	f = fdget(pidfd);
3817 	if (!f.file)
3818 		return -EBADF;
3819 
3820 	/* Is this a pidfd? */
3821 	pid = pidfd_to_pid(f.file);
3822 	if (IS_ERR(pid)) {
3823 		ret = PTR_ERR(pid);
3824 		goto err;
3825 	}
3826 
3827 	ret = -EINVAL;
3828 	if (!access_pidfd_pidns(pid))
3829 		goto err;
3830 
3831 	if (info) {
3832 		ret = copy_siginfo_from_user_any(&kinfo, info);
3833 		if (unlikely(ret))
3834 			goto err;
3835 
3836 		ret = -EINVAL;
3837 		if (unlikely(sig != kinfo.si_signo))
3838 			goto err;
3839 
3840 		/* Only allow sending arbitrary signals to yourself. */
3841 		ret = -EPERM;
3842 		if ((task_pid(current) != pid) &&
3843 		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3844 			goto err;
3845 	} else {
3846 		prepare_kill_siginfo(sig, &kinfo);
3847 	}
3848 
3849 	ret = kill_pid_info(sig, &kinfo, pid);
3850 
3851 err:
3852 	fdput(f);
3853 	return ret;
3854 }
3855 
3856 static int
3857 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3858 {
3859 	struct task_struct *p;
3860 	int error = -ESRCH;
3861 
3862 	rcu_read_lock();
3863 	p = find_task_by_vpid(pid);
3864 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3865 		error = check_kill_permission(sig, info, p);
3866 		/*
3867 		 * The null signal is a permissions and process existence
3868 		 * probe.  No signal is actually delivered.
3869 		 */
3870 		if (!error && sig) {
3871 			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3872 			/*
3873 			 * If lock_task_sighand() failed we pretend the task
3874 			 * dies after receiving the signal. The window is tiny,
3875 			 * and the signal is private anyway.
3876 			 */
3877 			if (unlikely(error == -ESRCH))
3878 				error = 0;
3879 		}
3880 	}
3881 	rcu_read_unlock();
3882 
3883 	return error;
3884 }
3885 
3886 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3887 {
3888 	struct kernel_siginfo info;
3889 
3890 	clear_siginfo(&info);
3891 	info.si_signo = sig;
3892 	info.si_errno = 0;
3893 	info.si_code = SI_TKILL;
3894 	info.si_pid = task_tgid_vnr(current);
3895 	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3896 
3897 	return do_send_specific(tgid, pid, sig, &info);
3898 }
3899 
3900 /**
3901  *  sys_tgkill - send signal to one specific thread
3902  *  @tgid: the thread group ID of the thread
3903  *  @pid: the PID of the thread
3904  *  @sig: signal to be sent
3905  *
3906  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3907  *  exists but it's not belonging to the target process anymore. This
3908  *  method solves the problem of threads exiting and PIDs getting reused.
3909  */
3910 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3911 {
3912 	/* This is only valid for single tasks */
3913 	if (pid <= 0 || tgid <= 0)
3914 		return -EINVAL;
3915 
3916 	return do_tkill(tgid, pid, sig);
3917 }
3918 
3919 /**
3920  *  sys_tkill - send signal to one specific task
3921  *  @pid: the PID of the task
3922  *  @sig: signal to be sent
3923  *
3924  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3925  */
3926 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3927 {
3928 	/* This is only valid for single tasks */
3929 	if (pid <= 0)
3930 		return -EINVAL;
3931 
3932 	return do_tkill(0, pid, sig);
3933 }
3934 
3935 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3936 {
3937 	/* Not even root can pretend to send signals from the kernel.
3938 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3939 	 */
3940 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3941 	    (task_pid_vnr(current) != pid))
3942 		return -EPERM;
3943 
3944 	/* POSIX.1b doesn't mention process groups.  */
3945 	return kill_proc_info(sig, info, pid);
3946 }
3947 
3948 /**
3949  *  sys_rt_sigqueueinfo - send signal information to a signal
3950  *  @pid: the PID of the thread
3951  *  @sig: signal to be sent
3952  *  @uinfo: signal info to be sent
3953  */
3954 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3955 		siginfo_t __user *, uinfo)
3956 {
3957 	kernel_siginfo_t info;
3958 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3959 	if (unlikely(ret))
3960 		return ret;
3961 	return do_rt_sigqueueinfo(pid, sig, &info);
3962 }
3963 
3964 #ifdef CONFIG_COMPAT
3965 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3966 			compat_pid_t, pid,
3967 			int, sig,
3968 			struct compat_siginfo __user *, uinfo)
3969 {
3970 	kernel_siginfo_t info;
3971 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3972 	if (unlikely(ret))
3973 		return ret;
3974 	return do_rt_sigqueueinfo(pid, sig, &info);
3975 }
3976 #endif
3977 
3978 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3979 {
3980 	/* This is only valid for single tasks */
3981 	if (pid <= 0 || tgid <= 0)
3982 		return -EINVAL;
3983 
3984 	/* Not even root can pretend to send signals from the kernel.
3985 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3986 	 */
3987 	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3988 	    (task_pid_vnr(current) != pid))
3989 		return -EPERM;
3990 
3991 	return do_send_specific(tgid, pid, sig, info);
3992 }
3993 
3994 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3995 		siginfo_t __user *, uinfo)
3996 {
3997 	kernel_siginfo_t info;
3998 	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3999 	if (unlikely(ret))
4000 		return ret;
4001 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4002 }
4003 
4004 #ifdef CONFIG_COMPAT
4005 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4006 			compat_pid_t, tgid,
4007 			compat_pid_t, pid,
4008 			int, sig,
4009 			struct compat_siginfo __user *, uinfo)
4010 {
4011 	kernel_siginfo_t info;
4012 	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4013 	if (unlikely(ret))
4014 		return ret;
4015 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4016 }
4017 #endif
4018 
4019 /*
4020  * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4021  */
4022 void kernel_sigaction(int sig, __sighandler_t action)
4023 {
4024 	spin_lock_irq(&current->sighand->siglock);
4025 	current->sighand->action[sig - 1].sa.sa_handler = action;
4026 	if (action == SIG_IGN) {
4027 		sigset_t mask;
4028 
4029 		sigemptyset(&mask);
4030 		sigaddset(&mask, sig);
4031 
4032 		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4033 		flush_sigqueue_mask(&mask, &current->pending);
4034 		recalc_sigpending();
4035 	}
4036 	spin_unlock_irq(&current->sighand->siglock);
4037 }
4038 EXPORT_SYMBOL(kernel_sigaction);
4039 
4040 void __weak sigaction_compat_abi(struct k_sigaction *act,
4041 		struct k_sigaction *oact)
4042 {
4043 }
4044 
4045 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4046 {
4047 	struct task_struct *p = current, *t;
4048 	struct k_sigaction *k;
4049 	sigset_t mask;
4050 
4051 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4052 		return -EINVAL;
4053 
4054 	k = &p->sighand->action[sig-1];
4055 
4056 	spin_lock_irq(&p->sighand->siglock);
4057 	if (oact)
4058 		*oact = *k;
4059 
4060 	/*
4061 	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4062 	 * e.g. by having an architecture use the bit in their uapi.
4063 	 */
4064 	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4065 
4066 	/*
4067 	 * Clear unknown flag bits in order to allow userspace to detect missing
4068 	 * support for flag bits and to allow the kernel to use non-uapi bits
4069 	 * internally.
4070 	 */
4071 	if (act)
4072 		act->sa.sa_flags &= UAPI_SA_FLAGS;
4073 	if (oact)
4074 		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4075 
4076 	sigaction_compat_abi(act, oact);
4077 
4078 	if (act) {
4079 		sigdelsetmask(&act->sa.sa_mask,
4080 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4081 		*k = *act;
4082 		/*
4083 		 * POSIX 3.3.1.3:
4084 		 *  "Setting a signal action to SIG_IGN for a signal that is
4085 		 *   pending shall cause the pending signal to be discarded,
4086 		 *   whether or not it is blocked."
4087 		 *
4088 		 *  "Setting a signal action to SIG_DFL for a signal that is
4089 		 *   pending and whose default action is to ignore the signal
4090 		 *   (for example, SIGCHLD), shall cause the pending signal to
4091 		 *   be discarded, whether or not it is blocked"
4092 		 */
4093 		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4094 			sigemptyset(&mask);
4095 			sigaddset(&mask, sig);
4096 			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4097 			for_each_thread(p, t)
4098 				flush_sigqueue_mask(&mask, &t->pending);
4099 		}
4100 	}
4101 
4102 	spin_unlock_irq(&p->sighand->siglock);
4103 	return 0;
4104 }
4105 
4106 static int
4107 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4108 		size_t min_ss_size)
4109 {
4110 	struct task_struct *t = current;
4111 
4112 	if (oss) {
4113 		memset(oss, 0, sizeof(stack_t));
4114 		oss->ss_sp = (void __user *) t->sas_ss_sp;
4115 		oss->ss_size = t->sas_ss_size;
4116 		oss->ss_flags = sas_ss_flags(sp) |
4117 			(current->sas_ss_flags & SS_FLAG_BITS);
4118 	}
4119 
4120 	if (ss) {
4121 		void __user *ss_sp = ss->ss_sp;
4122 		size_t ss_size = ss->ss_size;
4123 		unsigned ss_flags = ss->ss_flags;
4124 		int ss_mode;
4125 
4126 		if (unlikely(on_sig_stack(sp)))
4127 			return -EPERM;
4128 
4129 		ss_mode = ss_flags & ~SS_FLAG_BITS;
4130 		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4131 				ss_mode != 0))
4132 			return -EINVAL;
4133 
4134 		if (ss_mode == SS_DISABLE) {
4135 			ss_size = 0;
4136 			ss_sp = NULL;
4137 		} else {
4138 			if (unlikely(ss_size < min_ss_size))
4139 				return -ENOMEM;
4140 		}
4141 
4142 		t->sas_ss_sp = (unsigned long) ss_sp;
4143 		t->sas_ss_size = ss_size;
4144 		t->sas_ss_flags = ss_flags;
4145 	}
4146 	return 0;
4147 }
4148 
4149 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4150 {
4151 	stack_t new, old;
4152 	int err;
4153 	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4154 		return -EFAULT;
4155 	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4156 			      current_user_stack_pointer(),
4157 			      MINSIGSTKSZ);
4158 	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4159 		err = -EFAULT;
4160 	return err;
4161 }
4162 
4163 int restore_altstack(const stack_t __user *uss)
4164 {
4165 	stack_t new;
4166 	if (copy_from_user(&new, uss, sizeof(stack_t)))
4167 		return -EFAULT;
4168 	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4169 			     MINSIGSTKSZ);
4170 	/* squash all but EFAULT for now */
4171 	return 0;
4172 }
4173 
4174 int __save_altstack(stack_t __user *uss, unsigned long sp)
4175 {
4176 	struct task_struct *t = current;
4177 	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4178 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4179 		__put_user(t->sas_ss_size, &uss->ss_size);
4180 	return err;
4181 }
4182 
4183 #ifdef CONFIG_COMPAT
4184 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4185 				 compat_stack_t __user *uoss_ptr)
4186 {
4187 	stack_t uss, uoss;
4188 	int ret;
4189 
4190 	if (uss_ptr) {
4191 		compat_stack_t uss32;
4192 		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4193 			return -EFAULT;
4194 		uss.ss_sp = compat_ptr(uss32.ss_sp);
4195 		uss.ss_flags = uss32.ss_flags;
4196 		uss.ss_size = uss32.ss_size;
4197 	}
4198 	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4199 			     compat_user_stack_pointer(),
4200 			     COMPAT_MINSIGSTKSZ);
4201 	if (ret >= 0 && uoss_ptr)  {
4202 		compat_stack_t old;
4203 		memset(&old, 0, sizeof(old));
4204 		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4205 		old.ss_flags = uoss.ss_flags;
4206 		old.ss_size = uoss.ss_size;
4207 		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4208 			ret = -EFAULT;
4209 	}
4210 	return ret;
4211 }
4212 
4213 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4214 			const compat_stack_t __user *, uss_ptr,
4215 			compat_stack_t __user *, uoss_ptr)
4216 {
4217 	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4218 }
4219 
4220 int compat_restore_altstack(const compat_stack_t __user *uss)
4221 {
4222 	int err = do_compat_sigaltstack(uss, NULL);
4223 	/* squash all but -EFAULT for now */
4224 	return err == -EFAULT ? err : 0;
4225 }
4226 
4227 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4228 {
4229 	int err;
4230 	struct task_struct *t = current;
4231 	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4232 			 &uss->ss_sp) |
4233 		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4234 		__put_user(t->sas_ss_size, &uss->ss_size);
4235 	return err;
4236 }
4237 #endif
4238 
4239 #ifdef __ARCH_WANT_SYS_SIGPENDING
4240 
4241 /**
4242  *  sys_sigpending - examine pending signals
4243  *  @uset: where mask of pending signal is returned
4244  */
4245 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4246 {
4247 	sigset_t set;
4248 
4249 	if (sizeof(old_sigset_t) > sizeof(*uset))
4250 		return -EINVAL;
4251 
4252 	do_sigpending(&set);
4253 
4254 	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4255 		return -EFAULT;
4256 
4257 	return 0;
4258 }
4259 
4260 #ifdef CONFIG_COMPAT
4261 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4262 {
4263 	sigset_t set;
4264 
4265 	do_sigpending(&set);
4266 
4267 	return put_user(set.sig[0], set32);
4268 }
4269 #endif
4270 
4271 #endif
4272 
4273 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4274 /**
4275  *  sys_sigprocmask - examine and change blocked signals
4276  *  @how: whether to add, remove, or set signals
4277  *  @nset: signals to add or remove (if non-null)
4278  *  @oset: previous value of signal mask if non-null
4279  *
4280  * Some platforms have their own version with special arguments;
4281  * others support only sys_rt_sigprocmask.
4282  */
4283 
4284 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4285 		old_sigset_t __user *, oset)
4286 {
4287 	old_sigset_t old_set, new_set;
4288 	sigset_t new_blocked;
4289 
4290 	old_set = current->blocked.sig[0];
4291 
4292 	if (nset) {
4293 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4294 			return -EFAULT;
4295 
4296 		new_blocked = current->blocked;
4297 
4298 		switch (how) {
4299 		case SIG_BLOCK:
4300 			sigaddsetmask(&new_blocked, new_set);
4301 			break;
4302 		case SIG_UNBLOCK:
4303 			sigdelsetmask(&new_blocked, new_set);
4304 			break;
4305 		case SIG_SETMASK:
4306 			new_blocked.sig[0] = new_set;
4307 			break;
4308 		default:
4309 			return -EINVAL;
4310 		}
4311 
4312 		set_current_blocked(&new_blocked);
4313 	}
4314 
4315 	if (oset) {
4316 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4317 			return -EFAULT;
4318 	}
4319 
4320 	return 0;
4321 }
4322 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4323 
4324 #ifndef CONFIG_ODD_RT_SIGACTION
4325 /**
4326  *  sys_rt_sigaction - alter an action taken by a process
4327  *  @sig: signal to be sent
4328  *  @act: new sigaction
4329  *  @oact: used to save the previous sigaction
4330  *  @sigsetsize: size of sigset_t type
4331  */
4332 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4333 		const struct sigaction __user *, act,
4334 		struct sigaction __user *, oact,
4335 		size_t, sigsetsize)
4336 {
4337 	struct k_sigaction new_sa, old_sa;
4338 	int ret;
4339 
4340 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4341 	if (sigsetsize != sizeof(sigset_t))
4342 		return -EINVAL;
4343 
4344 	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4345 		return -EFAULT;
4346 
4347 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4348 	if (ret)
4349 		return ret;
4350 
4351 	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4352 		return -EFAULT;
4353 
4354 	return 0;
4355 }
4356 #ifdef CONFIG_COMPAT
4357 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4358 		const struct compat_sigaction __user *, act,
4359 		struct compat_sigaction __user *, oact,
4360 		compat_size_t, sigsetsize)
4361 {
4362 	struct k_sigaction new_ka, old_ka;
4363 #ifdef __ARCH_HAS_SA_RESTORER
4364 	compat_uptr_t restorer;
4365 #endif
4366 	int ret;
4367 
4368 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4369 	if (sigsetsize != sizeof(compat_sigset_t))
4370 		return -EINVAL;
4371 
4372 	if (act) {
4373 		compat_uptr_t handler;
4374 		ret = get_user(handler, &act->sa_handler);
4375 		new_ka.sa.sa_handler = compat_ptr(handler);
4376 #ifdef __ARCH_HAS_SA_RESTORER
4377 		ret |= get_user(restorer, &act->sa_restorer);
4378 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4379 #endif
4380 		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4381 		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4382 		if (ret)
4383 			return -EFAULT;
4384 	}
4385 
4386 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4387 	if (!ret && oact) {
4388 		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4389 			       &oact->sa_handler);
4390 		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4391 					 sizeof(oact->sa_mask));
4392 		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4393 #ifdef __ARCH_HAS_SA_RESTORER
4394 		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4395 				&oact->sa_restorer);
4396 #endif
4397 	}
4398 	return ret;
4399 }
4400 #endif
4401 #endif /* !CONFIG_ODD_RT_SIGACTION */
4402 
4403 #ifdef CONFIG_OLD_SIGACTION
4404 SYSCALL_DEFINE3(sigaction, int, sig,
4405 		const struct old_sigaction __user *, act,
4406 	        struct old_sigaction __user *, oact)
4407 {
4408 	struct k_sigaction new_ka, old_ka;
4409 	int ret;
4410 
4411 	if (act) {
4412 		old_sigset_t mask;
4413 		if (!access_ok(act, sizeof(*act)) ||
4414 		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4415 		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4416 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4417 		    __get_user(mask, &act->sa_mask))
4418 			return -EFAULT;
4419 #ifdef __ARCH_HAS_KA_RESTORER
4420 		new_ka.ka_restorer = NULL;
4421 #endif
4422 		siginitset(&new_ka.sa.sa_mask, mask);
4423 	}
4424 
4425 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4426 
4427 	if (!ret && oact) {
4428 		if (!access_ok(oact, sizeof(*oact)) ||
4429 		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4430 		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4431 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4432 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4433 			return -EFAULT;
4434 	}
4435 
4436 	return ret;
4437 }
4438 #endif
4439 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4440 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4441 		const struct compat_old_sigaction __user *, act,
4442 	        struct compat_old_sigaction __user *, oact)
4443 {
4444 	struct k_sigaction new_ka, old_ka;
4445 	int ret;
4446 	compat_old_sigset_t mask;
4447 	compat_uptr_t handler, restorer;
4448 
4449 	if (act) {
4450 		if (!access_ok(act, sizeof(*act)) ||
4451 		    __get_user(handler, &act->sa_handler) ||
4452 		    __get_user(restorer, &act->sa_restorer) ||
4453 		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4454 		    __get_user(mask, &act->sa_mask))
4455 			return -EFAULT;
4456 
4457 #ifdef __ARCH_HAS_KA_RESTORER
4458 		new_ka.ka_restorer = NULL;
4459 #endif
4460 		new_ka.sa.sa_handler = compat_ptr(handler);
4461 		new_ka.sa.sa_restorer = compat_ptr(restorer);
4462 		siginitset(&new_ka.sa.sa_mask, mask);
4463 	}
4464 
4465 	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4466 
4467 	if (!ret && oact) {
4468 		if (!access_ok(oact, sizeof(*oact)) ||
4469 		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4470 			       &oact->sa_handler) ||
4471 		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4472 			       &oact->sa_restorer) ||
4473 		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4474 		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4475 			return -EFAULT;
4476 	}
4477 	return ret;
4478 }
4479 #endif
4480 
4481 #ifdef CONFIG_SGETMASK_SYSCALL
4482 
4483 /*
4484  * For backwards compatibility.  Functionality superseded by sigprocmask.
4485  */
4486 SYSCALL_DEFINE0(sgetmask)
4487 {
4488 	/* SMP safe */
4489 	return current->blocked.sig[0];
4490 }
4491 
4492 SYSCALL_DEFINE1(ssetmask, int, newmask)
4493 {
4494 	int old = current->blocked.sig[0];
4495 	sigset_t newset;
4496 
4497 	siginitset(&newset, newmask);
4498 	set_current_blocked(&newset);
4499 
4500 	return old;
4501 }
4502 #endif /* CONFIG_SGETMASK_SYSCALL */
4503 
4504 #ifdef __ARCH_WANT_SYS_SIGNAL
4505 /*
4506  * For backwards compatibility.  Functionality superseded by sigaction.
4507  */
4508 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4509 {
4510 	struct k_sigaction new_sa, old_sa;
4511 	int ret;
4512 
4513 	new_sa.sa.sa_handler = handler;
4514 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4515 	sigemptyset(&new_sa.sa.sa_mask);
4516 
4517 	ret = do_sigaction(sig, &new_sa, &old_sa);
4518 
4519 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4520 }
4521 #endif /* __ARCH_WANT_SYS_SIGNAL */
4522 
4523 #ifdef __ARCH_WANT_SYS_PAUSE
4524 
4525 SYSCALL_DEFINE0(pause)
4526 {
4527 	while (!signal_pending(current)) {
4528 		__set_current_state(TASK_INTERRUPTIBLE);
4529 		schedule();
4530 	}
4531 	return -ERESTARTNOHAND;
4532 }
4533 
4534 #endif
4535 
4536 static int sigsuspend(sigset_t *set)
4537 {
4538 	current->saved_sigmask = current->blocked;
4539 	set_current_blocked(set);
4540 
4541 	while (!signal_pending(current)) {
4542 		__set_current_state(TASK_INTERRUPTIBLE);
4543 		schedule();
4544 	}
4545 	set_restore_sigmask();
4546 	return -ERESTARTNOHAND;
4547 }
4548 
4549 /**
4550  *  sys_rt_sigsuspend - replace the signal mask for a value with the
4551  *	@unewset value until a signal is received
4552  *  @unewset: new signal mask value
4553  *  @sigsetsize: size of sigset_t type
4554  */
4555 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4556 {
4557 	sigset_t newset;
4558 
4559 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4560 	if (sigsetsize != sizeof(sigset_t))
4561 		return -EINVAL;
4562 
4563 	if (copy_from_user(&newset, unewset, sizeof(newset)))
4564 		return -EFAULT;
4565 	return sigsuspend(&newset);
4566 }
4567 
4568 #ifdef CONFIG_COMPAT
4569 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4570 {
4571 	sigset_t newset;
4572 
4573 	/* XXX: Don't preclude handling different sized sigset_t's.  */
4574 	if (sigsetsize != sizeof(sigset_t))
4575 		return -EINVAL;
4576 
4577 	if (get_compat_sigset(&newset, unewset))
4578 		return -EFAULT;
4579 	return sigsuspend(&newset);
4580 }
4581 #endif
4582 
4583 #ifdef CONFIG_OLD_SIGSUSPEND
4584 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4585 {
4586 	sigset_t blocked;
4587 	siginitset(&blocked, mask);
4588 	return sigsuspend(&blocked);
4589 }
4590 #endif
4591 #ifdef CONFIG_OLD_SIGSUSPEND3
4592 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4593 {
4594 	sigset_t blocked;
4595 	siginitset(&blocked, mask);
4596 	return sigsuspend(&blocked);
4597 }
4598 #endif
4599 
4600 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4601 {
4602 	return NULL;
4603 }
4604 
4605 static inline void siginfo_buildtime_checks(void)
4606 {
4607 	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4608 
4609 	/* Verify the offsets in the two siginfos match */
4610 #define CHECK_OFFSET(field) \
4611 	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4612 
4613 	/* kill */
4614 	CHECK_OFFSET(si_pid);
4615 	CHECK_OFFSET(si_uid);
4616 
4617 	/* timer */
4618 	CHECK_OFFSET(si_tid);
4619 	CHECK_OFFSET(si_overrun);
4620 	CHECK_OFFSET(si_value);
4621 
4622 	/* rt */
4623 	CHECK_OFFSET(si_pid);
4624 	CHECK_OFFSET(si_uid);
4625 	CHECK_OFFSET(si_value);
4626 
4627 	/* sigchld */
4628 	CHECK_OFFSET(si_pid);
4629 	CHECK_OFFSET(si_uid);
4630 	CHECK_OFFSET(si_status);
4631 	CHECK_OFFSET(si_utime);
4632 	CHECK_OFFSET(si_stime);
4633 
4634 	/* sigfault */
4635 	CHECK_OFFSET(si_addr);
4636 	CHECK_OFFSET(si_trapno);
4637 	CHECK_OFFSET(si_addr_lsb);
4638 	CHECK_OFFSET(si_lower);
4639 	CHECK_OFFSET(si_upper);
4640 	CHECK_OFFSET(si_pkey);
4641 	CHECK_OFFSET(si_perf_data);
4642 	CHECK_OFFSET(si_perf_type);
4643 
4644 	/* sigpoll */
4645 	CHECK_OFFSET(si_band);
4646 	CHECK_OFFSET(si_fd);
4647 
4648 	/* sigsys */
4649 	CHECK_OFFSET(si_call_addr);
4650 	CHECK_OFFSET(si_syscall);
4651 	CHECK_OFFSET(si_arch);
4652 #undef CHECK_OFFSET
4653 
4654 	/* usb asyncio */
4655 	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4656 		     offsetof(struct siginfo, si_addr));
4657 	if (sizeof(int) == sizeof(void __user *)) {
4658 		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4659 			     sizeof(void __user *));
4660 	} else {
4661 		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4662 			      sizeof_field(struct siginfo, si_uid)) !=
4663 			     sizeof(void __user *));
4664 		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4665 			     offsetof(struct siginfo, si_uid));
4666 	}
4667 #ifdef CONFIG_COMPAT
4668 	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4669 		     offsetof(struct compat_siginfo, si_addr));
4670 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4671 		     sizeof(compat_uptr_t));
4672 	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4673 		     sizeof_field(struct siginfo, si_pid));
4674 #endif
4675 }
4676 
4677 void __init signals_init(void)
4678 {
4679 	siginfo_buildtime_checks();
4680 
4681 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4682 }
4683 
4684 #ifdef CONFIG_KGDB_KDB
4685 #include <linux/kdb.h>
4686 /*
4687  * kdb_send_sig - Allows kdb to send signals without exposing
4688  * signal internals.  This function checks if the required locks are
4689  * available before calling the main signal code, to avoid kdb
4690  * deadlocks.
4691  */
4692 void kdb_send_sig(struct task_struct *t, int sig)
4693 {
4694 	static struct task_struct *kdb_prev_t;
4695 	int new_t, ret;
4696 	if (!spin_trylock(&t->sighand->siglock)) {
4697 		kdb_printf("Can't do kill command now.\n"
4698 			   "The sigmask lock is held somewhere else in "
4699 			   "kernel, try again later\n");
4700 		return;
4701 	}
4702 	new_t = kdb_prev_t != t;
4703 	kdb_prev_t = t;
4704 	if (!task_is_running(t) && new_t) {
4705 		spin_unlock(&t->sighand->siglock);
4706 		kdb_printf("Process is not RUNNING, sending a signal from "
4707 			   "kdb risks deadlock\n"
4708 			   "on the run queue locks. "
4709 			   "The signal has _not_ been sent.\n"
4710 			   "Reissue the kill command if you want to risk "
4711 			   "the deadlock.\n");
4712 		return;
4713 	}
4714 	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4715 	spin_unlock(&t->sighand->siglock);
4716 	if (ret)
4717 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4718 			   sig, t->pid);
4719 	else
4720 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4721 }
4722 #endif	/* CONFIG_KGDB_KDB */
4723