1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/signal.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 8 * 9 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 10 * Changes to use preallocated sigqueue structures 11 * to allow signals to be sent reliably. 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/user.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/sched/cputime.h> 23 #include <linux/file.h> 24 #include <linux/fs.h> 25 #include <linux/proc_fs.h> 26 #include <linux/tty.h> 27 #include <linux/binfmts.h> 28 #include <linux/coredump.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include <linux/ptrace.h> 32 #include <linux/signal.h> 33 #include <linux/signalfd.h> 34 #include <linux/ratelimit.h> 35 #include <linux/tracehook.h> 36 #include <linux/capability.h> 37 #include <linux/freezer.h> 38 #include <linux/pid_namespace.h> 39 #include <linux/nsproxy.h> 40 #include <linux/user_namespace.h> 41 #include <linux/uprobes.h> 42 #include <linux/compat.h> 43 #include <linux/cn_proc.h> 44 #include <linux/compiler.h> 45 #include <linux/posix-timers.h> 46 #include <linux/cgroup.h> 47 #include <linux/audit.h> 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/signal.h> 51 52 #include <asm/param.h> 53 #include <linux/uaccess.h> 54 #include <asm/unistd.h> 55 #include <asm/siginfo.h> 56 #include <asm/cacheflush.h> 57 58 /* 59 * SLAB caches for signal bits. 60 */ 61 62 static struct kmem_cache *sigqueue_cachep; 63 64 int print_fatal_signals __read_mostly; 65 66 static void __user *sig_handler(struct task_struct *t, int sig) 67 { 68 return t->sighand->action[sig - 1].sa.sa_handler; 69 } 70 71 static inline bool sig_handler_ignored(void __user *handler, int sig) 72 { 73 /* Is it explicitly or implicitly ignored? */ 74 return handler == SIG_IGN || 75 (handler == SIG_DFL && sig_kernel_ignore(sig)); 76 } 77 78 static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 79 { 80 void __user *handler; 81 82 handler = sig_handler(t, sig); 83 84 /* SIGKILL and SIGSTOP may not be sent to the global init */ 85 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 86 return true; 87 88 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 89 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 90 return true; 91 92 /* Only allow kernel generated signals to this kthread */ 93 if (unlikely((t->flags & PF_KTHREAD) && 94 (handler == SIG_KTHREAD_KERNEL) && !force)) 95 return true; 96 97 return sig_handler_ignored(handler, sig); 98 } 99 100 static bool sig_ignored(struct task_struct *t, int sig, bool force) 101 { 102 /* 103 * Blocked signals are never ignored, since the 104 * signal handler may change by the time it is 105 * unblocked. 106 */ 107 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 108 return false; 109 110 /* 111 * Tracers may want to know about even ignored signal unless it 112 * is SIGKILL which can't be reported anyway but can be ignored 113 * by SIGNAL_UNKILLABLE task. 114 */ 115 if (t->ptrace && sig != SIGKILL) 116 return false; 117 118 return sig_task_ignored(t, sig, force); 119 } 120 121 /* 122 * Re-calculate pending state from the set of locally pending 123 * signals, globally pending signals, and blocked signals. 124 */ 125 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 126 { 127 unsigned long ready; 128 long i; 129 130 switch (_NSIG_WORDS) { 131 default: 132 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 133 ready |= signal->sig[i] &~ blocked->sig[i]; 134 break; 135 136 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 137 ready |= signal->sig[2] &~ blocked->sig[2]; 138 ready |= signal->sig[1] &~ blocked->sig[1]; 139 ready |= signal->sig[0] &~ blocked->sig[0]; 140 break; 141 142 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 143 ready |= signal->sig[0] &~ blocked->sig[0]; 144 break; 145 146 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 147 } 148 return ready != 0; 149 } 150 151 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 152 153 static bool recalc_sigpending_tsk(struct task_struct *t) 154 { 155 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || 156 PENDING(&t->pending, &t->blocked) || 157 PENDING(&t->signal->shared_pending, &t->blocked) || 158 cgroup_task_frozen(t)) { 159 set_tsk_thread_flag(t, TIF_SIGPENDING); 160 return true; 161 } 162 163 /* 164 * We must never clear the flag in another thread, or in current 165 * when it's possible the current syscall is returning -ERESTART*. 166 * So we don't clear it here, and only callers who know they should do. 167 */ 168 return false; 169 } 170 171 /* 172 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 173 * This is superfluous when called on current, the wakeup is a harmless no-op. 174 */ 175 void recalc_sigpending_and_wake(struct task_struct *t) 176 { 177 if (recalc_sigpending_tsk(t)) 178 signal_wake_up(t, 0); 179 } 180 181 void recalc_sigpending(void) 182 { 183 if (!recalc_sigpending_tsk(current) && !freezing(current)) 184 clear_thread_flag(TIF_SIGPENDING); 185 186 } 187 EXPORT_SYMBOL(recalc_sigpending); 188 189 void calculate_sigpending(void) 190 { 191 /* Have any signals or users of TIF_SIGPENDING been delayed 192 * until after fork? 193 */ 194 spin_lock_irq(¤t->sighand->siglock); 195 set_tsk_thread_flag(current, TIF_SIGPENDING); 196 recalc_sigpending(); 197 spin_unlock_irq(¤t->sighand->siglock); 198 } 199 200 /* Given the mask, find the first available signal that should be serviced. */ 201 202 #define SYNCHRONOUS_MASK \ 203 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 204 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 205 206 int next_signal(struct sigpending *pending, sigset_t *mask) 207 { 208 unsigned long i, *s, *m, x; 209 int sig = 0; 210 211 s = pending->signal.sig; 212 m = mask->sig; 213 214 /* 215 * Handle the first word specially: it contains the 216 * synchronous signals that need to be dequeued first. 217 */ 218 x = *s &~ *m; 219 if (x) { 220 if (x & SYNCHRONOUS_MASK) 221 x &= SYNCHRONOUS_MASK; 222 sig = ffz(~x) + 1; 223 return sig; 224 } 225 226 switch (_NSIG_WORDS) { 227 default: 228 for (i = 1; i < _NSIG_WORDS; ++i) { 229 x = *++s &~ *++m; 230 if (!x) 231 continue; 232 sig = ffz(~x) + i*_NSIG_BPW + 1; 233 break; 234 } 235 break; 236 237 case 2: 238 x = s[1] &~ m[1]; 239 if (!x) 240 break; 241 sig = ffz(~x) + _NSIG_BPW + 1; 242 break; 243 244 case 1: 245 /* Nothing to do */ 246 break; 247 } 248 249 return sig; 250 } 251 252 static inline void print_dropped_signal(int sig) 253 { 254 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 255 256 if (!print_fatal_signals) 257 return; 258 259 if (!__ratelimit(&ratelimit_state)) 260 return; 261 262 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 263 current->comm, current->pid, sig); 264 } 265 266 /** 267 * task_set_jobctl_pending - set jobctl pending bits 268 * @task: target task 269 * @mask: pending bits to set 270 * 271 * Clear @mask from @task->jobctl. @mask must be subset of 272 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 273 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 274 * cleared. If @task is already being killed or exiting, this function 275 * becomes noop. 276 * 277 * CONTEXT: 278 * Must be called with @task->sighand->siglock held. 279 * 280 * RETURNS: 281 * %true if @mask is set, %false if made noop because @task was dying. 282 */ 283 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 284 { 285 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 286 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 287 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 288 289 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 290 return false; 291 292 if (mask & JOBCTL_STOP_SIGMASK) 293 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 294 295 task->jobctl |= mask; 296 return true; 297 } 298 299 /** 300 * task_clear_jobctl_trapping - clear jobctl trapping bit 301 * @task: target task 302 * 303 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 304 * Clear it and wake up the ptracer. Note that we don't need any further 305 * locking. @task->siglock guarantees that @task->parent points to the 306 * ptracer. 307 * 308 * CONTEXT: 309 * Must be called with @task->sighand->siglock held. 310 */ 311 void task_clear_jobctl_trapping(struct task_struct *task) 312 { 313 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 314 task->jobctl &= ~JOBCTL_TRAPPING; 315 smp_mb(); /* advised by wake_up_bit() */ 316 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 317 } 318 } 319 320 /** 321 * task_clear_jobctl_pending - clear jobctl pending bits 322 * @task: target task 323 * @mask: pending bits to clear 324 * 325 * Clear @mask from @task->jobctl. @mask must be subset of 326 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 327 * STOP bits are cleared together. 328 * 329 * If clearing of @mask leaves no stop or trap pending, this function calls 330 * task_clear_jobctl_trapping(). 331 * 332 * CONTEXT: 333 * Must be called with @task->sighand->siglock held. 334 */ 335 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 336 { 337 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 338 339 if (mask & JOBCTL_STOP_PENDING) 340 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 341 342 task->jobctl &= ~mask; 343 344 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 345 task_clear_jobctl_trapping(task); 346 } 347 348 /** 349 * task_participate_group_stop - participate in a group stop 350 * @task: task participating in a group stop 351 * 352 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 353 * Group stop states are cleared and the group stop count is consumed if 354 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 355 * stop, the appropriate `SIGNAL_*` flags are set. 356 * 357 * CONTEXT: 358 * Must be called with @task->sighand->siglock held. 359 * 360 * RETURNS: 361 * %true if group stop completion should be notified to the parent, %false 362 * otherwise. 363 */ 364 static bool task_participate_group_stop(struct task_struct *task) 365 { 366 struct signal_struct *sig = task->signal; 367 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 368 369 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 370 371 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 372 373 if (!consume) 374 return false; 375 376 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 377 sig->group_stop_count--; 378 379 /* 380 * Tell the caller to notify completion iff we are entering into a 381 * fresh group stop. Read comment in do_signal_stop() for details. 382 */ 383 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 384 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 385 return true; 386 } 387 return false; 388 } 389 390 void task_join_group_stop(struct task_struct *task) 391 { 392 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK; 393 struct signal_struct *sig = current->signal; 394 395 if (sig->group_stop_count) { 396 sig->group_stop_count++; 397 mask |= JOBCTL_STOP_CONSUME; 398 } else if (!(sig->flags & SIGNAL_STOP_STOPPED)) 399 return; 400 401 /* Have the new thread join an on-going signal group stop */ 402 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING); 403 } 404 405 /* 406 * allocate a new signal queue record 407 * - this may be called without locks if and only if t == current, otherwise an 408 * appropriate lock must be held to stop the target task from exiting 409 */ 410 static struct sigqueue * 411 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags, 412 int override_rlimit, const unsigned int sigqueue_flags) 413 { 414 struct sigqueue *q = NULL; 415 struct ucounts *ucounts = NULL; 416 long sigpending; 417 418 /* 419 * Protect access to @t credentials. This can go away when all 420 * callers hold rcu read lock. 421 * 422 * NOTE! A pending signal will hold on to the user refcount, 423 * and we get/put the refcount only when the sigpending count 424 * changes from/to zero. 425 */ 426 rcu_read_lock(); 427 ucounts = task_ucounts(t); 428 sigpending = inc_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING, 1); 429 switch (sigpending) { 430 case 1: 431 if (likely(get_ucounts(ucounts))) 432 break; 433 fallthrough; 434 case LONG_MAX: 435 /* 436 * we need to decrease the ucount in the userns tree on any 437 * failure to avoid counts leaking. 438 */ 439 dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING, 1); 440 rcu_read_unlock(); 441 return NULL; 442 } 443 rcu_read_unlock(); 444 445 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) { 446 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags); 447 } else { 448 print_dropped_signal(sig); 449 } 450 451 if (unlikely(q == NULL)) { 452 if (dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING, 1)) 453 put_ucounts(ucounts); 454 } else { 455 INIT_LIST_HEAD(&q->list); 456 q->flags = sigqueue_flags; 457 q->ucounts = ucounts; 458 } 459 return q; 460 } 461 462 static void __sigqueue_free(struct sigqueue *q) 463 { 464 if (q->flags & SIGQUEUE_PREALLOC) 465 return; 466 if (q->ucounts && dec_rlimit_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING, 1)) { 467 put_ucounts(q->ucounts); 468 q->ucounts = NULL; 469 } 470 kmem_cache_free(sigqueue_cachep, q); 471 } 472 473 void flush_sigqueue(struct sigpending *queue) 474 { 475 struct sigqueue *q; 476 477 sigemptyset(&queue->signal); 478 while (!list_empty(&queue->list)) { 479 q = list_entry(queue->list.next, struct sigqueue , list); 480 list_del_init(&q->list); 481 __sigqueue_free(q); 482 } 483 } 484 485 /* 486 * Flush all pending signals for this kthread. 487 */ 488 void flush_signals(struct task_struct *t) 489 { 490 unsigned long flags; 491 492 spin_lock_irqsave(&t->sighand->siglock, flags); 493 clear_tsk_thread_flag(t, TIF_SIGPENDING); 494 flush_sigqueue(&t->pending); 495 flush_sigqueue(&t->signal->shared_pending); 496 spin_unlock_irqrestore(&t->sighand->siglock, flags); 497 } 498 EXPORT_SYMBOL(flush_signals); 499 500 #ifdef CONFIG_POSIX_TIMERS 501 static void __flush_itimer_signals(struct sigpending *pending) 502 { 503 sigset_t signal, retain; 504 struct sigqueue *q, *n; 505 506 signal = pending->signal; 507 sigemptyset(&retain); 508 509 list_for_each_entry_safe(q, n, &pending->list, list) { 510 int sig = q->info.si_signo; 511 512 if (likely(q->info.si_code != SI_TIMER)) { 513 sigaddset(&retain, sig); 514 } else { 515 sigdelset(&signal, sig); 516 list_del_init(&q->list); 517 __sigqueue_free(q); 518 } 519 } 520 521 sigorsets(&pending->signal, &signal, &retain); 522 } 523 524 void flush_itimer_signals(void) 525 { 526 struct task_struct *tsk = current; 527 unsigned long flags; 528 529 spin_lock_irqsave(&tsk->sighand->siglock, flags); 530 __flush_itimer_signals(&tsk->pending); 531 __flush_itimer_signals(&tsk->signal->shared_pending); 532 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 533 } 534 #endif 535 536 void ignore_signals(struct task_struct *t) 537 { 538 int i; 539 540 for (i = 0; i < _NSIG; ++i) 541 t->sighand->action[i].sa.sa_handler = SIG_IGN; 542 543 flush_signals(t); 544 } 545 546 /* 547 * Flush all handlers for a task. 548 */ 549 550 void 551 flush_signal_handlers(struct task_struct *t, int force_default) 552 { 553 int i; 554 struct k_sigaction *ka = &t->sighand->action[0]; 555 for (i = _NSIG ; i != 0 ; i--) { 556 if (force_default || ka->sa.sa_handler != SIG_IGN) 557 ka->sa.sa_handler = SIG_DFL; 558 ka->sa.sa_flags = 0; 559 #ifdef __ARCH_HAS_SA_RESTORER 560 ka->sa.sa_restorer = NULL; 561 #endif 562 sigemptyset(&ka->sa.sa_mask); 563 ka++; 564 } 565 } 566 567 bool unhandled_signal(struct task_struct *tsk, int sig) 568 { 569 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 570 if (is_global_init(tsk)) 571 return true; 572 573 if (handler != SIG_IGN && handler != SIG_DFL) 574 return false; 575 576 /* if ptraced, let the tracer determine */ 577 return !tsk->ptrace; 578 } 579 580 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 581 bool *resched_timer) 582 { 583 struct sigqueue *q, *first = NULL; 584 585 /* 586 * Collect the siginfo appropriate to this signal. Check if 587 * there is another siginfo for the same signal. 588 */ 589 list_for_each_entry(q, &list->list, list) { 590 if (q->info.si_signo == sig) { 591 if (first) 592 goto still_pending; 593 first = q; 594 } 595 } 596 597 sigdelset(&list->signal, sig); 598 599 if (first) { 600 still_pending: 601 list_del_init(&first->list); 602 copy_siginfo(info, &first->info); 603 604 *resched_timer = 605 (first->flags & SIGQUEUE_PREALLOC) && 606 (info->si_code == SI_TIMER) && 607 (info->si_sys_private); 608 609 __sigqueue_free(first); 610 } else { 611 /* 612 * Ok, it wasn't in the queue. This must be 613 * a fast-pathed signal or we must have been 614 * out of queue space. So zero out the info. 615 */ 616 clear_siginfo(info); 617 info->si_signo = sig; 618 info->si_errno = 0; 619 info->si_code = SI_USER; 620 info->si_pid = 0; 621 info->si_uid = 0; 622 } 623 } 624 625 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 626 kernel_siginfo_t *info, bool *resched_timer) 627 { 628 int sig = next_signal(pending, mask); 629 630 if (sig) 631 collect_signal(sig, pending, info, resched_timer); 632 return sig; 633 } 634 635 /* 636 * Dequeue a signal and return the element to the caller, which is 637 * expected to free it. 638 * 639 * All callers have to hold the siglock. 640 */ 641 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info) 642 { 643 bool resched_timer = false; 644 int signr; 645 646 /* We only dequeue private signals from ourselves, we don't let 647 * signalfd steal them 648 */ 649 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 650 if (!signr) { 651 signr = __dequeue_signal(&tsk->signal->shared_pending, 652 mask, info, &resched_timer); 653 #ifdef CONFIG_POSIX_TIMERS 654 /* 655 * itimer signal ? 656 * 657 * itimers are process shared and we restart periodic 658 * itimers in the signal delivery path to prevent DoS 659 * attacks in the high resolution timer case. This is 660 * compliant with the old way of self-restarting 661 * itimers, as the SIGALRM is a legacy signal and only 662 * queued once. Changing the restart behaviour to 663 * restart the timer in the signal dequeue path is 664 * reducing the timer noise on heavy loaded !highres 665 * systems too. 666 */ 667 if (unlikely(signr == SIGALRM)) { 668 struct hrtimer *tmr = &tsk->signal->real_timer; 669 670 if (!hrtimer_is_queued(tmr) && 671 tsk->signal->it_real_incr != 0) { 672 hrtimer_forward(tmr, tmr->base->get_time(), 673 tsk->signal->it_real_incr); 674 hrtimer_restart(tmr); 675 } 676 } 677 #endif 678 } 679 680 recalc_sigpending(); 681 if (!signr) 682 return 0; 683 684 if (unlikely(sig_kernel_stop(signr))) { 685 /* 686 * Set a marker that we have dequeued a stop signal. Our 687 * caller might release the siglock and then the pending 688 * stop signal it is about to process is no longer in the 689 * pending bitmasks, but must still be cleared by a SIGCONT 690 * (and overruled by a SIGKILL). So those cases clear this 691 * shared flag after we've set it. Note that this flag may 692 * remain set after the signal we return is ignored or 693 * handled. That doesn't matter because its only purpose 694 * is to alert stop-signal processing code when another 695 * processor has come along and cleared the flag. 696 */ 697 current->jobctl |= JOBCTL_STOP_DEQUEUED; 698 } 699 #ifdef CONFIG_POSIX_TIMERS 700 if (resched_timer) { 701 /* 702 * Release the siglock to ensure proper locking order 703 * of timer locks outside of siglocks. Note, we leave 704 * irqs disabled here, since the posix-timers code is 705 * about to disable them again anyway. 706 */ 707 spin_unlock(&tsk->sighand->siglock); 708 posixtimer_rearm(info); 709 spin_lock(&tsk->sighand->siglock); 710 711 /* Don't expose the si_sys_private value to userspace */ 712 info->si_sys_private = 0; 713 } 714 #endif 715 return signr; 716 } 717 EXPORT_SYMBOL_GPL(dequeue_signal); 718 719 static int dequeue_synchronous_signal(kernel_siginfo_t *info) 720 { 721 struct task_struct *tsk = current; 722 struct sigpending *pending = &tsk->pending; 723 struct sigqueue *q, *sync = NULL; 724 725 /* 726 * Might a synchronous signal be in the queue? 727 */ 728 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 729 return 0; 730 731 /* 732 * Return the first synchronous signal in the queue. 733 */ 734 list_for_each_entry(q, &pending->list, list) { 735 /* Synchronous signals have a positive si_code */ 736 if ((q->info.si_code > SI_USER) && 737 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 738 sync = q; 739 goto next; 740 } 741 } 742 return 0; 743 next: 744 /* 745 * Check if there is another siginfo for the same signal. 746 */ 747 list_for_each_entry_continue(q, &pending->list, list) { 748 if (q->info.si_signo == sync->info.si_signo) 749 goto still_pending; 750 } 751 752 sigdelset(&pending->signal, sync->info.si_signo); 753 recalc_sigpending(); 754 still_pending: 755 list_del_init(&sync->list); 756 copy_siginfo(info, &sync->info); 757 __sigqueue_free(sync); 758 return info->si_signo; 759 } 760 761 /* 762 * Tell a process that it has a new active signal.. 763 * 764 * NOTE! we rely on the previous spin_lock to 765 * lock interrupts for us! We can only be called with 766 * "siglock" held, and the local interrupt must 767 * have been disabled when that got acquired! 768 * 769 * No need to set need_resched since signal event passing 770 * goes through ->blocked 771 */ 772 void signal_wake_up_state(struct task_struct *t, unsigned int state) 773 { 774 set_tsk_thread_flag(t, TIF_SIGPENDING); 775 /* 776 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 777 * case. We don't check t->state here because there is a race with it 778 * executing another processor and just now entering stopped state. 779 * By using wake_up_state, we ensure the process will wake up and 780 * handle its death signal. 781 */ 782 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 783 kick_process(t); 784 } 785 786 /* 787 * Remove signals in mask from the pending set and queue. 788 * Returns 1 if any signals were found. 789 * 790 * All callers must be holding the siglock. 791 */ 792 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 793 { 794 struct sigqueue *q, *n; 795 sigset_t m; 796 797 sigandsets(&m, mask, &s->signal); 798 if (sigisemptyset(&m)) 799 return; 800 801 sigandnsets(&s->signal, &s->signal, mask); 802 list_for_each_entry_safe(q, n, &s->list, list) { 803 if (sigismember(mask, q->info.si_signo)) { 804 list_del_init(&q->list); 805 __sigqueue_free(q); 806 } 807 } 808 } 809 810 static inline int is_si_special(const struct kernel_siginfo *info) 811 { 812 return info <= SEND_SIG_PRIV; 813 } 814 815 static inline bool si_fromuser(const struct kernel_siginfo *info) 816 { 817 return info == SEND_SIG_NOINFO || 818 (!is_si_special(info) && SI_FROMUSER(info)); 819 } 820 821 /* 822 * called with RCU read lock from check_kill_permission() 823 */ 824 static bool kill_ok_by_cred(struct task_struct *t) 825 { 826 const struct cred *cred = current_cred(); 827 const struct cred *tcred = __task_cred(t); 828 829 return uid_eq(cred->euid, tcred->suid) || 830 uid_eq(cred->euid, tcred->uid) || 831 uid_eq(cred->uid, tcred->suid) || 832 uid_eq(cred->uid, tcred->uid) || 833 ns_capable(tcred->user_ns, CAP_KILL); 834 } 835 836 /* 837 * Bad permissions for sending the signal 838 * - the caller must hold the RCU read lock 839 */ 840 static int check_kill_permission(int sig, struct kernel_siginfo *info, 841 struct task_struct *t) 842 { 843 struct pid *sid; 844 int error; 845 846 if (!valid_signal(sig)) 847 return -EINVAL; 848 849 if (!si_fromuser(info)) 850 return 0; 851 852 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 853 if (error) 854 return error; 855 856 if (!same_thread_group(current, t) && 857 !kill_ok_by_cred(t)) { 858 switch (sig) { 859 case SIGCONT: 860 sid = task_session(t); 861 /* 862 * We don't return the error if sid == NULL. The 863 * task was unhashed, the caller must notice this. 864 */ 865 if (!sid || sid == task_session(current)) 866 break; 867 fallthrough; 868 default: 869 return -EPERM; 870 } 871 } 872 873 return security_task_kill(t, info, sig, NULL); 874 } 875 876 /** 877 * ptrace_trap_notify - schedule trap to notify ptracer 878 * @t: tracee wanting to notify tracer 879 * 880 * This function schedules sticky ptrace trap which is cleared on the next 881 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 882 * ptracer. 883 * 884 * If @t is running, STOP trap will be taken. If trapped for STOP and 885 * ptracer is listening for events, tracee is woken up so that it can 886 * re-trap for the new event. If trapped otherwise, STOP trap will be 887 * eventually taken without returning to userland after the existing traps 888 * are finished by PTRACE_CONT. 889 * 890 * CONTEXT: 891 * Must be called with @task->sighand->siglock held. 892 */ 893 static void ptrace_trap_notify(struct task_struct *t) 894 { 895 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 896 assert_spin_locked(&t->sighand->siglock); 897 898 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 899 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 900 } 901 902 /* 903 * Handle magic process-wide effects of stop/continue signals. Unlike 904 * the signal actions, these happen immediately at signal-generation 905 * time regardless of blocking, ignoring, or handling. This does the 906 * actual continuing for SIGCONT, but not the actual stopping for stop 907 * signals. The process stop is done as a signal action for SIG_DFL. 908 * 909 * Returns true if the signal should be actually delivered, otherwise 910 * it should be dropped. 911 */ 912 static bool prepare_signal(int sig, struct task_struct *p, bool force) 913 { 914 struct signal_struct *signal = p->signal; 915 struct task_struct *t; 916 sigset_t flush; 917 918 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) { 919 if (!(signal->flags & SIGNAL_GROUP_EXIT)) 920 return sig == SIGKILL; 921 /* 922 * The process is in the middle of dying, nothing to do. 923 */ 924 } else if (sig_kernel_stop(sig)) { 925 /* 926 * This is a stop signal. Remove SIGCONT from all queues. 927 */ 928 siginitset(&flush, sigmask(SIGCONT)); 929 flush_sigqueue_mask(&flush, &signal->shared_pending); 930 for_each_thread(p, t) 931 flush_sigqueue_mask(&flush, &t->pending); 932 } else if (sig == SIGCONT) { 933 unsigned int why; 934 /* 935 * Remove all stop signals from all queues, wake all threads. 936 */ 937 siginitset(&flush, SIG_KERNEL_STOP_MASK); 938 flush_sigqueue_mask(&flush, &signal->shared_pending); 939 for_each_thread(p, t) { 940 flush_sigqueue_mask(&flush, &t->pending); 941 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 942 if (likely(!(t->ptrace & PT_SEIZED))) 943 wake_up_state(t, __TASK_STOPPED); 944 else 945 ptrace_trap_notify(t); 946 } 947 948 /* 949 * Notify the parent with CLD_CONTINUED if we were stopped. 950 * 951 * If we were in the middle of a group stop, we pretend it 952 * was already finished, and then continued. Since SIGCHLD 953 * doesn't queue we report only CLD_STOPPED, as if the next 954 * CLD_CONTINUED was dropped. 955 */ 956 why = 0; 957 if (signal->flags & SIGNAL_STOP_STOPPED) 958 why |= SIGNAL_CLD_CONTINUED; 959 else if (signal->group_stop_count) 960 why |= SIGNAL_CLD_STOPPED; 961 962 if (why) { 963 /* 964 * The first thread which returns from do_signal_stop() 965 * will take ->siglock, notice SIGNAL_CLD_MASK, and 966 * notify its parent. See get_signal(). 967 */ 968 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 969 signal->group_stop_count = 0; 970 signal->group_exit_code = 0; 971 } 972 } 973 974 return !sig_ignored(p, sig, force); 975 } 976 977 /* 978 * Test if P wants to take SIG. After we've checked all threads with this, 979 * it's equivalent to finding no threads not blocking SIG. Any threads not 980 * blocking SIG were ruled out because they are not running and already 981 * have pending signals. Such threads will dequeue from the shared queue 982 * as soon as they're available, so putting the signal on the shared queue 983 * will be equivalent to sending it to one such thread. 984 */ 985 static inline bool wants_signal(int sig, struct task_struct *p) 986 { 987 if (sigismember(&p->blocked, sig)) 988 return false; 989 990 if (p->flags & PF_EXITING) 991 return false; 992 993 if (sig == SIGKILL) 994 return true; 995 996 if (task_is_stopped_or_traced(p)) 997 return false; 998 999 return task_curr(p) || !task_sigpending(p); 1000 } 1001 1002 static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 1003 { 1004 struct signal_struct *signal = p->signal; 1005 struct task_struct *t; 1006 1007 /* 1008 * Now find a thread we can wake up to take the signal off the queue. 1009 * 1010 * If the main thread wants the signal, it gets first crack. 1011 * Probably the least surprising to the average bear. 1012 */ 1013 if (wants_signal(sig, p)) 1014 t = p; 1015 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 1016 /* 1017 * There is just one thread and it does not need to be woken. 1018 * It will dequeue unblocked signals before it runs again. 1019 */ 1020 return; 1021 else { 1022 /* 1023 * Otherwise try to find a suitable thread. 1024 */ 1025 t = signal->curr_target; 1026 while (!wants_signal(sig, t)) { 1027 t = next_thread(t); 1028 if (t == signal->curr_target) 1029 /* 1030 * No thread needs to be woken. 1031 * Any eligible threads will see 1032 * the signal in the queue soon. 1033 */ 1034 return; 1035 } 1036 signal->curr_target = t; 1037 } 1038 1039 /* 1040 * Found a killable thread. If the signal will be fatal, 1041 * then start taking the whole group down immediately. 1042 */ 1043 if (sig_fatal(p, sig) && 1044 !(signal->flags & SIGNAL_GROUP_EXIT) && 1045 !sigismember(&t->real_blocked, sig) && 1046 (sig == SIGKILL || !p->ptrace)) { 1047 /* 1048 * This signal will be fatal to the whole group. 1049 */ 1050 if (!sig_kernel_coredump(sig)) { 1051 /* 1052 * Start a group exit and wake everybody up. 1053 * This way we don't have other threads 1054 * running and doing things after a slower 1055 * thread has the fatal signal pending. 1056 */ 1057 signal->flags = SIGNAL_GROUP_EXIT; 1058 signal->group_exit_code = sig; 1059 signal->group_stop_count = 0; 1060 t = p; 1061 do { 1062 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1063 sigaddset(&t->pending.signal, SIGKILL); 1064 signal_wake_up(t, 1); 1065 } while_each_thread(p, t); 1066 return; 1067 } 1068 } 1069 1070 /* 1071 * The signal is already in the shared-pending queue. 1072 * Tell the chosen thread to wake up and dequeue it. 1073 */ 1074 signal_wake_up(t, sig == SIGKILL); 1075 return; 1076 } 1077 1078 static inline bool legacy_queue(struct sigpending *signals, int sig) 1079 { 1080 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1081 } 1082 1083 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1084 enum pid_type type, bool force) 1085 { 1086 struct sigpending *pending; 1087 struct sigqueue *q; 1088 int override_rlimit; 1089 int ret = 0, result; 1090 1091 assert_spin_locked(&t->sighand->siglock); 1092 1093 result = TRACE_SIGNAL_IGNORED; 1094 if (!prepare_signal(sig, t, force)) 1095 goto ret; 1096 1097 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1098 /* 1099 * Short-circuit ignored signals and support queuing 1100 * exactly one non-rt signal, so that we can get more 1101 * detailed information about the cause of the signal. 1102 */ 1103 result = TRACE_SIGNAL_ALREADY_PENDING; 1104 if (legacy_queue(pending, sig)) 1105 goto ret; 1106 1107 result = TRACE_SIGNAL_DELIVERED; 1108 /* 1109 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1110 */ 1111 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1112 goto out_set; 1113 1114 /* 1115 * Real-time signals must be queued if sent by sigqueue, or 1116 * some other real-time mechanism. It is implementation 1117 * defined whether kill() does so. We attempt to do so, on 1118 * the principle of least surprise, but since kill is not 1119 * allowed to fail with EAGAIN when low on memory we just 1120 * make sure at least one signal gets delivered and don't 1121 * pass on the info struct. 1122 */ 1123 if (sig < SIGRTMIN) 1124 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1125 else 1126 override_rlimit = 0; 1127 1128 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0); 1129 1130 if (q) { 1131 list_add_tail(&q->list, &pending->list); 1132 switch ((unsigned long) info) { 1133 case (unsigned long) SEND_SIG_NOINFO: 1134 clear_siginfo(&q->info); 1135 q->info.si_signo = sig; 1136 q->info.si_errno = 0; 1137 q->info.si_code = SI_USER; 1138 q->info.si_pid = task_tgid_nr_ns(current, 1139 task_active_pid_ns(t)); 1140 rcu_read_lock(); 1141 q->info.si_uid = 1142 from_kuid_munged(task_cred_xxx(t, user_ns), 1143 current_uid()); 1144 rcu_read_unlock(); 1145 break; 1146 case (unsigned long) SEND_SIG_PRIV: 1147 clear_siginfo(&q->info); 1148 q->info.si_signo = sig; 1149 q->info.si_errno = 0; 1150 q->info.si_code = SI_KERNEL; 1151 q->info.si_pid = 0; 1152 q->info.si_uid = 0; 1153 break; 1154 default: 1155 copy_siginfo(&q->info, info); 1156 break; 1157 } 1158 } else if (!is_si_special(info) && 1159 sig >= SIGRTMIN && info->si_code != SI_USER) { 1160 /* 1161 * Queue overflow, abort. We may abort if the 1162 * signal was rt and sent by user using something 1163 * other than kill(). 1164 */ 1165 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1166 ret = -EAGAIN; 1167 goto ret; 1168 } else { 1169 /* 1170 * This is a silent loss of information. We still 1171 * send the signal, but the *info bits are lost. 1172 */ 1173 result = TRACE_SIGNAL_LOSE_INFO; 1174 } 1175 1176 out_set: 1177 signalfd_notify(t, sig); 1178 sigaddset(&pending->signal, sig); 1179 1180 /* Let multiprocess signals appear after on-going forks */ 1181 if (type > PIDTYPE_TGID) { 1182 struct multiprocess_signals *delayed; 1183 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1184 sigset_t *signal = &delayed->signal; 1185 /* Can't queue both a stop and a continue signal */ 1186 if (sig == SIGCONT) 1187 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1188 else if (sig_kernel_stop(sig)) 1189 sigdelset(signal, SIGCONT); 1190 sigaddset(signal, sig); 1191 } 1192 } 1193 1194 complete_signal(sig, t, type); 1195 ret: 1196 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1197 return ret; 1198 } 1199 1200 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) 1201 { 1202 bool ret = false; 1203 switch (siginfo_layout(info->si_signo, info->si_code)) { 1204 case SIL_KILL: 1205 case SIL_CHLD: 1206 case SIL_RT: 1207 ret = true; 1208 break; 1209 case SIL_TIMER: 1210 case SIL_POLL: 1211 case SIL_FAULT: 1212 case SIL_FAULT_TRAPNO: 1213 case SIL_FAULT_MCEERR: 1214 case SIL_FAULT_BNDERR: 1215 case SIL_FAULT_PKUERR: 1216 case SIL_PERF_EVENT: 1217 case SIL_SYS: 1218 ret = false; 1219 break; 1220 } 1221 return ret; 1222 } 1223 1224 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, 1225 enum pid_type type) 1226 { 1227 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ 1228 bool force = false; 1229 1230 if (info == SEND_SIG_NOINFO) { 1231 /* Force if sent from an ancestor pid namespace */ 1232 force = !task_pid_nr_ns(current, task_active_pid_ns(t)); 1233 } else if (info == SEND_SIG_PRIV) { 1234 /* Don't ignore kernel generated signals */ 1235 force = true; 1236 } else if (has_si_pid_and_uid(info)) { 1237 /* SIGKILL and SIGSTOP is special or has ids */ 1238 struct user_namespace *t_user_ns; 1239 1240 rcu_read_lock(); 1241 t_user_ns = task_cred_xxx(t, user_ns); 1242 if (current_user_ns() != t_user_ns) { 1243 kuid_t uid = make_kuid(current_user_ns(), info->si_uid); 1244 info->si_uid = from_kuid_munged(t_user_ns, uid); 1245 } 1246 rcu_read_unlock(); 1247 1248 /* A kernel generated signal? */ 1249 force = (info->si_code == SI_KERNEL); 1250 1251 /* From an ancestor pid namespace? */ 1252 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { 1253 info->si_pid = 0; 1254 force = true; 1255 } 1256 } 1257 return __send_signal(sig, info, t, type, force); 1258 } 1259 1260 static void print_fatal_signal(int signr) 1261 { 1262 struct pt_regs *regs = signal_pt_regs(); 1263 pr_info("potentially unexpected fatal signal %d.\n", signr); 1264 1265 #if defined(__i386__) && !defined(__arch_um__) 1266 pr_info("code at %08lx: ", regs->ip); 1267 { 1268 int i; 1269 for (i = 0; i < 16; i++) { 1270 unsigned char insn; 1271 1272 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1273 break; 1274 pr_cont("%02x ", insn); 1275 } 1276 } 1277 pr_cont("\n"); 1278 #endif 1279 preempt_disable(); 1280 show_regs(regs); 1281 preempt_enable(); 1282 } 1283 1284 static int __init setup_print_fatal_signals(char *str) 1285 { 1286 get_option (&str, &print_fatal_signals); 1287 1288 return 1; 1289 } 1290 1291 __setup("print-fatal-signals=", setup_print_fatal_signals); 1292 1293 int 1294 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1295 { 1296 return send_signal(sig, info, p, PIDTYPE_TGID); 1297 } 1298 1299 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1300 enum pid_type type) 1301 { 1302 unsigned long flags; 1303 int ret = -ESRCH; 1304 1305 if (lock_task_sighand(p, &flags)) { 1306 ret = send_signal(sig, info, p, type); 1307 unlock_task_sighand(p, &flags); 1308 } 1309 1310 return ret; 1311 } 1312 1313 /* 1314 * Force a signal that the process can't ignore: if necessary 1315 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1316 * 1317 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1318 * since we do not want to have a signal handler that was blocked 1319 * be invoked when user space had explicitly blocked it. 1320 * 1321 * We don't want to have recursive SIGSEGV's etc, for example, 1322 * that is why we also clear SIGNAL_UNKILLABLE. 1323 */ 1324 static int 1325 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t) 1326 { 1327 unsigned long int flags; 1328 int ret, blocked, ignored; 1329 struct k_sigaction *action; 1330 int sig = info->si_signo; 1331 1332 spin_lock_irqsave(&t->sighand->siglock, flags); 1333 action = &t->sighand->action[sig-1]; 1334 ignored = action->sa.sa_handler == SIG_IGN; 1335 blocked = sigismember(&t->blocked, sig); 1336 if (blocked || ignored) { 1337 action->sa.sa_handler = SIG_DFL; 1338 if (blocked) { 1339 sigdelset(&t->blocked, sig); 1340 recalc_sigpending_and_wake(t); 1341 } 1342 } 1343 /* 1344 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1345 * debugging to leave init killable. 1346 */ 1347 if (action->sa.sa_handler == SIG_DFL && !t->ptrace) 1348 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1349 ret = send_signal(sig, info, t, PIDTYPE_PID); 1350 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1351 1352 return ret; 1353 } 1354 1355 int force_sig_info(struct kernel_siginfo *info) 1356 { 1357 return force_sig_info_to_task(info, current); 1358 } 1359 1360 /* 1361 * Nuke all other threads in the group. 1362 */ 1363 int zap_other_threads(struct task_struct *p) 1364 { 1365 struct task_struct *t = p; 1366 int count = 0; 1367 1368 p->signal->group_stop_count = 0; 1369 1370 while_each_thread(p, t) { 1371 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1372 count++; 1373 1374 /* Don't bother with already dead threads */ 1375 if (t->exit_state) 1376 continue; 1377 sigaddset(&t->pending.signal, SIGKILL); 1378 signal_wake_up(t, 1); 1379 } 1380 1381 return count; 1382 } 1383 1384 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1385 unsigned long *flags) 1386 { 1387 struct sighand_struct *sighand; 1388 1389 rcu_read_lock(); 1390 for (;;) { 1391 sighand = rcu_dereference(tsk->sighand); 1392 if (unlikely(sighand == NULL)) 1393 break; 1394 1395 /* 1396 * This sighand can be already freed and even reused, but 1397 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1398 * initializes ->siglock: this slab can't go away, it has 1399 * the same object type, ->siglock can't be reinitialized. 1400 * 1401 * We need to ensure that tsk->sighand is still the same 1402 * after we take the lock, we can race with de_thread() or 1403 * __exit_signal(). In the latter case the next iteration 1404 * must see ->sighand == NULL. 1405 */ 1406 spin_lock_irqsave(&sighand->siglock, *flags); 1407 if (likely(sighand == rcu_access_pointer(tsk->sighand))) 1408 break; 1409 spin_unlock_irqrestore(&sighand->siglock, *flags); 1410 } 1411 rcu_read_unlock(); 1412 1413 return sighand; 1414 } 1415 1416 #ifdef CONFIG_LOCKDEP 1417 void lockdep_assert_task_sighand_held(struct task_struct *task) 1418 { 1419 struct sighand_struct *sighand; 1420 1421 rcu_read_lock(); 1422 sighand = rcu_dereference(task->sighand); 1423 if (sighand) 1424 lockdep_assert_held(&sighand->siglock); 1425 else 1426 WARN_ON_ONCE(1); 1427 rcu_read_unlock(); 1428 } 1429 #endif 1430 1431 /* 1432 * send signal info to all the members of a group 1433 */ 1434 int group_send_sig_info(int sig, struct kernel_siginfo *info, 1435 struct task_struct *p, enum pid_type type) 1436 { 1437 int ret; 1438 1439 rcu_read_lock(); 1440 ret = check_kill_permission(sig, info, p); 1441 rcu_read_unlock(); 1442 1443 if (!ret && sig) 1444 ret = do_send_sig_info(sig, info, p, type); 1445 1446 return ret; 1447 } 1448 1449 /* 1450 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1451 * control characters do (^C, ^Z etc) 1452 * - the caller must hold at least a readlock on tasklist_lock 1453 */ 1454 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1455 { 1456 struct task_struct *p = NULL; 1457 int retval, success; 1458 1459 success = 0; 1460 retval = -ESRCH; 1461 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1462 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1463 success |= !err; 1464 retval = err; 1465 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1466 return success ? 0 : retval; 1467 } 1468 1469 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1470 { 1471 int error = -ESRCH; 1472 struct task_struct *p; 1473 1474 for (;;) { 1475 rcu_read_lock(); 1476 p = pid_task(pid, PIDTYPE_PID); 1477 if (p) 1478 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID); 1479 rcu_read_unlock(); 1480 if (likely(!p || error != -ESRCH)) 1481 return error; 1482 1483 /* 1484 * The task was unhashed in between, try again. If it 1485 * is dead, pid_task() will return NULL, if we race with 1486 * de_thread() it will find the new leader. 1487 */ 1488 } 1489 } 1490 1491 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1492 { 1493 int error; 1494 rcu_read_lock(); 1495 error = kill_pid_info(sig, info, find_vpid(pid)); 1496 rcu_read_unlock(); 1497 return error; 1498 } 1499 1500 static inline bool kill_as_cred_perm(const struct cred *cred, 1501 struct task_struct *target) 1502 { 1503 const struct cred *pcred = __task_cred(target); 1504 1505 return uid_eq(cred->euid, pcred->suid) || 1506 uid_eq(cred->euid, pcred->uid) || 1507 uid_eq(cred->uid, pcred->suid) || 1508 uid_eq(cred->uid, pcred->uid); 1509 } 1510 1511 /* 1512 * The usb asyncio usage of siginfo is wrong. The glibc support 1513 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. 1514 * AKA after the generic fields: 1515 * kernel_pid_t si_pid; 1516 * kernel_uid32_t si_uid; 1517 * sigval_t si_value; 1518 * 1519 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout 1520 * after the generic fields is: 1521 * void __user *si_addr; 1522 * 1523 * This is a practical problem when there is a 64bit big endian kernel 1524 * and a 32bit userspace. As the 32bit address will encoded in the low 1525 * 32bits of the pointer. Those low 32bits will be stored at higher 1526 * address than appear in a 32 bit pointer. So userspace will not 1527 * see the address it was expecting for it's completions. 1528 * 1529 * There is nothing in the encoding that can allow 1530 * copy_siginfo_to_user32 to detect this confusion of formats, so 1531 * handle this by requiring the caller of kill_pid_usb_asyncio to 1532 * notice when this situration takes place and to store the 32bit 1533 * pointer in sival_int, instead of sival_addr of the sigval_t addr 1534 * parameter. 1535 */ 1536 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, 1537 struct pid *pid, const struct cred *cred) 1538 { 1539 struct kernel_siginfo info; 1540 struct task_struct *p; 1541 unsigned long flags; 1542 int ret = -EINVAL; 1543 1544 if (!valid_signal(sig)) 1545 return ret; 1546 1547 clear_siginfo(&info); 1548 info.si_signo = sig; 1549 info.si_errno = errno; 1550 info.si_code = SI_ASYNCIO; 1551 *((sigval_t *)&info.si_pid) = addr; 1552 1553 rcu_read_lock(); 1554 p = pid_task(pid, PIDTYPE_PID); 1555 if (!p) { 1556 ret = -ESRCH; 1557 goto out_unlock; 1558 } 1559 if (!kill_as_cred_perm(cred, p)) { 1560 ret = -EPERM; 1561 goto out_unlock; 1562 } 1563 ret = security_task_kill(p, &info, sig, cred); 1564 if (ret) 1565 goto out_unlock; 1566 1567 if (sig) { 1568 if (lock_task_sighand(p, &flags)) { 1569 ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false); 1570 unlock_task_sighand(p, &flags); 1571 } else 1572 ret = -ESRCH; 1573 } 1574 out_unlock: 1575 rcu_read_unlock(); 1576 return ret; 1577 } 1578 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); 1579 1580 /* 1581 * kill_something_info() interprets pid in interesting ways just like kill(2). 1582 * 1583 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1584 * is probably wrong. Should make it like BSD or SYSV. 1585 */ 1586 1587 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1588 { 1589 int ret; 1590 1591 if (pid > 0) 1592 return kill_proc_info(sig, info, pid); 1593 1594 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1595 if (pid == INT_MIN) 1596 return -ESRCH; 1597 1598 read_lock(&tasklist_lock); 1599 if (pid != -1) { 1600 ret = __kill_pgrp_info(sig, info, 1601 pid ? find_vpid(-pid) : task_pgrp(current)); 1602 } else { 1603 int retval = 0, count = 0; 1604 struct task_struct * p; 1605 1606 for_each_process(p) { 1607 if (task_pid_vnr(p) > 1 && 1608 !same_thread_group(p, current)) { 1609 int err = group_send_sig_info(sig, info, p, 1610 PIDTYPE_MAX); 1611 ++count; 1612 if (err != -EPERM) 1613 retval = err; 1614 } 1615 } 1616 ret = count ? retval : -ESRCH; 1617 } 1618 read_unlock(&tasklist_lock); 1619 1620 return ret; 1621 } 1622 1623 /* 1624 * These are for backward compatibility with the rest of the kernel source. 1625 */ 1626 1627 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1628 { 1629 /* 1630 * Make sure legacy kernel users don't send in bad values 1631 * (normal paths check this in check_kill_permission). 1632 */ 1633 if (!valid_signal(sig)) 1634 return -EINVAL; 1635 1636 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1637 } 1638 EXPORT_SYMBOL(send_sig_info); 1639 1640 #define __si_special(priv) \ 1641 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1642 1643 int 1644 send_sig(int sig, struct task_struct *p, int priv) 1645 { 1646 return send_sig_info(sig, __si_special(priv), p); 1647 } 1648 EXPORT_SYMBOL(send_sig); 1649 1650 void force_sig(int sig) 1651 { 1652 struct kernel_siginfo info; 1653 1654 clear_siginfo(&info); 1655 info.si_signo = sig; 1656 info.si_errno = 0; 1657 info.si_code = SI_KERNEL; 1658 info.si_pid = 0; 1659 info.si_uid = 0; 1660 force_sig_info(&info); 1661 } 1662 EXPORT_SYMBOL(force_sig); 1663 1664 /* 1665 * When things go south during signal handling, we 1666 * will force a SIGSEGV. And if the signal that caused 1667 * the problem was already a SIGSEGV, we'll want to 1668 * make sure we don't even try to deliver the signal.. 1669 */ 1670 void force_sigsegv(int sig) 1671 { 1672 struct task_struct *p = current; 1673 1674 if (sig == SIGSEGV) { 1675 unsigned long flags; 1676 spin_lock_irqsave(&p->sighand->siglock, flags); 1677 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1678 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1679 } 1680 force_sig(SIGSEGV); 1681 } 1682 1683 int force_sig_fault_to_task(int sig, int code, void __user *addr 1684 ___ARCH_SI_TRAPNO(int trapno) 1685 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1686 , struct task_struct *t) 1687 { 1688 struct kernel_siginfo info; 1689 1690 clear_siginfo(&info); 1691 info.si_signo = sig; 1692 info.si_errno = 0; 1693 info.si_code = code; 1694 info.si_addr = addr; 1695 #ifdef __ARCH_SI_TRAPNO 1696 info.si_trapno = trapno; 1697 #endif 1698 #ifdef __ia64__ 1699 info.si_imm = imm; 1700 info.si_flags = flags; 1701 info.si_isr = isr; 1702 #endif 1703 return force_sig_info_to_task(&info, t); 1704 } 1705 1706 int force_sig_fault(int sig, int code, void __user *addr 1707 ___ARCH_SI_TRAPNO(int trapno) 1708 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)) 1709 { 1710 return force_sig_fault_to_task(sig, code, addr 1711 ___ARCH_SI_TRAPNO(trapno) 1712 ___ARCH_SI_IA64(imm, flags, isr), current); 1713 } 1714 1715 int send_sig_fault(int sig, int code, void __user *addr 1716 ___ARCH_SI_TRAPNO(int trapno) 1717 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1718 , struct task_struct *t) 1719 { 1720 struct kernel_siginfo info; 1721 1722 clear_siginfo(&info); 1723 info.si_signo = sig; 1724 info.si_errno = 0; 1725 info.si_code = code; 1726 info.si_addr = addr; 1727 #ifdef __ARCH_SI_TRAPNO 1728 info.si_trapno = trapno; 1729 #endif 1730 #ifdef __ia64__ 1731 info.si_imm = imm; 1732 info.si_flags = flags; 1733 info.si_isr = isr; 1734 #endif 1735 return send_sig_info(info.si_signo, &info, t); 1736 } 1737 1738 int force_sig_mceerr(int code, void __user *addr, short lsb) 1739 { 1740 struct kernel_siginfo info; 1741 1742 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1743 clear_siginfo(&info); 1744 info.si_signo = SIGBUS; 1745 info.si_errno = 0; 1746 info.si_code = code; 1747 info.si_addr = addr; 1748 info.si_addr_lsb = lsb; 1749 return force_sig_info(&info); 1750 } 1751 1752 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1753 { 1754 struct kernel_siginfo info; 1755 1756 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1757 clear_siginfo(&info); 1758 info.si_signo = SIGBUS; 1759 info.si_errno = 0; 1760 info.si_code = code; 1761 info.si_addr = addr; 1762 info.si_addr_lsb = lsb; 1763 return send_sig_info(info.si_signo, &info, t); 1764 } 1765 EXPORT_SYMBOL(send_sig_mceerr); 1766 1767 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1768 { 1769 struct kernel_siginfo info; 1770 1771 clear_siginfo(&info); 1772 info.si_signo = SIGSEGV; 1773 info.si_errno = 0; 1774 info.si_code = SEGV_BNDERR; 1775 info.si_addr = addr; 1776 info.si_lower = lower; 1777 info.si_upper = upper; 1778 return force_sig_info(&info); 1779 } 1780 1781 #ifdef SEGV_PKUERR 1782 int force_sig_pkuerr(void __user *addr, u32 pkey) 1783 { 1784 struct kernel_siginfo info; 1785 1786 clear_siginfo(&info); 1787 info.si_signo = SIGSEGV; 1788 info.si_errno = 0; 1789 info.si_code = SEGV_PKUERR; 1790 info.si_addr = addr; 1791 info.si_pkey = pkey; 1792 return force_sig_info(&info); 1793 } 1794 #endif 1795 1796 int force_sig_perf(void __user *addr, u32 type, u64 sig_data) 1797 { 1798 struct kernel_siginfo info; 1799 1800 clear_siginfo(&info); 1801 info.si_signo = SIGTRAP; 1802 info.si_errno = 0; 1803 info.si_code = TRAP_PERF; 1804 info.si_addr = addr; 1805 info.si_perf_data = sig_data; 1806 info.si_perf_type = type; 1807 1808 return force_sig_info(&info); 1809 } 1810 1811 /* For the crazy architectures that include trap information in 1812 * the errno field, instead of an actual errno value. 1813 */ 1814 int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1815 { 1816 struct kernel_siginfo info; 1817 1818 clear_siginfo(&info); 1819 info.si_signo = SIGTRAP; 1820 info.si_errno = errno; 1821 info.si_code = TRAP_HWBKPT; 1822 info.si_addr = addr; 1823 return force_sig_info(&info); 1824 } 1825 1826 int kill_pgrp(struct pid *pid, int sig, int priv) 1827 { 1828 int ret; 1829 1830 read_lock(&tasklist_lock); 1831 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1832 read_unlock(&tasklist_lock); 1833 1834 return ret; 1835 } 1836 EXPORT_SYMBOL(kill_pgrp); 1837 1838 int kill_pid(struct pid *pid, int sig, int priv) 1839 { 1840 return kill_pid_info(sig, __si_special(priv), pid); 1841 } 1842 EXPORT_SYMBOL(kill_pid); 1843 1844 /* 1845 * These functions support sending signals using preallocated sigqueue 1846 * structures. This is needed "because realtime applications cannot 1847 * afford to lose notifications of asynchronous events, like timer 1848 * expirations or I/O completions". In the case of POSIX Timers 1849 * we allocate the sigqueue structure from the timer_create. If this 1850 * allocation fails we are able to report the failure to the application 1851 * with an EAGAIN error. 1852 */ 1853 struct sigqueue *sigqueue_alloc(void) 1854 { 1855 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC); 1856 } 1857 1858 void sigqueue_free(struct sigqueue *q) 1859 { 1860 unsigned long flags; 1861 spinlock_t *lock = ¤t->sighand->siglock; 1862 1863 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1864 /* 1865 * We must hold ->siglock while testing q->list 1866 * to serialize with collect_signal() or with 1867 * __exit_signal()->flush_sigqueue(). 1868 */ 1869 spin_lock_irqsave(lock, flags); 1870 q->flags &= ~SIGQUEUE_PREALLOC; 1871 /* 1872 * If it is queued it will be freed when dequeued, 1873 * like the "regular" sigqueue. 1874 */ 1875 if (!list_empty(&q->list)) 1876 q = NULL; 1877 spin_unlock_irqrestore(lock, flags); 1878 1879 if (q) 1880 __sigqueue_free(q); 1881 } 1882 1883 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) 1884 { 1885 int sig = q->info.si_signo; 1886 struct sigpending *pending; 1887 struct task_struct *t; 1888 unsigned long flags; 1889 int ret, result; 1890 1891 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1892 1893 ret = -1; 1894 rcu_read_lock(); 1895 t = pid_task(pid, type); 1896 if (!t || !likely(lock_task_sighand(t, &flags))) 1897 goto ret; 1898 1899 ret = 1; /* the signal is ignored */ 1900 result = TRACE_SIGNAL_IGNORED; 1901 if (!prepare_signal(sig, t, false)) 1902 goto out; 1903 1904 ret = 0; 1905 if (unlikely(!list_empty(&q->list))) { 1906 /* 1907 * If an SI_TIMER entry is already queue just increment 1908 * the overrun count. 1909 */ 1910 BUG_ON(q->info.si_code != SI_TIMER); 1911 q->info.si_overrun++; 1912 result = TRACE_SIGNAL_ALREADY_PENDING; 1913 goto out; 1914 } 1915 q->info.si_overrun = 0; 1916 1917 signalfd_notify(t, sig); 1918 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1919 list_add_tail(&q->list, &pending->list); 1920 sigaddset(&pending->signal, sig); 1921 complete_signal(sig, t, type); 1922 result = TRACE_SIGNAL_DELIVERED; 1923 out: 1924 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result); 1925 unlock_task_sighand(t, &flags); 1926 ret: 1927 rcu_read_unlock(); 1928 return ret; 1929 } 1930 1931 static void do_notify_pidfd(struct task_struct *task) 1932 { 1933 struct pid *pid; 1934 1935 WARN_ON(task->exit_state == 0); 1936 pid = task_pid(task); 1937 wake_up_all(&pid->wait_pidfd); 1938 } 1939 1940 /* 1941 * Let a parent know about the death of a child. 1942 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1943 * 1944 * Returns true if our parent ignored us and so we've switched to 1945 * self-reaping. 1946 */ 1947 bool do_notify_parent(struct task_struct *tsk, int sig) 1948 { 1949 struct kernel_siginfo info; 1950 unsigned long flags; 1951 struct sighand_struct *psig; 1952 bool autoreap = false; 1953 u64 utime, stime; 1954 1955 BUG_ON(sig == -1); 1956 1957 /* do_notify_parent_cldstop should have been called instead. */ 1958 BUG_ON(task_is_stopped_or_traced(tsk)); 1959 1960 BUG_ON(!tsk->ptrace && 1961 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1962 1963 /* Wake up all pidfd waiters */ 1964 do_notify_pidfd(tsk); 1965 1966 if (sig != SIGCHLD) { 1967 /* 1968 * This is only possible if parent == real_parent. 1969 * Check if it has changed security domain. 1970 */ 1971 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) 1972 sig = SIGCHLD; 1973 } 1974 1975 clear_siginfo(&info); 1976 info.si_signo = sig; 1977 info.si_errno = 0; 1978 /* 1979 * We are under tasklist_lock here so our parent is tied to 1980 * us and cannot change. 1981 * 1982 * task_active_pid_ns will always return the same pid namespace 1983 * until a task passes through release_task. 1984 * 1985 * write_lock() currently calls preempt_disable() which is the 1986 * same as rcu_read_lock(), but according to Oleg, this is not 1987 * correct to rely on this 1988 */ 1989 rcu_read_lock(); 1990 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 1991 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 1992 task_uid(tsk)); 1993 rcu_read_unlock(); 1994 1995 task_cputime(tsk, &utime, &stime); 1996 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 1997 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 1998 1999 info.si_status = tsk->exit_code & 0x7f; 2000 if (tsk->exit_code & 0x80) 2001 info.si_code = CLD_DUMPED; 2002 else if (tsk->exit_code & 0x7f) 2003 info.si_code = CLD_KILLED; 2004 else { 2005 info.si_code = CLD_EXITED; 2006 info.si_status = tsk->exit_code >> 8; 2007 } 2008 2009 psig = tsk->parent->sighand; 2010 spin_lock_irqsave(&psig->siglock, flags); 2011 if (!tsk->ptrace && sig == SIGCHLD && 2012 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 2013 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 2014 /* 2015 * We are exiting and our parent doesn't care. POSIX.1 2016 * defines special semantics for setting SIGCHLD to SIG_IGN 2017 * or setting the SA_NOCLDWAIT flag: we should be reaped 2018 * automatically and not left for our parent's wait4 call. 2019 * Rather than having the parent do it as a magic kind of 2020 * signal handler, we just set this to tell do_exit that we 2021 * can be cleaned up without becoming a zombie. Note that 2022 * we still call __wake_up_parent in this case, because a 2023 * blocked sys_wait4 might now return -ECHILD. 2024 * 2025 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 2026 * is implementation-defined: we do (if you don't want 2027 * it, just use SIG_IGN instead). 2028 */ 2029 autoreap = true; 2030 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 2031 sig = 0; 2032 } 2033 /* 2034 * Send with __send_signal as si_pid and si_uid are in the 2035 * parent's namespaces. 2036 */ 2037 if (valid_signal(sig) && sig) 2038 __send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false); 2039 __wake_up_parent(tsk, tsk->parent); 2040 spin_unlock_irqrestore(&psig->siglock, flags); 2041 2042 return autoreap; 2043 } 2044 2045 /** 2046 * do_notify_parent_cldstop - notify parent of stopped/continued state change 2047 * @tsk: task reporting the state change 2048 * @for_ptracer: the notification is for ptracer 2049 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 2050 * 2051 * Notify @tsk's parent that the stopped/continued state has changed. If 2052 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 2053 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 2054 * 2055 * CONTEXT: 2056 * Must be called with tasklist_lock at least read locked. 2057 */ 2058 static void do_notify_parent_cldstop(struct task_struct *tsk, 2059 bool for_ptracer, int why) 2060 { 2061 struct kernel_siginfo info; 2062 unsigned long flags; 2063 struct task_struct *parent; 2064 struct sighand_struct *sighand; 2065 u64 utime, stime; 2066 2067 if (for_ptracer) { 2068 parent = tsk->parent; 2069 } else { 2070 tsk = tsk->group_leader; 2071 parent = tsk->real_parent; 2072 } 2073 2074 clear_siginfo(&info); 2075 info.si_signo = SIGCHLD; 2076 info.si_errno = 0; 2077 /* 2078 * see comment in do_notify_parent() about the following 4 lines 2079 */ 2080 rcu_read_lock(); 2081 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 2082 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 2083 rcu_read_unlock(); 2084 2085 task_cputime(tsk, &utime, &stime); 2086 info.si_utime = nsec_to_clock_t(utime); 2087 info.si_stime = nsec_to_clock_t(stime); 2088 2089 info.si_code = why; 2090 switch (why) { 2091 case CLD_CONTINUED: 2092 info.si_status = SIGCONT; 2093 break; 2094 case CLD_STOPPED: 2095 info.si_status = tsk->signal->group_exit_code & 0x7f; 2096 break; 2097 case CLD_TRAPPED: 2098 info.si_status = tsk->exit_code & 0x7f; 2099 break; 2100 default: 2101 BUG(); 2102 } 2103 2104 sighand = parent->sighand; 2105 spin_lock_irqsave(&sighand->siglock, flags); 2106 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 2107 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 2108 __group_send_sig_info(SIGCHLD, &info, parent); 2109 /* 2110 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 2111 */ 2112 __wake_up_parent(tsk, parent); 2113 spin_unlock_irqrestore(&sighand->siglock, flags); 2114 } 2115 2116 static inline bool may_ptrace_stop(void) 2117 { 2118 if (!likely(current->ptrace)) 2119 return false; 2120 /* 2121 * Are we in the middle of do_coredump? 2122 * If so and our tracer is also part of the coredump stopping 2123 * is a deadlock situation, and pointless because our tracer 2124 * is dead so don't allow us to stop. 2125 * If SIGKILL was already sent before the caller unlocked 2126 * ->siglock we must see ->core_state != NULL. Otherwise it 2127 * is safe to enter schedule(). 2128 * 2129 * This is almost outdated, a task with the pending SIGKILL can't 2130 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported 2131 * after SIGKILL was already dequeued. 2132 */ 2133 if (unlikely(current->mm->core_state) && 2134 unlikely(current->mm == current->parent->mm)) 2135 return false; 2136 2137 return true; 2138 } 2139 2140 /* 2141 * Return non-zero if there is a SIGKILL that should be waking us up. 2142 * Called with the siglock held. 2143 */ 2144 static bool sigkill_pending(struct task_struct *tsk) 2145 { 2146 return sigismember(&tsk->pending.signal, SIGKILL) || 2147 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 2148 } 2149 2150 /* 2151 * This must be called with current->sighand->siglock held. 2152 * 2153 * This should be the path for all ptrace stops. 2154 * We always set current->last_siginfo while stopped here. 2155 * That makes it a way to test a stopped process for 2156 * being ptrace-stopped vs being job-control-stopped. 2157 * 2158 * If we actually decide not to stop at all because the tracer 2159 * is gone, we keep current->exit_code unless clear_code. 2160 */ 2161 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info) 2162 __releases(¤t->sighand->siglock) 2163 __acquires(¤t->sighand->siglock) 2164 { 2165 bool gstop_done = false; 2166 2167 if (arch_ptrace_stop_needed(exit_code, info)) { 2168 /* 2169 * The arch code has something special to do before a 2170 * ptrace stop. This is allowed to block, e.g. for faults 2171 * on user stack pages. We can't keep the siglock while 2172 * calling arch_ptrace_stop, so we must release it now. 2173 * To preserve proper semantics, we must do this before 2174 * any signal bookkeeping like checking group_stop_count. 2175 * Meanwhile, a SIGKILL could come in before we retake the 2176 * siglock. That must prevent us from sleeping in TASK_TRACED. 2177 * So after regaining the lock, we must check for SIGKILL. 2178 */ 2179 spin_unlock_irq(¤t->sighand->siglock); 2180 arch_ptrace_stop(exit_code, info); 2181 spin_lock_irq(¤t->sighand->siglock); 2182 if (sigkill_pending(current)) 2183 return; 2184 } 2185 2186 set_special_state(TASK_TRACED); 2187 2188 /* 2189 * We're committing to trapping. TRACED should be visible before 2190 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2191 * Also, transition to TRACED and updates to ->jobctl should be 2192 * atomic with respect to siglock and should be done after the arch 2193 * hook as siglock is released and regrabbed across it. 2194 * 2195 * TRACER TRACEE 2196 * 2197 * ptrace_attach() 2198 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2199 * do_wait() 2200 * set_current_state() smp_wmb(); 2201 * ptrace_do_wait() 2202 * wait_task_stopped() 2203 * task_stopped_code() 2204 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2205 */ 2206 smp_wmb(); 2207 2208 current->last_siginfo = info; 2209 current->exit_code = exit_code; 2210 2211 /* 2212 * If @why is CLD_STOPPED, we're trapping to participate in a group 2213 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2214 * across siglock relocks since INTERRUPT was scheduled, PENDING 2215 * could be clear now. We act as if SIGCONT is received after 2216 * TASK_TRACED is entered - ignore it. 2217 */ 2218 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2219 gstop_done = task_participate_group_stop(current); 2220 2221 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2222 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2223 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2224 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2225 2226 /* entering a trap, clear TRAPPING */ 2227 task_clear_jobctl_trapping(current); 2228 2229 spin_unlock_irq(¤t->sighand->siglock); 2230 read_lock(&tasklist_lock); 2231 if (may_ptrace_stop()) { 2232 /* 2233 * Notify parents of the stop. 2234 * 2235 * While ptraced, there are two parents - the ptracer and 2236 * the real_parent of the group_leader. The ptracer should 2237 * know about every stop while the real parent is only 2238 * interested in the completion of group stop. The states 2239 * for the two don't interact with each other. Notify 2240 * separately unless they're gonna be duplicates. 2241 */ 2242 do_notify_parent_cldstop(current, true, why); 2243 if (gstop_done && ptrace_reparented(current)) 2244 do_notify_parent_cldstop(current, false, why); 2245 2246 /* 2247 * Don't want to allow preemption here, because 2248 * sys_ptrace() needs this task to be inactive. 2249 * 2250 * XXX: implement read_unlock_no_resched(). 2251 */ 2252 preempt_disable(); 2253 read_unlock(&tasklist_lock); 2254 cgroup_enter_frozen(); 2255 preempt_enable_no_resched(); 2256 freezable_schedule(); 2257 cgroup_leave_frozen(true); 2258 } else { 2259 /* 2260 * By the time we got the lock, our tracer went away. 2261 * Don't drop the lock yet, another tracer may come. 2262 * 2263 * If @gstop_done, the ptracer went away between group stop 2264 * completion and here. During detach, it would have set 2265 * JOBCTL_STOP_PENDING on us and we'll re-enter 2266 * TASK_STOPPED in do_signal_stop() on return, so notifying 2267 * the real parent of the group stop completion is enough. 2268 */ 2269 if (gstop_done) 2270 do_notify_parent_cldstop(current, false, why); 2271 2272 /* tasklist protects us from ptrace_freeze_traced() */ 2273 __set_current_state(TASK_RUNNING); 2274 if (clear_code) 2275 current->exit_code = 0; 2276 read_unlock(&tasklist_lock); 2277 } 2278 2279 /* 2280 * We are back. Now reacquire the siglock before touching 2281 * last_siginfo, so that we are sure to have synchronized with 2282 * any signal-sending on another CPU that wants to examine it. 2283 */ 2284 spin_lock_irq(¤t->sighand->siglock); 2285 current->last_siginfo = NULL; 2286 2287 /* LISTENING can be set only during STOP traps, clear it */ 2288 current->jobctl &= ~JOBCTL_LISTENING; 2289 2290 /* 2291 * Queued signals ignored us while we were stopped for tracing. 2292 * So check for any that we should take before resuming user mode. 2293 * This sets TIF_SIGPENDING, but never clears it. 2294 */ 2295 recalc_sigpending_tsk(current); 2296 } 2297 2298 static void ptrace_do_notify(int signr, int exit_code, int why) 2299 { 2300 kernel_siginfo_t info; 2301 2302 clear_siginfo(&info); 2303 info.si_signo = signr; 2304 info.si_code = exit_code; 2305 info.si_pid = task_pid_vnr(current); 2306 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2307 2308 /* Let the debugger run. */ 2309 ptrace_stop(exit_code, why, 1, &info); 2310 } 2311 2312 void ptrace_notify(int exit_code) 2313 { 2314 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2315 if (unlikely(current->task_works)) 2316 task_work_run(); 2317 2318 spin_lock_irq(¤t->sighand->siglock); 2319 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 2320 spin_unlock_irq(¤t->sighand->siglock); 2321 } 2322 2323 /** 2324 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2325 * @signr: signr causing group stop if initiating 2326 * 2327 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2328 * and participate in it. If already set, participate in the existing 2329 * group stop. If participated in a group stop (and thus slept), %true is 2330 * returned with siglock released. 2331 * 2332 * If ptraced, this function doesn't handle stop itself. Instead, 2333 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2334 * untouched. The caller must ensure that INTERRUPT trap handling takes 2335 * places afterwards. 2336 * 2337 * CONTEXT: 2338 * Must be called with @current->sighand->siglock held, which is released 2339 * on %true return. 2340 * 2341 * RETURNS: 2342 * %false if group stop is already cancelled or ptrace trap is scheduled. 2343 * %true if participated in group stop. 2344 */ 2345 static bool do_signal_stop(int signr) 2346 __releases(¤t->sighand->siglock) 2347 { 2348 struct signal_struct *sig = current->signal; 2349 2350 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2351 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2352 struct task_struct *t; 2353 2354 /* signr will be recorded in task->jobctl for retries */ 2355 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2356 2357 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2358 unlikely(signal_group_exit(sig))) 2359 return false; 2360 /* 2361 * There is no group stop already in progress. We must 2362 * initiate one now. 2363 * 2364 * While ptraced, a task may be resumed while group stop is 2365 * still in effect and then receive a stop signal and 2366 * initiate another group stop. This deviates from the 2367 * usual behavior as two consecutive stop signals can't 2368 * cause two group stops when !ptraced. That is why we 2369 * also check !task_is_stopped(t) below. 2370 * 2371 * The condition can be distinguished by testing whether 2372 * SIGNAL_STOP_STOPPED is already set. Don't generate 2373 * group_exit_code in such case. 2374 * 2375 * This is not necessary for SIGNAL_STOP_CONTINUED because 2376 * an intervening stop signal is required to cause two 2377 * continued events regardless of ptrace. 2378 */ 2379 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2380 sig->group_exit_code = signr; 2381 2382 sig->group_stop_count = 0; 2383 2384 if (task_set_jobctl_pending(current, signr | gstop)) 2385 sig->group_stop_count++; 2386 2387 t = current; 2388 while_each_thread(current, t) { 2389 /* 2390 * Setting state to TASK_STOPPED for a group 2391 * stop is always done with the siglock held, 2392 * so this check has no races. 2393 */ 2394 if (!task_is_stopped(t) && 2395 task_set_jobctl_pending(t, signr | gstop)) { 2396 sig->group_stop_count++; 2397 if (likely(!(t->ptrace & PT_SEIZED))) 2398 signal_wake_up(t, 0); 2399 else 2400 ptrace_trap_notify(t); 2401 } 2402 } 2403 } 2404 2405 if (likely(!current->ptrace)) { 2406 int notify = 0; 2407 2408 /* 2409 * If there are no other threads in the group, or if there 2410 * is a group stop in progress and we are the last to stop, 2411 * report to the parent. 2412 */ 2413 if (task_participate_group_stop(current)) 2414 notify = CLD_STOPPED; 2415 2416 set_special_state(TASK_STOPPED); 2417 spin_unlock_irq(¤t->sighand->siglock); 2418 2419 /* 2420 * Notify the parent of the group stop completion. Because 2421 * we're not holding either the siglock or tasklist_lock 2422 * here, ptracer may attach inbetween; however, this is for 2423 * group stop and should always be delivered to the real 2424 * parent of the group leader. The new ptracer will get 2425 * its notification when this task transitions into 2426 * TASK_TRACED. 2427 */ 2428 if (notify) { 2429 read_lock(&tasklist_lock); 2430 do_notify_parent_cldstop(current, false, notify); 2431 read_unlock(&tasklist_lock); 2432 } 2433 2434 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2435 cgroup_enter_frozen(); 2436 freezable_schedule(); 2437 return true; 2438 } else { 2439 /* 2440 * While ptraced, group stop is handled by STOP trap. 2441 * Schedule it and let the caller deal with it. 2442 */ 2443 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2444 return false; 2445 } 2446 } 2447 2448 /** 2449 * do_jobctl_trap - take care of ptrace jobctl traps 2450 * 2451 * When PT_SEIZED, it's used for both group stop and explicit 2452 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2453 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2454 * the stop signal; otherwise, %SIGTRAP. 2455 * 2456 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2457 * number as exit_code and no siginfo. 2458 * 2459 * CONTEXT: 2460 * Must be called with @current->sighand->siglock held, which may be 2461 * released and re-acquired before returning with intervening sleep. 2462 */ 2463 static void do_jobctl_trap(void) 2464 { 2465 struct signal_struct *signal = current->signal; 2466 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2467 2468 if (current->ptrace & PT_SEIZED) { 2469 if (!signal->group_stop_count && 2470 !(signal->flags & SIGNAL_STOP_STOPPED)) 2471 signr = SIGTRAP; 2472 WARN_ON_ONCE(!signr); 2473 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2474 CLD_STOPPED); 2475 } else { 2476 WARN_ON_ONCE(!signr); 2477 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2478 current->exit_code = 0; 2479 } 2480 } 2481 2482 /** 2483 * do_freezer_trap - handle the freezer jobctl trap 2484 * 2485 * Puts the task into frozen state, if only the task is not about to quit. 2486 * In this case it drops JOBCTL_TRAP_FREEZE. 2487 * 2488 * CONTEXT: 2489 * Must be called with @current->sighand->siglock held, 2490 * which is always released before returning. 2491 */ 2492 static void do_freezer_trap(void) 2493 __releases(¤t->sighand->siglock) 2494 { 2495 /* 2496 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, 2497 * let's make another loop to give it a chance to be handled. 2498 * In any case, we'll return back. 2499 */ 2500 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != 2501 JOBCTL_TRAP_FREEZE) { 2502 spin_unlock_irq(¤t->sighand->siglock); 2503 return; 2504 } 2505 2506 /* 2507 * Now we're sure that there is no pending fatal signal and no 2508 * pending traps. Clear TIF_SIGPENDING to not get out of schedule() 2509 * immediately (if there is a non-fatal signal pending), and 2510 * put the task into sleep. 2511 */ 2512 __set_current_state(TASK_INTERRUPTIBLE); 2513 clear_thread_flag(TIF_SIGPENDING); 2514 spin_unlock_irq(¤t->sighand->siglock); 2515 cgroup_enter_frozen(); 2516 freezable_schedule(); 2517 } 2518 2519 static int ptrace_signal(int signr, kernel_siginfo_t *info) 2520 { 2521 /* 2522 * We do not check sig_kernel_stop(signr) but set this marker 2523 * unconditionally because we do not know whether debugger will 2524 * change signr. This flag has no meaning unless we are going 2525 * to stop after return from ptrace_stop(). In this case it will 2526 * be checked in do_signal_stop(), we should only stop if it was 2527 * not cleared by SIGCONT while we were sleeping. See also the 2528 * comment in dequeue_signal(). 2529 */ 2530 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2531 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2532 2533 /* We're back. Did the debugger cancel the sig? */ 2534 signr = current->exit_code; 2535 if (signr == 0) 2536 return signr; 2537 2538 current->exit_code = 0; 2539 2540 /* 2541 * Update the siginfo structure if the signal has 2542 * changed. If the debugger wanted something 2543 * specific in the siginfo structure then it should 2544 * have updated *info via PTRACE_SETSIGINFO. 2545 */ 2546 if (signr != info->si_signo) { 2547 clear_siginfo(info); 2548 info->si_signo = signr; 2549 info->si_errno = 0; 2550 info->si_code = SI_USER; 2551 rcu_read_lock(); 2552 info->si_pid = task_pid_vnr(current->parent); 2553 info->si_uid = from_kuid_munged(current_user_ns(), 2554 task_uid(current->parent)); 2555 rcu_read_unlock(); 2556 } 2557 2558 /* If the (new) signal is now blocked, requeue it. */ 2559 if (sigismember(¤t->blocked, signr)) { 2560 send_signal(signr, info, current, PIDTYPE_PID); 2561 signr = 0; 2562 } 2563 2564 return signr; 2565 } 2566 2567 static void hide_si_addr_tag_bits(struct ksignal *ksig) 2568 { 2569 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) { 2570 case SIL_FAULT: 2571 case SIL_FAULT_TRAPNO: 2572 case SIL_FAULT_MCEERR: 2573 case SIL_FAULT_BNDERR: 2574 case SIL_FAULT_PKUERR: 2575 case SIL_PERF_EVENT: 2576 ksig->info.si_addr = arch_untagged_si_addr( 2577 ksig->info.si_addr, ksig->sig, ksig->info.si_code); 2578 break; 2579 case SIL_KILL: 2580 case SIL_TIMER: 2581 case SIL_POLL: 2582 case SIL_CHLD: 2583 case SIL_RT: 2584 case SIL_SYS: 2585 break; 2586 } 2587 } 2588 2589 bool get_signal(struct ksignal *ksig) 2590 { 2591 struct sighand_struct *sighand = current->sighand; 2592 struct signal_struct *signal = current->signal; 2593 int signr; 2594 2595 if (unlikely(current->task_works)) 2596 task_work_run(); 2597 2598 /* 2599 * For non-generic architectures, check for TIF_NOTIFY_SIGNAL so 2600 * that the arch handlers don't all have to do it. If we get here 2601 * without TIF_SIGPENDING, just exit after running signal work. 2602 */ 2603 if (!IS_ENABLED(CONFIG_GENERIC_ENTRY)) { 2604 if (test_thread_flag(TIF_NOTIFY_SIGNAL)) 2605 tracehook_notify_signal(); 2606 if (!task_sigpending(current)) 2607 return false; 2608 } 2609 2610 if (unlikely(uprobe_deny_signal())) 2611 return false; 2612 2613 /* 2614 * Do this once, we can't return to user-mode if freezing() == T. 2615 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2616 * thus do not need another check after return. 2617 */ 2618 try_to_freeze(); 2619 2620 relock: 2621 spin_lock_irq(&sighand->siglock); 2622 2623 /* 2624 * Every stopped thread goes here after wakeup. Check to see if 2625 * we should notify the parent, prepare_signal(SIGCONT) encodes 2626 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2627 */ 2628 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2629 int why; 2630 2631 if (signal->flags & SIGNAL_CLD_CONTINUED) 2632 why = CLD_CONTINUED; 2633 else 2634 why = CLD_STOPPED; 2635 2636 signal->flags &= ~SIGNAL_CLD_MASK; 2637 2638 spin_unlock_irq(&sighand->siglock); 2639 2640 /* 2641 * Notify the parent that we're continuing. This event is 2642 * always per-process and doesn't make whole lot of sense 2643 * for ptracers, who shouldn't consume the state via 2644 * wait(2) either, but, for backward compatibility, notify 2645 * the ptracer of the group leader too unless it's gonna be 2646 * a duplicate. 2647 */ 2648 read_lock(&tasklist_lock); 2649 do_notify_parent_cldstop(current, false, why); 2650 2651 if (ptrace_reparented(current->group_leader)) 2652 do_notify_parent_cldstop(current->group_leader, 2653 true, why); 2654 read_unlock(&tasklist_lock); 2655 2656 goto relock; 2657 } 2658 2659 /* Has this task already been marked for death? */ 2660 if (signal_group_exit(signal)) { 2661 ksig->info.si_signo = signr = SIGKILL; 2662 sigdelset(¤t->pending.signal, SIGKILL); 2663 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, 2664 &sighand->action[SIGKILL - 1]); 2665 recalc_sigpending(); 2666 goto fatal; 2667 } 2668 2669 for (;;) { 2670 struct k_sigaction *ka; 2671 2672 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2673 do_signal_stop(0)) 2674 goto relock; 2675 2676 if (unlikely(current->jobctl & 2677 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { 2678 if (current->jobctl & JOBCTL_TRAP_MASK) { 2679 do_jobctl_trap(); 2680 spin_unlock_irq(&sighand->siglock); 2681 } else if (current->jobctl & JOBCTL_TRAP_FREEZE) 2682 do_freezer_trap(); 2683 2684 goto relock; 2685 } 2686 2687 /* 2688 * If the task is leaving the frozen state, let's update 2689 * cgroup counters and reset the frozen bit. 2690 */ 2691 if (unlikely(cgroup_task_frozen(current))) { 2692 spin_unlock_irq(&sighand->siglock); 2693 cgroup_leave_frozen(false); 2694 goto relock; 2695 } 2696 2697 /* 2698 * Signals generated by the execution of an instruction 2699 * need to be delivered before any other pending signals 2700 * so that the instruction pointer in the signal stack 2701 * frame points to the faulting instruction. 2702 */ 2703 signr = dequeue_synchronous_signal(&ksig->info); 2704 if (!signr) 2705 signr = dequeue_signal(current, ¤t->blocked, &ksig->info); 2706 2707 if (!signr) 2708 break; /* will return 0 */ 2709 2710 if (unlikely(current->ptrace) && signr != SIGKILL) { 2711 signr = ptrace_signal(signr, &ksig->info); 2712 if (!signr) 2713 continue; 2714 } 2715 2716 ka = &sighand->action[signr-1]; 2717 2718 /* Trace actually delivered signals. */ 2719 trace_signal_deliver(signr, &ksig->info, ka); 2720 2721 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2722 continue; 2723 if (ka->sa.sa_handler != SIG_DFL) { 2724 /* Run the handler. */ 2725 ksig->ka = *ka; 2726 2727 if (ka->sa.sa_flags & SA_ONESHOT) 2728 ka->sa.sa_handler = SIG_DFL; 2729 2730 break; /* will return non-zero "signr" value */ 2731 } 2732 2733 /* 2734 * Now we are doing the default action for this signal. 2735 */ 2736 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2737 continue; 2738 2739 /* 2740 * Global init gets no signals it doesn't want. 2741 * Container-init gets no signals it doesn't want from same 2742 * container. 2743 * 2744 * Note that if global/container-init sees a sig_kernel_only() 2745 * signal here, the signal must have been generated internally 2746 * or must have come from an ancestor namespace. In either 2747 * case, the signal cannot be dropped. 2748 */ 2749 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2750 !sig_kernel_only(signr)) 2751 continue; 2752 2753 if (sig_kernel_stop(signr)) { 2754 /* 2755 * The default action is to stop all threads in 2756 * the thread group. The job control signals 2757 * do nothing in an orphaned pgrp, but SIGSTOP 2758 * always works. Note that siglock needs to be 2759 * dropped during the call to is_orphaned_pgrp() 2760 * because of lock ordering with tasklist_lock. 2761 * This allows an intervening SIGCONT to be posted. 2762 * We need to check for that and bail out if necessary. 2763 */ 2764 if (signr != SIGSTOP) { 2765 spin_unlock_irq(&sighand->siglock); 2766 2767 /* signals can be posted during this window */ 2768 2769 if (is_current_pgrp_orphaned()) 2770 goto relock; 2771 2772 spin_lock_irq(&sighand->siglock); 2773 } 2774 2775 if (likely(do_signal_stop(ksig->info.si_signo))) { 2776 /* It released the siglock. */ 2777 goto relock; 2778 } 2779 2780 /* 2781 * We didn't actually stop, due to a race 2782 * with SIGCONT or something like that. 2783 */ 2784 continue; 2785 } 2786 2787 fatal: 2788 spin_unlock_irq(&sighand->siglock); 2789 if (unlikely(cgroup_task_frozen(current))) 2790 cgroup_leave_frozen(true); 2791 2792 /* 2793 * Anything else is fatal, maybe with a core dump. 2794 */ 2795 current->flags |= PF_SIGNALED; 2796 2797 if (sig_kernel_coredump(signr)) { 2798 if (print_fatal_signals) 2799 print_fatal_signal(ksig->info.si_signo); 2800 proc_coredump_connector(current); 2801 /* 2802 * If it was able to dump core, this kills all 2803 * other threads in the group and synchronizes with 2804 * their demise. If we lost the race with another 2805 * thread getting here, it set group_exit_code 2806 * first and our do_group_exit call below will use 2807 * that value and ignore the one we pass it. 2808 */ 2809 do_coredump(&ksig->info); 2810 } 2811 2812 /* 2813 * PF_IO_WORKER threads will catch and exit on fatal signals 2814 * themselves. They have cleanup that must be performed, so 2815 * we cannot call do_exit() on their behalf. 2816 */ 2817 if (current->flags & PF_IO_WORKER) 2818 goto out; 2819 2820 /* 2821 * Death signals, no core dump. 2822 */ 2823 do_group_exit(ksig->info.si_signo); 2824 /* NOTREACHED */ 2825 } 2826 spin_unlock_irq(&sighand->siglock); 2827 out: 2828 ksig->sig = signr; 2829 2830 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS)) 2831 hide_si_addr_tag_bits(ksig); 2832 2833 return ksig->sig > 0; 2834 } 2835 2836 /** 2837 * signal_delivered - 2838 * @ksig: kernel signal struct 2839 * @stepping: nonzero if debugger single-step or block-step in use 2840 * 2841 * This function should be called when a signal has successfully been 2842 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2843 * is always blocked, and the signal itself is blocked unless %SA_NODEFER 2844 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2845 */ 2846 static void signal_delivered(struct ksignal *ksig, int stepping) 2847 { 2848 sigset_t blocked; 2849 2850 /* A signal was successfully delivered, and the 2851 saved sigmask was stored on the signal frame, 2852 and will be restored by sigreturn. So we can 2853 simply clear the restore sigmask flag. */ 2854 clear_restore_sigmask(); 2855 2856 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2857 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2858 sigaddset(&blocked, ksig->sig); 2859 set_current_blocked(&blocked); 2860 if (current->sas_ss_flags & SS_AUTODISARM) 2861 sas_ss_reset(current); 2862 tracehook_signal_handler(stepping); 2863 } 2864 2865 void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2866 { 2867 if (failed) 2868 force_sigsegv(ksig->sig); 2869 else 2870 signal_delivered(ksig, stepping); 2871 } 2872 2873 /* 2874 * It could be that complete_signal() picked us to notify about the 2875 * group-wide signal. Other threads should be notified now to take 2876 * the shared signals in @which since we will not. 2877 */ 2878 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2879 { 2880 sigset_t retarget; 2881 struct task_struct *t; 2882 2883 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2884 if (sigisemptyset(&retarget)) 2885 return; 2886 2887 t = tsk; 2888 while_each_thread(tsk, t) { 2889 if (t->flags & PF_EXITING) 2890 continue; 2891 2892 if (!has_pending_signals(&retarget, &t->blocked)) 2893 continue; 2894 /* Remove the signals this thread can handle. */ 2895 sigandsets(&retarget, &retarget, &t->blocked); 2896 2897 if (!task_sigpending(t)) 2898 signal_wake_up(t, 0); 2899 2900 if (sigisemptyset(&retarget)) 2901 break; 2902 } 2903 } 2904 2905 void exit_signals(struct task_struct *tsk) 2906 { 2907 int group_stop = 0; 2908 sigset_t unblocked; 2909 2910 /* 2911 * @tsk is about to have PF_EXITING set - lock out users which 2912 * expect stable threadgroup. 2913 */ 2914 cgroup_threadgroup_change_begin(tsk); 2915 2916 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 2917 tsk->flags |= PF_EXITING; 2918 cgroup_threadgroup_change_end(tsk); 2919 return; 2920 } 2921 2922 spin_lock_irq(&tsk->sighand->siglock); 2923 /* 2924 * From now this task is not visible for group-wide signals, 2925 * see wants_signal(), do_signal_stop(). 2926 */ 2927 tsk->flags |= PF_EXITING; 2928 2929 cgroup_threadgroup_change_end(tsk); 2930 2931 if (!task_sigpending(tsk)) 2932 goto out; 2933 2934 unblocked = tsk->blocked; 2935 signotset(&unblocked); 2936 retarget_shared_pending(tsk, &unblocked); 2937 2938 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2939 task_participate_group_stop(tsk)) 2940 group_stop = CLD_STOPPED; 2941 out: 2942 spin_unlock_irq(&tsk->sighand->siglock); 2943 2944 /* 2945 * If group stop has completed, deliver the notification. This 2946 * should always go to the real parent of the group leader. 2947 */ 2948 if (unlikely(group_stop)) { 2949 read_lock(&tasklist_lock); 2950 do_notify_parent_cldstop(tsk, false, group_stop); 2951 read_unlock(&tasklist_lock); 2952 } 2953 } 2954 2955 /* 2956 * System call entry points. 2957 */ 2958 2959 /** 2960 * sys_restart_syscall - restart a system call 2961 */ 2962 SYSCALL_DEFINE0(restart_syscall) 2963 { 2964 struct restart_block *restart = ¤t->restart_block; 2965 return restart->fn(restart); 2966 } 2967 2968 long do_no_restart_syscall(struct restart_block *param) 2969 { 2970 return -EINTR; 2971 } 2972 2973 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 2974 { 2975 if (task_sigpending(tsk) && !thread_group_empty(tsk)) { 2976 sigset_t newblocked; 2977 /* A set of now blocked but previously unblocked signals. */ 2978 sigandnsets(&newblocked, newset, ¤t->blocked); 2979 retarget_shared_pending(tsk, &newblocked); 2980 } 2981 tsk->blocked = *newset; 2982 recalc_sigpending(); 2983 } 2984 2985 /** 2986 * set_current_blocked - change current->blocked mask 2987 * @newset: new mask 2988 * 2989 * It is wrong to change ->blocked directly, this helper should be used 2990 * to ensure the process can't miss a shared signal we are going to block. 2991 */ 2992 void set_current_blocked(sigset_t *newset) 2993 { 2994 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2995 __set_current_blocked(newset); 2996 } 2997 2998 void __set_current_blocked(const sigset_t *newset) 2999 { 3000 struct task_struct *tsk = current; 3001 3002 /* 3003 * In case the signal mask hasn't changed, there is nothing we need 3004 * to do. The current->blocked shouldn't be modified by other task. 3005 */ 3006 if (sigequalsets(&tsk->blocked, newset)) 3007 return; 3008 3009 spin_lock_irq(&tsk->sighand->siglock); 3010 __set_task_blocked(tsk, newset); 3011 spin_unlock_irq(&tsk->sighand->siglock); 3012 } 3013 3014 /* 3015 * This is also useful for kernel threads that want to temporarily 3016 * (or permanently) block certain signals. 3017 * 3018 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 3019 * interface happily blocks "unblockable" signals like SIGKILL 3020 * and friends. 3021 */ 3022 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 3023 { 3024 struct task_struct *tsk = current; 3025 sigset_t newset; 3026 3027 /* Lockless, only current can change ->blocked, never from irq */ 3028 if (oldset) 3029 *oldset = tsk->blocked; 3030 3031 switch (how) { 3032 case SIG_BLOCK: 3033 sigorsets(&newset, &tsk->blocked, set); 3034 break; 3035 case SIG_UNBLOCK: 3036 sigandnsets(&newset, &tsk->blocked, set); 3037 break; 3038 case SIG_SETMASK: 3039 newset = *set; 3040 break; 3041 default: 3042 return -EINVAL; 3043 } 3044 3045 __set_current_blocked(&newset); 3046 return 0; 3047 } 3048 EXPORT_SYMBOL(sigprocmask); 3049 3050 /* 3051 * The api helps set app-provided sigmasks. 3052 * 3053 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 3054 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 3055 * 3056 * Note that it does set_restore_sigmask() in advance, so it must be always 3057 * paired with restore_saved_sigmask_unless() before return from syscall. 3058 */ 3059 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) 3060 { 3061 sigset_t kmask; 3062 3063 if (!umask) 3064 return 0; 3065 if (sigsetsize != sizeof(sigset_t)) 3066 return -EINVAL; 3067 if (copy_from_user(&kmask, umask, sizeof(sigset_t))) 3068 return -EFAULT; 3069 3070 set_restore_sigmask(); 3071 current->saved_sigmask = current->blocked; 3072 set_current_blocked(&kmask); 3073 3074 return 0; 3075 } 3076 3077 #ifdef CONFIG_COMPAT 3078 int set_compat_user_sigmask(const compat_sigset_t __user *umask, 3079 size_t sigsetsize) 3080 { 3081 sigset_t kmask; 3082 3083 if (!umask) 3084 return 0; 3085 if (sigsetsize != sizeof(compat_sigset_t)) 3086 return -EINVAL; 3087 if (get_compat_sigset(&kmask, umask)) 3088 return -EFAULT; 3089 3090 set_restore_sigmask(); 3091 current->saved_sigmask = current->blocked; 3092 set_current_blocked(&kmask); 3093 3094 return 0; 3095 } 3096 #endif 3097 3098 /** 3099 * sys_rt_sigprocmask - change the list of currently blocked signals 3100 * @how: whether to add, remove, or set signals 3101 * @nset: stores pending signals 3102 * @oset: previous value of signal mask if non-null 3103 * @sigsetsize: size of sigset_t type 3104 */ 3105 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 3106 sigset_t __user *, oset, size_t, sigsetsize) 3107 { 3108 sigset_t old_set, new_set; 3109 int error; 3110 3111 /* XXX: Don't preclude handling different sized sigset_t's. */ 3112 if (sigsetsize != sizeof(sigset_t)) 3113 return -EINVAL; 3114 3115 old_set = current->blocked; 3116 3117 if (nset) { 3118 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 3119 return -EFAULT; 3120 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3121 3122 error = sigprocmask(how, &new_set, NULL); 3123 if (error) 3124 return error; 3125 } 3126 3127 if (oset) { 3128 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 3129 return -EFAULT; 3130 } 3131 3132 return 0; 3133 } 3134 3135 #ifdef CONFIG_COMPAT 3136 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 3137 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 3138 { 3139 sigset_t old_set = current->blocked; 3140 3141 /* XXX: Don't preclude handling different sized sigset_t's. */ 3142 if (sigsetsize != sizeof(sigset_t)) 3143 return -EINVAL; 3144 3145 if (nset) { 3146 sigset_t new_set; 3147 int error; 3148 if (get_compat_sigset(&new_set, nset)) 3149 return -EFAULT; 3150 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3151 3152 error = sigprocmask(how, &new_set, NULL); 3153 if (error) 3154 return error; 3155 } 3156 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 3157 } 3158 #endif 3159 3160 static void do_sigpending(sigset_t *set) 3161 { 3162 spin_lock_irq(¤t->sighand->siglock); 3163 sigorsets(set, ¤t->pending.signal, 3164 ¤t->signal->shared_pending.signal); 3165 spin_unlock_irq(¤t->sighand->siglock); 3166 3167 /* Outside the lock because only this thread touches it. */ 3168 sigandsets(set, ¤t->blocked, set); 3169 } 3170 3171 /** 3172 * sys_rt_sigpending - examine a pending signal that has been raised 3173 * while blocked 3174 * @uset: stores pending signals 3175 * @sigsetsize: size of sigset_t type or larger 3176 */ 3177 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 3178 { 3179 sigset_t set; 3180 3181 if (sigsetsize > sizeof(*uset)) 3182 return -EINVAL; 3183 3184 do_sigpending(&set); 3185 3186 if (copy_to_user(uset, &set, sigsetsize)) 3187 return -EFAULT; 3188 3189 return 0; 3190 } 3191 3192 #ifdef CONFIG_COMPAT 3193 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 3194 compat_size_t, sigsetsize) 3195 { 3196 sigset_t set; 3197 3198 if (sigsetsize > sizeof(*uset)) 3199 return -EINVAL; 3200 3201 do_sigpending(&set); 3202 3203 return put_compat_sigset(uset, &set, sigsetsize); 3204 } 3205 #endif 3206 3207 static const struct { 3208 unsigned char limit, layout; 3209 } sig_sicodes[] = { 3210 [SIGILL] = { NSIGILL, SIL_FAULT }, 3211 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 3212 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 3213 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 3214 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 3215 #if defined(SIGEMT) 3216 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 3217 #endif 3218 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 3219 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 3220 [SIGSYS] = { NSIGSYS, SIL_SYS }, 3221 }; 3222 3223 static bool known_siginfo_layout(unsigned sig, int si_code) 3224 { 3225 if (si_code == SI_KERNEL) 3226 return true; 3227 else if ((si_code > SI_USER)) { 3228 if (sig_specific_sicodes(sig)) { 3229 if (si_code <= sig_sicodes[sig].limit) 3230 return true; 3231 } 3232 else if (si_code <= NSIGPOLL) 3233 return true; 3234 } 3235 else if (si_code >= SI_DETHREAD) 3236 return true; 3237 else if (si_code == SI_ASYNCNL) 3238 return true; 3239 return false; 3240 } 3241 3242 enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3243 { 3244 enum siginfo_layout layout = SIL_KILL; 3245 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3246 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3247 (si_code <= sig_sicodes[sig].limit)) { 3248 layout = sig_sicodes[sig].layout; 3249 /* Handle the exceptions */ 3250 if ((sig == SIGBUS) && 3251 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3252 layout = SIL_FAULT_MCEERR; 3253 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3254 layout = SIL_FAULT_BNDERR; 3255 #ifdef SEGV_PKUERR 3256 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3257 layout = SIL_FAULT_PKUERR; 3258 #endif 3259 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF)) 3260 layout = SIL_PERF_EVENT; 3261 #ifdef __ARCH_SI_TRAPNO 3262 else if (layout == SIL_FAULT) 3263 layout = SIL_FAULT_TRAPNO; 3264 #endif 3265 } 3266 else if (si_code <= NSIGPOLL) 3267 layout = SIL_POLL; 3268 } else { 3269 if (si_code == SI_TIMER) 3270 layout = SIL_TIMER; 3271 else if (si_code == SI_SIGIO) 3272 layout = SIL_POLL; 3273 else if (si_code < 0) 3274 layout = SIL_RT; 3275 } 3276 return layout; 3277 } 3278 3279 static inline char __user *si_expansion(const siginfo_t __user *info) 3280 { 3281 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3282 } 3283 3284 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3285 { 3286 char __user *expansion = si_expansion(to); 3287 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3288 return -EFAULT; 3289 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3290 return -EFAULT; 3291 return 0; 3292 } 3293 3294 static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3295 const siginfo_t __user *from) 3296 { 3297 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3298 char __user *expansion = si_expansion(from); 3299 char buf[SI_EXPANSION_SIZE]; 3300 int i; 3301 /* 3302 * An unknown si_code might need more than 3303 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3304 * extra bytes are 0. This guarantees copy_siginfo_to_user 3305 * will return this data to userspace exactly. 3306 */ 3307 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3308 return -EFAULT; 3309 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3310 if (buf[i] != 0) 3311 return -E2BIG; 3312 } 3313 } 3314 return 0; 3315 } 3316 3317 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3318 const siginfo_t __user *from) 3319 { 3320 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3321 return -EFAULT; 3322 to->si_signo = signo; 3323 return post_copy_siginfo_from_user(to, from); 3324 } 3325 3326 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3327 { 3328 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3329 return -EFAULT; 3330 return post_copy_siginfo_from_user(to, from); 3331 } 3332 3333 #ifdef CONFIG_COMPAT 3334 /** 3335 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo 3336 * @to: compat siginfo destination 3337 * @from: kernel siginfo source 3338 * 3339 * Note: This function does not work properly for the SIGCHLD on x32, but 3340 * fortunately it doesn't have to. The only valid callers for this function are 3341 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. 3342 * The latter does not care because SIGCHLD will never cause a coredump. 3343 */ 3344 void copy_siginfo_to_external32(struct compat_siginfo *to, 3345 const struct kernel_siginfo *from) 3346 { 3347 memset(to, 0, sizeof(*to)); 3348 3349 to->si_signo = from->si_signo; 3350 to->si_errno = from->si_errno; 3351 to->si_code = from->si_code; 3352 switch(siginfo_layout(from->si_signo, from->si_code)) { 3353 case SIL_KILL: 3354 to->si_pid = from->si_pid; 3355 to->si_uid = from->si_uid; 3356 break; 3357 case SIL_TIMER: 3358 to->si_tid = from->si_tid; 3359 to->si_overrun = from->si_overrun; 3360 to->si_int = from->si_int; 3361 break; 3362 case SIL_POLL: 3363 to->si_band = from->si_band; 3364 to->si_fd = from->si_fd; 3365 break; 3366 case SIL_FAULT: 3367 to->si_addr = ptr_to_compat(from->si_addr); 3368 break; 3369 case SIL_FAULT_TRAPNO: 3370 to->si_addr = ptr_to_compat(from->si_addr); 3371 to->si_trapno = from->si_trapno; 3372 break; 3373 case SIL_FAULT_MCEERR: 3374 to->si_addr = ptr_to_compat(from->si_addr); 3375 to->si_addr_lsb = from->si_addr_lsb; 3376 break; 3377 case SIL_FAULT_BNDERR: 3378 to->si_addr = ptr_to_compat(from->si_addr); 3379 to->si_lower = ptr_to_compat(from->si_lower); 3380 to->si_upper = ptr_to_compat(from->si_upper); 3381 break; 3382 case SIL_FAULT_PKUERR: 3383 to->si_addr = ptr_to_compat(from->si_addr); 3384 to->si_pkey = from->si_pkey; 3385 break; 3386 case SIL_PERF_EVENT: 3387 to->si_addr = ptr_to_compat(from->si_addr); 3388 to->si_perf_data = from->si_perf_data; 3389 to->si_perf_type = from->si_perf_type; 3390 break; 3391 case SIL_CHLD: 3392 to->si_pid = from->si_pid; 3393 to->si_uid = from->si_uid; 3394 to->si_status = from->si_status; 3395 to->si_utime = from->si_utime; 3396 to->si_stime = from->si_stime; 3397 break; 3398 case SIL_RT: 3399 to->si_pid = from->si_pid; 3400 to->si_uid = from->si_uid; 3401 to->si_int = from->si_int; 3402 break; 3403 case SIL_SYS: 3404 to->si_call_addr = ptr_to_compat(from->si_call_addr); 3405 to->si_syscall = from->si_syscall; 3406 to->si_arch = from->si_arch; 3407 break; 3408 } 3409 } 3410 3411 int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3412 const struct kernel_siginfo *from) 3413 { 3414 struct compat_siginfo new; 3415 3416 copy_siginfo_to_external32(&new, from); 3417 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3418 return -EFAULT; 3419 return 0; 3420 } 3421 3422 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3423 const struct compat_siginfo *from) 3424 { 3425 clear_siginfo(to); 3426 to->si_signo = from->si_signo; 3427 to->si_errno = from->si_errno; 3428 to->si_code = from->si_code; 3429 switch(siginfo_layout(from->si_signo, from->si_code)) { 3430 case SIL_KILL: 3431 to->si_pid = from->si_pid; 3432 to->si_uid = from->si_uid; 3433 break; 3434 case SIL_TIMER: 3435 to->si_tid = from->si_tid; 3436 to->si_overrun = from->si_overrun; 3437 to->si_int = from->si_int; 3438 break; 3439 case SIL_POLL: 3440 to->si_band = from->si_band; 3441 to->si_fd = from->si_fd; 3442 break; 3443 case SIL_FAULT: 3444 to->si_addr = compat_ptr(from->si_addr); 3445 break; 3446 case SIL_FAULT_TRAPNO: 3447 to->si_addr = compat_ptr(from->si_addr); 3448 to->si_trapno = from->si_trapno; 3449 break; 3450 case SIL_FAULT_MCEERR: 3451 to->si_addr = compat_ptr(from->si_addr); 3452 to->si_addr_lsb = from->si_addr_lsb; 3453 break; 3454 case SIL_FAULT_BNDERR: 3455 to->si_addr = compat_ptr(from->si_addr); 3456 to->si_lower = compat_ptr(from->si_lower); 3457 to->si_upper = compat_ptr(from->si_upper); 3458 break; 3459 case SIL_FAULT_PKUERR: 3460 to->si_addr = compat_ptr(from->si_addr); 3461 to->si_pkey = from->si_pkey; 3462 break; 3463 case SIL_PERF_EVENT: 3464 to->si_addr = compat_ptr(from->si_addr); 3465 to->si_perf_data = from->si_perf_data; 3466 to->si_perf_type = from->si_perf_type; 3467 break; 3468 case SIL_CHLD: 3469 to->si_pid = from->si_pid; 3470 to->si_uid = from->si_uid; 3471 to->si_status = from->si_status; 3472 #ifdef CONFIG_X86_X32_ABI 3473 if (in_x32_syscall()) { 3474 to->si_utime = from->_sifields._sigchld_x32._utime; 3475 to->si_stime = from->_sifields._sigchld_x32._stime; 3476 } else 3477 #endif 3478 { 3479 to->si_utime = from->si_utime; 3480 to->si_stime = from->si_stime; 3481 } 3482 break; 3483 case SIL_RT: 3484 to->si_pid = from->si_pid; 3485 to->si_uid = from->si_uid; 3486 to->si_int = from->si_int; 3487 break; 3488 case SIL_SYS: 3489 to->si_call_addr = compat_ptr(from->si_call_addr); 3490 to->si_syscall = from->si_syscall; 3491 to->si_arch = from->si_arch; 3492 break; 3493 } 3494 return 0; 3495 } 3496 3497 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3498 const struct compat_siginfo __user *ufrom) 3499 { 3500 struct compat_siginfo from; 3501 3502 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3503 return -EFAULT; 3504 3505 from.si_signo = signo; 3506 return post_copy_siginfo_from_user32(to, &from); 3507 } 3508 3509 int copy_siginfo_from_user32(struct kernel_siginfo *to, 3510 const struct compat_siginfo __user *ufrom) 3511 { 3512 struct compat_siginfo from; 3513 3514 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3515 return -EFAULT; 3516 3517 return post_copy_siginfo_from_user32(to, &from); 3518 } 3519 #endif /* CONFIG_COMPAT */ 3520 3521 /** 3522 * do_sigtimedwait - wait for queued signals specified in @which 3523 * @which: queued signals to wait for 3524 * @info: if non-null, the signal's siginfo is returned here 3525 * @ts: upper bound on process time suspension 3526 */ 3527 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3528 const struct timespec64 *ts) 3529 { 3530 ktime_t *to = NULL, timeout = KTIME_MAX; 3531 struct task_struct *tsk = current; 3532 sigset_t mask = *which; 3533 int sig, ret = 0; 3534 3535 if (ts) { 3536 if (!timespec64_valid(ts)) 3537 return -EINVAL; 3538 timeout = timespec64_to_ktime(*ts); 3539 to = &timeout; 3540 } 3541 3542 /* 3543 * Invert the set of allowed signals to get those we want to block. 3544 */ 3545 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3546 signotset(&mask); 3547 3548 spin_lock_irq(&tsk->sighand->siglock); 3549 sig = dequeue_signal(tsk, &mask, info); 3550 if (!sig && timeout) { 3551 /* 3552 * None ready, temporarily unblock those we're interested 3553 * while we are sleeping in so that we'll be awakened when 3554 * they arrive. Unblocking is always fine, we can avoid 3555 * set_current_blocked(). 3556 */ 3557 tsk->real_blocked = tsk->blocked; 3558 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3559 recalc_sigpending(); 3560 spin_unlock_irq(&tsk->sighand->siglock); 3561 3562 __set_current_state(TASK_INTERRUPTIBLE); 3563 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3564 HRTIMER_MODE_REL); 3565 spin_lock_irq(&tsk->sighand->siglock); 3566 __set_task_blocked(tsk, &tsk->real_blocked); 3567 sigemptyset(&tsk->real_blocked); 3568 sig = dequeue_signal(tsk, &mask, info); 3569 } 3570 spin_unlock_irq(&tsk->sighand->siglock); 3571 3572 if (sig) 3573 return sig; 3574 return ret ? -EINTR : -EAGAIN; 3575 } 3576 3577 /** 3578 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3579 * in @uthese 3580 * @uthese: queued signals to wait for 3581 * @uinfo: if non-null, the signal's siginfo is returned here 3582 * @uts: upper bound on process time suspension 3583 * @sigsetsize: size of sigset_t type 3584 */ 3585 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3586 siginfo_t __user *, uinfo, 3587 const struct __kernel_timespec __user *, uts, 3588 size_t, sigsetsize) 3589 { 3590 sigset_t these; 3591 struct timespec64 ts; 3592 kernel_siginfo_t info; 3593 int ret; 3594 3595 /* XXX: Don't preclude handling different sized sigset_t's. */ 3596 if (sigsetsize != sizeof(sigset_t)) 3597 return -EINVAL; 3598 3599 if (copy_from_user(&these, uthese, sizeof(these))) 3600 return -EFAULT; 3601 3602 if (uts) { 3603 if (get_timespec64(&ts, uts)) 3604 return -EFAULT; 3605 } 3606 3607 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3608 3609 if (ret > 0 && uinfo) { 3610 if (copy_siginfo_to_user(uinfo, &info)) 3611 ret = -EFAULT; 3612 } 3613 3614 return ret; 3615 } 3616 3617 #ifdef CONFIG_COMPAT_32BIT_TIME 3618 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3619 siginfo_t __user *, uinfo, 3620 const struct old_timespec32 __user *, uts, 3621 size_t, sigsetsize) 3622 { 3623 sigset_t these; 3624 struct timespec64 ts; 3625 kernel_siginfo_t info; 3626 int ret; 3627 3628 if (sigsetsize != sizeof(sigset_t)) 3629 return -EINVAL; 3630 3631 if (copy_from_user(&these, uthese, sizeof(these))) 3632 return -EFAULT; 3633 3634 if (uts) { 3635 if (get_old_timespec32(&ts, uts)) 3636 return -EFAULT; 3637 } 3638 3639 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3640 3641 if (ret > 0 && uinfo) { 3642 if (copy_siginfo_to_user(uinfo, &info)) 3643 ret = -EFAULT; 3644 } 3645 3646 return ret; 3647 } 3648 #endif 3649 3650 #ifdef CONFIG_COMPAT 3651 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3652 struct compat_siginfo __user *, uinfo, 3653 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3654 { 3655 sigset_t s; 3656 struct timespec64 t; 3657 kernel_siginfo_t info; 3658 long ret; 3659 3660 if (sigsetsize != sizeof(sigset_t)) 3661 return -EINVAL; 3662 3663 if (get_compat_sigset(&s, uthese)) 3664 return -EFAULT; 3665 3666 if (uts) { 3667 if (get_timespec64(&t, uts)) 3668 return -EFAULT; 3669 } 3670 3671 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3672 3673 if (ret > 0 && uinfo) { 3674 if (copy_siginfo_to_user32(uinfo, &info)) 3675 ret = -EFAULT; 3676 } 3677 3678 return ret; 3679 } 3680 3681 #ifdef CONFIG_COMPAT_32BIT_TIME 3682 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3683 struct compat_siginfo __user *, uinfo, 3684 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3685 { 3686 sigset_t s; 3687 struct timespec64 t; 3688 kernel_siginfo_t info; 3689 long ret; 3690 3691 if (sigsetsize != sizeof(sigset_t)) 3692 return -EINVAL; 3693 3694 if (get_compat_sigset(&s, uthese)) 3695 return -EFAULT; 3696 3697 if (uts) { 3698 if (get_old_timespec32(&t, uts)) 3699 return -EFAULT; 3700 } 3701 3702 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3703 3704 if (ret > 0 && uinfo) { 3705 if (copy_siginfo_to_user32(uinfo, &info)) 3706 ret = -EFAULT; 3707 } 3708 3709 return ret; 3710 } 3711 #endif 3712 #endif 3713 3714 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info) 3715 { 3716 clear_siginfo(info); 3717 info->si_signo = sig; 3718 info->si_errno = 0; 3719 info->si_code = SI_USER; 3720 info->si_pid = task_tgid_vnr(current); 3721 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3722 } 3723 3724 /** 3725 * sys_kill - send a signal to a process 3726 * @pid: the PID of the process 3727 * @sig: signal to be sent 3728 */ 3729 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3730 { 3731 struct kernel_siginfo info; 3732 3733 prepare_kill_siginfo(sig, &info); 3734 3735 return kill_something_info(sig, &info, pid); 3736 } 3737 3738 /* 3739 * Verify that the signaler and signalee either are in the same pid namespace 3740 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3741 * namespace. 3742 */ 3743 static bool access_pidfd_pidns(struct pid *pid) 3744 { 3745 struct pid_namespace *active = task_active_pid_ns(current); 3746 struct pid_namespace *p = ns_of_pid(pid); 3747 3748 for (;;) { 3749 if (!p) 3750 return false; 3751 if (p == active) 3752 break; 3753 p = p->parent; 3754 } 3755 3756 return true; 3757 } 3758 3759 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, 3760 siginfo_t __user *info) 3761 { 3762 #ifdef CONFIG_COMPAT 3763 /* 3764 * Avoid hooking up compat syscalls and instead handle necessary 3765 * conversions here. Note, this is a stop-gap measure and should not be 3766 * considered a generic solution. 3767 */ 3768 if (in_compat_syscall()) 3769 return copy_siginfo_from_user32( 3770 kinfo, (struct compat_siginfo __user *)info); 3771 #endif 3772 return copy_siginfo_from_user(kinfo, info); 3773 } 3774 3775 static struct pid *pidfd_to_pid(const struct file *file) 3776 { 3777 struct pid *pid; 3778 3779 pid = pidfd_pid(file); 3780 if (!IS_ERR(pid)) 3781 return pid; 3782 3783 return tgid_pidfd_to_pid(file); 3784 } 3785 3786 /** 3787 * sys_pidfd_send_signal - Signal a process through a pidfd 3788 * @pidfd: file descriptor of the process 3789 * @sig: signal to send 3790 * @info: signal info 3791 * @flags: future flags 3792 * 3793 * The syscall currently only signals via PIDTYPE_PID which covers 3794 * kill(<positive-pid>, <signal>. It does not signal threads or process 3795 * groups. 3796 * In order to extend the syscall to threads and process groups the @flags 3797 * argument should be used. In essence, the @flags argument will determine 3798 * what is signaled and not the file descriptor itself. Put in other words, 3799 * grouping is a property of the flags argument not a property of the file 3800 * descriptor. 3801 * 3802 * Return: 0 on success, negative errno on failure 3803 */ 3804 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 3805 siginfo_t __user *, info, unsigned int, flags) 3806 { 3807 int ret; 3808 struct fd f; 3809 struct pid *pid; 3810 kernel_siginfo_t kinfo; 3811 3812 /* Enforce flags be set to 0 until we add an extension. */ 3813 if (flags) 3814 return -EINVAL; 3815 3816 f = fdget(pidfd); 3817 if (!f.file) 3818 return -EBADF; 3819 3820 /* Is this a pidfd? */ 3821 pid = pidfd_to_pid(f.file); 3822 if (IS_ERR(pid)) { 3823 ret = PTR_ERR(pid); 3824 goto err; 3825 } 3826 3827 ret = -EINVAL; 3828 if (!access_pidfd_pidns(pid)) 3829 goto err; 3830 3831 if (info) { 3832 ret = copy_siginfo_from_user_any(&kinfo, info); 3833 if (unlikely(ret)) 3834 goto err; 3835 3836 ret = -EINVAL; 3837 if (unlikely(sig != kinfo.si_signo)) 3838 goto err; 3839 3840 /* Only allow sending arbitrary signals to yourself. */ 3841 ret = -EPERM; 3842 if ((task_pid(current) != pid) && 3843 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) 3844 goto err; 3845 } else { 3846 prepare_kill_siginfo(sig, &kinfo); 3847 } 3848 3849 ret = kill_pid_info(sig, &kinfo, pid); 3850 3851 err: 3852 fdput(f); 3853 return ret; 3854 } 3855 3856 static int 3857 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 3858 { 3859 struct task_struct *p; 3860 int error = -ESRCH; 3861 3862 rcu_read_lock(); 3863 p = find_task_by_vpid(pid); 3864 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 3865 error = check_kill_permission(sig, info, p); 3866 /* 3867 * The null signal is a permissions and process existence 3868 * probe. No signal is actually delivered. 3869 */ 3870 if (!error && sig) { 3871 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 3872 /* 3873 * If lock_task_sighand() failed we pretend the task 3874 * dies after receiving the signal. The window is tiny, 3875 * and the signal is private anyway. 3876 */ 3877 if (unlikely(error == -ESRCH)) 3878 error = 0; 3879 } 3880 } 3881 rcu_read_unlock(); 3882 3883 return error; 3884 } 3885 3886 static int do_tkill(pid_t tgid, pid_t pid, int sig) 3887 { 3888 struct kernel_siginfo info; 3889 3890 clear_siginfo(&info); 3891 info.si_signo = sig; 3892 info.si_errno = 0; 3893 info.si_code = SI_TKILL; 3894 info.si_pid = task_tgid_vnr(current); 3895 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3896 3897 return do_send_specific(tgid, pid, sig, &info); 3898 } 3899 3900 /** 3901 * sys_tgkill - send signal to one specific thread 3902 * @tgid: the thread group ID of the thread 3903 * @pid: the PID of the thread 3904 * @sig: signal to be sent 3905 * 3906 * This syscall also checks the @tgid and returns -ESRCH even if the PID 3907 * exists but it's not belonging to the target process anymore. This 3908 * method solves the problem of threads exiting and PIDs getting reused. 3909 */ 3910 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 3911 { 3912 /* This is only valid for single tasks */ 3913 if (pid <= 0 || tgid <= 0) 3914 return -EINVAL; 3915 3916 return do_tkill(tgid, pid, sig); 3917 } 3918 3919 /** 3920 * sys_tkill - send signal to one specific task 3921 * @pid: the PID of the task 3922 * @sig: signal to be sent 3923 * 3924 * Send a signal to only one task, even if it's a CLONE_THREAD task. 3925 */ 3926 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 3927 { 3928 /* This is only valid for single tasks */ 3929 if (pid <= 0) 3930 return -EINVAL; 3931 3932 return do_tkill(0, pid, sig); 3933 } 3934 3935 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 3936 { 3937 /* Not even root can pretend to send signals from the kernel. 3938 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3939 */ 3940 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3941 (task_pid_vnr(current) != pid)) 3942 return -EPERM; 3943 3944 /* POSIX.1b doesn't mention process groups. */ 3945 return kill_proc_info(sig, info, pid); 3946 } 3947 3948 /** 3949 * sys_rt_sigqueueinfo - send signal information to a signal 3950 * @pid: the PID of the thread 3951 * @sig: signal to be sent 3952 * @uinfo: signal info to be sent 3953 */ 3954 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 3955 siginfo_t __user *, uinfo) 3956 { 3957 kernel_siginfo_t info; 3958 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 3959 if (unlikely(ret)) 3960 return ret; 3961 return do_rt_sigqueueinfo(pid, sig, &info); 3962 } 3963 3964 #ifdef CONFIG_COMPAT 3965 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 3966 compat_pid_t, pid, 3967 int, sig, 3968 struct compat_siginfo __user *, uinfo) 3969 { 3970 kernel_siginfo_t info; 3971 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 3972 if (unlikely(ret)) 3973 return ret; 3974 return do_rt_sigqueueinfo(pid, sig, &info); 3975 } 3976 #endif 3977 3978 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 3979 { 3980 /* This is only valid for single tasks */ 3981 if (pid <= 0 || tgid <= 0) 3982 return -EINVAL; 3983 3984 /* Not even root can pretend to send signals from the kernel. 3985 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3986 */ 3987 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3988 (task_pid_vnr(current) != pid)) 3989 return -EPERM; 3990 3991 return do_send_specific(tgid, pid, sig, info); 3992 } 3993 3994 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 3995 siginfo_t __user *, uinfo) 3996 { 3997 kernel_siginfo_t info; 3998 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 3999 if (unlikely(ret)) 4000 return ret; 4001 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4002 } 4003 4004 #ifdef CONFIG_COMPAT 4005 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 4006 compat_pid_t, tgid, 4007 compat_pid_t, pid, 4008 int, sig, 4009 struct compat_siginfo __user *, uinfo) 4010 { 4011 kernel_siginfo_t info; 4012 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4013 if (unlikely(ret)) 4014 return ret; 4015 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4016 } 4017 #endif 4018 4019 /* 4020 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 4021 */ 4022 void kernel_sigaction(int sig, __sighandler_t action) 4023 { 4024 spin_lock_irq(¤t->sighand->siglock); 4025 current->sighand->action[sig - 1].sa.sa_handler = action; 4026 if (action == SIG_IGN) { 4027 sigset_t mask; 4028 4029 sigemptyset(&mask); 4030 sigaddset(&mask, sig); 4031 4032 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 4033 flush_sigqueue_mask(&mask, ¤t->pending); 4034 recalc_sigpending(); 4035 } 4036 spin_unlock_irq(¤t->sighand->siglock); 4037 } 4038 EXPORT_SYMBOL(kernel_sigaction); 4039 4040 void __weak sigaction_compat_abi(struct k_sigaction *act, 4041 struct k_sigaction *oact) 4042 { 4043 } 4044 4045 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 4046 { 4047 struct task_struct *p = current, *t; 4048 struct k_sigaction *k; 4049 sigset_t mask; 4050 4051 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 4052 return -EINVAL; 4053 4054 k = &p->sighand->action[sig-1]; 4055 4056 spin_lock_irq(&p->sighand->siglock); 4057 if (oact) 4058 *oact = *k; 4059 4060 /* 4061 * Make sure that we never accidentally claim to support SA_UNSUPPORTED, 4062 * e.g. by having an architecture use the bit in their uapi. 4063 */ 4064 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED); 4065 4066 /* 4067 * Clear unknown flag bits in order to allow userspace to detect missing 4068 * support for flag bits and to allow the kernel to use non-uapi bits 4069 * internally. 4070 */ 4071 if (act) 4072 act->sa.sa_flags &= UAPI_SA_FLAGS; 4073 if (oact) 4074 oact->sa.sa_flags &= UAPI_SA_FLAGS; 4075 4076 sigaction_compat_abi(act, oact); 4077 4078 if (act) { 4079 sigdelsetmask(&act->sa.sa_mask, 4080 sigmask(SIGKILL) | sigmask(SIGSTOP)); 4081 *k = *act; 4082 /* 4083 * POSIX 3.3.1.3: 4084 * "Setting a signal action to SIG_IGN for a signal that is 4085 * pending shall cause the pending signal to be discarded, 4086 * whether or not it is blocked." 4087 * 4088 * "Setting a signal action to SIG_DFL for a signal that is 4089 * pending and whose default action is to ignore the signal 4090 * (for example, SIGCHLD), shall cause the pending signal to 4091 * be discarded, whether or not it is blocked" 4092 */ 4093 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 4094 sigemptyset(&mask); 4095 sigaddset(&mask, sig); 4096 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 4097 for_each_thread(p, t) 4098 flush_sigqueue_mask(&mask, &t->pending); 4099 } 4100 } 4101 4102 spin_unlock_irq(&p->sighand->siglock); 4103 return 0; 4104 } 4105 4106 static int 4107 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 4108 size_t min_ss_size) 4109 { 4110 struct task_struct *t = current; 4111 4112 if (oss) { 4113 memset(oss, 0, sizeof(stack_t)); 4114 oss->ss_sp = (void __user *) t->sas_ss_sp; 4115 oss->ss_size = t->sas_ss_size; 4116 oss->ss_flags = sas_ss_flags(sp) | 4117 (current->sas_ss_flags & SS_FLAG_BITS); 4118 } 4119 4120 if (ss) { 4121 void __user *ss_sp = ss->ss_sp; 4122 size_t ss_size = ss->ss_size; 4123 unsigned ss_flags = ss->ss_flags; 4124 int ss_mode; 4125 4126 if (unlikely(on_sig_stack(sp))) 4127 return -EPERM; 4128 4129 ss_mode = ss_flags & ~SS_FLAG_BITS; 4130 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 4131 ss_mode != 0)) 4132 return -EINVAL; 4133 4134 if (ss_mode == SS_DISABLE) { 4135 ss_size = 0; 4136 ss_sp = NULL; 4137 } else { 4138 if (unlikely(ss_size < min_ss_size)) 4139 return -ENOMEM; 4140 } 4141 4142 t->sas_ss_sp = (unsigned long) ss_sp; 4143 t->sas_ss_size = ss_size; 4144 t->sas_ss_flags = ss_flags; 4145 } 4146 return 0; 4147 } 4148 4149 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 4150 { 4151 stack_t new, old; 4152 int err; 4153 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 4154 return -EFAULT; 4155 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 4156 current_user_stack_pointer(), 4157 MINSIGSTKSZ); 4158 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 4159 err = -EFAULT; 4160 return err; 4161 } 4162 4163 int restore_altstack(const stack_t __user *uss) 4164 { 4165 stack_t new; 4166 if (copy_from_user(&new, uss, sizeof(stack_t))) 4167 return -EFAULT; 4168 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 4169 MINSIGSTKSZ); 4170 /* squash all but EFAULT for now */ 4171 return 0; 4172 } 4173 4174 int __save_altstack(stack_t __user *uss, unsigned long sp) 4175 { 4176 struct task_struct *t = current; 4177 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 4178 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4179 __put_user(t->sas_ss_size, &uss->ss_size); 4180 return err; 4181 } 4182 4183 #ifdef CONFIG_COMPAT 4184 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 4185 compat_stack_t __user *uoss_ptr) 4186 { 4187 stack_t uss, uoss; 4188 int ret; 4189 4190 if (uss_ptr) { 4191 compat_stack_t uss32; 4192 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 4193 return -EFAULT; 4194 uss.ss_sp = compat_ptr(uss32.ss_sp); 4195 uss.ss_flags = uss32.ss_flags; 4196 uss.ss_size = uss32.ss_size; 4197 } 4198 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 4199 compat_user_stack_pointer(), 4200 COMPAT_MINSIGSTKSZ); 4201 if (ret >= 0 && uoss_ptr) { 4202 compat_stack_t old; 4203 memset(&old, 0, sizeof(old)); 4204 old.ss_sp = ptr_to_compat(uoss.ss_sp); 4205 old.ss_flags = uoss.ss_flags; 4206 old.ss_size = uoss.ss_size; 4207 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 4208 ret = -EFAULT; 4209 } 4210 return ret; 4211 } 4212 4213 COMPAT_SYSCALL_DEFINE2(sigaltstack, 4214 const compat_stack_t __user *, uss_ptr, 4215 compat_stack_t __user *, uoss_ptr) 4216 { 4217 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 4218 } 4219 4220 int compat_restore_altstack(const compat_stack_t __user *uss) 4221 { 4222 int err = do_compat_sigaltstack(uss, NULL); 4223 /* squash all but -EFAULT for now */ 4224 return err == -EFAULT ? err : 0; 4225 } 4226 4227 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 4228 { 4229 int err; 4230 struct task_struct *t = current; 4231 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 4232 &uss->ss_sp) | 4233 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4234 __put_user(t->sas_ss_size, &uss->ss_size); 4235 return err; 4236 } 4237 #endif 4238 4239 #ifdef __ARCH_WANT_SYS_SIGPENDING 4240 4241 /** 4242 * sys_sigpending - examine pending signals 4243 * @uset: where mask of pending signal is returned 4244 */ 4245 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4246 { 4247 sigset_t set; 4248 4249 if (sizeof(old_sigset_t) > sizeof(*uset)) 4250 return -EINVAL; 4251 4252 do_sigpending(&set); 4253 4254 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4255 return -EFAULT; 4256 4257 return 0; 4258 } 4259 4260 #ifdef CONFIG_COMPAT 4261 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4262 { 4263 sigset_t set; 4264 4265 do_sigpending(&set); 4266 4267 return put_user(set.sig[0], set32); 4268 } 4269 #endif 4270 4271 #endif 4272 4273 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 4274 /** 4275 * sys_sigprocmask - examine and change blocked signals 4276 * @how: whether to add, remove, or set signals 4277 * @nset: signals to add or remove (if non-null) 4278 * @oset: previous value of signal mask if non-null 4279 * 4280 * Some platforms have their own version with special arguments; 4281 * others support only sys_rt_sigprocmask. 4282 */ 4283 4284 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4285 old_sigset_t __user *, oset) 4286 { 4287 old_sigset_t old_set, new_set; 4288 sigset_t new_blocked; 4289 4290 old_set = current->blocked.sig[0]; 4291 4292 if (nset) { 4293 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4294 return -EFAULT; 4295 4296 new_blocked = current->blocked; 4297 4298 switch (how) { 4299 case SIG_BLOCK: 4300 sigaddsetmask(&new_blocked, new_set); 4301 break; 4302 case SIG_UNBLOCK: 4303 sigdelsetmask(&new_blocked, new_set); 4304 break; 4305 case SIG_SETMASK: 4306 new_blocked.sig[0] = new_set; 4307 break; 4308 default: 4309 return -EINVAL; 4310 } 4311 4312 set_current_blocked(&new_blocked); 4313 } 4314 4315 if (oset) { 4316 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4317 return -EFAULT; 4318 } 4319 4320 return 0; 4321 } 4322 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4323 4324 #ifndef CONFIG_ODD_RT_SIGACTION 4325 /** 4326 * sys_rt_sigaction - alter an action taken by a process 4327 * @sig: signal to be sent 4328 * @act: new sigaction 4329 * @oact: used to save the previous sigaction 4330 * @sigsetsize: size of sigset_t type 4331 */ 4332 SYSCALL_DEFINE4(rt_sigaction, int, sig, 4333 const struct sigaction __user *, act, 4334 struct sigaction __user *, oact, 4335 size_t, sigsetsize) 4336 { 4337 struct k_sigaction new_sa, old_sa; 4338 int ret; 4339 4340 /* XXX: Don't preclude handling different sized sigset_t's. */ 4341 if (sigsetsize != sizeof(sigset_t)) 4342 return -EINVAL; 4343 4344 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4345 return -EFAULT; 4346 4347 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4348 if (ret) 4349 return ret; 4350 4351 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4352 return -EFAULT; 4353 4354 return 0; 4355 } 4356 #ifdef CONFIG_COMPAT 4357 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4358 const struct compat_sigaction __user *, act, 4359 struct compat_sigaction __user *, oact, 4360 compat_size_t, sigsetsize) 4361 { 4362 struct k_sigaction new_ka, old_ka; 4363 #ifdef __ARCH_HAS_SA_RESTORER 4364 compat_uptr_t restorer; 4365 #endif 4366 int ret; 4367 4368 /* XXX: Don't preclude handling different sized sigset_t's. */ 4369 if (sigsetsize != sizeof(compat_sigset_t)) 4370 return -EINVAL; 4371 4372 if (act) { 4373 compat_uptr_t handler; 4374 ret = get_user(handler, &act->sa_handler); 4375 new_ka.sa.sa_handler = compat_ptr(handler); 4376 #ifdef __ARCH_HAS_SA_RESTORER 4377 ret |= get_user(restorer, &act->sa_restorer); 4378 new_ka.sa.sa_restorer = compat_ptr(restorer); 4379 #endif 4380 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4381 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4382 if (ret) 4383 return -EFAULT; 4384 } 4385 4386 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4387 if (!ret && oact) { 4388 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4389 &oact->sa_handler); 4390 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4391 sizeof(oact->sa_mask)); 4392 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4393 #ifdef __ARCH_HAS_SA_RESTORER 4394 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4395 &oact->sa_restorer); 4396 #endif 4397 } 4398 return ret; 4399 } 4400 #endif 4401 #endif /* !CONFIG_ODD_RT_SIGACTION */ 4402 4403 #ifdef CONFIG_OLD_SIGACTION 4404 SYSCALL_DEFINE3(sigaction, int, sig, 4405 const struct old_sigaction __user *, act, 4406 struct old_sigaction __user *, oact) 4407 { 4408 struct k_sigaction new_ka, old_ka; 4409 int ret; 4410 4411 if (act) { 4412 old_sigset_t mask; 4413 if (!access_ok(act, sizeof(*act)) || 4414 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4415 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4416 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4417 __get_user(mask, &act->sa_mask)) 4418 return -EFAULT; 4419 #ifdef __ARCH_HAS_KA_RESTORER 4420 new_ka.ka_restorer = NULL; 4421 #endif 4422 siginitset(&new_ka.sa.sa_mask, mask); 4423 } 4424 4425 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4426 4427 if (!ret && oact) { 4428 if (!access_ok(oact, sizeof(*oact)) || 4429 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4430 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4431 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4432 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4433 return -EFAULT; 4434 } 4435 4436 return ret; 4437 } 4438 #endif 4439 #ifdef CONFIG_COMPAT_OLD_SIGACTION 4440 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4441 const struct compat_old_sigaction __user *, act, 4442 struct compat_old_sigaction __user *, oact) 4443 { 4444 struct k_sigaction new_ka, old_ka; 4445 int ret; 4446 compat_old_sigset_t mask; 4447 compat_uptr_t handler, restorer; 4448 4449 if (act) { 4450 if (!access_ok(act, sizeof(*act)) || 4451 __get_user(handler, &act->sa_handler) || 4452 __get_user(restorer, &act->sa_restorer) || 4453 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4454 __get_user(mask, &act->sa_mask)) 4455 return -EFAULT; 4456 4457 #ifdef __ARCH_HAS_KA_RESTORER 4458 new_ka.ka_restorer = NULL; 4459 #endif 4460 new_ka.sa.sa_handler = compat_ptr(handler); 4461 new_ka.sa.sa_restorer = compat_ptr(restorer); 4462 siginitset(&new_ka.sa.sa_mask, mask); 4463 } 4464 4465 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4466 4467 if (!ret && oact) { 4468 if (!access_ok(oact, sizeof(*oact)) || 4469 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4470 &oact->sa_handler) || 4471 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4472 &oact->sa_restorer) || 4473 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4474 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4475 return -EFAULT; 4476 } 4477 return ret; 4478 } 4479 #endif 4480 4481 #ifdef CONFIG_SGETMASK_SYSCALL 4482 4483 /* 4484 * For backwards compatibility. Functionality superseded by sigprocmask. 4485 */ 4486 SYSCALL_DEFINE0(sgetmask) 4487 { 4488 /* SMP safe */ 4489 return current->blocked.sig[0]; 4490 } 4491 4492 SYSCALL_DEFINE1(ssetmask, int, newmask) 4493 { 4494 int old = current->blocked.sig[0]; 4495 sigset_t newset; 4496 4497 siginitset(&newset, newmask); 4498 set_current_blocked(&newset); 4499 4500 return old; 4501 } 4502 #endif /* CONFIG_SGETMASK_SYSCALL */ 4503 4504 #ifdef __ARCH_WANT_SYS_SIGNAL 4505 /* 4506 * For backwards compatibility. Functionality superseded by sigaction. 4507 */ 4508 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4509 { 4510 struct k_sigaction new_sa, old_sa; 4511 int ret; 4512 4513 new_sa.sa.sa_handler = handler; 4514 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4515 sigemptyset(&new_sa.sa.sa_mask); 4516 4517 ret = do_sigaction(sig, &new_sa, &old_sa); 4518 4519 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4520 } 4521 #endif /* __ARCH_WANT_SYS_SIGNAL */ 4522 4523 #ifdef __ARCH_WANT_SYS_PAUSE 4524 4525 SYSCALL_DEFINE0(pause) 4526 { 4527 while (!signal_pending(current)) { 4528 __set_current_state(TASK_INTERRUPTIBLE); 4529 schedule(); 4530 } 4531 return -ERESTARTNOHAND; 4532 } 4533 4534 #endif 4535 4536 static int sigsuspend(sigset_t *set) 4537 { 4538 current->saved_sigmask = current->blocked; 4539 set_current_blocked(set); 4540 4541 while (!signal_pending(current)) { 4542 __set_current_state(TASK_INTERRUPTIBLE); 4543 schedule(); 4544 } 4545 set_restore_sigmask(); 4546 return -ERESTARTNOHAND; 4547 } 4548 4549 /** 4550 * sys_rt_sigsuspend - replace the signal mask for a value with the 4551 * @unewset value until a signal is received 4552 * @unewset: new signal mask value 4553 * @sigsetsize: size of sigset_t type 4554 */ 4555 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4556 { 4557 sigset_t newset; 4558 4559 /* XXX: Don't preclude handling different sized sigset_t's. */ 4560 if (sigsetsize != sizeof(sigset_t)) 4561 return -EINVAL; 4562 4563 if (copy_from_user(&newset, unewset, sizeof(newset))) 4564 return -EFAULT; 4565 return sigsuspend(&newset); 4566 } 4567 4568 #ifdef CONFIG_COMPAT 4569 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4570 { 4571 sigset_t newset; 4572 4573 /* XXX: Don't preclude handling different sized sigset_t's. */ 4574 if (sigsetsize != sizeof(sigset_t)) 4575 return -EINVAL; 4576 4577 if (get_compat_sigset(&newset, unewset)) 4578 return -EFAULT; 4579 return sigsuspend(&newset); 4580 } 4581 #endif 4582 4583 #ifdef CONFIG_OLD_SIGSUSPEND 4584 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4585 { 4586 sigset_t blocked; 4587 siginitset(&blocked, mask); 4588 return sigsuspend(&blocked); 4589 } 4590 #endif 4591 #ifdef CONFIG_OLD_SIGSUSPEND3 4592 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4593 { 4594 sigset_t blocked; 4595 siginitset(&blocked, mask); 4596 return sigsuspend(&blocked); 4597 } 4598 #endif 4599 4600 __weak const char *arch_vma_name(struct vm_area_struct *vma) 4601 { 4602 return NULL; 4603 } 4604 4605 static inline void siginfo_buildtime_checks(void) 4606 { 4607 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4608 4609 /* Verify the offsets in the two siginfos match */ 4610 #define CHECK_OFFSET(field) \ 4611 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4612 4613 /* kill */ 4614 CHECK_OFFSET(si_pid); 4615 CHECK_OFFSET(si_uid); 4616 4617 /* timer */ 4618 CHECK_OFFSET(si_tid); 4619 CHECK_OFFSET(si_overrun); 4620 CHECK_OFFSET(si_value); 4621 4622 /* rt */ 4623 CHECK_OFFSET(si_pid); 4624 CHECK_OFFSET(si_uid); 4625 CHECK_OFFSET(si_value); 4626 4627 /* sigchld */ 4628 CHECK_OFFSET(si_pid); 4629 CHECK_OFFSET(si_uid); 4630 CHECK_OFFSET(si_status); 4631 CHECK_OFFSET(si_utime); 4632 CHECK_OFFSET(si_stime); 4633 4634 /* sigfault */ 4635 CHECK_OFFSET(si_addr); 4636 CHECK_OFFSET(si_trapno); 4637 CHECK_OFFSET(si_addr_lsb); 4638 CHECK_OFFSET(si_lower); 4639 CHECK_OFFSET(si_upper); 4640 CHECK_OFFSET(si_pkey); 4641 CHECK_OFFSET(si_perf_data); 4642 CHECK_OFFSET(si_perf_type); 4643 4644 /* sigpoll */ 4645 CHECK_OFFSET(si_band); 4646 CHECK_OFFSET(si_fd); 4647 4648 /* sigsys */ 4649 CHECK_OFFSET(si_call_addr); 4650 CHECK_OFFSET(si_syscall); 4651 CHECK_OFFSET(si_arch); 4652 #undef CHECK_OFFSET 4653 4654 /* usb asyncio */ 4655 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != 4656 offsetof(struct siginfo, si_addr)); 4657 if (sizeof(int) == sizeof(void __user *)) { 4658 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != 4659 sizeof(void __user *)); 4660 } else { 4661 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + 4662 sizeof_field(struct siginfo, si_uid)) != 4663 sizeof(void __user *)); 4664 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != 4665 offsetof(struct siginfo, si_uid)); 4666 } 4667 #ifdef CONFIG_COMPAT 4668 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != 4669 offsetof(struct compat_siginfo, si_addr)); 4670 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4671 sizeof(compat_uptr_t)); 4672 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4673 sizeof_field(struct siginfo, si_pid)); 4674 #endif 4675 } 4676 4677 void __init signals_init(void) 4678 { 4679 siginfo_buildtime_checks(); 4680 4681 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 4682 } 4683 4684 #ifdef CONFIG_KGDB_KDB 4685 #include <linux/kdb.h> 4686 /* 4687 * kdb_send_sig - Allows kdb to send signals without exposing 4688 * signal internals. This function checks if the required locks are 4689 * available before calling the main signal code, to avoid kdb 4690 * deadlocks. 4691 */ 4692 void kdb_send_sig(struct task_struct *t, int sig) 4693 { 4694 static struct task_struct *kdb_prev_t; 4695 int new_t, ret; 4696 if (!spin_trylock(&t->sighand->siglock)) { 4697 kdb_printf("Can't do kill command now.\n" 4698 "The sigmask lock is held somewhere else in " 4699 "kernel, try again later\n"); 4700 return; 4701 } 4702 new_t = kdb_prev_t != t; 4703 kdb_prev_t = t; 4704 if (!task_is_running(t) && new_t) { 4705 spin_unlock(&t->sighand->siglock); 4706 kdb_printf("Process is not RUNNING, sending a signal from " 4707 "kdb risks deadlock\n" 4708 "on the run queue locks. " 4709 "The signal has _not_ been sent.\n" 4710 "Reissue the kill command if you want to risk " 4711 "the deadlock.\n"); 4712 return; 4713 } 4714 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 4715 spin_unlock(&t->sighand->siglock); 4716 if (ret) 4717 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4718 sig, t->pid); 4719 else 4720 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4721 } 4722 #endif /* CONFIG_KGDB_KDB */ 4723